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Abstract  
"The enemy of my enemy is my friend." 

 

This common adage, which seems to be adhered to in social interactions (e.g. high 
school cliques or work relationships) as well as in political alliances within countries 
and between countries, describes the ability of groups or people to work together 

when they face an opponent, although otherwise they have little in common. In social 
psychology this phenomenon has been termed the "common enemy effect". Such group 

behavior can be studied using networks to depict the players within a group and the 
relationships between them. In this paper we study the effect of a common enemy on 
a model of network formation, where self-interested, myopic players can use links to 

build a network, knowing that they are facing a common enemy who can disrupt the 
links within the network and whose goal it is to minimize the overall value of the 

network. We find that introducing such a common enemy can lead to the formation of 
stable and efficient networks which would not be stable without the threat of 

disruption.  However, we also find that fragmented networks as well as the empty 
networks are also stable. While the common enemy can thus have a positive effect 
on the incentives of players to form an efficient network, it can also lead to 

fragmentation and disintegration of the network. 
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1. Introduction

Connections between individuals (or firms or countries for example) enable these individuals to com-
municate and exchange goods or information. However, as Jackson and Wolinsky (1996) have shown, if
the links that facilitate this communication between players are costly, it is not always possible for a group
of myopic self-interested rational players to form a stable network and even if such a network is formed
that is stable, it is usually not an efficient network, from a welfare perspective. This is due to the myopic
outlook of players and their inherent self-interest.

The analysis of Jackson and Wolinsky (1996) ends with finding stable networks. Yet, once stable net-
works are formed, they are often soon threatened by attacks from outsiders to this network. This threat
of an outside attack can take place in numerous different situations. It can be anything from a computer
network that is threatened by hackers, to transport networks that face a possible attack by terrorists to ter-
rorist networks being observed by law enforcement. It can also simply be a network of highschool friends
that is threatened by an outsider spreading rumors. In each of these cases, not only are the people within
the network threatened by an attack but also the network as a whole is threatened to be destroyed, which
from a welfare point of view might be worse than the fact that certain people will be disconnected from
the network. Take for example a computer network. Hackers may be able to disconnect certain computers
from that network by installing viruses on this computer, which is bad for those users but as long as these
computers do not hold central positions is not so bad for the network as a whole. However, should these
computers be very central within the network, then by disconnecting them from the rest of the network,
not only is this bad for the particular user but the network as a whole may be disconnected.

Previous work on random and strategic disruption of networks (see for example Goyal and Vigier
(2009), Hong (2009) or Albert et al. (2000), as well as in our own previous work - Hoyer and De Jaegher
(2010)) has mainly focused on robust designs against disruption. Therefore this work has focussed on
games between a network designer and a network disruptor, not taking into account the payoffs of indi-
vidual nodes within the network but only the value of the network as a whole. Consequently, the effect
of a network disruptor in this work has always been strictly negative, as the introduction of a network
disruptor by definition will lead to lower value in the network if links and/or nodes are taken out of the
network. Contrary to this analysis, in this paper we focus on the incentives of self-interested individual
players to form a network when faced with a network disruptor. We find that facing a network disruptor
might actually have a positive effect on the individual nodes’ payoffs, since it allows for the formation of
stable networks that would not be formed without the threat of disruption. This leads to a purely eco-
nomic explanation to what has generally been termed the "common enemy effect". The common enemy
effect refers to the often observed fact that groups manage to work together more efficiently (or at all) when
facing a common enemy than when there is no such threat. Thus the enemy might actually enhance effi-
ciency and cooperation although his goal is to do the exact opposite. Examples of this are plenty. Think for
example of political coalition between parties that usually stand for opposite ideas, joint demonstrations of
different social and political groups against xenophobia, racism and climate policies, or more recently the
different groups that joined forces in the "occupy"-movement. The following examples will illustrate the
effect in more detail.

