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Chapter 1

Introduction

Abstract

The aim of this chapter is to introduce the reader to the basic concepts of colloid
science. By answering questions like “what are colloids?”, “why do we study
them?” and “how do we describe them?”, we explain our interest in investigating
symmetry breaking in equilibrium phases of anisotropic colloids.

1.1 Colloids
Explaining in a concise way what colloids, a.k.a. colloidal particles, are is alwayschallenging. Due to their wide presence in everyday life, colloidal particles are oftentermed ubiquitous. Nevertheless, a precise definition is complicated for a number ofreasons, among which the following three are the most evident examples.First of all, if we wonder what colloids are made of, the answer is unsatis-factorily simple: everything. Of course, ultimately we can trace back their fun-damental building blocks to atoms and molecules. However, atoms and moleculesin colloidal particles appear in a variety of different forms [1–3]: as single verylong molecules (polymers and proteins), small molecules arranging in loosely-boundcomposite structures (micelles and microemulsions), or even as atomic and molecu-lar bulk equilibrium phases like gas (foams), liquid (aerosols, emulsions) and solid(sols). The latter will be the main subject of this thesis. In fact, the defining prop-erties of colloids are not linked to their constituents, rather on their size. Colloidsare stable aggregates of atoms and molecules whose size roughly varies betweenthe nanometer (approximately the size of atoms and molecules) and the micrometer[4]. Therefore, ascertaining what colloids are made of does not help us understandwhat colloids are.The second complication arises from the fact that colloids are never thought ofin isolation. In fact, colloidal particles manifest their characteristic behavior onlywhen they are dispersed in another phase, typically a molecular solvent like water.
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4 CHAPTER 1. INTRODUCTION
Without the solvent, colloidal particles behave in a completely different and harder-to-describe way. The combined system of colloidal particles and solvent is thereforenamed colloidal suspension or colloidal dispersion.Etymology provides the third and final complication in defining colloids. Theterm “colloid” comes from the Greek κoλλα , meaning “glue”, and was coined by theScottish chemist Thomas Graham in the 1860s. Graham was among the first whoconducted systematic studies on colloidal suspensions, and proposed this name afterobserving the characteristic sticky behavior of some polymeric colloids [5]. However,the defining features of what we call now colloids have a conceptual meaning muchdeeper than that, a meaning which would have been unveiled only about 50 yearsafter Graham’s work [6–8]. Nonetheless, the term “colloid” survived.So far we introduced colloids as aggregates of atoms and molecules with di-mensions smaller than the micrometer suspended in a solvent. However, we havenot yet explained what changes if the particles considered were bigger than themicrometer scale, nor have we addressed what occurs when we dispense with thesolvent. The answers to those questions will give us the best way of understandingcolloids and we will address them in the following sections. Nevertheless, beforethis is addressed it is worth examining the reasons why colloids are studied.As previously mentioned, colloidal systems are ubiquitous in everyday life, there-fore their study has strong practical motivations. Applications of colloid sciencerange from food (mayonnaise, milk, jam) to cosmetics (creams and gels) and printingindustry (ink, e-ink); from biology (blood, cell content) to medicine (controlled drugsrelease); from oil industry (extraction process) to agriculture (soil properties) andenvironmental science (air and water recovery) [1, 2].However, the fundamental motivations behind colloidal science should not beunderestimated. For reasons that will be made clearer in the following sections, inmany ways colloids have properties resembling those of atoms, with the main dif-ference that their size is appreciably bigger and their dynamics appreciably slower.Therefore, understanding colloids makes us understand the atomic and molecularworld around us. Moreover, the physics of colloids can in a way be even moreinteresting than that of atoms and molecules. In fact, the mutual interactions be-tween atoms and molecules are fixed and determined by their electronic structure.Instead, the interactions between colloids can be adjusted in different ways [9]: fromisotropic to strongly anisotropic, from long to short range. Such a wide tunability ofthe interparticle interactions allows for the huge variety of the possible macroscopiccolloidal assemblies.
1.2 Brownian motion and diffusion
Let us now address the important question we did not answer in the previous section:“why are the micrometer upper size limit and the presence of the solvent so relevant?”The quick answer is “because they are necessary conditions for the colloids toperform Brownian motion”.



1.3. STATISTICAL MECHANICS AND EFFECTIVE INTERACTIONS 5
The physical phenomenon of Brownian motion takes its name from the Scottishbotanist Robert Brown. Thanks to his pioneering use of the optical microscope,Brown was among the first who observed in 1827 the continuous and apparentlychaotic motion of microscopic particles in water [10]. Although Brown himself ruledout that such a phenomenon could be related to the motion of microorganisms, itsphysical origin would not have been understood until 1905. In his annus mirabilisAlbert Einstein [6], together and independently from the Australian physicist WilliamSutherland [7], showed that Brownian motion could be explained by the thermalequilibrium of the Brownian particles with the molecules of the surrounding solvent.In other words, the Brownian particles perform their chaotic motion as a consequenceof the continuous exchange of momentum with the molecules of the solvent, whichare in permanent thermal agitation. Such an explanation is clearly based on thekinetic theory of thermal systems, developed in the second half of the 19th centurywithin a framework that would come to be called “statistical mechanics”. A few yearslater the French physicist Jean Baptiste Perrin experimentally confirmed Einstein’stheory [11], thus giving an unambiguous demonstration of the existence of atoms andthe first strong validation of the kinetic theory.In conclusion, small particles in a solvent perform a continuous chaotic motion,allowing them to diffuse all over the region of space occupied by the solvent. It isreasonable to expect that the bigger the mass, i.e., the size, of the Brownian particle,the less noticeable the effect of the solvent on its motion. This is what sets theapproximate upper limit for the size of colloids. At room temperature the diffusion ofparticles with a size appreciably bigger than the micrometer is in practice negligible.In this case we do not talk about colloids anymore, but about granular matter. Nowthat we have seen that colloids are essentially particles that diffuse in a solvent, wewill show what important consequences this brings to their physical description.

1.3 Statistical mechanics and effective interactions
One of the great achievements of 19th century physics was the development of sta-
tistical mechanics as a result of the remarkable insights of the Scot James ClerkMaxwell, the Austrian Ludwig Boltzmann and later on the American Josiah WillardGibbs. Statistical mechanics is the branch of physics aimed at furnishing a descrip-tion of systems composed by many (i.e., billions of billions of billions...) degrees offreedom [12–14]. The basic idea of its foundation consists of abandoning a determin-istic description in terms of microscopic states, impossible in practice, in favor of aprobabilistic one in terms of macroscopic states. The development of this theory fol-lowed from the need to unify within a single framework the microscopic dynamics ofatoms and molecules, obeying Newtonian dynamics, with the then freshly developedideas of thermodynamics.In spite of the wide generality of the theory, there are precise conditions that limitthe applicability of statistical mechanics. More specifically, the time evolution of thesystem must satisfy the “ergodic hypothesis”. Roughly speaking, this means that the



6 CHAPTER 1. INTRODUCTION
system is supposed to occupy all the possible microscopic states within observationtime [15]. Such an assumption has huge implications. This is because it allowsthe system to be described independently of its starting configuration, which formany-particle systems is practically impossible to know. Colloidal systems satisfythis condition thanks to the Brownian motion, and their equilibrium macroscopic(thermodynamic) behavior can be studied by means of the well-established conceptsof statistical mechanics. On the other hand, this is not the case for granular matter,for which such a macroscopic description is at present impossible.A further important feature of colloidal suspensions concerns the wide separa-tion of the length and time scales characterizing the dynamics of the solvent andthe colloids. This fact makes a global description of the suspension a complex taskto achieve, since it should account for the superposition of effects developing onthese very different scales. The typical approach aimed at a simplified statisticalmechanical description of colloidal suspensions therefore involves a partial integra-tion of the degrees of freedom of the solvent. This allows us to disentangle theeffects related to the two basic length and time scales of the system. In practice, weforget about the solvent, while taking into account its presence only in terms of the
effective interactions arising between the colloids [3].Colloids experience various types of interactions. Among these, those that arepurely repulsive and very short range are particularly important. These interactionscan be realized experimentally by, e.g., coating the surface of the colloids withpolymers [9]. In such cases we can model the colloid-colloid interaction as a hardrepulsion, which is nothing but a non-overlap condition between the volumes of thecolloids. The relevance of such models is due to the fact that energy (and thereforetemperature) does not play any role, and the thermodynamics of the system is solelygoverned by the entropy. In other words, hard-body models allow to investigatethe thermodynamics of colloids independently of energetic considerations. For thisreason they have become a primary object of research in soft condensed matter [16].
1.4 Phase transitions and symmetry breaking
Now, let us leave for a moment colloidal suspensions and focus instead on some-thing more familiar, like water. Water is a relatively simple system, since it is acollection of one single type of molecule, the water molecule H2O. In spite of thisapparent simplicity, we know well that water manifests a non-trivial macroscopicbehavior. We experience everyday the fact that water can assume different states, or
thermodynamic phases, with extremely different properties: gas (the vapor), liquidand crystal solid (the ice). We can achieve a phase transition between these verydifferent states by modifying the thermodynamic state, that is, by bringing waterbelow or above a given temperature (or pressure, density, ...). Even though there arenot many other compounds whose full phase behavior we experience so much in ourdaily life, water is not an exception. Most of the systems composed by one singlespecies of atoms or small molecules show similar phase transitions as water. The
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statistical mechanical explanation for these phenomena is based on the fact that theequilibrium thermodynamic behavior of a system is determined only by the mutualinteractions of its particles. The presence of gas, liquid and crystal phases followsfrom very general features, that is, that the pair interaction between two particlesmust have a short range repulsion and a long range attraction. This happens to beprecisely the case for atoms and small molecules [9].Let us focus more in detail on these phases of matter. If we could zoom intothe atoms and molecules of a system in the gas or liquid phase, the only differencewe would observe would be that in the liquid the particles are much closer to eachother than in the gas. In both cases we would see the particles bouncing around in achaotic manner, without showing any particular order in their average positions. Thisis because gas and liquid are actually a manifestation of the same phase, the fluid.The fluid is defined as a phase which is both homogeneous (its properties are thesame in any point of the space) and isotropic (its properties are the same along anydirection). On the other hand, gas and liquid strongly differ from the crystal phase,where particles tend to form ordered patterns in space (the crystal lattice), whilerattling only a little around their preferred position. Due to the existence of thesepreferred positions, the crystal is an inhomogeneous and anisotropic phase. Thisimplies that its structure is not symmetric with respect to an arbitrary translationor rotation. In this case we talk about translational and rotational spontaneous
symmetry breaking. This crucial difference between fluid and crystal explains theirextremely different properties, that is, for example, the ability of fluids to flow easilyor the characteristic scattering patterns of electromagnetic radiation when interactingwith a crystal.The list of the possible phases of matter is not limited to fluid and crystal. So far,we implicitly thought that the only degrees of freedom of the particles were related totheir positions. In other words, we assumed that the interaction between any coupleof particles is isotropic and depends on their distance only. However, we can findin nature many examples of big enough molecules characterized by a strongly non-spherical distribution of atoms, and therefore by anisotropic interactions dependingalso on the molecular orientations. These molecules can develop phases whoseproperties are in between those of fluid and crystal and are therefore known as
mesophases (meaning “phases in between”), or liquid crystals [17]. The characteristicfeature of liquid crystals is that the spontaneous breaking involves only some of thespatial symmetries. In other words, the distribution of particles in a liquid-crystalphase is more ordered than in the fluid, but less than in the crystal. A typicalexample of liquid-crystal phase is the nematic phase, where particles tend to takepreferred orientations in space, while developing no preference for the position oftheir centers of mass. The nematic phase is therefore anisotropic, like the crystal,and homogeneous, like the fluid. Other notorious examples of liquid-crystal phasesare the smectic and columnar phases, where the positions of the particles tend toorder only along one or two directions, respectively. Due to their peculiar properties,like that of flowing like a fluid while diffracting light like a crystal, liquid crystalshave found wide industrial applications, especially in the fields of switching devices
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and electro-optics [18].At this point we can go back to the subject of this thesis, colloids. What do weexpect from their macroscopic behavior? In the previous section we said that thanksto Brownian motion colloids behave like big atoms and molecules. Therefore, wededuce that they develop all the thermodynamic phases of atoms and molecules, thatis, fluid, crystal and liquid crystals. However, unlike atoms and molecules, colloidshave the great advantage that the features of their interactions can be manipulatedwith much more freedom. This gives the possibility to impose given properties ona macroscopic colloidal assembly by simply tailoring the interactions between itsparticles. As a consequence, understanding the relation between thermodynamicphases and interparticle interactions becomes a crucial problem of colloidal physics.This is the goal of this thesis.
1.5 Overview
The aim of this thesis is to shed new light on the properties of the equilibrium phasesof anisotropic colloids in the presence of symmetry breaking. By referring to thecolloids as anisotropic, we mean that they cannot be modeled simply as sphericallysymmetric particles. Consequently, the interaction between two such colloids isanisotropic and depends explicitly on their orientations in space. Throughout thisthesis we model the colloids as hard bodies with a non-spherical shape, and wetherefore focus on the role of entropic effects on their phase behavior. In Chapter 3we study the effect of polydispersity on the liquid-crystal phase behavior of colloidshaving the shape of bricks (boardlike particles), and we compare it in Chapter 4 withthat due to the effective attractive interaction induced by a non-adsorbing depletant.In Chapter 5 we analyze the crystallization transition of model colloidal hard cubesand squares. In Chapter 6 we focus on the effect of the broken symmetry on thediffusion and time relaxation of rod-like colloids. Finally, in Chapter 7 we proposea simplified theory for the description and prediction of the effective interactionsbetween colloids induced by a solvent preferential adsorption.



Chapter 2

Theoretical framework

Abstract

One of the characteristic features of colloids is that their equilibrium many-
particle properties can be studied by means of statistical mechanics. After a
brief introduction to classical statistical mechanics, we describe in this chapter
two methods aimed at its application: Density Functional Theory and Monte
Carlo simulation.

2.1 Introduction
The description of a colloidal dispersion and the theoretical prediction of its prop-erties represent a formidable challenge for physics. The origin of this high levelof complexity stems essentially from two features: the multi-scale character of themicroscopic dynamics and the macroscopic size of the system. The multi-scale char-acter of the microscopic dynamics is a consequence of the heterogeneity of theparticles composing the system. By definition, a colloidal suspension is comprisedof two distinct classes of particles, “colloids” and “solvent”, whose microscopic dy-namics is characterized by extremely different length and time scales. On the otherhand, the second source of complexity of a colloidal suspension, that is, its macro-scopic size, implies that the properties of the system are determined in a non-trivialway by those of the zillions of particles that compose it.Due to its multi-scale character, a faithful description of the dynamics of bothsolvent and colloidal particles composing a colloidal suspension is impossible inpractice. By analogy, this would be almost like studying the trajectory of a cannonball while taking into account the dynamics of each single molecule in the air. There-fore, a typical procedure aimed at simplifying the description consists of substitutingthe individual solvent molecules with a homogeneous medium, which affects the dy-namics of the colloids only through a limited number of experimentally measurablemacroscopic parameters (e.g., dielectric permittivity, shear viscosity,...) [1]. In otherwords, by means of a coarse graining process we approximate the two-component
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10 CHAPTER 2. THEORETICAL FRAMEWORK
system made by solvent and colloidal particles with a pure one-component systemof colloidal particles with effective dynamics and interactions. These effective inter-actions depend on a few parameters characterizing the bulk properties of the puresolvent. This procedure is justified in many practical situations, when the dynamicsof the colloids develops on length and time scales much larger than those of thesolvent inhomogeneities and other effects, like hydrodynamic interactions, can beneglected.Besides the multi-scale dynamics, the other element of complexity mentionedwas the macroscopic size of a typical colloidal suspension. In general, understand-ing the behavior of a system composed of many particles in a deterministic wayis an impossible task. However, there is a class of systems for which a coarse-grained description can be obtained. These systems are said to be in equilibrium,meaning that their state is independent of its previous history and fully determinedby the value of a (limited) set of variables [13]. The theoretical tool developed tostudy equilibrium systems is statistical mechanics, which allows to determine themacroscopic thermal properties from the microscopic dynamics. This thesis focuseson the equilibrium properties of various model systems of colloidal dispersions, andclassical statistical mechanics is the theoretical framework we will work in.
2.2 Fundamentals of statistical mechanics
2.2.1 ParticlesIn the context of this thesis the term “particle” will refer to both colloids and solventmolecules, but typically not at the same time. In fact, in the case our interest focuseson the thermodynamics of a colloidal suspension (Chapters 3-6), we use the term torefer to the colloids; the properties of the solvent are thought to be incorporated intothe colloid-colloid interactions. On the other hand, in Chapter 7 we will be interestedin explicitly evaluating the effective interaction between two colloids, in which casethe microscopic degrees of freedom of the solvent will be considered explicitly. Inthe latter context, when talking about “particles”, we refer to the solvent molecules.In general, we will not assume the physical properties of the particles to bespherically symmetric. That means that the kinetics of a single particle must bedescribed in terms of its center of mass position, given by the vector r, and itsorientation in space, expressed in terms of a set of angular variables Ω. For thesake of generality, it is convenient to introduce the concept of generalized coordinate
x = (r,Ω), which is comprised of center-of-mass position and (when applicable)orientation coordinate.
2.2.2 Hamiltonian formulation of the microscopic dynamicsIn the Hamiltonian formulation of classical mechanics, the dynamics of a system of Nidentical particles with generalized coordinates X = (x1, ...,xN ) and corresponding



2.2. FUNDAMENTALS OF STATISTICAL MECHANICS 11
generalized momenta P = (p1, ...,pN ) can be deduced by the Hamiltonian function

H(X,P)≡K(X,P)+U(X), (2.1)which corresponds to the total energy of the system decomposed into kinetic andpotential energy contributions. For non-relativistic particles the kinetic term K takesthe quadratic form [19]
K(X,P) = N∑

i=1
12pᵀi K(xi)pi, (2.2)

where the matrix K, besides depending on some of the generalized coordinates x,is determined by the mass m and the principal moments of inertia I1, I2 and I3 [19].The remaining term U in Eq. (2.1) represents the potential energy of the N-particlesystem.It is useful to distinguish between the potential energy arising from the inter-action between the particles of the system, which will be noted with U , and thepotential energy v(x) due to external fields. With this distinction, we can write thepotential energy as
U(X) = U(X)+ N∑

i=1 v(xi). (2.3)
In this thesis we consider pairwise interactions only. Therefore, by denoting theinteraction potential energy of particles i and j with u(xi,xj ), we can write

U(X) = N∑
i<j=1u(xi,xj ). (2.4)

2.2.3 Ensemble probability density distributionThe statistical approach to the properties of a many-particle system consists of iden-tifying the probability of a given microscopic state (X,P) under a set of constraintson the macroscopic variables M1,M2, .... Once the probability density distribution
PM1M2...(X,P) is known up to a multiplicative constant, the expectation value of anymicroscopic variable A(X,P) for the system of interest at fixed value of M1,M2, ...can be calculated as

〈A〉M1M2... = ∫
dXdP A(X,P) PM1M2...(X,P)∫

dXdP PM1M2...(X,P) . (2.5)
Probably the most important result of statistical mechanics states that an equi-librium system of N particles in a volume V in contact with a thermostat at absolute
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temperature T (“canonical ensemble”) has a probability density given by the Boltz-mann distribution

PTVN (X,P)∝ exp[−βH(X,P)], (2.6)where β = (kBT )−1 and kB = 1.3806488(13)×10−23J K−1 is the Boltzmann constant.
2.2.4 Connection with thermodynamicsIn the canonical ensemble the connection with the thermodynamics of the systemcan be made explicit by defining the partition function Z (T ,V ,N) as

Z (T ,V ,N)≡ ∫ dXdP
hNdpN! exp[−βH(X,P)], (2.7)

where dp is the number of degrees of freedom per particle, h = 6.62606957(29)×10−34J s is the Planck constant1, and the factor 1/N! expresses the classical indis-tinguishability of the particles. In terms of the partition function the Helmholtz freeenergy is given by
F (T ,V ,N) =− 1

β log[Z (T ,V ,N)], (2.8)
from the derivatives of which all the thermodynamic information can be deduced [13].Due to the general form of the kinetic energy reported in Eq. (2.2), the integrandof Eq. (2.7) has a Gaussian dependence on the generalized momenta, which allowsfor an analytic solution. By performing such an integration [20], we can write thepartition function as

Z (T ,V ,N) = Q(T ,V ,N)
VNN! , (2.9)

where the configuration integral Q(T ,V ,N) is defined as
Q(T ,V ,N)≡ ∫ dX exp[−βU(X)], (2.10)

and the thermal volume V of a particle of mass m and principal moments of inertia
I1, I2 and I3 is given by

V = h6√ β6(2π)6m3I1I2I3 . (2.11)
1In a purely classical framework h is an unspecified parameter with units of [energy]×[time], introducedin order to make the partition function dimensionless. Since its effect on the energy is that of an additiveconstant, it does not influence any physical prediction. The precise value of h follows from a formulationof statistical mechanics based on a quantum microscopic dynamics.
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In analogy with our considerations in the canonical ensemble, we can identifythe connection between the Hamiltonian function and the relevant thermodynamicpotential of other statistical ensembles. For the goals of this thesis, we reporthere the expression of the grand potential Ω of a system in a volume V at fixedtemperature T and chemical potential µ (“grand canonical ensemble”), for which

Ω(T ,V ,µ) =− 1
β log[Ξ(T ,V ,µ)], (2.12)

where the grand canonical partition function is given by
Ξ(T ,V ,µ)≡ ∞∑

N=0exp(βµN)Z (T ,V ,N), (2.13)
or, using Eqs. (2.3), (2.9) and (2.10),

Ξ(T ,V ,µ) = ∞∑
N=0

1
VNN!

∫
dX exp{−βU(X)− N∑

i=1 β
[
v(xi)−µ]}. (2.14)

2.3 Density functional theory
2.3.1 Single-particle densityIn the previous section we have seen that, once the ensemble probability densityis known, we can calculate the expected value of any microscopic property A(X,P)by means of Eq. (2.5). However, in many practical situations we are interested inmicroscopic properties that do not depend on the momenta and that can be expressedas sum of single particle properties, that is

A(X) = N∑
i=1 a(xi). (2.15)

In this case, we can express the average value of Eq. (2.5) as〈 N∑
i=1 a(xi)〉= ∫ dxa(x)ρ(x), (2.16)

where we introduced the single-particle density ρ(x), defined as
ρ(x)≡ 〈ρ(x)〉, (2.17)where
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ρ(x) = N∑
i=1 δ(x− xi), (2.18)

and δ(x− xi) is the multi-dimensional Dirac-delta distribution. The average valueof Eq. (2.17) is conveniently calculated in the grand canonical ensemble, from whichwe can deduce the following normalization condition∫
dxρ(x) = 〈N〉. (2.19)

An explicit way to evaluate the average value of Eq. (2.17) can be obtainedas follows. By means of Eq. (2.18), we can rewrite the grand canonical partitionfunction Eq. (2.14) as
Ξ(T ,V ,µ) = ∞∑

N=0
1

VNN!
∫
dX exp{−βU(X)+∫ dxβψ(x)ρ(x)}, (2.20)

with the intrinsic chemical potential defined as
ψ(x)≡ µ− v(x). (2.21)Note that the grand canonical partition function in Eq. (2.20) can be seen as afunctional of ψ(x), so that, by means of Eqs. (2.12) and (2.17), we can express thesingle-particle density as the functional derivative
ρ(x) =− δΩ

δψ(x) . (2.22)
2.3.2 Intrinsic free-energy functionalThe result of Eq. (2.22) renders explicit the fact that the grand potential Ω canbe considered as a function of T and V and a functional of the intrinsic chemicalpotential ψ(x). However, the explicit evaluation of integrals of the type of Eq. (2.20)is impossible (or extremely difficult) in most cases, thus rendering the route to thesingle-particle density through Eq. (2.22) not feasible.An alternative approach, which forms the basis of density functional theory,consists of inverting the relation of Eq. (2.22) and adopting the single-particledensity as the functional variable rather than the intrinsic chemical potential [21].This procedure has the great advantage of giving a higher control on the functionalform of the single-particle density itself and on the approximations to adopt. In orderto introduce the single-particle density as the functional variable, from Eq. (2.22)we define the Legendre transform F [ρ] of Ω[ψ] as
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F [ρ]≡ inf

ψ(x)
{Ω[ψ]+∫ dxρ(x)ψ(x)}, (2.23)

which is the so-called intrinsic free-energy functional. Notice that the definition ofEq. (2.23) implies the definition of the single-particle density as given by Eq. (2.22).Since the Legendre transform of a function(al) is its own inverse, we can express thegrand potential as
Ω[ψ] = inf

ρ(x)
{
F [ρ]−∫ dxρ(x)ψ(x)}, (2.24)

or, equivalently,
Ω[ψ] = inf

ρ(x)
{Ωv [ρ]}, (2.25)

where Ωv [ρ], which is a functional of both v(x) and ρ(x), is defined as
Ωv [ρ]≡F [ρ]−∫ dxρ(x)[µ− v(x)]. (2.26)

In other words, Eq. (2.25) states that the grand potential of a system of particles attemperature T and chemical potential µ in a volume V under the influence of theexternal field v(x) is
Ω = Ωv [ρeq]. (2.27)The equilibrium single-particle density ρeq(x) is the one minimizing the functionalΩv [ρ], and is therefore a solution2 of the Euler-Lagrange equation
δΩv
δρ(x)

∣∣∣∣
ρ=ρeq= 0. (2.28)

It appears clear that the intrinsic free-energy functional F [ρ] defined in Eq. (2.23)is the relevant element in which all the information about the system is stored.It is therefore not surprising that in general we cannot calculate the functionaldependence F [ρ] exactly. A great deal of work in density functional theory consistsof developing approximations for F [ρ] and testing their quality for various modelsystems. It is convenient to write the intrinsic free energy as the sum of an idealpart and an excess part, where the latter is different from zero only for interactingsystems, that is
F [ρ] = F id[ρ]+Fexc[ρ]. (2.29)The ideal component of the intrinsic free energy reads [21]

2In general not the only one, see the discussion in Sec. 2.3.3.
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F id[ρ] = 1

β

∫
dxρ(x){log[Vρ(x)]−1}. (2.30)

By making use of the explicit expression for the ideal term of Eq. (2.30), the Euler-Lagrange equation Eq. (2.28) satisfied by the equilibrium single-particle density ofa system at temperature T and chemical potential µ can be expressed as
ρ(x) = V−1 exp[βµ−βv(x)+ c1(x, [ρ])], (2.31)

where we dropped the index “eq” for notational convenience and introduced theone-particle direct correlation function, which is a functional of the single-particledensity and is defined as
c1(x, [ρ])≡−β δFexc

δρ(x) . (2.32)
In summary, if an expression for the excess free-energy functional Fexc[ρ] isknown, by solving Eq. (2.31) we obtain a candidate for the equilibrium single-particle density at temperature T and chemical potential µ in the presence of theexternal field v(x). The solution is only a “candidate” because satisfying Eq. (2.31)is a necessary but not sufficient condition for minimizing the functional Ωv [ρ], as wewill point out in the next section. The corresponding value for the grand potentialis in turn calculated by inserting the solution of Eq. (2.31) into Eq. (2.26).Alternatively, if we are interested in evaluating the single-particle density in thecanonical ensemble, i.e., at fixed temperature T and number density n = N/V , Eq.(2.31) must be substituted with

ρ(x) = nexp[βµ−βv(x)+ c1(x, [ρ])]∫ dx′
V exp[βµ−βv(x′)+ c1(x′, [ρ])] , (2.33)

which explicitly satisfies the normalization condition∫
dxρ(x) =N. (2.34)

Due to their highly non-linear character, both Eqs. (2.31) and (2.33) have to besolved numerically.
2.3.3 Bifurcation theoryIn the previous section we have seen that the most important step of density func-tional theory consists of finding the function ρ(x) that minimizes the functional Ωv [ρ].In practice, this is achieved by solving the Euler-Lagrange equation Eq. (2.31) or Eq.(2.33). However, besides the absolute minimum (stable solution) of Ωv [ρ], the Euler-Lagrange equation has in general more than one solution, representing local minima
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(metastable solutions), saddle points and maxima (unstable solutions). In particular,the number of solutions of the Euler-Lagrange equation depends on the thermody-namic state. Typically, at low density or high temperature only one constant solution,corresponding to an isotropic and homogeneous (i.e., highly symmetric) macroscopicphase, exists. However, by varying the thermodynamic variables, we can encounterfurther solutions. These new solutions are often characterized by non-trivial modula-tions of the single-particle density in the orientation and/or position variables, andthus represent anisotropic and/or inhomogeneous phases (spontaneous symmetrybreaking).In practice, the identification of the equilibrium single-particle density for eachthermodynamic state point is not always feasible. In fact, the numerical challengesrelated to the solution of the non-linear Euler-Lagrange equation increase with thenumber of dimensions along which the single-particle density is not homogeneous.This poses in principle a serious problem, since we would not be able to confirmthe stability of a given phase, without comparing it with all other possible phaseswith lower symmetry, i.e., modulations along more dimensions. This problem can bebypassed by means of bifurcation theory, which focuses on the way in which newsolutions of a given equation appear when its defining parameters are tuned. Thistheoretical tool has been introduced in the context of liquid-crystal phase transitionsby Kayser and Raveché [22], and further developed by Mulder [23]. In this sectionwe use bifurcation theory to estimate the maximum density at which a given phasecan possibly be stable. In the language of Mulder, this coincides with identifyingthe first-order bifurcation equation [23].In order for the equilibrium single-particle density ρ(x) to be a minimum, asrequired by Eq. (2.25), besides solving the Euler-Lagrange equation, the concavitycondition inequality ∫

dxdx′ δ2F
δρ(x)δρ(x′)

