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CHAPTER 1

General introduction

Principles of innate and adaptive immunity

The immune system is the body's defense against invading pathogens and

microorganisms. The immune response in mammals is classically divided into

innate and adaptive immunity. The phagocytes of the innate immune system

provide a fast, unspecific defense mechanism, but cannot always eliminate

infectious organisms. The lymphocytes of the adoptive immune system provide a

more specific defense and, in addition, memorize their 'defense strategy', so that

subsequent infections with the same organism can be handled more efficiently.

The two key features of the adaptive immune response are thus specificity and

memory (1).

Antigen recognition by cells of the innate and adaptive immune system

The innate immune system can only combat bacteria carrying highly conserved

surface molecules, that can be recognized by receptors on the surface of

phagocytes (2). Unsurprisingly, many bacteria have evolved ways to disguise

these molecules, so that they no longer are recognized by phagocytic cells. The

recognition mechanism used by the lymphocytes of the adaptive immune system

has overcome these problems. Lymphocytes do not recognize conserved

microbial surface molecules, but instead, each lymphocyte entering the blood
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stream bears unique receptors with a certain specificity. The specificity of a

lymphocyte is randomly generated by a unique genetic mechanism called gene

rearrangement. As there are more than a thousand million lymphocytes in a

human body, the adaptive immune system is capable of recognizing a huge

diversity of antigens (1-3). 

Clonal expansion and lymphocyte memory

As each single lymphocyte carries a unique specific receptor, the number of

lymphocytes that recognize a given antigen is very small. To enable the adaptive

immune system to effectively combat invading organisms, there must be an

amplification mechanism; this mechanism is called clonal expansion. Upon

encounter with their specific antigen lymphocytes proliferate and produce

around a thousand daughter cells of identical specificity which then differentiate

into effector cells. Lymphocytes can be divided in two major categories:

T lymphocytes, or T cells, and B lymphocytes, or B cells, which have a different

role in the immune response to microorganisms. T cells can, after activation and

expansion, differentiate into cytotoxic effector cells or into T helper cells which

provide help to B cells to enable them to proliferate and produce antibodies. The

antibodies produced by B cells bind to the microorganism and thereby facilitate

recognition and uptake of these organisms by the phagocytes of the innate

immune system. After eliminating the organism from the body most of the

involved lymphocytes die. However, some persist and form the basis of

immunological memory, which ensures a more rapid and effective response

upon a second encounter with the same pathogen (1).

Lymphocyte activation

Recognition of antigen alone is not sufficient to activate lymphocytes. To fully

arm a lymphocyte it takes two signals, called signal 1 and signal 2 (4,5). The

first signal is the specific binding of the receptor to the antigen, the second

signal an unspecific costimulatory signal.  T cells receive signal 2 from

professional antigen presenting cells (APC), i.e., dendritic cells, macrophages,

and B cells (6,7). After activation, T cells can provide signal 2 to B cells,

thereby helping them to proliferate and produce antibodies (8,9). The signals

that lead to "activation", i.e. upregulation of costimulatory molecules of APC
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and subsequent signal 2 delivery to T cells are not completely elucidated; they

may involve recognition of conserved microbial structures by the APC, or

induction of stress, e.g., through free radicals formed by chemical

transformation (6,7,10). Lymphocytes that receive signal 1 without co-

stimulation are deleted or anergized, a term used for the non-responsive state of

lymphocytes (11). The requirement for signal 2 is one of the mechanisms

protecting man against lymphocytes that have an autoimmune potential (12). 

Self tolerance and autoimmunity

Thus, activation and subsequent clonal expansion of lymphocytes expressing

randomly generated receptors is the main principle of adaptive immunity.

However, this principle in its most basic form bears a significant danger:

recognition of self-antigens on the tissues of the body and subsequent reaction

towards them (4). This is partially prevented by clonal deletion, a mechanism by

which maturing lymphocytes in the thymus are tested for potential auto-reactive

behavior and consequently deleted (13-15). The adaptive immune system,

therefore, consists of lymphocytes that recognize a wide variety of different

foreign-antigens without reacting to self-antigens. However, some auto-reactive

lymphocytes escape clonal deletion and become activated during their lifespan,

thereby initiating autoimmune diseases like diabetes (16), systemic lupus

erythematosus (SLE) (17), or autoimmune arthritis (18). In the periphery,

autoreactive lymphocytes normally encounter their self-antigens without

costimulation, leaving them unresponsive. The mechanism by which these auto-

reactive lymphocytes do become activated after years of slumbering in the body

is not always known, but in some cases viruses, chemicals or trauma are thought

to be involved (18-21).

NKT cells, the bridge between the innate and adaptive immune system?

Recently a specialized population of T cells was discovered, that coexpress

receptors of the natural killer (NK) cell lineage (22-24). These NKT cells have

unique potential to very rapidly secrete large amounts of cytokines (25),

providing early help for effector cells and regulating the adaptive immune

response. Murine NKT cells have a biased TCR repertoire; 85% of all murine

NKT cells are Vα14-Jα281+ (26). NK T cells do not recognize peptides on



General introduction10

MHC molecules, like classical T cells do, but instead recognize hydrophobic

antigens on transmembrane molecules distantly related to MHC-encoded

antigen-presenting molecules. These molecules, called CD1, can present lipid

antigens, e.g., glycolipids from mycobacteria, to NKT cells (27). As NKT cells

can rapidly secrete cytokines upon recognition of bacterial glycolipids,  they

seem to straddle the adaptive and innate immune system (28). It was shown

recently that NKT cells do not only play a role in induction of immunity but also

in tolerance (29,30). Since NKT cells can recognize non-classical antigens and

play an ambiguous role in the induction of immune responses, they may be

involved in the pathogenesis of drug-induced autoimmunity.

Induction of allergy and autoimmunity by chemicals

Chemical induced allergy or autoimmunity is often observed after

administration of certain drugs, e.g.,  procainamide (20), sulfonamides (31), and

diphenylhydantoin (32), or after contact with industrial or environmental

chemicals like HgCl2 (21) or azo-dyes (33). T cells play a central role in the

development of drug-induced adverse immune reactions (34-37). If the TCR of a

certain T cell recognizes its cognate antigen on the surface of an APC, the T cell

will respond with clonal expansion, cytokine production, and / or cytotoxicity

(Fig. 1). A major difficulty in studying T-cell reactions to sensitizing chemicals

is the fact that in most cases the ultimate neoantigen recognized by "drug-

specific" T cells is unknown.

Neoantigen formation

As most T cells can only recognize peptides on MHC molecules, chemicals have

to bind to a protein carrier in order to be recognized by T cells (38,39). The

neoantigen thus formed is called the hapten-carrier complex which can be

degraded by APCs. Parts of the neoantigen are presented on MHC molecules on

the surface of the APC and can be engaged by T cells (40-42). Two different

possibilities arise during processing and presentation of hapten-carrier

complexes: (i) the part which is processed and presented on the surface of APCs

is the part which has bound the hapten (43), or (ii) binding of the hapten to the
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Figure 1. CD4+ T cells can only be activated by peptide-MHC-complexes presented to

them on APCs. Proteins, including self-proteins, are processed, cleaved and the resulting

peptides presented on MHCII molecules on the surface of APC. CD4+ T cells that engage

self-peptides do not react upon contact with APC (left part), whereas peptides from

pathogens, i.e. foreign peptides, elicit a T cell dependent immune reaction (right part).

self-protein influences the processing of this carrier (44,45). In the latter case,

self-peptides which are normally not presented can be presented on the APC's

surface. Because these so called cryptic self-peptides (46) are normally not

presented, T cells are not tolerant against them and would react upon encounter

with these "foreign" peptides. The two above mentioned possibilities,

presentation of hapten-peptide adduct or cryptic peptide, respectively, are

depicted in Fig. 2. 

Metabolism of prohaptens

Chemicals that need to be activated in order to bind to proteins are called

prohaptens (47). In their prohaptenic form they enter the human body where

they are either metabolized in the liver, or in other cells that contain a panel of

drug-metabolizing enzymes. The liver is believed to be an immune-privileged

site concerning drug-induced adverse effects. Two mechanisms may account for
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Figure 2. Processing and presentation of self-proteins and altered self-proteins,

respectively. Self-proteins that are taken up by APC are processed and one ore more dominant

peptides are presented on MHC molecules on the surface (upper part). Self-proteins that are

altered by, e.g., haptens, are processed differently. This may lead to either presentation of an

haptenated self-peptide, or presentation of a self-peptide, that normally is not presented after

processing of the self-protein. As the T cells did not come in contact with this cryptic peptide

before, tolerance does not exist and T cells are activated upon contact with it.

this: (i) the specialized function of the liver in detoxifying possibly harmful

compounds; protein-reactive metabolites formed in the liver are quickly bound

to special molecules like glutathion and acetyl, abundantly present in the liver

(48); (ii) the environment in the liver is thought to be tolerogenic rather than

immunogenic (49,50); T cells that come into contact with their antigen in this

environment, would not be activated but rather deleted or anergized. Although

the liver is specialized in drug-metabolism (48), it therefore does not seem to

play an important role in drug-induced allergy and autoimmunity. In contrast,

cells from the immune system itself can do both, oxidize the prohapten into the

hapten, and present the so formed neoantigen together with the proper

costimulation to T cells (37). Several studies have shown that neutrophils and

monocytes are involved in drug-metabolism prior to drug-induced adverse

immune effects (51-53). 
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Specificity versus cross-reactivity of single T cell clones

As mentioned before, specificity is one of the key-features of adaptive

immunity. A few years ago it was generally accepted that a single T cell can

only recognize one single peptide. Such specificity can be compared with a key

fitting only a single key-hole. Recent publications, however, undermined this so

called "one clonotype, one specificity" dogma. Theoretical considerations led to

the conclusion that one single T cell clone must be able to react with a few

thousand different peptides in order to efficiently react to the multitude of

invading pathogens (54). Experimental evidence for this theory was provided by

several other groups (55-57). Although T cells seem to recognize several

hundreds or thousands of different peptides, this has not been described with

haptens. On the contrary, T cell clones seem to specifically distinguish between

changes in hapten side-chains (43,58) or even between stereoisomers (59). 

Scope of this thesis

In this study we investigated the mechanisms involved in chemical-induced

allergy and autoimmunity. Although from a first point of view there is a

difference between allergy and autoimmunity, there is no clear-cut border

between these two, especially when chemicals are the causative agent.

Chemical-induced allergy can develop into autoimmunity by mechanism like

molecular mimicry or presentation of cryptic peptides. On the other hand,

symptoms of chemical-induced autoimmune diseases like procainamide-induced

lupus disappear after discontinuation of drug-therapy, implying allergy instead

of autoimmunity. A difficulty in studying the mechanism of drug-induced

adverse immune effects is the fact that the ultimate neoantigens are unknown.

Most chemicals have to be metabolized before they are capable of eliciting

immune reactions. Another phenomenon that is not completely understood is

cross-sensitization, which means that patients allergic to a given compound react

positive in patch tests to compounds that are similar, but with which they had

not been in contact with before.

In this thesis we have tried to elucidate some of the mechanisms involved

in chemical induced adverse immune effects. Chapter 2 reviews several aspects

of neoantigen formation by xenobiotics. It deals with metabolism of chemicals,

the polymorphism of metabolizing enzymes involved, induction of
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costimulatory signals, and sensitization of T cells. In Chapter 3 we show, that

specific T cell reactions in the popliteal lymph node (PLN) assay could be

obtained by injection of the protein-reactive metabolites hydroquinone and

benzoquinone, but not by the parent compound benzene. The missing link in this

chapter, metabolism, is shown in Chapter 4, were we used the lupus-causing

drug procainamide (PA) to show that phagocytes metabolize PA to its protein-

reactive metabolite N-hydroxyl-amino-procainamid (HAPA), which

consecutively forms adducts with self-proteins. Furthermore, T cells from long-

term PA-treated mice reacted to both, the metabolite HAPA, as well as the

neoantigen formed in PA pulsed peritoneal macrophages. Chapter 5 also deals

with metabolism and with non-classical haptens: fatty acid anilides and

phenylaminopropanodiol (PAP)-esters of fatty acids. They are suspected to be

the cause of the toxic oil syndrome (TOS), an epidemic-like disease in Spain in

1981. This disease induced a graft-vs-host-like disease in several thousand

people after ingestion of rape seed oil contaminated with aniline. In Chapter 6,

our hypothesis of NKT cell involvement in the pathogenesis of TOS was tested

using mice deficient in NKT cells. In Chapter 7 we investigated the principles

of cross-sensitivity to chemicals by studying single T cell clones specific for a

given hapten coupled to a model self-protein. Three different mechanisms that

can account for cross-sensitization and their possible consequences for

autoimmunity are discussed. In Chapter 8, a new faster method is described to

screen T cell hybridomas for specificity, the CellELISA. Finally, Chapter 9

summarizes and discusses the contents of this thesis.
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CHAPTER 2

Allergic and autoimmune reactions to xenobiotics: how do they evolve? 

Peter Griem, Marty Wulferink, Bernhardt Sachs, José B. González and Ernst Gleichmann

Induction of allergic and autoimmune reactions by drugs and other chemicals

constitutes a major public health problem. Elucidation of the mechanisms might help

improve diagnostic tools and therapeutic approaches. Here, Peter Griem and

colleagues focus on several aspects of neoantigen formation by xenobiotics:

metabolism of xenobiotics into reactive, haptenic metabolites; polymorphisms of

metabolizing enzymes; induction of costimulatory signals; and sensitization of T cells.
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Introduction

Immune reactions to xenobiotics (i.e. drugs, metals, industrial and naturally

occurring chemicals) can give rise to allergy and autoimmunity. These reactions

are frequent and encompass a broad spectrum of different diseases and organs.

In order to decrease the health risks associated with exposure to xenobiotics, it is

important to understand the pathogenic mechanisms involved and to identify

human populations at risk. In view of the striking clinico-pathological similarity

between adverse immune reactions to xenobiotics and graft-versus-host

reactions, there is little doubt that adverse reactions to xenobiotics are initiated

and maintained by T cells (1). For immunologists, a major difficulty in trying to

study T-cell reactions to sensitizing xenobiotics is the fact that the ultimate

neoantigens formed by xenobiotics are not known, even though considerable

progress has recently been made in this respect using the classical hapten

trinitrophenyl (TNP) (Refs. 2,3) and 3-pentadecyl-catechol, a representative

catechol derivative in urushiol, the sensitizing component of poison ivy (4). In

extension of these findings, it is assumed that adverse immune reactions to other

xenobiotics also involve formation of protein adducts (in the toxicological

terminology) or hapten-carrier conjugates (in the immunological terminology). 

Reactive organic compounds most often bind covalently; that is, their

electrophilic properties enable them to react with protein nucleophilic groups

such as thiol, amino and hydroxyl groups (reviewed in Ref. 5). Examples of

such reactive, haptenic compounds that frequently lead to sensitization after

dermal contact or inhalation are toluene diisocyanate, trimellitic anhydride,

phthalic anhydride, benzoquinone, formaldehyde, hexyl cinnamic aldehyde,

ethylene oxide, dinitrochlorobenzene, picryl chloride, penicillins, and

D-penicillamine. Sensitizing metal ions react somewhat differently in that they

oxidize proteins or form stable protein-metal chelate complexes by undergoing

multipoint binding with several amino acid side-chains (Fig. 1). Since all of

these compounds have long been known as sensitizers, protection measures are

being taken in order to decrease the risk of sensitization (e.g. at workplaces).

In contrast to haptenic compounds, most xenobiotics eliciting adverse

immune reactions are unable to bind to proteins when entering the body.

However, they can do so after conversion to reactive metabolites (Table 1).
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Figure 1.   Haptens comprise organic compounds as well as metal ions and bind to proteins

forming either covalent bonds (a) or coordination complexes (b). These two types of chemical

bonds differ in the amount of energy required to break the bond (bond strength). (a) Organic

haptens forming covalent bonds bind to a single amino acid side-chain. Depicted is the

covalent binding of trinitrophenyl (TNP) to lysine. (b) Metal complexes consist of a center

placed metal ion and a set of atoms, ions or small molecules, regarded as ligands. These

ligands are aligned in a characteristic geometric form, e.g., a plane square or a octahedral. The

interactions between a metal ion and ligands allow the electron-rich ligands to transfer part of

their electron densitiy to the positively charged metal ion (coordination bond) in order to

increase complex stability. Depicted is a square planar complex of nickel with three histidines

and one cysteine. (c) Alternatively, reactive chemicals can irreversibly oxidize protein side-

chains, such as those of cysteine and methionine. Shown is a methionine monosulfone.

These xenobiotics can be considered as prohaptens. This article takes into

account that neoantigen formation by prohaptens involves an initial pharmaco-

toxicological phase that is determined by metabolic conversion of xenobiotics.

This phase precedes the T-cell-sensitization phase, and this, in turn, is followed

by an immune-effector phase that leads to the various clinico-pathological

manifestations of adverse immune reactions to xenobiotics. There are several

model xenobiotics for each phase in this pathogenic cascade. The reader should

be aware, however, that no single xenobiotic has yet been analyzed so

extensively that it could serve as a universal example for the entire cascade.

Therefore, different xenobiotics will have to illustrate the individual phases

described. 

Preimmunological phase 

Hepatic metabolism of xenobiotics

As the main organ for metabolism of xenobiotics, the liver is well-equipped
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Table 1. Examples of adverse immune reactions to xenobiotics that involve

reactive metabolites a

Parent compound Adverse immune reaction Candidate metabolite involved Ref.

Procainamide Drug-induced lupus N-Hydroxyprocainamide (M,H) (6,7)

Propylthiouracil Vasculitis, drug-induced lupus Propyluracilsulfonic acid (M,H)(8,9)

Halothane Autoimmune hepatitis Trifluoroacetylchloride (R,H) (10,11)

Tienilic acid Autoimmune hepatitis Thiophene sulphoxide (H) (12)

Dihydralazine Drug-induced lupus, Hydralazine radical (R,H) (13)

autoimmune hepatitis 

Gold(I) antirheumatics Dermatitis, glomerulonephritis Gold(III) (M,H) (14,15)

Practolol Oculomucocutaneous syndrome Practolol epoxide (H) (16)

Urushiol Contact dermatitis 3-pentadecyl-o-quinone (M) (4)

p-Phenylenediamine Contact dermatitis Bandrowski’s base (H) (17)
a The adverse immune reactions listed in the table were observed in humans, while

identification of candidate metabolites was achieved in: M, mice; R, rats; H, humans

with xenobiotic-metabolizing enzymes and is prepared for detoxifying reactive

metabolites. Compared with its high metabolic activity, adverse immune

reactions in the liver are relatively rare. Nevertheless, such reactions do occur,

one example being the autoimmune hepatitis caused by long-term treatment with

the diuretic drug tienilic acid (a prohapten). This side-effect is associated with

the production of autoantibodies directed against the cytochrome P450 (CYP)

isoenzyme 2C9 (CYP2C9), and interestingly this is the very enzyme that

catalyzes hepatic metabolism of the prohapten to its reactive metabolite (12,18).

This short-lived, haptenic metabolite was found to bond covalently to CYP2C9.

A similar mechanism is assumed for other cases of drug-induced autoimmune

hepatitis, such as those caused by halothane (10) or dihydralazine (13), in which

autoantibodies are directed against the enzymes converting these prohaptens to

the respective haptens (CYP2E1 and CYP1A2, respectively). T-cell recognition

of the haptenated enzymes in drug-induced hepatitis is likely, but has not been

formally demonstrated.

Extrahepatic metabolism of xenobiotics

In quantitative terms, extrahepatic metabolism of xenobiotics is less important

than hepatic metabolism. However, as far as adverse immune reactions to

prohaptens are concerned, extrahepatic metabolism appears to play a crucial

role. Rather than being metabolized to reactive, haptenic metabolites in the
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liver, and subsequently traveling to distant extrahepatic sites, such as the skin,

lung, or bone marrow, it is likely that reactive metabolites are formed at the very

sites where adverse immune reactions to xenobiotics manifest themselves.

Hence, the xenobiotic-metabolizing capacity of extrahepatic tissues merits

special attention in the present context. One example here is the skin, a barrier

organ which has a considerable metabolic capacity in conjunction with

immunological competence, and is often involved in adverse immune reactions

to xenobiotics, be it after dermal or systemic application (19). Interestingly,

dermal Langerhans cells contain CYP1A isoenzymes and are able to metabolize

prohaptenic xenobiotics, such as the polyaromatic hydrocarbon dimethylbenz-

[a]-anthracene, to haptens. They can activate specific T cells that mediate

contact hypersensitivity, presumably by presentation of haptenated peptides

(20). Similarly, urushiol, a mixture of allergenic 3-alkyl and 3-alkenyl catechols

from the plants poison ivy and poison oak, can be oxidized in the skin to

reactive o-quinones that can elicit specific T-cell responses after adduct

formation with protein (4,21,22). Another chemical frequently involved in

allergic contact dermatitis is p-phenylenediamine, which is oxidized to a reactive

metabolite termed Bandrowski’s base. Specific T-cell reactions to this hapten

have been demonstrated in vitro: peripheral mononuclear cells of sensitized

patients responded to Bandrowski’s base, but not to the prohapten

p-phenylenediamine (17).

Xenobiotic metabolism in phagocytes

Phagocytes include polymorphonuclear leukocytes (PMN), monocytes,

macrophages, and resident Langerhans cells. While the latter three can

themselves act as antigen-presenting cells (APC), PMN die after they have been

activated in inflammatory sites; the dead cells and debris are phagocytosed and

processed by APC. Hence, the capacity of phagocytes to metabolize xenobiotics

is particularly relevant in the present context. For instance, there is indirect

evidence that metabolism in phagocytic cells may be involved in systemic

adverse immune reactions caused by procainamide (PA) (6), propylthiouracil (8)

and disodium gold(I) thiomalate (14). Whereas the respective parent

compounds, or prohaptens, themselves proved unable to elicit T-cell reactions in

mice, their reactive metabolites generated in macrophages were able to do so. 

Generation of reactive metabolites in neutrophils and monocytes has

been attributed to metabolizing enzymes with a broad substrate specificity, such
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as myeloperoxidase (MPO), prostaglandin H synthase, and various CYP

isoenzymes (19,23-25). For PA, it has been shown in mice that T cells sensitized

to the reactive metabolite N-hydroxy-PA, which can easily be further oxidized to

nitroso-PA (another reactive, unstable metabolite), recognized macrophages

incubated with the nonreactive parent compound (i.e. the prohapten), indicating

generation of the hapten and hapten-protein adducts in these cells (6).

Additionally, in vivo bioactivation of PA in macrophages to N-hydroxy-PA and

nitroso-PA was indirectly demonstrated by successful restimulation of N-

hydroxy-PA-primed T cells with peritoneal cells of long-term PA-treated mice

(6) (Fig. 2). Similar findings were obtained with a chemically different

compound, the antirheumatic drug gold(I) thiomalate. Using gold(III)-specific T

cells as detection probes in in vivo and in vitro assays, indirect evidence was

provided for the generation of the short-lived, reactive metabolite gold(III) in

macrophages (14,26). Hence, in view of the multiple functions they can fulfill,

macrophages, and presumably other types of APC, appear to serve as a

connecting link between the preimmunological phase, which includes regional

xenobiotic bioactivation and neoantigen formation, and the phase of T-cell

sensitization to these neoantigens.

Genetic polymorphisms of xenobiotic-metabolizing enzymes

Metabolism of xenobiotics can be divided into two phases. Phase I

reactions, such as those carried out by CYP isoenzymes, usually lead to insertion

of functional groups into xenobiotics, or lead to demasking of such groups, and

thus can result in formation of reactive metabolites (part of which can act as

haptens). In phase II reactions, metabolites are conjugated with small

endogenous molecules, such as glucuronic acid, glutathione, acetate, or sulfate

in order to increase water solubility and facilitate elimination from the body.

Unlike larger haptenated peptides, these conjugates are too small to make stable

contact with the MHC binding groove and thus are unable to cause sensitization.

Several genetic polymorphisms of xenobiotic-metabolizing enzymes have been

identified, some of which cause expression of defective enzymes, or enzymes

with a reduced (or increased) metabolic activity (30). These inter-individual

differences in the generation of reactive metabolites among humans may

influence formation of protein adducts and, hence, may result in a different

susceptibility to chemically induced allergy and autoimmunity.
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Figure 2.   Hypothetical scheme of the initial immunotoxic steps underlying PA-induced SLE, based

on experimental results (Ref. 6, C. Goebel, C. Vogel, B. Sachs, S. et al., unpublished). (a) Hepatic

metabolism of the arylamine PA consists of two competing pathways (27,28). N-acetylation of the

amino group, catalyzed by NAT-2, leads to formation of N-acetyl PA, a stable metabolite that can be

eliminated. By contrast, oxidation of the amino group by CYP isoenzymes yields HAPA and, through

further oxidation, yields nitroso-PA (not shown); the latter can haptenate proteins and thus can induce

the adverse immune reactions seen in PA-induced SLE. However, in the liver, probably due to its high

detoxicating capacity, PA-induced adverse immune reactions fail to develop. Because of genetic

polymorphism, individuals differ in their NAT-2 activity, resulting in the slow- and fast-acetylator

phenotype. In slow-acetylator individuals, hepatic acetylation of PA is reduced, thereby increasing the

amount of substrate available for extrahepatic PA metabolism. (b) Extrahepatic metabolism of PA can

occur in phagocytic cells containing enzymes with a broad substrate specificity, such as PGHS-1,

PGHS-2, MPO and CYP isoenzymes (19,23-25). Importantly, phagocytic cells, like monocytes and

macrophages, which are capable of oxidizing PA to HAPA and further to nitroso-PA, can process

proteins and present hapten-conjugated peptides to T cells. Interestingly, PA was shown to induce

expression of PGHS-2 in mouse macrophages and thus can probably enhance its own oxidation to

HAPA and nitroso-PA. Moreover, the PA-induced enhancement of the generation of PGE2 by

PGHS-2 might skew the immune reaction toward a Th2-type response (29), thereby favoring

formation of (auto)antibodies.

Abbreviations: CYP, cytochrome P450 isoenzyme; HAPA, N-hydroxylamine PA; MPO,

myeloperoxidase; NAT-2, N-acetyl transferase 2; PA, procainamide; PGE2, prostaglandin E2; PGHS,

prostaglandin H synthase; SLE, systemic lupus erythematosus; Th2, T helper 2.
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Whether a genetic polymorphism of a xenobiotic-metabolizing enzyme

has clinical relevance depends on its functional role in the metabolism of a given

compound (i.e. its bioactivation or detoxication), and on whether other enzymes

can compensate for the defect. Individuals carrying certain genetic

polymorphisms, especially combined phase I and phase II defects, might be at

higher risk for allergic and autoimmune disorders induced by xenobiotics (31-

33). However, it should be noted that, besides genetic determination, the

individual activity of xenobiotic-metabolizing enzymes can also be influenced

by nongenetic factors such as drugs, diet, alcohol, smoking and cytokines. 

Table 2 presents selected examples of polymorphic enzymes that

metabolize drugs associated with adverse immune reactions in humans. Thus far,

the clearest association between a genetic polymorphism and adverse immune

reactions to certain drugs has been found for N-acetyltransferase-2 (Fig. 2).

Approximately half of the Caucasian population is homozygous for the mutant

alleles and exhibits the slow-acetylator phenotype. In individuals exhibiting the

slow-acetylator phenotype, the incidence of dihydralazine- or PA-induced

systemic lupus erythematosus (SLE) is higher than in those exhibiting the fast-

acetylator phenotype (27,28). Furthermore, of patients developing severe

erythema multiforme variants (Stevens-Johnson syndrome and toxic epidermal

necrolysis) following sulphonamide treatment, 90% compared with 45% in

controls exhibited the slow-acetylator phenotype (34). It remains to be studied

whether or not adverse immune effects caused by the other xenobiotics listed in

Table 2 are also associated with certain polymorphisms of the metabolizing

enzymes listed. As far as idiopathic autoimmune diseases are concerned,

associations with genetic polymorphisms of xenobiotic-metabolizing enzymes

would indirectly point to xenobiotics as etiological agents of such diseases and

provide information as to the type of chemical compound to be searched for.

Sensitization phase

Only few of the different hapten-protein conjugates formed in the body will

induce a clinically manifest allergy or autoimmunity. Whether an immune

response is initiated depends on several factors such as dose, metabolism,

protein binding, type and activation state of APC, antigen processing and
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Table 2. Polymorphisms of xenobiotic-metabolizing enzymesa

Enzyme Substrates associated with adverse (immune)

reactions

Phase-I enzymes

CYP1A2h Aromatic aminesb,e

CYP2A6g Coumarinb

CYP2C9g Nonsteroidal anti-inflammatory drugs (diclofenacb, 

tienilic acidd , piroxicamb,c, tenoxicamb,c, ibuprofenb, 

naproxenb), phenytoinb,b,e, tolbutamideb,c

CYP2C19g Omeprazolb, proguanilb,c, propranololb,c, imipramineb,c,

citalopramb, moclobemideb, diazepamb, hexobarbitalb

CYP2D6g Antiarrhythmicsf, beta-blockersf, antihypertensivesf, 

neurolepticsf, tricyclic antidepressantsf, MAO 

inhibitorsf, analgeticsf, miscellaneous agentsf

CYP2E1g Dapsoneb,c,e, carbamazepineb,e, quinidinee, 

acetaminopheneb, halothaned

Phase-II enzymes

N-Acetyltransferase-2g Isoniazidb,e, dihydralazinee, procainamidee,

dapsoneb,c,e, sulfasalazinec,e

Glutathion-S-transferases M1 and T1g Halothaned

NAD(P)H-quinone reductaseg Azo dyesb, nitroaromatesb, quinonesb

Phenolsulfphotransferase (P-PST)h Aromatic hydroxylaminesb

a Data are from Refs 30,35, and 36; selected adverse (immune) reactions to single drugs or

certain, not necessarily all, members of classes of compounds are as follows: b skin reactions

(e.g. exanthema, urticaria, dermatitis); c hematological adverse effects (aplastic anemia,

leukopenia, agranulocytosis); d autoimmune hepatitis; e drug-induced lupus; f chemically

heterogeneous drugs with versatile adverse effects; polymorphisms influencing enzyme

activity as follows: g characterized at molecular level; h mutation not discovered yet,

described by distinct phenotypes. 

Abbreviations: CYP, cytochrome P450 isoenzyme; MAO, monoamine oxidase; NAD(P)H,

reduced form of nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide

phosphate.

peptide density on APC, some of which are presented in this article in more

detail.
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T cells are activated when they receive both signal 1 and signal 2 (37,38).

Signal 1 is triggered by T-cell recognition of peptides embedded in major

histocompatibility complex (MHC) molecules on the surface of APC and

involves signal transduction via the T-cell receptor (TCR)-associated CD3

complex and coreceptors such as CD4. Signal 2 is an abstract, generic term for a

variety of different accessory or costimulatory signals transmitted during T cell-

APC interaction. During this crosstalk, exchange of signal 1 and signaling via

the CD40-CD40L interaction, upregulates membrane molecules on the APC,

such as intercellular adhesion molecule 1 (ICAM-1), CD80 and CD86, that

contribute to signal 2 for T-cell activation. 

Dendritic cells residing in tissues have to get activated in order to

migrate to lymph nodes and prime T cells. While residing in nonlymphoid

organs, dendritic cells such as skin Langerhans cells efficiently take up and

process material, including haptenated protein, from their vicinity, but their

T-cell-stimulating capacity during this developmental stage is poor. Specific

signals, such as tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1), which

may originate, for example, from activated or damaged keratinocytes, can switch

the functional state of dendritic cells. Dendritic cells then migrate to the draining

lymph nodes, lose their capacity to take up and process antigen, upregulate

MHC class I and class II molecules as well as accessory molecules on the cell

surface, and thereby differentiate into immunostimulatory dendritic cells that

can efficiently trigger naive T cells (38,39).

Activation of dendritic cells following exposure to xenobiotics

The two-signal requirement for T-cell activation poses the interesting question

of how sensitizing xenobiotics can induce activation of dendritic cells.

Dendritic-cell maturation might be triggered by a casual infection at the site of

exposure, implicating activation of APCs by, for instance, lipopolysaccharide,

glycans, double-stranded RNA and N-formylmethionyl peptides (39).

Presumably, however, xenobiotics themselves can act in a similar way by

inducing keratinocytes to produce TNF-α, IL-1α, IL-6 and other cytokines.

Keratinocyte activation could be achieved by cytotoxicity of the sensitizing

chemical itself or its reactive metabolite (24), or by concomitant exposure to

chemical or physical noxae, such as sodium dodecyl sulfate, dimethylsulfoxide,

phorbol myristate acetate, and ultraviolet light (39-41). In addition to exerting

these unspecific toxic effects, sensitizing xenobiotics may lead to activation of
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dendritic cells and more efficient costimulation of T cells by specific

mechanisms (Table 3). Having outlined how xenobiotics can activate dendritic

Table 3. Selected examples of how xenobiotics can contribute to costimulation

of T cells
Chemical Effects observed Ref.

TNCB, DNCB Induction of IL-1β mRNA in Langerhans cells, (40)

induction of IL-1α and TNF-α mRNA in keratinocytes

DNFB, nickel sulfate Induction of IL-1β in Langerhans cells (42)

Nickel sulfate Stabilizing TNF-α mRNA in keratinocytes (41)

Nickel sulfate, Expression of adhesion molecules on endothelial cells (43)
cobalt sulfate

Mercuric chloride Secretion of IL-1 from macrophages (44)

Abbreviations: DNCB, dinitrochlorobenzene; DNFB, dinitrofluorobenzene; IL-1,

interleukin-1; TNCB, trinitrochlorobenzene; TNF-α, tumor necrosis factor α

cells (i.e. elicit signal 2 for T-cell activation) this article will now discuss

signal 1 - the mode of how T cells 'see' xenobiotics or, more exactly, their

footprints on self-proteins.

T-cell reactions to haptenated peptides

Activation of αβ T cells that recognize peptides in the context of MHC class I or

class II molecules involves signaling through the TCR. This requires the

3-dimensional structure of its antigen-binding site to be complementary to that

of the peptide-MHC complex and, thus, allows ionic, dipole, aromatic and

hydrophobic interactions. Bonding of a xenobiotic to a peptide-MHC complex

alters its structure and the number, type and distribution of possible interactions

with the TCR. A neoantigen is thus created and can be specifically recognized

by T cells.

TNP derivatives were the first haptens for which T-cell reactions against

haptenated peptides presented by MHC class I or class II molecules were

demonstrated (2,3,45-47). These studies clearly demonstrated that both MHC

class I- and class II-restricted, hapten-specific T cells recognize TNP-conjugated

peptides irrespective of the exact amino acid sequence of the peptides. The only

requirements were 1) that the haptenated peptides carried appropriate side-

chains for anchoring in the MHC groove and 2) that the TNP-coupled lysine
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side-chain of the peptide was correctly positioned relative to these anchors so

that TNP could make contact with the TCR. The first

requirement by definition is fulfilled by all self-peptides presented and the

second requirement is apparently met by a variety of different self-peptides.