• "By-Product Mutualism" is a term used in biology to explain situations in which "cooperative behav-
ior is an incidental consequence of ’ordinary selfish behavior’, but only if the environment is suffi-
ciently adverse." (Mesterton-Gibbons and Dugatkin (1992)). Thus behavior that is induced by means
of a common enemy. The paper by Mesterton-Gibbons and Dugatkin (1992) states that his behavior
is for example observed in lions, where it is found that on average relatedness does not influence the
composition of female hunting groups. Rather it is shown that it is the "common enemy", thus the
size of the prey, that incentivizes lionesses to hunt jointly, rather than individually. While lions hunt
small prey individually, as the chance of success is big, for hunting of larger prey, where the chance
of success of any one hunter goes down, they form hunting groups. This fall in the chance of success,
overcomes the participation costs of having to share the prey and thereby enabling group hunting.
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• Foundations of international organizations that independent countries establish to further their com-
mon interest, such as the NATO, are not a natural or easy task. Olson and Zeckhauser (1966) state
that while the formation of such an alliance might be beneficial for each country, the countries existed
without the organization for years. However, at the emergence of a common enemy - Russia - the
states manage to overcome their individual reservations to forming an alliance and jointly founded
the NATO.

The groups of people, countries, animals or parties working together against such a common enemy,
can quite readily be depicted by means of networks - using nodes to depict the players and links to show
the relationship between the players within the group. The analysis of the efficiency, stability and forma-
tion of such networks has been studied quite extensively in economics and sociology literature. For a good
overview see for example Goyal (2009) or Jackson (2008). Including positive as well as negative relations
between people has been the main focus of literature on the social balance of networks in psychology as
well as sociology (see for example Heider (1982) or Newcomb (1961)). It has been shown that networks
indeed are only considered stable once they are balanced - thus once friends of friends are friends and en-
emies of friends are enemies. A dynamic analysis of how such networks may evolve can be found in Antal
et al. (2006). They use the example of changing alliances in pre-World War 1 Europe to show that while
such networks may be stable, they are not necessarily socially desirable. While these social balance studies
obviously have the common enemy effect imbedded, they do not specifically refer to it. They also start the
analysis from pre-existing networks, thus looking at how the common enemy effect and other friendship
relations influence the formation of stable alliances within the network but not at how they influence the
formation of such networks to begin with. However, looking at the aforementioned real-world examples,
it seems natural that the common enemy effect not only affects how stable alliances are but also which
networks may be formed. In this paper we thus study the impact the common enemy effect has purely
on the formation of such networks and if it can be explained in economic terms - thus by the incentives
provided to the individual players.1 Accordingly, this paper studies the formation of a network of self-
interested, myopic players, when they are facing a common enemy in form of a network disruptor whose
goal it is to maximally decrease the efficiency of the network. To do so we use the basic case of the network
formation model of Jackson and Wolinsky (1996) and introduce a network disruptor to this setting. Using
the concept of pairwise stability that was introduced in their paper - thus assuming that a network is stable
if and only if no player wants to delete a link and no pair of players wants to add a link - we investigate
which networks will be stable and efficient when an attack is faced. We assume that each of the players
owns one piece of non-rival information that can be accessed by the other players if they are linked. To
access the information of other players, the players can form a network by adding or deleting links. The
network disruptor observes the network and can then choose which links to disrupt and thereby try to
cause maximal damage to the network. As we assume that he wants to minimize the overall value of the
network, we model his preferences to be lexicographic such that he will prefer one large component and
2 single nodes to one large component and a pair of nodes. The interaction between the formation of the
network and the disruption yields a residual network consisting of one or more components. This is the
basis for the payoff of the players.

The principal contribution of this paper is to propose a tractable model of defense and attack of a
network of self-interested and myopic players. By doing so, we build on - and add to - several strands of
literature. The theoretical literature on networks so far has mostly focussed on the formation (Jackson and
Wolinsky (1996) and Bala and Goyal (2000)) and the structure of networks. While using one of the models
of network formation - the connections model - first and foremost, our paper adds to the part of networks
research that deals with networks under attack. This problem has received more attention in physics and
operational research (e.g. Albert et al. (2000), Bollobás and Riordan (2003), Lipsey (2006), and Taylor et al.

1We of course realize that once such a network is formed all sorts of psychological and other factors play a role in how players will
behave and how successful such a network will be. What we look at, however, is purely an explanation of the common enemy effect
in terms of incentives of the individual players.
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(2006)) than in economics. However, whereas the focus in the physics research is on random attacks on
graphs, we are here looking at intelligent network disruptors, thus shifting the focus of the research from
designing a network that is proof against random attacks to one that is proof against targeted attacks.
The literature in operational research, mostly focusses on survival analysis. Thus, on how to build a road
network or a military network in such a way that there is still a viable route through the network even if
there is a random attack (earth quake, flood, etc) or a targeted attack (terrorism). Consequently their focus
is more on the distance between players, not on what happens if the network is separated completely into
different components. In economics, interest in research of attacks on networks has only increased in recent
years.