∣∣∣∣
ρ(x)δρ(x)δρ(x′)> 0 (2.35)

must be satisfied for an arbitrary choice of the function δρ(x). However, by mod-ifying the thermodynamic state (i.e., by changing the temperature, density, etc...),the inequality Eq. (2.35) can continuously become an equality. If this is the case,what before was a minimum (stable solution) now becomes a saddle point (unstablesolution), thus implying the existence of another absolute minimum separated fromthe original one. By introducing the two-particle direct correlation function
c2(x,x′, [ρ])≡−β δ2Fexc

δρ(x)δρ(x′)
∣∣∣∣
ρ(x), (2.36)

and using the explicit expression for the ideal free-energy functional given by Eq.(2.30), the limit of stability of a given solution ρ(x) is found as the thermodynamicstate at which a function δρ(x) exists, such that
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δρ(x) = ρ(x)∫ dx′ c2(x,x′, [ρ])δρ(x′). (2.37)

Eq. (2.37) can be rewritten as the eigenvalue problem(
δρ(x)√
ρ(x)

)= ∫ dx′
[√

ρ(x)ρ(x′)c2(x,x′, [ρ])]( δρ(x′)√
ρ(x′)

)
, (2.38)

where the integral operator between the square brackets is Hermitean, and hencehas a spectrum of real eigenvalues. In summary, the limit of stability of a phasedescribed by the single-particle density ρ(x) is found as the thermodynamic state atwhich the matrix between square brackets in Eq. (2.38) acquires a unit eigenvalue.The corresponding eigenfunction is then a possible solution for δρ(x)/√ρ(x). If aunit eigenvalue does not exist, the only solution of Eq. (2.38) is δρ(x) ≡ 0, andhence ρ(x) is a stable solution. The great merit of bifurcation theory is that of givinginformation on a non-linear problem by means of the solution of a linear one.
2.3.4 ApproximationsIn this section we list the approximation schemes for the excess free-energy func-tional Fexc adopted in this thesis. In general, there is no specific rule for preferringone scheme with respect to another. The complexity of the problem, the possibilityof systematic improvement or the quality in the description of a specific model areusually the main elements to take into account in this choice. Moreover, these ap-proximations are not mutually exclusive: in some situations we develop approximatefree-energy functionals by means of a combination of them.
Local-density approximation (LDA)In the case of a fluid in the presence of an external potential v(r), which we assume todepend on the positions of the particles r only, the simplest approach is the local-density approximation (LDA). When the bulk excess-free energy per unit volume
f exc(ρ) of the homogeneous fluid at density ρ is known, the LDA reads

Fexc[ρ] = ∫ dr f exc(ρ(r)). (2.39)
As it appears from Eq. (2.39), the LDA implies that the fluid behaves locally as if itwere homogeneous, thus completely neglecting non-local effects. We can expect thisapproximation to hold only in the case of slowly varying fields, or, more specifically,when the length scale of the fluid inhomogeneity induced by the external fieldis much bigger than the correlation length. Eq. (2.39) can be interpreted as azeroth order truncation of a gradient expansion of the free energy [21]. Therefore,by truncating the gradient expansion at higher orders, in case the correspondingexpansion terms exist, we could improve the description by the introduction of non-local terms.
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Second-virial approximationThe low-density thermodynamic behavior of a many-particle system with short-range interactions can be approximated by truncating the virial expansion of the freeenergy. Within this approach, the interaction potential is treated as a perturbationto the ideal-gas behavior. At the lowest non-trivial order the grand potential canbe approximated as [16]

Ω[ψ]' Ω0[ψ]− 12β
〈 N∑
i,j=1 fm(xi,xj )〉0, (2.40)

where Ω0[ψ] is the ideal-gas grand potential and the grand canonical average 〈...〉0 isperformed over the reference non-interacting system. The Mayer function is definedin terms of the pairwise potential u(xi,xj ) as
fm(xi,xj ) = exp[−βu(xi,xj )]−1. (2.41)

By means of Eq. (2.18), we can rewrite Eq. (2.40) as
Ω[ψ]' Ω0[ψ]− 12β

∫
dxdx′ fm(x,x′)〈ρ(x)ρ(x′)〉0, (2.42)

where the non-interacting reference system yields
〈ρ(x)ρ(x′)〉0 = 〈ρ(x)〉0〈ρ(x′)〉0 = ρ(x)ρ(x′), (2.43)such that upon comparing with Eq. (2.23), the excess free-energy functional reads
Fexc[ρ] =− 12β

∫
dxdx′ fm(x,x′)ρ(x)ρ(x′). (2.44)

When considering a homogeneous fluid of non-spherically symmetric particles inter-acting via a purely hard repulsive potential, we define the excluded-volume function
E (Ω,Ω′) =−∫ d(r− r′)fm(x,x′), (2.45)

which can be interpreted as the volume not accessible by the center of mass of aparticle with orientation Ω, when another particle has orientation Ω′. The corre-sponding excess free-energy functional reads
Fexc[ρ] = V2β

∫
dΩdΩ′ E (Ω,Ω′)ρ(Ω)ρ(Ω′), (2.46)

and gives rise to a density functional theory equivalent to the pioneering approachdeveloped by L. Onsager to interpret the isotropic-nematic transition in colloidalhard-rod fluids [24].
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Mean-field approximationThe mean-field approximation is in essence very similar to the second-virial ap-proximation. In statistical physics the term “mean field” is often used with a quitegeneral meaning, identifying all the theories that offer an approximate description ofan interacting system by neglecting (some of) the correlations between its degreesof freedom [25]. However, with the term “mean-field” we refer here to a specificapproximation, according to which the force experienced by one particle is modeledas an effective self-consistent force field (mean field) generated by all the remainingparticles.Let us suppose that (a good approximation for) the excess free-energy func-tional Fexc0 of a system of particles interacting via a pairwise potential u0(x,x′) isknown. The grand potential of a system of particles interacting via a pairwise po-tential u(x,x′) = u0(x,x′)+∆u(x,x′) can be approximately expressed as a first-ordertruncated expansion in the perturbation ∆u(x,x′) as

Ω[ψ]' Ω0[ψ]+ 12
〈 N∑
i,j=1∆u(xi,xj )〉0, (2.47)

where 〈...〉0 stands for the ensemble average over the reference system. Eq. (2.47)can be rewritten as
Ω[ψ]' Ω0[ψ]+ 12

∫
dxdx′∆u(x,x′)〈ρ(x)ρ(x′)〉0, (2.48)

and, by neglecting two-body correlations, that is
〈ρ(x)ρ(x′)〉0 ' 〈ρ(x)〉0〈ρ(x′)〉0 = ρ(x)ρ(x′), (2.49)we finally deduce the excess free-energy functional

Fexc[ρ] = Fexc0 [ρ]+ 12
∫
dxdx′∆u(x,x′)ρ(x)ρ(x′). (2.50)

Fundamental measure theory (FMT)Contrarily to the approximations schemes described so far, which can in principlebe applied to any system, the fundamental measure theory (FMT) was designedto reproduce the thermodynamics of only one specific model system: hard spheres.However, it does so very well. Developed in its original form by Y. Rosenfeld in1989 [26], FMT is at present the best theory for the description of hard-spheresystems at equilibrium. Its merits are various and remarkable: it is designed todeal with mixtures, its non-local character gives an extremely good account forconfinement conditions and it succeeds in accounting quantitatively for the freezingtransition. In its original formulation, FMT gets inspiration from the exactly solvable
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one-dimensional hard-rod model to build a high-density extrapolation of the scaled-particle theory equation of state of the homogeneous fluid from the inhomogeneouslow-density second-virial behavior [26, 27].A complete introduction to FMT falls beyond the scope of this thesis3, and inthis section we only describe its mathematical structure. The main assumption ofFMT is that the excess free-energy functional of a mixture of M hard-sphere speciescan be written as a local functional

βFexc[{ρi}] = ∫ drΦ({nα (r)}), (2.51)
of a limited number of weighted densities nα (r), calculated as convolutions of the sin-gle particle densities ρi(r) (i= 1, ...,M) with a limited number of geometry-inspiredweight functions wi

α (r),
nα (r)≡ ∫ dr′

M∑
i=1 ρi(r′)wi

α (r− r′). (2.52)
The total number of weight functions, as well as the explicit functional dependenceof Φ({nα (r)}), vary from version to version of the theory itself.Due to its remarkable success, there have been attempts to generalize FMTto dimensions other than D = 3, but also to non-spherical hard particles. Amongthe limited number of models for which a fundamental measure theory has beendeveloped, one finds parallel hard cubes (D = 3) and squares (D = 2), which willbe considered in Chapter 5.
2.4 Monte Carlo simulation
In Sec. 2.2 we have seen that an important aim of statistical mechanics is to com-pute ensemble averages as in Eq. (2.5). This type of calculation, which involvesan integration over a high-dimensional space, is in general impossible to performanalytically. However, an evaluation of integrals like Eq. (2.5), which is in principle“exact”, can be performed by means of computational methods based on Monte Carlointegration algorithms, also known as Monte Carlo simulations.Let us focus on the case of a microscopic property, independent of the momentaof the particles, whose average is to be evaluated in the canonical ensemble. In thissituation, the average value reads

〈A〉TVN = ∫
dXA(X)exp[−βU(X)]∫
dX exp[−βU(X)] . (2.53)

A numerical evaluation of the integral in Eq. (2.53) based on a homogeneous ran-dom sampling of the configuration space would be extremely inefficient. In fact,
3For an introduction to the fundamental measure theory see Refs. [28, 29].
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only a tiny fraction of the high-dimensional space spanned by X is characterizedby a corresponding Boltzmann factor which is appreciably different from zero. Amuch more efficient method would be based on generating random configurations Xthat are themselves distributed according to the Boltzmann distribution (“importancesampling”). However, how can we achieve this? The problem was addressed in theearly days of computer science by N. Metropolis et al. [30].The basic idea of the Metropolis algorithm consists of generating a stochasticcollection of microscopic configurations {Xn} (Markov chain). The transition matrixof the Markov chain is chosen in such a way that the asymptotic state Xn→∞ isgenerated with a probability given by the Boltzmann distribution [31]. In practice,by starting from an initial configuration X0, we generate a successive number of ran-dom configurations X1,X2, ..., where typically Xn = Xn−1 +∆X and ∆X is randomlygenerated. A configuration Xn is accepted as an element of the Markov chain witha probability

acc(n−1→ n) = min{1,exp[−β(U(Xn)−U(Xn−1))]}. (2.54)
In such a way, after a number of Monte Carlo steps which depends on the choice ofthe initial configuration, the Markov chain reaches a steady-state condition. Whenthe steady state is reached, any ensemble average of the property A(X) can becalculated as an arithmetic average over the configurations generated by the al-gorithm. So far we focused on averages evaluated in the canonical ensemble, butextensions of Monte Carlo algorithms to other ensembles, like the important case ofthe isothermal isobaric NPT ensemble, exist [31].In summary, the Monte Carlo simulation approach consists of generating a se-ries of configurations that asymptotically mimic the Boltzmann distribution. Thisapproach is radically different from Molecular Dynamics simulations, where the mi-croscopic time evolution of the system is reproduced instead. Actually, no time scaleis defined in Monte Carlo simulations at all. Nevertheless, in Chapter 6 we will seethat Monte Carlo algorithms can be extremely useful to simulate the microscopicdynamics of colloidal particles. Once again, this is a consequence of the Brown-ian character of the dynamics of colloids. In fact, on time scales sufficiently longthe dynamics of a colloid subject to the continual collisions with solvent moleculesresembles that of a random walker [1]. This means that the time evolution of thecolloid’s degrees of freedom can be treated as a Markov chain. Therefore, the MonteCarlo algorithm allows to simulate in an approximate way the dynamics of a col-loidal suspension. In order to achieve this result, the algorithm has to be designedin such a way that the transition matrix of the Markov chain reproduces the diffusionconstant of the colloid in the solvent.



Chapter 3

Polydispersity stabilizes
biaxial nematic phases

Abstract

Inspired by the observations of a remarkably stable biaxial nematic phase, we
investigate the effect of size polydispersity on the phase behavior of a suspen-
sion of boardlike particles. By means of Onsager theory within the restricted-
orientation (Zwanzig) model we show that polydispersity induces a novel to-
pology in the phase diagram, with two Landau tetracritical points in between
which oblate uniaxial nematic order is favored over the expected prolate order.
Additionally, this phenomenon causes the opening of a huge stable biaxiality
regime in between uniaxial nematic and smectic states.

3.1 Introduction
Since its first prediction back in the early 1970s [32–34], the biaxial nematic phase(NB) has strongly attracted the interest of the liquid-crystal community [35, 36].In contrast to the more common uniaxial nematic (NU ) phase, where cylindricalsymmetry with respect to the nematic director determines optical uniaxiality, the
NB phase is characterized by an orientational order along three directors and,consequently, by the existence of two distinct optical axes. The prospect of inducingorientational ordering along three directions, while maintaining a nematic fluid-likemechanical behavior [37], renders biaxial nematics preeminent candidates for nextgeneration liquid-crystal based displays [38]. Although experimental evidences ofstable NB phases were reported already 30 years ago in lyotropic liquid crystals[39], in thermotropics this result was achieved in systems of bent-core moleculesonly a few years ago [40, 41]. Actually, when trying to experimentally reproducean NB phase, one often encounters practical problems related to its unambiguousidentification [35, 36] and to the presence of competing thermodynamic structures [42–44]. Stabilizing NB states is therefore an open, challenging scientific problem withhuge potential applications. Motivated by the exciting results of a recent experiment

23
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Figure 3.1: (a) Cuboidal particle with dimensions L×W ×T . (b) Schematic representationof a system of freely rotating cuboids in the biaxial nematic phase NB , (c) the uniaxialnematic prolate N+ and (d) the uniaxial nematic oblate N− .
on a colloidal suspension [45], we use here a mean-field theory to investigate therole played by size polydispersity on the stability of biaxial nematics in systems ofboardlike particles. We show that a difference in the particle volume of a binarymixture can favor oblate uniaxial orientational ordering over prolate, in sharp contrastwith the behavior of the pure systems. This phenomenon gives rise to a new phasediagram topology due to the appearance of two Landau tetracritical points, leadingto a wider region of NB stability. This feature is shown to hold also for a largernumber of components, thus offering an explanation to the experimental results ofRef. [45]. Finally, we argue that our findings could furnish a new way to look forbiaxiality in thermotropic liquid crystals.At low density in lyotropics, and at high temperature in thermotropics, the NBphase appears as a crossover regime in between “rod-like” and “plate-like” behavior[33]. In fact, one can distinguish between the NU phase developed by rods, in whichparticles align the longest axis along a common direction (uniaxial nematic prolate,
N+), and that developed by plates, in which particles align the shortest axis (uniaxialnematic oblate, N−). A natural candidate system for developing an NB phase is abinary mixture of rods and plates [46]; however, in most cases a demixing transitioninto two uniaxial nematic phases, i.e., N+ and N−, prevents its stabilization [43, 44].Alternatively, a stable NB state is expected in a system of particles with cuboid(i.e., rectangular parallelepiped) shape defined by the lengths of the principal axes
L≥W ≥ T , as depicted in Fig. 3.1(a) [34]. In this case, it is convenient to introducea shape parameter ν, defined by
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ν = L

W −
W
T . (3.1)

By increasing the packing fraction and disregarding the possible stability of inho-mogeneous phases, according to mean-field theory a system of cuboids undergoesan I→N+→NB sequence of phases if ν > 0, whereas an I→N−→NB sequenceis found if ν < 0 (I stands for the isotropic phase) [47]. A schematic representationof these nematic phases is given in Fig. 3.1(b)-(d). The case ν = 0 describes theoptimal “brick” shape exactly in between “rod-like” and “plate-like”. In this case the
NU phase is suppressed and substituted by a second-order INB transition [47].The first experimental realization of the hard-cuboid model was found only re-cently in a colloidal suspension of boardlike mineral goethite particles [45]. Byproducing particles with shape parameter ν ' 0.1 close to zero (〈L〉×〈W 〉×〈T 〉=254× 83× 28nm3 and size polydispersity of 20− 25%), the authors were able toproduce an NB phase stable over a pressure range surprisingly much wider thanto be expected from theory [42, 48] and simulations [49] for particles whose shapeparameter deviates even slightly from zero. Even more interestingly, the authorsaffirm that no NU phase was observed, contrasting Ref. [47]. They suggest that apossible reason for this disagreement should be found in ingredients whose effectshave never been studied so far because of their complexity, i.e., fractionation, sed-imentation and polydispersity. These unexpected results motivate our interest inanalyzing the effect of the above mentioned ingredients, in particular polydispersity,on the stability of the NB phase in a fluid of hard cuboids.
3.2 Model and theory
We consider an M-component suspension of Nα colloidal cuboidal particles ofspecies α = 1, ...,M with dimensions Lα ×Wα × Tα (Lα > Wα > Tα ) in a volume
V at temperature T . The total number density of colloids is

n= M∑
α=1

Nα
V = N

V , (3.2)
the mole fraction of species α is

xα = Nα
N , (3.3)

and the packing fraction is
η= n

M∑
α=1 xα LαWαTα . (3.4)



26 CHAPTER 3. POLYDISPERSITY STABILIZES BIAXIAL NEMATIC PHASES

Figure 3.2: The 6 independent orientations of a boardlike particle within the restricted-orientation (Zwanzig) model [50].
The theoretical framework used in this chapter consists of Onsager theory of liquidcrystals [24], which is a density functional theory truncated at second-virial order (cf.Sec. 2.3.4). In order to facilitate the calculations, we follow Zwanzig by restrictingthe orientations of the particles to the six in which their principal axes are alignedalong a fixed Cartesian frame, as in Fig. 3.2 [50]. By means of this process ofdiscretization of the orientational degrees of freedom, a particular orientation isidentified with a number i= 1, ...,6, as summarized in Tab. 3.1.Although quantitative agreement with real systems is not expected because of thesimplifications introduced in the model, the same model was shown to successfullypredict non-trivial phenomena like demixing in rod-plate mixtures [43], orientationalwetting due to confinement and capillary nematization [51]. As explained in Sec.2.3.2, in density functional theory the intrinsic free-energy functional is the sum of anideal and an excess component. By denoting with ραi (r) the local density of particlesof species α = 1, ...,M with orientation i= 1, ...,6, the ideal free-energy functionalfor this multi-component model with discretized orientations reads (cf. Eq. (2.30))

βF id[ρ] = ∫ dr
6∑
i=1

M∑
α=1ρ

α
i (r){log[ραi (r)Vα ]−1}, (3.5)

where β = (kBT )−1, T is the absolute temperature, kB is the Boltzmann constant and
Vα the thermal volume of species α . An exact expression for the excess componentof the intrinsic free-energy functional is not known. Here we apply the secondvirial order approximation (cf. Sec. 2.3.4), in such a way that the excess free-energyfunctional is approximated by
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i L W T1 x y z2 z x y3 y z x4 x z y5 y x z6 z y x

Table 3.1: Enumeration of the possible orientations of a hard cuboid within the Zwanzigmodel. Each configuration i is identified with the directions (x,y,z) along which the particleaxes (L,W ,T ) are aligned.

βFexc[ρ] =−12
∫
drdr′

6∑
i,i′=1

M∑
α,α′=1 f

αα′ii′
m (r− r′)ραi (r)ρα′i′ (r′). (3.6)

The Mayer function
fαα′ii′m (r) = exp[−βuαα′ii′ (r)]−1, (3.7)

is defined in terms of the pairwise potential uαα′ii′ (r) of a pair of particles belongingto species α and α ′ with orientation i and i′, respectively, and relative position r.For hard cuboids with dimensions Lα ×Wα ×Tα the interaction potential is
βuαα′ii′ (r) =


∞ if |x|< (Xαi +Xα′i′ )/2and |y|< (Y αi +Y α′i′ )/2and |z|< (Zαi +Zα′i′ )/2;0 otherwise,

(3.8)
and expresses reciprocal impenetrability. According to the index notation defined inTab. 3.1, the 6-dimensional vectors Xα , Yα and Zα of species α introduced in Eq.(3.8) are given in terms of the dimensions of the particles by

Xα = (Lα ,Wα ,Tα ,Lα ,Wα ,Tα ),
Yα = (Wα ,Tα ,Lα ,Tα ,Lα ,Wα ),
Zα = (Tα ,Lα ,Wα ,Wα ,Tα ,Lα ). (3.9)

The main goal of this chapter is to study the stability of spatially homogeneousphases (i.e., isotropic and nematic). In this case we can simplify the problem byneglecting spatial modulations in the single-particle density, i.e., by imposing ραi (r) =
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ραi . Consequently, the intrinsic free-energy functional, sum of ideal (Eq. (3.5)) andexcess (Eq. (3.6)) components, becomes

βF [ρ]
V = M∑

α=1
6∑
i=1 ρ

α
i
{log[ραi Vα ]−1}+ 12 M∑

α,α′=1
6∑

i,i′=1E
αα′
ii′ ρ

α
i ρα

′
i′ , (3.10)

which is the restricted-orientation version of the Onsager free energy (cf. Eq. (2.46))[24]. The matrix Eαα′ii′ in Eq. (3.10) is the excluded volume between two particlesbelonging to species α and α ′ with orientations i and i′, and reads
Eαα′ii′ = (Xαi +Xα′i′ )(Y αi +Y α′i′ )(Zαi +Zα′i′ ). (3.11)Since at sufficiently high density one expects spatially inhomogeneous phasesto be thermodynamically favored, we apply bifurcation theory [47] to determine thelimit of stability of the homogeneous equilibrium phases with respect to smecticfluctuations (cf. Appendix 3.A.1).

3.3 Prelude: monodisperse case
The main goal of the present chapter is to investigate how polydispersity affects thephase behavior of a system of hard cuboids. It is therefore instructive to study whatthe theoretical framework described in Sec. 3.2 predicts for the pure component, i.e.,when the total number of species is M = 1. We focus here on the role of the particlesaspect ratios L/T and W/T on the phase behavior (cf. Fig. 3.1(a)). Since our finalgoal involves among other things the interpretation of the experiments of Ref. [45],we consider aspect ratios close to the experimental ones, that is, L/T = 9.07 and
W/T = 2.96.In Fig. 3.3 we report the phase diagram of a monodisperse system of hardcuboids as a function of the aspect ratio W/T at fixed L/T = 9.07. By varying W/T(and therefore the shape parameter ν = L/W −W/T ) at fixed L/T , one observes atransition from plate- to rod-like behavior when crossing the value ν = 0. In otherterms, by passing from negative to positive values of the shape parameter ν, onefinds in second-virial theory a transition from a stable oblate N− to a stable prolate
N+ phase [47]. Moreover, by means of bifurcation theory we estimate the upperlimit of stability of homogeneous phases with respect to the smectic (see dashedline in the phase diagram of Fig. 3.3). Fig. 3.3 highlights the fact that, in orderto observe a stable NB phase, the shape of the particles should be designed withextremely high precision in a small ν-regime about ν = 0. In fact, for L = 9.07Tthe NB phase disappears unless 2.96T <W < 3.08T . This is due both to the tightcusp-like shape of the NUNB transition line and to the preempting character ofinhomogeneous phases. Analogous results would be obtained by varying the shapeparameter through L/T , while keeping W/T fixed. Finally, in the inset of Fig. 3.3(note the different scale) we show the first order character of the INU transition.
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Figure 3.3: Phase diagram of a monodisperse system of hard cuboids as a function of thepacking fraction η and the shape parameter ν = L/W −W/T (here L/T = 9.07 is fixed and
W/T is varied). The solid lines indicate phase boundaries as calculated by minimizing theOnsager-Zwanzig functional, the dashed line indicates the limit of stability of the nematicwith respect to the smectic phase and the open circle the Landau critical point. The insethighlights the first order character of the INU transition and how this tends to becomecontinuous by approaching ν = 0.

Notice how such an INU transition tends to become continuous while approachingthe Landau critical point at ν = 0.For the sake of completeness, in Fig. 3.4 we report the orientation distributionfunction pi, which is the probability of a given orientation i = 1, ...,6 as a functionof the packing fraction η for different values of the shape parameter ν at fixed
L/T = 9.07. In a one-component systems pi = ρi/n, where n = N/V is the numberdensity. The values of the orientation distribution function characterize the symmetryof the corresponding phase. In fact, at a given packing fraction η one can have oneof the following possibilities:
• the probabilities pi are all the same, i.e., pi = 1/6' 0.166 (isotropic I phase);
• the probabilities pi are coupled two-by-two, highlighting the presence of asymmetry axis (uniaxial nematic NU phase);
• the probabilities pi are all different between each other (biaxial nematic NBphase).
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Figure 3.4: Orientation distribution function of a homogeneous monodisperse systemof hard cuboids as a function of the packing fraction η obtained by minimization of theOnsager-Zwanzig functional Eq. (3.10) for M = 1. The cuboids have dimensions L/T = 9.07and (a) W/T = 3.04, (b) W/T = 3.01, (c) W/T = 2.99, (d) W/T = 2.96. The different linesindicate the probability of a particular orientation i= 1, ...,6 (cf. Tab. 3.1). The gray areahighlights the high-density region where the nematic phase is expected to be metastablewith respect to inhomogeneous phases.
Moreover, in the uniaxial nematic case one can further distinguish two situations:

N the two more probable orientations have the shortest axis aligned along thesame direction (uniaxial nematic oblate N− phase);
N the two more probable orientations have the longest axis aligned along thesame direction (uniaxial nematic prolate N+ phase).