Thus, after exposure to trinitrobenzene sulfonic acid (TNBS) or

trinitrochlorobenzene (TNCB) both of which form TNP-protein conjugates, a

large pool of MHC-bound, haptenated self-peptides becomes available for T-cell

recognition (2,47). A recent publication suggests that some TNP-specific human

T cells can even recognize TNP in context of different MHC class II molecules

(47). Taken together, these findings may explain the extraordinary strength of

immune reactions against TNP derivatives, which are comparable with those

seen in alloreactions (2). T-cell reactions to the 3-alkyl and 3-alkenyl catechols

contained in urushiol follow the same rules laid down for TNP, namely

recognition of the correctly positioned hapten irrespective of the amino acid

sequence of the peptide (4). 

Specific reactions of human T cells from patients with drug allergies

have been shown for a large number of drugs, such as β-lactam antibiotics

(penicillin) (48-51), sulphonamides, nonsteroidal anti-inflammatory drugs, and

aromatic anticonvulsants such as phenytoin and carbamazepine (52). There is

evidence that the TCR of penicillin-specific T cells can interact with both the

thiazolidin ring, which is common to all β-lactam antibiotics, and the penicilloyl

side-chain, which is specific for a particular antibiotic (49-51). T-cell reactions

to structurally-defined haptenated peptides have also been shown for diazotized

p-aminobenzene arsonic acid (53) and photoreactive azido compounds (54).

Interestingly, in some autoimmune disorders T-cell responses against endoge-

nously haptenated peptides, i.e., physiologic protein modifications, were found

(55,56). MHC-restricted recognition of noncovalently bound organic xeno-

biotics is rare and has so far only been proposed for sulfamethoxazole (57).

Despite the fact that various metal salts can induce hypersensitivity and/or

autoimmune reactions (58), knowledge of how metal ions elicit the specific

T-cell reactions underlying these conditions is very limited. Although there is

experimental evidence that nickel(II) (59,60), beryllium(II) (61), gold(I) (62)

and some other metals might act as haptens in that they are recognized as metal-

peptide complexes, demonstration of T-cell recognition of a structurally defined

metal-peptide-MHC complex is still lacking. Theoretically, reactive chemicals
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and metal ions could also elicit specific T-cell responses by binding to the MHC

molecule itself rather than to an embedded peptide. Beryllium ions are good

candidates for this alloreactive-like T-cell reactions: it has been proposed that

beryllium ions might bind directly to the critical glutamate residue in position 69

of the HLA-DPB1*0201 molecule, which shows a strong positive correlation

with berylliosis (61); but again conclusive experimental proof is lacking. 

T-cell reactions to cryptic peptides uncovered by xenobiotics

Chemical modification of self-proteins can change their processing in APCs and

lead to presentation of cryptic peptides that may elicit autoimmune T-cell

reactions. While T-cell reactions to cryptic peptides have been shown in

humans, the induction of T-cell responses to cryptic peptides by xenobiotics as

so far only been demonstrated in mouse models. Analysis of T-cell hybridomas

prepared after immunization of mice with phosphorylcholine-conjugated hen

egg lysozyme revealed that some clones reacted against a cryptic lysozyme

peptide such that modification of the protein led to presentation of a novel

peptide which itself was not haptenated (63). The same peptide was presented

when lysozyme was pretreated with other diazotized aromatic amines, all of

which bind to tyrosine side-chains, but not when lysine-reactive fluorescein

isothiocyanate was used.

Similar results were obtained following investigation of the murine

T-cell response to bovine ribonuclease A that had been pretreated with gold(III)

this being the reactive metabolite of gold(I)-containing antirheumatic drugs (26).

T-cell hybridomas reacting specifically against gold(III)-pretreated ribonuclease

recognized one of two cryptic peptides of this protein. When these clones were

tested with ribonuclease pretreated with other metals, they only showed

crossreactivity with palladium(II), palladium(IV), nickel(IV), and platinum(IV)

salts indicating these metals, but not others, induced presentation of the same

cryptic peptides to T cells. A conformational change of ribonuclease A treated

with the crossreacting metals was detectable by circular dichroism spectrospopy,

suggesting that these changes are the molecular basis for the observed alteration

of antigen processing (P. Griem, K. Panthel, S.L. Best, P.J. Sadler, and C.F.

Shaw III, unpublished). 

Experimental evidence suggests that in vivo treatment with mercury(II)

can lead to the presentation of cryptic peptides of fibrillarin (64), a nucleolar

protein recognized by autoantibodies of mice treated with mercury(II), gold(I),
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or silver(I) and also by autoantibodies of scleroderma patients (58). The

observation that mercury(II) can alter the protein structure of fibrillarin (65),

could explain the presentation of cryptic fibrillarin peptides. 

By definition, T cells recognizing cryptic self-peptides are autoreactive

and, moreover, some hapten-specific T cells also recognize the nonhaptenated

peptide after priming (46). Hence, the possibility arises that an immune response

may be extended and lead to overt autoimmunity even if the offending

xenobiotic has been cleared from the body. On the other hand, some xenobiotics,

especially metals, can persist for years in the body and might continuously

activate T cells. 

CD4+ versus CD8+ T-cell responses to xenobiotics

Defining rules as to whether a given xenobiotic will predominantly activate

CD4+ or CD8+ T cells is a difficult task. From current knowledge about hapten

recognition by T cells, we can conclude that reactivity and lipophilicity of

xenobiotics will determine in which extra- or intracellular compartment

haptenated proteins will be formed and which presentation pathway these will

enter. Reactive xenobiotics that can directly bind to proteins and modify

peptide-MHC complexes, seem to induce both CD4+ and CD8+ T-cell responses,

as has been observed for TNP derivatives (2,66), penicillins (48) and nickel

(59,60). Likewise, nonreactive xenobiotics, such as urushiol, that can be

converted into reactive metabolites nonenzymatically or extracellularly were

found to activate both CD4+ and CD8+ T cells (4,22). 

Xenobiotics such as PA and propylthiouracil, that are metabolized inside

APCs by enzymes localized along the exogenous processing pathway might be

preferentially presented in the context of MHC class II molecules. The same is

true for xenobiotics that can be metabolized extracellularly, such as during the

oxidative burst of phagocytes (23), and then bind to extracellular proteins or

membrane proteins. This explanation might account for CD4+ T-cell help to B

cells and thus for the production of autoantibodies. However, other drugs such

as sulphonamides, carbamazepine and phenytoin, which can also be metabolized

via myeloperoxidase-dependent oxidation in phagocytes, have been shown to

induce specific activation of both CD4+ and CD8+ T cells (52). 

Xenobiotics that are lipophilic enough to cross the cell membrane and

are metabolized inside the cell (e.g. by CYP isoenzymes at the endoplasmic

reticulum) tend to modify proteins inside the cytoplasm that preferentially enter

the class I-processing pathway. Examples of this type of xenobiotic are
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polyaromatic hydrocarbons (20). Similarly, tienilic acid is metabolized by

CYP2C9 into reactive metabolites that haptenate this CYP isoenzyme.

Considering the intracellular localization of the CYP2C9 isoenzyme at the

endoplasmic reticulum, one would expect involvement of CD8+ T cells in the

immune reactions against tienilic acid. However, in tienilic acid-induced

autoimmune hepatitis, anti-CYP2C9 IgG autoantibodies were found, implying

participation of CD4+ T helper cells and the class II-processing pathway (12,18).

The proposed involvement of CD4+ T cells in this situation could result from

hepatocytes that were killed by highly reactive, toxic metabolites of tienilic acid

or by hapten-specific CD8+ cells, and that were subsequently taken up by APC,

thus entering the class II pathway.

Direct recognition of xenobiotics by γδ and αβ T cells ?

Recent investigation of the antigen recognition of T cells expressing γδ TCRs

revealed that these cells, unlike most αβ T cells, recognize antigens in an

immunoglobulin-like fashion. Interestingly, human γδ T cells can react to

nonproteinaceous microbial components, such as isopentenyl pyrophosphate and

γ-substituted 5´-triphosphorylated thymidine (67). Moreover, it has been

established that human CD4- CD8- (double-negative) αβ T cells can also react to

hydrophobic nonpeptide antigens, such as lipoarabinomannan and mycolic acids

bound to MHC-related CD1 molecules on APC (67). These findings open up the

possibility that T cells might also recognize 'free' xenobiotics, which are not

reactive enough to bind covalently to proteins. This hypothesis is supported by

recent publications describing human γδ T cells specific for lidocain (68) and

human CD8+ αβ T cells recognizing a pollen antigen-derived carbohydrate on

CD1 molecules (69). 

Effector phase in adverse immune reactions to xenobiotics

Specific T-cell reactions to xenobiotic-induced neoantigens comprise both

T helper 1 (Th1) and Th2 responses and can trigger an array of effector

mechanisms that are not different from those of immune reactions to

conventional protein antigens. As with protein antigens, factors such as the route

of administration, dose and genetic background of individuals play a role in

determining the type of effector mechanisms triggered by xenobiotics. Some

examples underlining the importance of these factors will be mentioned below.
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Administration route

It has long been known that cutaneous sensitization of mice to the classical

hapten dinitrofluorobenzene (DNFB) does not occur if the animals are orally

pretreated with DNFB (70), and the same is true for Ni(II) (71). In contrast to

feeding DNFB to normal littermates, feeding of either MHC class II-deficient or

CD4-depleted mice with DNFB did not tolerize but primed to the hapten (72).

This indicates that oral application of DNFB, and possibly of other haptens as

well, generates both hapten-specific CD8+ T cells, which act as effector cells in

contact hypersensitivity, and hapten-specific CD4+ T cells, which suppress

activity of the CD8+ T cells in normal mice so that tolerance results. This is in

line with other studies on contact hypersensitivity to DNFB and oxazolone that

have shown that cutaneous application of sensitizing doses of these haptens

induces two opposing T-cell populations: interferon γ (IFN-γ)-producing Th1-

like CD8+ T cells as effector cells; and IL-4- and IL-10-producing CD4+ Th2

cells as downregulatory cells (73). 

Dose

The type of effector mechanism induced by xenobiotics is also dose-dependent:

while cutaneous application of sensitizing doses of oxazolone induces effector

mechanisms leading to contact hypersensitivity in mice, cutaneous application

of low, subsensitizing doses of oxazolone induces tolerance that is solely

mediated by specific CD8+ cells expressing a Th2-like cytokine pattern (74). It

is proposed that this mechanism may be valid for other xenobiotics as well, and

that this might explain why most individuals fail to show signs of sensitization

after continuous exposure to low concentrations of xenobiotics on the skin

although an immune response is induced. However, exposure to relatively high

concentrations of xenobiotics would break tolerance and lead to sensitization.

Genetic background

The genetic background also influences the probability of immune reactions and

the kind of immunopathological lesions. The importance of polymorphisms of

xenobiotic-metabolizing enzymes has long been known in chemical

carcinogenesis and their relevance in immune reactions to xenobiotics has

already been mentioned above. Another illustrative example is the striking MHC

dependence of susceptibility to the systemic autoimmune syndrome induced by

mercury and gold salts in mice and rats (1,58). Treatment with mercuric chloride

or the antirheumatic drug gold(I) thiomalate induces a Th2-like effector
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response in susceptible H-2s mice, causing production of autoantibodies and

increased levels of serum IgG1, IgG2A and IgE, whereas resistant H-2d  mice

showed a Th1-like response (1,75). The susceptibility of

H-2s mice is dependent on the presence of the MHC class II As molecule (76). In

the rat, mercury induces activation of autoreactive T-cells in the Brown Norway

strain and the Lewis strain. However, the latter does not develop the

autoimmune syndrome because the activated T cells produce tumor necrosis

factor α (77). As mentioned above, the beryllium-induced lung disease in

humans is strongly associated with the HLA-DPB1*0201 molecule (61).

Outlook

In chemically induced carcinogenesis, the role of reactive metabolites acting as

ultimate carcinogens has been firmly established decades ago. Accordingly,

metabolite-generating systems are used in mutagenicity screening tests. By

analogy, reactive metabolite-generating systems that can render prohaptens into

haptens, should be used in tests designed to detect the sensitizing potential of

xenobiotics. Thus, liver microsomes have been successfully used for

bioactivation of nonreactive xenobiotics to haptens in the lymphocyte

transformation test in humans (19) and in the popliteal lymph node assay (78).

Conceivably, the blood monocytes present in the routine lymphocyte

transformation test fulfill a similar function within the limits of their xenobiotic-

metabolizing capacity. The development of prognostic tools based on genetic

polymorphisms of xenobiotic-metabolizing enzymes could help protect people

with an increased risk for adverse immune reactions to certain classes of

xenobiotics that are substrates of those enzymes.

Finally, immune responses to xenobiotics, just like those to conventional

antigens, can be subject to tolerance induction. In mouse models, tolerance was

induced by oral administration of DNCB (70) and nickel (71), parenteral

treatment with a peptide haptenated with 3-pentadecyl catechol from urushiol

(4) and topical application of low doses of oxazolone (74). Furthermore, TNP-

specific T cells could be inhibited by altered peptide ligands carrying alterations

either in the peptide sequence or the hapten (79). In view of these findings, new

therapeutic approaches such as tolerance induction and modulation of immune

responses by altered peptide ligands might also be feasible with xenobiotics.
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CHAPTER 3

T Cell-Dependent Immune Reactions to Reactive Benzene Metabolites in Mice

Susanne Ewens, Marty Wulferink, Carsten Goebel, and Ernst Gleichmann

Using the popliteal lymph node (PLN) assay in mice, we studied the sensitizing

potential of benzene and its metabolites. Whereas benzene and phenol failed to induce

a PLN reaction, catechol and hydroquinone induced a moderate, and p-benzoquinone

a vigorous response. Following a single injection of the reactive metabolite

p-benzoquinone (100 nmol/mouse), cellularity in the draining PLN was increased

more than 15-fold, and it took about 100 days until it reverted back to normal.

Although the PLN response was T cell-dependent, flow cytometric analysis revealed

that the increased cellularity in the PLN after a single injection of p-benzoquinone

was mainly due to an increase in B cells. Mice primed to p-benzoquinone and

challenged with a small dose of p-benzoquinone (0.1 nmol/mouse) mounted a

secondary PLN reaction, indicating hapten specificity of the reaction; this was

confirmed by results obtained in the adoptive transfer PLN assay. An unexpected

finding was the secondary PLN response to benzene (1 nmol/mouse) observed in mice

primed to p-benzoquinone. This finding suggests that some of the benzene (at least

10%) was locally converted into p-benzoquinone which then elicited the secondary

response observed. In conclusion, the reactive intermediate metabolites hydroquinone

and p-benzoquinone can act as haptens and sensitize, their precursors, benzene and

phenol, may be considered as prohaptens.
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Introduction

Due to the presence of benzene in petrol and its use as industrial solvent there is

significant benzene emission into the environment, resulting in continuous,

relevant uptake by humans living in industrialized areas. In the body, benzene is

metabolized in several steps, starting in the liver by epoxidation through

cytochrome P450 2E1 (1-3) and subsequent conversion into phenol. Phenol can

be further oxidized by cytochrome P450 into catechol and hydroquinone. Via

the bloodstream these intermediates reach other organs, such as the bone

marrow, where they are further oxidized by the myeloperoxidase of phagocytes,

and perhaps other peroxidases, into the highly reactive benzoquinones, p- and

o-benzoquinone (4) (Fig. 1). Benzene metabolites have been shown to bind

covalently to proteins in blood, liver, spleen, and bone marrow (5-7), and they

are likely to exert much of the toxicity of benzene (8,9).

Little is known about the effects of benzene and its metabolites on the

immune system. Nonspecific immunotoxic effects were reported by

MacEachern and Laskin (10) who noticed modulation of cytokine production in

bone marrow leukocytes of benzene-exposed mice. A different question is

whether benzene metabolites are contact sensitizers. This was first investigated

by Benezra et al. (11) in a systematic search for structure-activity relationships

of skin contact sensitizers. Using a database, they were unable to find evidence

for the assumption that benzoquinones are sensitizers. This evidence was

provided by Basketter and Goodwin (12) who studied dermal sensitization to

1,4-substituted benzene derivatives in guinea pigs. With three different,

adjuvant-based test methods they showed that hydroquinone and

p-benzoquinone possess sensitizing potential. Subsequently, Basketter and

Liden (13) investigated the sensitizing potential of benzene derivatives in

humans using the patch test. Surprisingly, reactions to hydroquinone were

negative, but p-benzoquinone yielded a number of positive test results.

However, in the latter reactions it proved difficult to distinguish between the

toxic and the sensitizing potential of p-benzoquinone. From their results one

cannot deduce that the positive patch test reactions were specific recall

responses, because it was unknown whether or not prior sensitization to

p-benzoquinone had taken place in these indivuals, prior to challenge.
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Figure 1.   Pathway of bioactivation of

benzene. In the liver, benzene epoxide,

formed by cytochrome P-450

monooxigenases, spontaneously converts

into phenol which is further oxidized to

catechol and hydroquinone, respectively.

Extrahepatically, catechol and hydroquinone

are converted by the myeloperoxidase of

phagocytes into the highly reactive

benzoquinones, o- and p-benzoquinone.

NQOR: NADPH-quinone-oxidoreductase;

PGHS: prostaglandin H synthase

In view of this somewhat scanty knowledge of the sensitizing potential of

the widespread pollutant benzene and its metabolites, we studied their

sensitizing potential, using the PLN assay in mice. In contrast to sensitization

tests in guinea pigs, the PLN assay allows to quantify immune responses to

sensitizing chemicals, does not require the use of adjuvant, and can measure

both primary and secondary T cell-dependent immune responses to such

compounds (14).
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Materials and Methods

Chemicals   Benzene, p-benzoquinone, hydroquinone, catechol, phenol, and streptozotocin

were purchased from Sigma-Aldrich Chemie GmbH (Steinheim, Germany); ethanol was

purchased from E. Merck (Darmstadt, Germany); sterile, pyrogen-free phosphate-buffered

saline (PBS) was obtained from Gibco GmbH (Karlsruhe, Germany); and sterile, pyrogen-

free 0.9% NaCl was purchased from Fresenius AG (Bad Homburg, Germany).

Mice   Specific pathogen-free female C57BL/6J mice, obtained from Harlan Winkelmann

GmbH (Borchen, Germany), were used throughout, unless mentioned otherwise. In one

experiment female BALB/c mice (wildtype), BALB/c nu/nu mice and their BALB/c nu/+

littermates, obtained from Harlan CPB (Austerlitz, Netherlands), were used. Animals were

kept under specific pathogen-free conditions and had free access to standard diet (Ssniff

Spezialdiäten GmbH, Soest, Germany) and tap water; they were 6 to 8 weeks old at the onset

of experiments.

Antibodies   Fluorescein isothiocyanate (FITC)-conjugated rat anti-mouse Thy1.2 (clone 53-

2.1), FITC-conjugated rat anti-mouse CD4 (clone RM4-5), phycoerythrin (PE)-conjugated rat

anti-mouse CD8a (clone 53-6.7), PE-conjugated rat anti-mouse B220 (clone RA 3-6B2), and

PE-conjugated anti-mouse NK cells (clone 2B4) monoclonal antibodies for FACScan

analyses were purchased from Pharmingen (Hamburg, Germany). Anti-mouse-B220

monoclonal antibodies with magnetic microbeads were purchased from Miltenyi Biotec

GmbH (Bergisch Gladbach, Germany).

Primary response PLN assay   This assay was performed as described (14-16). Briefly, test

compounds were dissolved in ethanol and diluted in PBS to a concentration of 0.1 % ethanol;

this solvent is referred to as ethanol/PBS. On day 0, animals (5 to 6 mice per group) received

a single sc injection (50 µl) of the compound indicated into the left hindfoot pad, control

animals received ethanol/PBS only. On day 6, PLNs of both treated and untreated sides were

removed and cell numbers of individual PLNs were determined using a Casy 1 automatic cell

counter (Schärfe Systems GmbH, Reutlingen, Germany). The PLN cell count index from each

mouse was calculated by dividing the cell count of the treated side by that of the untreated

side. 

Secondary response PLN assay   In order to determine secondary PLN responses of mice,

groups of animals were primed with the test compounds on day 0, as described above. After

complete regression of the primary PLN reaction, mice were challenged by a second sc

injection into the same hindfoot pad. The dose of test compounds used for recall was

suboptimal, that means it was just too small to induce a primary PLN response. Four days

after the second sc injection, PLN cell count indices were determined. For control of
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specificity, streptozotocin was used for priming (0.5 mg/mouse) and challenge (0.05

mg/mouse), as described before (17).

Treatment of prospective T cell donors   On days  -14 and  -7 before the adoptive cell

transfer, C57BL/6J donor mice received an iv injection of p-benzoquinone (50 nmol/mouse)

into the tail vein, and on day -6 they received an sc injection of p-benzoquinone (100

nmol/mouse) at the base of tail. Control groups of prospective T cell donors were treated with

ethanol/PBS. On day 0, spleens were removed, and splenic T cells enriched as described

below.

Enrichment of splenic T cells   For enrichment of T cells, B cells were depleted from spleen

cell suspensions using a magnetic cell separator (Miltenyi Biotec GmbH, Bergisch Gladbach,

Germany), as described (18). In short, 1 x 108 spleen cells were incubated (15 min at 4 °C) in

1 ml PBS containing 50 µl anti-mouse-B220 antibody coupled with magnetic microbeads

(Miltenyi Biotec GmbH). Stained cells were withdrawn from the cell suspension in a high

gradient magnetic field. After separation, the cell fraction was tested for T cell purity with

FITC-labeled monoclonal anti-Thy1.2 antibody (Pharmingen) using a FACScan flow

cytometer (Beckton Dickinson, San Jose, California, USA). Cells in the unstained fraction

after separation contained 85 to 95% Thy1.2-positive cells and are referred to as enriched

T cells. These enriched T cells were used in the adoptive transfer PLN assay.

Adoptive transfer PLN assay   This test system allows to detect anamnestic T cell responses

of donor animals to chemicals of low molecular weight (14,15,17,19). Enriched T cells of

donor animals were irradiated (20 Gy) using a 137Cs source (Gammacell 2000, Molsgaard,

Copenhagen, Denmark); this step was introduced in order to decrease the nonspecific PLN

reaction occasionally seen after transfer of unirradiated T cells from recently immunized

donors (20). On day 0, 50 µl PBS containing 1 x 107 irradiated enriched T cells was injected

sc into the left hindfoot pad of syngeneic recipients. On day 1, these animals received an

additional sc injection (50 µl) into the same foot pad: these injections contained a suboptimal

dose of p-benzoquinone or streptozotocin, or the control compounds indicated. On day 6,

PLN cell count indices were determined.

Flow cytometric analysis   PLN cells (2 x 105 cells/well) were transferred into 96-well plates

and marked with the FITC- and PE-labeled antibodies indicated. Antibody-marked probes

were incubated for ten minutes at 4 °C, washed twice with PBS, and analysed in a FACScan

flow cytometer (Becton Dickinson).

Statistical analysis   All experiments were performed twice to assure reproducibility of the

data. Results of individual experiments are shown as arithmetic means + standard deviation
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(SD) of 5 to 6 animals. One-way analysis of variance (ANOVA) with Newman-Keuls

comparison was used to calculate statistically significant differences.

Results

Differential capacity of benzene and Its metabolites to elicit primary PLN

responses

Primary PLN responses to benzene (100 nmol/mouse) and equimolar doses of

the benzene metabolites indicated were determined in C57BL/6J mice (Fig. 2).

Benzene, phenol, and catechol failed to induce a PLN reaction, whereas

hydroquinone elicited a weak and p-benzoquinone a vigorous PLN response.

When compared with hydroquinone, p-benzoquinone was found to induce a five

times higher PLN response at the same dose of 100 nmol. Both metabolites

showed a dose-response relationship in the primary PLN assay.

Kinetics of primary PLN responses to benzene and p-benzoquinone

As shown in Fig. 3, benzene failed to elicit increased PLN cell count indices at

any of the ten time points tested. In marked contrast, p-benzoquinone induced a

PLN response that was 15-fold above normal on day 6 and still 6-fold on day

14; from then on it gradually decreased reaching normal values at day 105 after

injection.

T-Cell dependence of the PLN response to benzene metabolites

To answer the question if the observed PLN reaction to hydroquinone and

p-benzoquinone is T cell-dependent, the PLN assay was performed in BALB/c

nu/nu mice and BALB/c nu/+ littermates. Hydroquinone and p-benzoquinone

failed to induce a PLN response in nu/nu mice, whereas they elicited significant

PLN reactions in nu/+ littermates (Fig. 4). Hence, the PLN enlargement

observed after injection of hydroquinone and p-benzoquinone, respectively, is a

T cell-dependent reaction.
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Figure 2.   Primary PLN response to reactive benzene metabolites. On day 0, groups of mice

received a single sc injection of the indicated test compound at the dose specified into one

hindfoot pad; control animals received a single sc injection of solvent (ethanol/PBS) only. On

day 6, PLN cell count indices were determined. Asterisks denote significant difference

between groups marked with brackets (*p<0.05, **p<0.01).

Flow cytometric analysis of primary responses to p-benzoquinone

Cell populations and T-cell subpopulations involved in the primary PLN

response to p-benzoquinone were analysed by immune-flow cytometry. Table 1

shows that up to a dose of 100 nmol p-benzoquinone/mouse the absolute

numbers of B and T cells in the draining PLN were increased and that the

increase in B cells was higher than that in T cells. Absolute numbers of CD4+

and CD8+ cells also increased, but the ratio CD4+/CD8+ did not change.

Secondary PLN responses to p-benzoquinone and benzene

The results described above established that reactive benzene metabolites,

especially  p-benzoquinone,  are  able  to  elicit  significant  PLN  reactions  that
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Figure 3.   Kinetics of the primary PLN response to benzene and p-benzoquinone. On day 0,

C57BL/6J mice received a single sc injection of 100 nmol benzene or p-benzoquinone into

the left hindfoot pad; control animals received solvent only. At the time points indicated on

the abcissae, PLN cell count indices were determined. Asterisks denote significant difference

between the group injected with p-benzoquinone and both control groups (*p<0.05,

**p<0.01, ***p<0.001).

require participation of T cells. Next, we studied whether or not the observed

PLN reactions to p-benzoquinone were due to specific T cell reactions to this

metabolite. This was done by two different experimental approaches.

In the first approach, we asked whether mice primed to p-benzoquinone

were able to mount a secondary response upon challenge with a suboptimal dose

to induce specific secondary PLN reactions (17). Groups of C57BL/6 mice were

primed with either p-benzoquinone (100 nmol/mouse) or, for control, benzene

(100 nmol/mouse), streptozotocin (0.5 mg/mouse), or ethanol/PBS. After 13

weeks, when the primary PLN response seen in the p-benzoquinone-primed

group had disappeared (cf. Fig. 3), groups of mice were challenged by
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Figure 4.   T cell dependence of the primary PLN response to hydroquinone and

p-benzoquinone of benzene. On day 0, athymic (nu/nu; open bars) and euthymic (nu/+;

closed bars) BALB/c received a single sc injection containing 100 nmol of either benzene,

hydroquinone or p-benzoquinone, or 1 x 107 SRBC into the left hindfoot pad; control animals

received solvent (ethanol/PBS) only. On day 6, the PLN cell count indices were determined.

Asterisks denote a significant difference (*p<0.05, **p<0.01, ***p<0.001) between the

groups marked with brackets.

Table 1. Flow cytometric analysis of PLN cells in the draining lymph nodes after injection

of benzquinone or solventa

Dose injected

(nmol p-benzo-

quinone/mouse)

PLN

cell count

(x105)

% B cellsb % T cellsc % CD4+

of T cellsd

% CD8+

of T cellse

0 (solvent) 5.3 ± 2.2 19 ± 0.6 78.7 ± 0.8 52.6 ± 0.6 45.0 ± 0.7

0.1 6.4 ± 4.6 19.6 ± 3.6 78.0 ± 4.2 49.3 ± 5.4 45,8 ± 5.3

10 22.4 ± 9.9 36.9 ± 3.3 59.6 ± 3.2***,f 47.6 ± 1.2 48,8 ± 0.3

100 41.8 ± 12.1* 46.9 ± 16.3*** 48.6 ± 15.7*** 52.2 ± 7.5* 47.2 ± 4.2
a Arithmatic means ± standard deviations of triplicate determinations. b Marked with
PE-conjugated rat anti-mouse B220, c FITC-conjugated rat anti-mouse Thy1.2, d

PE-conjugated rat anti-mouse CD4, e FITC-conjugated rat anti-mouse CD8. f Significantly
different from solvent group: *p<0.05, ***p<0.001.
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Figure 5.   Secondary PLN response against p-benzoquinone. On day 0, groups of mice were

primed with a single sc injection (100 nmol/mouse) of benzene or p-benzoquinone into the

left hindfoot pad; control animals were primed with solvent or with streptozotocin (0.5

mg/mouse). After thirteen weeks, groups of mice received a second sc injection containing

0.1 or 1 nmol benzene (benzenea and benzeneb, respectively), 0.1 nmol p-benzoquinone,

solvent, or 0.05 mg/mouse streptozotocin into the same hindfoot pad. Four days later the PLN

cell count indices were determined.. Asterisks denote significant difference (**p<0.01,

***p<0.001) between the black bar indicated and any of the open bars.

injection of either p-benzoquinone (0.1 nmol/mouse), benzene (0.1 or 1

nmol/mouse), solvent, or streptozotocin (0.05 mg/mouse). Four days after recall,

PLN cell count indices were determined. As can be seen in Fig. 5, animals

primed with solvent or benzene failed to mount a significant PLN response to

the compounds used for recall (groups 1 to 9). By contrast, mice which were

primed with p-benzoquinone exhibited a secondary PLN response upon recall

with the suboptimal dose of p-benzoquinone, but not of streptozotocin (cf.

groups 13 and 14). An unexpected finding was the significant response to 1

nmol benzene/mouse detected in p-benzoquinone-primed animals (group 12).

No response was elicited when the benzene dose used for recall was equimolar

to that of p-benzoquinone, that is,

0.1 nmol/mouse (group 11). Whereas the dose of 1 nmol/mouse elicited a
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Figure 6.   Adoptive transfer PLN assay demonstrating the transferability of T cell memory

for p-benzoquinone. On day -14 and -7, the prospective T-cell donors received an injection of

p-benzoquinone (50 nmol/mouse) into the tail vein. In addition, they were injected with 100

nmol p-benzoquinone/mouse sc at the root of the tail on day -6. On day 0, spleens were

removed for T cell enrichment, and 1 x 107 T cells per mouse were injected sc in the left

hindfoot pad of syngeneic recipient mice; control mice received T cells of untreated donor

mice. On day 1, recipients received an sc injection into the same foot pad containing either

benzene(0.1 nmol/mouse), a suboptimal dose of p-benzoquinone (0.1 nmol/mouse), or

solvent. On day 6, PLN cell count indices were determined. Asterisks denote significant

difference (***p<0.001) between the closed bar and any of the open bars.

significant secondary response in mice primed with p-benzoquinone, it failed to

do so in animals primed with benzene or PBS (cf. groups 3, 8, and 12).

In the second experimental approach, the adoptive transfer PLN assay was

used in order to test if memory T lymphocytes specific for p-benzoquinone can

be transferred from primed donors to naive recipients. Prospective T-cell donors

were primed with two iv injections of 50 nmol p-benzoquinone/mouse and, in

addition, an sc injection of 100 nmol p-benzoquinone. Six days after the last

injection (day 0), spleens of donor mice were obtained and T cells enriched by

magnetic cell separation. Immediately after cell separation, enriched T cells (1 x

107/mouse) were transferred to syngeneic recipients by sc injection into one

hindfoot pad. Control recipients received an sc injection containing enriched
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splenic T cells (1 x 107/mouse) obtained from untreated donor mice. On day 1,

groups of mice received an sc injection containing a suboptimal dose of either

p-benzoquinone (0.1 nmol), benzene (0.1 nmol), or solvent into the same foot

pad. On day 6, PLN cell count indices were determined. Fig. 6 shows that a

secondary PLN response was only detectable in those mice which had received

both p-benzoquinone-primed T cells and a suboptimal dose of p-benzoquinone

for challenge.

Discussion

Benzene is a toxicologically relevant compound whose uptake, toxicokinetics,

and metabolism have been well characterized in rodents as well as men. The

results presented here confirm and extend the findings of Basketter and

Goodwin (12), who established the sensitizing potential of hydroquinone and

p-benzoquinone in guinea pigs. We found that the parent compound benzene

and its early intermediate, phenol failed to induce primary immune reactions in

the PLN assay, whereas the reactive metabolites hydroquinone and

p-benzoquinone were able to do so. No adjuvants were used in this test system.

Moreover, p-benzoquinone was found to elicit  vigorous secondary reactions in

animals sensitized to p-benzoquinone. These structure-activity relationships

noted in the PLN assay conform with the protein reactivity of the test

compounds: while protein reactivity of benzene and phenol is known to be low,

that of catechol and hydroquinone and, in particular, p-benzoquinone is high (5-

7,21). Hence, benzene and phenol may be considered as prohaptens and

hydroquinone and p-benzoquinone as haptens in the terminology introduced by

Landsteiner and Jacobs (22) and also used by others (23,24). Thus, benzene is

comparable with other prohaptens tested in the PLN assay, such as procainamide

(19,25), propylthiouracil (15), and gold(I) thiomalate (16,20). In all cases, the

parent compounds failed to elicit a PLN reaction, whereas their reactive

metabolites were able to do so. Hydroquinone and p-benzoquinone were found

to sensitize in a dose-dependent and T cell-dependent fashion. Albeit T cell-

dependent, the majority of cells in the enlarged PLN analyzed after injection of

p-benzoquinone were found to consist of B cells. In this respect, too, the PLN

reaction to p-benzoquinone resembles that to previously studied compounds,

such as diphenylhydantoin (26) and D-penicillamine (27).
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The PLN reaction to p-benzoquinone was unusually long-lasting and

strong. Whereas the PLN enlargement seen after injection of other sensitizing

chemicals mostly reverted to normal after 3-4 weeks (14), that seen after

injection of p-benzoquinone persisted for more than 14 weeks. Injection of 100

nmol p-benzoquinone per mouse induced a 15-fold increase in cell number in

the draining PLN. Such strong PLN reactions were rarely seen with other test

compounds and certainly not at such low doses of test compound (14,28). In

general, there is good correlation between the capacity of test compounds to

evoke a response in the PLN assay and their known ability to induce allergy or

autoimmunity in men (14). It is likely, therefore, that p-benzoquinone is a potent

sensitizer not only in mice and guinea pigs, but in humans as well. This

conclusion conforms with reports on contact allergy in photographic technicians

exposed to developing agents containing hydroquinone (29).