Relevant papers in economics focus mainly on criminal networks, such as in the work of Ballester et al.
(2006), where on an exogenously given network criminal activity is coordinated. Because the network is
exogenously given, the focus is only on optimal network disruption, and not on the behavior of the players
within the network, as in our paper. In particular, the disruptor tries to find the "key player" which is
shown to be the node with the highest degree of Bonacich centrality (a centrality measure used in social
network analysis). Our focus is on network disruption by taking out links. Thus the centrality of any one
player is not as important. Another example is the work by Hong (2009). In his paper security services
try to stop terrorists carrying an explosive through an exogenously given transport network, modeled as a
directed flow network, from reaching their destination. To do so, they try to shut down a minimal number
of links. In our paper the focus is on undirected networks. Also the manner of defense is exactly opposite,
as here links are added to defend the network and not deleted.

Enders and Su (2007) and Enders and Jindapon (2010) take a game-theoretic approach similar to ours,
where more ties allow more information to be produced in the network. While in our paper we focus on
sharing as much information as possible in the network, which the network disruptor tries to stop, in their
work the main purpose of the network is to keep information secret, whereas the purpose of the network
disruptor is to learn as much of this information as possible. Baccara and Bar-Isaac (2008) study networks
of power relations. A disruptor to this network can take out nodes and thereby will also disconnect the
nodes connected to that player. They focus however, solely on the design problem. Goyal and Vigier
(2009)’s model has a similar focus on network defense against a disruptor as our model does. Unlike
in our paper, in their approach, network defense takes the form of the creation of a "firewall" around key
nodes; we focus instead on a network that is defended by adding links that would otherwise be redundant.
Another key difference to their paper is that in our model the nodes are self-interested utility maximizing
players, whereas they are using a game between a network designer and an attacker. A similar approach
to the one of Goyal and Vigier is found in Hong (2008).2 In Hoyer and De Jaegher (2010), we use a similar
approach to Goyal and Vigier, by modeling a game between a network designer and a network disruptor,
treating link deletion and node deletion. In contrast to the present paper however, there is a central network
designer. In the present paper, we study the stability and efficiency of networks when facing an attack by
an intelligent network disruptor, where the networks are made up of self-interested players. To the best
of our knowledge, this is the first paper that studies this problem using not a network designer (as in for
example Goyal and Vigier (2009) or Hoyer and De Jaegher (2010)) but a network of self-interested utility
maximizing players.

Apart from the literature on networks, we also add to the literature on the "common enemy" effect. The
term and the observation of this effect is by no means a new concept. It has been used as early as 1911 to
explain the psychology of punitive justice in Wright (1911). Currently, the common enemy effect is used to
explain everything, from the formation of terrorist groups (see for example Metz (2003)), to the formation
of alliances amongst countries or against terrorism (e.g. Olson and Zeckhauser (1966), Maoz et al. (2007)
or Das and Roy Chowdhury (2008)), from the cooperation among competing firms (Hamel and Prahalad
(1993)) to explaining why lions are hunting in groups (Mesterton-Gibbons and Dugatkin (1992)). However,

2Kovenock and Roberson (2010) recently look in a similar way at network defense; yet their paper is less relevant to our model, as
network structure is not taken into account. Instead, in their paper network vulnerability arises because of the production function
generated by the nodes in the network, where in one extreme one node suffices to obtain full production and in the other case all
nodes are necessary to produce.
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most of the literature so far focusses on the empirical observation of this effect in human and animal life
and gives psychological reasons for the behavior. What we are adding to this literature is a theoretical basis
for this behavior that is not rooted in psychology but solely in incentives of the players.

The rest of the paper is organized as follows. Section 2 presents the model of network formation and
disruption. Section 3 introduces the benchmark case and sections 4 and 5 focus on the analysis of stable
networks, where we first introduce a complete characterization for the case of a disruption budget of one
and then move on to more general results. Section 6 focusses on the efficiency analysis and section 7
concludes.