With this in mind, one can appreciate the difference in the orientation distributionfunction when ν = −0.06 < 0 (W/T = 3.04, Fig. 3.4(a)), ν = 0 (W/T = 3.01, Fig.3.4(b)) and ν = 0.04 > 0 (W/T = 2.99, Fig. 3.4(c)). The gray area indicates thehigh-density region where our bifurcation analysis suggests that the nematic phaseis metastable with respect to inhomogeneous phases. Finally, Fig. 3.4(d) showsthe orientation distribution function when the experimental value W/T = 2.96 isconsidered [45]. These results highlight how according to our model the NB phaseis expected to be preempted by inhomogeneous phases.
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3.4 Binary mixture
Our analysis proceeds by considering the simplest case of polydispersity, i.e., amixture of M = 2 components with mole fractions x1 and x2 = 1− x1, respectively.Among the different ways one can parameterize polydispersity, our preliminary anal-ysis suggests to consider volume polydispersity (i.e., same particle shape but differentvolume). Therefore, we study the phase behavior of a binary mixture of hard cuboidswhose dimensions are

L1 = L(1+ s), W1 =W (1+ s), T1 = T (1+ s),
L2 = L(1− s), W2 =W (1− s), T2 = T (1− s), (3.12)

where the parameter s ∈ [0,1) describes the degree of bidispersity. Notice thatEq. (3.12) implies the same aspect ratios for both species L1/T1 = L2/T2 = L/Tand W1/T1 = W2/T2 = W/T (hence ν1 = ν2 = ν). Here we set L/T = 9.07 and
W/T = 2.96 (ν = 0.1) in order to reproduce the experimental parameters of Ref. [45],thereby neglecting the small effect of the ionic double layer used by the authors tointerpret the experimental data.Fig. 3.5 shows density-composition phase diagrams of binary mixtures (M = 2)of boardlike particles with the experimental shape parameter ν = 0.1 for variousbidispersity parameters (a) s= 0.15, (b) 0.18, (c) 0.20 and (d) 0.30, featuring isotropic(I), uniaxial nematic (N+ and N−), biaxial nematic (NB) and smectic (Sm) phases.Due to the near-perfect “biaxial” shape of the particles, i.e., ν ' 0, fractionation isextremely weak and invisible on the scale of Fig. 3.5. Further details on the roleof fractionation between homogeneous phases are given in Appendix 3.A.2. At theextreme mole fractions x1 = 0 and x1 = 1 (pure systems) all phase diagrams featurethe phase sequence I→N+→Sm that is well known and expected for board-shapedparticles with ν > 0, with the NB phase metastable with respect to the Sm phase[42, 47] (cf. Sec. 3.3). However, for all s > 0 there is an intermediate compositionregime in which the NB phase is found to be stable, the more so for increasing s.Whereas the opening-up of a stable NB regime is only quantitative for s = 0.15,there is a qualitative change of the phase diagram topology beyond s= 0.18, where
two Landau tetracritical points appear (open circles in Figs. 3.5(b)-(d)). In betweenthese critical points a region of stable N− phase, which is not expected for therod-shaped particles (ν > 0) of interest, opens up. Clearly, Figs. 3.5(c) and (d) showthat this unexpected N− regime enlarges with bidispersity, accompanying a furtherincreased NB stability. In other words, excluded-volume interactions in mixtures ofprolate boards with the same shape and different volume tend to favor NB states asa consequence of a prolate-oblate (N+N−) competition. At higher packing fractionsthe increased NB stability with respect to the Sm phase is not a surprise, given thatregular packing into layers is hindered by size differences between particles [48].It is interesting to understand how the remarkable features of the binary mix-ture described in Fig. 3.5 change with the shape of the particles. Here we aremainly interested in two properties of the phase diagram: (i) the minimum thresh-old bidispersity sthr at which the Landau tetracritical points appear and (ii) the
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Figure 3.5: Phase diagram of a binary mixture of hard cuboids in terms of packing fraction
η vs. mole fraction of the larger component x1 showing isotropic (I), uniaxial (N+ and N−)and biaxial (NB) nematic and smectic (Sm) phases. The size of the particles is definedby Eq. (3.12) with L/T = 9.07, W/T = 2.96 (ν = 0.1) and bidispersities (a) s = 0.15, (b)
s= 0.18, (c) s= 0.20, (d) s= 0.30. The solid lines separate different homogeneous phases,the dashed lines indicate the limit of stability of the homogeneous phases with respect tosmectic fluctuations, whereas the open circles represent the Landau tetracritical points.

tetracritical mole fractions x∗1 in terms of the bidispersity s. We change the par-ticle shape (ν = L/W −W/T ) by fixing in Eq. (3.12) one aspect ratio (W/T ) andvarying the remaining one (L/T ). Fig. 3.6(a) shows for W/T = 2.0, 2.96, 4.0 and5.0 a similar trend: the minimum threshold bidispersity sthr increases the more theshape deviates from the optimal “brick” one (i.e., ν = 0). The fact that at fixed νthe threshold bidispersity decreases with W/T indicates that the appearance of theLandau tetracritical points is favored by an increasing aspect ratio of the particles,in qualitative agreement with Ref. [52]. By fixing the aspect ratio W/T = 2.96, weobserve in Fig. 3.6(b) the tetracritical mole fraction as a function of the bidispersityfor different values of ν = 0.01, 0.1 and 0.25. The closer the shape to the optimal“brick”, for which ν = 0, the wider the difference in value of the two tetracritical molefractions x∗1 and, consequently, the wider stability regime of the N− phase. Finally,we note that no critical composition is observed if the particles are closer to the“plate-like” shape. In other words, if ν1 = ν2 = ν < 0 one finds the N− in betweenthe I and NB phases for every value of s and x1 (not shown); the N+ phase does
not occur in this case.
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3.5 Realistic model of polydispersity

In order to analyze proper polydispersity, and thus more realistically model theexperimental system of Ref. [45], we extend our calculations to a system of M = 21components of cuboids. Inspired by our analysis of the binary mixture and by theexperiments [45], we fix the aspect ratios of all species to Lα /Tα = L/T = 9.07 and
Wα /Tα =W/T = 2.96, such that (i) all species have the same shape να = ν = 0.1and (ii) the size of each species is completely determined by Tα . We consider Tαto be distributed according to a discretized Gaussian function with average 〈T 〉 =28nm and standard deviation σ〈T 〉, where σ is the (relative) size polydispersity. Ingeneral the calculation of a (high-dimensional) phase diagram of a multi-componentsystem is a daunting task [53–55]. As explained in Appendix 3.A.2, it is in this casejustified to ignore fractionation between homogeneous phases, which reduces theproblem to minimizing the functional with respect to ραi at fixed nxα . The resultingphase diagram in the density-polydispersity representation is shown in Fig. 3.7(a),featuring again I , N+, N−, NB and Sm equilibrium states and a tetracritical point at
σ ' 24%, which is surprisingly close to the size polydispersity in the experiments [45].The strikingly large stability regime of the NB is caused by the reduced stability of
Sm and N+ (cf. Fig. 3.7(b)), not unlike in the binary case. However, a direct INBtransition similar to that observed in Ref. [45] is not expected in this model due tothe reentrant character of the N+NB phase transition (cf. Fig. 3.7(c)).
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Figure 3.7: (a) Phase diagram of M = 21 components of hard cuboids (packing fraction η)with aspect ratios Lα /Tα = 9.07 and Wα /Tα = 2.96 (α = 1, ...,M) and Gaussian-distributeddimensions with polydispersity σ (see text). The dashed line indicates the limit of stabilityof the homogeneous phases with respect to smectic fluctuations. The dotted rectangleshighlight (b) the absence of the NB phase at polydispersity σ < 4% due to the direct
N+Sm phase transition and (c) the reentrant character of the N+NB transition close tothe tetracritical point (open circle).

3.6 Conclusions
In conclusion, by means of a mean-field theoretical approach with discrete orien-tations we have shown that size polydispersity strongly affects the phase behaviorof boardlike particles, driving the emergence of a novel topology of the phase dia-gram. This topology change is due to the appearance of Landau tetracritical points,which in turn is related to a competition between the prolate “rod-like” orderingtypical of the pure components and the oblate “plate-like” ordering purely inducedby the mixing. In combination with the destabilization of the Sm phase, we canconclude that polydispersity dramatically increases the stability regime of the NBphase. The usual stability limitations of NB phases, such as N+N− demixing ofrod-plate mixtures and ordering into smectics, are therefore overcome in the presentsystem. Although this work focuses on a particular value of the particle dimensions,its predictions hold for a more general choice of the relevant parameters. Moreover,we do not expect the homogeneous phase behavior to be crucially dependent onthe form of the interaction (cuboidal). On the contrary, it should be qualitativelysimilar to other excluded-volume interactions with the same symmetry (e.g. spheroid,spheroplatelet).Finally, it is tempting to consider this work in the perspective of stabilizing
NB thermotropic liquid crystals. In this case, the soft-core character of the inter-
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molecular interactions does not allow for a univocal definition of “shape”, and vander Waals forces can significantly influence the phase diagram. Nonetheless, it iswidely accepted that hard-core models contain the essential physical ingredientsfor a first-approximation description of the structure of a molecular or colloidal fluid[20, 56]. Following this interpretation scheme, it is intriguing to wonder whetherit is possible to enhance the NB stability by considering two- or multi-componentmixtures of molecules with biaxial symmetry and different size.
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3.A Appendix
3.A.1 Nematic-Smectic bifurcationWhile studying the homogeneous equilibrium phases of the model introduced in Sec.3.2, we are also interested in estimating their upper bound in the phase diagram,where spatially inhomogeneous phases tend to be thermodynamically favored. Bi-furcation theory provides a way to investigate the limit of stability of a particularphase (cf. Sec. 2.3.3).Here we are interested in calculating the limit of stability of the (uniaxial orbiaxial) nematic phase with respect to smectic fluctuations. With this in mind, inEq. (2.38) we neglect spatial modulations in the reference phase, i.e., ραi (r) = ραi ,and assume a positional dependence of the fluctuations along the z direction only,i.e., δραi (r) = δραi (z). Within these assumptions Eq. (2.38) becomes

σαi (z) =∑
α′,i′

∫
dz′Qαα′

ii′ (z− z′)σα′i′ (z′), (3.13)
where σαi (z) = δραi (z)/√ραi and

Qαα′
ii′ (z) =√ραi ρα

′
i′

∫
dx dyfαα′ii′m (r), (3.14)

a symmetric (Hermitean) kernel. By inserting the explicit form of the Mayer functiongiven by Eqs. (3.7) and (3.8) into Eq. (3.14), one gets
Qαα′
ii′ (z) =


−
√
ραi ρα

′
i′ (Xαi +Xα′i′ )(Y αi +Y α′i′ )if |z|< (Zαi +Zα′i′ )/2;0 otherwise. (3.15)

Eq. (3.13) is more conveniently solved in Fourier space, where it reads
σ̂αi (q) =∑

α′,i′
Q̂αα′
ii′ (q)σ̂α′i′ (q), (3.16)

with
Q̂αα′
ii′ (q) =−√ραi ρα

′
i′ E

αα′
ii′ j0(q(Zαi +Zα′i′ )), (3.17)and j0(x) = sin(x)/x .In conclusion, the limit of stability of the nematic phase with respect to smecticfluctuations can be numerically found as the minimum packing fraction η̄ at whicha wave vector q̄ exists such that the 6M× 6M matrix (M being the total numberof components) with entries Q̂αα′

ii′ (q̄) has a unit eigenvalue. The periodicity of thecorresponding bifurcating smectic phase is given by λ= 2π/q̄.
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3.A.2 Near-continuous character of the IN± transitionWhen dealing with mixtures of M distinct species, the phase diagram is convenientlyexpressed in terms of the osmotic pressure P vs. the mole fraction xα of M −1 components. In this way it is possible to visualize the coexistence of phasescharacterized by a different composition with respect to the parent distribution. Thisphenomenon, called demixing or fractionation, reveals the presence of a first-orderphase transition.Here we analyze demixing in a binary mixture of cuboids, whose dimensions
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are parameterized as in Eq. (3.12) with L/T = 9.07, W/T = 2.96 and s = 0.2. InFig. 3.8(a) we report the phase diagram for such a system as a function of the molefraction x1 of the larger species. Since our attention focuses on the demixing betweenhomogeneous phases, we do not perform any bifurcation analysis with respect toinhomogeneous fluctuations. This means that the wide region of biaxial stabilityof Fig. 3.8(a) is expected to be appreciably reduced by including inhomogeneousstates. On the scale of Fig. 3.8(a) the first-order character of the INU transitions isnot detectable, but it is testified by the free-energy curves of Figs. 3.8(b)-(d). On theother hand, the NUNB transition appears to be continuous even at a closer inspection(not shown). At three different values of the reduced osmotic pressure P∗ = βPLWTwe calculate the isotropic and uniaxial nematic branches of the Gibbs free energyper particle g(P,x1) = βG(P,N1,N2)/(N1 +N2). The coexistence between the twophases is obtained by means of a common tangent construction, which allows toevaluate their difference in composition ∆x1. The results are reported in Figs. 3.8(b)-(d) for P∗ = 0.6, 1.1 and 1.5, respectively. In the three cases, two of which describean IN+ and one an IN− transition, ∆x1 ≈ 10−5 and can in practice be neglected.The situation does not change when considering different values of the bidispersityparameter s.Although Landau-de Gennes theory predicts the INU transition to be first order[17], we have just shown that its discontinuous character can be safely neglected forthe binary mixture of boardlike particles we consider in this work. In our opinion,this fact is tightly related to the shape of the particles, close to the ν = 0 value.In fact, for a monodisperse system the closer ν to zero, the weaker the first-ordercharacter of the INU transition (cf. Sec. 3.3). This fact allows us to approximate the
INU transition as continuous. As a consequence, we can neglect demixing betweenhomogeneous phases in the analysis of the polydisperse system reported in Fig. 3.7,thus reducing enormously the complexity of our task.



Chapter 4

Depletion-induced biaxial nematic
states of boardlike particles

Abstract

With the aim of investigating the stability conditions of biaxial nematic liq-
uid crystals, we study the effect of adding a non-adsorbing ideal depletant on
the phase behavior of colloidal hard boardlike particles. We take into account
the presence of the depletant by introducing an effective depletion attraction
between a pair of boardlike particles. At fixed depletant fugacity, the stable
liquid-crystal phase is determined through a mean-field theory with restricted
orientations. Interestingly, we predict that for slightly elongated boardlike par-
ticles a critical depletant density exists, where the system undergoes a direct
transition from an isotropic liquid to a biaxial nematic phase. As a consequence,
by tuning the depletant density, an easy experimental control parameter, one
can stabilize states of high biaxial nematic order even when these states are
unstable for the pure system.

4.1 Introduction
Onsager’s intuition that purely repulsive rods undergo an entropy-driven transitionfrom an isotropic (I) to an orientationally ordered nematic (N) phase constitutes oneof the major milestones in our understanding of liquid crystals [24]. The key ingre-dient of this phenomenon relies on considering markedly non-spherical particles,which can be modeled as cylindrically symmetric “rods” and “plates”. In the early1970s Freiser pointed out that a richer phase behavior is expected, if the assumptionof cylindrical symmetry is released [32]. Besides the usual prolate (N+) and oblate(N−) uniaxial nematic phases, normally developed by uniaxial rods and plates, re-spectively, a novel nematic phase with an increased orientational order can appearin the phase diagram. Such a liquid-crystal phase is characterized by alignmentalong three directors and, consequently, by the presence of two distinct optical axes,hence the name biaxial nematic (NB) [35]. Further studies suggested that the NB

39
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stability could be interpreted as a balanced competition between rodlike (favoring
N+) and platelike (favoring N−) behavior [33, 34, 47].In more than 40 years since its first theoretical prediction, extensive theoretical[42, 43, 47, 48, 52, 57–62] and simulation [36, 49, 63–67] work has been devotedto identify the conditions under which a stable NB phase could be observed. Thepractical limitations in this sense are testified by the fact that, apart from the micellarsystem studied by Yu and Saupe [39], no such state has been observed for morethan 30 years. A renewed interest towards the topic has grown due to the firstexperimental realization of thermotropic NB liquid crystals in systems of bent-coremolecules a few years ago [40, 41]. In lyotropics, a remarkably stable NB phase wasrecently discovered in a colloidal suspension of mineral boardlike particles [45].Boardlike particles, that is, particles with the symmetry of a brick, represent thesimplest model in which an NB phase has been predicted [35]. However, the emer-gence of smectic layering is expected to prevent the realization of this phase, unlessthe constituent particles are designed with a precision far beyond present-day abil-ity [42, 45]. A higher NB stability can be achieved by considering size-polydispersesystems of boardlike particles, as demonstrated by a recent experiment [45]. In fact,polydispersity seems to enhance NB stability through two distinct phenomena: (i) areduced smectic stability [48] and (ii) an N+N− competition, which manifests itselfexclusively in systems of slightly elongated (rodlike) boards (cf. Chapter 3). The firstphenomenon does not come as a surprise [48], since it is well known that polydis-persity renders the establishment of long-distance positional ordering unfavorable[68–70]. On the contrary, the reason behind the second phenomenon appears to bemore obscure.In this chapter we investigate the effect of a non-adsorbing depletant on thebiaxial-nematic stability of (monodisperse) colloidal boardlike particles. Our under-standing of depletion dates back to the pioneering work by Asakura and Oosawa[71] and Vrij [72], who showed that the addition of small co-solutes (e.g. polymers,surfactants, micelles) to a colloidal suspension gives rise to an effective attractionbetween colloidal particles. Since then, the concepts related to depletion have beenwidely applied to various scientific fields [73]: in biology by interpreting phenomenalike macromolecular crowding [74] and protein crystallization [75]; in nanotechnol-ogy through e.g. the development of self-assembly processes as key-lock structures[76, 77]; in condensed matter physics, furnishing answers to fundamental problemslike the condition for gas-liquid phase separation [78], the kinetics of crystallization[79, 80] and the nature of glassy states [81]. More recently, the liquid-crystal phasebehavior of non-spherical colloids, typically rods [82–87] and plates [88–91], in thepresence of a depletant has also been addressed. As a general feature, the addi-tion of a depletant reduces the stability of liquid-crystal phases, leading to a directisotropic-crystal transition at high enough depletant mole fraction. Moreover, whenthe size of the depletant particles is big enough, one or more critical points appearin the phase diagram, indicating a liquid-gas separation between phases with samespatial symmetries.In contrast to the aforementioned work on rods and plates, we focus here on the
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low depletant density limit, where the stability of the nematic liquid-crystal phasesdeveloped by the pure system of boardlike particles is preserved. In the same spiritas the Asakura-Oosawa-Vrij model for spheres [71, 72], we consider the limit of lowdepletant density and neglect depletant-depletant interactions. For the sake of con-venience, we model the depletants as cubic particles excluded from the surface ofthe cuboids via a hard-core interaction. A mean-field theory at second virial order[21, 24] with restricted orientations (Zwanzig model) [50] constitutes our theoreticalframework. The degrees of freedom of the depletant in the partition function can besystematically integrated out, giving rise to an effective potential between boardlikeparticles [92, 93], where only two-body interactions are considered. The assumptionof an ideal depletant allows to determine an explicit expression for such a pairwisedepletion potential. We show that, by varying the depletant density, the systemdevelops a prolate-oblate (N+N−) competition remarkably similar to that predictedfor a polydisperse system of boardlike particles in the absence of depletant, as de-scribed in Chapter 3. If in Chapter 3 the origin of this competition is not evident,here it appears to be due to a balance between the hard-core repulsion betweenslightly rodlike boardlike particles, favoring N+ ordering, and the depletion attrac-tion, favoring N− ordering. As a consequence of this effect, the biaxial nematic phaseappears to be stable over a wide range of depletant density. We therefore suggestthat the concentration of a non-adsorbing depletant furnishes in practical situationsthe simplest, though effective, way to control the liquid-crystal phase behavior ofboardlike particles and to select states of high biaxial-nematic stability.
4.2 Model and theory
The aim of the present section is the analysis of the phase behavior of colloidalboardlike particles in the presence of a non-adsorbing depletant. In what follows,the mesoscopic behavior of boardlike particles will be described by means of densityfunctional theory. The effect of the depletant will be introduced in Sec. 4.3 by meansof an effective pairwise potential between boardlike particles. The density functionaltheory approach we follow closely resembles that of Chapter 3. Here we summarizethe main ingredients of the theory, while addressing the reader to Sec. 3.2 for furtherdetails.We consider a system of N boardlike particles with dimensions L×W × T(L > W > T and particle volume v = LWT ) in a box of volume V at temperature
T . Accounting for the orientational degrees of freedom at the single-particle levelrequires a numerically demanding description based on 3 Euler angles. In order tocircumvent this problem while keeping the essential physics of the system, we turnto the so-called Zwanzig model: the only allowed orientations are those with themain particle axes aligned along the Cartesian axes of a fixed reference frame [50].Within this model a boardlike particle can take the 6 orientations depicted in Fig.3.2, and the single-particle density is a 6-dimensional function with components
ρi(r) (i = 1, ...,6). Within this restricted orientation model, the ideal component of
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the intrinsic free-energy functional reads

βF id[ρ] = ∫ dr
6∑
i=1 ρi(r)

{log[ρi(r)V]−1}, (4.1)
where β = (kBT )−1, kB is the Boltzmann constant, T the absolute temperature and Vthe thermal volume. Approximated at the second-virial order, the excess free-energyfunctional reads

βFexc[ρ] =−12
∫
drdr′

6∑
i,i′=1 f

ii′
m (r− r′)ρi(r)ρi′ (r′), (4.2)

where the Mayer function is defined in terms of the pairwise potential uii′ (r) betweentwo boardlike particles with center-to-center distance r and orientations i and i′,respectively, as
f ii′m (r) = exp[−βuii′ (r)]−1. (4.3)In this chapter we are mostly concerned with the relative stability of isotropic andnematic (i.e., homogeneous) phases. Therefore, we can simplify the numerics involvedin our problem by assuming homogeneity, i.e., by focusing on the case ρi(r) = ρi.With this assumption, the intrinsic free-energy functional, sum of the ideal (Eq. (4.1))and the excess (Eq. (4.2)) part, reads

βF [ρ]
V = 6∑

i=1 ρi
{log[ρiV]−1}+ 12 6∑

i,i′=1Eii′ρiρi′ . (4.4)
The 6×6 matrix Eii′ , defined in terms of the Mayer function as

Eii′ =−∫ dr f ii′m (r), (4.5)coincides with the excluded volume between two boardlike particles with orientations
i and i′, respectively. As in Sec. 3.2 let us indicate with Xi the main axis (L, Wor T ) of a particle with orientation i along the x axis of a fixed reference frame(and similarly for Yi and Zi). Within the Zwanzig model each of the 6 independentorientations of a particle can be identified by (Xi,Yi,Zi), which is one of the 6permutations of the three elements L, W and T . With these definitions one canwrite the interaction potential between two identical boardlike particles, modeledas hard cuboids, as

βuii′ (r) =

∞ if |x|< (Xi+Xi′ )/2and |y|< (Yi+Yi′ )/2and |z|< (Zi+Zi′ )/2;0 otherwise,

(4.6)
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and the corresponding excluded-volume matrix reads

Eii′ = (Xi+Xi′ )(Yi+Yi′ )(Zi+Zi′ ). (4.7)
The equilibrium single-particle density at packing fraction η = (LWT )N/V isobtained by minimizing the free energy Eq. (4.4) with respect to ρi, subject to thenormalization condition

6∑
i=1 ρi = η

LWT . (4.8)
The symmetry of the solution of this minimization problem allows to identify thestable homogeneous phase. When ψi ≡ ρiLWT/η = 1/6 for every i = 1, ...,6, thephase is isotropic (I). In the opposite case, when all the components ψi of theorientation distribution function assume different values, the phase is biaxial nematic(NB). When the system is characterized by the presence of a single axis of symmetry(uniaxial nematic phase), the coefficients ψi are coupled two-by-two. Let us supposethis axis of symmetry to be the vertical axis of Fig. 3.2. In this case, we distinguishbetween prolate uniaxial nematic phase (N+), when the most likely configurationsof Fig. 3.2 are (1) and (4), and oblate uniaxial nematic phase (N−), when the mostlikely configurations are (3) and (6).Since we assume homogeneity, we need to estimate the limit of validity of thisassumption. To this aim we adopt bifurcation theory to calculate the minimumpacking fraction η̄, beyond which homogeneous phases are unstable with respectto smectic states [23]. The details of this procedure are explicitly described in Sec.3.A.1. Let us indicate with Q(x)

ii′ (qx ) the function
Q(x)
ii′ (qx ) =√ρiρi′ ∫ dr f ii′m (r)exp(−iqxx), (4.9)

where ρi is the single-particle density of the (homogeneous) equilibrium phase atpacking fraction η. The functions Q(y)
ii′ (qy) and Q(z)

ii′ (qz) are defined analogously. Thebifurcation packing fraction η̄x for smectic fluctuations along the x axis is found asthe minimum packing fraction at which the 6× 6 matrix with entries Q(x)
ii′ (qx ) hasan eigenvalue 1 for some q̄x . Therefore, the smectic bifurcation packing fractionis η̄ = min(η̄x , η̄y, η̄z). As a final remark, it is important to notice that the presentbifurcation analysis allows only to predict when homogeneous phases are unstablewith respect to one-dimensional modulations in the single-particle density. Thereis no guarantee, however, that the corresponding stable inhomogeneous phase isactually characterized by one-dimensional (smectic) ordering, since two- (columnar)or three-dimensional (crystal) positional ordering are also possible in principle.
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4.3 Effective depletion interaction
Our aim is to study the influence of a depletant on the phase behavior of a systemof boardlike particles. Hence, the system described in Sec. 4.2 is modified by theaddition of a second species of particles (the depletant), modeled as cubes withdimensions d×d×d. The binary mixture of boardlike particles and depletant isassumed to be in equilibrium with a reservoir of depletant particles at fixed fugacity
zD = exp(βµD)/VD , where µD is the chemical potential of the depletant and VD itsthermal volume. Following the pioneering approaches to the topic [71, 72], we neglectinteractions between depletants, in which case the fugacity zD coincides with thedensity nD in the reservoir. The ideal-depletant assumption is justified a posterioriby the low packing fractions nDd3 considered. Modeling the depletant with cubicparticles appears to be rather unrealistic, especially if compared to typical polymericdepletants, usually treated as spheres. However, we claim that our choice containsthe essential features of the physical phenomenon, while considerably simplifyingthe mathematics that follows. In the next section we show that the peculiar phasebehavior of our system is due to the asphericity of the depletion volume, which, inturns, is a consequence of the asphericity of boardlike particles. Therefore, we donot expect the specific shape of the depletion region (cuboidal for cubic depletant,spherocuboidal for spherical depletant) to play a major role in our results. Moreover,the relative difference between cuboidal and spherocuboidal depletion volume forthe values of the particles dimensions considered here amounts to a few percentagepoints. The interactions in the mixture are given by the cuboid-cuboid potentialEq. (4.6) between boardlike particles, and by the cuboid-cube potential betweenboardlike particles and depletant, given by

βvi(r) =

∞ if |x|< (Xi+d)/2and |y|< (Yi+d)/2and |z|< (Zi+d)/2;0 otherwise,

(4.10)
which explicitly depends on the orientation i of the boardlike particle.At fixed fugacity zD the configurational entropy of the depletant is maximizedwhen the total depletion volume, i.e., the region of space forbidden to the deple-tant due to the presence of boardlike particles, is minimized. As a consequence,an effective attraction between boardlike particles appears. Such a depletion in-teraction can be explicitly calculated by integrating out the depletant degrees offreedom and must be expressed in general as a sum of two-, three- and perhapsmany-body interaction terms [92, 93]. For the sake of simplicity, we describe theeffect of the depletant by considering only the effective two-body interaction poten-tial, while neglecting higher order terms. The effective pairwise depletion potential
wii′ (r) between cuboids with orientations i and i′, respectively, and center-to-centerseparation r is given by [94]
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βwii′ (r) =−nDVii′ (r), (4.11)with Vii′ (r) the overlap volume of the depletion regions,

Vii′ (r) =


0 if |x|> (2d+Xi+Xi′ )/2or |y|> (2d+Yi+Yi′ )/2or |z|> (2d+Zi+Zi′ )/2;
λ(x)
ii′ λ

(y)
ii′ λ

(z)
ii′ otherwise.

(4.12)
The parameter λ(x)

ii′ reads (cf. Appendix 4.A)
λ(x)
ii′ (x) =


d+ Xi+Xi′2 −|x| if |x|> |Xi−Xi′ |2and |x|< (d+ Xi+Xi′2 );
d+min(Xi,Xi′ ) if |x|< |Xi−Xi′ |2 , (4.13)

and analogous definitions hold for λ(y)
ii′ (y) and λ(z)

ii′ (z).Let us indicate with a tilde the properties obtained by adding the effective two-body depletion potential wii′ (r) to the cuboid-cuboid potential uii′ (r). The Mayerfunction Eq. (4.3) becomes
f̃ ii′m (r) = exp[−βuii′ (r)+nDVii′ (r)]−1. (4.14)The phase behavior of this effective one-component system can then be calculatedby following the prescriptions of Sec. 4.2, with the function f ii′m (r) substituted by

f̃ ii′m (r). Unfortunately, the expression of Vii′ (r) given in Eq. (4.12) does not allow foran analytical calculation of the integrals Ẽii′ and Q̃(x)
ii′ (qx ) in Eqs. (4.5) and (4.9).However, an analytical expression can be obtained by inserting the small-nD Taylorseries of the Mayer function Eq. (4.14),

f̃ ii′m (r) = f ii′m (r)+ ∞∑
m=1

nmD
m! (Vii′ (r))m exp[−βuii′ (r)], (4.15)

into Eq. (4.5). In such a way one obtains the effective excluded-volume coefficientsin terms of a series in nD ,
Ẽii′ = Eii′ − ∞∑

m=1
nmD
m!
∫
V
dr
(
Vii′ (r))m exp[−βuii′ (r)], (4.16)

where the integrals of the r.h.s. can now be solved analytically for every integer
m. Similar considerations hold for the functions Q̃(x)

ii′ (qx ) of Eq. (4.9). We verifiedby comparison with exact numerical calculations of the effective excluded-volumecoefficients that quantitative agreement can be obtained by truncating the series of
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Figure 4.1: Effective excluded-volume coefficients Ẽ1i (in units of boardlike particle volume
v = LWT ) for the 6 independent orientational configurations of a pair of boardlike particlesin the Zwanzig model as a function of the depletant number density nD . Here the boardlikeparticles have dimensions L/T = 9.3, W/T = 3.0 and are in contact with a reservoir of idealcubic depletants with edge-length d/T = 1.0 and number density nD .

Eq. (4.16) at fifth order in nD for all nD considered in this chapter. For consistency,the Taylor expansion in nD of the functions Q̃(x)
ii′ (qx ) is truncated at the same order.