Benzene and its metabolites are notorious for inducing aplastic anemia.

However, the doses of benzene and p-benzoquinone used in the present study

failed to induce anemia in C57BL/6 mice thus treated (data not shown), and this

conforms with published data on the dose requirements for myelotoxicity of

these compounds. In the present paper, the maximal doses of benzene,

hydroquinone, and p-benzoquinone used for PLN assay were 100 nmol per

mouse, corresponding to approximately 0.5 mg benzene, hydroquinone, or

benzoquinone per kg b.wt. As far as benzene is concerned, the doses required

for induction of aplastic anemia in mice (9,30) were orders of magnitude higher

than those used in the present investigation. As far as p-benzoquinone is

concerned, Rao et al. (31) were able to induce aplastic anemia in mice by ip

injection of 2 mg p-benzoquinone/kg b.wt. once a day for six weeks, six days

per week. Again, a single dose of 2 mg p-benzoquinone/kg b.wt. is already four

times higher than the maximal dose used in the PLN assay. A different question

in this context is, however, whether or not T cells sensitized to benzene

metabolites might contribute to the myelotoxicity of benzene through production

of myelosuppressive cytokines, such as interferon-γ, or through the activity of

hapten-specific cytotoxic T cells. This question is not unreasonable in view of

the myelosuppressive potential of activated T cells (32-34), but it has not been

explored up to now.

Interestingly, mice which were primed to p-benzoquinone and 13 weeks

later received an injection of 1 nmol benzene into the same hindfoot pad

mounted a secondary response. This was unexpected, as benzene itself failed to
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induce a primary response in the PLN assay. A possible explanation for this

finding is that a certain amount of the benzene used for challenge was

metabolically converted into p-benzoquinone in the anatomical region ranging

from the injection site to the draining PLN. As a dose of 0.1 nmol

p-benzoquinone per mouse was able to elicit specific secondary PLN responses

in p-benzoquinone-primed mice, metabolic conversion of 10% of the benzene

dose (1 nmol/mouse) used for challenge would be sufficient for elicitation of the

anamnestic response observed. This hypothesis raises the question which

extrahepatic enzymes are able to convert benzene into hydroquinone and further

hydroquinone into p-benzoquinone. Benzene can be oxidized to hydroquinone

by cytochrome P450 isoenzyme 2E1 which is constitutively expressed in murine

skin (35). The conversion of hydroquinone to p-benzoquinone can be catalyzed

by prostaglandin H synthase (PGHS) which is found in almost every mammalian

tissue including lymph nodes and skin (36,37). Involvement of PGHS in

benzene metabolism has been reported by Gaido and Wierda (30) and Pirozzi et

al. (38), who noted that the myelotoxicity exerted by benzene and hydroquinone

was ameliorated by PGHS inhibitors. Direct PGHS-driven metabolic conversion

of hydroquinone into reactive metabolites was described by Schlosser and

colleagues (39,40). Another issue relevant in this context is that activation of

antigen-specific T cells is known to require a minimal number of identical

epitopes on a given antigen-presenting cell (41,42). Apparently, local injection

of p-benzoquinone is able to generate this threshold number of identical

neoantigens. However, it is unknown whether or not this threshold number can

also be reached after systemic exposure to benzene and local metabolism to

p-benzoquinone.

Our results do not provide information as to the nature of neoantigens that

are recognized by T cells specific for p-benzoquinone. In view of its low

molecular weight and strong protein reactivity (5,21), p-benzoquinone is

supposed to act as a hapten and as such follow the rules laid down for T cell

recognition of the classical haptens trinitrochlorobenzene and trinitrobenzene

sulfonic acid (43,44). These electrophiles can covalently bind to the nucleophilic

amino acid lysine in protein, thereby forming trinitrophenyl (TNP)-adducts (45).

It has been established that both CD4+ and CD8+ TNP-specific T cells recognize

TNP when coupled to lysine in MHC-embedded self-peptides. The latter were

found to carry lysine in a position such that the TNP coupled to it could make

direct contact with the T cell receptor for antigen recognition (45). T cell
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recognition of the hapten 3-pentadecyl-catechol, which is a major allergen in

poison ivy, follows the rules established for TNP. The catechol component of

this hapten can spontaneously be oxidized to the electrophilic quinone which,

like p-benzoquinone, shows great affinity for covalent bonding to cysteine,

another nucleophilic amino acid (46). For p-benzoquinone, adducts to rat liver

protein and mouse hemoglobin sulfhydryl groups have been detected using

specific antibodies and hapten-specific T cell clones, respectively (47,48).

Characterization of the neoantigens generated by p-benzoquinone cannot be

achieved by experiments in vivo, as performed in the PLN assay, but requires

hapten-specific T cell clones for analysis in vitro. Such experiments are now in

progress in our laboratory (48).
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CHAPTER 4

Procainamide, a Drug Causing Lupus, Induces
Prostaglandin H Synthase-2 and Formation of T Cell-Sensitizing

Drug Metabolites in Mouse Macrophages

Carsten Goebel, Christoph Vogel and Marty Wulferink, Stephanie Mittmann, Bernhardt

Sachs, Sabine Schraa, Josef Abel, Gisela Degen, Jack Uetrecht, and Ernst Gleichmann

Procainamide (PA) may cause drug-induced lupus, and its reactive metabolites,

hydroxylamine-PA (HAPA) and nitroso-PA are held responsible for this. Here, we

show that N-oxidation of PA to these metabolites could take place in macrophages and

lead to formation of neoantigens that sensitize T cells. Murine peritoneal macrophages

(PMϕ) exposed to PA in vitro generated neoantigens related to HAPA, as indicated by

1) their capacity to elicit a specific recall response of HAPA-primed T cells in the

adoptive transfer popliteal lymph node (PLN) assay and 2) the appearance of

metabolite-bound protein in PA-pulsed PMϕ, as determined by Western blot. Analysis

of five phase-I enzymes that might be responsible for HAPA formation by PMϕ pointed

to prostaglandin H synthase-2 (PGHS-2) as a likely candidate. Experimental evidence

that PA can be oxidized to HAPA by PGHS was obtained by exposing PA to PGHS in

vitro. The resulting metabolites were determined by mass spectral analysis and

covalent protein binding in ELISA, respectively. In vitro, PA exposure of PMϕ of slow

acetylator A/J and fast acetylator C57BL/6 mice failed to show significant strain

differences in enzyme mRNA expression, enzyme activities, or formation of HAPA-

related neoantigens. By contrast, after long-term PA treatment in vivo only in slow

acetylators the PMϕ harbored HAPA-related neoantigens and T cells were sensitized
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to them. PMϕ of fast acetylator C57BL/6 mice only contained HAPA-related

neoantigens and their T cells were only sensitized to them if, in addition to long-term

PA treatment, their donors had received injections of phorbol myristate acetate

(PMA), a known enhancer of oxidative enzymes in phagocytes. In conclusion, PA

treatment leads to N-oxidation of PA by enzymes, in particular PGHS-2, present in

antigen-presenting cells (APC) and, hence, to generation of neoantigens which

sensitize T cells. The enhanced neoantigen formation and T cell sensitization seen in

slow acetylators might be explained by their higher concentration of PA substrate that

is available for extrahepatic N-oxidation in APC.

Introduction

The antiarrhythmic drug procainamide (PA) is frequently associated with drug-

induced lupus, the pathogenesis of which is not understood (1-5). PA is an

arylamine, a class of compound widely used in industry and medicine and

notorious for its potential to cause allergy and autoimmunity (6) Arylamines can

be considered as prohaptens, i.e., before they can act as haptens that form

neoantigens and trigger adverse immune reactions, they first have to be

N-oxidized to chemically reactive hydroxylamines and nitroso derivatives (7-9).

The nitroso derivative of PA, nitroso-PA, is capable of covalent bonding to

(self-)proteins, whereas PA is not (10). The aqueous solution of the

hydoxylamine derivative of PA used in the present investigation actually

consists of hydroxylamino-PA (HAPA) and nitroso-PA, because a portion of the

former is readily oxidized to the highly reactive nitroso-PA, a compound that is

difficult to isolate because of its instability (5,7). For the sake of brevity, this

mixture is referred to as HAPAaq. In a previous paper, we showed that a single

injection of HAPAaq induced a specific T cell response in mice, whereas a

single injection of the prohapten PA failed to do so (11). Moreover, T cells from

mice sensitized against HAPAaq specifically reacted against homogenized

peritoneal cells of syngeneic animals that had received long-term PA treatment,

indicating that their peritoneal cells contained HAPA-related neoantigens

formed after metabolic conversion of PA to HAPA and nitroso-PA, respectively.

We will use the term HAPA-related neoantigens to describe hitherto unknown

neoantigens that must have been generated in the presence of HAPA and/or

nitroso-PA.
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Several groups of phase-I enzymes have been implicated in N-oxidation of

arylamines, in particular the cytochrome P4501A subfamily and cytochrome

P4502D6 (12,13), as well as peroxidases, such as myeloperoxidase (MPO) and

prostaglandin H synthase (PGHS), also termed cyclooxygenase (3). Cytochrome

P4501A2 and cytochrome P4502D6 are constitutively expressed in the liver. In

extrahepatic tissues, including macrophages and other immune cells, mainly

cytochrome P4501A1 is expressed (14-16). In neutrophils and monocytes, MPO

was shown to N-oxidize arylamine drugs, such as PA, to the reactive

hydroxylamine and nitroso derivatives (9,17,18). PGHS-1 is constitutively

expressed and present in nearly all cell types and tissues. In contrast, PGHS-2,

also termed inflammatory PGHS, is expressed only after induction, for instance

by LPS, and is confined to certain cell types, especially macrophages (19).

Whereas N-oxidation by PGHS of arylamines to reactive intermediates such as

nitroso derivatives has been described (20), it is unknown whether arylamines

can induce PGHS-2, thereby increasing their extrahepatic bioactivation. 

While N-oxidation converts arylamine prohaptens to haptens and thus

toxifies them, the competing N-acetylation pathway usually prevents, or retards,

formation of reactive metabolites (8). Due to genetic polymorphism of

N-acetyltransferase-2 (NAT-2) in both humans and mice, carriers of certain

alleles show reduced N-acetylation capacity for several arylamine substrates,

including PA (14,21). In humans, the slow acetylator phenotype is associated

with a higher incidence of extrahepatic adverse immune reactions to arylamine

drugs (22) and a more rapid development of PA-induced lupus (23) than the fast

acetylator phenotype. Consistent with this, in the previous paper (11) we

reported that PA treatment of mice for a period of 16 weeks led to the

appearance of HAPA-related neoantigens in peritoneal cells of the slow

acetylator, but not of the fast acetylator mouse strain studied.

However, it was not determined in the previous paper whether

macrophages were among the peritoneal cells carrying the HAPA-related

neoantigens and, if so, whether peritoneal macrophages (PMϕ) themselves had

generated them or whether these came from phagocytosis of proteins that were

modified by HAPA- or nitroso-PA generated by other cells. Moreover, it was

not investigated which enzymes might be involved in the N-oxidation of PA to

HAPA in macrophages and whether the HAPA-related neoantigens detectable

after chronic PA treatment of slow acetylators would, indeed, sensitize their

T cells. Here, using RT-PCR and tests of enzymatic activity for analysis of drug-
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metabolizing enzymes, and the murine popliteal lymph node (PLN) assay for

assessment of T cell sensitization (11,24), we tried to answer these questions.

We provide novel experimental evidence for 1) induction of PGHS-2 mRNA

expression and PGE2 synthesis in PA-treated PMϕ, 2) N-oxidation by PGHS of

PA to HAPA, 3) generation of HAPA-related neoantigens in PA-treated PMϕ, 4)

spontaneous T-cell sensitization to the HAPA-related neoantigens formed during

chronic PA treatment in vivo, and 5) the slow N-acetylator genotype as a

predisposing factor for in vivo generation of HAPA-related neoantigens and T

cell sensitization to them.

Materials and Methods

Mice   Specific pathogen-free female C57BL/6J mice and female A/J mice were purchased

from Harlan Olac Ltd. (Bicester, Oxon, UK). Animals were kept under specific pathogen-free

conditions until the onset of the experiments. They had free access to a standard diet (no.

1324, Altromin GmbH, Lage, FRG) and tap water and were 6 to 8 weeks-old at the onset of

the experiments. C57BL/6 mice are fast acetylators, whereas A/J mice are slow acetylators

(25).

Chemicals and media   PA, PMA, N-acetyl-PA, and casein were purchased from Sigma

Chemicals (Taufkirchen, Germany); PA was obtained as PA/HCl. HAPA was prepared as

previously described (7). In aqueous solution, HAPA undergoes spontaneous oxidation by

molecular oxygen with approximately 50% conversion to nitroso-PA in 30 min at room

temperature (7). We refer to the preparation of HAPA in pyrogen-free saline (0.9 %;

Fresenius AG; Bad Homburg, Germany) as HAPAaq here. 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD) was obtained at 99.9 % purity from Oekometrie (Bayreuth, Germany) and

kept as a stock solution in DMSO. Sterile, pyrogen-free phosphate-buffered saline (pH 7.2),

RPMI 1640 medium, FCS, penicillin, streptomycin, pyruvate, and non-essential amino acids

were purchased from Gibco (Eggenstein, Germany).

Preparation and cultivation of PMϕ   Prospective donors of PMϕ were injected ip (500 µL)

with sterile 6 % casein solution in distilled water (pH 7.4). Four days after the injection, mice

were killed by CO2 anesthesia and their cells collected by peritoneal lavage with 5 ml of ice-

cold phosphate-buffered saline (pH 7.2). Cells were washed and suspended in RPMI 1640

medium (supplemented with 10 % FCS, 200 IU penicillin/streptomycin, 2 mmol/500 mL of

L-glutamine, pyruvate, and nonessential amino acids) and cultured at a density of 1 x 106
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cells/mL in plastic tissue culture flasks (500 mL) (Greiner, Frickenhausen, Germany). After

20 h, nonadherent cells were removed by vigorous washing; about 90 % of adherent cells

were macrophages as determined by Pappenheim's stain.

PA treatment of PMϕ in vitro   After removal of nonadherent cells, PMϕ were incubated in

culture medium (see above) in the absence or presence of either 1 mM PA, 1 mM N-acetyl-

PA, 1 µg/mL LPS plus 25 U/mL IFN-γ, or 10 nM TCDD. After 48 h, PMϕ  were washed

extensively and used either for injection as antigenic material in the PLN assay, total RNA

extraction and RT-PCR analysis, or Western blot analysis. 

Preparation of homogenates of PA-treated PMϕ for use in the PLN assay   Once

incubation of PMϕ with PA was completed, cells were washed in phosphate-buffered saline

(pH 7.2) and harvested using a rubber policeman (Greiner). Cells (5 x 106 in 1 mL of

phosphate-buffered saline, pH 7.2) were stored in liquid nitrogen. Prior to injection, cells

were kept on ice and homogenized by ultrasonication (10 x 10 sec at 50 kHz) using a

Labsonic V 2000 (B. Braun Melsungen AG, Melsungen, Germany). Homogenized PMϕ (50

µL) were used, because live cells, when transferred, might produce immunomodulators, such

as PGE2 (19) , that could affect the transferred T cells or the recipient tissue in an antigen-

independent fashion and thus increase nonspecific background values in the PLN assay.

Direct PLN assay   The assay was performed as described (11,24). Test compounds were

dissolved in saline; homogenates of PMϕ (see above) were prepared in phosphate-buffered

saline (pH 7.2). On day 0, animals received a single sc injection (50 µL) of the test substance

into the left hindfoot pad. On day 6, mice were sacrificed, and the PLN from both the treated

and the untreated side were removed. Cell numbers in the individual PLN were counted using

a CASY 1 TT automatic counter (Schaerfe System, Reutlingen, Germany). The PLN cell

count index of each mouse was calculated by dividing the cell number obtained from the

treated side by that obtained from the control side of the same animal.

Treatment of T cell donors   Prior to the adoptive cell transfer, prospective T cell donors

were treated with either HAPAaq or PA according to one of the following protocols, as

reported previously (11). HAPAaq: At intervals of 2 days, mice received three sc injections

(100 µL) of either saline or 8 µmol HAPAaq at the base of tail. One day after the third

injection, their spleens were removed for preparation of T cells. PA: For a period of 16

weeks, one group of fast acetylator C57BL/6 mice received three sc injections (100 µL) a

week, each consisting of 16 µmol PA/ mouse. For the same period of time, another group of
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C57BL/6 mice received an i. p. injection of 100 µL PMA/mouse/week in addition to the PA

treatment. PMA was kept in a stock solution of 50 % ethanol/saline (1 mg/mL), and prior to

use it was diluted with saline to the final of 600 ng/100 µL. Age-matched controls received

the same number of injections consisting of saline (given sc) and PMA (given ip). Slow

acetylator A/J mice, which fail to tolerate repeated doses of 16 µmol PA (11), were treated

with three sc injections (100 µL) of 8 µmol PA/mouse/week, or of saline alone, over the same

period of time. Mice were killed and their spleens removed for T cell separation and adoptive

transfer one week after the last injection. 

Enrichment of donor T cells to be used for adoptive transfer   For preparation of T cells,

splenic B cells were removed from spleen cell suspensions by using a magnetic cell sorter

(MACS) (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany), as described (11). Minimal

purity of the resulting T cell population was 90 %, as determined by staining with FITC-

labeled anti-Thy1.2 mAb (Becton Dickinson, San Jose, CA, USA) and analysis in a FACScan

flow cytometer (Becton Dickinson). Staining of T cells with PE-labeled anti-L3T4 and anti-

Lyt-2 mAb (Becton Dickinson) yielded 50 ± 5 % CD4+ cells and 35 ± 4 % CD8+ cells.

Preparation of homogenates of peritoneal cells from PA-treated donor mice for use in

the adoptive transfer PLN assay   As described above for treatment of T cell donors (PA

protocol), mice were treated by three sc injections of PA or saline a week, and certain groups

of C57BL/6 mice received an additional, ip injection of PMA once a week. Two days after the

last injection, mice were killed by CO2 anesthesia and their peritoneal cells prepared by

peritoneal lavage as described for PMϕ. Collected peritoneal cells were counted and stored in

liquid nitrogen until use. Prior to injection the peritoneal cells were sonicated (5 x 107 cell in

1 mL phosphate-buffered saline, pH 7.2), as described for PMϕ.

Adoptive transfer PLN assay   This test system is suitable for detection of secondary T cell

responses to chemicals of low molecular weight (reviewed in (24)). It is based on the

principle that specific T cells exposed to a sensitizing compound in the donor animal will,

upon adoptive transfer to a syngeneic recipient, respond to small amounts of the sensitizer by

a secondary response. When both the transferred T cells and the immunogen to be tested are

injected locally, this response manifests itself in the draining PLN. The doses of sensitizing

agent used for elicitation of the secondary response do not suffice to elicit a primary PLN

response by the recipient mice. 

Splenocytes of T cell donor animals were prepared in phosphate-buffered saline (pH

7.2) and T cells enriched, as described above. Prior to transfer to syngeneic mice, donor
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T cells were irradiated (2000 rad) in vitro using a 137Cs source (Gammacell 2000,

Molsgaard, Denmark); this step served to decrease the nonspecific PLN reaction occasionally

seen after transfer to syngeneic recipients of unirradiated T cells from recently immunized

donors. On day 0, 1 x 107 irradiated splenic T cells in 50 µL phosphate-buffered saline (pH

7.2) were injected sc into the left hindfoot pad of syngeneic recipients. One day after the T

cell transfer, the mice received a sc injection (50 µL) of the compound to be tested into the

same hindfoot pad; these injections contained either 0.15 µmol of PA or HAPA dissolved in

saline (HAPAaq). Alternatively, the recipients were injected with 2.5 x 106 homogenized

peritoneal cells, or 2.5 x 105 homogenized PMϕ, prepared in phosphate-buffered saline (pH

7.2). On day 6, recipient mice were sacrificed, and the PLN cell count index of each mouse

was calculated as described for the direct PLN assay.

Reverse transcriptase-polymerase chain reaction (RT-PCR)   For each experiment,

peritoneal cells from 2 mice were pooled and PMϕ isolated by adherence as described above.

Total RNA was extracted from PMϕ and from liver tissue by modification of the single-step

method using TRIzolTM total RNA isolation reagent (Gibco BRL, Eggenstein, Germany)

according to manufacturer’s instruction, followed by digestion with Rnase-free Dnase I. For

cDNA synthesis, 1 µg total RNA was heated in a final volume of 10 µL with 2 µg

oligo(dT)15 primer for 5 min at 60 °C, chilled on ice, and reversely transcribed in a final

volume of 40 µL containing dNTP (1 mM of each), 8 µL 5x M-MLV buffer, 60 units RNase

inhibitor (Rnasin, Gibco BRL), 10 mM DTT, and 400 units M-MLV reverse transcriptase.

Samples were incubated for 1 h at 37 °C and subsequently denatured for 10 min at 70 °C.

PCR primers were synthesized with a 391 DNA synthesizer (Applied Biosystems,

Weiterstadt, Germany) and purified over NAP-5 columns (Pharmacia, Freiburg, Germany).

Primer sequences were from published sources or chosen using a primer selection program

(Oligo, National Biosciences, Plymouth, MN, USA), and are given in Table 1. PCR was

performed in a final volume of 50 µL as follows: 2.5 µL of RT reaction product was added to

a PCR mix comprised of 5 µL of 10 x PCR buffer, 200 µM of dNTP (Pharmacia, Freiburg,

Germany), 0.2 µM of each primer (sense and antisense), 2.5 units Taq DNA polymerase

(Boehringer), and 1 µCi [α-32P] dCTP (Amersham Buchler, Braunschweig, Germany).

Amplification was induced using a DNA thermal cycler (Hybaid-Omnigene, MWG-Biotech,

Ebersberg, Germany) with the following temperature profile: denaturation: 1 min at 94 °C

(first cycle: 4 min); annealing: 1 min (the temperatures are given in Table 1); extension: 1 min

at 72 °C (last cycle: 7 min). Amplification of cDNA in the linear range of the PCR reaction

was controlled by three different cycle numbers for one cDNA concentration. PCR products

were analyzed on 10 % polyacrylamide gels and visualized by autoradiography. For analysis
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the respective bands from the autoradiograms were scanned with an OmniMedia scanner

(Millipore, Ueberlingen, Germany). Values of enzyme transcription levels were correlated to

the expression of β-actin and are given as relative induction. To test the isolated RNA for

DNA contamination, 1 µg total RNA instead of synthesized cDNA was tested in the PCR

(negative control).

Table 1.   Primer Sequences for cDNA Amplification

Gene Primer sequences Annealing
temp. (°C)

Fragment
size (bp)

Cycle
no.

Reference

β-actin FP: CTACAATGAGCTGCGTGTGG

RP: TAGCTCTTCTCCAGGGAGGA

60 450 20 (51)

CYP1A1 FP: CCCACAGCACCACAAGAGATA

RP:

AAGTAGGAGGCAGGCACAATGTC

62 499 29 (51)

CYP1A2 FP: CAAAGACAATGGCGGTCTCA

RP: TCCCACTTGGCCGGGATCTC

58 515 21 (52)

NAT-2 FP: GGATTGTTTTTCTTGCCTTAG

RP: CATACTGCTCTCTTCTGATTT

52 535 30 (29)

PGHS-1 FP: ACCACTCGCCTCATCCTTAT

RP: GCACACGGAAGGAAACATAG

56 757 26 (53)

PGHS-2 FP: ATCCACAGCCTACCAAAACAG

RP: AACCTCACAGCAAAAACCTAC

52 1101 30 (54)

Determination of PGE2   The concentration of PGE2 in supernatants of cultured PMϕ (106

cells/mL) was assayed by a competitive enzyme immunoassay using monoclonal antibody to

PGE2 (Cayman Chemical, Ann Arbor, MI, USA). The lower detection limit of this assay is at

30 pg/mL.

MPO measurements   MPO activity in supernatants of cultured PMϕ (1 x 106 cells/mL) was

measured by an improved 3,3’,5,5’-tetramethylbenzidine (TMB) method using the liquid

substrate system (Sigma, Taufkrichen, Germany). As a positive control for MPO activity

supernatants of cultured bone marrow cells (1 x 106 cells/mL) were used. Briefly, 106

cells/mL were exposed (15 min at 37°C) to cytochalasin B (5 µg/mL) and fMet-Leu-Phe (10-

6 M) in RPMI 1640 without phenol red (Gibco). Resulting supernatants were assayed for

MPO activity as described (26).

HPLC determinations   PA (200 µM) was incubated with PGHS (113 units/mL; ovine

COX-1, specific activity 49005 units/mg; Cayman Chemical, Ann Arbor, Michigan) in the

presence of hematin (1 µM), phenol (2 µM) and either arachidonic acid (100 µM, Cayman
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Chemical) or hydrogen peroxide (0.2 mM) in 1 mL phosphate buffer (pH 7.7) for 30 min at

37°C. The mixture from 4 separate incubations was then applied to a Sep-Pak

(Chromatographic Specialties; Brockville, Ontario), washed with water, and then eluted with

methanol (10 mL). The methanol solution was evaporated with a stream of nitrogen and then

reconstituted by adding 0.3 mL of methanol. The 20 µL aliquots were analyzed by LC/MS.

The HPLC column was a Prodigy 5µ ODS(3) with dimensions of 2 X 100 mm (Phenomenex,

Torrance, CA), and the mobile phase consisted of water, acetonitrile, acetic acid (89:10:1,

v/v) containing 2 mM ammonium acetate with a flow rate of 0.2 mL/min and a splitter to

decrease the flow rate into the mass spectrometer of ~20 µL/min. The mass spectrometer was

a Sciex API III mass spectrometer (Perkin-Elmer, Sciex; Thornhill, Ontario) operated in the

Ion Spray mode and selected ion monitoring.

Production of anti-PA serum   PA (4.7 mg) was made reactive by dissolving it in

hydrochloric acid (1 N, 6 mL) and after cooling the solution in an ice bath, sodium nitrite (1.5

mg in 1 mL of water) was added dropwise with stirring over a period of 10 min. This solution

was then added dropwise to keyhole limpet hemocyanin (10 mg in 10 mL of 5 M phosphate

buffer, pH 9) with stirring and cooled in an ice bath. The pH of the solution was monitored

and sodium bicarbonate (20 %) was added as needed to keep the pH between 8.5 and 9. After

1 h the pH was adjusted to 7 with hydrochloric acid and after extensive dialysis it was

lyophilized. Polyclonal anti-PA- keyhole limpet hemocyanin antibodies were raised in a 2 kg

male, pathogen free New Zealand White Rabbit (Charles River Ltd., Quebec, Canada) housed

in the animal care facility at The Hospital for Sick Children, Toronto. After pre-immune

serum was obtained, each animal was immunized with the PA-keyhole limpet hemocyanin

conjugate (1 mg in 0.5 mL PBS emulsified with an equal volume of Freund's complete

adjuvant) sc at multiple sites. Injections with 500 µg PA-keyhole limpet hemocyanin in

Freund's incomplete adjuvant, divided into 6-8 sc sites, were repeated 4, 6, 8 and 12 weeks

after the initial immunization. Exsanguination under pentobarbital anesthesia was conducted

10 days after the final immunization. Blood was allowed to clot overnight at 4° C and then

centrifuged at 400 g. The serum was recovered and heat inactivated at 56° C for 30 min

before being aliquoted and stored at -20° C.

Covalent Binding of PA to PGHS   PA (100 µM) was incubated with PGHS (160 units) or

hematin (1 µM) in 0.4 mL of phosphate buffer pH 7.7, and H2O2 was added to make a final

concentration of 1 mM at 37° C. After 60 min 100 µL aliquots were plated into ELISA plates

(Costar, Cambridge, MA) and left at 4°C overnight. The plates were then emptied and washed

with ELISA wash buffer (10 mM Tris-HCl, pH 7.5, 154 mM NaCl, 0.5 % (w/v) casein and
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0.02 % (w/v) thimerosal). This wash was repeated 3 additional times. The plates were then

tapped dry and PA- keyhole limpet hemocyanin antiserum (100 µL diluted 1:1000) was added

to the plates which were then incubated for 3 h. The plates were washed 4 times with ELISA

wash buffer and tapped dry and then alkaline phosphatase-conjugated goat anti-rabbit IgG

(100 µL diluted 1:1000; Jackson Immunoresearch Laboratories, West Grove, PA) was added

and the plates were incubated for 2 h at room temperature. The plates were again washed 4

times with ELISA wash buffer and 2 times with PBS. A stock solution of methyl umbelliferyl

phosphate (10 mg/ml in DMSO) was diluted 1:100 in PBS, and 100 µL of this solution was

added to the wells and incubated for 10 min at room temperature. Fluorescence was then

measured with a Fluorescence Concentration Analyzer (Pandex, Mundelein, IL) set at

365/450 (excitation/emission).

Preparation of PMϕ for Western blot analysis   After incubation of C57BL/6 PMϕ  with

PA, N-acetyl-PA, or saline (see above), cells were resuspended in lysis buffer (PBS, 0.1%

Triton X-100) for 3 min on ice, vortexed for 1 sec and centrifuged at 10,000x g for 3 min to

separate cytoplasmic proteins and nuclei. Nuclei were then lysed in SDS-PAGE sample

buffer. 1 mM PA was added to one sample of saline-preincubated PMϕ lysate. Equal amounts

of cytoplasmic and nucleic cell equivalents were separated on SDS-polyacrylamid gels.

Western blot analysis   Cytoplasmic proteins or nuclear proteins of 1 x 106 cell equivalent

were separated on 8% SDS-PAGE (27). Electrophoretic transfer of proteins to nitrocellulose

filters (Hybond-C Super, Amersham), which were preincubated with 20% ethanol, 25 mM

TrisHCl, 192 mM glycine for 30 min, was performed with a semi-dry transfer apparatus

(Biorad). Nitrocellulose filters were blocked with 4% dried non-fat milk powder and 0.5%

Tween 20 in PBS (PBS-Tween), pH 8, for 1 h at room temperature. Rabbit anti-PA serum or

control serum was diluted 1:3,000 in PBS-Tween containing 4 % dried milk powder and

incubated for 1 h at room temperature. After 3 washes with PBS-Tween, filters were

incubated with goat anti-rabbit IgG (Dianova, Hamburg, Germany), diluted in PBS-Tween

containing 4% dried milk powder for 1 h at room temperature. Immunoreactions were

visualized on X-ray films by chemoluminiscence using the enhanced chemoluminescence

detection system supplied by Amersham.

Statistical analysis   Statistical analyses were performed by analysis of variance (ANOVA).

Assays were performed at least twice to ensure reproducibility.
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Results

Incubating PMϕ with PA in vitro rendered them immunogenic

Previous results have established that a single injection of PA is unable to

induce a primary PLN response in either fast acetylator C57BL/6 (11,28) or

slow acetylator A/J mice (11). To examine whether macrophages can convert the

non-sensitizing PA into a sensitizing metabolite, PMϕ were exposed to PA for

48 h in vitro. At a number of 5 x 106 cell equivalents, homogenates of PMϕ thus

treated induced a significant primary PLN response when compared to the

homogenates of untreated PMϕ (Fig. 1), suggesting a primary immune response

toward reactive PA metabolites generated in vitro by PMϕ. No difference

between slow and fast acetylator strains in the generation of the metabolite-

induced neoantigens was observed.

Using the adoptive transfer PLN assay, in the preceding study (11) we

found that synthetic, cell-free HAPAaq elicited a specific secondary response by

T cells from HAPAaq-primed donor mice. Here, we used the specificity of this

reaction as a probe to test if the T cell response to PA-treated PMϕ was due to

HAPA-related neoantigens. As shown in Fig. 2A, challenge of HAPAaq-primed

donor T cells with either HAPAaq or homogenized, PA-treated PMϕ elicited a

secondary response. A comparison of fast acetylator C57BL/6 mice and slow

acetylator A/J mice did not reveal a strain difference, suggesting that the PA-

oxidizing capacity of PMϕ from the two strains is similar, at least at the

saturating PA concentrations used in vitro. Challenge of T cells from saline-

treated donors with either HAPAaq or PA-treated PMϕ failed to induce a

Figure 1.   In vitro exposure of PMϕ to the
non-reactive PA generated neoantigens
capable of inducing a primary PLN reaction.
PMϕ were incubated for 48 h in the presence
of 1 mM PA (solid bars) or in culture medium
without PA (open bars). Subsequently, cells
were frozen and homogenized, and on day 0
syngeneic recipients were injected with the
indicated cell number equivalents of PMϕ
into a hindfoot pad. On day 6, mice were
sacrificed and the direct PLN assay was
performed. Data represent arithmetic means +
SD of 5 mice per group. (*p< 0.05; **p<
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0.01)
Figure 2. Capacity of in vitro PA-
exposed PMϕ to evoke a recall response
by HAPAaq-primed T cells. The adoptive
transfer PLN assay was used. Donor T
cells (1 x 107 cells/recipient) were adop-
tively transferred to syngeneic recipients
by sc injection into one hindfoot pad. One
day later, the transferred T cells were
challenged by injecting into the same
hindfoot pad either 2.5 x 105 homogenized
PMϕ (solid bars), or 0.15 µmol of either
PA or HAPAaq indicated in italics
(hatched bars) into the same hindfoot pad
of recipients. Prior to injection, PMϕ of
either strain were cultured for 48 h in the
absence (-) or presence of 1 mM PA. Data
represent arithmetic means + SD of 5 to 7
mice per group; asterisks indicate
significant differences between each of the
the groups indicated by solid bars and
hatched bars, respectively (**p< 0.01;
***p< 0.001). (A) Prospective T cell
donor mice of C57BL/6 and A/J strain
were primed by s. c. injections of
HAPAaq (three dorsal injections of 8
µmol HAPA in saline). (B) T cell donor

mice were treated with saline alone.

statistically significant increase of the PLN cell count index (Fig. 2B). This
finding shows that PMϕ of both strains had generated HAPA-related
neoantigens in vitro and, hence, provides indirect evidence for HAPA formation
by these cells.