2. Model

We study a two stage game between n self-interested, myopic players and a disruptor. Modeling the
structure of such a game can be achieved by using an undirected network model, consisting of links and
nodes. The disruptor is modeled as a network disruptor, who has a disruption budget consisting of x links
that he can destroy within the network. In the game the players move first and build a network by adding
costly links bilaterally and deleting them unilaterally. The players know that an attack will ensue in the
following stage of the game and they also know the size of the network disruptors disruption budget. Once
the players are satisfied with the network - thus once they are in a stable network, the network is observed
by the disruptor who can then choose which links to attack. The payoffs are based on the network that
remains after the attack.

2.1. Graphs
For the model of network formation we use the connections model without decay, as presented in Jack-

son and Wolinsky (1996). There is a finite set of N = {1, ...., n} players. These players are also commonly
referred to as nodes, as the relations between these players are formally represented by a graph g, whose
links capture the pairwise relations between players. Let gij denote a link between any two players i and j.
We assume that gij = 1 if there is a link and gij = 0 if there is no link. Links are undirected, thus gij = gji,
and costly. There exists a path between any two nodes i1 and ik if there exists a sequence i1, ...., ik, such that
gi1,i2 = 1 = .... = gik−1,ik . Only if there is a path between any two nodes we refer to them as connected. The
degree of connectivity of any node is denoted by η. A component of the graph g is a maximally connected
subset. A graph g plus link gij, is denoted as g + gij. A graph without this link is denoted as g− gij. We
will now introduce some special graphs, which we use quite extensively in the paper.

Special Graphs - The Empty Network
The empty network is denoted by ge and defined as a graph in which each node is connected of degree

η = 0. There are thus no links within such a graph.

Special Graphs - The Star Network
The star network is denoted g∗ and is a network consisting of one central node that is connected of

degree η = (n − 1) and has (n − 1) end-players. End-players are such players that by definition are
connected of degree η = 1. There are thus exactly (n− 1) links within such a network.

Special Graphs - Minimally Connected Networks
A network is minimally connected if and only if it consists of n nodes which are all connected in one

component using exactly (n− 1) links. Thus by definition there is no cycle within such a network.

Special Graphs - The Cycle Network
The cycle network consists of n nodes connected by exactly n links in such a way that each node is

connected of degree η = 2.
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Special Graphs - r-Regular Networks
A network is r-regular if and only if it consist of n nodes which are all connected in one component

where each node is connected of degree η = r. A special case of such a network is the cycle network.

2.2. The Nodes
In the network there are n individual self-interested players. Each player i has one unit of non-rival

information wi. For ease of exposition, we assume that wi = wj = 1. To obtain the piece of information
node j has, node i can form a link to j. However, node j needs to accept the link. We assume that there
is a "two-way" flow of information (thus each node can access the information of the nodes it is linked to)
and both nodes have to pay costs cij to establish the link. We assume that cij = ckl = c. By accessing the
information of node j, node i also gains access to all the information j has gathered through his links from
other nodes and all those nodes gain access to i’s information. The payoff for node i can then be defined as
follows: ui(g) = wii + ∑j∈Ni

wij −∑gik∈g cik, where Ni is the set of all nodes j 6= i for which there is a path
in the network between i and j and where k denotes all direct neighbors of i. Thus the payoff of node i is
derived by the value of its own information, the information it obtains from the members of the component
it belongs to minus the cost of its direct links. Since we assume that wi = wj = 1, we can rewrite this as
ui(g) = y− ∑gik∈g cik, where y ≤ n denotes the size of the component that i belongs to. The goal of each
individual player is to maximize his own payoff within the game.

2.3. Stability
To define which networks will be formed, we use the concept of pairwise stability, as introduced in

Jackson and Wolinsky (1996). This means that nodes have the freedom to add or delete links. However,
while the decision on link deletion is unilateral, for link formation both players need to consent. Thus, a
network is pairwise stable, if and only if, no player unilaterally wants to delete a link and no pair of players
wants to add a link. This can be stated as: A network g is pairwise stable iff

1. for all ij ∈ g, ui(g) ≥ ui(g− gij) and uj(g) ≥ uj(g− gij), and
2. for all ij /∈ g, ui(g + gij) > ui(g) then uj(g + gij) < uj(g).