4.4 Excluded-volume matrix and phase behavior
The framework developed in Sec. 4.3 allows to determine the effective excluded-volume coefficients Ẽii′ of a system of cuboidal L×W × T particles due to thepresence of an ideal cubic d×d×d depletant at fugacity zD (and reservoir density
nD = zD). The phase behavior of this effective one-component system of boardlikeparticles is then analyzed by applying the theory described in Sec. 4.2.It is readily understood from Eq. (4.16) that adding the depletion attractionEq. (4.11) to the cuboid-cuboid pairwise potential uii′ (r) gives rise to a monotonicdecrease of the coefficients Ẽii′ with nD . This effect is depicted in Fig. 4.1, wherewe report the 6 independent values of the matrix elements Ẽ1i, corresponding tothe 6 two-particle configurations (1,1), (1,2), (1,3), (1,4), (1,5) and (1,6) (cf. Fig.3.2 for a visual inspection of the six one-particle orientations), as a function of thereservoir depletant concentration nD . In order to allow for a comparison with previous
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Figure 4.2: Ratio between the second-virial coefficients corresponding to the two-particleconfigurations (1,4) and (1,5) of Fig. 3.2 as a function of the depletant density nD forboardlike particles with W/T = 3.0 and L/T = 8.7 (ν = L/W −W/T = −0.1), L/T = 9.0(ν = 0.0), L/T = 9.3 (ν = 0.1), and L/T = 10.0 (ν = 0.33). The solid circles highlight thevalue of the depletant density n∗D , defined by the condition Ẽ14 = Ẽ15 .
experimental [45] and theoretical (cf. Sec. 3) work on the subject, the aspect ratios arechosen as L/T = 9.3 and W/T = 3.0, while for the cubic depletant we set d/T = 1.0.At nD = 0 the 6 excluded-volume matrix elements are positive definite, but withincreasing nD their value decreases until becoming negative (see Ẽ11 in Fig. 4.1).Such a behavior is well known from the study of systems of spherically symmetricparticles with short-range attractive potentials, where one can define a temperatureat which the second virial coefficient changes its sign (“Boyle temperature”). Thechange in sign of the second-virial coefficient is related to a tendency of the systemto develop a gas-liquid phase separation. Also in the present case, where the roleof the (inverse) temperature is played by the depletant density nD , this change insign can indicate a tendency towards a phase separation between two homogeneousphases. On the other hand, when the dimension of the depletant is sufficiently small,one expects the gas-liquid phase separation to be metastable with respect to a broadgas-solid coexistence [84, 86, 92, 93]. As we ignore the stability of inhomogeneousphases like smectic, columnar or crystal states, in the present work we limit ourinvestigations to values of nD small enough as to guarantee a positive value of allthe effective excluded-volume matrix elements, and to avoid strong tendency towardsa broad phase separation.
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Although the monotonic decrease with nD is a feature of all the 6 effectiveexcluded-volume coefficients Ẽ1i, their rate of change is not the same. Let us focuson the coefficients corresponding to the two-particle configurations (1,4) and (1,5).In absence of depletant (nD = 0), Ẽ15 = E15 is slightly bigger than Ẽ14 = E14. Onthe other hand, by increasing nD the coefficient Ẽ15 decreases faster than Ẽ14. As aconsequence, one can identify a value of the depletant density n∗D , such that Ẽ14 = Ẽ15.Moreover, Ẽ14 < Ẽ15 for nD < n∗D , the opposite being the case for nD > n∗D (see insetof Fig. 4.1). An alternative representation of this phenomenon is reported in Fig.4.2, where we plot the ratio Ẽ14/Ẽ15 as a function of the depletant density nD for fixedaspect ratios W/T = 3.0 and d/T = 1.0 and different values of L/T (L/T = 8.7, 9.0,9.3 and 10.0). In the four cases reported in Fig. 4.2 we observe a monotonicallyincreasing dependence of Ẽ14/Ẽ15 on nD . This implies that the density n∗D , definedby the condition Ẽ14/Ẽ15 = 1, exists only if E14/E15 ≤ 1. In other words, a positive (i.e.,physical) n∗D exists only if E14 ≤ E15, with n∗D = 0 if and only if E14 = E15. On thecontrary, if E14 > E15 one has Ẽ14 > Ẽ15 independently of the depletant density nD ,and no density n∗D is defined in this case. Finally, it is important to notice that theratio E14/E15 depends of the aspect ratios of the boardlike particles L/T and W/Tonly.Before addressing the physical consequences of the existence of the density n∗D , itis worth seeing how in mean-field theory the ratio of the excluded volume coefficients

E14/E15 determines the phase behavior of boardlike particles in the absence of adepletant (i.e., nD = 0). It is well known that monodisperse hard boardlike particlesare expected to undergo an IN transition by increasing the packing fraction of thesystem [34]. The nematic phase emerging from the I can be (i) uniaxial prolate N+with common alignment of the long axis L of the boards; (ii) uniaxial oblate N−with common alignment of the short axis T ; (iii) biaxial NB with alignment of thethree axes of the particle (cf. the pictorial representations in Fig. 3.1). FollowingOnsager [24], the origin of this phase transition can be understood by considering thatorientational ordering determines an increase in excluded-volume entropy, whichmore than compensates the decrease in orientational entropy. Therefore, in case
E14 < E15 the N+ phase will be thermodynamically favored over the N−, the oppositebeing the case when E14 > E15 (cf. the pair configurations (1)-(4) and (1)-(5) in Fig.3.2). In the intermediate situation, when E14 = E15, the system undergoes a directsecond-order INB transition instead. By explicitly calculating E14 and E15 in termsof particle’s size L, W and T , and defining as in Sec. 3.3 a shape parameter

ν = L
W −

W
T , (4.17)

one can show that
E14
E15

< 1 ⇔ ν > 0,= 1 ⇔ ν = 0,
> 1 ⇔ ν < 0. (4.18)
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This is consistent with Straley’s result that at the mean-field level a system ofboardlike particles undergoes (i) a first-order IN+ transition if ν > 0; (ii) a first-order IN− transition if ν < 0; (iii) a second-order INB transition if ν = 0 [47].
4.5 Phase diagram of attractive boardlike particles
We can now go back to the case of boardlike particles dispersed with a non-adsorbing depletant at density nD . We have shown in Fig. 4.2 that we can control theratio Ẽ14/Ẽ15 by varying the depletant density nD . By analogy with the monodispersecase (cf. Eq. (4.18)), we expect nD to allow us to tune the stability of prolate uniaxial,oblate uniaxial and biaxial nematic states. In other words, we expect the systemto favor prolate uniaxial ordering N+ in the case nD < n∗D , since Ẽ14/Ẽ15 < 1, andoblate uniaxial N− in the case nD > n∗D . On the other hand, we expect a directcontinuous INB transition if nD = n∗D , since then the tendencies to form oblate andprolate ordering are perfectly balanced and Ẽ14 = Ẽ15. Such a direct second-order
INB transition corresponds to a Landau critical point, hence we refer to n∗D as the
critical depletant density.This picture is confirmed by the (η,nD) phase diagrams of Fig. 4.3, describing thephase behavior of boardlike particles with dimensions W/T = 3.0 and (a) L/T = 8.7(ν = −0.1), (b) L/T = 9.0 (ν = 0.0), (c) L/T = 9.3 (ν = 0.1), and (d) L/T = 10.0(ν = 0.33) immersed in a cubic depletant with edge-length d/T = 1.0 and numberdensity nD . As a general feature, at low packing fraction the system undergoes aphase transition from the I phase (yellow region) to the N+ (red regions), N− (blueregions) or NB (green regions) states. The first-order character of the IN+ and IN−transitions is not detectable on the scale of Fig. 4.3 (cf. also Appendix 3.A.2). Thedotted lines indicate the limit of stability of the homogeneous phases with respect toone-dimensional (smectic, Sm) fluctuations along the long axis L (red dotted lines) oralong the short axis T (blue dotted lines). This smectic bifurcation analysis confirmsthat inhomogeneous phases (white regions) destabilize nematic states at sufficientlyhigh packing fractions. More specifically, the higher the depletant density nD , thelower the stability of homogeneous phases with respect to inhomogeneous ones.This result is in agreement with previous studies on the phase behavior of hard rodsinteracting via an attractive depletion potential [84, 86]. In the latter case the co-existence regions increase with the depletant density, leading eventually to a wideisotropic-crystal coexistence at sufficiently high nD and a consequent disappear-ance of the liquid-crystal phases. We expect a similar phenomenon at depletantconcentrations higher than those considered here. However, a description beyondthe second virial order would be needed in that case.As deduced from the analysis of Fig. 4.2, in the case of “platelike” boards, that is,boardlike particles characterized by a shape parameter ν < 0, no critical depletantdensity is defined. This implies that the I phase undergoes a transition to the N−for every value of nD , as depicted in the phase diagram of Fig. 4.3(a). Let us nowconsider the phase behavior of boardlike particles with ν = 0 reported in Fig. 4.3(b).
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Figure 4.3: Phase diagrams of boardlike particles with aspect ratios W/T = 3.0 and(a) L/T = 8.7 (ν = −0.1), (b) L/T = 9.0 (ν = 0.0), (c) L/T = 9.3 (ν = 0.1), (d) L/T = 10.0(ν = 0.33) in contact with a reservoir of cubic depletant with edge-length length d/T = 1.0at number density nD . The diagrams feature isotropic (I , yellow regions), prolate (N+ , redregions) and oblate (N− , blue regions) uniaxial and biaxial (NB , green regions) nematicphases. The black circles highlight the Landau critical points, whereas the dotted linesindicate the limit of stability of nematic phases with respect to smectic (Sm) fluctuationsalong the long (red dotted line) and short (blue dotted line) particle axis, respectively.
In absence of depletant a direct second-order INB transition is expected in this case[34, 47]. In the picture we presented in the previous section, this corresponds to acritical depletant density at n∗D = 0. For values of the depletant density nD >n∗D = 0,at intermediate packing N− states appear in between the I and the NB phase.The phase diagram of this boards-depletant mixture becomes even more rich whenconsidering “rodlike” boards, for which ν > 0, as reported in Figs. 4.3(c) and (d). Asdescribed in the previous section, in this case one can identify a non-zero criticaldepletant density n∗D > 0. The pure system, for which nD = 0, is characterized byan IN+ transition. However, adding the depletant to the suspension has the effect ofreducing the N+ stability in favor of the NB . Furthermore, when reaching the criticaldepletant concentration n∗D , one observes a direct INB transition. Surprisingly, ateven higher depletant densities, that is when nD > n∗D , the stable uniaxial nematicphase has oblate ordering N−, in sharp contrast with the behavior of the pure boards.It is worth remarking that the phase diagrams of Figs. 4.3(c) and (d) suggest that,when dealing with boardlike particles with ν > 0, setting the depletant density at
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values close to n∗D allows to select regions of the phase diagram with relatively high
NB stability. This appears to be possible even when the regime of NB stability forthe pure boardlike particles system is small (Fig. 4.3(c)) or even absent (Fig. 4.3(d)).A relevant result of the present analysis concerns the conditions for the existenceof the critical depletant density n∗D , which is guaranteed only for slightly elongatedrodlike boards (ν > 0). On the contrary, no Landau critical point is observed when
ν < 0, in which case for every value of nD the system develops a first-order IN−transition, typical of platelike particles. We interpret this fact in the following terms.When the depletant density is low, the boardlike particles are weakly sensitiveto the depletant and the features of the nematic phase are driven by the gainin boardlike particles’ excluded-volume entropy. In other words, at low depletantconcentration one has N+ (N−) ordering if ν > 0 (ν < 0), with no qualitative changewith respect to the phase diagram of the pure system. On the other hand, at highenough depletant density the thermodynamically favored states are those maximizingthe depletant (positional) entropy, i.e., states where the overall depletion volume isminimized. From geometric considerations it is easily realized that N− rather than
N+ ordering tends to maximize the overlap between the depletion regions of theboards independently of the sign of ν. As a consequence, when ν > 0 the Landaucritical point at n∗D appears as a result of a competition between the excluded-volumeentropy of boardlike particles and depletant. Conversely, this competition does notdevelop when ν < 0, since both boards and depletant entropies are maximized by
N− states, and thus no critical depletant density exists.
4.6 Estimating the critical depletant density
The phase diagrams of Fig. 4.3 highlight the monotonic increasing dependence of
n∗D on ν = L/W −W/T , when the dimensions of the depletant d/T and one of thetwo boards’ aspect ratios (here W/T ) are fixed. It is interesting to deduce the phasebehavior, and more specifically the critical depletant density, in more general terms.By numerically solving in nD the equation Ẽ14 = Ẽ15, whose solution defines in thismodel the critical depletant density n∗D , we investigate in this section the role of thedepletant size and the shape of the boardlike particles.In Fig. 4.4 we report the critical depletant density n∗D as a function of thedepletant edge-length d/T for three boardlike particle dimensions. By increasingthe size of the depletant, the critical depletant number density n∗D decreases. Thistrend can be understood by considering the definition of the depletant potential Eq.(4.11), according to which the intensity of the interaction is determined both by thedepletant density and the volume of the depletion regions. This means that if the sizeof the depletant (and therefore the depletion volume) is reduced, in order to have thesame interaction strength one needs to increase the depletant density. Furthermore,at fixed ν the critical depletion density decreases most for the more extreme aspectratios of the particles. In other words, the bigger the aspect ratios L/T and W/Tat fixed ν, the smaller the amount of depletant needed to reach n∗D . By changing
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Figure 4.4: Critical depletant density n∗D as a function of the edge-length d of the cubicdepletant for different boardlike particles with the same shape parameter ν= 0.1: L/T = 9.3and W/T = 3.0 (solid red line); L/T = 16.4 and W/T = 4.0 (solid green line); L/T = 25.5and W/T = 5.0 (solid blue line). The dashed lines represent the approximate analyticaldependence given by Eq. (4.19). The inset illustrates the same data in terms of the criticaldepletant packing fraction n∗Dd3 .
our unit of length, we consider in the inset of Fig. 4.4 the critical depletant packingfraction n∗Dd3, which appears to be an increasing function of d. This observationallows us to conclude that the ideal depletant approximation introduced in Sec. 4.3is increasingly reliable the smaller the depletants.In practical situations, one could be interested in estimating the critical depletantdensity n∗D , which in our model is defined as the solution of the non-linear equation
Ẽ14 = Ẽ15. If n∗D is sufficiently small, one can obtain an approximate expression forthis quantity by linearizing both sides of equation Ẽ14 = Ẽ15 in nD . The approximatecritical depletant density is then given by the following expression

n∗D = 2[T (L+W )2−L(W +T )2](L−T )−12(LT −W 2)d3 +W (LW +TW −2LT )d2 , (4.19)
and it can be compared (dotted lines of Fig. 4.4) with the “exact” numerical solu-tion (solid lines), showing good overall agreement, which improves the larger thedepletant edge-length d/T .
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4.7 Conclusions
In the present chapter we investigate the effect of a short-range depletion-inducedattraction on the liquid-crystal phase behavior of boardlike particles. To this aim,we make use of classical density functional theory truncated at second-virial order,and adopt the Zwanzig model for the description of the orientational degrees offreedom. In close analogy with the Asakura-Oosawa-Vrij model for mixtures ofspheres, by neglecting interactions between the cubic depletant particles, we canexplicitly calculate the effective two-body attractive depletion potential betweenboardlike particles.We predict that in systems of slightly elongated boardlike particles (ν > 0) acritical depletant density exists. At this critical depletant density the first-ordertransition from the isotropic to a uniaxial nematic phase is substituted by a con-tinuous transition to a biaxial nematic phase. At higher depletant concentrations,a large region of oblate uniaxial nematic ordering develops. This means that thesystem of attractive “rodlike” boards behaves like a system of purely repulsive “plate-like” boards. The origin of this phenomenon is due to two competing mechanisms:the maximization of the boardlike particles entropy, favoring N+ ordering, and themaximization of the depletant entropy, favoring N− ordering.The phase behavior described in this work shares many similarities with thefindings of Chapter 3. In Chapter 3 we showed that size-polydispersity in a systemof hard boardlike particles induces the appearance of a Landau tetracritical pointat a specific composition. This phenomenon is related to a competition betweenprolate and oblate ordering, which in turn is realized only when the boardlikeparticles are slightly elongated. In the light of our present findings, we suggestthat this prolate-oblate (N+N−) competition and the corresponding emergence of aLandau tetracritical point can be understood in terms of a depletion effect. Morespecifically, when size-polydispersity becomes relevant, N− rather than N+ orderingallows for the highest total entropy due to the minimization of the overall depletionregions of the big particles with respect to the smaller ones. In further analogy withthe boards-depletant mixture, no such competition is predicted for platelike boards.Consequently, no tetracritical point appears in this case.Besides furnishing an explanation for the results of Chapter 3, we suggest thatmanipulating the attraction induced by a depletant, e.g. a non-adsorbing polymer,furnishes an original and effective way to control the phase behavior of boardlikeparticles, allowing to stabilize prolate and oblate uniaxial and biaxial nematic states.Moreover, the depletant density is expected to be an easy experimental controlparameter.
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4.A Appendix: Overlap volume of the depletion regions
In this appendix we calculate explicitly the overlap volume of the depletion regionsfor the model described in Sec. 4.2 and 4.3. The depletion region of a L×W ×Tcuboidal colloid is the region of space excluded to the center of mass of the cubic
d×d×d depletants, and it is also a cuboid with dimensions (L+d)× (W +d)×(T + d). Moreover, also the overlap volume between two depletion regions is acuboid, whose volume Vii′ (r) depends on the reciprocal position r = r1− r2 and theorientations i and i′ of the two colloids. We calculate the volume of the overlapregion by multiplying its edge lengths λ(x)ii′ , λ(y)

ii′ and λ(z)ii′ along the x , y and z axes (cf.Eq. (4.12)). Let us focus here on the x axis, and let us indicate with L1 = Xi+d and
L2 = Xi′ +d the edge length along the x axis of the depletion regions of particle1 and 2, respectively (cf. the definition of Xi in Sec. 4.2). Moreover, let x1 and
x2 be the x coordinates of the position of the center of mass of the two particles.Now, we have to consider separately the two cases reported in Fig. 4.5(a) and (b). If
|x1−x2|> |L1−L2|/2 (Fig. 4.5(a)) the length of the overlap region explicitly dependson the reciprocal distance |x1− x2| as

λ(x) = L1 +L22 −|x1− x2|. (4.20)On the other hand, if |x1−x2|< |L1−L2|/2 (Fig. 4.5(b)) the size of the overlap regiontakes the constant value
λ(x) = min(L1,L2), (4.21)and one deduces Eq. (4.13).

x1

x1-L1/2 x1+L1/2

x2

x2-L2/2 x2+L2/2

(a)

x1

x2

(b)

Figure 4.5: Pictorial representation of two overlapping rectangles with center of masspositions on the horizontal axis x1 and x2 , respectively. Their edge length on the horizontalaxis is L1 and L2 , respectively. In the two pictures we report the case (a) |x1− x2| >
|L1−L2|/2 and (b) |x1− x2|< |L1−L2|/2.
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Chapter 5

Freezing of parallel
hard squares and cubes

Abstract

Due to remarkable advances in colloid synthesis techniques, systems of squares
and cubes, once an academic abstraction for theorists and simulators, are nowa-
days an experimental reality. By means of a free minimization of the free-energy
functional, we apply the fundamental measure theory to analyze the phase be-
havior of parallel hard squares and hard cubes. We compare our results with
those obtained by the traditional approach based on the Gaussian parame-
terization, finding small deviations and good overall agreement between the
two methods. For hard squares our predictions feature at intermediate packing
fraction a smectic phase, which is however expected to be unstable due to ther-
mal fluctuations that are not properly included at the present mean-field level.
Due to this inconsistency we cannot determine unambiguously the prediction of
the theory for the expected fluid-to-crystal transition of parallel hard squares,
but we deduce two alternative scenarios: (i) a second-order transition with a
vacancy-rich crystal or (ii) a higher-density first-order transition with a coexist-
ing crystal characterized by a lower vacancy concentration. In accordance with
previous studies, a second-order transition with a high vacancy concentration
in the crystal is predicted for hard cubes.

5.1 Introduction
Hard spheres represent the simplest and most versatile model for the descriptionof molecular and colloidal many-particle systems. This statement has particularlybeen true since 1957, when Wood and Jacobson [95] and Alder and Wainwright [96]demonstrated that hard spheres undergo a fluid-to-crystal transition, and thereforethat hard interactions alone can account for freezing.Systems of hard cubes, on the other hand, were considered as mere toy modelsuntil only a few years ago. The reason for this is evident: no molecule or macro-molecular aggregate found in nature is known to be reasonably approximated by this
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shape. However, the interaction between parallel hard cubes is the second-simplesthard interaction one can imagine after that between hard spheres. Its simplicitymade this model a perfect object of study for theory and simulation.Early studies on the equation of state of parallel hard squares (D= 2 dimensions)and cubes (D = 3) date back to the dawn of computer simulation in the 1950s [97–99]. Soon after, the question regarding the high-packing phase behavior of themodels arose. For parallel hard squares, a transition from the fluid to a square-lattice crystal (with quasi-long-range order) was found [100, 101], but its character,whether continuous or discontinuous, has been a matter of debate ever since [102–105]. Conversely, the stability of a “brick-wall” smectic phase with one-dimensionalordering in rows (or columns) was suggested to exist for parallel hard squares, butthe stability of this peculiar state was soon ruled out [106]. Similarly, parallel hardcubes manifest a fluid-to-crystal transition with a well-established second-ordercharacter [107], and no stable phase with lower translational symmetry than thecrystal is expected [108].In the mid-1990s, while the interest of the liquid-state community was focusingon mixtures of hard spheres, hard cubes were rediscovered. By means of computersimulation Dijkstra et al. showed evidence of a demixing transition in a binarysystem of parallel hard cubes on a lattice, thus demonstrating that additive hardinteractions can induce an entropy-driven fluid-fluid phase separation [109, 110].These results motivated Cuesta and Martínez-Ratón to face the problem by means ofdensity functional theory [111, 112]. Following the pioneering approach developed byRosenfeld for hard spheres [26], they developed a fundamental measure theory (FMT)[28, 29] formalism aimed at describing both the homogeneous and inhomogeneousphase behavior of mixtures of squares and cubes [111, 112].Since the early work on hard squares and cubes, the progress in colloidal particlesynthesis has been enormous. In particular, colloidal suspensions of micron-sizedcubes [113] and quasi-two-dimensional square platelets [114] have been recentlyproduced and analyzed. These experimental advances led to a renewed interest inthe model, and at present more complex aspects like the role of orientational degreesof freedom, the addition of dipolar interactions, the roundedness of the shape and theeffect of vacancies in the freezing mechanism constitute objects of intense research[115–120]. Far from being a toy model or a mere academic exercise, squares andcubes have therefore gained a key role as model systems of non-spherical colloidalparticles.Besides the development of new theories [121, 122], the increasing attention to-wards the self-assembly of non-spherical particles requires a detailed analysis ofthe capabilities of the existing ones. The aim of this work is to reinvestigate the pre-diction of the fundamental measure theory as formulated in Ref. [111] for the phasebehavior of parallel hard squares and cubes. The focus of our attention points tothe freezing transition and the structure of the high-density inhomogeneous phases.In particular, by exploiting present-day computer power we improve previous anal-yses on the subject by performing a free minimization of the density functional, andcompare our results with those obtained by means of the widely applied Gaussian
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parameterization of the single-particle density. We observe good overall agreementbetween the two methods, the main drawbacks of the Gaussian parameterizationbeing (i) a systematic albeit small underestimation of the equilibrium vacancy con-centration in the crystal and (ii) the lack of anisotropy of the crystal density peaksat high enough density. Furthermore, to the best of our knowledge this work consti-tutes the first density-functional theory study of the hard-square system. We showthat the fundamental measure theory surprisingly predicts a smectic phase absentin computer simulation and we suggest that, in analogy with the hard-cube system,vacancies can play a crucial role in the freezing transition.
5.2 Model and theory
The density-functional theory route to the equilibrium properties of a many-bodysystem consists of expressing the intrinsic Helmholtz free energy F as a functional ofthe single-particle density ρ(r) (see Sec. 2.3). When considering a system composedof a single species of particles having only translational (and no rotational) degreesof freedom in D dimensions, the free-energy functional reads

βF [ρ] = ∫ dDr ρ(r){log[ρ(r)V]−1}+βFexc[ρ], (5.1)
where r is a D-dimensional vector, β = (kBT )−1 is the inverse temperature in unitsof the Boltzmann constant, V the thermal volume and the integrals are performedover the (D-dimensional) volume V occupied by the system. The first term in theright-hand side of Eq. (5.1) denotes the ideal-gas contribution, while the seconddescribes the excess contribution due to particle-particle interactions.
5.2.1 Fundamental Measure Theory (FMT)The excess free-energy functional Fexc[ρ] in Eq. (5.1) is the non-trivial element ofthe theory: it contains the free-energy dependence on the inter-particle interactionsand it can not be calculated exactly in general.Various methods to systematically estimate this functional dependence have beendeveloped. For hard spheres the undoubtedly most successful approach is that ofthe fundamental measure theory (FMT). According to FMT, the excess free energyis written as

βFexc[ρ] = ∫ dDr Φ(D)({nα (r)}), (5.2)
where {nα (r)} is a set of weighted densities, labeled by α , obtained as convolutionsbetween the single-particle density and a set of corresponding weight functionswα (r),
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nα (r) = ∫ dDr′ρ(r′)wα (r− r′). (5.3)

The functional dependence of Φ(D)({nα}) is determined by extrapolating from knownlimiting cases, such as the homogeneous bulk equation of state, the low-densitysecond-virial behavior, and the dimensional crossover to highly confined conditions[28, 29].For hard parallel squares (D = 2) and cubes (D = 3) with side σ , the FMTfunctional was determined by Cuesta and Martínez-Ratón in Ref. [111]. In whatfollows, we report their explicit expression of Φ(D)({nα}) for the single-componentcase. Following Ref. [111] we introduce the auxiliary functions
τ(x) = Θ(σ2 −|x|

)
, ζ(x) = 12δ

(
σ2 −|x|

)
, (5.4)

defined for x ∈ R.For parallel squares the weight functions are
w0(r) = ζ(x)ζ(y); (5.5a)
w1(r) = (ζ(x)τ(y),τ(x)ζ(y)); (5.5b)w2(r) = τ(x)τ(y), (5.5c)

where we note that w1 has a vector character. The functional dependence of theexcess free energy of parallel squares is given by
Φ(2) =−n0 log(1−n2)+ n(x)1 n(y)11−n2 . (5.6)

For parallel cubes the weight functions are
w0(r) = ζ(x)ζ(y)ζ(z); (5.7a)
w1(r) = (τ(x)ζ(y)ζ(z),ζ(x)τ(y)ζ(z),ζ(x)ζ(y)τ(z)); (5.7b)
w2(r) = (ζ(x)τ(y)τ(z),τ(x)ζ(y)τ(z),τ(x)τ(y)ζ(z)); (5.7c)w3(r) = τ(x)τ(y)τ(z); (5.7d)

and
Φ(3) =−n0 log(1−n3)+ n1 ·n21−n3 + n(x)2 n(y)2 n(z)2(1−n3)2 . (5.8)
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5.2.2 Functional minimizationOnce an explicit expression for the functional dependence of Fexc on the single-particle density ρ(r) is established, the equilibrium Helmholtz free energy F (T ,V ,N)of N particles at temperature T in a volume V (area A for D = 2) is obtained as theminimum of Eq. (5.1) with respect to ρ(r) under the constraint that∫

dDrρ(r) =N. (5.9)
In the case of hard-core interactions between the particles, the system is athermaland its thermodynamic state is completely identified by the packing fraction η =
Nvp/V , where vp = σ3 is the particle’s volume (for D= 2 dimensions η=Nap/A and
ap = σ2 is the particle’s area).The numerically easiest way to solve the functional minimization problem con-sists of expressing the single-particle density in terms of a limited number of vari-ational parameters. After inserting this ansatz into the free energy, the latter isminimized with respect to the variational parameters to obtain an estimate of thefree energy at equilibrium. This approach has been widely applied in studying thefreezing transition of hard spheres, where the single-particle density was parame-terized as a sum of Gaussian functions centered on the lattice sites of the expectedstable crystal phase (Gaussian parameterization or ansatz) [27, 123, 124]. In thischapter we investigate the freezing transition of squares and cubes into square andsimple-cubic crystal phases, for which the Gaussian ansatz can be expressed as

ργ,λ(r) = η
( λ
σ

)D( γ
π

)D2 ∑
n∈ZD

exp[−γ(r−λn)2]. (5.10)
In Eq. (5.10) the variational parameters are half the inverse variance γ and the latticeconstant λ. Note that the lattice constant λ is related to the vacancy concentrationof the crystal xvac = (Nsites−N)/Nsites through xvac = 1−η(λ/σ )D , where Nsites is thetotal number of sites.An alternative to the Gaussian parameterization consists of the numerical solu-tion of the Euler-Lagrange equation associated with the minimization problem (free
minimization) [125–128]. The mathematical accuracy of the free minimization method,according to which no particular functional form is imposed to the solution of theproblem, is particularly relevant for the description of detailed characteristics of thedensity distribution (e.g. the anisotropy of its peaks). In the canonical ensemble theEuler-Lagrange equation reads (cf. Eq. 2.33)

ρ(r) =N exp[−δβFexc
δρ(r) ]

{∫
dDr′ exp[−δβFexc

δρ(r′) ]
}−1

. (5.11)
At high packing fraction η one expects the free energy to be minimized by inhomo-geneous solutions characterized by spatial modulations of ρ(r) along one or more
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directions, representing, e.g., smectic, columnar, or crystal phases. In practice, thesespatial modulations must be inserted explicitly into Eq. (5.11) by means of a Fourierseries expansion. Therefore, the single-particle density of a phase characterizedby a d-dimensional spontaneous breaking of the translational symmetry (d≤ D) isobtained by solving the following equation

ρ(s) = η λ
d

σD
exp[−δβFexc

δρ(s) ]
{∫

Γdds′ exp[−δβFexc
δρ(s′) ]