Effect of PA exposure on inducibility of arylamine-metabolizing enzymes in

PMϕ

The experiments described above provided evidence that PMϕ of slow and fast

acetylator mice themselves can generate the reactive PA metabolite. In the next

series of experiments, we tested whether enzymes capable of N-oxidizing or

N-acetylating arylamines are differentially induced during exposure of PMϕ of
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slow and fast acetylator mice to PA. For this purpose, mRNA expression levels

Figure 3. Enhancing effect of PA on PGHS-2 mRNA level in and PGE2 secretion by
PMϕ exposed in vitro. (A) Detection by RT-PCR of mRNA expression of PGHS-1 and
PGHS-2. PMϕ (1 x 106 cells/mL) remained untreated or were exposed for 48 h to 1 mM PA
or 1µg/mL LPS plus 25 U/mL IFN-γ, as indicated. β-actin mRNA expression by PMϕ was
studied for control. Radioactive PCR products were seperated on 10% polyacrylamide gels
and visualized by autoradiography. (B) Relative changes in mRNA levels of PGHS-2, as
quantified by densitometry. Results are given as band intensity ratios of PCR products of
PGHS-2 divided by β-actin for untreated PMϕ (open bars), PMϕ exposed to 1 mM PA (solid
bars), or 1µg/mL LPS plus 25 U/mL IFN-γ (cross-hatched bars). (C) Secretion of PGE2 by
PMϕ in vitro. After 48h of treatment, supernatants were removed and assayed for PGE2
levels. Results shown in (B) and (C) represent arithmetic means + SD obtained from three
independent cultures of PMϕ. Asterisks indicate significant differences compared to the
control culture (open bars) of the respective mouse strain (*p< 0.05; **p< 0.01; ***p< 0.01).

of PGHS isoforms, cytochrome P4501A isoforms, and NAT-2 were determined

by RT-PCR. In addition, enzymatic activity of MPO and PGHS were monitored,

PGHS activity being measured by determination of PGE2.

Exposure of PMϕ to 1 mM PA for 48 h led to a 2-fold increase in PGHS-2

mRNA levels (Figs. 3A and 3B ) and a 1.5-fold increase in PGE2 secretion (Fig.

C
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3C) when compared with untreated PMϕ. In order to assess

 
Figure 4. Effect of PA on mRNA levels of cytochrome P4501A1 and cytochrome
P4501A2 of PMϕ exposed in vitro. (A) Detection by RT-PCR of mRNA expression. PMϕ
remained untreated or were exposed for 48h to 1 mM PA, or to 10 nM TCDD. β-actin mRNA
expression was studied for control. mRNA detection was performed as described in the
legend to Fig. 3. (B) Relative changes in mRNA levels of cytochrome P4501A1 as quantified
by densitometry. Results are given as band intensity ratios of PCR products of cytochrome
P4501A1 divided by β-actin for untreated PMϕ (open bars), PMϕ exposed to 1 mM PA (solid
bars), or 10 nM TCDD (cross-hatched bars).

maximal inducibility of the enzyme during the 48 h culture period, PMϕ were

exposed to 1 µg LPS plus 25 U IFN-γ. mRNA levels of PGHS-2 in PMϕ thus

treated and the concentration of PGE2 in their supernatants were increased 1.5 to

2-fold when compared with PA-exposed PMϕ and 3 to 4-fold compared with

untreated cells. In PMϕ of C57BL/6 mice basal and inducible expression of

PGHS-2 mRNA and PGE2 were elevated compared to A/J mice. Exposure of

PMϕ to PA had no detectable effect on the mRNA level of the constitutively

expressed isoenzyme PGHS-1 (Fig. 3A). In control experiments with liver tissue
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of untreated mice of both strains

constitutive expression of PGHS-1

mRNA was detectable, whereas PGHS-

2 mRNA was not expressed (Fig. 3A).

Figure 5.   Comparing the induction of MPO
activity in bone marrow cells and PMϕ. Cells
(1 x 106 cells/mL) were either cultured in
medium only (open bars), in the presence of

1 mM PA (solid bars), or in the presence of 1 µg/mL LPS plus 25 U/mL IFN-γ (cross-hatched
bars). After 48 h, supernatants were removed and assayed for MPO activity. Results represent
arithmetic means + SD of three independent experiments. Asterisks
indicate significant difference compared with
 the control culture (open bar) of the respective
 cell type and mouse strain (**p< 0.01).

Next, we tested the effect of in vitro PA exposure of PMϕ on mRNA

expression of cytochrome P4501A1 and cytochrome P4501A2, two candidates

for bioactivation of arylamines to reactive species, showing overlapping

substrate specificity. Relatively low expression of cytochrome P4501A1 mRNA

was detected in untreated PMϕ and PA-exposed PMϕ, as opposed to the

vigorous induction seen after exposure to 10 nM TCDD (Fig. 4). No strain

differences were observed between C57BL/6 and A/J mice with regard to

inducibility of cytochrome P4501A1 mRNA by PA and TCDD, respectively. As

expected, cytochrome P4501A2 mRNA was clearly expressed in liver tissue of

untreated mice. In PMϕ, exposure to 1 mM PA or 10 nM TCDD failed to induce

detectable cytochrome P4501A2 mRNA expression (Fig. 4).

We extended the analysis of enzymes that might be responsible for PA

oxidation in PMϕ by measuring MPO activity in supernatants of cultured PMϕ
(Fig. 5). Bone marrow cells were chosen to positively control the assay system,

because they are rich in MPO-positive cells, such as granulocytes and

monocytes. We found that basal MPO activity in supernatants of bone marrow

cells was 2- to 3-fold higher than that of PMϕ and that no significant strain

difference was detectable between A/J and C57BL/6 mice. Whereas exposure to

LPS plus IFN-γ failed to affect the MPO activity of PMϕ, in bone marrow cells

this in vitro treatment induced a 2.5-fold increase in MPO activity. PA, however,

failed to induce MPO in either cell type. The enzyme NAT catalyzes N-

acetylation of arylamines, such as PA (21,29). In vitro exposure of PMϕ to PA
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had no significant effect on the expression of NAT-2 mRNA in either strain

tested (Fig. 6).

Figure 6. Effect of PA on mRNA levels of NAT-2 in PMϕ in vitro. (A) Detection by RT-
PCR of mRNA expression. PMϕ were treated as described in the legend to Fig. 3. (B)
Relative changes in mRNA levels of cytochrome P4501A1 as quantified by densitometry.
Results are given as band intensity ratios of PCR products of NAT-2 divided by β-actin for
untreated PMϕ (open bars), PMϕ exposed to 1 mM PA (solid bars), or 10 nM TCDD (cross-
hatched bars). Asterisks indicate significant differences compared to the control culture (open
bars) of the respective mouse strain (***p< 0.01).

Table 2.   N-oxidation of PA and covalent binding to PGHS

Constituents of the incubation mixture prior to assaya

PA PA PA PA -
PGHS PGHS Albumin Albumin Albumin
Arachidonic - Hematin - Hematin
acid / H2O2 - H2O2 H2O2 H2O2

Formation of 0.0183 ± 0.003 < 0.001 n.d. n.d. n.d
HAPAb (µM)

Covalent bindingc 37,108 ± 1,572 2,749 ± 160 41,794 ± 1,369 5,991 ± 1,015 2,064 ± 30
(fluorescence365/450)
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a Values represent mean ± SD, b Determined by mass spectroscopy, c Determined by ELISA

Taken together, analysis of arylamine-metabolizing enzymes in PMϕ in

vitro revealed that under the experimental conditions used 1) no significant

differences between strains C57BL/6 and A/J were detectable and 2) out of the

five N-oxidizing enzymes tested only PGHS-2 was inducible by PA.

PGHS is able to N-oxidize PA

The combination of PGHS and either arachidonic acid or hydrogen peroxide

oxidized PA to HAPA and nitro derivatives. Under the HPLC conditions

described in the Methods section, the retention time of HAPA was 1.5 min and

that of the nitro derivative was 6.7 min. There was another peak in the ion

current at m/z 252 with a retention time of 2.5 minutes; we suspect that this is

the N-oxide of the tertiary amine, but this was not confirmed. As shown in Table

2, the concentration of HAPA in the incubations (n = 4) was 0.0183 ± 0.003 µM,

while the level in the controls in which arachidonic acid was omitted from the

incubation was less than 0.001 µM. The formation of HAPA was dependent

upon both PGHS and either arachidonic acid or hydrogen peroxide. The identity

of HAPA was confirmed by MS/MS and comparison with the MS/MS of

synthetic hydroxylamine: the major fragments were at m/z 179, 162, and, 136

with smaller peaks at m/z 120 and 100. The peak due to HAPA also disappeared

on addition of NaOH (to raise the pH above 10) which is characteristic of the

hydroxylamine (30).

Covalent binding of metabolized PA

As shown in Table 2, PA was found to covalently bind to PGHS. The ELISA

fluorescence from 3 experiments was 37,108 ± 1,572 while that of the control in

which H2O2 was omitted from the incubation was found to be 2,749 ± 160. In

order to make sure that the oxidation was not due simply to H2O2, another set of

incubations was performed in which PGHS was replaced by bovine serum

albumin (20 mg); in this case no significant binding ensued (fluorescence =

5,991 ± 1,015). However, the combination of hematin and H2O2 did lead to

covalent binding of PA to the albumin (fluorescence = 41,794 ± 1,369). We
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conclude that incubation of PA with

PGHS or hematin results in the

cooxidative activation of PA to a

metabolite capable of covalent binding

to protein.

Figure 7.   Neoantigen formation in PA-treated
PMϕ. The cytoplasmic fraction of PMϕ
preincubated with either 1 mM PA (lane 1, 2
and 6), saline (lane 3 and 4), or 1 mM N-acetyl-
PA (lane 5) were analyzed for neoantigen

formation. After homogenization, one of the saline control fractions was incubated with PA
(lane 4). The PA preincubated cell-lysates were stained with anti-PA serum (lane 1), anti-PA
serum blocked with 4 mM PA (lane 2) or control serum (lane 6). Lanes 3, 4 and 5 were
stained with anti-PA serum. 

Neoantigen formation in PA-treated PMϕ

As shown in Fig. 7, the cytoplasmic fraction of PA-preincubated PMϕ (lane 1)

gave a distinct band at 35 kD when stained with antiserum against PA, but no

band when stained with control antiserum (lane 6). In the nuclear fraction, no

band was seen (data not shown). Blocking of the anti-PA serum with 4 mM PA

prior to staining in Western blot inhibited detection of the band at 35 kD (lane

2). Neither incubation of the PMϕ  with saline (lane 3) or N-acetyl-PA (lane 5),

nor incubation of homogenated PMϕ with PA (lane 4) showed a band at 35 kD.

These results indicate that a putative neoantigen was formed after in vitro

incubation of live PMϕ  with PA.

Chronic PA treatment sensitized T cells to HAPA-related neoantigens in

slow, but not in fast acetylator mice

In a previous investigation, we found that PA treatment of slow acetylator A/J

mice over a period of 4 months led to the formation of HAPA-related

neoantigens detectable in peritoneal cells, whereas peritoneal cells of chronically

PA-treated fast acetylator C57BL/6 mice failed to contain these antigens (11).

Here, we asked whether the HAPA-related neoantigens induced by chronic PA

treatment had sensitized T cells in vivo. Therefore, T cell recall responses were

analyzed in the adoptive transfer PLN assay. Two types of antigen were used for
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T cell challenge: 1) cell-

free, synthetic HAPAaq
for control, and 2)

peritoneal cells from

syngeneic mice

chronically treated with

Figure 8.   Evidence for
generation of and T cell
priming to HAPA-related
neoantigens during long-
term PA treatment of slow
acetylator A/J mice; in fast
acetylator C57BL/6 mice
additional treatment with
PMA was needed for these
effects. T cell sensitization to
HAPA-related neo-antigens,
as detectable in peritoneal
cells of PA-treated animals,
was demonstrated by HAPA-
specific recall responses in
the adoptive transfer PLNA.
Data represent arithmetic
means + SD obtained from 5
to 7 mice per group; asterisks
indicate significant differen-
ces between each of the two
groups indicated by solid and
hatched bars, respectively
(*p < 0.05; ***p < 0.01).
(A) Priming: T cell donor mice received three weekly sc injections of PA (8 µmol for A/J
mice, and 16 µmol for C57BL/6 mice) over a period of 16 weeks. One group of C57BL/6
donors received an additional weekly ip injection of 600 ng PMA (PA + PMA). On day 0,
107 donor T cells were transferred to each syngeneic recipient. Challenge: One day after the
T cell transfer, each recipient mouse received 5 x 105 homogenized peritoneal cells (solid
bars) or 0.15 µmol of either PA or HAPAaq indicated in italics (hatched bars). Donors of
peritoneal cells received either saline (-), saline (-) plus PMA, PA plus PMA, or PA only over
a period of 16 weeks, as described above and indicated under the solid bars. (B) Priming: T

cell donor mice of the A/J strain received three weekly sc injections of saline over a period of 16

weeks. For C57BL/6 T cell donors, this schedule of saline injections was supplemented by an

additional weekly ip injection of 600 ng PMA (saline + PMA). On day 0, 107 donor T cells were

transferred to each syngeneic recipient. Challenge: This was performed as decribed under (A).
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PA. As shown in Fig. 7A, T cells from chronically PA-treated A/J donors

reacted against both types of antigen, indicating T cells were primed to HAPA-

related neoantigens formed in the slow acetylator strain during chronic PA

treatment. By contrast, in fast acetylator C57BL/6 mice chronic PA treatment

failed to prime T cells to HAPA-related neoantigens, even though double the

amount of PA was administered compared to slow acetylator A/J mice.

Lack of T cell sensitization to HAPA-related neoantigens in fast acetylator

mice was abrogated by additional PMA treatment

The lack of T cell sensitization in chronically PA-treated fast acetylator

C57BL/6 mice was abrogated by additional weekly injection of 600 ng

PMA/mouse (Fig. 8A); the latter is known to stimulate oxidizing enzymes, such

as PGHS and myeloperoxidase, in vivo (31). For successful T cell recall,

bothcell-free HAPAaq and peritoneal cells from C57BL/6 mice chronically

treated with PA plus PMA could be used. Such peritoneal cells contain HAPA-

related neoantigens, as previously described (11). In contrast, T cells from saline

plus PMA-treated donors failed to give a statistically significant response to any

of the materials indicated (Fig. 8B). 

Discussion

Most investigators (1-3,11) agree that in the complex pathogenesis of PA-

induced lupus a first, pre-immunologic step apparently consists of N-oxidation

of PA to the reactive intermediates HAPA and nitroso-PA, respectively. As to

the nature of the second step, our group proposed the hypothesis (11) that this

may consist of T cell sensitization to neoantigens which are formed by these

metabolites and presented by APC, such as macrophages. The structure of these

metabolite-induced neoantigens has not yet been identified. As far as the cell

type that generates reactive PA metabolites is concerned, polymorphonuclear

phagocytes and monocytes were found capable of doing so (11,17), and in view

of the results of the present investigation the same can be said about

macrophages. Therefore, monocytes and macrophages could serve as a

connecting link between the first, drug-metabolizing and the second, T cell-

sensitizing step. Consistent with the hypothesis (11), our results indicate that

T cells of slow acetylator A/J mice undergoing chronic treatment with the parent
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compound PA were sensitized to HAPA-related neoantigens, as detectable in

peritoneal cells of these animals. At the present time, we do not have data to

show that these T cells reacting to HAPA-related neoantigens are, indeed, able

to produce autoimmune disease.

With respect to the pre-immunologic step, we analyzed five different

phase-I enzymes in mouse PMϕ that could be implicated in N-oxidation of

arylamines, such as PA. Apart from PGHS-2, PA exposure of PMϕ did not alter

mRNA expression or activity of the enzymes tested. In the case of PGHS-2, PA

exposure led to enhanced mRNA expression and an increase in

PGHS-dependent formation of PGE2. It is known that during prostaglandin

biosynthesis the peroxidase activity of PGHS reduces the endoperoxide-

hydroperoxide substrate PGG2 with electrons derived from oxidation of

cosubstrates. The latter may be exogenous ones, such as arylamines (20,32,33).

That PGHS, indeed, can N-oxidize PA was demonstrated by our finding that

incubation of PA with ovine PGHS yielded HAPA and led to covalent binding. 

In mice treated with TCDD an increase in mRNA levels of PGHS-2, but

not of PGHS-1, was detected in lung and spleen (34). These observations are in

line with our findings: exposure of PMϕ to PA was found to induce PGHS-2

mRNA and a corresponding increase in PGE2 levels, but did not affect PGHS-1.

Both, TCDD and PA increase PGHS activity by induction of PGHS-2, but

unlike PA, TCDD does not serve as a substrate for metabolic conversion by

PGHS isoenzymes. Our results indicate that the arylamine PA can induce

PGHS-2 in macrophages and, moreover, that the enhanced PGHS activity in

these cells may account for, or contribute to, N-oxidation of PA and, hence,

generation of HAPA-related neoantigens. Western blot analysis of PA-treated

macrophages revealed formation of putative neoantigens. Since cell-lysates

incubated with PA did not lead to covalent binding, we conclude that

metabolism of PA is required for the formation of these neoantigens. 

Generally, N-oxidation of arylamines can also be carried out by

cytochrome P450 enzymes, including those of the cytochrome P4501A family

(35). A recent investigation with human liver microsomes showed though that

N-oxidation of PA is mainly due to the non-inducible cytochrome P4502D6

(12); in mice, however, the metabolizing activity of this enzyme was found to be

low compared to rats and humans (36). Consistent with findings in humans (14),

we were unable to detect expression of cytochrome P4501A2 mRNA in mouse

PMϕ. Cytochrome P4501A1, however, is expressed in extrahepatic tissues,
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including macrophages (14-16). Unlike TCDD, a known inducer of cytochrome

P4501A1, PA failed to enhance cytochrome P4501A1 (37) expression in PMϕ
cultured in vitro. Another enzyme known to be capable of N-oxidizing PA is the

MPO of neutrophils and monocytes (9,17). However, confirming a previous

report in the literature (38) we found that the basal activity of MPO in PMϕ is

relatively low and thus differs from that seen in mouse bone marrow cells.

Moreover, incubation of PMϕ with either PA or LPS plus IFN-γ failed to

augment MPO activity, but did augment PGHS-2 activity in these cells. In

conclusion, while PA exposure did not enhance enzyme activity or expression of

either MPO or a member of the cytochrome P4501A family, we cannot rule out

involvement of these enzymes in the N-oxidation of PA either.

Our results show that in vitro PA exposure of PMϕ from both slow and

fast acetylator mice did not alter their NAT-2 mRNA expression, and they

strongly suggest that N-oxidation of PA can take place in PMϕ of both strains

(Fig. 2). Likewise, no differences in N-oxidation were detected between slow

acetylator A/J and fast acetylator C57BL/6 mice, when murine mononuclear

leukocytes were exposed to the arylamine 2-aminofluorene in vitro and DNA

adduct formation was used as indicator of arylamine N-oxidation, even though

C57BL/6 monocytes were 10-fold more active in N-acetylation (39).

Admittedly, our data obtained by the adoptive transfer PLN assay do not allow a

quantitative comparison of HAPA formation by PMϕ of the fast and slow

acetylator mouse strains used. Considering these limitations of detection

method, the available results suggest that with the saturating substrate conditions

used in vitro, macrophage-based N-oxidation of PA to HAPA or nitroso-PA was

not affected by genetic differences in N-acetylation.

Since the capacity of fast N-acetylation does not prevent N-oxidation of

PA by macrophages, what then can explain the lower risk for development of

adverse immune reaction to PA and other arylamines observed in fast acetylator

men and mice (2,11,21,22,40)? We propose that their lower risk is due to a

lower concentration of PA available as substrate for extrahepatic N-oxidation by

cells such as macrophages. Unlike slow acetylators, fast acetylators do not

readily build up a serum concentration of PA that provides sufficient substrate

for extrahepatic HAPA formation and, hence, for reaching the minimal number

of identical neoantigens on APC required for T cell activation. This hypothesis

is illustrated in Scheme 1, and it is based on the following three lines of

evidence. First, in chronically PA-treated fast acetylator C57BL/6 mice



Chapter 4 89

peritoneal cells failed to contain HAPA-related neoantigens (11) and their T

cells failed to be sensitized to these antigens (Fig. 8A). In chronically PA-treated

slow acetylator A/J mice, peritoneal cells did contain HAPA-related neoantigens

(11) and T cells were sensitized to them (Fig. 8A), even though they had

received only half the PA dose of that given to fast acetylator C57BL/6 mice.

Second, in human fast acetylators the incidence of PA-induced lupus was equal

to that seen in slow acetylators, when identical serum levels of PA were

maintained in both groups (41). Third, in fast acetylator C57BL/6 mice,

enhancing the rate of extrahepatic N-oxidation of PA could compensate for their

high rate of N-acetylation. This statement is based on our observations that PMA

stimulation of chronically PA-treated fast acetylator C57BL/6 mice sufficed 1)

to induce in vivo formation of HAPA-related neoantigens (11) and 2) to

spontaneously sensitize HAPA-specific T cells in vivo (Fig. 8A). Since PMA

activates many oxidizing enzymes, such as PGHS and MPO, via the protein

kinase C pathway (42), cells located at multiple sites of the body might be

involved in enhanced HAPA formation and presentation of HAPA-related

neoantigens. Besides the proposed enhancing effect on PA oxidation PMA was

shown to downregulate induction of cytochrome P4501A1 in the liver of

C57BL/6 mice (43,44). Downregulation of a potential PA metabolizing enzyme

in the liver may contribute to higher extrahepatic PA levels and thus enhance

extrahepatic HAPA formation. Interestingly, PMA has been reported to

stimulate de novo synthesis of PGHS-2 in cultured murine fibroblasts, human

monocytes, and rat and human epithelial cells (19,45,46). This suggests that the

enhancing effects of adjunct PMA treatment on neoantigen formation and T cell

sensitization, which were observed in the previous (11) and the present

investigation performed in vivo, also were due to upregulation of PGHS-2.

In addition to the pathogenic concept of PA-induced lupus developed in

the present paper (see Scheme 1), two other concepts are currently discussed for

the second, immunologic step of the disease. Richardson and coworkers (4)

assume a direct, autoimmunizing effect of PA on preactivated CD4+ T cells,

irrespective of the specificity of their T cell receptor for antigen. PA treatment

would enable the T cells to proliferate in response to normal APC, not treated

with the drug or pulsed with antigen. In contrast, the concept of Rubin and

coworkers (5), like our concept, is based on metabolic conversion of PA to

HAPA. They found that injection of HAPA into the thymus of normal mice
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Scheme 1.   Scheme depicting the initial metabolic and immunogenic steps thought to be
involved in the pathogenesis of PA-induced lupus. Two compartments of the body are shown,
the liver and extrahepatic tissues. In the latter, two types of cell are presented, a macrophage
and a T helper-2 (Th2) cell. In essence, the hypothesis postulates that due to conversion into
the reactive metabolites HAPA and nitroso-PA (not shown) neoantigens are generated and
presented by APC, such as macrophages, which are recognized by specific T cells and
activate them. The T cells then would secrete cytokines and thus activate other cells,
including autoreactive B cells (not shown), in a fashion analogous to chronic graft-versus-
host reaction in mice (47,51).

In the liver, PA can be either converted into N-acetyl-PA or HAPA (not shown).
Hepatic HAPA probably is not a sensitizing agent as the liver is rich in detoxifying
mechanisms and, moreover, relatively poor in APC. Consistent with this, hepatitis is not part
of PA-induced lupus. Due to expression of a defective NAT-2 in slow acetylators, their
hepatic elimination of PA via the nonreactive metabolite N-acetyl-PA is reduced (1); this
defect increases the amount of substrate available for extrahepatic PA metabolism (2). 

Extrahepatic N-oxidation of PA can be mediated by a variety of different enzymes (3).
One of them is PGHS-2, which is present in monocytes and macrophages and, perhaps, other
types of APC and wihich can be induced by PA. In monocytes and macrophages, N-oxidation
of PA to the protein-reactive, haptenic species HAPA and nitroso-PA (not shown) can lead to
presentation of HAPA-related neoantigens and subsequent T cell sensitization (4). In slow
acetylators, the concentration of extrahepatic PA (2) is high enough to readily evoke
sufficient generation of HAPA-related neoantigens by APC and, hence, sensitization of T
cells. In fast acetylators, effective N-acetylation of PA in the liver (1) decreases the amount of
PA available for extrahepatic N-oxidation (2). As a consequence, extrahepatic formation and
presentation of HAPA-related neoantigens is suboptimal or remains even below the threshold
required for activation of neoantigen-reactive T cells. Activation of oxidative enzymes in
phagocytes, for instance by PMA (5), enhances extrahepatic N-oxidation of PA and, hence, T
cell sensitization to HAPA-related neoantigens (4). PA-induced expression of PGHS-2 and
the subsequent increase in PGE2 release might shift the T cell response to HAPA-related
neoantigens towards a Th2-like cytokine pattern (6).

induced formation of autoantibodies to histones (H2A-H2B) similar to those

seen in PA-induced lupus in humans. They suggest that a loss of central T cell

tolerance to chromatin underlies autoimmunity in PA-induced lupus, since

chromatin-reactive T cell responses were detected in the spleen and in thymus

organ culture after exposure to HAPA ex vivo. While all three models conceive

a central role of T cells in PA-induced lupus, ours is the only one that considers

drug-induced neoantigens as the trigger for T cell activation, analogous to the

situation seen in SLE-like disease induced by chronic graft-versus-host reaction

in mice (47).

Finally, it is noteworthy that the observed induction of PGHS-2 by PA in

macrophages can have two different effects, each of which could contribute to
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the induction of PA-induced lupus (11,48). First, PGHS-2 may account for, or

contribute to, the observed generation of HAPA-related neoantigens in

macrophages, as discussed. Second, the PA-induced stimulation of PGHS-2 in

macrophages enhances the production of PGE2, as shown in the present

investigation. PGE2 released from macrophages, in turn, could skew the T cell

response to HAPA-related neoantigens towards a Th2-like cytokine secretion

profile (49,49). In this way, PGE2 itself might be involved in the pathogenesis

of PA-induced lupus, because human SLE (50) as well as the SLE-like disease

induced by chronic graft-versus-host reaction in mice (47,51) are dominated by

Th2 cytokines.
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CHAPTER 5

T Cells Ignore Aniline, a Prohapten, but Respond to its Reactive

Metabolites Generated by Phagocytes: Possible Implications for the

Pathogenesis of Toxic Oil Syndrome

Marty Wulferink, José González, Carsten Goebel, and Ernst Gleichmann

The most basic arylamine, aniline, belongs to a class of compound notorious for

inducing allergic and autoimmune reactions. In 1981 in Spain, many people

succumbed to the toxic oil syndrome (TOS), a disease caused by ingestion of cooking

oil contaminated with aniline. Indirect evidence points towards an immune

pathogenesis of TOS driven by T lymphocytes, but it is unclear to which antigens these

cells could react. Here, using the popliteal lymph node (PLN) assay in mice, we

analyzed the sensitizing potential of aniline, its metabolites, and some of the aniline-

coupled lipids detected in the contaminated cooking oil. Whereas aniline itself and its

non-protein-reactive metabolites nitrobenzene, p-aminophenol and N-acetyl-p-

aminophenol, failed to elicit PLN responses, its reactive metabolites nitrosobenzene

and N-hydroxylaniline did. The aniline-coupled lipids, namely linoleic anilide and

linolenic anilide, and a mixture of fatty acid esters of 3-(N-phenylamino)-1,2-

propanediol, all implicated in TOS, induced significant PLN responses, whereas the

respective aniline-free lipids, linoleic acid, linolenic acid, and triolein did not. Hence,

the aniline moiety plays a crucial role in the immunogenicity of the aniline-coupled

lipids of TOS. PLN responses to the reactive aniline metabolites and the one aniline-

coupled lipid tested, linolenic anilide, were T cell-dependent. Secondary PLN

responses to nitrosobenzene were detectable not only after priming with
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nitrosobenzene, but, in some experiments, also after priming with linolenic anilide.

This suggests that the aniline moiety was cleaved from the aniline-coupled lipid and

metabolized to the intermediate nitrosobenzene that generated the prospective

neoantigens. Consistent with this, in lymphocyte proliferation tests in vitro, T cells

primed to nitrosobenzene reacted in anamnestic fashion to white bone marrow cells

(WBMCs) pulsed with aniline. Hence, we propose that aniline is a prohapten that can

be metabolized by WBMCs, which form neo-antigens that are recognized by T cells.

The possible significance of these findings for the pathogenesis of TOS is discussed.

Introduction

Aniline is industrially synthesized on a large scale as the parent compound for a

variety of different arylamines including various drugs and dyes. Occupational

poisoning by aniline was common in the past (1), and exposure to aniline still

occurs today. Both acute toxicity, characterized by methemoglobinemia and

hemolytic anemia, and carcinogenic effects due to chronic aniline exposure have

been studied in detail (2-4). With respect to the immune system, aniline itself is

not known to induce adverse immune reactions in humans. In contrast, aniline

derivatives, which possess a functional group in para-position to the amine

group and, hence, are called para-compounds, are notorious for inducing

allergic and autoimmune reactions (5,6). Examples of such para-substituted

aniline derivatives are p-phenylenediamine, sulfonamides, and procainamide,

which can induce allergic contact dermatitis (7), agranulocytosis (8), delayed-

type hypersensitivity associated with multiorgan toxicity (9), and drug-induced

lupus (10), respectively. For two reasons the sensitizing potential of aniline

deserves to be studied in detail: first, the well-known sensitizing potential of the

above-mentioned arylamines, and second, the occurrence of the toxic oil

syndrome (TOS), a mass poisoning occurring in Spain that affected more than

20,000 people after consuming rapeseed oil contaminated with aniline (11). 

Fatty acid anilides and fatty acid esters of phenylamino-propanediol

(PAP), detected as abnormal compounds in case-related samples of toxic oil,

have been incriminated as etiologic agents of TOS (12,13). Clinical features

such as eosinophilia, elevated serum IgE, and signs and symptoms of systemic

autoimmune disease point towards an immune pathogenesis of the syndrome

(14). This was further corroborated by the detection of T cell infiltrates in the

affected tissues and of increased levels of soluble interleukin-2 receptor in the
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serum of TOS patients (14). It has been proposed (15) that graft-versus-host-like

reactions of T lymphocytes were involved in the pathogenesis of TOS. This

concept implies that neoantigens induced by the aniline-contaminated oil were

displayed by antigen-presenting cells (APC) and recognized by T cells. Classical

T cells, bearing an αβ-T cell receptor, are unable to recognize small molecular

weight compounds per se, but are able to react to them when bound to proteins,

more exactly peptides presented by molecules of the major histocompatibility

complex (16). Therefore, it is conceivable that in TOS patients T cells reacted to

self-peptides which were haptenated by the etiologic agent of the disease.

Considering that the aniline-coupled lipids implicated in TOS are neither

proteins nor protein-reactive and that their metabolic pathway is unknown, it is a

difficult task to test whether the derivatives of the aniline-coupled lipids can

haptenate self-proteins so that they are recognized by T cells. Therefore, we

decided first to study the aniline moiety per se for its potential to act as a hapten.

More specifically, we asked whether aniline can be considered a prohapten that

can be metabolized by phagocytic cells into a protein-reactive hapten capable of

sensitizing T cells. The knowledge gained from this approach was then applied

to probe the T cell-sensitizing potential of synthetic aniline-coupled lipids

implicated in TOS.

Materials and Methods

Mice   Female C57BL/6J, B10.S, BALB/c, BALB/c nu/+, and BALB/c nu/nu mice were

purchased from Harlan Winkelmann GmbH (Borchen, Germany). Animals were kept under

specific pathogen-free conditions and had free access to a standard diet (Ssniff Spezialdiäten

GmbH, Soest, Germany) and tap water. They were six to ten weeks of age at the onset of the

experiments. C57BL/6J mice were used, unless stated otherwise.

Chemicals   Aniline, nitrosobenzene, nitrobenzene, p-benzoquinone, p-aminophenol, and

N-acetyl-p-aminophenol (acetaminophen) were purchased from Sigma-Aldrich Chemie

GmbH (Deisenhofen, Germany). N-hydroxylaniline was prepared by hydroxylation of aniline

in the laboratory of Dr. Robert L. Rubin (La Jolla, California, USA) and kindly provided to

us. Caution: aniline, nitrosobenzene, nitrobenzene, and N-hydroxylaniline can induce

methemoglobinemia and are teratogenic; p-aminophenol and p-benzoquinone are  possible

contact-sensitizers. Substances were handled accordingly.

Linoleic anilide, linolenic anilide, and a mixture of fatty acid esters of PAP containing
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equimolar amounts of 1-oleyl,2-linoleyl-PAP; 1-oleyl,2-linolenyl-PAP; and 1-linolenyl,2-

linoleyl-PAP, were synthesized by Dr. A. Meseguer (Consejo de Superior de Investigaciones

Científicas, Barcelona, Spain) as described (17). Chemical structures of the aniline-coupled

lipids tested are shown in Scheme 1. The aniline-coupled lipids mentioned above and their

respective aniline-free control compounds linoleic acid, linolenic acid, and triolein were

provided in blind-coded fashion by Dr. M. Posada, general coordinator for research projects

on TOS (Instituto Carlos III, Madrid, Spain).

Sterile, pyrogen-free RPMI 1640 medium, fetal calf serum, penicillin, streptomycin,

L-glutamine, pyruvate, and non-essential amino acids were obtained from Life Technologies

GmbH (Eggenstein, Germany). 3H-dThd (248 GBq/mmol) was obtained from ICN

Biomedicals GmbH (Eschwege, Germany). Sterile filtered phosphate-buffered saline (PBS)

contained NaCl (138 mM), KCl (2.7 mM), Na2HPO4 (6.5 mM), and KH2PO4 (1.5 mM); its

pH was adjusted to 7.4.

Popliteal lymph node (PLN) assay   Primary PLN reaction. The assay detects the

immunostimulatory capacity of low molecular weight substances and was performed as

described before (18). In short, the test compounds aniline, N-hydroxylaniline,

nitrosobenzene, nitrobenzene, p-aminophenol, and N-acetyl-p-aminophenol, respectively,

were dissolved in ethanol and diluted in PBS to a final ethanol concentration of 0.1 %; the

solvent is referred to as ethanol/PBS. Linoleic anilide, linolenic anilide, the mixture of PAP

esters, and the respective control substances linoleic acid, linolenic acid, and triolein, were

emulsified in PBS by repeated ultrasonication on ice.

Homogenates of white bone marrow cells (WBMCs) were prepared in PBS (see

below). Sheep red blood cells were washed three times, and the cell number was adjusted in

PBS. On day 0, animals received a single sc injection (50 µL) of the test compound into the

left hind footpad. On day six, PLN of treated and untreated sides were removed, and cell

numbers of individual PLN were counted using a Casy1 automatic cell counter (Schärfe

Systems GmbH, Reutlingen, Germany). The PLN cell count index from each mouse was

calculated by dividing the cell count of the treated side by that of the control side.

Secondary PLN reaction. The assay was performed as described (18). Mice were

primed by a single sc injection (50 µL), containing the compounds indicated, into the left hind

footpad. Thirteen weeks later, the time period required for the enlarged PLNs to revert to their

normal size and cellularity following the injection of aniline-coupled lipids, groups of mice

were challenged by a second sc injection (50 µL) into the same foot pad. The doses of

nitrosobenzene, p-benzoquinone, and linolenic anilide used for recall were suboptimal, that



Chapter 5 103

Scheme 1.   Chemical structures of the aniline-coupled lipids and their aniline-free controls
used. In the structural formulas of the anilides, the PAP esters and triolein, R1, R2, and R3

have to be replaced by oleic acid, linoleic acid, and linolenic acid, respectively.

means they were just too low to induce a primary PLN response in unprimed mice. Four days

later, PLNs of treated and untreated sides were removed and cell count indices determined. 