Thus at least one player needs to strictly prefer forming the link over not forming a link, when the other
player is indifferent.

2.4. Value
Following Myerson (1977) and the assumption in the connections model in Jackson and Wolinsky

(1996), we assume that the value of a network is the sum of all the individual utilities of the players.
Therefore we assume that v(g) = ∑i∈N ui(g). Given our assumptions on ui(g), this means that given the
same number of links, a network with more nodes connected in one component, will always have a higher
value than a network with less nodes. Given that what we model is essentially a communications network
and the information is non-rival, this assumption is reasonable.

2.5. The Network Disruptor
At stage two, the network disruptor observes the network and can then choose to disrupt it. The

network disruptor has a disruption budget x, where x ≥ 0, which refers to the number of links the disruptor
can take out of the network. The main goal of the network disruptor is to minimize the overall value v(g)
of the network. To model this, we assume that he has lexicographic preferences. Lexicographic preferences
can be used to model this since they imply that the network disruptor prefers two small components rather
than one single component and a large component plus two singleton nodes to a large component plus
a connected pair. Given the way we model the value of the network, these preferences coincide with
minimizing the overall value of the network.
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The strategy of the network disruptor for any given network can be described as follows.3 The network
disruptor starts by looking at the k-connectivity of the network. A graph is k-connected if η(i, j) ≥ k for
any two distinct nodes i and j holds. If x < k, the network disruptor cannot disconnect any node from
the network. For a proof of this see the undirected link version of Menger’s Theorem, as for example
introduced in Bondy and Murty (2008) in Theorem 9.7.4 If x ≥ k, the network disruptor follows the
following algorithm. He starts by considering all the possible partitions within a network where each
partition consists only of one node and then considers the cardinality of the cut link set between these
partitions. By a cut link set we mean a set of links whose removal will lead to the disconnection of the
whole partition.5 If the cardinality is smaller or equal to the network disruptors budget, he will disrupt.
Consequently, he can cut the network into all disconnected single nodes. If this is not the case, he will look
for all partitions where the weakly largest connected partition is a pair and again consider the cardinality
of the link cut set between these partitions. If this cardinality is smaller or equal to his disruption budget,
he will delete those links, if not, he will look for all partitions where the weakly largest connected partition
includes 3 nodes and so on. Since k ≤ x, there needs to be at least one link cut set. Thus he can at least
disconnect one single node from the remaining network of size (n − 1). So in short this means that if
you consider all the partitions of the n nodes with a link cut set with cardinality x or less, the network
disruptor’s best response is to look for such a partition where the weakly largest remaining component
will be as small as possible.

3. Benchmark Case

We will begin the analysis by looking at a benchmark case in which there is no network disruptor.
Since in the benchmark case the main distinction is between low linking costs, thus linking costs below 1,
and high linking costs, thus costs above 1, we will use this distinction in the further analysis. Before we
begin with a general analysis we will introduce the benchmark case and then give a full analysis of the case
where the disruption budget equals one. Then we will continue with analyzing the general case.

In the benchmark case we assume that there is no network disruptor. If there is thus no threat of
an attack on the network, we are in the case analyzed by Jackson and Wolinsky (1996) in the symmetric
connections model. However, additionally we assume here that there is no decay within the network.
While Jackson and Wolinsky (1996) do not treat the case without decay explicitly, it is straightforward to
look at their results for the case of no decay, thus if δ = 1. Then the main distinction in their results is
based on the level of linking costs. They find that for costs below δ, where we assume here that δ = 1, the
only pairwise stable network is the star network. However, this is based on the fact that they only look at
cases for δ < 1. For δ = 1, it is easy to see that the structure of the minimally connected networks does
not matter in this case. Thus not only is the star pairwise stable, but also any other minimally connected
network, as they all use the exact same number of links to connect the exact same number of players into
one component. Without decay, the distance between the players does not matter and consequently the
structure of the minimally connected network does not matter. In terms of efficiency, minimally connected
networks are also the only efficient networks in this setting, as the benefit from being connected outweighs
the costs of a link. For linking costs above δ = 1 on the other hand, they find that the only pairwise
stable network is the empty network, ge. This is due to the fact that no player is willing to be linked to
an end-player, since the value of the information of one player alone is lower than the costs of linking.
Thus the marginal benefits of being linked to a player are negative. Being in a circle however, is not
a best response either, since each player has an incentive to delete one link because he also gets all the
information if he is at the end of a chain. By deleting a link though, the player becomes an end-player
and the network will unravel. However, the empty network is not necessarily the most efficient network.