}−1
, (5.12)

where s ∈ Γ is a d-dimensional vector, Γ = [−λ/2,λ/2]d and λ is the periodicity ofthe inhomogeneous solution (assumed to be the same along all the d directions).The minimization procedure consists of (i) solving in ρ(s) Eq. (5.12) at fixed λ; (ii)evaluating the free-energy Eq. (5.1) associated with this solution; (iii) repeating thisoperation for different values of λ until the minimum of the free energy in λ is found.For hard squares (D = 2) we will see that Eq. (5.12) describes smectic (Sm, d= 1)and square crystal (X , d = 2) phases; for hard cubes (D = 3) Eq. (5.12) accountsfor smectic (Sm, d= 1), columnar (Col, d= 2) and simple-cubic crystal (X , d= 3)ordering.The numerical solution of Eq. (5.12) on a grid of points is expected to offer abetter description of the single-particle density than the constrained minimizationbased on the Gaussian ansatz Eq. (5.10). We develop a Picard algorithm to solveEq. (5.12), where all the convolutions involved in the FMT formalism are handledby means of Fast Fourier Transforms [129]. Moreover, the minimization with respectto the lattice spacing λ is performed using the Brent algorithm [130].
5.3 Parallel Hard Squares (D=2)
5.3.1 Preliminary considerationsWhen considering the high-density phase behavior, monodisperse squares (as wellas cubes in D = 3 dimensions) possess a peculiar property. Unlike other regu-lar polygons (e.g., pentagons, hexagons,..., and disks), squares do not have a well-defined “locked-in” configuration at close packing. In other words, besides thetwo-dimensional ordered square crystal (X ), any other configuration with rows (orcolumns) shifted with respect to one another completely fills the plane. Therefore,also a smectic phase (Sm), characterized by positional ordering along one direc-tion only, should in principle be considered as a candidate stable phase (see Fig.5.1(a)). The higher degeneracy of Sm configurations with respect to X configura-tions suggests a higher entropy of the former with respect to the latter. However, inlow-dimensional systems thermal fluctuations can play a relevant role in destroyinglong-range order, leading to so-called Landau-Peierls instabilities [131, 132]. In par-ticular, for short-range interactions proper crystals do not exist in D= 2 dimensions,since positional ordering can in this case have at most quasi-long-range character
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Figure 5.1: (a) Pictorial representation of (from left to right) the fluid, smectic (Sm) andsquare crystal (X ) phases of parallel hard squares as a function of the packing fraction η.(b) Phase diagram of parallel hard squares according to FMT, to be compared with thesimulation value of Ref. [105] for the fluid-to-crystal transition packing fraction (verticalarrow). The (Sm) interval highlights the states where the (Peierls-Landau unstable) smecticphase is predicted to be the stable phase. (c) FMT prediction for the free energy per unityarea F/A of fluid (dotted green), Sm (dashed blue) and X (solid red lines) phases in theproximity of the second-order fluid-to-smectic (black circle) and (d) the first-order smectic-to-crystal transition.
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[133]. The situation is even more dramatic when considering smectic phases, wherethermal fluctuations make the correlation between layers decay exponentially withthe distance [134]. This means that in D = 2 dimensions we do not expect smecticordering to be stable at all. Computer simulations of both parallel [103] and freely-rotating [135] hard squares, where only a direct fluid-to-crystal phase transition wasobserved without any smectic state, confirm this picture.
5.3.2 Phase diagramWe report in Fig. 5.1(b) the phase diagram of parallel hard squares, as obtained byfreely minimizing the FMT functional with respect to the single-particle density ρ(r)including vacancies. Despite the above-mentioned considerations on the effect offluctuations, we approximate the single-particle density of the X phase by assuminglong-range order (as implied in Eqs. (5.10) and (5.12)). A similar approximation wasrecently applied for the description of the freezing transition in two-dimensional harddisks, showing remarkably good agreement with computer simulations [128]. We in-clude in our calculations also the possibility of long-range Sm ordering, which ishowever expected to be Landau-Peierls unstable. The free-energy dependence ofthe fluid, smectic and crystal phases on the packing fraction η is reported in Fig.5.1(c) and (d) for two density intervals. Note that this representation allows for com-mon tangent constructions to identify coexisting states. Surprisingly, FMT predictsa second-order fluid-to-smectic transition at η∗ = 0.538 (Fig. 5.1(c)) and a weaklyfirst-order smectic-to-crystal transition with bulk coexisting densities ηSm = 0.726and ηX = 0.730 (Fig. 5.1(d)). The picture does not change appreciably by mini-mizing the free energy within the Gaussian ansatz, giving the sole effect of slightlydisplacing the alleged Sm-X transition (ηSm = 0.750 and ηX = 0.756, not shown).As already pointed out, theoretical considerations and simulation results rule outthe possibility of stable smectic ordering in the thermodynamic limit. Therefore, wemust conclude that the smectic phase is an artifact due to the mean-field characterof the fundamental measure theory, which is unable to take fully into account therole of long-wavelength fluctuations. On the other hand, the question whether thefluid or the crystal is the stable phase in the range of allegedly smectic stability(striped region in Fig. 5.1(b)) is open. We address this point, as well as possibleconditions for smectic stability, in the final discussion of Sec. 5.5.
5.3.3 Crystal propertiesIn order to further investigate the properties of the crystal, we report the dependenceof the vacancy concentration (Fig. 5.2(a)) and the root-mean-squared deviationfrom the average position in the unit cell, also known as Lindemann parameter(Fig. 5.2(b)), on the packing fraction. At the second-order transition at η = 0.538the vacancy concentration is xvac ' 15%, and xvac reduces monotonically with η.This value is appreciably higher than that predicted for hard disks xvac ' 2% [128].
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Figure 5.2: FMT results for (a) the vacancy concentration and (b) the root-mean-squareddeviation from the average position (in units of the lattice constant λ) of the square crystalphase of parallel hard squares as a function of the packing fraction η. Solid lines correspondto values calculated by free minimization of the FMT functional, whereas dashed linesindicate those obtained through the Gaussian ansatz.
This marked difference between squares and disks shows analogies with the three-dimensional case. In fact, the vacancy concentration at the melting transition of hardcubes is two orders of magnitude higher than in hard-sphere systems [115, 120, 127].Not unlike the case of hard cubes [115], these results suggest that vacancies can playan important role in stabilizing (quasi-long-range) crystal order in systems of hardsquares. Moreover, Fig. 5.2(a) highlights a systematic, albeit small, underestimationof the vacancy concentration at intermediate packing fraction when the Gaussianansatz is applied. On the other hand, no appreciable difference with the root-mean-squared deviation calculated by free minimization is observed in Fig. 5.2(b).In both cases, at the second-order transition the Lindemann parameter assumes avalue close to 0.4. This value is remarkably higher than 0.15 which, according tothe empirical Lindemann criterion, is related to the melting transition of a three-dimensional system [16]. Notice, however, that according to our calculation theLindemann parameter takes the value of 0.15 at a packing fraction of η = 0.75approximately. Therefore, the Lindemann criterion suggests in this case a meltingtransition at η= 0.75 approximately, which is very close to the simulation result forthe fluid-to-crystal transition (see Fig. 5.1(b)).We complete our analysis of the crystal phase by studying the evolution ofthe single-particle density from the freezing-transition region, where ρ(x,y) is stillappreciably non-zero at the edge of the Wigner-Seitz cell, to the confined regimeat higher density. In Fig. 5.3(a), (c) and (e) we report the functional dependenceof the equilibrium single-particle density inside the unit cell at packing fraction
η = 0.55, 0.65 and 0.75, respectively. In order to ease the analysis, we plot on the
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Figure 5.3: Single-particle density ρ(x,y) in the unit cell of the square crystal phaseobtained through FMT free minimization at packing fraction (a) η= 0.55, (c) η= 0.65 and(e) η = 0.75. On the right column we report the section of the single-particle densityalong the [10] (red lines) and [11] (blue lines) crystallographic directions. The graphs areexpressed in log-scale as a function of the squared distance from the center of the unit cell.The dashed lines represent the corresponding functional dependence obtained through theGaussian ansatz.



5.4. PARALLEL HARD CUBES (D=3) 67
right of each figure (Fig. 5.3(b), (d) and (f )) a section of the corresponding ρ(x,y)along the crystallographic directions [10] and [11]. These graphs are represented inlogarithmic scale as a function of r2 to highlight Gaussian behavior (straight lines).As expected, the section along the [10] direction, connecting nearest-neighbor sites, issystematically bigger than that along the [11] direction for both the freely minimized(solid lines) and Gaussian- parameterized (dashed lines) profiles. At the lowestpacking fraction the peak of the density distribution is smeared out on the unit cell.As a consequence, the single-particle density in the Gaussian parameterizationshows relevant deviations from a Gaussian distribution due to the overlap of thepeaks centered on neighboring cells. In fact, the tails of the neighboring lattice sitesallow to properly reproduce the anisotropy of the density peak. This leads to themarked difference between the [10] and [11] profiles, which is similar to what observedfor the free-minimization solution (Fig. 5.3(b)). This overlap is weaker at higherpacking fraction, where the confinement is stronger. Hence, the Gaussian ansatzfails to reproduce the anisotropy of the distribution in this regime (Fig. 5.3(d) and(f )). However, these deviations occur on a density scale a few orders of magnitudesmaller than the peak value, and therefore their relevance is quantitatively limited.
5.4 Parallel Hard Cubes (D=3)

5.4.1 Phase diagram

Here we compare the predictions of the freely-minimized FMT for parallel hardcubes with those based on the Gaussian parameterization (a case extensively studiedin the past [108, 112, 120]) with our results based on the free minimization of thefunctional. Since the formulation by Cuesta and Martínez-Ratón [111], FMT is knownto correctly predict two significant properties of the freezing transition of the model[112]: (i) its second-order character and (ii) the role of vacancies in stabilizing thecrystal.The second-order fluid-to-crystal transition, which is known to become first-orderwhen the rotational degrees of freedom are taken into account [107], is predictedto occur at packing fraction η = 0.314. As in the case of parallel squares, thisvalue appreciably underestimates the simulation result of η = 0.469 [120] (see Fig.5.4(a)). Also in analogy with parallel hard squares, parallel cubes lack a “locked-in” configuration at close packing. By means of a bifurcation analysis of the FMTfunctional and computer simulations, Groh and Mulder addressed the question aboutthe stability of columnar order, and showed it to be metastable [108]. In contrastto hard squares, smectic and columnar solutions are in the three-dimensional casealways metastable with respect to the crystal. This finding, which results directlyfrom our free minimization scheme, is easily verified by comparing the free-energycurves of smectic, columnar and crystal phases as a function of the packing fractionin Fig. 5.4(b).
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5.4.2 Crystal properties

The remarkably high concentration of vacancies at the freezing transition, xvac ' 30%,is a known feature of the theory (cf. Fig. 5.5(a)) [108, 112]. Although this valueis three orders of magnitude higher than that measured for hard spheres [127], itwas recently shown to be compatible with computer simulations of both parallel(xvac = 13% [120]) and freely-rotating (xvac = 6.4% [115]) hard cubes, thus highlight-ing the essential role of vacancies in stabilizing the simple-cubic crystal. Withinthe free minimization of the FMT functional, the vacancy concentration at bulk co-existence does not change with respect to the Gaussian ansatz result. Nonetheless,an inspection of Fig. 5.5(a), reporting xvac as a function of the packing fraction η,shows that the Gaussian ansatz tends to underestimate this property at intermedi-
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Figure 5.5: FMT results for (a) the vacancy concentration and (b) the root-mean-squareddeviation from the average position (in units of the lattice constant λ) of the simple-cubiccrystal phase of parallel hard cubes as a function of the packing fraction η. Solid linescorrespond to values calculated by free minimization of the FMT functional, whereas dashedlines indicate those obtained through the Gaussian ansatz.
ate packing fractions. Therefore, in this regime the free minimization improves theGaussian ansatz data by furnishing results closer to those of computer simulation[120]. However, if we focus on the root-mean-squared deviation from the averagelattice site (Lindemann parameter), reported as a function of the packing fraction η inFig. 5.5(b), we do not observe any appreciable deviation from the known dependencecalculated by means of the Gaussian ansatz. Notice that the Lindemann parametertakes a value close to 0.5 at the fluid-to-crystal transition. We conclude that, simi-larly to the case of hard squares, the Lindemann prediction of a root-mean-squareddeviation close to 0.15 at the melting transition grossly fails. For hard squares wehave seen that the packing fraction at which the Lindemann parameter takes thevalue of 0.15 is actually pretty close to the expected freezing transition. This is notthe case for hard cubes, where the melting transition deduced via the Lindemanncriterion takes the value of approximately η= 0.65, which appreciably overestimatesthe simulation prediction of η= 0.469 [120].Finally, in Fig. 5.6 we represent sections of the equilibrium single-particle den-sity ρ(x,y,z) at packing fraction η= 0.32 ((a)-(b)), 0.50 ((c)-(d)) and 0.70 ((e)-(f )) andwe compare them with the corresponding Gaussian ansatz solution (dashed lines).The graphs on the left ((a), (c) and (e)) show sections along the crystallographicdirections [100] (red lines), [110] (green lines) and [111] (blue lines); to ease thecomparison, we report on the right of each graph ((b), (d) and (f )) the absolute dif-ference of these sections between the two minimization methods. In the three cases,the cubic symmetry of the freely-minimized solution is evident by the hierarchy invalues of the single-particle density along the three crystallographic directions. In
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analogy with the parallel square system, at low enough packing fraction there isgood quantitative agreement between the two methods, since the overlap betweenneighboring peaks within the Gaussian ansatz allows to reproduce the anisotropyof the single-particle distribution. At higher packing fraction, deviations from theGaussian-ansatz solution are evident, but limited to the low-density region of theunit cell.
5.5 Discussion and Conclusions
By means of the fundamental measure theory we investigate the phase behavior ofsingle-component systems of parallel hard squares (in D= 2 dimensions) and cubes(D = 3). Our attention focuses on the predictions for the freezing transition and theproperties of the crystal phase. In density-functional theory the typical approachfor describing crystal phases is based on the parameterization of the single-particledensity by a sum of Gaussian functions centered on the lattice sites. We comparethese predictions with a more accurate free-minimization method, where the single-particle density is evaluated on a grid of points.Despite its simplicity, we conclude that for both squares and cubes the Gaussianparameterization works remarkably well. Apart from some inadequacy of the Gaus-sian ansatz in describing the anisotropy of the single-particle density of the crystal,the main deviations between the two minimization methods lie in the expected va-cancy concentrations of the square and simple-cubic crystals, which appears to beslightly underestimated by the Gaussian ansatz. On the other hand, as alreadynoticed for cubes, FMT suffers from a serious inability to give quantitatively reliablevalues for the freezing packing fraction. However, improvement in this direction canbe achieved only by a reformulation of the theory itself, as the numerical minimiza-tion is performed exactly. The development of FMT for hard spheres from the originalversion by Rosenfeld suggests that fruitful approaches could involve the addition ofnew (tensorial) weight functions [136] or the use of an equation of state as an inputof the theory in order to improve over the Scaled Particle Theory approximation[124, 137].For the three-dimensional system of parallel hard cubes our results coincidewith previous FMT analysis based on the Gaussian parameterization and indicate asecond-order fluid-to-crystal transition with a vacancy-rich crystal phase. For theparallel hard-square system, this work constitutes to the best of our knowledge thefirst analysis based on density-functional theory. In contrast with previous simu-lation studies, the fundamental measure theory predicts a stable smectic phase inbetween the low-density fluid and the high-density square crystal. However, bytaking into account the effect of long-wavelength thermal fluctuations, one can showthe one-dimensional smectic ordering to be unstable. Therefore, we deduce that themean-field character of the theory, which is unable to properly take into accountthe role of fluctuations, is the element to be blamed for this artifact. When bigenough simulation boxes are considered, computer simulations with periodic bound-
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ary conditions confirm the picture of an unstable smectic phase [135]. However, it isinteresting to notice that, when the simulation box is small enough, ordering of thesquares in parallel layers was observed [135]. On the basis of these observations, itis tempting to conclude that, when long-wavelength fluctuations can be neglected,the behavior of the system coincides with the predictions of FMT, showing a sta-ble smectic phase. In other words, we expect parallel-square systems to developintermediate smectic states in finite size systems and under the effect of confiningwalls.For what concerns the original problem regarding the phase behavior of parallelhard squares in the thermodynamic limit, the conclusions we can draw are morelimited. On the basis of our theoretical results we do not have enough elementsto deduce which of the two phases, either the fluid or the crystal, is the stableone in the density range where the theory predicts a stable smectic. In fact, if wesimply neglected the smectic solution of FMT, we would find a second-order freezingtransition at η∗ = 0.538; on the other hand, if we kept the smectic solution whilededucing it to be structurally indistinguishable from the fluid due to the fluctuations-induced short-range correlations between smectic layers, we would obtain a first-order freezing transition with coexisting densities ηf luid = 0.726 and ηX = 0.730.Since we do not have any prescription to choose between these two alternativescenarios, we cannot conclude whether the theory predicts a low-density second-order freezing transition with a high vacancy concentration in the crystal, or ahigher-density weakly first-order freezing with a lower vacancy concentration.Although FMT is well-known to incorporate short-range correlations accurately,this study brings to the front a shortcoming of FMT as regards the incorporation oflong-wavelength fluctuations. We hope that this study stimulates new developmentsin this direction, perhaps along (some of) the lines of Hierarchical Reference Theory[138] to reconcile short- and long-range correlations consistently.
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Chapter 6

Heterogeneous diffusion
in columnar liquid crystals

Abstract

In the wake of previous studies on the rattling-and-jumping diffusion in smectic
liquid-crystal phases of colloidal rods, we analyze here the heterogeneous dif-
fusion in columnar phases. More specifically, we perform computer simulations
aimed at investigating the relaxation dynamics of a binary mixture of perfectly
aligned hard spherocylinders. We find that the columnar arrangement of the
system produces free-energy barriers the particles need to overcome in order
to jump from one column to another. This determines a hopping-type diffu-
sion in the plane perpendicular to the nematic director. Such a phenomenon
accounts for the non-Gaussian inter-column diffusion and manifests itself in a
two-step structural relaxation, which is remarkably analogous to that of out-of-
equilibrium glass-forming systems and gels. Slight deviations from the behavior
of simple liquids due to packing effects are also observed along the nematic di-
rector.

6.1 Introduction
Liquid crystals are phases of matter characterized by a partial spontaneous break-ing of the spatial symmetries of the system due to anisotropies in the interparticleinteractions. Since the spontaneous symmetry breaking involves only some of thespatial symmetries of the Hamiltonian, liquid crystals manifest features in betweenthe crystalline solid and the isotropic liquid phase. The notion that entropic effectsalone are sufficient to drive the self-assembly of liquid-crystal phases is well estab-lished in colloid science, where in many situations the main interactions between theparticles have a purely repulsive, steric origin [24, 139–142]. Due to their simplicity,model systems of hard particles constitute the natural choice to describe the phaseand aggregation behavior of this type of colloidal suspensions.In his seminal work Onsager showed that a system of purely repulsive infinitelythin rigid cylinders undergoes an isotropic-nematic phase transition associated with

73
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the development of spontaneous orientational order [24]. The more realistic case ofrods with finite size has been extensively studied in the past thanks to computersimulation. It has been shown that, by varying their length-to-diameter ratio, one-(smectic), two- (columnar) and three- (crystal) dimensional translational orderedphases could be encountered [143, 144]. However, further studies showed that inmonodisperse systems of both parallel [145] and freely rotating [84] hard rods thecolumnar phase happens to be metastable with respect to the smectic for eachvalue of the length-to-diameter ratio. The complexity of the phase behavior oflinear particles becomes even more pronounced by proceeding from monodispersesystems to mixtures [70, 146–149]. Size-polydispersity introduces a sensible changein the phase behavior of rod-like particles, as their packing happens to be not aseffective as in systems of monodisperse rods. For instance, the formation of smecticlayers in a system of hard spherocylinders can be inhibited by introducing a lengthbidispersity. As a result, a columnar liquid-crystal phase substitutes the smectic inthe phase diagram [146, 147]. Entropy-driven columnar phase transitions have alsobeen observed in monodisperse systems of disc-like particles, such as cut spheresand oblate spherocylinders [67, 150–152]. As far as rod-like particles are concerned,theoretical studies indicated that the columnar order could be observed not onlyin bidisperse mixtures, but also in more realistic polydisperse systems of parallelcylinders [153]. However, polydispersity is not the only element which favors thestabilization of the columnar phase in systems of rods, as it was recently suggestedthat the columnar stability can be enhanced by means of soft repulsions [154]. Onthe other hand, the effect of rod flexibility in stabilizing the columnar phase is atpresent still under debate [155–158].As a consequence of our increased understanding of the static (i.e., equilibriumtime-independent) properties of colloidal liquid crystals, a stronger interest towardsthe dynamic time-dependent ones has been manifested. Most of the work in thisdirection focused on the single-particle diffusion, which in the presence of nematicordering develops anisotropies quantifiable through the measure of the self-diffusioncoefficients [159–162]. Experimentally such measurements have been successfullyperformed by means of fluorescence techniques [163–166]. However, in these exper-iments the particles were sampled collectively, and only little work focused on thedynamics at the single-particle level [167, 168]. By applying fluorescence microscopyto the study of the single-particle dynamics of fd viruses in suspension, Lettinga andGrelet observed for the first time the mechanism of interlayer diffusion (a.k.a., per-meation) in smectic liquid crystals [168]. More specifically, they showed that thelayered structure characteristic of the smectic phase induces a heterogeneous dif-fusion in the direction perpendicular to the layers. This heterogeneous dynamicsaccounts for deviations from Gaussian diffusion, a feature which is well known tocharacterize non-equilibrium homogeneous states of spherical particles close to akinetic-arrest transition [169–172]. The diffusion is termed heterogeneous since onecan identify different time regimes characterized by different diffusion coefficients. Atsmall time scales each particle does not feel the presence of its neighbors, and thediffusion coefficients are determined by the particle’s geometry and by the solvent’s
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viscous properties only (free diffusion). On the other hand, at higher time scalesthe diffusion is hampered by the ordered structure of the fluid, which allows for thediffusion through smectic layers via quasi-quantized jumps . This picture allows tointerpret the dynamics in the system at time t by the identification of “slow” and“fast” particles: slow particles are those which have not left their smectic layer af-ter an interval of time t, whereas fast ones are those which succeeded in it. Thediscrete nature of the diffusion through the smectic layers has been interpreted interms of effective permanent free-energy potentials related to the periodic structureof the phase. However, in a recent dynamic density-functional theory study Bier
et al. highlighted the role on the dynamics of the in-layer structure, which can-not be accounted for in models based on the permanent free-energy backgroundonly [173, 174]. This work showed that the in-layer fluid-like structure determinesa “temporary” caging regime that sums up to the “permanent” one induced by thesmectic ordering [173, 174]. Such a coupling between in-layer and intra-layer dif-fusion has been confirmed by simulations of both parallel [175] and freely rotating[176, 177] hard spherocylinders. Moreover, these simulation approaches allowed fora quantitative analysis of the structural relaxation in terms of the deviation of thetime correlations from the exponential decay typical of simple fluids [175–177].Following this line of research and motivated by a recent experiment on a col-loidal suspension of fd viruses [178], we investigate in this chapter the dynamicsof a binary mixture of rod-like particles exhibiting a stable columnar liquid-crystalphase. Using Monte Carlo (MC) simulations we are able to study for the first timethe dynamical heterogeneities arising from the columnar structure and their effect onthe diffusion and on the long-time structural relaxation of the system. The reliabilityof such a Monte Carlo based approach to the study of the dynamics of inhomoge-neous liquid crystals has been confirmed to be excellent when compared to morerealistic but time-consuming Brownian Dynamics simulations [179]. Furthermore,we measure the inter-column free-energy barriers and compare our results with thesimulation data available for the smectic phase [175–177].
6.2 Model and Simulations
We study a system containing N = 1600 perfectly aligned hard spherocylinderswith aspect ratio L∗ = L/D. L and D are the length and diameter of a cylindricalbody capped by two hemispheres with diameter D, respectively. The phase diagramof a monodisperse system containing such rod-like particles shows stable nematic,smectic, and crystal phases, but lacks a stable columnar phase in the range 0 ≤
L∗ <∞ [145]. Stroobants studied the phase behavior of bidisperse systems of hardrods and found that the bidispersity can favor and stabilize columnar order oversmectic order [146]. Therefore, in order to prevent the formation of smectic layers,we investigate a binary mixture of hard spherocylinders with the same diameter D(used as our unit of length), but different lengths L∗1 and L∗2 , with L∗1 > L∗2 . In thismodel, the rotational degrees of freedom are frozen out and hence the particles are
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forced to be aligned along a common nematic director, oriented along the z axis. Therelative concentration of the two species is chosen such that the volume fractionsof each component are the same. The phase diagram at fixed L∗2 = 1.0 displays aregion of stability of the columnar phase which increases with L∗1 and disappearsat L∗1 ≤ 1.6, where a nematic-smectic transition is observed [146]. Here we study acolumnar ordered binary mixture of rods with L∗1 = 2.1 and L∗2 = 1.0, and relativeconcentrations x1 = N1/N = 0.375 and x2 = N2/N = 0.625, respectively. At lowerpressure the columnar phase undergoes a transition into a nematic phase, while athigher pressure it freezes into a solid crystal.We perform standard MC simulations in a rectangular box of volume V withperiodic boundary conditions. In order to equilibrate the columnar phase, we carryout preliminary equilibration runs in the isobaric-isothermal (NPT ) ensemble. Theparticle moves are accepted according to the Metropolis algorithm [31], that is, ifno particle overlap is detected (see Sec. 2.4). Each MC cycle consists of N at-tempts to displace a randomly selected particle, plus an attempt to modify the boxvolume with independent changes of the three box sides. The system is consid-ered to be in equilibrium when the volume reaches a stationary value within thestatistical fluctuations. We run simulations at several reduced osmotic pressures
P∗ = βPD3, where β = 1/kBT , kB is the Boltzmann’s constant and T the absolutetemperature. In particular, we equilibrate a nematic phase at P∗ = 2.5 (packingfraction η = N(x1v1 + x2v2)/V = 0.470 with vi (i = 1,2) the single particle volume)which is very close to the nematic-columnar transition, and three different columnarphases at P∗ = 3.0 (η = 0.535), 3.5 (η = 0.563) and 4.0 (η = 0.580). In all thesecases, our starting configuration consists of a highly packed columnar structure withthe rods randomly located along the z direction, and hexagonally ordered in the
xy plane. The minimum number of MC cycles needed for an equilibration run isroughly 5× 105, and is followed by a production run of 2× 106 MC cycles in thecanonical (NVT ) ensemble to simulate the relaxation dynamics and evaluate all thephysical properties of interest. In this case, the box volume is kept fixed in orderto prevent unphysical collective moves which do not mimic the Brownian dynamicsof the particles. In the following the role of hydrodynamics and hydrodynamic in-teraction, which is extremely difficult to explicitly take into account, is completelyneglected. In rod suspensions this choice is justified in a first approximation, sincethe main contribution to the dynamics comes from the excluded-volume interactions[180].Under these conditions, the MC approach offers a useful and effective tool tostudy the dynamics of colloids. In fact, in spite of its intrinsically non-dynamicalnature, MC algorithms are able to reproduce the Brownian diffusion typical of col-loidal suspensions [181]. To pursue this goal, one must set a small enough maximumMC displacement, typically of the order of one tenth of the shortest dimension ofthe particle. The optimal value of the mean particle displacement is strictly linkedto the acceptance rate and hence to the CPU time per simulation run. The max-imum displacement is fixed to give an acceptance rate of roughly 50% per move.Furthermore, in order to take into account the non-spherical shape of the particles,
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the maximum MC displacement is set in such a way that at short times it repro-duces the anisotropic diffusion of a single colloidal rod. More specifically, the ratiobetween the maximum MC displacement in the xy plane ∆xmax = ∆ymax and in the
z direction ∆zmax is set as

∆xmax∆zmax = ∆ymax∆zmax =√D⊥
D‖

, (6.1)
where we denote with D⊥ and D‖ the short-time self-diffusion coefficients of the rodin the direction parallel and perpendicular to its long axis, respectively. In order toestimate the ratio D⊥/D‖, which solely depends on the geometry of the particle, werefer to the semi-empirical expression derived in Ref. [182]. In that work, the authorsused a numerical approach to evaluate the translational self-diffusion coefficients ofa cylindrical particle for different values of the length-to-diameter ratio p, findinggood overall agreement with experimental data in the range 2 < p < 30 [183]. Aleast-square quadratic fitting in p−1 of the data allowed the authors to give ananalytic expression for the transverse and longitudinal self-diffusion coefficients asfunctions of the parameter p. Since here we consider spherocylinders, we evaluatethe ratio D⊥/D‖ by setting p= (L+D)/D, while neglecting deviations due to the non-cylindrical shape of the particles. According to the above-mentioned expression, theratio between the maximum MC displacement perpendicular and parallel to the zaxis is set to 0.92 for particles of species 1 and 0.94 for those of species 2. Moreover,since the transverse section of the particles is the same for the two species, we setthe longitudinal maximum MC displacement along the z axis to be the same for thetwo components. Once the short-time longitudinal (D‖) and transverse (D⊥) self-diffusion coefficients are known, it is possible to introduce a time scale defined by
τ = D2/Dtr . The total translational diffusion coefficient Dtr = (〈D‖〉+2〈D⊥〉)/3 isevaluated in terms of the measured longitudinal and transverse short-time diffusioncoefficients averaged over the two species [175].
6.3 Relevant physical properties
In order to analyze the heterogeneous diffusion and the structural relaxation of thesystem, the following physical properties are calculated.
Transverse mean-field potentialIn a columnar liquid-crystal phase the translational invariance is spontaneouslybroken in the plane (xy) perpendicular to the nematic director (z). This gives riseto a non homogeneous probability πi(x,y) of finding a particle of species i= 1,2 atthe position (x,y,z). The effective energetic barrier associated with this probabilitydistribution is given by the mean-field potential Ui(x,y), defined as [168]
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πi(x,y)∝ exp[−Ui(x,y)

kBT

]
, (6.2)

where the zero of the potential is set at its periodic minima.
Self part of the van Hove function (SVHF)The heterogeneous dynamics and hopping-type inter-column diffusion can be quan-titatively described by means of the self-part of the van Hove function (SVHF) [184]

Gs(r, t) =〈 1
N

N∑
j=1 δ(r− rj (t+ t0)+ rj (t0))〉 , (6.3)

which measures the probability distribution for a particle displacement r in a timeinterval t. Since in this chapter our attention focuses on the columnar phase, itis natural to separately study the diffusion in the xy plane, where the system isinhomogeneous, and along the z axis, where the same is homogeneous. This separateanalysis is achieved by partially integrating the SVHF Eq. (6.3) in the x and ycoordinates to get the longitudinal component
G‖s (z, t) =〈 1