Flow cytometric analysis of PLN cells   Six days after injection, PLNs from the treated side

were removed and cells from each individual mouse were double-stained with either FITC-

labeled anti-αβ-T cell receptor and PE-labeled anti-B220, or FITC-labeled anti-CD4 and PE-

labeled anti-CD8 (all obtained from Pharmingen, Hamburg, Germany). Percentage of T, B,

CD4 and CD8 cells were determined using a FACScan flow cytometer and Cellquest

Software (Becton Dickinson, Heidelberg, Germany).

Isolation of WBMCs   Mice were sacrificed and their femora and tibiae removed. Both ends

of the bones were cut off, and the marrow was flushed with PBS, using a 25-gauge needle.

Mature red blood cells were removed by osmotic lysis, and remaining cells were resuspended

in PBS. These cells are referred to as WBMCs.

Cell culture conditions   In all experiments performed in vitro, RPMI 1640 was

supplemented with 10% fetal calf serum, L-glutamine (2 mM), pyruvate (1 mM), non-

essential amino acids, penicillin (10 U/mL), and streptomycin (10 µg/mL); this is referred to

as medium. Cells were cultured at 37°C in a humidified atmosphere containing 7% CO2.
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Treatment of WBMCs for experiments in vivo   Isolated WBMCs were cultured in medium

and incubated with either 0.1 % ethanol or 1 mM aniline in 0.1 % ethanol. After two days of

culturing, WBMCs were harvested with a cell scraper, washed, resuspended in PBS, counted,

and homogenized by freeze-thawing and ultrasonication (5 x 10 s at 30 kHz) using a Labsonic

V 200 (B. Braun Melsungen AG, Melsungen, Germany). After homogenization, the number

of WBMC equivalents was adjusted to the desired concentration by dilution in PBS and

injected as described above for the PLN assay.

Treatment of WBMCs for experiments in vitro   Isolated WBMCs were incubated in

medium containing either 0.1 % ethanol or 1 mM aniline in 0.1 % ethanol. After one day of

culture, cells were harvested with a cell scraper, washed, resuspended in medium, irradiated

with 20 Gy using a Gammacell 2000 (Molsgaard, Copenhagen, Denmark), and used in the

T-cell proliferation test in vitro.

Treatment of prospective T-cell donors   Mice received two sc injections (on day 0 and day

seven) at the base of tail, each containing 100 nmol nitrosobenzene in 50 µL ethanol/PBS.

Control mice received ethanol/PBS only. On day 14 spleens were removed, splenic T cells

were enriched (see below) and used in the T-cell proliferation test in vitro.

Enrichment of T cells   Spleens of donor animals were removed and splenocytes were

pooled in PBS. B220+ cells were removed using a magnetic cell separator (Miltenyi Biotec

GmbH, Bergisch Gladbach, Germany), as described (19). In short, 108 spleen cells were

incubated (15 min at 4 °C) in 1 mL PBS containing 50 µL anti-mouse-B220 monoclonal

antibodies coupled with magnetic microbeads (Miltenyi Biotec GmbH). Stained cells were

withdrawn from the cell suspension in a high gradient magnetic field. After separation, the

cell fractions were tested for T-cell purity with FITC labeled anti-Thy1.2 (Pharmingen) using

a FACScan flow cytometer. Cells in the unstained fraction after separation contained 85 to

95% Thy1.2+ cells and are referred to as enriched T cells. Enriched T cells were washed,

resuspended in medium and used in the T-cell proliferation test in vitro.

Preparation of APC   Mice were sacrificed, their spleens removed and a single-cell

suspension was prepared. Red blood cells were removed by osmotic lysis, and remaining cells

were resuspended in PBS, irradiated with 20 Gy, and used as APCs.
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T-cell proliferation test in vitro   Enriched T cells from treated or untreated spleen cell

donors were co-cultured for 96 h in 96-well round-bottom plates (1 x 105 T cells/well) with 5

x 103 WBMCs and with or without 1 x 105 APCs, as indicated. 3H-dThd (1µCi) was added to

each well 18 h before harvesting. Cells were harvested using a cell harvester on filter coated

with a solid scintillator (Ready filter with Xtalscint, Beckman Instruments, Fullerton,

California, USA). 3H-dThd incorporation was measured in a beta-scintillation counter (LS

6000 IC, Beckman Instruments).

Statistical analysis   Values of PLN cell count indices, expressed as arithmetic means ± SD,

were obtained from six to twelve animals per group. All experiments were performed at least

twice to assess reproducibility of the data. Statistical analyses were performed using

GraphPad Prism (GraphPad Software, Inc., San Diego, California, USA). PLN cell count

indices were compared using ANOVA with Bonferroni comparison.

Results

Differential capacity of aniline, its metabolites, and aniline-coupled lipids

for induction of primary PLN reactions

Structural formulas of the test compounds used are shown in Scheme 1. In order

to assess the capacity of aniline and its metabolites as well as that of fatty acid

anilides and PAP esters (Scheme 1) to induce an immune reaction, mice

received an sc injection of one of these compounds into a hind footpad. After six

days, the cell numbers of the draining and the contralateral lymph node were

determined. As shown in Figure 1A, aniline and its non-reactive metabolites

nitrobenzene, p-aminphenol and N-acetyl-p-aminophenol failed to induce a PLN

response. By contrast, nitrosobenzene proved to be a potent and

N-hydroxylaniline a weak inducer of PLN responses. Linoleic anilide, linolenic

anilide, and  the indicated mixture of PAP esters respectively, induced

significantly higher PLN responses when compared to equimolar doses of the

respective aniline-free lipids (Figure 1B). Note that nitrosobenzene had already

induced a significant PLN response at a 140-fold lower dose compared to the

aniline-coupled lipids (Figure 1A). At doses higher than 0.2 µmol/mouse,

nitrosobenzene could not be tested because it was insoluble. Kinetics of the

primary PLN responses to nitrosobenzene and linolenic anilide showed that
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Figure 1.   Primary PLN responses to reactive aniline metabolites and the aniline-coupled

lipids of TOS. On day 0, groups of mice received an sc injection of the indicated test

compound at the dose specified. PLN cell count indices were determined on day six. Panel A:

Showing PLN reactions to aniline and its non reactive (open bars) and reactive metabolites

(closed bars), respectively. The solvent used was ethanol/PBS. Panel B: Showing PLN

reactions to the fatty acid anilides indicated and the mixture of PAP esters specified (closed

bars). Control groups received the respective aniline-free lipids, i.e., the fatty acid indicated or

triolein (open bars). Bars indicate arithmetic means + SD of two pooled experiments with six

animals each. Asterisks indicate a significant difference (*p<0.05;**p<0.01; ***p<0.001)

between the group indicated and the solvent control (A) or the control group indicated by

brackets (B).
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Figure 2.   Showing T cell dependence of the primary PLN response to nitrosobenzene, N-

hydroxylaniline, and linolenic anilide, respectively. On day 0, groups of athymic (nu/nu) mice

(open bars) and euthymic (nu/+) mice (closed bars) on BALB/c genetic background received

an sc injection containing 0.1 µmol of either aniline, nitrosobenzene, N-hydroxylaniline, 14

µmol of linolenic anilide, 14 µmol of linolenic acid, 1 x 107 sheep red blood cells, or

ethanol/PBS only. PLN responses were measured on day six. Bars indicate arithmetic means

+ SD of two pooled experiments with five animals each. Asterisks indicate a significant

difference (**p<0.01; ***p<0.001) between the groups compared by brackets.

their responses were maximal on day six after injection and then steadily

declined until reaching normal values by day 90 and day 30, respectively (data

not shown). 

T-cell dependence of the PLN response to nitrosobenzene,

N-hydroxylaniline, and linolenic anilide

For assessment of T-cell involvement in the PLN reaction, T cell-deficient

BALB/c nu/nu mice or T cell-containing littermates (nu/+) received an sc

injection, containing 0.1 µmol of either nitrosobenzene, aniline, or

N-hydroxylaniline, 14 µmol of linolenic anilide or linolenic acid, or solvent only

into a hind footpad; 1 x 107 sheep red blood cells were used as positive control

because they are known to induce a T cell-dependent PLN response in mice
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(20). In nu/+ mice, nitrosobenzene, linolenic anilide, and sheep red blood cells

were found to induce significant PLN responses; and N-hydroxylaniline likewise

evoked a response, albeit not statistically significant. By contrast, none of the

test compounds elicited a significant PLN response in nu/nu mice (Figure 2).

B cell involvement in the PLN response to nitrosobenzene and linolenic

anilide, respectively

For assessing the role of B cells in the PLN reaction, PLN cells were stained for

T cell receptor, B220, CD4 and CD8 expression six days after injection of the

test compounds. Although the PLN response to nitrosobenzene and linolenic

anilide, respectively, is T cell-dependent (Figure 2), the PLN enlargement was

mainly due to an increase in B cells (Table 1). No significant differences in

percentage of CD4+ and CD8+ cells between the different groups could be

detected. 

Table 1.   Flow cytometry results of PLN cells after injection of aniline and its derivatives

Compound tested % T cellsa % B cellsb %CD4+ of T cellsc %CD8+ of T cellsd

solvent 72.3 ± 4.1e 25.3 ± 4.4 53.4  6.5 37.3  4.4

aniline 72.8 ± 7.4 24.6 ± 7.6 52.2  3.6 38.4  6.6

nitrosobenzene 45.9 ± 2.8***f 51.6 ± 2.6*** 50.4  3.7 41.4  3.0

linolenic acid 72.3 ± 6.0 24.3 ± 7.2 50.5  4.1 43.3  3.8

linolenic anilide 57.5 ± 7.7*** 38.1 ± 8.5*** 56.8  6.4 40.8  4.0

triolein 75.3 ± 5.5 22.1 ± 5.8 53.8  3.6 37.0  3.4

PAP esters 72.1 ± 7.3 25.8 ± 7.6 49.1  3.5 36.0  5.8
a % of T cells was determined as % of total PLN cells expressing αβ-T cell receptor; b % of B

cells was determined as % of total PLN cells expressing CD45R (B220) without expressing T

cell receptor; c % CD4+ of T cells was determined as % of T cell receptor bearing cells

expressing CD4; d % CD8+ of T cells was determined as % of T cell receptor bearing cells

expressing CD8; e shown are mean and SD of two pooled experiments with each four animals

(n=8); f asterisks indicate a significant difference (***p<0.001) between the group indicated

and its respective control group (aniline and linolenic acid, respectively).
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Figure 3.   Secondary PLN responses against nitrosobenzene. Groups of mice received an sc

injection containing 0.1 µmol of either aniline, nitrosobenzene, or p-benzoquinone, 28 µmol

of linolenic anilide or linolenic acid, or ethanol/PBS only. After 13 weeks, mice were

challenged by a second sc injection containing 0.005 µmol of either nitrosobenzene or aniline,

0.0001 µmol of p-benzoquinone, 1.4 µmol of linolenic anilide, or solvent only. Four days

later, PLN cell count indices were determined. Bars indicate arithmetic means + SD of one

experiment with six animals per group. Asterisks indicate a significant difference (**p<0.01)

between the closed bars and each of the open bars.

Secondary PLN responses to nitrosobenzene

When performed after a single injection of a test compound, the PLN assay is

unable to differentiate between an antigen-specific and a non-specific PLN

reaction. To discriminate between these two possibilities, we investigated

whether a secondary PLN response to nitrosobenzene could be induced in

animals primed to this compound. For control of specificity, p-benzoquinone

was used. p-Benzoquinone is a contact sensitizer whose ability to induce

specific secondary PLN responses has been established (21). For this purpose,

mice were primed by injecting either ethanol/PBS, 0.1 µmol aniline,

nitrosobenzene, or p-benzoquinone dissolved in ethanol/PBS into a hind
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footpad. After 13 weeks, groups of mice were challenged by a second sc

injection into the same foot pad of either ethanol/PBS, 0.005 µmol aniline or

nitrosobenzene, or 0.0001 µmol p-benzoquinone dissolved in ethanol/PBS. As

shown in Figure 3, a recall response was only detectable in those mice which

had been both primed and challenged with nitrosobenzene or p-benzoquinone,

respectively.

To investigate secondary PLN responses against one of the aniline-

coupled lipids, mice were primed with linolenic anilide (28 µmol /mouse). After

size and cellularity of the draining PLNs had reverted back to normal, the mice

received recall injections consisting of suboptimal doses of nitrosobenzene

(0.005 µmol/mouse), linolenic anilide (1.4 µmol/mouse), and aniline (0.005

µmol/mouse), respectively. As shown in Figure 3, animals which had been

primed with linolenic anilide responded only upon recall with nitrosobenzene,

not upon recall with linolenic anilide. In contrast, mice which had received

linolenic acid for priming, failed to mount a PLN response upon recall with

nitrosobenzene, and the same was true when free aniline was used for priming.

In another experiment, in which mice were primed with a dose of 14

µmol/mouse of linolenic anilide, we also detected a secondary response to

nitrosobenzene (data not shown). However, the secondary response to

nitrosobenzene in mice primed to linolenic anilide was not reproducible. For

both priming doses mentioned above (28 and 14 µmol / mouse), the experiment

was performed three times, but for each priming dose, secondary responses to

nitrosobenzene were obtained only once.

Primary PLN response to WBMCs pulsed with aniline

It has been reported that neutrophils, monocytes, and macrophages are able to

metabolize arylamines (22). Therefore we asked whether WBMCs, which are

rich in precursors of granulocytes and macrophages (23), are able to metabolize

aniline to a protein-reactive metabolite that, in turn, would be able to haptenate

self-proteins and elicit a PLN response. To answer this question, WBMCs were

cultured in the presence of aniline, homogenized in order to make cellular

proteins available for uptake by APCs, and used in the PLN assay. Figure 4

shows that up to 5 x 106 homogenized WBMCs cultured with solvent only,

induced background responses in the draining PLN, whereas a dose-response
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Figure 4.   Primary PLN response against aniline-pulsed WBMCs. WBMCs were incubated

in medium containing either 1 mM aniline dissolved in 0.1 % ethanol or ethanol only

(solvent). WBMCs were washed, resuspended in PBS, and homogenized. On day 0, groups of

mice received an sc injection of 50 µL PBS containing the indicated cell equivalents of

homogenized WBMCs. PLN cell count indices were determined on day six. Bars indicate

arithmetic means + SD of two pooled experiments with five animals each. Asterisks indicate a

significant difference (**p<0.01) between the group which received aniline-treated WBMCs

and the respective control group.

relationship was seen in response to homogenized WBMCs cultured with

aniline. At the highest dose tested (5 x 106 cells per mouse), there was a

significantly higher PLN reaction against the aniline-pretreated WBMCs

compared to the control WBMCs pretreated with solvent only.

Nitrosobenzene-primed T cells show a recall response when cultured with

APCs and WBMCs pulsed with aniline

We then asked whether the PLN reaction to aniline-pulsed WBMCs shown in

Figure 4 was antigen-specific or not. To test this, the lymphocyte proliferation

test in vitro was used. WBMCs from BALB/c mice were preincubated in the

presence or absence of aniline and subsequently cocultured with syngeneic
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Figure 5.   In vitro secondary response of nitrosobenzene-primed T cells against WBMCs

pulsed with aniline. Groups of BALB/c mice served as prospective T cell donors, they were

primed by two sc injections containing either an immunogenic dose of nitrosobenzene or

ethanol/PBS only (solvent A). For recall in vitro, WBMCs were preincubated in medium

containing either 1 mM aniline dissolved in 0.1 % ethanol or 0.1 % ethanol (solvent B) only.

Washed WBMCs were cocultured with T cells from donor mice primed as indicated. Cultures

were performed in the absence (upper panel) or presence (lower panel) of irradiated spleen

cells from untreated mice, which served as APCs. Bars indicate arithmetic means + SD of six

replicates.

T cells, primed with either nitrosobenzene or solvent. Figure 5 shows the results

of a representative experiment. Provided additional APCs were supplied,

nitrosobenzene-primed T cells reacted against aniline-pulsed WBMCs, but not

against control WBMCs pulsed with ethanol. In four out of six experiments of

this type, nitrosobenzene-primed T cells mounted a secondary response against

WBMCs pulsed with aniline. In none of these six experiments, T cells from

PBS-treated animals reacted to WBMCs pulsed with aniline. These results show

that nitrosobenzene-primed T cells can react in an anamnestic fashion towards a

neo-antigen, which is induced in aniline-pulsed WBMCs.
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Discussion

Adverse immune reactions to chemicals are thought to arise due to T cell

reactions to chemical-induced neoantigens (10,24,25). In the past years,

pioneering studies investigating the nature of such neoantigens and conditions of

how they are generated have been performed (reviewed in 26-30). Thus, in order

to be recognizable by T cells, electrophilic organic haptens, such as

trinitrophenyl and 3-pentadecyl-catechol, were found to require covalent

bonding to a nucleophilic amino-acid side-chain of protein. More exactly, for

T cell recognition, the hapten must be bound to protein fragments fitting into the

peptide-binding groove of molecules of the major histocompatibility complex

(27,31,32). Chemicals which themselves, due to their lack of protein reactivity,

are unable to act as haptens, but whose reactive intermediates are able to do so,

are termed prohaptens (33,34). Their reactive intermediates are able to bond in

covalent fashion to self proteins, and it is assumed that these are processed and

their neoantigens presented to T cells (24). If the T cells recogni-zing

neoantigens simultaneously receive costimulatory signals from APCs, they are

primed and will start an immune response. Individuals whose T cells were

primed to a given antigen harbor memory T cells and, hence, respond faster and

require less antigen upon specific recall than non-sensitized individuals. With

respect to neoantigens induced by reactive intermediates, the specificity of the

immune response can be used to determine whether or not administration of a

given parent compound has generated neoantigens identical with those induced

by the reactive metabolite under study (35-38). Questions raised in the present

paper concern the T cell-sensitizing potential of aniline, its metabolites, and of

the aniline-coupled lipids implicated in TOS. Table 2 gives an overview of the

results obtained with the different compounds tested in the PLN assay. 

In the case of aniline, which is unable to covalently bond to protein (1),

our results are in line with the prohapten-hapten concept described above.

Injection of free aniline failed to induce a PLN reaction, whereas injection of its

reactive metabolites, N-hydroxylaniline and nitrosobenzene, succeeded to do so.

Mice primed to nitrosobenzene, but not those injected with solvent or aniline,

showed an enhanced PLN response to a small dose of nitrosobenzene, indicating

a specific anamnestic response to this compound. Our results obtained with

aniline-pulsed WBMCs support the general notion (8,36) that cells of the

immune system, especially phagocytic cells, can metabolize
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Table 2. Overview of the results of experimental sensitization to aniline and its

derivatives

PLN assay

Compound tested

Primary PLN

response

T cell

dependence

Secondary

PLN response

% B cells

increased

aniline no

nitrobenzene no

p-aminophenol no

N-acetyl-p-aminphenol no

N-hydroxylaniline yes yes n.d.a n.d.

nitrosobenzene yes yes yes b,c yes

linolenic acid no

linolenic anilide yes yes no yes

linoleic acid no

linoleic anilide yes n.d. n.d. n.d.

triolein no

PAP esters yes n.d. n.d. no

a n.d.: not determined; b In two out of six experiments, secondary PLN responses to

nitrosobenzene also were detectable in mice primed to linolenic anilide. c In vitro,

nitrosobenzene-primed T cells responded in anamnestic fashion to aniline-pulsed

WBMCs as well.

prohaptens, such as aniline, into protein-reactive haptens, such as

nitrosobenzene, and thus give rise to immunologically relevant neoantigens.

Unlike exposure to aniline, exposure to its para-substituted derivatives,
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such as para-phenylenediamine and procainamide, is known to induce adverse

immune reactions in humans as well as experimental animals (10,39-41). We

propose that the difference may be explained by the different toxicokinetics of

aniline and its para-substituted derivatives. Aniline is known to be primarily

metabolized in the liver (3,42,43). The metabolite thus formed,

N-hydroxylaniline, diffuses into the blood and, after oxidation to nitrosobenzene

with concomitant formation of methemoglobin, it covalently bonds to

hemoglobin and accumulates in erythrocytes and the spleen (44). Whether

hemoglobin thus haptenated spontaneously elicits immune reactions is not

known. As most of the adverse immune reactions to the para-substituted

derivatives of aniline occur extrahepatically, e.g., in the skin or the immune

system, it is conceivable that the reactive intermediates involved are formed in

the affected tissues themselves (24). This assumption is corroborated by the fact

that the addition of chemical groups in para-position to the amine group of

aniline can prevent hepatic metabolism of aniline through aniline-4-hydroxylase,

i.e. CYP2E1, activity (45), thus favoring extrahepatic metabolism of the

respective arylamine and increasing the risk of adverse immune reactions at

extrahepatic sites. Two such para-substituted metabolites are p-aminophenol and

N-acetyl-p-aminophenol, which are major aniline metabolites formed during

hepatic aniline metabolites (45). Both can be further oxidized to their respective

quinones, which are highly protein-reactive. The oxidation to the reactive

quinones mainly takes place in the liver, where they are detoxified by the high

levels of GSH present in this organ, or, in case detoxification fails, induce liver

damage (46). Both p-aminophenol and N-acetyl-p-aminophenol failed to induce

a primary PLN reaction, suggesting that the quinones are not formed locally

following injection of the para-hydroxylated aniline metabolites.

As the lack of sensitizing capacity of free aniline seems to be related to

the high degree of its hepatic metabolism and detoxification (47), we enhanced

its extrahepatic metabolism by deliberately targeting aniline to the extrahepatic

metabolic system. This was achieved by pulsing WBMCs with aniline in vitro

and using them as antigen. In the PLN assay, WBMCs pulsed with aniline, but

not those pulsed with solvent, were able to induce a significant response.

Moreover, we observed a recall response of nitrosobenzene-primed T cells to

such aniline-pulsed WBMCs in the lymphocyte proliferation test; WBMCs are

rich in neutrophil precursors, and these are known to have a high metabolizing

capacity for arylamines (8,22). In this test system, three cell types apparently
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had to cooperate: first, WBMCs that converted the prohapten aniline into the

hapten nitrosobenzene; second, APCs that picked up proteins haptenated by

nitrosobenzene and presented the relevant neoantigen to the primed T cells; and

third, T cells primed to the hapten-induced neoantigen and responding to it upon

recall. 

As far as the aniline-coupled lipids implicated in TOS are concerned, we

found that the immunostimulatory capacity of aniline-coupled lipids clearly

exceeded that of equimolar concentrations of lipids devoid of aniline. This

distinction could not be made in the study of Bell et al. (48), who reproduced

some of the pathological signs of TOS in mice; these authors only investigated

the aniline-coupled lipid oleic anilide, but did not study the respective aniline-

free control oleic acid. Another clear-cut result obtained in the present study is

the T cell-dependence and B cell involvement of the immune response to

linolenic anilide. Beyond this, however, our results obtained with aniline-

coupled lipids are less conclusive. The inability of free aniline to induce a PLN

reaction conforms with previous findings made with other non-reactive,

prohaptenic chemicals, such as procainamide, propylthiouracil, and benzene, all

of which failed to induce primary PLN reactions (18,21,26,37,49). Given that

both aniline-coupled lipids and aniline failed to be protein-reactive, why then

did aniline-coupled lipids, but not aniline, induce primary PLN responses? There

are two different, mutually not exclusive explanations to account for this and

both of them focus on the lipid moiety, as this distinguishes the aniline-coupled

lipids from aniline and the other prohaptens mentioned above. 

Due to their lipid moiety the aniline-coupled lipids probably were retained

at the site of injection. The prolonged retention time would lead to a higher local

concentration of the respective compound, enabling the local metabolizing

system to cleave aniline extrahepatically from the parent compound and form

sufficient reactive metabolite (N-oxidation of aniline to nitrosobenzene) to

induce an immune response. More specifically, through their fatty acid moiety

the aniline-coupled lipids probably can be taken up by lipid receptors present on

monocytes, macrophages, and, perhaps, dendritic cells (50), where they might be

metabolized into haptenic metabolites, such as nitrosobenzene. Covalent

bonding of nitrosobenzene to unidentified self-proteins (Scheme 2) creates

neoantigens that are recognized by T cells. The initial step in this hypothetical

chain of events is supported by the results of Bioque et al. (51,52) who showed

that polymorphonuclear cells and macrophages, by an amidase-like activity, can
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cleave the aniline moiety from fatty acid anilides. Macrophages, notably, can

also act as APC and thus interact with T cells. The second and the third step in

the hypothetical pathogenesis of TOS, namely N-oxidation of aniline and

nitrosobenzene-induced neoantigen formation in phagocytes, are supported by

our finding that T cells primed to nitrosobenzene reacted in anamnestic fashion

when WBMCs pulsed with aniline were used as recall antigen in vitro.

Disappointingly, however, results of those experiments that were designed to

assess the validity of the entire chain of

events postulated (Scheme 2, left pathway) failed to give a conclusive answer.

While in two out of six experiments performed animals primed to linolenic

anilide, indeed, mounted an anamnestic response to nitrosobenzene, as expected

according to our hypothesis, this result could not be reproduced in the other four

experiments. This might suggest that the immune response seen after priming

with a single dose of linolenic anilide was not only directed against

nitrosobenzene, but against other types of antigen as well. It should be noted in

this context that mice primed with linolenic anilide did not react upon recall to

suboptimal doses of linolenic anilide itself. Conceivably, the combination of

both the low dose of linolenic anilide used for recall and the short period of time

after the recall injection induced an amount of nitrosobenzene that was too low

for local formation of the relevant neoantigen. 

It might also be possible that the lipid moiety of fatty acid anilides provide

signal 2 by their intrinsic adjuvant effect on APC, including macrophages,

directing the immune response towards the aniline moiety. The adjuvant effect

of lipids is well known, and this is especially so when they are covalently bound

to the immunizing antigen (53,54); notably, this is just the way lipids are linked

to aniline in fatty acid anilides and PAP esters. Furthermore, aniline injected

without the lipid moiety would rapidly diffuse through the injection site to be

detoxified in the liver, as discussed above. Hence, after injection of free aniline,

the concentration of reactive metabolite formed locally probably was too low for

induction of an immune response. A somewhat different hypothesis to

account for the immunostimulatory capacity of aniline-coupled lipids and the

lack of this capacity in aniline administered alone could be that the aniline-

coupled lipids were able to activate T cells via non-classical pathways. In this

regard, it has been reported that CD1 molecules, a newly described family of

antigen-presenting molecules not encoded by the major histocompatibility

complex, are able to present antigenic 
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Scheme 2.   Pathway of oxidative aniline metabolism and postulated metabolism of aniline-

coupled lipids implicated in TOS. Aniline is N-oxidized to nitrosobenzene, which can bind to

sulphydryl groups (HS-R) of proteins or glutathione (lower left). Para-hydroxylation and

subsequent N-acetylation of aniline results in aminophenol and N-acetly-p-aminophenol,

respectively. These metabolites can be excreted or further oxidized to quinone imines which

can induce liver and kidney damage (lower right). Aniline can be cleaved from fatty acid

anilides, presumably by intracellular amidases (see text). A similar cleavage of aniline from

PAP esters has not yet been demonstrated. Rx, Ry, and Rz stand for aliphatic chains of fatty

acids (see Scheme 1). 
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lipids to T cells (55), thus raising the question of whether the aniline-coupled

lipids of TOS can induce CD1-restricted T cell responses. The original

publications on CD1-restricted T cell responses to lipids were performed with

CD8+ T cells using their αβ-T cell receptor, but CD1-restricted responses have

been also described for CD4+ and CD4- CD8-  T cells, respectively, as well as for

NK-T cells and T cells using their γδ receptors (56,57). Evidence accumulates

that cells of the innate immune system rather than classical T or B cells initiate

adverse immune reactions to chemicals (58). As cells of the innate immune

system do not mount anamnestic responses upon a second encounter with a

small amount of the same antigen, this could explain our inability to detect an

anamnestic response to linolenic anilide in mice primed to this compound.

In conclusion, the results presented here show that aniline can be

considered a prohapten. Depending on mode of external or internal exposure, its

site of metabolism into the hapten nitrosobenzene may shift from the liver to

extrahepatic tissue, such as WBMCs. After haptenating unidentified self-

proteins or -peptides, nitrosobenzene apparently creates neoantigens and thus

can act as a T cell sensitizer. This mechanism can be invoked for the

pathogenesis of TOS. However, a sequence of multiple biochemical and cellular

events is involved in the anamnestic anti-hapten responses following priming

with a complex, unusual prohapten, such as linolenic anilide, and challenge with

the hapten. This complexity might explain why the results of the evoked

anamnestic responses to nitrosobenzene after priming with linolenic anilide were

so poorly reproducible, unlike the results of those experiments where both recall

and priming were carried out with nitrosobenzene. Therefore, as an additional

explanation for the immunostimulatory effect of aniline-coupled lipids we

proposed antigen presentation by CD1 and recognition by non-classical T cells,

and experiments are now under way to test this.
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CHAPTER 6

Are NKT cells involved in the pathology of the Spanish toxic oil syndrome?

A pilot study

Marty Wulferink, Sabine Dierkes, José Gonzaléz, and Ernst Gleichmann

The toxic oil syndrome (TOS), an epidemic-like food poisoning that occurred in 1981

in Spain, was caused by ingestion of cooking oil contaminated with aniline. Indirect

evidence points towards an immune pathogenesis of TOS driven by T lymphocytes, but

it is unclear to which antigens these cells could react. In a previous paper, we showed

that aniline-coupled lipids, namely linoleic anilide and linolenic anilide, and a mixture

of fatty acid esters of 3-(N-phenylamino)-1,2-propanediol, all implicated in TOS,

induced significant popliteal lymph node responses, whereas the respective aniline-

free lipids, linoleic acid, linolenic acid, and triolein did not. Secondary immune

reactions towards the oil anilides tested, however, could not be obtained. This and the

fact that the etiologic agents are lipids, which cannot be presented by MHC molecules

but can be presented by CD1 molecules, led to the hypothesis that CD1-reactive

T cells, or NKT cells, may be involved in the pathogenesis of TOS. Here, using Jα281-/-

mice deficient in invariant-NKT (invNKT) cells, we investigated this hypothesis.

Injection of PAP ester in the hind footpads of either invNKT cell deficient or wild-type

mice showed comparable enlargement of the draining popliteal lymph nodes. Flow

cytometric analysis of lymph node subpopulations (NK cells, NKT cells, T cells,

B cells, and CD4+ and CD8+ T cells) revealed no hint as to the role of invNKT cells in

the pathogenesis of TOS. We therefore conclude that invNKT cells are not involved in

the lymph node enlargement seen after injection of PAP ester in the hind footpad of

mice. The possible role of non-invariant NKT cells in the pathogenesis of TOS and the

differences between humans and mice in NKT cell recognition are discussed.
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Introduction

In 1981 a mass poisoning occurred in Spain that affected more than 20,000

people after they had consumed rape seed oil contaminated with aniline (1). The

illness, which came to be called the toxic oil syndrome (TOS) presented itself in

an acute, an intermediate, and a chronic phase (2). The acute phase was

dominated by eosinophilia, pulmonary oedema, myalgias, fever, and rash. It was

followed by an intermediate phase consisting of myalgias, weight loss, skin

oedema, hepatopathy and sicca syndrome. The chronic phase was characterized

by peripheral neuropathy, hepatopathy, scleroderma and pulmonary

hypertension. 

Fatty acid anilides and fatty acid esters of 3-(N-phenylamino)-1,2-

propanediol (PAP), detected as abnormal compounds in case-related samples of

toxic oil, have been incriminated as the etiologic agents of TOS (3,4). The

clinical features outlined above point towards an autoimmune pathogenesis of

the syndrome (5). This was further corroborated by the detection of T cell

infiltrates in the affected tissues and of increased levels of soluble interleukin-2

receptor in the serum of TOS patients (5). It has been proposed (6) that graft-

versus-host-like reactions of T lymphocytes were involved in the pathogenesis

of TOS. This concept implies that neoantigens induced by the aniline-

contaminated oil were displayed by antigen-presenting cells (APC) and

recognized by T cells. Classical T cells, bearing an αβ-T cell receptor, are

unable to recognize small molecular weight compounds per se, but are able to

react to them when bound to proteins, more exactly, when bound to peptides

presented by molecules of the major histocompatibility complex (7). In a

previous paper (8) we investigated the possibility of neoantigen formation by

protein-reactive intermediates of fatty acid anilides and PAP esters. We showed

that C57BL/6J mice that were primed with fatty acid anilides could be recalled

in vivo with nitrosobenzene, a protein-reactive metabolite of aniline. However,

we could not show anamnestic responses to the aniline coupled lipids

themselves.

Publications on a recently discovered subpopulation of T cells, termed

NKT cells (9-11), led to a new hypothesis on the induction of TOS. It involves

direct presentation of the aniline coupled lipids on CD1, an MHC-like molecule.

Lipids presented by CD1 can be recognized by NKT cells that upon recognition

do not clonally expand but secrete large amounts of IFN-γ and/or IL-4 (Fig. 1).
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Figure 1. Hypothesis: Recognition of

PAP-ester on CD1 by NKT cells. In analogy

to other lipid antigens (12), PAP esters may

be presented by CD1 molecules on the

surface of APC. This CD1-lipid complex can

be recognized by the NKT cell, which then

rapidly secretes large amounts of IFN-γ and

IL-4. 

These cytokines can stimulate potential autoreactive T cells to become harmful

autoaggressive T cells. Our previous findings and the fact that NKT cells react

to lipids presented to them on CD1 molecules, but do not mount secondary

responses make it likely, that NKT cells play a role in the pathogenesis of TOS.

A substantial fraction of murine NKT cells use an invariant TCR α-chain,

namely Vα14-Jα281 (13); in this paper they are referred to as invNKT cells.

Here, we investigated if NKT cells play a role in the pathology of TOS by

injecting PAP esters in the hind footpad of both wild-type (WT) and Jα281-/-

mice which are deficient in NKT cells expressing the invariant Vα14-Jα281

TCR chain. We then evaluated the immune response in the draining lymph node

through cell count and flow cytometric analysis.  

Materials and Methods

Mice   Male C57BL/6J mice were purchased from Harlan Winkelmann GmbH (Borchen,

Germany). Male Jα281-/- mice were generated at Chiba University (Chiba, Japan) and

backcrossed nine times to C57BL/6 mice (14,15); they were obtained from Harvard Medical

School (Boston, USA) and will be referred to as invNKT-/-. Animals were kept under specific

pathogen-free conditions and had free access to a standard diet (Ssniff Spezialdiäten GmbH,

Soest, Germany) and tap water. They were 12 weeks of age at the onset of the experiments. 
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Chemicals    A mixture of PAP esters containing equimolar amounts of 1-oleyl,2-linoleyl-

PAP; 1-oleyl,2-linolenyl-PAP; and 1-linolenyl,2-linoleyl-PAP, were synthesized by Dr. A.