3Here the strategy coincides with the strategy of the network disruptor described in Hoyer and De Jaegher (2010) for the case of
link deletion.

4This states that the maximum number of pairwise internally disjoint paths between any two nodes is equal to the minimum
number of links in any link-cut set.

5For a formal definition see for example Bondy and Murty (2008) Section 2.5.
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Depending on the size of the linking costs, connected networks will be more efficient, however, they are
never stable. Take for example any minimally connected network. The value of the network v(g∗) will then
be v(g∗) = n2 − 2(n− 1)c. As compared to that the value of the empty network is v(ge) = n. Comparing
these two, we find that the star network is more efficient than the empty network if n2−n

2n−2 > c > 1. Take for
example the case of n = 12. Then it holds that the star network is more efficient than the empty network
for 6 > c > 1. Thus, while the empty network is the only pairwise stable network it is not necessarily an
efficient network. Accordingly the main tradeoff in the model by Jackson and Wolinsky (1996) is between
stability and efficiency of a network, especially in the case of high linking costs.

4. Full Characterization for a disruption budget of x = 1

Before turning to a general analysis of the case where there is a disruptor present with a positive
disruption budget, we will first provide a full characterization of the case where the disruption budget is
equal to one, thus where it holds that x = 1. This will provide intuition for the analysis of the general
case which will then follow. In line with the distinction along linking costs introduced in the benchmark
case, we will first look at the case for low linking costs (c < 1) and then at the case for high linking costs
(c > 1). To break the analysis down into parts we begin by looking at special classes of networks, starting
with minimally connected networks and then looking at regular networks. Since minimally connected
networks are the only networks that are pairwise stable for low linking costs in the benchmark case, they
offer a good starting point for the analysis.

4.1. Low Linking Costs and x = 1 - Minimally Connected Networks
Minimally connected networks are all networks that connect n nodes into one single component using

exactly (n− 1) links. There are, however, a multitude of network structures that fulfill this requirement for
any given number of nodes. We will thus first consider two special cases of minimally connected networks,
namely the line network and the star network. They are at opposite ends of the sphere of minimally
connected networks in that they are the networks with the (most) least number of end players. In the line
network there are exactly 2 end players, whereas in the star network there are (n− 1) end players. Next
to looking at minimally connected networks where all nodes are connected into one component, we can
also look at networks that consist of multiple separate components which are each minimally connected.
Thus networks where there at least two nodes i and j for which holds that gij = 0 and at the same time
there is also no path between the two nodes. Thus after having analyzed the case of minimally connected
networks where all nodes are connected in one component, we will then also look at the case of having
multiple components, which in themselves are minimally connect. Examples of networks that fulfill this
criteria can be found in Figure 1.

(a) 2 lines (b) 2 stars (c) Line and Star

Figure 1: Networks consisting of multiple minimally connected components

Of course there are an immense number of additional ways to form minimally connected components,
as they don’t have to be a star or a line. Also such networks can consist of more than 2 separate components.
However, just as for the single component networks these are good starting points, they are as well for
networks consisting of multiple components.
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4.1.1. The Line Network
The line network is the only minimally connected network that includes only two end players. Every

other player in the network is connected of degree η = 2. The line network is only one link short of forming
a cycle network, which for a disruption budget of x = 1, means that all players will remain connected in
one component even after disruption. Therefore the line network is a good network to start with as it
seems to be the network that is most likely not to be pairwise stable, since with a single added link a
cycle can be built. Thus should the line network be pairwise stable, it would be straightforward to deduce
that all minimally connected networks should be pairwise stable when facing a network disruptor with a
disruption budget of x = 1.