N

N∑
j=1 δ(z− zj (t+ t0)+ zj (t0))〉 , (6.4)

and in the z coordinate to get its transverse component. The transverse componentof the SVHF can be further averaged over the azimuthal angle of r

G⊥s (R,t) =〈 1
N

N∑
j=1 δ(R−Rj (t+ t0)+Rj (t0))〉2π

. (6.5)
In the above equations (Rj (t), zj (t)) is the position of particle j at time t, δ is theDirac delta; 〈...〉 stands for an ensemble average, and the index 2π indicates anadditional average over the azimuthal angle θ associated with the bidimensionalvector R = (x,y) = (R cos(θ),R sin(θ)). In the case of free diffusion, i.e., for non-interacting particles, these functions are described by Gaussian distributions [3].
Distinct part of the van Hove function (DVHF)The SVHF introduced in the previous section contains all the relevant informationabout the single-particle diffusion. However, in order to fully understand the equi-librium dynamics of a many-particle system, one needs to take into account also thecollective dynamics of two or more particles. Such a task is achieved by calculatingthe distinct-part of the van Hove function (DVHF). The DVHF is the probabilitydistribution that a particle occupies the position r at the instant t0 + t, when anotherparticle is at the origin at t0. The DVHF is defined as
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Gd(r, t) =〈 1
N

N∑
j 6=i=1δ(r− rj (t+ t0)+ ri(t0))〉 . (6.6)

Similarly to our analysis for the SVHF, we are interested in investigating separatelythe diffusion dynamics along the nematic director (z) and in the plane of the columnarordering (xy). Therefore, we consider the longitudinal
G‖d(z, t) = (πD24

)−1∫ D/2
0 RdR

∫ 2π
0 dθGd(r, t), (6.7)

and the transverse component of the DVHF
G⊥d (R,t) = (2πL)−1∫ L/2

−L/2dz
∫ 2π

0 dθGd(r, t), (6.8)
where we set L= min{L1,L2} and θ is the azimuthal angle of r in the xy plane.
Non-Gaussian parameter (NGP)In the case of freely-diffusing colloidal particles, the mean square displacementdepends linearly on time and the SVHF is a Gaussian distribution [3]. However, inthe case of an interacting many-particle system one expects deviations from this typeof Gaussian diffusion. Such deviations can be estimated through the non-Gaussianparameter (NGP), defined as [185]

α2(t) = 〈∆r4(t)〉(1+2/d)〈∆r2(t)〉2 −1, (6.9)
where ∆r(t) is the displacement of a particle during a time interval t. The parameter
d refers to the dimension of the space over which the diffusion is considered. Thismeans that d= 1 for the linear diffusion longitudinal to the nematic director (α2,z(t)),whereas d= 2 for the transverse diffusion in the xy plane (α2,xy(t)). As pointed outin Ref. [186], when dealing with mixtures one should pay attention not to take intoaccount trivial non-Gaussianity related to a size-dependent particle mobility. Inorder to avoid this artifact, one has to calculate the NGP α (i)2 as defined in Eq.(6.9) for each species i = 1,2 separately, and only afterwards perform an averageweighted over the concentrations xi, that is

〈α2(t)〉= x1α (1)2 (t)+ x2α (2)2 (t). (6.10)With these definitions heterogeneous diffusion can be detected when the NGP de-viates from zero value.
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Self part of the intermediate scattering function (SISF)The structural relaxation of the system is conveniently described by means of theself-part of the intermediate scattering function (SISF)

Fs(k, t) =〈 1
N

N∑
j=1 exp[ik · (rj (t+ t0)− rj (t0))]〉 , (6.11)

which describes the decay of density auto-correlations in reciprocal space. Most ofthe relevant structural information is contained at the first peak k∗ of the structurefactor. Therefore, we can focus on the transverse and longitudinal relaxations byevaluating the SISF at the wave vectors (k∗x ,k∗y,0) and (0,0,k∗z ), respectively. Withthis in mind, our analysis on the structural relaxation of the system involves themeasurement of the functions Fs,xy(t)≡ Fs((k∗x ,k∗y,0), t) and Fs,z(t)≡ Fs((0,0,k∗z ), t).
6.4 Hopping-type diffusion
When the difference in length between the two components of a binary mixture ofaligned hard spherocylinders is sufficiently high, the system undergoes a transitionfrom a nematic to a columnar phase. The structure of the columnar phase is char-acterized by the development of hexagonal order in the plane perpendicular to thenematic director [146]. Two typical configurations in the nematic (P∗ = 2.5) and inthe columnar phase (P∗ = 4.0) are depicted in Fig. 6.1.The effect of the columnar structure on the single-particle motion can be observedin Fig. 6.2, where we show typical trajectories of long and short rods projected on the
xy plane at P∗ = 3.0. The difference with the Gaussian diffusion typical of a simpleliquid, where the particle trajectories resemble the behavior of a random walker, isevident. In this case, the dynamics is characterized by a hopping-type diffusion:each particle rattles around the center of a column until it finds suitable conditionsto jump to another column. The spread in the total displacement between long andshort rods, reported in Fig. 6.2(a) and (b), respectively, is linked to the differentfree-energy barriers felt by the two components, as discussed in what follows. Sucha behavior is observed in the whole range of osmotic pressure considered, andits effects on the long-time relaxation dynamics of the system are crucial. Morespecifically, the long rods are expected to sample the configuration space on a timescale significantly longer than that associated with the short ones. As a consequence,the decay of the correlation functions is strongly affected by the slow diffusion ofthe long particles, as we will show in Sec. 6.7.The single-particle diffusion in a system characterized by spontaneous trans-lational-symmetry breaking is conveniently described as the motion of an isolatedparticle subject to an effective one-body potential. For the columnar ordering objectof this study, the effective one-body potential U(x,y) is given in Eq. (6.2). Thisapproach was applied in experiments [168] and simulations [175–177] to characterize
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Figure 6.1: Side and top views of two typical configurations in the nematic (P∗ = 2.5, leftfigure) and in the columnar phase (P∗ = 4.0, right figure) of a binary mixture of perfectlyaligned hard spherocylinders with length-to-diameter ratios L∗1 = 2.1 (in red) and L∗2 = 1.0(in green) and relative concentrations x1 = 0.375 and x2 = 0.625.



82 CHAPTER 6. HETEROGENEOUS DIFFUSION IN COLUMNAR LIQUID CRYSTALS

-6

-4

-2

 0

 2

 4

 6

 8

-2  0  2  4  6  8

y 
(D

)

x (D)

(a)

-6

-4

-2

 0

 2

 4

 6

 8

-2  0  2  4  6  8

y 
(D

)

x (D)

(b)

Figure 6.2: Two typical trajectories projected on the xy plane of a long (a) and a short (b)rod in the columnar phase at reduced pressure P∗ = 3.0 after an interval of time ∆t= 380τ .
the hopping-type diffusion in smectic liquid crystals along the nematic director. Itwas found that the free-energy cost for the layer-to-layer diffusion is of the order offew kBT per particle, depending mostly on the packing of the system, but also on thedegree of anisotropy of the rods and the presence of rotational degrees of freedom.For binary mixtures one has to evaluate separately the mean-field potential relatedto each component. We report in Fig. 6.3 the mean-field potential for long andshort rods at several values of the osmotic pressure. The minima of the potentialcorrespond to the hexagonal lattice positions, while the height of the barriers givesa quantitative description of the free-energy penalty associated with a column-to-column jump. In order to better estimate the height of the maxima of the potential,we report in Fig. 6.4 a transverse section of the energy landscapes of Fig. 6.3.Following the procedure of Ref. [175], the experimental points in Fig. 6.4 are fittedwith a function

U(R ) = n∑
k=1Uk

[sin(πRh
)]2k

, (6.12)
with Uk and h fit parameters and n = 5. As expected, the height of the potentialbarrier increases with the packing fraction and with the particle anisotropy [176].At sufficiently high packing fractions, we detect higher barriers for the longer rods.Additionally, at the reduced osmotic pressure P∗= 3.5 and 4.0 the column-to-columnjumps become so rare that the associated statistics is too poor to furnish a preciseestimate of the barrier height. In other words, the long rods are constrained to rattle
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Figure 6.3: Mean-field effective potential U(x,y) in units of kBT in the bulk columnarphase of a binary mixture of perfectly aligned hard spherocylinders at P∗ = 3.0, P∗ = 3.5and P∗ = 4.0 (from top to bottom). The images on the left correspond to the long rods(species 1), whereas those on the right to the short ones (species 2). In order to ease thevisualization, the black lines at the top of each graph identify the isopotential points inthe xy plane with increments of 3kBT .
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Figure 6.4: Transverse section of the mean-field effective potential in Fig. 6.3 for a binarymixture of long (a) and short (b) hard spherocylinders at the reduced osmotic pressure
P∗ = 3.0 (◦), P∗ = 3.5 (N) and P∗ = 4.0 (M). The solid lines are fits (see text).

in their columnar “cage”, the jump to a neighboring column being too demanding.This is due to the fact that at high packing fraction no MC configuration showsa long rod in between two columns, with the result that the mean-field potentialis characterized by an unphysical divergence. The typical height of the barriers,close to and even higher than 10kBT , is significantly higher than in the smecticphase [175–177]. This statement can be made more explicit by comparing our dataat P∗ = 3.5 (η = 0.563) with those of Ref. [175] for the smectic phase of a systemof parallel hard spherocylinders with L∗ = 5.0 at pressure P∗ = 5.0 (η= 0.563). Inthe latter case the height of the free-energy barrier reaches a value close to 8kBT[176].
6.5 Permanent and transient caging
In the present section we study the diffusion dynamics in terms of the time-dependentparticle-particle correlation functions (van Hove functions). First, we focus on the
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Figure 6.5: Transverse component of the self-part of the van Hove function G⊥s (R,t) as afunction of the in-plane distance R =√x2 +y2 for a binary mixture of perfectly alignedhard spherocylinders with length-to-diameter ratio L∗1 = 2.1 and L∗2 = 1.0 and relativeconcentrations x1 = 0.375 and x2 = 0.625 at t/τ = 1 (solid lines), t/τ = 10 (dashed lines)and t/τ = 100 (dotted lines) for a system at reduced osmotic pressure (a) P∗ = 2.5, (b)
P∗ = 3.0, (c) P∗ = 3.5 and (d) P∗ = 4.0.

single-particle diffusion by considering the self-part of the van Hove function (SVHF),then we concentrate on the collective character of the diffusion by studying itsdistinct-part (DVHF). As highlighted in Sec. 6.3, it is worth analyzing separatelythe transverse (xy) and longitudinal (z) components of the van Hove functions. Insuch a way, one can study the effect of the spontaneous symmetry breaking (presentin the xy plane, absent along the z axis) on the dynamics of the system. In otherwords, one can analyze separately the role of the “permanent” (in the xy plane) and“transient” (along the z axis) dynamic caging phenomena on the overall heteroge-neous dynamics.In order to analyze the details of the single-particle diffusion, we report in Fig.6.5 and 6.6 the self-part of the van Hove function (SVHF) at different times. Letus start by focusing in Fig. 6.5 on the SVHF in its transverse component. Thecomparison between the transverse SVHF in the nematic (Fig. 6.5(a)) and in thecolumnar (Fig. 6.5(b)-(d)) phase reveals a drastic change in the dynamics associated



86 CHAPTER 6. HETEROGENEOUS DIFFUSION IN COLUMNAR LIQUID CRYSTALS

10
-4

10
-3

10
-2

10
-1

10
0

-15 -10 -5  0  5  10  15

z / D

G
s
||
(z

,t
)

(a)

(b)

(c)

(d)

-10 -5  0  5  10

z / D

G
s
||
(z

,t
)

(a)

(b)

(c)

(d)

z / D

G
s
||
(z

,t
)

(a)

(b)

(c)

(d)

10
-4

10
-3

10
-2

10
-1

10
0

z / D

G
s
||
(z

,t
)

(a)

(b)

(c)

(d)

Figure 6.6: Longitudinal component of the self-part of the van Hove function G‖s (z, t) as afunction of z/D for t/τ = 20 and pressure (a) P∗ = 2.5, (b) P∗ = 3.0, (c) P∗ = 3.5 and (d)
P∗ = 4.0. The curves refer to Gaussian fits over points near the origin (solid lines) andthe tails (dashed lines).

with the phase transition. The transverse SVHF in the nematic phase is a monotonicfunction which broadens with time. By entering the columnar phase one observesthe appearance of peaks, which manifest the long-range hexagonal order in the xyplane. As expected, the number and height of the peaks after a given time decreaseswith the packing fraction due to the higher free-energy barriers (cf. Sec. 6.4).In the density-functional theory analysis of Ref. [173] it was shown that, inorder to properly describe the equilibrium dynamics of a liquid-crystal phase, it isnot sufficient to consider the effect of the “permanent” caging barriers. One hasalso to take into account the “transient” caging effect in the direction(s) where thetranslational symmetry is not broken. In fact, the overall heterogeneous dynamicsdevelops as a result of the coupling between these two different caging phenomena[173]. Therefore, let us move our attention to the self diffusion in the z direction, alongwhich the system is homogeneous. A careful analysis of the longitudinal componentof the SVHF in Fig. 6.6 confirms the presence of a weakly heterogeneous diffusioneven along the z axis. In fact, if along the z axis the diffusion was Gaussian, it wouldbe possible to fit the points in Fig. 6.6 with a single Gaussian function. On the



6.5. PERMANENT AND TRANSIENT CAGING 87
contrary, by performing this fit on different intervals on the z axis, i.e., in the regionnear the origin (solid line in Fig. 6.6) and the tails (dashed line), two different curvesare obtained. Although the deviations between the two sets of curves are limited,this behavior manifests interesting resemblances with the heterogeneous dynamicsof some non-equilibrium amorphous systems, such as supercooled liquids and gels.For such systems the two-Gaussian fitting is used to distinguish between “slow”and “fast” particles [187, 188]. The columnar structure of the system should notbe considered the primary cause for this dynamic heterogeneity, since analogousdeviations can be detected also for the nematic phase in Fig. 6.6(a). Instead, thehigh packing fraction should be considered the reason for these small discrepanciesfrom Gaussian diffusion.The study of the SVHF gave us many insights on the single-particle diffusion.We turn now our attention to the DVHF in order to analyze the time evolution ofthe nearest-neighbor (solvation) shell. In fact, it is the structure of the fluid around aparticle that determines the (permanent or transient) cage that frustrates the single-particle diffusion. We report in Fig. 6.7 the DVHF Eq. (6.6) in its transverse (leftcolumn) and longitudinal (right column) component at time t/τ = 0.02, 2 and 20. Attime t = 0 the DVHF coincides with the pair-distribution function, and it is thuscharacterized by a region around the origin where its value is equal to zero dueto the excluded volume interactions. In the opposite limit, that is when t→∞, theDVHF of a homogeneous state is expected to be a constant due to the decay ofthe positional correlations. This does not happen in the presence of spontaneoustranslational-symmetry breaking due to the long-range positional ordering.In each graph of Fig. 6.7 at t/τ = 0.02 (dotted line) a region around the originwhere the DVHF is close to zero suggests that each particle is still rattling aroundits initial position. A series of peaks developing away from the origin indicates thepreferential positions of the neighboring particles. In the nematic phase at t/τ = 0.02one can recognize in both the transverse (Fig. 6.7(a)) and longitudinal (Fig. 6.7(e))components a liquid-like structure. The lack of long-range order is testified by therapid decay of the peaks by moving away from the origin. Interestingly, the DVHFassumes a functional dependence close to a constant already at t/τ = 2 (dashedline). This means that on average in the time interval t/τ = 2 a given particle i canescape the trapping cage formed by its nearest neighbors j , and the space originallyoccupied by i is filled by one of the j particles.The picture changes appreciably when passing to the columnar phase (Fig.6.7(b)-(h)). The most visible change with respect to the nematic phase consists ofthe long-range modulations in the transverse component of the DVHF (Fig. 6.7(b)-(d)) due to the columnar structure. On the other hand, the form of the longitudinalcomponent (Fig. 6.7(f )-(h)) does not display any qualitative change linked to thenematic-columnar transition. However, one can in this case observe a quantitativechange in the dynamics. In fact, the time a particle needs to leave its initial posi-tion within a column (z component) increases considerably in the columnar phase.Whereas the relaxation times of the longitudinal DVHF in the three columnar sys-tems are comparable (Fig. 6.7(f )-(h)), a much faster relaxation in the nematic phase
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Figure 6.7: Transverse G⊥d (R,t) ((a)-(d)) and longitudinal G‖d(z, t) ((e)-(h)) component ofthe distinct-part of the van Hove function evaluated for the same system and state pointsas in Figs. 6.5 and 6.6 and at t/τ = 0.02 (dotted lines), t/τ = 2 (dashed lines), t/τ = 20(solid lines) at P∗ = 2.5, 3.0, 3.5 and 4.0 (from top to bottom).
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is detected (Fig. 6.7(e)). The difference in packing fraction alone cannot explainsuch a slowing down of the longitudinal dynamics. We argue that such an effect isdue to a coupling between the in-column and in-plane dynamics. In other terms, thehigher in-plane mobility of the nematic phase with respect to the columnar phaseaffects the mobility along the nematic director. This confirms the results of Ref. [173],that is, that permanent and transient caging are in effect coupled phenomena.
6.6 Non-Gaussian diffusion
An effective way to identify dynamical heterogeneities consists of individuating de-viations from linearity of the mean square displacement in time. It is well knownthat the statistics of the displacements of an isolated colloid follows a Gaussiandistribution, whose mean square displacement varies linearly with time [3]. The
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situation can change appreciably in the presence of other particles. The local cagetrapping in systems close to dynamical arrest and the partial long-range order in liq-uid crystals determine an intermediate time regime, where the dynamics is stronglysubdiffusive. This means that in this regime the mean square displacement has apower-law dependence on time with an exponent smaller than one. In Fig. 6.8 weshow the MSD both (a) in the xy plane and (b) along the z direction. In the planeperpendicular to the nematic director (Fig. 6.8(a)) one can appreciate the almostlinear trend of the MSD in the nematic phase. On the other hand, by increasing thepressure and going to the columnar phase, an intermediate plateau region appears.The deviations from linearity associated with this plateau are tightly related to thenon-Gaussian features of the self-part of the van Hove function, and can be quantita-tively estimated by the non-Gaussian parameter defined in Eq. (6.9). In Fig. 6.9 wereport the NGP in the xy plane after averaging over the species concentrations, asdescribed in Eq. (6.10). This parameter takes an almost constant value close to zeroin the nematic phase. On the contrary, in the columnar phase the NGP displays apeak at intermediate times, thus indicating deviations from Gaussianity. Along the
z direction (not shown here) the NGP does not deviate significantly from zero ineither the nematic or the columnar phase. The choice of calculating the NGP byperforming a weighted average over the two components of the mixture allows to takeinto account the effects related to the structure of the system only, while neglecting
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trivial non-Gaussianity due to the size asymmetry of the species [186]. For the sakeof completeness, we show in the inset of Fig. 6.9 a comparison between the NGP atthe reduced osmotic pressure P∗ = 3.0 for each species, their weighted average andfor the system as a whole. The operation of averaging does not affect significantlythe position of the peak, that is, the duration of the non-Gaussian regime, but hasthe only effect of decreasing the peak height. This suggests that by means of thisoperation the non-Gaussianity due to the particles size difference is subtracted.The dynamic inhomogeneities, as captured by both the MSD and the NGP inthe transverse component of the columnar phase, allow to identify three differenttime regimes. There is a short-time regime, where the MSD follows the linear trendtypical of weakly-interacting fluids and the NGP maintains a value close to zero.During this regime the particles diffuse freely on length-scales smaller than theaverage column radius and do not feel the trapping cage due to the surroundingparticles yet. On an intermediate time regime the MSD becomes strongly subdif-fusive and the NGP is characterized by a monotonic growth: the free diffusion isinhibited by the columnar structure of the fluid. At this stage one can distinguishbetween particles that still rattle within their column (slow particles), and othersthat succeeded in overcoming the energetic barrier and jumped to another column(fast particles). At the end of the subdiffusive plateau a third time regime starts,where the MSD returns to a linear time dependence and the NGP reaches a peak.When the peak of the NGP starts decreasing monotonically to zero, most of the par-ticles succeeded in leaving their initial column. A deeper inspection on the pressuredependence of the NGP shows that the degree of non-Gaussianity, i.e., the height ofthe peak, and the duration of the caging regime, i.e., the position of the peak, increasewith the packing fraction. It is reasonable to explain this fact by considering thatthe cage escape is related to a rearrangement of the surrounding particles, whichbecomes slower at higher packing, as it involves more of them. Finally, the smalldeviations from linearity in the longitudinal MSD (Fig. 6.8(b)) confirm the presenceof a weakly heterogeneous dynamics, as already pointed out in the analysis of thelongitudinal self-part of the van Hove function in Sec. 6.5.
6.7 Structural relaxation
Finally, the structural relaxation of the system is analyzed in terms of the transverseand longitudinal components of the self-part of the intermediate scattering function(SISF). Along the z axis, where the system is homogeneous, the pairwise correlationsare characterized by a single-step decay at each pressure independently of thephase, as depicted in Fig. 6.10(b). On the other hand, Fig. 6.10(a) shows thata plateau region in the transverse SISF appears when the system develops thecolumnar ordering. This plateau, whose value increases with pressure, indicatesthe duration of the caging regime and is expected to divide a short-time decay (β-relaxation) from a long-time one (α-relaxation). As previously observed in recentwork on smectic liquid crystals [175–177] and in out-of-equilibrium supercooled
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Figure 6.10: Self-part of the intermediate scattering function Fs,xy(t) and Fs,z (t) evaluatedat wave vectors corresponding to the first peak of the structure factor (a) in the planeperpendicular to the nematic director and (b) along it. The data correspond to the samesystem and state points as in Fig. 6.5-6.9. The solid lines are fits (see text).
liquids [189], the SISF is expected to decay to zero at long times due to the loss ofdensity autocorrelations. This kind of behavior was observed for the smectic phase inRefs. [175–177], where the α-relaxation decay was fitted by a stretched exponentialfunction of the form exp[(t/tr)β ] with β ' 0.6 and tr the characteristic relaxation time.In the present simulations we did not observe any α-relaxation, as the relaxation timeof the systems exceeds our simulation time. From the available data it is possible toobserve a close accordance between the features of the columnar structural relaxationwith that characterizing smectic states. In particular, the β-relaxation in the xy planeis accurately described by an exponential decay due to the weak interactions withthe nearest neighbor particles at short times. Moreover, the relaxation along the
z axis resembles accurately the in-layer relaxation of smectic states. In fact, inboth the longitudinal columnar and transverse smectic SISF, the particle-particlecorrelations appear to depend weakly on the pressure and the long-time decay is
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well approximated by a stretched exponential with β ' 0.6.
6.8 Conclusions
In summary, we used Monte Carlo simulations to analyze the presence of dynamicalheterogeneities in a columnar liquid crystal of perfectly aligned hard spherocylin-ders. The effect of the long-range hexagonal order in the plane perpendicular tothe nematic director can be interpreted in terms of an effective mean-field poten-tial. Such a mean-field potential tends to confine the particles inside a column,while preventing them to occupy positions in between two columns. In analogy withprevious analyses on the smectic phase, the height of the free-energy barriers as-sociated with a column-to-column jump increases with the packing and the particleanisotropy. As a consequence, in the columnar plane the dynamics of a rod devel-ops in quasi-quantized steps: particles rattle around the position of a column, whilejumping to another column only when the configuration of the surrounding particlesallows it.The in-plane rattling-and-jumping dynamics gives rise to three different timeregimes. At very short times, the particles diffuse almost freely, while not feelingthe presence of the surrounding particles yet. At this stage the behavior of thesystem is that typical of a simple fluid, characterized by a Gaussian distributionof displacements, a linear mean square displacement and an exponential structuralrelaxation. A second stage starts when particles begin experiencing the cage dueto the long-range columnar structure. As a result, the mean square displacement aswell as the self-intermediate scattering function develop a plateau, whose durationincreases with the packing. Correspondingly, the distribution of displacements showsmarked deviations from Gaussianity with the appearance of peaks corresponding tothe hexagonal lattice positions. Nonetheless, after longer time intervals the numberof “fast” particles, which succeeds in overcoming the energetic barrier, increaseswith respect to the “slow” ones. When most of the particles succeeds in leavingtheir initial column, a second diffusive regime starts, indicating the end of the cageregime.While studying the longitudinal in-column dynamics of the columnar phase, weobserved interesting analogies with the heterogeneous dynamics of smectic states.Along the nematic director of our columnar phase the system does not develop anylong-range order, and it is thus expected to behave like a liquid. Even in the absenceof long-range positional order, we noticed interesting, although slight, deviationsfrom Gaussian diffusion both in the distribution of displacements and in the meansquare displacement. As far as the structural relaxation is concerned, this fact istestified by a self-intermediate scattering function well approximated by a stretched-exponential, as occurs in dense liquids close to a dynamical arrest transition. Forthese reasons we confirm previous studies on the smectic phase: along the directionin which a liquid crystal does not develop any long-range order the dynamics isclose to that of a dense liquid. These results should be compared with recent
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experiments on the columnar phase of a suspension of fd virus particles [178]. In theseexperiments huge deviations from Gaussian diffusion were observed in the directionperpendicular to the columnar plane. This happens to be in striking contrast with ourobservations, which testify only slight deviations from Gaussian diffusion. However,a recent analysis seems to suggest that such a strongly heterogeneous dynamicswas determined by the multi-domain structure of the experimental columnar system[190] and was therefore not observable in the present study, where the columnarphase is investigated in the bulk.
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Chapter 7

A minimalist microscopic theory
for capillary forces between colloids

Abstract
The control of thermosensitive solvent-induced interactions offers a simple and
practical way to reversibly manipulate the aggregation between colloids. In this
chapter we focus on the effective interactions arising when the solvent is close to
a fluid-fluid phase separation. Starting from a framework of density functional
theory, we develop the simplest theory aimed at predicting from first principles
such effective interactions. The quality of this theory in the planar geometry is
assessed by comparing its predictions with other numerically exact theories. Al-
though this simplified approach does not account correctly for the long-distance
decay of the local particle density, the description of the capillary-condensation
force between two planar surfaces is globally more than satisfactory. However,
inconsistencies arise when approaching the fluid critical temperature.

7.1 Introduction
One of the most striking features of colloids is their ability to self-assemble into avirtually infinite variety of macroscopic structures. This happens to be the case sincethe interactions between colloids can be tuned almost at will [9]. Tailoring the “bare”(i.e., in vacuum) interactions is a daunting task, which involves the manipulation ofthe colloids’ chemical properties. It is often much easier and convenient to adjusttheir “effective” interactions, i.e., those interactions arising due to the presence ofthe solvent. Typical examples through which effective interactions are manipulatedcomprise the modification of the solvent’s electrostatic properties [191, 192] andthe addition to the suspension of a non-adsorbing depletant [71, 72]. All theseapproaches involve an irreversible change in the composition of the system. Onthe other hand, the perspective of adjusting the effective colloid-colloid interactionsby a change in temperature alone, that is, without any change in composition, isparticularly appealing. In fact, these thermosensitive effective interactions wouldoffer a simple yet effective way to control colloidal aggregation in a reversible way.
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The subject of this chapter are the thermosensitive effective interactions inducedby the inhomogeneities of a molecular solvent in the vicinity of the colloids. In mostsituations the equilibrium behavior of a colloidal suspension is deduced by treatingthe solvent as a “passive actor” on the scene. According to this approximation,one assumes the properties of the solvent to be the same in each point of thesystem and identical to those of the bulk. This assumption grossly fails when thesolvent state point is in the proximity of a fluid-fluid phase separation, where solventinhomogeneities can become non-negligible. In colloidal suspensions this situationarises when the solvent consists of a binary mixture, whose phase diagram containsa demixing region. Systems of this type have been first studied by Beysens andEstéve, who showed that silica colloids tend to aggregate when the solvent, a binarymixture of 2,6-lutidine and water, is close to demixing [193]. Such a phenomenon isknown to be related to the formation of wetting layers of one of the two components ofthe solvent on the colloid due to a surface preferential adsorption. However, there isnot univocal agreement on the specific mechanism involved in the process [194–198].More recently, the study of colloidal aggregation in binary solvents found renewedattention for solvent state points close to the demixing critical point [199, 200], wherelong-range critical Casimir forces are expected [201, 202].In this chapter we focus on the effective interactions arising between colloidswhen the solvent is close to a fluid-fluid phase separation, but far enough from thecritical point. These colloid-colloid effective interactions arise due to solvent inho-mogeneities, which in turn develop as a consequence of the preferential adsorptionof one of the solvent components on the colloid’s surface. Since the seminal workof Cahn it is known that such preferential adsorption can give rise to an adsorbedlayer of macroscopic size (wetting transition) [203–205]. Understanding the surfacephase behavior of a fluid is of fundamental relevance to deduce its properties inconfinement [206–208]. Under given conditions the confining surfaces can stabilizephases otherwise metastable, leading to a capillary condensation phase transition.This phenomenon can lead to the appearance of capillary forces between the ele-ments that confine the fluid [207]. In the past decades density functional theory hasproven its effectiveness in the study of the surface phase behavior of fluids, sheddinglight on the role of ingredients, such as, the adsorption surface curvature [209–211]and the range of the solvent-solvent interactions [211–213]. More importantly, den-sity functional theory offers an approximate way to evaluate from first principles thesolvent-mediated interactions between colloids due to solvent inhomogeneities [214–216]. However, these studies are often based on lengthy computations associatedwith the numerical minimization of a functional with respect to a function definedon a two-dimensional space [215, 216]. This fact poses severe practical limitationsto the application of the theory to more complex configurations.The goal of this chapter is to develop the simplest density functional theoryfor the solvent-mediated effective interactions between colloids due to a solventpreferential adsorption. In fact, a simplified and quickly-solvable theory could furnishan efficient way to calculate effective interactions in configurations, such as in thepresence of more than two particles, where the application of the full theory would
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require appreciably more complex and time-consuming computations. The startingpoint of this work is a density functional theory that treats the short-range repulsionbetween the solvent particles by means of a local density approximation (LDA, cf.Sec. 2.3.4), while the long-range van der Waals attraction is introduced by meansof a non-local mean-field term (MF, cf. Sec. 2.3.4). The theory developed in thischapter is minimalist since it involves the least number of scalar parameters tobe (numerically) minimized. This procedure of reduction of the theory degrees offreedom is implemented by imposing a specific functional form to the inhomogeneoussingle-particle density, namely the so-called sharp-kink parameterization. In otherwords, instead of allowing for a “free” minimization of the density functional, weconsider a “constrained” minimization over a subset of functions. The process ofreduction of the free parameters of the theory is expected to introduce deviationsfrom its exact predictions. In order to quantify these deviations, we analyze thereliability of the theory in the simplest geometry, characterized by planar symmetry.We consider here (i) a fluid in contact with a single wall and (ii) a fluid confinedbetween two walls. We compare the outcome of this minimalist theory with thoseobtained by means of the free minimization of the same theory (LDA-MF) and of aneven more sophisticated theory based on the fundamental measure theory (FMT-MF)[26]. We show that in the single-wall configuration the sharp-kink parameterizationapproach fails to account for the wetting transition, which is instead well describedby the two freely minimized theories. On the other hand, we demonstrate that suchan approach works very well in reproducing the behavior of a fluid confined by twoplanar walls. We obtain predictions for the effective interaction between the wallswhich are in good quantitative agreement with the freely minimized theory. Relevantdeviations, however, develop at high temperature in proximity of the critical point.The findings described in this chapter prove the validity of the minimalist approachfor the description of the effective interactions between colloids induced by thecapillary condensation. Such an analysis opens perspectives for the study of morecomplex and interesting configurations and geometries.