Meseguer (Consejo de Superior de Investigaciones Científicas, Barcelona, Spain) as described

(16). The aniline-free control compound triolein was also provided by Dr. A. Meseguer.

Popliteal lymph node (PLN) assay   The assay detects the immunostimulatory capacity of

low molecular weight substances and was performed as described before (17). In short, the

mixture of PAP esters, and the control substance triolein, were emulsified in PBS containing

1% ethanol by repeated ultrasonication on ice. On day 0, animals received a single sc

injection (50 µL) of the test compound into the left hind footpad. On day six, PLN of treated

and untreated sides were removed, and cell numbers of individual PLNs were counted using a

Casy1 automatic cell counter (Schärfe Systems GmbH, Reutlingen, Germany). The PLN cell

count index from each mouse was calculated by dividing the cell count of the treated side by

that of the control side.

Flow cytometric analysis of PLN cells   Six days after injection, PLNs from the treated side

were removed and cells from each individual mouse were triple-stained with either FITC-

labeled anti-αβ-T cell receptor, PE-labeled anti-NK1.1 and PerCP-labeled anti-CD3, or FITC-

labeled anti-CD19, PE-labeled anti-CD8 and PerCP-labeled anti-CD4 (all obtained from

Pharmingen, Hamburg, Germany). Percentage of NK, NKT, T, B, CD4 and CD8 cells were

determined using a FACScalibur flow cytometer and Cellquest Software (Becton Dickinson,

Heidelberg, Germany).

Statistical analysis   Values of PLN cell count indices, expressed as arithmetic means ± SD,

were obtained from three to four animals per group. Statistical analyses were performed using

GraphPad Prism (GraphPad Software, Inc., San Diego, California, USA). PLN cell count

indices and percentages of subpopulations were compared using ANOVA with Bonferroni

comparison.

Results

The PLN response to PAP ester is not dependent on invNKT cells

To assess NKT-cell involvement in the PLN reaction, invNKT cell deficient or

WT mice received an sc injection, containing 14 µmol of PAP ester or triolein

into a hind footpad. In both strains, PAP ester induced a significant PLN

response in comparison with the aniline free control oil triolein (Fig. 2). The

PLN response did not differ between the two strains compared, implicating that
invNKT cells are not involved in the PLN response to PAP ester.
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Figure 2.   The primary PLN response to
PAP ester is NKT cell independent. On
day 0, groups of WT mice and invNKT
cell deficient mice received an sc
injection containing 14 µmol of either
PAP ester or triolein. PLN responses
were measured on day six. Bars indicate
arithmetic means + SD of groups of three
(invNKT-/-) or four (WT) mice. Asterisks
indicate a significant difference
(*p<0.05; **p<0.01) between the groups
compared by brackets.
Figure 3.   Flow cytometric analysis of
PLN cells after injection of either PAP
ester or triolein. Percentage of NK and
NKT cells was determined as % of PLN
cells that are NK1.1+βTCR-CD3- or
NK1.1+βTCR+CD3+, respectively (A).
Percentage of T cells and B cells is
defined as % of PLN cells that are αβ-
TCR+NK1.1-, respectively CD19+ (B).
Percentage of CD4+ and CD8+ T cells is
defined as % of PLN cells expressing
CD4, respectively CD8 (C). Bars indicate
arithmetic means + SD of three
(invNKT-/-) or four (WT) mice. Asterisks
indicate a significant difference
(**p < 0.01; ***p < 0.001) between the
groups compared by brackets.
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Influence of PAP ester injection on lymphocyte subpopulations in the PLN

For assessing the role of NK cells, NKT cells, B cells, as well as CD4+ and

CD8+ T cells in the PLN enlargement seen after injection of PAP ester, PLN

cells were stained for NK1.1, CD19, αβ-TCR, CD3, CD4 and CD8 expression

six days after injection of the test compounds. Fig. 3 shows the percentages of

NK and NKT cells (A), B and T cells (B), and CD4+ and CD8+ cells (C) in the

draining lymph node. Compared with injection of triolein, injection of PAP ester

induced only in WT mice a significant increase in percentage of B cells (Fig.

3B) together with a low, but significant decrease in percentage of NKT cells

(Fig. 3A). In invNKT-/- mice, this relative increase in B cells and decrease in

NKT cells was also seen but it was not statistically significant. However, as the

data were obtained from one experiment using only 3 (invNKT-/-), respectively 4

(WT) mice per group, the statistical difference between the two different strains

may disappear when more mice per group are used. In both strains, there was no

significant change in percentage of CD4+ or CD8+ T cells after injection of PAP

ester (Fig. 3C).

Discussion

Recently PAP esters were identified, based upon epidemiological evidence, as

the most likely causative agent in TOS (18). In a recent paper, we showed that a

single injection of 14 µmol of PAP ester in the hind footpad of C57BL/6 mice

increased the cell count of the draining popliteal lymph node threefold in

comparison to aniline-free triolein. PAP esters as such are not protein reactive

and can therefore not directly bind to proteins. As PAP ester are lipids and

therefore could be presented by CD1, we hypothesized that PAP esters exert

their immunotoxic effect through activation of NKT cells. To investigate this

hypothesis, we used Jα281-/- mice which cannot express the invariant Vα14-

Jα281 TCR α-chain, which is expressed by the majority of murine NKT cells

(13). In the experiment described above, mice deficient in invNKT cells did not

show any difference in the PLN response to PAP ester compared with WT mice.

As expected, the percentage of NKT cells was lower in invNKT-/- mice compared
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with WT mice. There was only a marginal reduction in percentage of NKT cells

after injection of PAP ester compared with injection of triolein in both strains,

which might be due to the increase in percentage of B cells. In conclusion,
invNKT cells seem not to be involved in the local immune reaction seen after

injection of PAP ester in the hind footpad.

Although invNKT cells do not play a role in the primary PLN reaction after

injection of PAP ester in C57BL/6 mice, they may have played a role in the

human pathogenesis. Since no group has successfully established an animal

model of TOS up to now, the situation in humans might be different to that in

mice. The following differences in the murine model and the human situation

might be responsible for this: (i) There are different CD1 (CD1a, b, c, d and e)

molecules in humans, whereas there is only CD1d in mice (19). If CD1d were

not capable of presenting PAP ester, one of the other CD1 molecules in human

might do so, whereas in mice, PAP ester cannot be presented to CD1-reactive

T cells. (ii) The invariant chain of human NKT cells (Vα24-JαQ) is different

from the invariant chain of murine NKT cells (Vα14-Jα281) and may therefore

have different specificity. (iii) The route of exposure may play a role. Whereas

in 1981, the toxic oil was ingested orally and first delivered to the liver where

24% of all lymphocytes are NKT cells (19), injection in the footpad delivers the

oil straight into the draining lymph node, where NKT cells comprise only 3% of

all lymphocytes.

Furthermore, although Jα281-/- mice are called NKT-cell deficient, they

are deficient only in invNKT cells. Recently, Exley et al (20) showed that

α-galactosylceramide, a potent invNKT cell stimulator, protects mice against an

acute cytopathic virus. They also showed that without stimulation of invNKT

cells, Jα281-/- mice were protected equally well against the virus when compared

with WT mice, whereas protection was lost in CD1d-/- mice. This indicates

equivalent roles for CD1d-reactive invariant and "non-invariant" NKT cells in

resistance to acute virus infection. In other words, if NKT cells do play a role in

TOS, the non-invariant NKT cells might have taken over this role in invNKT cell

deficient mice and thus might be responsible for the PLN enlargement seen after

injection of PAP ester. Further experiments with blocking CD1d antibodies and

CD1d-/- mice will elucidate this hypothesis. 
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CHAPTER 7

Cross-Sensitization to Haptens Can Be Due to Different Mechanisms:

Formation of Common Haptenic Metabolites, T Cell recognition of Cryptic

Peptides, and True Cross-Reactivity

Marty Wulferink, Sabine Dierkes, and Ernst Gleichmann

Benzene derivatives which contain functional groups in the para-position are

notorious for inducing adverse immune effects; in this study they are referred to as

para-compounds. They can covalently bind to self-proteins generating neoantigens

which can be recognized by T cells. Once sensitized to a given para-compound, most

people react to more than this one para-compound. To analyze T cell cross-reactivity

to para-compounds at the clonal level, we established CD4+ T-cell hybridomas from

mice immunized with adducts of self-globin and one of three different para-

compounds, namely p-aminophenol, p-phenylenediamine, or Bandrowski's base. Some

of the obtained hybridomas reacted not only to the immunizing antigen but also to

metabolically related para-compounds bound to the same protein, thus suggesting

formation of common metabolites. One of the hybridomas reacted against a non-

haptenated native peptide of hemoglobin but not to the full length globin; such a

peptide fulfills the definition of a cryptic peptide. Other hybridomas cross-reacted to

globin adducts of metabolically unrelated para-compounds, but failed to recognize

native peptides, which denotes them as truly cross-reactive cells whose TCRs failed to

distinguish among the different haptens. Two even showed a heteroclitic reaction. To

summarize, we found evidence that cross-sensitization to para-compounds can be due

to any one of three different mechanisms: (i) metabolic transformation of a variety of
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different parent compounds to a common reactive metabolite acting as the hapten, (ii)

recognition of identical cryptic self-peptides generated after haptenation of the

respective self-protein, and (iii) true cross-reactivity where different haptens are

recognized by the same TCR.

Introduction

Benzene derivatives that possess two functional groups in the para-position are

notorious for inducing allergic and autoimmune reactions in humans (1,2).

Worldwide, these so-called para-compounds are still in use as drugs, color

developing agents, hair and textile dyes. Examples here are the hair dye

p-phenylenediamine (pPD), the photographic developer p-hydroquinone,

sulphonamide drugs, and procainamide, an anti-arrhythmic drug. These

compounds can induce contact hypersensitivity (3,4), agranulocytosis (5),

delayed-type hypersensitivity associated with multiorgan toxicity (6), and drug-

induced lupus (7,8), respectively. Because of their widespread use, humans

come into contact with a variety of different para-compounds. Cross-

sensitization to chemically different para-compounds has been frequently

observed (1,9-15); the term denotes the fact that an individual who is sensitized

to a given chemical, here a para-compound, can be challenged with a chemically

related compound without prior sensitization to it.

Although T cell reactions to haptens can be highly specific (16,17),

discriminating even between two stereoisomers of a hapten (18), T cell cross-

reactivity to different para-compounds has also been frequently observed (19).

The mechanism of this cross-reactivity has not been analyzed experimentally,

but  three possible mechanisms have been envisaged to account for it (4,9,12).

First, during metabolism of different prohaptenic para-compounds, a common

reactive metabolite could be generated that acts as a hapten; as a consequence,

identical neoantigens would be seen by T cells. Second, stereotype binding of

chemically related chemicals to self-proteins may lead to presentation of

identical cryptic peptides. Third, the TCR of a given T cell could be incapable of

distinguishing among the peptide adducts formed by different haptens and thus

would truly cross-react to two or more chemicals.

The first possibility, a common reactive metabolite, has been studied for

different para-compounds by Basketter and Goodwin (4) using the
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Figure 1.   Chemical structures of the different para-compounds studied. pPD and BB are

metabolically related and were used, together with pAP and BQ, to study cross-reactions

towards para-compounds. Bold characters indicate the compounds used for coupling and

immunization. The haptens shown, preferentially bind to cysteine residues (23,24) in proteins.

maximization test in guinea pigs. Although their results did not rule out cross-

sensitization to a common haptenic metabolite derived from the different

prohaptenic para-compounds tested, they considered it unlikely that this was the

only mechanism involved. However, conclusive results could not be obtained

with the in vivo test they used. 

The second mechanism, presentation of identical cryptic peptides, has

been implicated as an explanation for the frequently observed cross-sensitization

to different heavy metal ions. Griem and colleagues (20) demonstrated that

murine CD4+ T cell hybridomas raised against Au(III)-treated bovine RNase A

recognized a cryptic peptide of the RNase. Cryptic peptides are peptides that are

not normally presented (21) and fail to carry the causative agent. The same

cryptic peptide was presented when RNase A was denatured by S-sulfonation of
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its cysteine residues or when it was treated with either Ni(III), Pd(II), Pd(IV), or

Pt(IV) (20). Most classical haptens, even though they differ in structure, are

electrophiles and, as such, preferentially bind to nucleophilic amino acids, such

as cysteine and lysine (22). The metabolites of the para-compounds studied here,

the respective quinones (Fig. 1), preferentially bind to cysteine residues (23,24).

Comparable to Au(III), binding of different para-compounds to self-proteins

may hinder enzymatic cleavage in stereotype fashion and lead to presentation of

identical cryptic peptides. 

The third possibility, true cross-reactivity, has to be considered when

cross-sensitization to different chemicals cannot be explained by either a

common metabolite or a cryptic peptide.

The animal models that were used for studying cross-sensitization to para-

compounds (25), cannot distinguish between the three possible explanations

outlined above. Both the variety of different T cell clones and of potential

candidate self-proteins that can be haptenated is too large for analysis in vivo or

an analysis solely based on reactions of bulk T cells in vitro. To circumvent

these difficulties, we have established CD4+ T cell hybridomas from mice

immunized with murine hemoglobin adducts of para-phenylenediamine,

Bandrowski's base (BB) (3), and para-aminophenol (pAP), respectively.

Although it is unknown whether hemoglobin is relevant as a carrier protein for

para-compounds in vivo, for the following reasons it is a suitable model protein:

(i) it has six free cysteine residues for coupling the studied para-compounds, (ii)

its amino acid sequence has been elucidated, (iii) it has an active center that can

oxidize prohaptenic, i.e., non-protein-reactive para-compounds, such as pPD and

pAP, into their reactive quinones (26,27), and (iv) it is easy to obtain. Here,

using defined neoantigens and CD4+ T cell hybridomas, we found evidence for

all three possible mechanisms for cross-sensitivity mentioned above, that is, (i)

formation of a common metabolite, (ii) reactivity to cryptic peptides, and (iii)

true cross-reactivity.

Materials and Methods

Mice   Specific pathogen-free female BALB/c mice, expressing both I-Ad  and I-Ed, were

obtained from Harlan-Winkelmann GmbH (Borchen, Germany). Animals received a standard

diet and tap water ad libitum, and were used at 9-20 wks of age.
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Culture media   TC medium consists of RPMI 1640, supplemented with 50 µg/ml

gentamycin, essential and non-essential amino acids, 0.5 mM sodium pyruvate, 71.5  µM

β-mercapto-ethanol, and 5% FCS. HAT medium was prepared by adding 110 µM

hypoxanthine, 0.4 µM aminopterin, and 16 µM thymidine to TC medium. HT medium was

prepared by adding 110 µM hypoxanthine and 16 µM thymidine to TC medium. Supernatant

from the T cell line EXC-5 was used for T cell expansion prior to fusion. Amongst other

cytokines, it contained IL-2, IL-4, and IFN-γ (unpublished results).

Chemicals   BB was obtained from ICN Biomedicals GmbH (Eschwege, Germany); pPD,

pAP, and benzoquinone (BQ) were obtained from Sigma-Aldrich GmbH (Deisenhofen,

Germany). Chemical structures of the compounds used (bold) and their intermediates are

shown in Fig. 1.

Peptides   On the basis of both their I-Ed binding motifs and presence of a cysteine for

coupling the para-compounds to be studied, four different peptides from the α- and β-chains

of mouse hemoglobin (sequence listed in Swissprot, accession nos.: P01942, P02088, and

P02089) were obtained from Jerini Biotools GmbH (Berlin, Germany). These peptides, shown

in Fig. 2, were haptenated and their adducts purified as described below.

In other experiments, 67 non-haptenated peptides (15 aa long, 10 aa overlap between two

adjacent peptides), spanning the entire sequence of mouse hemoglobin, were used, they were

obtained from Jerini biotools GmbH. The peptides were supplied lyophilized on nitrocellulose

membranes. Before use, all 67 peptides were dissolved in saline at a concentration of 200 µM,

aliquoted and stored at -20° C.

Figure 2.   Selected peptides from the α- and β-chain of mouse hemoglobin. Peptides were selected

for two qualities, their binding motifs to I-Ed (italics) and presence of the nucleophilic amino acid

cysteine (bold) to which the electrophilic haptens studied are known to bind in covalent fashion

(23,24). The peptides β(6-19)dmajor and β(6-19)dminor are from the two different β-chains expressed in

BALB/c mice, dmajor and dminor, respectively, which differ at one aa at position nine (SWISSPROT,

see also under Material and Methods). All peptides indicated were coupled to BB, pPD, pAP, and BQ,

respectively, and used to restimulate hybridomas.
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Cell lines   Thymoma line BW5147 (TCRα-β-) was kindly provided by H.-G. Burgert

(Freiburg, Germany).

Antigens   Isolation of hemoglobin: Heparinized blood was obtained from untreated BALB/c

mice and washed three times with saline. Erythrocytes were lysed in 17 mM Tris-HCl, 160

mM NH4Cl, pH 7.2 (10 min, 37° C). After centrifugation at 15,000 g the soluble proteins

were fractionated on a Sephadex-G25 (Pharmacia, Uppsala, Sweden) column. The red-

colored hemoglobin fraction was collected and haptenated as described below.

Haptenation of hemoglobin: Freshly isolated hemoglobin was diluted to 50 mg/ml in 5 ml of

saline and 0.5 ml of a 0.15 M solution of either BB, pPD, pAP or BQ in absolute ethanol, or

ethanol only, was added to the hemoglobin. After 1 h incubation at 37° C with occasional

stirring, 45 ml of -20° C cold acetone containing 0.1% HCl was added. Acetone precipitation

was performed for two reasons: (i) the hemoglobin is freed of heme and breaks into

2 α-chains and 2 β-chains, and (ii) the precipitating chains are washed to eliminate free

hapten. The precipitated globin chains were spun down at 1,600 g and the pellet washed twice

with cold acetone (-20° C) containing 0.1% HCl. The pellet was dried overnight at 50° C and

resuspended in distilled water to a final concentration of 10 mg/ml and sterile filtered through

0.2 µm Supor Acrodisc filters (Gelman Sciences, Ann Arbor, MI, USA) before use. The

resulting BB globin, pPD globin, and pAP globin adducts were used for immunization and,

together with BQ globin, for restimulation of T cells.

Haptenation of peptides and purification of peptide adducts: Cysteine-containing peptides

(13, respectively 14 aa long)  from the α- and β-chain of hemoglobin, shown in Fig. 2, were

used. Peptides were coupled to BB, pPD, pAP, and BQ, respectively, by incubating the

peptide and the chemical to which it would be coupled for 2 hr at 37° C. After incubation, the

adducts and the native peptide, respectively, were purified using RP-HPLC on a LaChrom

HPLC System (Merck, Darmstadt, Germany). The HPLC column was a Lichrospher WP300

RP-18 (5 µm) column and the mobile phase a mixture of water, acetonitril, and trifluoric acid,

starting at 90:10:0.05 and continuously changing to 10:90:0.05 over 40 minutes at a flow rate

of 1 ml/min. The fractions containing native or haptenated peptide, respectively, were

vacuum-dried using an Eppendorf Concentrator 5301 (Eppendorf, Hamburg, Germany) and

solubilized in saline at a concentration of 200 µM.

Immunization   100 µg of protein adduct (BB, pPD, or pAP globin) in 25 µl saline was

mixed with 25 µl IFA and injected into the hind footpads of BALB/c mice. In one

experiment, 100 ng of pure BB, pPD or pAP in 1% ethanol/saline (50 µl) without adjuvant

was used. 

T cell proliferation assay   Ten days after immunization, popliteal lymph nodes (PLNs) were

removed and single-cell suspensions prepared. Cells were plated in tissue-type Petri dishes

for 2 h at 37° C for depletion of adherent cells to decrease unspecific stimulation caused by
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macrophages and dendritic cells containing the Ag used for immunization. Non-adherent cells

were mixed 1:5 with irradiated (20 Gy) syngeneic spleen cells from non-immunized mice and

plated in a 96-well plate at a densitiy of 5x105 cells per well. As control, PLN cells from non-

immunized mice were used. The cells were incubated for 4 days with different concentrations

of the respective antigen at 37° C. Cell proliferation was measured by adding 18.5 kBq

[3H]thymidine for the last 16 h. Cells were harvested onto Ready Filters with Xtalscint

(Beckman Instruments, Fullerton, CA), and the amount of radioactive thymidine incorporated

was measured in a LS6000 β-counter (Beckman). Experiments were done using six replicate

wells and performed twice to show reproducibility.

Generation of T cell hybridomas   Ten days after immunization, PLNs were removed and

single-cell suspensions prepared. Cells (2x106/ml) were restimulated in TC medium with the

appropriate antigen for 2 days. The activated T cells were propagated for 2 more days using

EXC-5 supernatant. T cell blasts isolated by Ficoll-gradient centrifugation were fused with

BW5147 thymoma cells using polyethylene glycol 1500 (Boehringer, Mannheim, Germany),

as described by the manufacturer, and plated in 96 well-plates. After selection of hybridomas

in HAT medium for 2 weeks, cells were cultured for 1 week in HT medium, which was then

gradually exchanged with TC medium. Hybridomas reacting to one of the used antigens in

T cell hybridoma stimulation assays were subcloned twice by limiting dilution.

Preparation of ConA blasts   Spleen cells of untreated BALB/c mice were cultured for 24 h

with Concanavalin A (ConA, 1.25 µg/ml). Cells were washed twice and cultured for another

24 h in TC medium. After washing, they were used in the IL-2 bioassay for detection of IL-2

secreted by Ag-specific hybridomas.  

T cell hybridoma stimulation assay (IL-2 bioassay)   Hybridomas (1x105) were cocultured

with syngeneic spleen cells acting as APC (5x105) in the presence or absence of antigen or

native globin. After 24 h, culture supernatants (50 µl) were transferred to a new 96-well plate,

frozen at -70°C, and after thawing tested for the presence of IL-2 by adding  IL-2-dependent

ConA blasts (2x104 in 50 µl). After 18 h, 18.5 kBq [3H]thymidine was added. Six hours later,

cells were harvested and [3H]thymidine incorporation was measured. Experiments were done

in triplicate cultures and performed at least twice to ensure reproducibility.

MHC restriction analysis   T-cell hybridoma stimulation assay was performed as described

above. Before adding the antigen, anti-I-Ad, anti-I-Ad/Ed, or the respective isotype control

mAb (40 µg/ml) were added. All antibodies were obtained from Pharmingen (Hamburg,

Germany). Experiments were done in triplicate cultures and performed twice.

TCR analysis   T hybridoma cells (2x105 per well) were stained with FITC-coupled mAb to

Vα2, Vα3.2b, Vα8, Vα11b,d, Vβ2, Vβ3, Vβ4, Vβ5.1,5.2, Vβ6, Vβ7, Vβ8.3, Vβ9, Vβ10b,
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Vβ12, Vβ13, Vβ14, and Vβ17a, respectively. FITC-coupled anti-βTCR, directed to the

invariable part of the β-chain, was used as positive control for expression of αβTCR. All

antibodies were obtained form Pharmingen and used at 0.02 µg/ml.

Statistical analysis   Values of 3[H]-thymidine (Thd) incorporation, expressed as arithmetic

means ± SD, were obtained from two to six independent cultures. All experiments were

performed at least twice to assess reproducibility of the data. The data were statistically

analyzed with GraphPad Prism software (GraphPad Software, Inc., San Diego, California,

USA) using ANOVA with Bonferroni comparison.

Results

Bulk T cells from mice immunized to a given para-compound coupled to

self-globin reacted to the adduct, but not to free para-compound

To characterize the specificity of bulk T cells reacting to the adducts of self-

globin and para-compounds used in this study, we first asked whether this

reaction was carrier-dependent. Therefore, mice were immunized by an s.c.

injection of either haptenated globin in IFA or the respective free hapten alone.

Cells from the draining lymph node and irradiated spleen cells as APC were

incubated with either saline, haptenated globin (25 µg/ml), native globin (25

µg/ml), or free hapten (100 µM), and their proliferation was determined. Upon

recall in vitro, lymph node cells from mice primed with the globin adduct of BB

showed carrier dependence in that they reacted only to the adduct used for

immunization, i.e., BB globin, not to free BB or native globin (Fig. 3). When the

mice had been immunized with free BB, however, their lymph node cells not

only showed an anamnestic response to free BB, as could be expected, but they

reacted weakly to globin-bound BB as well. Conceivably, after priming with

free BB in vivo, a spectrum of different self-proteins, one of them being globin,

were haptenated, creating different neoantigens to which T cells were primed. In

vitro, the addition of free BB to the culture of APC and T cells may have

haptenated the same or a similar spectrum of self-proteins, leading to recall of

BB-primed T cells. In contrast, BB globin-primed T cells could not be recalled

with free BB (Fig. 3), as there was no globin or hemoglobin present in the

culture. T cells from mice immunized with pAP and pPD globin adducts were

tested correspondingly in that they were restimulated in vitro using the
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Figure 3.   Bulk T cells obtained from mice primed to BB-coupled self-globin show carrier
dependence. Mice were primed by injection into both hind footpads of either BB globin in
IFA or free BB in saline. After 10 days, draining lymph nodes were removed and cell
suspensions prepared. For recall in vitro, lymph node cells were coincubated with either
saline, BB globin (25 µg/ml), native globin (25 µg/ml), or free BB (100 µM). After four days,
proliferation was measured. Bars represent mean + SD of six separate cultures. Asterisks
indicate a significant difference [(***) p < 0.001] between the black bars and all other bars.

adduct used for immunization, the respective free hapten, or native globin.

T cells obtained from the immunized mice could be restimulated only with the

adduct, not with native globin or free hapten (data not shown). BQ could not be

tested in this assay, because, as a free hapten, it is toxic in concentrations above

0.01 µM (T. Pape, unpublished data).

T cell hybridomas immunized to a single para-compound bound to self-

globin cross-reacted to other para-compounds bound to the same protein

To characterize the specificity of the T cells at single-cell level, CD4+ T cell

hybridomas were established. Mice were primed by injection of either pPD

globin, pAP globin, or BB globin in IFA. Lymph node cells were fused with

BW5147 thymoma cells to obtain immortalized T cells. After subcloning twice,

T cell hybridomas specific for the hapten-globin adduct used for immunization

were tested for their cross-reactivity towards other para-compounds bound to the

same protein. Fig. 4 shows that individual T cell hybridomas reacted differently
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to the different hapten-globin adducts used for recall. Although the first two

hybridomas shown, 2A3 and 7C3 (Fig. 4A and 4B), were both obtained from a

mouse immunized with pPD globin, they reacted differently: both reacted to

pPD globin and BB globin, but only 2A3 reacted to preparations of pAP globin

and BQ globin as well. Similar results were obtained with hybridomas 1B4 and

1A10 (Fig. 4C and 4D): although both were primed to pAP globin and could be

challenged with this Ag, only 1B4 reacted to all four preparations of self-globin

adducts. These results and those obtained with another pAP globin and two BB

globin-primed hybridomas, 2B2, 3H9, and 4G11, are summarized in Table 1.

The results of restimulation of hybridoma 2B2, which was generated after

priming with pAP globin, are shown in Fig. 5. Not only did 2B2 cross-react to

pPD globin and BB globin, but its reaction to the latter was even stronger than

that to pAP globin, the adduct used for priming. 

MHC restriction analysis of hybridomas recognizing haptenated globin

 

In order to analyze MHC restriction of the hybridomas used in this study, APC

were blocked with mAb against I-Ad or against I-Ad/I-Ed before performing a

hybridoma specificity test. Hybridomas were classified as I-Ad restricted when

the reaction against the haptenated globin could be blocked with either mAb

used, whereas I-Ed restricted hybridomas can only be blocked by the I-Ad/I-Ed

mAb. Out of the seven hybridomas studied in detail, five were restricted to I-Ed

and two to I-Ad (Table 1). 

Peptide specificity of I-Ed restricted hybridomas recognizing haptenated

globin

To characterize the peptide specificity of the I-Ed restricted hybridomas specific

for haptenated globin (Table 1), binding motifs of I-Ed molecules (28) were

taken into account. Four different peptides from the α- and β-chain of mouse

hemoglobin were selected (Fig. 2), each containing amino acids necessary for

binding to I-Ed and a cysteine as nucleophilic binding partner for the

electrophilic haptens used (23,24). Hybridomas were restimulated with the
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Figure 4.   Following immunization of mice to a given para-compound coupled to self-globin,
some T cell hybridomas cross-reacted to the same protein haptenated with different para-
compounds. Four different CD4+ T cell hybridomas, established from mice primed with either
pPD globin (A and B) or pAP globin in IFA (C and D) were tested for their cross-reactivity
using adducts of self-globin with a variety of different para-compounds, as indicated in the
key, for recall. After 24h of culture, supernatants were analyzed for their IL-2 content through
proliferation of IL-2 dependent ConA blasts. Symbols represent mean ± SD of three separate
cultures.

different haptenated and native peptides, respectively, and their IL-2 production

was measured. As shown in Table 1, four out of the five I-Ed restricted

hybridomas analyzed in detail recognized the haptenated peptide 96 to 108 from

the globin α-chain (α(96-108)), whereas hybridoma 4G11 reacted to haptenated

peptide β(6-19). No reaction was observed with any of the five I-Ed restricted

hybridomas shown in Table 1 when the peptides specified in Fig. 2 were used in

their non-haptenated form (data not shown).
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Table 1. Overview of results obtained with seven CD4+ T cell hybridomas that reacted to

the para-compounds indicated and were studied in detail 

Clone Obtained from
mouse primed

against

MHC
restriction1

Cross-reactivity to
globin haptenated

with

Haptenated I-Ed

peptide
recognized2

I-Ad peptide
recognized

TCR
phenotype3

2A3 pPD globin I-Ed
pAP, BB, BQ α(96-108) n.i.4

7C3 pPD globin I-Ed
BB α(96-108) n.i.

1B4 pAP globin I-Ad
pPD6, BB6, BQ6 α(96-110)5 Vα2/Vβ10b

1A10 pAP globin I-Ed no cross-reactivity
observed

α(96-108) Vα2/Vβ10b

2B2 pAP globin I-Ed BB6, pPD α(96-108) n.i./Vβ6

3H9 BB globin I-Ad
pPD α(96-110)7 n.i./Vβ13

4G11 BB globin I-Ed
pPD β(6-19)dminor Vα8/Vβ6

1 MHC restriction was determined using anti-I-Ed and anti -I-Ed/Ad antibodies in blocking
experiments. 
2 Peptide recognition was determined using 4 different peptides from the α- and β-chain of
hemoglobin, each of which contained a binding motif for I-Ed and a cysteine-residue. They
were used either native or haptenated with the same para-compound as that used for
immunization.
3 TCR analysis was determined using the Vα and Vβ antibodies listed under Materials and
Methods. 
4 n.i. = not identified.
5 Peptide recognition was determined using the peptide a(96-110), either native or haptenated
with BB or BQ. In addition to the BB-haptenated and BQ-haptenated peptide, the native
peptide was also recognized (cryptic peptide).
6 Heteroclitic reaction (see Discussion).
7 Peptide recognition was determined using the peptide a(96-110), either native or haptenated
with the same para-compound as that used for immunization. BB-haptenated peptide, but not
the native peptide was recognized.

Peptide specificity of I-Ad restricted hybridomas recognizing haptenated

globin

Unlike the I-Ed  restricted hybridomas, the two I-Ad restricted hybridomas, 1B4

and 3H9, failed to react to any of the four peptides selected on their ability to

bind to I-Ed, irrespective of whether they were haptenated or not (data not

shown). Two possibilities may account for this: (i) the two I-Ad restricted
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Figure 5.   Heteroclitic reactivity of a T cell
hybridoma to a hapten-protein adduct other than
to which it was primed. CD4+ T cell hybridoma
2B2, obtained from a mouse immunized to pAP
globin, was tested for its cross-reactivity using
adducts of self-globin with a variety of different
para-compounds, as indicated in the key, for
recall. After 24h of culture, supernatants were
analyzed for their IL-2 content through
proliferation of IL-2 dependent ConA blasts. Bars
represent mean ± SD of three separate cultures.
Asterisks indicate a significant difference
(**=p<0.01 and ***= p<0.001) between groups
compared by brackets.

hybridomas recognized cryptic, i.e., non-haptenated peptides, not necessarily

containing a cysteine residue, or (ii) they recognized cysteine-containing,

haptenated peptides with a binding motif for I-Ad. The different binding motifs

for I-Ed and I-Ad might not allow the four cysteine-containing peptides

previously selected on their motif for I-Ed and shown in Fig. 2 to be presented

by I-Ad molecules. 

T cell hybridoma 1B4 reacted to native peptides from the α-chain of hemoglobin

Unfortunately, the knowledge about peptide-binding motifs for I-Ad (28) was

not sufficient to select peptides from hemoglobin according to their binding

capacity to this MHC molecule. Therefore, we started with investigating the

possibility that 1B4 and 3H9 recognized a cryptic peptide, i.e., a non-haptenated

peptide, from the α- or β-chain of hemoglobin. Therefore, hybridomas 1B4 and

3H9 were tested for their reactivity towards 67 partially overlapping peptides

spanning the whole sequence of the α- and β-chain of mouse hemoglobin. Fig. 6

shows the reaction of hybridoma 1B4 against the 67 overlapping native peptides.

Reactions were detected against the two adjacent, partially overlapping non-

haptenated peptides, nos. 20 and 21; these match peptides α(96-110) and α(101-

115), respectively. Hence, 1B4, which was generated after priming with pAP

globin and showed broad cross-reactivity to all other globin adducts tested (Fig.

4C), reacted also to non-haptenated globin peptides. Hybridoma 3H9, as well as

two other, I-Ed restricted hybridomas that showed broad cross-reactivity, 2A3

and 2B2, failed to react to any of the 67 peptides used (data not shown).



Cross-sensitization to haptens148

Figure 6.   Immunization of mice with haptenated globin allowed for generation of a T cell
hybridoma reacting to non-haptenated, cryptic peptides of this self-protein. Hybridoma 1B4,
generated after priming with pAP globin, was tested with 67 native peptides (20 µM)
spanning the whole sequence of hemoglobin. After 24 h culture, supernatants were analyzed
for their IL-2 content through proliferation of IL-2 dependent ConA blasts. Bars represent
mean + SD of two separate cultures.