To check for pairwise stability we need to consider the incentives for each player to add or delete a
link to the network. Only if no pair of players would mutually benefit from adding a link and no single
player would benefit from deleting a link, will the network be pairwise stable. By definition there are only
two types of players in the line network - the two end-players that are connected of degree η = 1 and the
remaining players that are connected of degree η = 2. The damage a network disruptor can cause to a line
network is also straightforward to see. With a disruption budget of x = 1, the network disruptor can cut
the network into two equally sized pieces.6 Thus the payoff of any end-player i in a line network, when
facing a network disruptor with a disruption budget of x = 1 is ui(g) = n

2 − c, whereas the payoff for any
of the non end-players j is uj(g) = n

2 − 2c. It is straightforward to see that the line network will never
be pairwise stable. Since it is enough that one of the stability conditions is not satisfied for the network
to not be pairwise stable, here we only need to look at the incentives for the players to add a link. Both
end-players and non end-players can benefit by forming the largest cycle possible. Take the end-player i,
for example. By forming a link with the other end-player k, a cycle including all n nodes will be formed.
The payoff for i is then ui(g + gik) = n− 2c, since no node can be disconnected. Comparing this payoff
to ui(g), it is straightforward that the line network is only pairwise stable if c > n− n

2 . However, since by
assumption for low linking costs c < 1, this is never the case. Thus the line network is not pairwise stable.

Looking at networks consisting of more than one component in line form, as in Figure 1(a), we have to
analyze two cases. First the case, as in Figure 1(a) where the size of the components is unequal and then the
case where the size of the components is equal. For unequally sized components, we have to distinguish
between two subcases. In the first cases there is one strictly biggest component, however, this component
is not bigger than any two of the smaller components combined. In the second subcase, the strictly biggest
component is bigger than any combination of two smaller components. It is straight forward to see that in
both subcases the network will not be pairwise stable. For subcase 1, the two smaller components are safe
from disruption, they are thus pairwise stable. However, the biggest component, is then a line network on
its own and can therefore be analyzed exactly as we did above. Therefore the network will not be pairwise
stable. In the second subcase, the two smaller components will not be targeted even when combined, thus
there is an incentive for players in each component to add a link between them. Thus the network is not
pairwise stable. Looking at networks consisting of D separate equally sized line components, we can see
on the other hand that such a network indeed may be pairwise stable. Take any network consisting of
D separate equally sized line components. The payoff of any end-player i in such a network is given by
ui(g) = 1

D ∗
n

2D + (1− 1
D ) ∗ n

D − c. Adding a link to any other end-player j irrespective of which component
this end-player is in, will lead to a payoff of ui(g + gij) =

n
D − 2c. It holds that ui(g) > ui(g + gij), thus the

network is pairwise stable, if c > n
2D2 . This can be summarized in the following Lemma.

Lemma 1. A line network consisting of one connected component is never pairwise stable. A network consisting
of multiple separate line components is only pairwise stable if those components are equally sized and it holds that
c > n

2D2 .

4.1.2. The Star Network
The star network is the only minimally connected network that consists of (n − 1) end-players. It is

thus at the exact opposite of the line network in terms of number of end-players. In the star network

6Abstracting from divisibility issues.
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the chance of being disconnected for any single player is therefore as low as possible in any minimally
connected network. Therefore the incentives to add an additional link for any player is very low, giving
this the best chances for pairwise stability of any minimally connected network. We can therefore deduce
that if the star network is not pairwise stable when facing a network disruptor with a disruption budget of
x = 1, then no other minimally connected network will be either.

To check for pairwise stability, we can focus on the end-players here, as the central player is already
linked to everyone. The payoff of any end-player i in the star network will be ui(g∗) = 1

n−1 ∗ 1 + (1−
1

n−1 )(n − 1) − c, as the chance for being the one node that will be disconnected is 1
n−1 . Should player i

delete a link his payoff is simply ui(g∗ − gic) = 1. Comparing the two payoffs it is straightforward to see
that for costs below 1, i never has an incentive to delete his link. Should he add a link to another end-player
j his payoff will be ui(g∗ + gij) = (n− 1)− 2c. Comparing this payoff with ui(g) we find that the only case
for which the star network is pairwise stable is if c > n−2

n−1 . Since by assumption for low linking costs c < 1,
this indeed holds only for a very small cost range and for small n, since in the limit n−2

n−1 goes towards 1.
We begin our analysis of networks consisting of multiple star components by looking at Figure 1(b).

Since we have seen that the star network is the only minimally connected network (consisting of one com-
ponent) that is pairwise stable, it is a natural starting point to check the pairwise stability of networks
consisting of multiple star components of equal size. We will then further discuss networks consisting
of multiple star components of unequal size and show that like their counterpart consisting of only one
component, these networks are generally not pairwise stable.