7.2 Solvent-mediated potential

In order to introduce the concept of solvent-mediated potential, let us consider acolloidal suspension in equilibrium at temperature T in a volume V . We indicatewith µc and µs the chemical potential of colloids and solvent, respectively. We denotewith Xc the generalized coordinates of the colloids, and with Xs those of the solventmolecules. Let Ucc(Xc) be the potential energy of Nc colloids, Uss(Xs) that of Nssolvent molecules and, finally, Ucs(Xs,Xc) the interaction potential energy between
Nc colloids and Ns solvent molecules. The grand canonical partition function of thesystem reads
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Ξ(T ,V ,µc,µs) = ∞∑
Nc ,Ns=0

exp(βµcNc +βµsNs)
VNcc VNss Nc!Ns!

∫
dXcdXs exp[−β(Ucc +Uss+Ucs)],

(7.1)where Vc and Vs are the thermal volume of colloids and solvent, respectively. Byperforming a partial integration over the solvent degrees of freedom, Eq. (7.1) canbe expressed as
Ξ(T ,V ,µc,µs) = ∞∑

Nc=0
exp(βµcNc)
VNcc Nc!

∫
dXc exp[−β(Ucc(Xc)+Ωs(T ,V ,µs,Xc))],

(7.2)where Ωs(T ,V ,µs,Xc) is the grand potential of the solvent in the presence of theexternal force field exerted on the solvent molecules by the Nc colloids with coor-dinates Xc . Eq. (7.2) expresses explicitly the fact that, if one is interested in theequilibrium properties of the colloids only, the suspension can be regarded as apure collection of colloids interacting via an additional solvent-mediated potential.The transition from Eq. (7.1) to (7.2) is merely cosmetic, and the evaluation ofthe potential Ωs(T ,V ,µs,Xc) is expected to be at least as difficult as the solutionof the thermodynamics of the system as a whole. However, the procedure offersgreat advantages if approximations for Ωs(T ,V ,µs,Xc) can be applied. In suchcases, in fact, one can hope to properly account for the effect of the solvent bymeans of relatively simple two-body interaction terms. Well-known examples ofapproaches of this type in colloidal science comprise the DLVO theory for chargedcolloids in ionic solutions [191, 192] and the Asakura-Oosawa potential to accountfor the presence of non-adsorbing depletants [71, 72]. In this chapter we focus onthe effective interaction between two colloids, modeled as two parallel planes. Bydenoting with Ωs(T ,V ,µs,d) the grand potential of a solvent confined between twoplanar walls separated by a distance d, the solvent-mediated potential between thewalls is conveniently redefined as
U(d) = Ωs(T ,V ,µs,d)−Ωs(T ,V ,µs,d→∞), (7.3)which satisfies the condition U(d→∞) = 0. Since in what follows we focus on thesolvent degrees of freedom only, with the colloids treated as external force-fieldssources, from now on each thermodynamic quantity will implicitly be referred to thesolvent, and the subscript “s” will be dropped.

7.3 Model
The subject of this work is the solvent-induced aggregation of colloids when thesolvent is close to a fluid-fluid phase separation. In experiments such a fluid-fluid
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phase separation appears as a demixing instability of the two species composing abinary solvent [193]. Therefore, a theoretical work aimed at faithfully reproducingthe experimental system would require as a starting point a good microscopic the-ory for such a demixing transition. Although this kind of theories for specific modelsystems exist [215, 216], we are interested in considering the phenomenon in gen-erality. The main requirement we ask to the present model is that of developing athermodynamic instability between two distinct isotropic and homogeneous phases.In other words, we require the model to undergo a phase transition belonging tothe Ising universality class [217]. The simplest among such models is a pure systemof particles characterized by a short-range repulsion and a long-range attraction,which since the pioneering work of van der Waals is known to undergo a gas-liquidphase separation [218]. We do not expected the particular parameterization of theshort-range repulsion to appreciably influence the thermodynamics of the system[16], thus we model it as a simple hard-sphere repulsion. On the contrary, it isknown that the details of the attractive part of the pair potential strongly affect thesurface phase behavior of the system [204]. In order to reproduce the properties ofreal molecular fluids, we model the long-range attraction with an inverse power-lawtail typical of dispersion forces. In summary, the pairwise potential between solventmolecules is

u(r) ={∞ if r < σ ,
uatt(r) if r ≥ σ , (7.4)

where σ is the molecular diameter and the attractive component is given by
uatt(r) =−4ε(σr )6

, (7.5)
with ε a parameter which sets the microscopic energy scale.We assume that also the interaction between solvent and colloids are governedby dispersion forces. The interaction between a solvent molecule and a colloidmolecule is supposed to be of the Lennard-Jones type. By integrating over thepositions of the colloid’s molecules, which in the planar geometry are assumed to behomogeneously distributed in the region z < 0, it follows that the external potentialexperienced by the solvent particles due to a planar wall takes the form

Vw (z) = 4εw[ 215(σwz )9
−
(σw
z

)3]
, (7.6)

which is also known as the “Lennard-Jones 9-3 potential”. Without loss of generality,in this work we analyze the specific choice of parameters εw /ε = 1.6 and σw /σ = 1.
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7.4 Density functional theory
In Sec. 7.2 we explicitly showed that the solvent-mediated potential is essentiallythe grand potential of the solvent in the presence of the force field exerted by thecolloids. The task of this chapter, which amounts to calculating the grand potentialof a solvent in a general external potential field V (r), is conveniently accomplishedwithin the framework of density functional theory.In density functional theory the grand potential of a system of particles at tem-perature T and chemical potential µ in an external potential V (r) is calculated asthe minimum of the functional Ωv [ρ], defined as

βΩv [ρ] = βF [ρ]−∫ drβ
(
µ−V (r))ρ(r), (7.7)

where β = (kBT )−1, kB is the Boltzmann constant and F [ρ] is the intrinsic free-energy functional. The function ρ(r) minimizing the functional is the equilibriumsingle-particle density. The intrinsic free-energy functional F [ρ] is the sum of anideal part
βF id[ρ] = ∫ drρ(r){log[ρ(r)V]−1 }, (7.8)

and an excess part Fexc[ρ] which is not known exactly and must be approximated.A reliable density functional theory able to treat in a unified way the short-range repulsion and the long-range attraction between particles (cf. Sec. 7.3) doesnot at present exist. On the other hand, very good theories were developed for thedescription of both homogeneous [219] and inhomogeneous [28] hard-sphere fluids.Therefore, we build a density functional theory starting from the excess free energyof a reference hard-sphere system, to which the van der Waals attractive tail isadded as a mean-field (MF) perturbation. The simplest density functional theory forhard spheres involves a local-density approximation (LDA) of the excess free energyfor homogeneous states. The resulting LDA-MF theory reads
βFexcLDA-MF[ρ] = ∫ dr

[
f exchs
(
ρ(r))+ 12

∫
dr′βuatt(|r− r′|)ρ(r)ρ(r′)], (7.9)

where f exchs (ρ) is an approximation for the excess free energy per unit volume of thehomogeneous hard-sphere fluid. For reasons that will be made explicit in whatfollows, we choose for f exchs (ρ) the excess free energy given by the scaled particletheory [220], according to which
f exchs (ρ) =−ρ log[1− vρ]+ ρ

(6vρ−3(vρ)2)2(1− vρ)2 , (7.10)
where v = πσ3/6 is the hard-sphere volume. In spite of its simplicity due to thelocal-density approximation, the LDA-MF functional of Eq. (7.9) is expected to be
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reliable enough, especially if the description focuses on length-scales appreciablylarger than the molecular dimension σ . Nevertheless, we want to assess the validityof this assumption by comparing the LDA approximation for the reference systemwith a more sophisticated one based on the fundamental measure theory (FMT).In FMT even the hard-core repulsion is treated in a non-local fashion in order toreproduce the density modulations typical of high-density hard spheres. The FMTbased functional reads

βFexcFMT-MF[ρ] = ∫ dr
[Φ[ρ]+ 12

∫
dr′βuatt(|r− r′|)ρ(r)ρ(r′)], (7.11)

where in the original formulation given by Rosenfeld [26]
Φ[ρ] =−n0 log[1−n3]+ n1n2−n1 ·n21−n3 + n32−3n2n2 ·n224π(1−n3)2 , (7.12)

and the weighted densities {nα (r)} are obtained as convolutions of the single-particle density with geometry-inspired weight functions wα (r) as
nα (r) = ∫ dr′ρ(r′)wα (r− r′). (7.13)

The weight functions are
w3(r) = θ

(σ2 −|r|), w2(r) = δ
(σ2 −|r|),

w1(r) = w2(r)2πσ , w0(r) = w2(r)
πσ2 , (7.14)

w2(r) = r
r δ
(σ2 −|r|), w1(r) = w2(r)2πσ .In the homogeneous case the FMT functional Φ[ρ] reduces to the scaled-particletheory excess free energy, i.e., to Eq. (7.10). Although better approximations forthe equation of state of homogeneous hard spheres exist [219], our choice for f exchs (ρ)in Eq. (7.9) fell on the scaled-particle theory in order to be consistent with thehomogeneous-state limit of the fundamental measure theory.

7.5 The sharp-kink parameterization
Once an expression for the excess free-energy functional is known, the grand po-tential of the solvent under the effect of a given external potential can be calculatedby numerically minimizing the functional Eq. (7.7). Such a minimization is typicallyperformed by means of a discretization of the function ρ(r) on a grid of points. Thisprocedure is feasible in the case of highly symmetric geometries, where ρ(r) can bereduced to a function of a single scalar variable. On the other hand, the complexity
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of the problem and the time necessary for its numerical solution increases in lesssymmetric cases.Starting from the density functional theory introduced in the previous section,we develop a simplified theory for the description of capillary forces. This approachis based on a drastic reduction of the free parameters of the theory, which allows foran appreciable increase in the calculation speed. The procedure of reduction of thefree parameters consists of imposing a specific functional form to the single-particledensity ρ(r), while keeping undetermined a limited number of variational parametersdefining it. This ansatz for the single-particle density is inserted into the functionalEq. (7.7), which in turn is minimized only with respect to the variational parameters.The parameterization adopted consists of assuming that the local density of a fluidunder the effect of an external potential takes everywhere the bulk value ρ, but ina region W where the local density takes the value ρw . In summary, the ansatz forthe single-particle density reads

ρ(r) ={ρw if r∈W,
ρ if r∈W, (7.15)

where W = D \W and D is the total domain accessible to the fluid. Besides thedensity ρw , the other free parameters of the theory are those defining the regionW.By inserting the ansatz Eq. (7.15) into the LDA-MF theory defined in the previoussection, we obtain for Eq. (7.7) the expression
βΩv (ρ,W) = V (W)ω(ρw )+V (W)ω(ρ)+βa(W)ρw+

+βb(W,W) ρ2
w2 +βb(W,W)ρρw +βb(W,W) ρ22 , (7.16)

where
ω(ρ) = ρ[log(ρV)−1]+ f exchs (ρ)−βµρ, (7.17)

V (A) = ∫
A
dr, (7.18)

a(A) = ∫
A
drV (r), (7.19)

and
b(A,B ) = ∫

A
dr
∫
B
dr′uatt(|r− r′|). (7.20)

The explicit evaluation of the above-defined coefficients for the configurations studiedin this chapter is reported in Appendix 7.A.
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Figure 7.1: Bulk phase diagram of a homogeneous fluid with pairwise interactions definedby Eqs. (7.4)-(7.5) obtained by means of the approximate excess free-energy functional Eqs.(7.9)-(7.10), which in the homogeneous case coincides with Eqs. (7.11)-(7.12). The dashedarea represents state points of gas-liquid phase separation, CP indicates the critical pointand TP the triple point. The region of fluid-crystal coexistence is not shown here. Inset:surface phase transitions undergone by the fluid in contact with a planar wall exerting anenergy potential described by Eq. (7.6) with εw /ε = 1.6 and σw /σ = 1. The top prewettingline in the inset is the prediction of the LDA-MF theory (cf. Eqs. (7.9)-(7.10)), the bottomline is the prediction of the FMT-MF theory (cf. Eqs. (7.11)-(7.12)). The dashed lineserves as a guide to the eye for the identification of the wetting transition point of theFMT-MF theory, which could not be identified exactly. The wetting transition point (W) ofthe LDA-MF theory is highlighted by a circle. In both cases a cross identifies the criticalpre-wetting point (PW).
7.6 Adsorption on a single wall
This section is devoted to an analysis that is preliminary with respect to the calcula-tion of the solvent-mediated colloid-colloid potential. We concentrate on the simpler,but not trivial [204], situation of a solvent in contact with a single wall exerting thepotential Eq. (7.6). The aim is to compare the physical description offered by thethree density functional theories introduced in Sec. 7.4 and 7.5. The outcome of suchan analysis will give us important insights on the reliability of each theory. In fact,some of the elements present in the single-wall configuration, such as the features



104 CHAPTER 7. A MINIMALIST MICROSCOPIC THEORY FOR CAPILLARY FORCES

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20

ρ(
z)

 σ
3

z /σ

(a)

FMT-MF

 0  5  10  15  20

z /σ

(b)

LDA-MF

 0  5  10  15  20  25

z /σ

(c)

SK

Figure 7.2: Single particle density profile ρ(z) of a fluid with pairwise interactions definedby Eqs. (7.4)-(7.5) under the effect of the external potential Eq. (7.6). The profiles arecalculated at temperature kBT /ε = 1.40 at values of the fluid chemical potential corre-sponding to a bulk density of (a) ρ= 0.8ρsat , (b) ρ= 0.95ρsat and (c) ρ= 0.99ρsat , where
ρsat is the gas saturation density. The different curves in each plot represent the out-come of different theoretical approaches: the free minimization of the FMT-MF functional(FMT-MF), the free minimization of the LDA-MF functional (LDA-MF), and the sharp-kinkparameterization of the single-particle density of the LDA-MF functional (SK).

of the density long-distance decay and the existence of surface phase transitions,appear also in the presence of two confining walls. As a reminder, the theorieswe compare in this section are based on (a) a free minimization of the FMT-MFfunctional (cf. Eqs. (7.11)-(7.12)), (b) a free minimization of the LDA-MF functional(cf. Eqs. (7.9)-(7.10)) and (c) its sharp-kink (SK) parameterization (cf. Sec. 7.5).Before addressing the case of a fluid in contact with a single planar wall, itis worth considering the bulk phase behavior of the homogeneous fluid. In Fig.7.1 we report the bulk phase diagram of the fluid in terms of temperature T vs.packing fraction η= πρσ3/6. The phase behavior of the system is that typical of amolecular fluid. In fact, the phase diagram is characterized by a curve of gas-liquidcoexistence, a critical point (CP) at the top of this curve and a triple point (TP) ofgas-liquid-crystal coexistence. The position of the triple point is approximate, anddeduced from the simulations of the homogeneous Lennard-Jones fluid of Ref. [221].In the presence of an interface with another phase the thermodynamic potentialof a fluid can develop singularities that are not present in the bulk. In this case onetalks about “surface phase transitions”. The wetting transition is a typical exampleof such surface phase transitions. It is convenient to introduce the adsorption Γ of afluid on a surface, defined as the excess amount of adsorbed particles with respect
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to the bulk per unit area. In terms of the equilibrium density profile ρ(z) in thepresence of a planar wall at position z0, the adsorption can be expressed as

Γ = ∫ ∞
z0 dz

[
ρ(z)−ρ], (7.21)

where ρ is the density of the (bulk) fluid far from the wall, i.e., ρ = ρ(z→∞). Letus consider the adsorption of a gas in contact with an attractive wall. In general,one observes a finite positive adsorption, which manifests as a thin dense fluid layerin contact with the wall. One could wonder what happens when the gas is broughtisothermally towards saturation, i.e., coexistence with the high-density liquid. Atlow enough temperature one expects the adsorption to stay finite (partial wetting)[203]. On the other end, there is a wetting transition temperature, above which atsaturation the adsorption diverges (complete wetting) [203]. In this case one expectsthe formation of a liquid-like layer, whose thickness diverges upon approachingbulk saturation. This situation is reported in Fig. 7.2 for a value of the temperature
TkB/ε = 1.40.In Fig. 7.3 we report the adsorption of the fluid on a wall exerting the potentialEq. (7.6) at different values of the temperature T and chemical potential µ. Weindicate with µsat the saturation chemical potential at which gas and liquid coexistat temperature T . The three plots correspond to the predictions of the three theorieswe aim at comparing: the freely minimized density functional theories FMT-MF(Fig. 7.3(a)) and LDA-MF (Fig. 7.3(b)) and the sharp-kink parameterization (SK) ofthe LDA-MF theory (Fig. 7.3(c)).Let us first focus on the adsorption Γ of the two freely-minimized density func-tional theories as shown in Fig. 7.3(a) and (b). Note the logarithmic scale onthe µsat−µ axis. Qualitatively, the outcome of the two density functional theoriescoincide. In both Fig. 7.3(a) and (b) the adsorption at coexistence stays finite atsufficiently low temperature. However, at high enough temperature the adsorptiondiverges while approaching bulk coexistence, i.e., µsat−µ= 0. At first sight, the ad-sorption seems to diverge logarithmically upon approaching coexistence. This typeof divergence is expected for short-range interactions (i.e., with finite range or expo-nentially decaying), and not for the long-range potential considered here. However,a closer inspection based on a fit analysis (not shown) demonstrates that the ad-sorption diverges algebraically with an exponent between −0.28 and −0.35, whichis compatible with the mean-field prediction of −1/3 [204]. Besides the divergenceat coexistence, the adsorption isotherms manifest another well-known phenomenonin the surface thermodynamics of molecular fluids. There is a range of temperaturein which the transition from thin to thick adsorption layer develops in a discontin-uous way. A jump in the adsorption vs. the chemical potential plots is observed inthis case. The state points where this first-order surface phase transition developsdefine the so-called prewetting line. A more detailed inspection of the adsorptionisotherms predicted by the two theories is given in Fig. 7.4. These plots allowto compare the predictions of the FMT-MF and the LDA-MF theory. A part from
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Figure 7.4: Adsorption Γ of a gas in contact with a wall exerting the potentialEq. (7.6) as a function of the chemical potential µ with respect to the gas-liquid co-existence chemical potential µsat . The discontinuity in the adsorption curves high-lights the existence of a pre-wetting transition, also observable in Fig. 7.3, accord-ing to (a) the FMT-MF theory and (b) the LDA-MF theory. In both cases differentlines correspond to adsorption isotherms at different temperature, corresponding to (fromleft to right) (a) kBT /ε = 1.168,1.176,1.184,1.192,1.200,1.208,1.216,1.224,1.232 and (b)
kBT /ε = 1.324,1.328,1.332,1.336,1.340,1.344,1.348,1.352,1.356.

relevant quantitative deviations, particularly in the prewetting critical chemical po-tential and the adsorption discontinuities associated with the prewetting transition,the qualitative picture offered by the two theories is the same.From the analysis of the adsorption isotherms of Figs. 7.3 and 7.4, one candraw the surface phase diagram of the model. Such surface phase diagram is shownin the inset of Fig. 7.1, where we report the prewetting line, critical prewettingpoint (PW), and wetting point (W) of the LDA-MF theory. Due to complicationswith the numerics we could not identify unambiguously the position of the wettingpoint of the FMT-MF theory, and we report the position of the prewetting criticalpoint and the upper part of the prewetting line only. In this work both the FMT-MF and LDA-MF theories treat the long-range dispersion attraction in the sameway, while differentiating in dealing with the hard-core repulsion. In the studyof wetting phenomena one often assumes that, in order to characterize the surfacephase behavior of the system, one can focus the analysis on length scales much largerthan the molecular size. In such conditions one expects the properties of the solventto be mainly governed by the long-range attraction. The effect of the short-rangerepulsion, on the other hand, is supposed to play a minor role only. Our analysisconfirms this picture. The qualitative surface phase behavior described by the two
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theories does not differentiate appreciably, a part from quantitative discrepancies inthe location of the surface phase transitions.To conclude this section, we finally address Fig. 7.3(c), where the adsorptionpredicted by the sharp-kink parameterization introduced in Sec. 7.5 is reported. Aninspection of the figure shows a striking disagreement with the results of the freeminimization of both FMT-MF and LDA-MF theories. In fact, no wetting transitionis observed, since the adsorption keeps a finite value for each temperature arbi-trarily close to coexistence µsat−µ= 0. Therefore, we conclude that the sharp-kinkparameterization of the single-particle density as introduced in this chapter appearsto be extremely unreliable for the description of the wetting transition. On the otherhand, the mechanism behind wetting phenomena is expected to be closely relatedto that of capillary condensation, which is the main topic of investigation of thischapter. Understanding whether this strong limit of the sharp-kink approach forbidsa meaningful description of capillary forces is the aim of the following section.
7.7 Capillary forces between parallel surfaces
We focus in this section on the calculation of the grand potential of a gas at tem-perature T and chemical potential µ under the effect of the confining potential

Vconf (z) = Vw (z)+Vw (d− z), (7.22)where Vw (z) is the solvent-wall potential of Eq. (7.6) and d is the separationbetween the walls. We compare the predictions of the free minimization of the LDA-MF functional (cf. Eqs. (7.9)-(7.10)) with its sharp-kink (SK) parameterization (cf.Sec. 7.5). Contrarily to the analysis described in the previous section, we will notconsider here the FMT-MF theory. There are two reasons behind this choice. First,deviations between the FMT-MF and LDA-MF theories are relevant only at length-scales of the order of the molecular size, as it was shown in Sec. 7.6. Therefore, wedo not expect these deviations to play major roles at the length-scales where ourattention focuses. Second, the higher complexity of the FMT-MF theory requires anappreciably more demanding numerical effort with respect to the LDA-MF theory.Let us consider the case of two walls separated by a distance d� σ . If the stateof the gas is far enough from saturation, i.e., µ� µsat , one expects the molecularadsorption on each wall not to deviate appreciably from the case of isolated walls.However, a dramatic change can develop when the two walls are brought close toeach other or, alternatively, the state of the gas is moved towards saturation. Aminimum distance d∗ can exist, below which it is thermodynamically more favorablefor the system to fill the space in between the walls with a dense liquid phase [207,208]. Notice that in the absence of the walls this liquid phase would be metastablewith respect to the gas. The phenomenon according to which a metastable phaseis stabilized by confining surfaces is named “capillary condensation”. A graphicrepresentation of the discontinuous change in the particle distribution associatedwith such a phase transition is reported for a particular fluid state point in Fig. 7.5.
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Figure 7.5: Single particle density profile ρ(z) of a fluid with pairwise interactions definedby Eqs. (7.4)-(7.5) under the effect of the external potential Vw (z)+Vw (d−z), where Vw (z)is given by Eq. (7.6). The state of the fluid is characterized by a temperature kBT /ε = 1.40and a value of the chemical potential corresponding to a bulk density ρ = 0.95ρsat , with
ρsat the gas saturation density. The different pictures correspond to different values ofthe wall-wall distance: (a) d/σ = 77, (b) d/σ = 60 and (a) d/σ = 43. In each plot thesolid curves are obtained via the free minimization of the LDA-MF functional (LDA-MF),whereas the dashed ones are calculated via the sharp-kink parametrization (SK) of thesingle-particle density for the same functional.