T cell hybridoma 1B4 also recognized haptenated peptide α(96-110)

As shown in Fig. 6, the peptides α(96-110) and α(101-115) recognized by

hybridoma 1B4 contain a cysteine located at position 104. To test whether this

hybridoma would react against the native peptides only or against the haptenated

peptides as well, peptide α(96-110) was haptenated with BB and BQ,

respectively, and tested in the restimulation assay. Fig. 7 shows that hybridoma

1B4 reacted better to the haptenated peptide than to the native peptide. It should

be noted that peptide α(96-110) is only two aa longer than peptide α(96-108)

which was selected on its ability to be presented by I-Ed (Fig. 2). Hybridoma

1B4, which is I-Ad restricted (Table 1), however, reacted only to peptides α(96-

110) and α(101-115), not to α(96-108), neither haptenated nor in its native form

(data not shown). Conceivably, the aa at positions 109 or 110 are necessary

either for binding to I-Ad, or for recognition by hybridoma 1B4.
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Figure 7.   Reactivity of T cell hybridoma 1B4 to the haptenated as well as to the native self-
peptide α(96-110). This hybridoma, obtained from a mouse immunized with haptenated
globin, was tested for its reactivity against peptide α(96-110) as well as this self-peptide
haptenated with BQ and BB, respectively. After 24 h incubation of the hybridoma cells, APC,
and the peptide or globin indicated, supernatants were analyzed for IL-2 content through
proliferation of IL-2 dependent ConA blasts. Bars represent mean + SD of three separate
cultures. Asterisks indicate a significant difference [(*) p < 0.05 and (***) p < 0.001] between
groups compared by brackets.

Analysis of variable segments of the α- and β-chain of the TCR on different

hybridomas

To determine the Vα- and Vβ-TCR expression on the hybridomas used in this

study, antibodies against different variable parts of the TCR's α- and β-chains

were used. Each hybridoma tested was stained with the different antibodies

commercially available (see under Materials and Methods) and analyzed by

immune flow cytometry. Results are summarized in Table 1. In the case of

hybridomas 2A3 and 7C3, the α- and β-TCR variable chains could not be

identified, although these hybridomas did express αβTCR, as determined by

mAbs against the invariable part of the β-chain. Conceivably, 2A3 and 7C3 may

express variable α- and β-chains other than those to which mAbs were available

and tested. The same is true for the α-chains of hybridomas 2B2 and 3H9, which
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could not be identified either. Table 1 shows that, although hybridomas 1B4 and

1A10, both obtained from a mouse immunized with pAP globin, express the

same Vα and Vβ elements, they differ in both their MHC restriction and their

cross-reactivity pattern: 1B4 was I-Ad restricted and showed extensive cross-

reactivity, whereas 1A10 was I-Ed restricted and showed highly specific

responses to pAP globin. Furthermore, no preferential usage of the α- and β-

chain was observed after immunization with para-compounds bound to globin.

Discussion

Although it is evident for most sensitizing chemicals that protein adducts are

involved in their recognition by T cells (reviewed in Ref. 29), a difficulty in

trying to study T cell reactions to sensitizing chemicals is the fact that the

ultimate neoantigens formed by these compounds are not known; the only

exception from this rule is the model hapten trinitrophenol (TNP) (16,30,31). In

order to study the molecular mechanism of T-cell cross-reactivity to para-

compounds, in the present investigation we synthesized four defined hapten-

globin conjugates. Three of them, namely BB globin, pPD globin, and pAP

globin were used for priming and these, together with BQ globin, were used for

restimulation of T cells. We found, as expected, that bulk T cells of mice

immunized with one of the three adducts mentioned above were only

restimulated by the respective adduct and not by native globin alone. T cells

from these immunized mice were used to establish a total of 94 CD4+ T cell

hybridomas which recognized the respective adduct used for immunization.

These hybridomas enabled us to analyze cross-reactivity of single T cell clones,

instead of using heterogeneous T cell populations present in vivo or in assays

with bulk T cells. The data obtained with seven of these hybridomas, which

were studied in greater detail, is summarized in Table 1. 

Indeed, some T cell clones, such as 1B4, 2A3, 2B2, and 7C3, showed

cross-reactivity in that they reacted to hapten-protein conjugates to which they

had not been primed. One possible explanation is the formation of an identical

metabolite derived from the different para-compounds. Conceivably, by

coupling pPD to hemoglobin, an oxidizing protein, BB was formed through

oxidation of pPD and subsequent trimerization with two other pPD molecules

(3,32). For instance, the reaction to BB globin of hybridoma 7C3, originally

primed to pPD globin, might be explained by this. Hybridomas 1B4, 2A3, and
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2B2, however, cross-reacted to different para-compounds, like BB and pAP,

that, as shown in Fig. 1, are not metabolically related. Their cross-reactivity,

therefore, cannot be explained by formation of a common metabolite so that

formation of cryptic peptides or true cross-reactivity must be considered. 

Analysis of the specificity of hybridoma 1B4 showed that it reacted to two

partially overlapping, native peptides from the α-chain of globin, α(96-110) and

α(101-115), even though it failed to react to the native globin. Such peptides, to

which T cells are raised that can only be recalled by the peptide itself, but not by

the respective native protein, have been termed cryptic peptides (21). Previously,

presentation of cryptic peptides and recognition by CD4+ T cell hybridomas

have been shown after immunization with bovine RNase denatured by Au(III)

(20), but up to now no cryptic peptides have been identified after coupling a

self-protein with a classical hapten, i.e., a covalently binding non-metal

compound. Presentation of cryptic self-peptides caused by haptenation of the

respective self-proteins may be relevant for the development of autoimmunity

because, by definition, T cell tolerance to cryptic self-peptides could not be

established as long as these were not presented (21). Hence, it has been proposed

that presentation of cryptic self-peptides by APCs is the initial step for the

development of drug-induced autoimmunity (29). 

No reaction to cryptic peptides was observed with hybridomas 2A3 and

2B2. As their cross-reactivity pattern could not be explained by common

metabolites either, true cross-reactivity might be an explanation for their

reactivity to hapten-protein adducts against which they had not been immunized.

True cross-reactivity of T cell hybridomas is not in line with the concept of 'one

clonotype, one specificity'. As already mentioned, this paradigm has been

undermined by theoretical considerations (33), and these are supported by a

number of experimental observations (34-38). According to Mason (33), for

optimal function of T cell recognition, three conflicting conditions have to be

met. First, a large number of foreign peptides must be recognized for defense

against microbes. Second, the specificity of the TCR must be high enough to

respond to the foreign peptides, but not to self-peptides. Third, the frequency of

T cells retained after negative selection and responding to a given foreign

peptide must be high enough to ensure a rapid response. The first two conditions

maybe best met by a highly specific, but diverse TCR repertoire. However, the

more specific and diverse the TCR repertoire, the lower the frequency of T cells

responding to a single foreign peptide will be. Because there are many more
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different foreign peptides than there are T cells in a mouse (33), a considerable

number of foreign peptides would go unrecognized if there were no cross-

reactivity. To enable the immune system to react fast and efficiently to

pathogenic peptides, Mason estimates that a single naive CD4+ T cell should be

able to react to almost half a million different 11-mer peptides. Hence, by

necessity, extensive cross-reactivity to peptides should be an intrinsic feature of

the TCR. For classical haptens however, cross-reactivity at the single T cell

level has not been reported before. Up to now, only highly specific clones were

described that are capable of discriminating amongst haptens with minor

differences in side-chains (18,39). In contrast, our results show both a good

degree of specificity, comparable with that reported for other haptens (18,39),

and extensive cross-reactivity. Specificity was manifested, for instance, by

hybridoma 1A10, while hybridoma 2A3 and 1B4 displayed extensive cross-

reactivity. An extreme manifestation of the intrinsic cross-reactivity of T cells

was observed with hybridoma 2B2 which reacted even more strongly to an

adduct not used for immunization, namely BB globin, than to the pAP globin

used for immunization. The term heteroclitic reaction (40-42) denotes this

phenomenon, it means that the immune response to an Ag not used for

immunization is stronger than that to the immunizing Ag. Heterocliticity was

also observed with hybridoma 1B4: it reacted to the immunizing pAP globin,

but reacted even more strongly to the three globin adducts which were not used

for immunization.

A concept which can be used to explain T cell cross-reactivity is the

‘avidity-pit model’ proposed by Sandberg et al. (43). Avidity is defined here as

the mathematical product of the TCRs' affinity towards a given peptide-MHC

complex and the number of such complexes recognized by the T cell on the

surface of an APC. According to that concept, immediately after thymocytes

were positively selected on their ability to recognize self-MHC complexes with

low avidity, their activation threshold is set higher than their level of self-

recognition. In order to reach their activation or avidity threshold and react,

peripheral T cells have to recognize a given peptide with higher avidity than the

original self-peptide by which they were positively selected. This means that

either their TCR recognizes the new peptide with higher affinity or that the

epitope density of this particular peptide on the surface of APCs is increased. If,

indeed, enhancement of avidity is the only prerequisite for T-cell recognition,

this would imply that a given T cell cross-reacts to all peptides, including those
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altered by haptens, which it recognizes with higher avidity than the self-peptide

by which it was positively selected in the thymus. The avidity-pit model also

implies that, even after activation by a foreign peptide, the T cell keeps its low

avidity for the original self peptide; hence, it can be activated if APCs present

that peptide at a higher density than normal. 

The extensive cross-reactivity seen with hybridoma 1B4 may therefore be

explained by the avidity-pit model. Hybridoma 1B4 cross-reacted with all four

hapten-globin preparations offered for recall, and at the peptide level it was

found to react to the haptenated peptide α(96-110). Unexpectedly, however, the

same peptide was also recognized in its native, unhaptenated form, albeit that

here the IL-2 production was lower, presumably due to lower affinity of 1B4 for

the native peptide than for the haptenated one. The following hypothesis may

explain these results. As can be deduced from our results with peptide α(96-108)

that was recognized by hybridomas 2A3, 7C3, 1A10, and 2B2 in its haptenated,

but not in its native form, haptenation of hemoglobin apparently leads to binding

of the hapten to the cysteine at position 104 of the α-chain. After immunization

with haptenated hemoglobin in vivo, a given T cell, conceivably positively

selected on its ability to recognize the native peptide α(96-110) with low avidity

in the thymus, recognized the haptenated peptide with higher avidity and reacts

against it. After fusion, the hybridoma generated was found to react to

haptenated globin and haptenated peptide α(96-110), implying that the T cell

from which it was derived had been activated by the haptenated peptide α(96-

110) in vivo. By adding the native self-peptide to APC in vitro, we increased the

number of peptide-MHC complexes on the surface of the APC, thereby raising

the avidity for binding of 1B4 and crossing the avidity threshold for its

activation. Nonetheless, the haptenated peptide was recognized with higher

affinity by the TCR of 1B4 and, therefore, a more vigorous reaction to the

haptenated than the native peptide ensued.

In conclusion, there are three aspects of our analysis concerning the fine

specificity of T cell reactivity to different haptens. First, with regard to

allergology, our results show that T cell cross-reactivity to para-compounds

indeed exists at the clonal level and, depending on the clone tested, can be due to

any one of the three mechanisms discussed above. Second, the alteration of self-

protein by covalently bound hapten may raise T cells reacting to cryptic self-

peptides and thus be relevant for drug-induced autoimmunity. Third, with regard

to T cell physiology our findings of true cross-reactivity and heterocliticity
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provide experimental support for the theories of Mason  (33) and Sandberg et al

(43) which describe a limited discriminatory capacity of T cells carrying an

αβTCR. 
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CHAPTER 8

The CellELISA: a rapid method for measuring specific

T-cell hybridoma reactions

Marty Wulferink, Sabine Dierkes, and Ernst Gleichmann

We have adapted the sandwich ELISA to rapidly screen a large number of T-cell

hybridomas. The method, called CellELISA is similar to the sandwich ELISA, but

instead of transferring the supernatants in cytokine-coated 96-well plates, the cells are

cultured directly in sterile, cytokine-coated wells. After 24 hours, the plates are

washed, incubated with the detection antibody and developed using ortho-

phenyldiamine substrate. Compared with the cytokine bioassay, where supernatants

are tested on cytokine-dependent ConA blasts, the CellELISA is as sensitive, but does

not require radioactivity and takes one day less. Compared with the sandwich ELISA,

the CellELISA is more sensitive, especially in the lower range of cytokine secretion.

We conclude, that the CellELISA is a suitable method for rapid screening and

measuring specific reactions of T-cell hybridomas. 
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Introduction

Chemical induced allergy and autoimmunity is often observed after

administration of certain drugs (1-5) or after intoxication with occupational or

environmental chemicals (6-8). A major difficulty in studying the mechanisms

of chemical-induced adverse immune effects is the fact that the ultimate

neoantigens are unknown (9). While there are different approaches to investigate

the molecular structure of these antigens, most investigations rely on

establishing monoclonal T cell populations: either T-cell clones (10,11) or T-cell

hybridomas (12,13).

The most widely used technique to measure activation of T-cell clones is

detection of proliferation upon challenge with the appropriate antigen. Two

techniques can be used in order to measure proliferation: (i) incorporation of

labeled nucleotides into DNA (3H-thymidine, bromodeoxyuridine) and (ii) cell

number dependent transformation of tetrazolium dyes (MTT, WST, etc).

Recently, measurement of proliferation has been extended by the measurement

of cytokines, either by sandwich ELISA or flow cytometry. With these

techniques one can differentiate between a Th1 and a Th2 responses (14,15). 

For T-cell hybridomas it is not possible to measure direct proliferation

upon challenge, as hybridomas proliferate independent of recognition of the

appropriate antigen. In contrast to T-cell clones, activation of T-cell hybridomas

can only be measured through cytokine secretion. This can be done in the

cytokine bioassay by using IL2/IL4 dependent cells or by direct measurement of

cytokines in an ELISA (16).

Initial screening of T-cell hybridomas is time consuming and laborious.

Generally only a few hundred hybridomas can be tested at one time for their

specificity to the antigen used for immunization. Conceivably, a time-saving test

combined with an early endpoint would be optimal for a first screening of newly

established hybridomas. We have therefore adapted the sandwich ELISA

technique to rapidly screen large numbers of T-cell hybridomas for their

specificity. Instead of transferring the supernatant from the culture plate into the

sandwich-ELISA plate or the cytokine bioassay plate, the CellELISA uses only

one plate for both culture and detection of cytokines, reducing costs and

workload, and enhancing sensitivity. The CellELISA has the additional

advantages that it takes one day less than the cytokine bioassay and does not

require radioactive incorporation.
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Materials & Methods

Mice   Specific pathogen-free female BALB/c (H-2d) and C57BL/6 (H-2b) mice were

obtained from Harlan-Winkelmann GmbH (Borchen, Germany). Animals were kept on a

standard diet and tap water ad libitum, and used at 8-10 wks of age.

Materials   p-Aminophenol (pAP) was obtained from Sigma-Aldrich GmbH (Deisenhofen,

Germany). Purified anti-CD3 (clone 145-2C11), anti-CD28 (clone 37.51, NA/LE), anti-IL-2

(clone JES6-1A12) and anti-IL-4 (clone BVD4-1D11), biotinylated anti-IL-2 (clone JES6-

5H4) and anti-IL-4 (clone BVD6-24G2), and FITC-labeled anti-I-Ab (clone AF6-120.1) were

obtained from BD Biosciences (Heidelberg, Germany). Streptavidin-coupled horse radish

peroxidase was obtained from Amersham Pharmacia Biotech (Freiburg, Germany). Magnetic

beads coupled to anti-CD8a (clone 53-6.7) and anti-I-A (clone M5/114.15.2) were obtained

from Miltenyi GmbH (Mönchen-Gladbach, Germany). Tumor cocktail (TC) medium

consisting of RPMI 1640 (PAA laboratories GmbH, Cölbe, Germany), supplemented with

50 µg/ml gentamycin, essential and non-essential amino acids, 1 mM sodium pyruvate (all

from PAA laboratories GmbH), 50  µM β-mercapto-ethanol (Sigma Aldrich GmbH), and 5%

FCS (Sigma Aldrich GmbH) was used throughout unless stated otherwise. HAT medium was

prepared by adding 110 µM hypoxanthine, 0.4 µM aminopterin, and 16 µM thymidine (all

from Life Technologies GmbH, Eggenstein, Germany) to TC medium. HT medium was

prepared by adding 110 µM hypoxanthine and 16 µM thymidine to TC medium. Supernatant

harvested from the T cell line EXC-5 was used for T cell expansion prior to fusion. Amongst

other cytokines, it contains IL-2, IL-4, and IFN-γ (unpublished results). 96-Well plates (type

Microlon) were obtained from Greiner GmbH (Frickenhausen, Germany) and used throughout

the experiments.

Hemoglobin isolation   Heparinized blood was obtained from untreated BALB/c mice and

washed three times with saline. Erythrocytes were lysed in 17 mM Tris-HCl, 160 mM NH4Cl,

pH 7.2 (10 min, 37° C). After centrifugation at 15,000 g the soluble proteins were fractionated

on a Sephadex-G25 (Pharmacia, Uppsala, Sweden) column. The red-colored hemoglobin

fraction was collected and haptenated as described below.

Haptenation of hemoglobin   Freshly isolated hemoglobin was diluted to 50 mg/ml in 5 ml

of saline and 0.5 ml of a 0.15 M solution of pAP in absolute ethanol was added to the

hemoglobin. After 1 h incubation with occasional stirring, 45 ml of -20° C cold acetone
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containing 0.1% HCl was added. The precipitated globin chains were spun down at 1,600 g

and the pellet washed twice with -20° C cold acetone containing 0.1% HCl. The pellet was

dried overnight at 50° C and resuspended in distilled water to a final concentration of 10

mg/ml and sterile filtered through 0.2 µm Supor Acrodisc filters (Gelman Sciences, Ann

Arbor, MI, USA) before use.

Immunization   100 µg of pAP globin in 25 µl saline was mixed with 25 µl incomplete

Freund's adjuvant (Sigma-Aldrich GmbH) and injected into the hind footpads of BALB/c

mice. 

Generation of T-cell hybridomas   T-cell hybridomas were generated as described

previously (Chapter 7, Wulferink et al, submitted). In short,  lymph node cells from

immunized mice were restimulated in TC medium with the appropriate antigen for 2 days.

The activated T cells were expanded for a further two days using EXC5 supernatant. The

resulting T-cell blasts were fused with BW5147 thymoma cells using polyethylene glycol

1500 (Boehringer, Mannheim, Germany), as described by the manufacturer. Hybridomas

reacting to pAP globin in T-cell hybridoma stimulation assays were subcloned twice by

limiting dilution.

Preparation of ConA blasts   Spleens cells of untreated BALB/c mice were cultured for 24 h

with Concanavalin A (ConA, 1.25 µg/ml). Cells were washed twice and cultured for another

24 h in TC medium. After washing, they were used in the T-cell hybridoma stimulation assay

for detection of IL-2 secreted by Ag-specific hybridomas.  

T-cell hybridoma stimulation assay using IL-2 dependent ConA blasts (Fig. 1)

Hybridomas (1x105) were cocultured with syngeneic spleen cells acting as APCs (5x105) in

the presence or absence of antigen. After 24 h, culture supernatants (50 µl) were transferred to

a new 96-well plate, frozen at -70°C, and after thawing tested for the presence of IL-2 by

adding  IL-2-dependent ConA blasts (2x104 in 50 µl). After 18 h, 18.5 kBq [3H]thymidine

was added. Six hours later, cells were harvested and [3H]thymidine incorporation was

measured. Experiments were done in triplicate cultures and performed twice to ensure

reproducibility.

T-cell hybridoma stimulation assay using the CellELISA (Fig. 1)   96-Well plates were

coated with either purified anti-IL-2 ( 2 µg/ml) or anti-IL-4 (2 µg/ml) mAb overnight at 4° C.

They were blocked with 1% BSA in PBS for 2 h at RT and washed three times with PBS. All
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solutions were sterile filtered before use. Hybridomas (1x105) were cocultured with syngeneic

spleen cells acting as APCs (5x105) in the presence or absence of antigen or native globin.

After 24 h plates were washed three times with wash solution (PBS containing 0.5 % Tween-

20) and incubated for 2 hours at RT with biotinylated anti-IL-2 (1 µg/ml) or anti-IL-4 (1

µg/ml) mAb, respectively. Plates were washed three times with wash solution, incubated with

streptavidin-horseradish-peroxidase (1:2000 in PBS) for 30 minutes at RT and washed 5 times

with wash solution. Plates were developed using OPD tablets (Sigma-Aldrich GmbH) as

described by the manufacturer and measured using a 96-well-plate reader (Dynex

Technologies, Denkendorf, Germany).

Purification of CD4+ T cells   Spleen cells of untreated C57BL/6 mice were passed over a

nylon wool column to enrich T cells. Enriched T cells were stained with magnetically labeled

anti-I-Ad mAbs, washed and passed through an AutoMACS (Miltenyi GmbH) according to

the manufacturers Protocol (Protocol: DepleteS). The negative fraction, depleted of APC was

stained with magnetically labeled anti-CD8a mAbs, washed and passed through an

AutoMACS (Protocol: DepleteS). The resulting enriched CD4+ T cells had less than 2%

contaminating APC as determined by flow cytometry using FITC-labeled anti-I-Ab mAbs.

T cell stimulation assay   96-Well plates were coated overnight at 4°C with 50 µl binding

solution (0.1 M Na2HPO4, adjusted to pH 9.0 with 0.1 M NaH2PO4) containing 5µg/ml

anti-CD3 and 1 µg/ml of either anti-IL-2, anti-IL-4, or isotype control. Plates were blocked

with 1% BSA in PBS for 2h at RT and washed three times with PBS containing 0.5% Tween.

Purified CD4+ splenic T cells from untreated C57BL/6 mice were plated at a densitiy of 2x105

cells per well and incubated with different concentrations of anti-CD28. After 2 days, the

plates coated with anti-IL-2 and anti-IL-4 were developed as described above (CellELISA).

From the plates coated with isotype control, supernatant was taken for a sandwich-ELISA and

the IL-2 bioassay, respectively. 
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Figure 1. Schematic overview of the three different methods used for measuring cytokine
secretion of T-cells: (A) sandwich ELISA, (B) CellELISA, and (C) cytokine bioassay. For
detailed description, see Materials and Methods.
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Figure 2. Sensitivity of the CellELISA in comparison to the sandwich-ELISA and the
cytokine bioassay. Splenic CD4+ T cells were stimulated in 96-well plates coated with anti-
CD3 in combination with either anti-IL-2 or anti-IL-4 for CellELISA, or isotype control mAb
for sandwich-ELISA and cytokine bioassay. Soluble anti-CD28 was added in different
concentrations and after 48 h, cytokine production was measured by either directly developing
the CellELISA plates or transferring supernatants to the sandwich-ELISA or cytokine
bioassay plates (see Materials and Methods and Fig. 1). Results of two independent
experiments are shown (A and B, respectively). 
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Results and Discussion

Sensitivity of the different T cell activation assays

We first determined the sensitivity of the conventional sandwich ELISA, the

CellELISA, and the cytokine bioassay. For this we stimulated purified splenic

CD4+ T cells of C57BL/6 mice with plate-bound anti-CD3 and different

concentrations of anti-CD28. Fig. 2 shows stimulation indices in relation to anti-

CD28 concentration for the different T cell activation assays tested in two

independent experiments (Fig. 2A and 2B, respectively). In the first test

(Fig. 2A), sensitivity of the IL-2 CellELISA was comparable with that of the

cytokine bioassay. In the second test (Fig. 2B), the CellELISA was more

sensitive in the lower range of T cell activation (10-30 ng/ml anti-CD28) but

with higher anti-CD28 concentrations, the stimulation indices of the cytokine

bioassay exceeded that of the IL-2 CellELISA. Compared with the sandwich

ELISA, sensitivity in the lower range was higher in the CellELISA in both

experiments. In the second experiment, the stimulation indices obtained with

higher concentrations of anti-CD28 in the sandwich ELISA also exceed that

obtained in the CellELISA. A comparison of experiment 1 and 2 shows less

interexperimental variation with CellELISA compared to the sandwich ELISA

and the cytokine bioassay over the whole range of T cell stimulation.

Comparison of the CellELISA and bioassay for the screening of newly
generated T-cell hybridomas

To compare the suitability of the CellELISA for screening newly generated

T-cell hybridomas, we compared the IL-2 CellELISA and the IL-4 CellELISA

with the cytokine bioassay, used by many investigators for detection of antigen-

specific hybridomas. Table 1 shows a comparison of the CellELISA and the

cytokine bioassay with regard to identification of specific T-cell hybridomas. A

total of 128 hybridomas were tested for recognition of pAP globin, the antigen

used for immunization. 42 of these 128 hybridomas were positive (SI > 2) in at

least one of the tests used; these are shown in Table 1. Of these 42 hybridomas,

29 could be identified as specific in all three tests. From the 13 hybridomas

negative in at least one of the tests, six were negative in the cytokine bioassay

but positive in either the IL-4 (1 hybridoma) or the IL-2 and the IL-4
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(5 hybridomas) CellELISA. Another six of these hybridomas were negative in

the IL-4 CellELISA but positive in both IL-2 CellELISA and bioassay. From the

Table 1. Stimulation indices of specific T-cell hybridomas using the IL-2 and
IL-4 CellELISA, and the cytokine bioassay

Hybridoma IL-2a IL-4b 3[H]c Hybridoma IL-2 IL-4 3[H]

Hybridomas positive in all three tests Hybridomas negative in all three tests
1A1 16 3 4 1B6 1 1 <1
1A2 32 5 7 1C4 1 1 1
1A4 32 8 4 + 84  hybridomas with similar results 
1B2 13 5 2
1B3 18 10 5 Hybridomas negative in the cytokine bioassay
1B5 14 10 5 1A3 32 5 1
1C1 15 5 4 1A6 17 3 <1
1C2 22 15 5 2A4 54 11 1
1C3 25 5 4 2B4d 1 3 1
1C5 11 4 5 2C4 3 4 <1
1C6 24 3 7 2D2 50 27 <1
1D1 26 4 4
1D3 18 6 8 Hybridomas negative in the IL-4 CellELISA
1D4 22 3 5 1A5 6 1 2
1D5 23 2 7 1B1 4 <1 3
1D6 4 3 5 1B4 18 1 4
2A2 12 3 5 1D2 8 <1 5
2A3 21 4 4 2A1 4 <1 3
2A5 17 12 4 2A6 11 1 8
2B1 10 2 5
2B2 9 4 9 Hybridomas negative in the IL-2 CellELISA
2B3 12 11 6 2B4d 1 3 1
2B5 22 2 9 2B6 1 2 6
2C1 42 9 5
2C2 3 11 10
2C3 11 14 6 Average index of positive hybridomas:
2C5 37 20 2 IL-2a: 19.8 ± 12.8
2C6 34 15 7 IL-4b: 7.3 ± 5.7
2D1 41 8 7 3Hc: 5.3 ± 2.0

a Stimulation index obtained with IL-2 CellELISA
b Stimulation index obtained with IL-4 CellELISA
c Stimulation index obtained with cytokine bioassay
d Hybridoma 2B4 was negative in the cytokine bioassay as well as in the IL-2 CellELISA
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Figure 3. Comparison of CellELISA and cytokine bioassay using two established pAP

globin-specific T-cell hybridomas (A and B, respectively). APCs, T-cell hybridomas and

different concentrations of antigen were cocultured in a plate coated with either anti-IL-2 or

anti-IL-4 for CellELISA, or non-coated for the cytokine bioassay. After 24 hours, cytokine

production was measured by either directly developing the CellELISA plates or transferring

supernatants to cytokine bioassay plates (see Materials and Methods). SIs were calculated by

dividing the values of cultures with antigen by the values of cultures without antigen. Shown

are SI ± SD of six replicate cultures. 

0
0

10

20

30

40

cytokine bioassay

IL-2 CellELISA
IL-4 CellELISA

12.5 25 50 100

A

concentration pAP globin (µg/ml)

St
im

u
la

ti
on

 I
nd

ex

0
0

10

20

cytokine bioassay

IL-2 CellELISA
IL-4 CellELISA

12.5 25 50 100

B

concentration pAP globin (µg/ml)

St
im

u
la

ti
on

s 
In

d
ex



Chapter 8 169

two hybridomas that were rejected by the IL-2 CellELISA both were identified

by the IL-4 CellELISA and one of them also by the cytokine bioassay. All

hybridomas were retested to assure that no false positive reactions were

obtained. In conclusion, none of the tests used were able to identify all of the

specific T-cell hybridomas. The IL-2 CellELISA however, showed the least

frequency of false negative test results (4.5%). Both the IL-4 CellELISA and the

cytokine bioassay demonstrated the same frequency of false negative results

(13.6%). If average indices of positive hybridomas were compared, IL-2

CellELISA showed the highest indices, followed by the IL-4 CellELISA

(Table 1). This means that discrimination of positive and negative T cell-

hybridomas is easier in both CellELISAs than it is in the cytokine bioassay.

Comparison of CellELISA and cytokine bioassay for testing established

T-cell hybridomas

After initial screening and subsequent subcloning of specific T-cell hybridomas,

the next step will generally be to show dose-dependency, fine specificity, and/or

MHC-dependency. To test whether the CellELISA is adequate for this purpose,

we used a total of 7 established and subcloned T-cell hybridomas to compare the

CellELISA with the cytokine bioassay. Fig. 3 shows the dose dependency

reaction of two representative hybridomas. Hybridoma 1A10 (Fig. 3A) showed

comparable reactions in IL-2 CellELISA and IL-4 CellELISA. The cytokine

bioassay was less sensitive with this hybridoma. Hybridoma 1B4 produced a

higher SI in the IL-2 CellELISA than both the IL-4 CellELISA and the cytokine

bioassay. In conclusion, all three assays are useful for further studying

established and subcloned hybridomas. However, these results and those

obtained with 5 other hybridomas (data not shown) show that the IL-2

CellELISA is more sensitive than both the IL-4 CellELISA and the cytokine

bioassay. This makes the IL-2 CellELISA more suitable for inhibition

experiments where an initially high stimulation index is required to show

(relative) inhibition by antibodies or chemicals.

In conclusion, the CellELISA is suitable for rapid screening of newly

generated hybridomas as well as for the characterization of established

hybridomas. The advantage of the CellELISA in comparison to the normal

sanwich ELISA is its lower workload and higher sensitivity, especially in the

lower range of cytokine secretion. A recent publication depicted that measuring
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cytokine secretion by sandwich ELISA is influenced by the consumption of

cytokines by the cells (17). Consequently, if a limited amount of cytokines is

secreted, it may be consumed almost completely and therefore leave no

cytokines to be detected by the sandwich ELISA. In contrast, in the CellELISA

this effect is negligible, as the cytokines are rapidly bound to the plate after

being secreted. Consumption of cytokines by cells can explain both the lower

sensitivity of the sandwich ELISA in the range of 10-30 ng/ml anti-CD28,

where all cytokines may be consumed by the cells, as well as the higher

stimulation indices in the range of 100-1000 ng/ml. In this range, the cytokines

consumed by the cells induce cell proliferation and activation with subsequent

cytokine production, which are consumed by the cells, and so on, and so forth.

This "snowball effect" is absent in the CellELISA, as the cytokines needed for

proliferation are caught and held by the antibodies coated to the well.

Compared with the cytokine bioassay, the CellELISA has similar

sensitivity, but the interexperimental variance is lower in the latter. This might

be due to the use of ConA blasts in the cytokine bioassay, which brings an extra

variable into the test system. The use of non-radioactive materials in the

CellELISA may also be seen as an advantage. 

References

1. Bell, S. J. D. and W. J. Pichler. 1989. Penicillin-allergic patients react to penicillin-

modified "self". Allergy 44: 199-203.

2. Schnyder, B., C. Burkhart, K. Schnyder-Frutig, S. von Greyerz, D. J. Naisbitt, M.

Pirmohamed, B. K. Park, and W. J. Pichler. 2000. Recognition of sulfamethoxazole

and its reactive metabolites by drug specific CD4+ T cells from allergic individuals.

J.Immunol. 164: 6647-6654.

3. Goebel, C., C. Vogel, M. Wulferink, S. Mittmann, B. Sachs, S. Schraa, J. Abel, G.

Degen, J. Uetrecht, and E. Gleichmann. 1999. Procainamide, a drug causing lupus,

induces prostaglandin H synthase-2 and formation of T cell-sensitizing drug metabolites

in mouse macrophages. Chem.Res.Toxicol. 12: 500.

4. Kubicka-Muranyi, M., C. Goebel, P. Griem, H.-C. Schuppe, J. Uetrecht, and E.

Gleichmann. 1998. Adverse immune reactions to drugs (gold, procainamide) and

environmental chemicals (mercury, platinum): the role of phagocytic cells in generating

immunogenic metabolites. In Symposium in Immunology. Eibl, M.M., Huber, C.,

Decker, H.A., Wahn, U., eds. Springer Verlag, Berlin, Heidelberg, p. 189-210.



Chapter 8 171

5. Uetrecht, J. P. 1999. New concepts in immunology relevant to idiosyncratic drug

reactions: The "danger hypothesis" and innate immune system. Chem.Res.Toxicol. 12:

387-395.

6. Gelber, C., L. Gemmell, D. McAteer, M. Homola, P. Swain, A. Liu, J. Wilson, and

M. Gefter. 1997. Down-regulation of poison ivy/oak-induced contact sensitivity by

treatment with a class II MHC binding peptide:hapten conjugate. J.Immunol. 158: 2425-

2434.

7. Schuppe, H.-C., A. C. Rönnau, S. von Schmiedeberg, T. Ruzicka, E. Gleichmann,

and P. Griem. 1998. Immunomodulation by heavy metal compounds. Clin.Dermatol.

16: 149-157.

8. Griem, P. and E. Gleichmann. 1995. Metal ion induced autoimmunity.

Curr.Opin.Immunol.  7: 831-838.

9. Griem, P., M. Wulferink, B. Sachs, J. B. Gonzalez, and E. Gleichmann. 1998.

Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol.Today

19: 133-141.

10. von Greyerz, S., M. P. Zanni, K. Frutig, B. Schnyder, C. Burkhart, and W. J.

Pichler. 2001. Interaction of sulfonamide derivatives with the TCR of

sulfamethoxazole-specific human alpha beta+ T cell clones. J.Immunol. 162: 595-602.

11. Hemmer, B., T. Kondo, B. Gran, C. Pinilla, I. Cortese, J. Pascal, A. Tzou, H. F.

McFarland, R. Houghton, and R. Martin. 2000. Minimal peptide length requirements

for CD4(+) T cell clones: implications for molecular mimicry and T cell survival.

Int.Immunol. 12: 375-383.

12. Schneider, S. C. and N. A. Mitchison. 1995. Self-reactive T-cell hybridomas and

tolerance. J.Immunol. 154: 3796-3805.

13. von Vultée, C., P. Griem, and E. Gleichmann. 1997. Generation of murine

CD4+ T cell hybridomas specific for nickel. Immunobiol. 197: 297.(Abstract)

14. van Zijverden, M., A. van der Pijl, M. Bol, F. A. van Pinxteren, C. de Haar, A. H.

Penninks, H. van Looveren, and R. Pieters. 2000. Diesel exhaust, carbon black, and

silica particles display distinct Th1/Th2 modulating activity. Toxicol.Appl.Pharmacol.

168: 131-139.