Importantly, the capillary-condensation transition determines a marked change inthe functional dependence of the grand potential vs. the distance d between thewalls with respect to the non-condensed state. This change, which is accompaniedby a discontinuity in the first derivative of the grand potential with respect to d, isrelated to a sharp change in the solvent-mediated potential, giving rise to so-called“capillary-condensation forces” [207, 208].In Fig. 7.6 we report calculations for the solvent-mediated potential per unit area
W (d) between two walls at a distance d, calculated in terms of the grand potentialΩ of the solvent as

W (d) = Ω(T ,V ,µ,d)−Ω(T ,V ,µ,d→∞)
A , (7.23)

where A is the transverse area of the system. The data obtained by means of thefree minimization of the LDA-MF functional are displayed on the left column ofFig. 7.6, whereas those relative to the sharp-kink parameterization on the rightone. The three values of temperature we choose to investigate are kBT /ε = 1.16(below the wetting transition temperature, Fig. 7.6(a)-(b)), kBT /ε = 1.32 (above the



110 CHAPTER 7. A MINIMALIST MICROSCOPIC THEORY FOR CAPILLARY FORCES

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  20  40  60  80

W
(d

) 
σ2 /(

k B
T

)

d/σ

(e)

Sharp kinkFree minimization

T kB/ε= 1.48

 0  20  40  60  80

d/σ

(f)

Sharp kinkFree minimization

T kB/ε= 1.48

-0.3

-0.2

-0.1

 0

 0.1

 0  20  40  60  80

W
(d

) 
σ2 /(

k B
T

)

d/σ

(c)

Sharp kinkFree minimization

T kB/ε= 1.32

 0  20  40  60  80

d/σ

(d)

Sharp kinkFree minimization

T kB/ε= 1.32

-0.3

-0.2

-0.1

 0

 0  20  40  60  80

W
(d

) 
σ2 /(

k B
T

)

d/σ

(a)

ρ = 0.5ρsat

ρ = 0.9ρsat

T kB/ε= 1.16

 0  20  40  60  80

d/σ

(b)

T kB/ε= 1.16

Figure 7.6: Solvent-mediated potential per unit surface W (d) between two parallel wallsplaced at a distance d. The left figures ((a), (c) and (e)) represent calculations obtainedby means of the free minimization of the LDA-MF functional, whereas the right figures((b), (d) and (f )) are obtained by means of the sharp-kink parameterization of the LDA-MFtheory. The data on top ((a)-(b)) correspond to gas state points obtained at temperature
kBT /ε = 1.16, those in the middle ((c)-(d)) at kBT /ε = 1.32 and those at the bottom ((e)-(f ))at kBT /ε = 1.48. In each plot each line corresponds to the solvent-mediated potential perunit area (plus a constant to ease the visualization) at different values of the fluid chemicalpotential. By indicating with ρsat the density of the gas coexisting with the liquid attemperature T , the values of the gas chemical potential considered correspond to a bulkgas density (from the top to the bottom curve in each plot) ρ/ρsat = 0.5,0.6,0.7,0.8,0.9.
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wetting temperature and below the prewetting critical temperature, Fig. 7.6(c)-(d))and kBT /ε= 1.48 (above the critical prewetting temperature and just below the fluidcritical temperature kBTc/ε= 1.50, Fig. 7.6(e)-(f )). In each plot we show the solvent-mediated potential at different values of the chemical potential, corresponding to bulkgas densities ρ/ρsat = 0.5,0.6,0.7,0.8,0.9 and ρsat is the saturation density of thegas at a given temperature.Let us start the analysis of the solvent-mediated potential with the numericallyexact predictions of the LDA-MF theory (left column of Fig. 7.6). There is a trendin the solvent-mediated potentials that is common to the three values of tempera-ture considered. There is a characteristic wall-to-wall distance d∗, such that when
d < d∗ the potential develops a markedly attractive well. On the other hand, for
d > d∗ the potential appears constant on this scale, signaling almost the absenceof any force between the walls. Actually, for d > d∗ a solvent-mediated force be-tween the walls not observable on this scale is still present as a consequence ofthe long-range character of both the wall-particle and particle-particle interactions.The attractive well appearing for d< d∗ is characterized by a deep minimum, whichtakes the value of a few tenths of kBT per unit area σ2. The minimum is a result ofa balance between the attractive capillary condensation force and the short-rangerepulsion exerted by the walls. With the exception of Fig. 7.6(e), which will bediscussed in the following, in each plot the depth of the well increases with the gasdensity. The range of this sharp attraction is limited to a few molecular diametersfor bulk densities below ρ/ρsat = 0.8. When approaching coexistence, however, therange of the solvent-mediated potential considerably increases, reaching values oftens of molecular diameters for gas bulk densities as low as ρ/ρsat = 0.9. By mov-ing our attention on the temperature dependence of the solvent-mediated potential,increasing the temperature has the effect of increasing the range of the potential,while decreasing the depth of the minimum. This seems to show that the higher thetemperature, the more easily the capillary condensation transition establishes, i.e.,the higher d∗.Let us now compare the outcome of the free LDA-MF functional minimizationwith the sharp-kink theory (right column of Fig. 7.6). Globally one finds good over-all quantitative agreement between the two methods. At temperature kBT /ε = 1.16and kBT /ε = 1.32 the solvent-mediated potential is described in an excellent wayin its general features, with only minor deviations in the depth of the attractive well.There is a conceptually relevant difference between the results obtained within thetwo methods. As one can observe in Fig. 7.6(a), (c) and (e), a discontinuity inthe first derivative of the grand potential with respect to d is detectable in thecase of free minimization only for state points close enough to saturation (curvesat the bottom of each plot). Far from saturation (curves at the top of each plot)the attractive well develops continuously in d, manifesting the absence of a phasetransition. This does not happen to be the case for the sharp-kink parameteriza-tion. In the latter case, as shown in Fig. 7.6(b), (d) and (f ), the appearance of thepotential well is always accompanied by a discontinuity in d, even for state pointsfar from gas-liquid coexistence. It is reasonable to motivate this disagreement with
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Figure 7.7: Solvent-mediated potential between two spheres of radius R/σ = 30 as afunction of the surface-to-surface distance d. The potentials are deduced from those ob-tained by the sharp-kink parameterization of the LDA-MF theory for the slit geometry(cf. Fig. 7.6) after application of the Derjaguin approximation. The plots represent thesame state points considered in Fig. 7.6)(a)-(d), that is, gas state points at temperature (a)
kBT /ε= 1.16 and (b) kBT /ε= 1.32. In each plot the different curves correspond to differentvalues of the gas chemical potential, which takes values corresponding to bulk gas density(from top to bottom) ρ/ρsat = 0.5,0.6,0.7,0.8,0.9, where ρsat is the gas saturation densityat a given temperature.

the poor parameterization of the density profiles in the sharp-kink approximation,which determines artificial discontinuities in the equilibrium single-particle density.Nevertheless, this fact does not spoil the good agreement between the two methods.However, the situation appears to be less favorable when comparing the results ofthe two procedures at temperature kBT /ε = 1.48 close to the critical temperaturein Fig. 7.6(e)-(f ). In this case one can observe a marked disagreement: the sharp-kink approximation appreciably overestimates both the range and the depth of thesolvent-mediated potential. This limitation of the sharp-kink approach is clearly dueto the poor description of the non capillary- condensed phase, and it is probablyrelated to the absence of a wetting transition, as highlighted in Sec. 7.6. In fact,a sharp-kink profile cannot reproduce a slowly decaying profile (cf. Fig. 7.2), likethat governed by the long-range correlations of a fluid in the proximity of criticality.As a result, this approximation strongly overestimates the grand potential of thenon capillary-condensed phase, giving rise to an artificially strong and long-rangeinteraction.Finally, we are interested in estimating the strength of capillary forces in col-loidal systems. We calculate the interaction potential between two spherical colloidsof radius R immersed in a gas at temperature kBT /ε= 1.16 and kBT /ε= 1.32. In thelimit of small surface separation d between the colloids, the colloid-colloid solvent-mediated potential U(d) can be deduced from the potential between two planar
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surfaces W (d) by means of the Derjaguin approximation [9],

U(d) = πR
∫ ∞
d

dxW (x). (7.24)
In Fig. 7.7 we report the results of this calculation, deduced from the data obtainedby means of the sharp-kink approximation in Fig. 7.6(b) and (d). The radius of thetwo colloids is chosen to be R/σ = 30, so that if the fluid is composed by watermolecules, for which σ = 0.3nm, the colloid has a radius R ' 10nm. The range ofthe potential coincides with that of Fig. 7.6. However, the most striking elementof Fig. 7.7 is the depth of the attraction potential, which takes values of hundredsof kBT . This estimate makes manifest the strong role capillary forces can have oncolloidal systems.
7.8 Conclusion
We apply density functional theory to the study of the solvent-mediated interactionsbetween colloids when the solvent is close to a fluid-fluid phase separation. In thepresence of preferential adsorption the confinement of the solvent due to the colloidscan induce the local stabilization of a phase otherwise metastable. Associatedwith this capillary condensation transition one expects the emergence of a solvent-induced capillary force between the colloids. Such an effective interaction has theadvantage of being adjustable by a simple change in temperature, thus allowing fora reversible control of colloidal aggregation. The microscopic description of theseeffective interactions starting from first principles has been widely performed in thepast. However, its main disadvantage is related to its numerical complexity, whichrequires a time-consuming functional minimization.In this chapter we develop a minimalist theory for the microscopic descriptionof capillary forces by means of a reduction of the free parameters of the densityfunctional theory. The approximated theory on which this study is based treatsthe short-range repulsion between solvent molecules by means of a local-densityapproximation, while the effect of the van der Waals attraction is introduced by meansof a non-local mean-field term (LDA-MF). The reduction of the free parameters of thetheory is achieved by imposing the sharp-kink functional form to the local densityof the solvent. In the simple planar geometry studied here, this approximationreduces the number of free parameters to only two. We analyze the reliabilityof such an approach by comparing the predictions of the minimalist theory in theplanar geometry with those obtained by means of the free, i.e., numerically exact,minimization of the same functional. Moreover, in order to assess the quality of theLDA-MF functional, we compare its predictions with those of a more refined densityfunctional theory, in which the hard-core repulsion is treated non-locally within thefundamental measure theory (FMT-MF).As a preliminary analysis we study the adsorption of the fluid on an attractivewall. We show that the outcome of the freely-minimized LDA-MF and FMT-MF
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theories are qualitatively the same, and are characterized by a first-order wettingtransition. Deviations between their results only involve the position of the surfacephase transitions on the phase diagram. This proves the limited role of the excluded-volume repulsion in determining the wetting behavior of the fluid. On the otherhand, we show that the sharp-kink approximation strongly affects the surface phasebehavior of the fluid by suppressing the wetting transition.The poor description of the fluid adsorption by the sharp-kink parameterizationdoes not however manifest so dramatically in the predictions of the solvent-mediatedpotential between two planar surfaces. In fact, the capillary-condensed state appearsto be very well reproduced by the sharp-kink approximation. As a result, we observevery good quantitative agreement with the predictions of the freely minimized theory.On the other hand, important deviations between the two theories appear in thedescription of the non-capillary-condensed phase. This fact is due to the inabilityof the sharp-kink approximation to account for slowly decaying density profiles. Thenegative effect of such deviations on the description of the solvent-mediated potentialbecomes evident in proximity of the critical temperature.In conclusion, we show in this chapter that a sharp-kink parameterization canoffer a simple and reliable way to predict solvent-induced interactions in the planargeometry. It would be even more interesting to apply such a method to more complexgeometries, where the free minimization of the theory is much more challenging.For example, it could be interesting to study the many-body character of theseinteractions by calculating the three-body interaction term. Additionally, it wouldbe appealing to apply such a theory in combination with a molecular-dynamicsalgorithm, thus following an approach similar in spirit to the Car-Parrinello methodfor ion-electron systems [222] and its classical version for charged colloids [223].Within this ab-initio approach the colloids, modeled as spheres, move in space andinteract through an effective potential which is calculated by solving the theory ateach configuration. We believe that the theory introduced in this chapter, due to itslimited number of free parameters, would offer the simplest method to observe in asimulation this type of solvent-induced colloidal aggregation.
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7.A Appendix
In this appendix we report the explicit expression for the coefficients a(A) and b(A,B )(cf. Eqs. (7.19)-(7.20)) for the two planar geometries analyzed in Sec. 7.6 and 7.7.The attractive component of the interparticle potential is given by Eq. (7.5), whereasthe external potential exerted by the single wall is a slight variation of Eq. (7.6)introduced for convenience, namely

Vw (z) =
∞ if z < 0,4εw[ 215( σw

z+σw
)9
−
(

σw
z+σw

)3] if z ≥ 0. (7.25)
In the following we indicate with S the two-dimensional surface of each wall, whosearea A→∞ in the thermodynamic limit.
7.A.1 Single-wall configuration (1w)In this configuration we parameterize the wetting region as W = [0, l]×S and itscomplementary with respect to the region of space accessible to the fluid is W =[l,∞]×S. Notice that the thickness of the adsorption layer l is, with ρw , the onlyfree parameter of the grand potential Eq. (7.16). The explicit evaluation of theintegrals leads to

a(W)
A = a1w (l)

A = εwσw

[ 2σ2
w(l+σw )2 − σ8

w15(l+σw )8 − 2915
]
, (7.26)

b(W,W)
A = b1w (l)

A =

−2πεσ2l2 if l < σ ,
− 2πεσ43 [ 8l

σ + σ2
l2 −6] if l≥ σ , (7.27)

b(W,W)
A =


−2πεσ4[ 4l3σ − l22σ2

] if l < σ ,
−2πεσ4[1− σ26l2

] if l≥ σ . (7.28)
Notice than in this case the terms a(W) and b(W,W) can be dropped from Eq.(7.16) by subtracting the bulk grand potential to it.
7.A.2 Double-wall configuration (2w)We consider here the case of the solvent confined by the external potential Vw (z)+
Vw (d−z). For the evaluation of the coefficients a(A) and b(A,B ) we must considerseparately the two situations of capillary-condensed and non capillary-condensedphase.
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Non capillary-condensed phase

We parameterize the wetting region as W =W1∪W2, where W1 = [0, l]×S, W2 =[d− l,d]×S and consequently W = [l,d− l]×S. Here it is implicitly assumedthat l < d/2, otherwise one has a capillary-condensed state. The evaluation of theintegrals Eq. (7.19) gives
a(W)
A = 2a1w (l)

A +2εwσw[σ8
w15 ((d− l+σw )−8− (d+σw )−8)−

−2σ2
w

((d− l+σw )−2− (d+σw )−2)], (7.29)
where a1w (l) is defined in Eq. (7.26), and
a(W)
A = 2εwσw[σ8

w15 ((l+σw )−8− (d− l+σw )−8)−
−2σ2

w

((l+σw )−2− (d− l+σw )−2)]. (7.30)
The integrals of the type of Eq. (7.20) are

b(W,W)
A = 2b1w (l)

A + b2w (l,d)
A , (7.31)

where b1w (l) is given in Eq. (7.27) and the function b2w (l,d) is defined as follows

b2w (l,d)
A =−πεσ43



σ2(d−2l)2 − 2σ2(d−l)2 + σ2
d2 if l < d−σ2 ∧d > σ ,

3(d−2l)2
σ2 − 8(d−2l)

σ − 2σ2(d−l)2 + σ2
d2 +6 if d−σ2 < l < d−σ ∧d > σ ,

6l2
σ2 − 3d2

σ2 + 8d
σ + σ2

d2 −6 if l > d−σ ∧d > σ ,
6l2
σ2 if d < σ , (7.32)
b(W,W)

A =


b(−)2w (l,d)
A if l < d3 ,

b(+)2w (l,d)
A if l > d3 , (7.33)
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with the functions b(−)2w (l,d) and b(+)2w (l,d) given by

b(−)2w (l,d)
A =−πεσ43



− σ2(d−2l)2 + σ2(d−l)2 − σ2
l2 +6 if l > σ ,

σ2(d−l)2 − σ2(d−2l)2 − 3l2
σ2 +8 l

σ if l < σ ∧ l < d−σ2 ,
σ2(d−l)2 + 12dl−3d2−15l2

σ2 + 8d−8l
σ −6 if d−σ2 < l < d−σ ,

6ld−2l2
σ2 if d−σ < l < σ , (7.34)and

b(+)2w (l,d)
A =−πεσ43



− σ2(d−2l)2 + σ2(d−l)2 − σ2
l2 +6 if l < d−σ2 ,

8(d−2l)
σ − dσ2(d−2l)

l2(d−l)2 − 3(d−2l)2
σ2 if l > σ ∧ l > d−σ2 ,

σ2(d−l)2 + 12dl−3d2−15l2
σ2 + 8d−8l

σ −6 if l > d−σ ,
6ld−2l2
σ2 if d−σ < l < σ , (7.35)and finally
b(W,W)

A = b1w (d−2l)
A . (7.36)

Capillary-condensed phaseIn this situation the domain accessible to the fluid coincides with the wetting region,thereforeW= [0,d]×S and the only free parameter of the theory is ρw . In this casethe coefficients in Eq. (7.16) can be related to those obtained for the single-wallconfiguration as
a(W)
A = 2a1w (d)

A , (7.37)
b(W,W)

A = b1w (d)
A , (7.38)

and a(W) = b(W,W) = b(W,W) = 0.
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Summary

Colloids are nano to micrometer aggregates of atoms and molecules suspendedin a solvent. Since they are permanently subject to collisions with the thermallyagitated solvent molecules, colloids diffuse following random trajectories (Brownianmotion). Thanks to their solvent-induced motion, macroscopic many-particle systemsof colloids can be studied by means of statistical mechanics. Similarly to atoms andmolecules, colloids appear in extremely different thermodynamic phases, such asgas, liquid, crystals and liquid crystals. However, the mutual interactions betweencolloids can be tailored with much more freedom than those between atoms andmolecules. This gives rise to the much wider variety of macroscopic phases colloidsdevelop.This thesis focuses on the equilibrium thermodynamics of suspensions of an-
isotropic colloids, that is, colloids with a marked non-spherical shape. The mutualinteractions between non-spherical particles are anisotropic and explicitly depen-dent on the orientations of the colloids in space. Under these circumstances, phasesotherwise not observable are expected. In particular, these phases are identified withthe peculiar type of ordering in space that colloids assume, or, in more technicalterms, with their degree of spontaneous symmetry breaking. The aim of this thesisconsists of describing and understanding various aspects of the symmetry-brokenphases generated by anisotropic colloids: the conditions for phase transitions, thecharacter of the equilibrium diffusion, and the features of different effective inter-
actions. The bare interactions between colloids are modeled as hard anisotropicrepulsions. Besides reproducing experimental conditions common in colloid science,hard-particle models have gained a primary role in liquid-state theory. In fact, steeprepulsive interactions allow us to investigate the many-body behavior of a systemin purely entropic terms, that is, independently of energy. Our study is based onthe application of equilibrium classical statistical mechanics in the formulations of
Density Functional Theory and Monte Carlo simulation.We start in Chapter 3 by addressing one of the most controversial questions inliquid-crystal science: do stable biaxial nematic phases exist? Like the common
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uniaxial nematic, the biaxial nematic is a liquid-crystal phase which is homoge-neous, but anisotropic, as a consequence of the preferred orientations its particlesassume. Due to the higher orientational ordering with respect to uniaxial nematics,the biaxial nematic phase is expected to manifest peculiar optical properties associ-ated with biaxial birefringence. Our analysis is inspired by recent experiments on asuspension of colloids with the shape of bricks (a.k.a., boardlike particles), where asurprisingly stable biaxial nematic phase was observed. In order to interpret thesepuzzling results, we develop a density functional theory based on discrete orienta-tions (Zwanzig model) to study the effect of polydispersity on the phase behavior ofhard boardlike particles. We start from the simplest polydisperse system, namelya binary mixture of big and small boardlike particles. We show that under specificconditions such a size asymmetry leads to the appearance in the phase diagramof two Landau critical points, and a consequent opening-up of the biaxial nematicstability regime. Moreover, we show that a similar effect develops when size poly-dispersity is modeled more faithfully. Finally, we give quantitative predictions thatare compatible with the experimental data.The problem of the biaxial-nematic stability is addressed in Chapter 4 under arather different perspective. We study the effect of adding a non-adsorbing depletantto a suspension of boardlike particles. In such a situation the depletant induces aneffective attraction between boardlike colloids, whose intensity can be adjusted viathe depletant concentration. Following a density functional theory approach similarto that of Chapter 3, we calculate the phase diagram of monodisperse boardlikeparticles as a function of the concentration of the depletant. Modeling the depletantas a collection of non-mutually-interacting hard cubes allows us to analyticallycalculate the board-board effective interaction. We show that the non-adsorbingdepletant can lead to an increased stability of biaxial nematics. More surprisingly,our results share many similarities with those deduced in Chapter 3. This allowsus to furnish a clear explanation for the entropic mechanism behind polydispersity-induced biaxial nematic stability.In Chapter 5 we study the crystallization transition (freezing) of parallel hardsquares and cubes in two and three dimensions, respectively. We are mainly inter-ested in the theoretical predictions concerning the stability of the crystal againstsmectic and columnar phases, and their relation with recent simulation and exper-imental work. Our density functional theory is based on the fundamental measuretheory, the best available theoretical framework for inhomogeneous hard-spherephases. We confirm previous work about the presence of a vacancy-rich freezingtransition in hard-cubes systems. On the other hand, our predictions for the phasebehavior of hard squares appear to be far more controversial. In fact, in between thelow-density fluid and the high-density crystal our theory predicts a smectic phase,which is however expected to be unstable due to equilibrium fluctuations. We cantherefore highlight an important limit of the theory in describing low-dimensionalsystems. Although various qualitative features of the two models are well described,work in improving the quantitative predictions of the theory is still needed.We focus in Chapter 6 on the equilibrium dynamics of colloidal liquid crystals.
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More specifically, we study a system of parallel colloidal rods, that is known tomanifest a nematic-columnar phase transition. The transition to the columnar phaseis associated with the alignment of the rods along one-dimensional columns, whichare themselves distributed on a two-dimensional hexagonal lattice (columnar plane).The diffusive single-particle dynamics in the presence of nematic and columnar or-dering is reproduced by means of a Monte Carlo simulation algorithm. Due to thecolumnar ordering, the diffusion of the particles in the columnar plane developsin quasi-quantized steps. This gives rise to a microscopic heterogeneous dynamics,which is interpreted in terms of permanent and temporary dynamic “cages”. We char-acterize such a heterogeneous dynamics by measuring the non-Gaussian propertiesof the diffusion and the non-exponential features of the structural relaxation.Finally, we study in Chapter 7 the solvent-mediated interactions between col-loids. Manipulating the effective interactions between colloids by means of a changein temperature is a simple yet practical way to reversibly control colloidal self-assembly. Capillary-condensation forces constitute an example of such thermosen-sitive interactions. These type of forces arise when the solvent of a suspension iscomposed by two species with different adsorption affinities with the surface of thecolloids. The main problem associated with these interactions is due to the fact thattheir quantitative description involves a complicated and time-consuming numericalprocess. We propose a simplified theory aimed at capturing the essential physicsof the problem, while reducing its numerical complexity to the lowest terms. Weanalyze the outcome of our minimalist theory in the planar geometry and compareits results with those of more refined theoretical approaches. Although strong limi-tations appear while considering temperatures close to the solvent critical point, weshow our approach to be more than satisfying. This suggests that our method couldallow for the study of more complex and less investigated geometries.





Samenvatting

Colloïden zijn aggregaten van atomen of moleculen ter grootte van een nanometertot een micrometer en worden vaak bestudeerd in een oplosmiddel. Door botsingenmet de oplosmiddelmoleculen bewegen deze deeltjes zich voort langs willekeurigepaden of trajectoriën, een proces dat bekend staat als Brownse beweging. Dezeeigenschap maakt het mogelijk om de macroscopische veel-deeltjes eigenschappenvan de colloïden te beschrijven met methoden uit de statistische mechanica. Hiermeekan een rijk scala aan thermodynamische fasen worden beschreven waarin de col-loïden zich kunnen bevinden: denk hierbij aan een gas, vloeistof, kristal of vloeibaarkristal. Dit zijn allemaal fasen die ook voorkomen in atomistische of moleculairesystemen, maar het essentiële verschil is dat de onderlinge wisselwerkingen tussende colloïden met veel meer vrijheid kunnen worden gemanipuleerd. Dit maakt hetmacroscopische fasegedrag erg rijk en divers, zoals we ook in deze dissertatie zullenzien.In dit proefschrift wordt de nadruk gelegd op de thermodynamische eigenschap-pen van colloïdale suspensies in evenwicht. De deeltjes die we gaan onderzoekenzijn anisotroop, en kunnen dus in tegenstelling tot bollen verschillende voorkeurs-richtingen aannemen. Deze anisotropie uit zich bovendien in de onderlinge interac-ties van de colloïden, die dus expliciet van de oriëntatie afhangen. Het fasegedragis hierdoor erg anders dan in systemen bestaande uit bolvormige deeltjes, omdater meer vrijheid is om bepaalde symmetrieën spontaan te breken of te behouden.Hierdoor zijn diverse ruimtelijke en orientationele ordeningen mogelijk die geka-rakteriseerd kunnen worden aan de hand van hun symmetrie ten opzichte van dewanordelijke fase. Het doel van deze dissertatie is dan ook om deze verschillendeaspecten in het fasegedrag van anisotrope colloïden te beschrijven en te begrijpen.We zullen hierbij niet alleen de aandacht vestigen op de condities waarop de fase-
overgangen plaatsvinden, maar we gaan ook kijken naar de diffusie van de deeltjesin evenwicht. Tot slot onderzoeken we de verschillende aspecten van de effectieve
interacties. Hierbij starten we met harde, anisotrope repulsies om te bekijken welkeeffectieve interacties hieruit voortvloeien. Dit is van belang omdat harde interactiesvaak voorkomen in experimenten binnen de colloïdale wetenschappen. Ook is hetvan fundamenteel belang omdat dit soort interacties vaak wordt bestudeerd in de
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theorie van vloeistoffen. Als de repulsieve interacties sterk genoeg zijn, wordt hetzelfs mogelijk om de veel-deeltjes eigenschappen te beschrijven met slechts entropi-sche bijdragen en deze hangen dus niet af van de energie. Om dit te bewerkstelligengebruiken we verschillende methoden uit de statistische mechanica, zoals klassieke
dichtheidsfunctionaaltheorie en Monte Carlo simulaties.In hoofdstuk 3 starten we met een erg controversieel probleem binnen het vak-gebied van de vloeibare kristallen. We vragen ons namelijk af of stabiele, biaxialenematische fasen bestaan. Net zoals de wellicht bekendere uniaxiale nemaat, isdeze fase anisotroop en homogeen. De anisotropie is hier het gevolg van de deel-tjes die door hun vorm verschillende voorkeursrichtingen kunnen aannemen. Doordater meerdere mogelijkheden zijn om de deeltjes in een bepaalde richting op te lij-nen is er biaxiale dubbelbrekendheid en hierdoor zijn de optische eigenschappenexotischer dan in de uniaxiale nematen. In ons onderzoek laten we ons voorna-melijk inspireren door recente experimenten aan colloïdale suspensies bestaandeuit deeltjes met de vorm van een baksteen (de zogenaamde bordachtige deeltjes),waar verrassend genoeg stabiele, biaxiale nematische fasen zijn waargenomen. Omdit bijzondere resultaat te interpreteren hebben we een dichtheidsfunctionaaltheorieontwikkeld waarbij de deeltjes slechts enkele, discrete oriëntaties kunnen aannemen(het zogenaamde Zwanzig model). Deze passen we vervolgens toe om de invloed vanpolydispersiteit te onderzoeken op het fasegedrag van deze harde deeltjes. Eerstbeginnen we met het meest simpele systeem, namelijk een binair mengsel van groteen kleine bordachtige deeltjes. Onder specifieke omstandigheden, zoals een asym-metrie in grootte, verschijnen er twee Landau kritieke punten in het fasediagram.Deze gaan vervolgens over in een regime waarin de biaxiale nemaat stabiel is. Wevinden een vergelijkbaar resultaat als we polydispersiteit explicieter meenemen inons model. Het hoofdstuk wordt afgesloten met kwantitatieve voorspellingen dieconsistent zijn met de experimentele data.De vraag of een biaxiale nemaat stabiel is, wordt vanuit een ander oogpuntbeschreven in hoofdstuk 4. We beschrijven hier het effect van een niet-adsorberenddepletant in een suspensie van bordachtige deeltjes. Onder deze omstandighe-den induceert het depletant een effectieve interactie tussen de bordachtige deeltjes,waarvan de sterkte afhankelijk is van de concentratie van deze stof. Door een ver-gelijkbare dichtheidsfunctionaaltheorie te gebruiken als in hoofdstuk 3, wordt hetfasediagram van monodisperse, bordachtige deeltjes in kaart gebracht als functievan de depletantconcentratie. Het depletant wordt hierbij gemodelleerd als eenverzameling van kubussen die onderling niet wisselwerken, waardoor het mogelijkwordt om de effectieve interacties tussen twee bordachtige deeltjes analytisch uitte rekenen. We laten zien dat het niet-adsorberende depletant kan leiden tot eenhogere stabiliteit van de biaxiale nematische fase. Deze resultaten hebben veel ei-genschappen gemeen met de bevindingen uit hoofdstuk 3 en hierdoor kunnen we hetentropisch mechanisme uitleggen waarom biaxiale nematen gestabiliseerd wordendoor polydispersiteit.In hoofdstuk 5 beschrijven we het kristalliseren, ofwel het bevriezen, van paralleleharde vierkanten en kubussen in respectievelijk twee en drie dimensies. Hierbij zijn
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we voornamelijk geïnteresseerd in de stabiliteit van de kristallijne fase ten opzichtevan de smectische en/of columnaire fasen en we vergelijken onze resultaten metdie van experimenten en simulaties. We gebruiken een dichtheidsfunctionaaltheoriegebaseerd op fundamentele maattheorie, één van de best beschikbare methodenom inhomogene fasen van harde bollen te beschrijven. Door dit formalisme toe tepassen vinden we een kristallisatieovergang van harde kubussen die al bekend is inde literatuur, waarbij het kristallijne rooster rijk is aan vacatures. De voorspellingenvoor het fasegedrag van harde vierkanten zijn echter controversiëler. Hier vindenwe tussen het regime van een vloeistof met een lage dichtheid en een kristal meteen hoge dichtheid een smectische fase die instabiel is onder evenwichtsfluctuaties.Hieruit kunnen we concluderen dat we ons model niet altijd kunnen toepassen oplaagdimensionale systemen. Desalniettemin zijn we wel in staat om de verscheidenekwalitatieve eigenschappen van de twee modellen te beschrijven, maar deze zijnzeker nog niet kwantitatief.Het onderwerp van hoofdstuk 6 is de dynamica van colloïdale vloeibare kristallenin evenwicht. Hierbij beschouwen we een systeem van parallele colloïdale staven,dat een faseovergang kan ondergaan van een nematische naar een columnaire fase.De overgang naar de columnaire fase wordt gekarakteriseerd door een oplijningvan staven langs ééndimensionale kolommen, die zich onderling ordenen in eentweedimensionaal, hexagonaal rooster (het columnaire vlak). We reproduceren dediffusieve ééndeeltjesdynamica in de aanwezigheid van nematische en columnaireordening met behulp van Monte Carlo simulaties. Door de columnaire ordeningwordt de diffusie van deeltjes beschreven in termen van quasi-gekwantiseerde stap-pen. Dit geeft aanleiding tot een microscopische, heterogene dynamica, die wekunnen interpreteren in termen van permanente en tijdelijke dynamische "kooien".Deze heterogene dynamica karakteriseren we met behulp van niet-Gaussische ei-genschappen van het diffusieve gedrag en de niet-exponentiële karakteristieken vande structurele relaxaties.In het laatste hoofdstuk beschrijven we interacties tussen colloïden die ontstaandoor de aanwezigheid van een oplosmiddel. Door middel van veranderingen in detemperatuur is het erg makkelijk en praktisch om op een reversibele manier colloïdalezelfassemblage te beïnvloeden in dit soort systemen. Een voorbeeld van dit typeinteracties is de zogenaamde capillaire condensatiekracht in colloïdale suspensies.Deze krachten komen voor als het oplosmiddel bestaat uit twee typen deeltjes metelk een andere affiniteit om op een colloïdaal oppervlak te adsorberen. Het vergtechter veel tijd om dit type interacties kwantitatief te beschrijven met behulp vanbestaande numerieke algoritmen. We kiezen daarom voor een simpele theorie dieslechts de essentiële fysica bevat, zodat de numerieke complexiteit minimaal is.Deze minimale theorie passen we vervolgens toe op een vlakke geometrie en deresultaten worden vergeleken met bestaande, complexere modellen. Ondanks hetfeit dat we sterke beperkingen van onze theorie verwachten nabij het kritieke puntvan het oplosmiddel, zien we toch dat onze resultaten erg bevredigend zijn. Wehopen daarom dat onze methode ook gebruikt kan worden in het bestuderen vancomplexere geometrieën die nog niet vaak zijn onderzocht.
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