15. Cavani, A., D. Mei, E. Guerra, S. Corinti, M. Giani, L. Pirrotta, P. Puddu, and G.

Girolomoni. 1998. Patients with allergic contact dermatitis to nickel and nonallergic



The CellELISA: measurement of T-cell hybridoma reactions172

individuals display different nickel-specific T cell responses. Evidence for the presence

of effector CD8+ and regulatory CD4+ T cells. J.Invest.Dermatol. 111: 621-628.

16. Varma, C. K., S.-W. Li, L. E. Hood, W. Ladiges, and G. E. Osman. 1997. Rapid

detection of bovine type II collagen-specific T-cell hybridomas. Hybridoma 16: 287-

290.

17. Ewen, C. and M. E. Baca-Estrada. 2001. Evaluation of interleukin-4 concentration by

ELISA is influenced by the consumption of IL-4 by cultured cells. J.Interferon Cytokine

Res. 21: 39-43.



CHAPTER 9

General discussion

Introduction

In this thesis, mechanisms involved in chemical-induced allergy and

autoimmunity were investigated. A major difficulty in studying the mechanisms

of chemical-induced adverse immune effects is the fact that the ultimate

neoantigens are unknown. In Chapter 2 we discussed some of the steps possibly

involved in the formation of the neoantigens and subsequent T cell recognition.

We could substantiate the hypothesis that extrahepatic metabolism plays an

important role in the formation of neoantigen with the prohaptens procainamide

and aniline in Chapters 4 and 5, respectively. In Chapter 7, the processing of

protein adducts, presentation of neoantigens and subsequent recognition of

either haptenated peptides or cryptic peptides by T cells was shown.

Furthermore, Chapter 7 elucidates some of the mechanisms involved in cross-

sensitization and discusses the possible implications of T-cell cross-reactivity in

chemical induced allergy and autoimmunity.

Metabolism

Model haptens like trinitrophenol (TNP), dinitrochlorobenzene (DNCB) or

dinitrofluorobenzene (DNFB) can directly bind to proteins (1-3). However, most

chemicals that humans come into contact with in daily life, like drugs and dyes,
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are not protein-reactive perse but can be converted into reactive metabolites in

the human body. In Chapters 3, 4 and 5 we showed for benzene, procainamide

and aniline, respectively, that formation of protein-reactive metabolites is a

prerequisite for the induction of chemical-induced allergy and autoimmunity. 

Hepatic metabolism of chemicals. The main organ for metabolic

conversion of chemicals is the liver. In comparison with its high metabolic

activity however, adverse immune reactions in the liver are relatively rare. This

might be due to the fact, that protein-reactive metabolites formed in the liver are

detoxified by glutathion-conjugation, glucuronidation, or other detoxifying

mechanisms which render them unavailable for conjugation with self-proteins

(4). Furthermore, the environment in the liver (cytokines and specialized cells)

seems to have a tolerogenic rather than activating effect on T cells (5,6).

Extrahepatic metabolism. Quantitatively, extrahepatic metabolic

conversion of chemicals is less important than hepatic metabolism. Nonetheless,

extrahepatic metabolism of chemicals, especially by cells of the immune system,

appears to play a crucial role in the induction of chemical-induced allergy or

autoimmunity (Chapter 2). An antigen presenting cell (APC) can, on its own,

convert a prohapten into a protein-reactive hapten and, after adduct formation

with a cytoplasmic self-protein, process and present the newly formed adduct to

T cells. In Chapters 4 and 5 we showed extrahepatic formation of  T cell

sensitizing metabolites after pulsing phagocytic cells with procainamide and

aniline, respectively. 

Processing and Presentation

After adduct formation, protein-hapten adducts are processed by the APCs'

processing machinery. The resulting peptides can then be presented by MHC

molecules on the cell surface (7). Only few of the hapten-protein conjugates

formed after exposure to chemicals are processed in such a way, that fragments

are presented as neoantigens on MHC molecules. In Chapter 7, we showed that

such neoantigens can either be hapten-peptide conjugates, or cryptic peptides

(see also Chapter 1). Presentation of hapten-peptide conjugates and subsequent

recognition by T cells leads to allergic reactions, whereas presentation of cryptic

peptides, i.e. native self-peptides that are normally not presented, might lead to

autoimmunity. 
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T cell recognition

A key feature in the induction of chemical-induced allergy and autoimmunity

seems to be activation of T cells specific for the respective chemical (Chapters

2-4, 6). In many cases of drug-induced allergy, the existence of specific T cells

could be confirmed by in vitro restimulation of patient T cells with the causal

drug (8) or one of its reactive metabolites (9, reviewed in 10). Although drug-

specific T cells could be identified in allergic patients, the specificity was not

always perfect as cross-reactions to chemicals that were not causal for the

induction of the allergy, were frequently observed (11). In Chapter 7 we

investigated the mechanisms of such cross-sensitization. We observed

conversion of different prohaptens into identical haptens as well as presentation

of identical cryptic peptides after APCs were pulsed with different hapten-

protein adducts. However, these mechanisms may both be interpreted as false

T cell cross-reactivity, as the T cell itself does not cross-react to different anti-

gens but instead, different chemicals lead to an identical neoantigen. In addition,

we demonstrated true cross-reactivity, i.e., a single TCR cannot distinguish

among different haptens. At first glance, T cell cross-reactivity may not seem to

be consistent with the dogma of "one clone - one specificity". However, in a

theoretical review, Mason (12) argues that given a relatively small number of

T cells and an enormous numerical excess of viral and microbial peptides,

T cells must be able to cross-react with several thousands of different peptides in

order to mount a rapid immune response. Additional theoretical support for true

cross-reactivity of the TCR comes from the "avidity pit" model of Sandberg et al

(13). Their model postulates that TCR signaling can be set in motion by

enhancing the avidity of TCR-MHC-complex interactions rather than by

absolute recognition of a given antigen. They argue that in the thymus, T cells

are positively selected by their ability to recognize self-peptide-MHC complexes

with low avidity. In the periphery, these T cells would be activated by peptides

possessing higher avidity for the TCR than those by which they were originally

selected. By altering a self-peptide, the avidity of the T cell towards the peptide

could be enhanced. When a certain threshold, the 'avidity threshold' is reached,

the T cell would be activated. Both Mason's and Sandberg's theory are discussed

in more detail in Chapter 7. While Mason (12) and Sandberg et al (13) provide

theoretical evidence for true cross-reactivity to different peptides,  Grogan et al.

(14) experimentally showed that, indeed, T cells specific for one peptide of
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myelin basic protein cross-react with a dozen different microbial peptides.

Similarly, with respect to haptens, we showed in Chapter 7 that T cells specific

for a given para-compound truly cross-react to at least three other para-

compounds that were metabolically not related. 

Role of NKT cells in
chemical induced allergy and autoimmunity

A few years ago three independent sets of studies led to the discovery of a new

kind of T cell that bears markers, normally expressed on NK cells (15-17).

These so called NKT cells are thought to play a major role in the maintenance of

(self-)tolerance and induction of autoimmunity (18-21). They express a

restricted TCR repertoire made of an invariant TCR α chain, Vα14-Jα281,

Figure 1.   Three dimensional view of α-galactosylceramide (A) and PAP ester (B).

α-Galactosylceramide, which is isolated from a marine sponge, is known to activate NKT

cells (22). It is conceivable that, considering the similarity of the hydrophobic parts, PAP

ester can likewise be presented by CD1. The hydrophilic part is then directed away from the

CD1 molecule to be recognized by the NKT cells' TCR.

associated with polyclonal Vβ8, Vβ7 and Vβ2 TCR β chains (reviewed in Ref.

21). In contrast to classical T cells, NKT cells do not recognize antigen on the

MHC, but on CD1, a highly conserved, MHC-like molecule on the surface of

APCs (23) and intestinal epithelial cells (24). CD1 molecules can present lipids

and other hydrophobic antigens to NKT cells, which can secrete high levels of
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IFN-γ and IL-4 upon first encounter of these antigens (25,26). This led us to

believe that NKT cells might play a role in the induction of the toxic oil

syndrome (TOS), which was elicited after the ingestion of rape seed oil

contaminated with aniline (Chapter 5). Esters of fatty acids with 3-(N-

phenylamino)-1,2-propandiol (PAP ester) were found in case oils of TOS (27)

and are at present considered to be responsible for induction of the syndrome

(28). Considering the similarity of PAP ester with α-galactosylceramide (Fig. 1),

which is known to be presented by CD1 and can activate NKT cells (22), it is

conceivable that PAP esters can be presented by CD1 and directly activate NKT

cells. Upon activation, NKT cells do not proliferate but directly produce large

amounts of IL-4 and IFN-γ. Consequently they do not acquire memory and do

not mount secondary responses. These new theories involving NKT cells and the

difficulty in inducing secondary immune responses against the aniline coupled

lipids in our previous investigations stimulated us to investigate the role of NKT

cells in TOS. For this purpose a pilot experiment was performed using NKT cell

deficient Jα281-/- mice (Chapter 6). The results of these experiments show that

NKT cells, at least invariant Vα14-Jα281+, do not play a role in the lymph node

enlargement seen after injection of PAP ester. Studies whether "non-invariant"

NKT cell may have played a role in the human pathogenesis are underway.

Outlook

During drug development, the time-point that adverse immune effects are

discovered is mostly in the late clinical phase, when a great number of

volunteers or patients are being treated with the drug. Sometimes, adverse

immune effects are not seen before the drug has been officially released to the

market. Thus, although only few people suffer from drug-induced adverse

immune effects, the costs (illness, withdrawal of the drug, etc.) can be

enormous. The risk that a certain individual suffers from chemical-induced

adverse immune effects is dependent on numerous factors, including the panel

of metabolizing enzymes, MHC alleles, chemical dose and route of exposure,

etc. These factors and their role in chemical induced adverse immune effects are

discussed in Chapter 2. They shape the environment in which a T cell

encounters its antigen and, in line with the avidity thresholds theory of Sandberg

et al (13), determine if the avidity of T-cell-antigen interactions reaches the

avidity threshold needed for T cell activation. All these factors concern only
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signal 1, i.e., recognition of the antigen by the TCR. Other factors, e.g.,

simultaneous virus or bacterial infections, oxidative stress produced by

chemicals, etc., can induce costimulation, which is necessary for activation of

T cells and consequent initiation of unwanted immune reactions.

More information on the mechanisms involved and a suitable animal test

model for chemical induced allergy and autoimmunity might help to identify

"unsafe" drugs at an early stage and thus save quality of human life and reduce

health costs. Recent developments in genomics may result in the development of

more personalized drug therapy (29). By using, e.g., cDNA microarray

technology (30), variances in an individuals' drug-detoxifying enzyme panel, or

certain HLA alleles known to predispose for allergic reactions can be identified.

With this knowledge, choice of drug and drug-dose schemes can be fine-tuned

accordingly, thereby reducing the risk of adverse drug-reactions, including those

mediated by the immune system. For example, the higher incidence of

procainamide-induced lupus in slow acetylators, which have a lower activity of

N-acetyltransferase-2 (31), can be neutralized if the drug dose is corrected

accordingly (32). Slower detoxification of procainamide by N-acetyl-

transferase-2 enzyme in the liver leads to higher levels of the drug in the

periphery, where neutrophils and mononuclear leukocytes can convert the drug

into its protein-reactive metabolite N-hydroxylamino-procainamide (33) leading

to accumulation of neoantigen and higher incidence of procainamide-induced

lupus (34). Furthermore, awareness of the need for metabolic conversion and

knowledge of the metabolic pathway of drugs may help in drug-development

and drug-testing. This knowledge may help to develop animal models that

represent a human population which is most sensitive to adverse immune effects

of a certain drug-group. Genomics may be helpful in this respect too: a special

tool can analyze changes in human gene transcription in response to

environmental agents. This so called ToxChip enables quick identification of

changes in the expression of enzymes, such as induction of PGHS-2 after

procainamide exposure (Chapter 4), cytokines, costimulatory molecules on

APC, etc. (35). As the ToxChip shows possible adverse immune effects before

the effector phase starts and damage is inflicted to the individual, it can be used

in drug-screening as well as in individual drug treatment. However, at the

moment the costs for such a screening are tremendous and it will take some

years before this can be done routinely. 



Chapter 9 179

In summary, this thesis aims towards a better understanding of the

mechanisms that lead to chemical-induced adverse immune effects. We focussed

thereby on the initial induction stage of the immune reaction that consists of

three major steps: (i) formation of neoantigen, (ii) processing and presentation of

the neoantigen, and (iii) recognition of peptide-MHC-complex by the T cell.

The first step, formation of neoantigen, i.e., extrahepatic metabolism of a

prohaptenic chemical into a haptenic, protein reactive intermediate and binding

of this hapten to self-proteins was shown in Chapters 4, 5 and 7. Although

other groups showed recognition of non-covalently bound, non-protein reactive

drugs (36,37) we found that the prohaptens benzene, procainamide and aniline

could not induce specific T cell reactions, whereas p-benzoquinone, N-hydroxyl-

procainamide, and nitrosobenzene could.

The second step, processing of the formed neoantigen and presentation of

haptenated self-peptides or cryptic peptides on MHC molecules of APCs was

implicitly shown in Chapters 3, 4, and 5 and explicitly shown in Chapter 7.

Here we blocked the MHCII molecules of APCs pulsed with whole protein

adduct, thereby completely inhibiting T cell recognition of the formed

neoantigen. 

This leads us to the third step, recognition of the peptide-MHC-complex

by T cells, specific for the neoantigen. In Chapter 7, we showed that T cells not

only specifically recognize the  hapten-peptide adduct, but cross-react to similar

haptens coupled to the same peptide, as well as to cryptic peptides. The fact that

there is true cross-reactivity to haptens may on the one hand be favorable with

regard to measures taken to desensitize individuals allergic to chemicals. On the

other hand, cross-reactivity should be taken into consideration when, after drug-

induced adverse immune reactions have occurred, an alternative drug has to be

chosen. The fact that haptenation of self-proteins raises T cells that react to

cryptic self-peptides might be relevant for drug-induced autoimmunity, as here

the immune reaction, though induced by a foreign chemical, is now directed

towards a self-antigen. 
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Korte samenvatting

De belangrijkste opgave van het immuunsysteem is ervoor te zorgen dat

ziekteverwekkers (virussen, bacteriën, schimmels en parasieten) worden

herkend, aangevallen en afgebroken. Naast macrofagen spelen T cellen en B

cellen een belangrijke rol in de afweerreacties tegen indringers. De macrofagen

kunnen indringers opsporen en delen ervan aan de T cellen presenteren. T cellen

kunnen dan op verschillende manieren reageren: Ze kunnen óf de cellen die het

herkende antigeen presenteren vernietigen (cytotoxische T cellen), óf B cellen

helpen tegen de indringers antilichamen te vormen (T helper cellen). 

Bepaalde chemische verbindingen (bijv. geneesmiddelen) kunnen er

echter voor zorgen dat het immuunsysteem op een ongewenste manier reageert.

Ongewenste reacties van het immuunsysteem tegen chemische verbindingen

worden ook wel allergische reacties genoemd. Reageert het immuunsysteem

onder invloed van chemische verbindingen tegen lichaamseigen structuren

spreken we van auto-immuunziekten. Om beter te begrijpen hoe chemische

verbindingen het immuunsysteem kunnen beïnvloeden en een allergische of

auto-immuunreactie kunnen veroorzaken, is in hoofdstuk 1 beschreven hoe het

lichaam ervoor zorgt, dat gereageerd wordt tegen indringers (vreemd) maar niet

tegen het eigen lichaam (zelf). Een aantal factoren spelen hierbij een rol:

herkenning van de vreemde structuur (antigeen), herkenning van gevaar (co-

stimulatie) en, indien het immuunsysteem het antigeen reeds eerder is

tegengekomen, hoe deze primaire immuunreactie verlopen is (specifiek

immunologisch geheugen). Om te kunnen voorspellen hoe bepaalde chemische

stoffen het immunologische evenwicht verstoren, is het noodzakelijk om de

antigenen waar tegen de immuunreactie is gericht te kennen. Dit is voor de

meeste chemisch-geïnduceerde ongewenste immuunreacties nog niet voldoende

bekend. In dit proefschrift is een aanzet gemaakt, deze antigenen beter te

karakteriseren en de mechanismen die ertoe leiden dat allergische of auto-

immuunreacties ontstaan beter te begrijpen.

In hoofdstuk 2 wordt ingegaan op de verschillende factoren die leiden tot

het ontstaan van nieuwe, gemodificeerde zelfantigenen (neo-antigenen). Een

belangrijke rol hierbij spelen enzymen die chemische stoffen omzetten in

metabolieten, die óf onschadelijk zijn en worden uitgescheiden, óf schade

aanrichten door aan lichaamseigen eiwitten (zelfproteïnen) te binden. Deze

schadelijke, proteïn-reactieve metabolieten worden ook wel haptenen genoemd,
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de stoffen waaruit ze zijn ontstaan, prohaptenen. Omdat niet elke mens dezelfde

enzymen bezit, zijn sommige mensen beter in staat chemische stoffen

onschadelijk te maken dan andere mensen. Dit is o.a. een reden waarom

sommige mensen allergisch op bepaalde geneesmiddelen reageren en anderen

deze meerdere jaren achtereen zonder problemen in kunnen nemen. Om te

kunnen voorspellen of een bepaald geneesmiddel goed wordt verdragen, is het

noodzakelijk de enzymen die voor de ontgifting én voor de vorming van

reactieve metabolieten verantwoordelijk zijn te kennen. Belangrijk hierbij is dat

de cellen van het immuunsysteem zelf, en niet de lever, bij het ontstaan van

immunologisch relevante reactieve chemische stoffen de hoofdrol spelen. Een

ander belangrijk aspect in het ontstaan van immuunreacties tegen chemische

stoffen is aanwezigheid van co-stimulerende signalen. Deze kunnen bijv.

ontstaan door schade die de metabolieten in weefsels aanrichten, of door

gelijktijdige infecties met virussen of bacteriën.

In hoofdstukken 3, 4 en 5 kon worden aangetoond dat alleen haptenen,

(proteïn-reactieve chemische stoffen) een immuunreacties kunnen veroorzaken.

Dit werd gedaan m.b.v. de popliteale lymfeklier test, waarbij de te onderzoeken

stof in de achterpoot van muizen wordt geïnjecteerd en daarna naar de zwelling

van de lymfeklier die in direct contact staat met de plaats van injectie

(drainerende lymfeklier) wordt gekeken. Hierbij kon worden aangetoond dat

macrofagen, prohaptenen in haptenen kunnen omzetten. Ook kon een adduct

bestaande uit hapteen en een 35 kD groot zelfproteïn zichtbaar gemaakt worden.

De vraag of dit neo-antigeen daadwerkelijk voor de ongewenste immuunreacties

tegen het hier onderzochte geneesmiddel (procainamide) verantwoordelijk is,

wordt op het moment onderzocht.

Een aantal jaren geleden is er een nieuw soort immuun-cel ontdekt, de

zogenaamde natuurlijke killer T cel (NKT cel). Deze cel kan relatief snel, maar

niet zeer specifiek bepaalde antigenen herkennen en hier tegen reageren. Het

bijzondere aan deze cellen is, dat ze niet, zoals T cellen, tegen eiwit-brokstukken

reageren, maar tegen vetten. Ook blijken ze een belangrijke rol te spelen bij het

ontstaan, maar ook bij het verhinderen van auto-immuunziekten. Een auto-

immuunziekte waarbij NKT cellen mogelijk een rol zouden kunnen spelen, is

het Spaanse toxische olie syndroom, waarbij duizenden mensen ziek werden na

het eten van olie, besmet met aniline. In hoofdstuk 5 kon m.b.v. de popliteale

lymfeklier test worden aangetoond dat vetzuur-aniline verbindingen, die

aanwezig waren in de besmette olie een immuunreactie konden veroorzaken. In
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hoofdstuk 6 konden wij echter m.b.v. gentechnisch gemodificeerde muizen

aantonen, dat de kwantitatief grootste subgroep van NKT cellen hierbij geen rol

speelt. Extra onderzoek is echter nodig om de rol van andere soorten van

NKT cellen in het ontstaan van het toxische olie syndroom te kunnen

onderzoeken.

Naast de tot nu toe beschreven onderzoeken, die erop gericht waren de

cellen van het immuunsysteem die verantwoordelijk zijn voor de inductiefase

van ongewenste immuunreacties te identificeren, is er ook een poging gedaan

om op het niveau van neo-antigeen herkenning door T cellen een beter beeld te

krijgen van wat er zich hier afspeelt. Hiervoor zijn muizen tegen bepaalde

chemische stoffen allergisch gemaakt. De T cellen van deze muizen zijn daarna

gefuseerd met tumorcellen, waardoor ze oneindig doorgroeien. Deze zijn zo

verdunt, dat elke hieruit resulterende populatie uit slechts één cel ontstaan is

(kloneren). Deze T celklonen zijn onderzocht op herkenning van verschillende

chemische stoffen die aan één en hetzelfde zelfproteïne zijn gekoppeld. Uit de

resultaten, die beschreven staan in hoofdstuk 7, kan geconcludeerd worden, dat

T cellen niet zo specifiek op een bepaalde chemische stof reageren als vroeger

werd gedacht. Eén en dezelfde T cel kan verschillende chemische stoffen

herkennen en hiertegen reageren. Gezien de taak van het immuunsysteem is dit

ook niet erg verwonderlijk. Het immuunsysteem moet namenlijk zeer veel

verschillende antigenen herkennen en hiertegen reageren. Het immuunsysteem

weet tijdens zijn ontwikkeling echter niet welke antigenen er allemaal op de

wereld bestaan (en zal de meeste ook nooit tegen komen). Het moet dus op alles

voorbereid zijn. Alhoewel een mens meerdere miljarden T cellen bezit, zouden

deze, wanneer elke T cel slechts één theoretisch mogelijk antigeen zou

herkennen, niet in staat zijn alle mogelijke indringers te herkennen en tijdig te

vernietigen. Kruisreactiviteit is dus niet zoals vroeger werd gedacht een

uitzondering, maar een noodzakelijkheid van T cellen.

Uit dit proefschrift blijkt, dat vele factoren bij het ontstaan van chemisch-

geïnduceerde allergiën en auto-immuunziekten een rol spelen. De belangrijkste

zijn: het ontstaan van chemisch reactieve metabolieten die met zelfproteïnen

reageren en zo neo-antigenen vormen, co-stimulatie, en tenslotte activering van

T cellen die (kruis)reageren met de ontstane neo-antigenen. De resultaten uit dit

proefschrift kunnen helpen immunologische risico's van bijv. geneesmiddelen

beter in te schatten en eventueel de dosis zo aan te passen, dat het risico op

ongewenste immunologische bijwerkingen gering blijft. Nieuwe technieken uit
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andere disciplines (bijv. genomics) kunnen hierbij helpen, indien snel en

accuraat een analyse van verschillende enzymen en weefselantigenen

(histocompatibiliteits-complexen) wordt gemaakt. Op basis van deze analyse en

de chemische eigenschappen van verschillende geneesmiddelen kan dan worden

bepaald welk geneesmiddel in welke dosering zal worden gegeven.
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Kurze Zusammenfassung

Eine der wesentlichsten Aufgaben des Immunsystems ist die Abwehr von

eindringenden Krankheitserregern wie Viren, Bakterien, Pilzen und Parasiten.

Dem unspezifischen und spezifischen Immunsystem stehen eine Anzahl

unterschiedlicher Zellsorten zur Verfügung: für die unspezifische Abwehr

insbesondere die Makrophagen, für die spezifische Abwehr T- und B-Zellen.

Makrophagen können die Krankheitserreger aufnehmen (daher auch als

"Freßzellen" bezeichnet) und präsentieren anschließend Teile dieser Erreger den

T-Zellen. Die T-Zellen können dann auf verschiedene Weise reagieren:

Entweder zerstören sie jene Zellen, die das erkannte Antigen präsentieren

(zytotoxische T-Zellen), oder sie helfen den B-Zellen Antikörper gegen die

Krankheitserreger zu bilden (Helfer-T-Zellen).

Bestimmte Stoffe (z.B. Medikamente) können jedoch unerwünschte

Reaktionen des Immunsystems verursachen. Eine dieser unerwünschten

Antworten ist die allergische Reaktion. Reagiert das Immunsystem unter dem

Einfluß von chemischen Verbindungen gegen körpereigene Strukturen, spricht

man von Autoimmunerkrankungen. Um besser verstehen zu können, wie

chemische Verbindungen das Immunsystem beeinflussen und allergische- bzw.

Autoimmunreaktionen hervorrufen, wird in Kapitel 1 beschrieben, wie das

Immunsystem zwischen "Eindringlingen" (Nicht-Selbst) und körpereigenen

Strukturen (Selbst) zu unterscheiden vermag. Hierbei spielen folgende Faktoren

eine Rolle: Erkennung der fremden Struktur (Antigen), Erkennung von Gefahr

(Co-Stimulation) und für den Fall, daß das Immunsystem bereits früher Kontakt

mit dem Antigen hatte, die Erinnerung an die damalige Primärantwort

(spezifisch immunologisches Gedächtnis: Zweitantwort, Toleranz). Um

vorhersagen zu können, wie bestimmte Chemikalien das immunologische

Gleichgewicht stören, ist die genaue Kenntnis der antigenen Struktur

Voraussetzung. Diese Strukturen sind leider bis heute noch wenig bekannt. Ziel

dieser Arbeit war es, diese Antigene besser zu charakterisieren und die

Mechanismen, die zur Entstehung von allergischen- bzw. Autoimmunreaktionen

führen, besser zu verstehen.

In Kapitel 2 wird auf die verschiedenen Faktoren, die zur Entstehung von

neuen, veränderten Selbstantigenen (Neo-Antigenen) führen, eingegangen.

Hierbei spielen Enzyme welche die Substanzen metabolisieren eine wichtige

Rolle. Neben stabilen Verbindungen entstehen hierbei auch protein-reaktive
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Metabolite, die an körpereigene Eiweiße (Selbstproteine) binden können und so

Neo-Antigene formen. Da nicht jeder Mensch die gleiche Enzymausstattung

besitzt, sind manche Menschen eher in der Lage bestimmte Stoffe zu "entgiften"

als andere. Daher reagieren manche Personen allergisch auf ein bestimmtes

Medikament, wohingegen andere dasselbe Medikament jahrelang ohne

Probleme einnehmen können. Die Vorhersage ob ein bestimmtes Medikament

vertragen wird, ist jedoch dadurch erschwert, daß mehrere Enzymketten

ineinandergreifen, wobei die Enzymkombination die zur Eliminierung eines

Stoffes günstig ist, zur Eliminierung eines anderen Stoffes hingegen von

Nachteil sein kann. Interessanterweise spielen bei der Bildung von

immunologisch relevanten reaktiven Chemikalien nicht die Leber, sondern

Zellen des Immunsystems eine entscheidende Rolle. Eine weitere

Voraussetzung für die Entstehung von Immunreaktionen gegen Chemikalien

sind co-stimulierende Signale (Signal 2). Diese entstehen beispielsweise durch

Gewebsschäden, verursacht durch die chemischen Verbindungen selbst oder

durch gleichzeitige Infektion mit Viren oder Bakterien.

In den Kapiteln 3, 4 und 5 konnte gezeigt werden, daß nur chemisch

reaktive d.h. chemische Verbindungen, die an Eiweiße binden,

Immunreaktionen hervorrufen können. Der Nachweis erfolgte unter anderem

mit dem poplitealen Lymphknotentest. Hierbei wird die zu untersuchende

chemische Verbindung in eine der beiden Hinterpfoten einer Maus injiziert und

die Schwellung des drainierenden Lymphknotens mit der unbehandelten Seite

verglichen. Des weiteren konnte gezeigt werden, daß Zellen des Immunsystems

selbst, insbesondere die sogenannten Makrophagen, unreaktive Substanzen in

reaktive, d.h. an Proteine bindende Metabolite umwandeln können. In diesem

Zusammenhang gelang in Makrophagen der Nachweis eines Adduktes

bestehend aus einem Metabolit und einem 35 kD großen Selbstprotein. Die

Frage, ob dieses Addukt tatsächlich für die unerwünschten Immunreaktionen

gegen das untersuchte Medikament (Procainamid) verantwortlich ist, wird zur

Zeit noch untersucht.

Vor einigen Jahren wurde eine neue Art von Immunzellen entdeckt: die

sogenannte natürliche Killer T-Zelle (NKT-Zelle). Diese kann relativ schnell,

jedoch nicht sehr spezifisch, bestimmte Antigene erkennen und dagegen

reagieren. Das Besondere an diesen Zellen ist, daß sie nicht wie klassische

T-Zellen gegen Eiweißbruchstücke reagieren, sondern gegen Fette. Ferner

scheinen sie eine wichtige Rolle sowohl bei der Entstehung als auch bei der



191

Verhinderung von Autoimmunerkrankungen zu spielen. Eine

Autoimmunerkrankung bei der NKT-Zellen möglicherweise eine Rolle gespielt

haben, ist das Toxische-Öl-Syndrom, an welchem in den 80er Jahren in Spanien

Tausende nach dem Genuß von mit Anilin verunreinigtem Speiseöl erkrankten.

In Kapitel 5 konnte gezeigt werden, daß Verbindungen welche in jenem Öl

vorkamen im poplitealen Lymphknotentest eine Immunreaktion hervorrufen. In

Kapitel 6 haben wir mit Hilfe von gentechnisch veränderten Mäusen jedoch

gezeigt, daß die quantitativ größte Subgruppe von NKT-Zellen hierbei keine

Rolle spielt. Weitere Untersuchungen sind nötig, um die Rolle anderer Arten

von NKT-Zellen in der Entstehung des Toxischen-Öl-Syndroms zu untersuchen. 

Neben den bisher beschriebenen Untersuchungen, deren Ziel es war die

für die Induktionsphase einer Immunantwort verantwortlichen Zellen zu

identifizieren, wurde auch ein Versuch unternommen auf der Ebene von Neo-

Antigenerkennung durch T-Zellen ein tieferes Verständnis zu erlangen. Hierfür

wurden Mäuse gegen bestimmte chemische Stoffe sensibilisiert. Die

sensibilisierten T-Zellen dieser Mäuse wurden danach immortalisiert und so

verdünnt, daß jede nachfolgend gewachsene Population von einer einzigen

Mutterzelle abstammt (Klonierung). Anschließend wurde die Feinspezifität

einzelner Klone untersucht. Die in Kapitel 7 beschriebenen Ergebnisse zeigen,

daß T-Zellen nicht so spezifisch reagieren, wie bisher gedacht wurde. Ein und

dieselbe T-Zelle kann verschiedene Stoffe erkennen und hiergegen reagieren.

Bedenkt man die Aufgabe des Immunsystems ist dies auch nicht verwunderlich.

Das Immunsystem muß nämlich eine Vielzahl unterschiedlicher Antigene

erkennen. Das Immunsystem weiß zum Zeitpunkt seiner Entwicklung jedoch

nicht, welche Antigene überhaupt auf der Erde bestehen (und wird den meisten

auch nie begegnen). Dennoch muß es theoretisch in der Lage sein gegen all

diese Antigene eine Abwehr aufzubauen. Obwohl der Mensch mehrere

Milliarden T-Zellen besitzt wären diese, insofern eine T-Zelle nur jeweils ein

Antigen erkennt, nicht in der Lage alle Krankheitserreger zu erkennen und

rechtzeitig zu vernichten. T-Zellkreuzreaktivität ist somit nicht wie früher

gedacht wurde eine Ausnahme, sondern eine Notwendigkeit.

Somit spielen viele Faktoren bei der Entstehung von chemisch induzierten

Allergien und Autoimmunerkrankungen eine Rolle. Die Wichtigsten hierbei

sind: die Bildung reaktiver Metabolite, welche mit Selbstproteinen reagieren und

so Neo-Antigene formen, Co-Stimulation und schließlich Aktivierung von
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T-Zellen, die mit dem Neo-Antigen (kreuz)reagieren. Die Ergebnisse dieser

Arbeit können dazu beitragen immunologische Risiken unter anderem von

Medikamenten besser einzuschätzen und gegebenenfalls Dosierungen

anzupassen, um die Risiken von unerwünschten Arzneimittelnebenwirkungen zu

minimieren. Neue Techniken aus anderen Fachgebieten (z.B. Genomics) können

hierzu durch Analyse des Enzympanels und der Gewebsantigene

(Histokompatibilitätskomplexe) beitragen. Auf der Basis einer solchen Analyse

und den chemischen Eigenschaften der Arzneimittel kann dann bestimmt

werden, welches Arzneimittel welchem Patienten in welcher Dosierung gegeben

werden kann.
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Dankwoord

Een proefschrift is nooit alleen van jezelf. Er zijn tientallen mensen die op de één of andere

manier een bijdrage hebben geleverd aan het tot stand komen van dit boekje. Sommigen zullen

hun eigen gedachten, opmerkingen of ideen kunnen herkennen. Maar ook de mensen, die ervoor

zorgen dat je gewoon je werk kunt doen en je niet te druk moet maken over de toekomst, die je

het gevoel geven niet alleen te staan, zij zijn ook belangrijk. Ik ben bang dat nu, kort voordat het

manuscript naar de drukkerij moet, me niet alle mensen te binnen schieten, die ik zou willen

bedanken. Daarom, zonder namen:

- alle collega's en ex-collega's uit Dusseldorf met wie ik zovele wetenschappelijke als ook

aardse discussies heb gevoerd, zowel in het instituut als ook op de nodige

"Weihnachtsmärkte"!

- de werknemers van het IRAS, die me vooral tijdens de laatste loodjes met raad en daad

hebben bijgestaan!

- mijn Nederlandse vrienden die mij iedere keer opnieuw met plezier het nodige Nederlands

bijbrengen!

- mijn Duitse vrienden, die ervoor zorgen dat ik dit steeds weer verleer!

- mijn familie, die me voor, tijdens en na mijn studie altijd het gevoel hebben gegeven dat mijn

keus de juiste is, en met het steeds opnieuw stellen van de vraag "wanneer ben je nu eindelijk

afgestudeerd?" er mede voor hebben gezorgd dat het nu inderdaad zover is!

- mijn toekomstige schoonfamilie, die ook graag zagen, dat mijn "Doktorarbeit" eindelijk zijn

eind naderde en er ook toe hebben bijgedragen, o.a. door "arbeidsrationaliserende

maatregelen", dat deze dan nu toch echt af is!

Allemaal hartstikke bedankt!

Vier namen wil ik dan toch noemen: Ernst Gleichmann en Willem Seinen: bedankt, omdat jullie

mij de mogelijkheid hebben gegeven in deze Duits-Nederlandse samenwerking te promoveren en

voor jullie begeleiding hierbij. Sabine: bedankt, dat je mij tijdens de laatste 6 jaar zowel

technisch-wetenschappelijk als ook vriendschappelijk enorm hebt ondersteund! En, last but zeker

not least, Andrea: jij bent degene, die mij steeds het gevoel geeft, niet alleen te staan!