If we look at a network consisting of two star networks that are of an equal size, we know that the
incentives for players in one of the stars are the same as those of players in the other star. Thus we only
need to look at one of the two. For such a network to be pairwise stable, it needs to hold than that no
node wants to delete a link and no pair of nodes wants to add a link. The analysis runs parallel to that of
the discussion of the single star, however, now we need to take into account that the chance of each one
of the components to be targeted is only 1

2 . Thus the payoff for any node i in one of the components will
be ui(g) = 1

2 [
2

n−2 ∗ 1 + (1− 2
n−2 )(

n−2
2 )] + 1

2 ∗
n
2 − c. As long as it holds that ui(g) > 1, no node wants

to delete a link. This inequality holds in all cases, since by assumption c < 1 and n ≥ 6 since otherwise
we cannot build 2 star components of equal size. A node will not add a link to a node j in the other
components, as long as ui(g) > n

2 − 2c, since by adding this link they ensure that the network disruptor
will target this link. This inequality holds as long as c > n−3

n−2 is satisfied. Since c < 1, this is only satisfied
for a very small cost range again. In the analysis of the simple star, we did not have to take the center
nodes into account, since they never had an incentive to add or delete a link. Here however, since each
component will only be targeted with a probability of 1

2 , the center node’s best response is no longer as
straightforward, as by deleting one of his link, the component becomes strictly smaller, thus the network
disruptor will always target the other component. Looking at the payoff of the center node we find that
it is uc(g) = 1

2 ∗
n−2

2 + 1
2 ∗

n
2 −

n−2
2 ∗ c. Should the center node delete his link to node i, his payoff will be

uc(g− gci) = n−2
2 −

n−2
2 c. Comparing these two we find indeed that the network is only pairwise stable

if 1
2 > c. Combining this with the restriction we found on node i, we can see that the network is never

pairwise stable, as 1
2 > c > n−3

n−2 never holds. In Lemma 2 we generalize this result for networks consisting
of more than 2 equal sized star components.

Next to networks consisting of equally sized star components we can also look at networks consisting
of star components of unequal size. Here we need to distinguish between two cases, namely one where
the biggest component is larger than any combination of two of the smaller components together and one
where this is not the case. We will start by looking at the case where the biggest component is smaller
than the combination of two smaller ones. In this case it is straightforward to see that the two smaller
components will never be targeted. Thus as in the benchmark case, those networks are pairwise stable.
They do not have an incentive to add a link to connect the components, as by assumption this component
would be larger than the biggest component, therefore the link would be targeted by the network disruptor.
The analysis of the biggest component is then exactly the same as that for the simple star network. The
network will thus be pairwise stable for c > y−2

y−1 , where y is a subset of n that denotes the size of the largest
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component. Now looking at the case where the size of the biggest component does exceed the size of the
combination of two of the smaller components it can directly be seen that in this case the network will
never be pairwise stable, as then nodes in the smaller components have an incentive to add a link between
them, since they will still not be targeted.

Lemma 2. A star network consisting of one connected component is only pairwise stable if c > n−1
n−2 . A network

consisting of multiple unconnected star networks is only pairwise stable if there is one strictly largest component,
where the size of the largest component is not larger than the combination of two of the smaller components, and it
holds that c > y−2

y−1 , where y is a subset of n that denotes the size of the largest component.

Proof For the part on the simple star network, see the discussion above.
For a network consisting of multiple equally sized star components we can generalize the discussion
above. Assume that there are D separate star components. The payoff to any end-node i will then be
ui(g) = 1

D [ D
n−D ∗ 1 + (1− D

n−D ) ∗ n−D
D ] + D−1

D ∗ n
D − c. This can be simplified to ui(g) = 3D−nD+n2−2n

D(n−D)
> c.

No end-player wants to delete a link as it always holds that ui(g) > 1. This can be verified by substi-
tuting n with 3D, which is the minimal size of n, as there are D components and they all at least have
to be of size 3, otherwise they would not qualify as stars. The payoff for adding a link to any node j in
a different component will be ui(g + gij) = n

D − 2c. As in the example for D = 2, here except for in
a very small cost range the network will not be pairwise stable. The network is only pairwise stable if
c > Dn2−nD2−3D+nD−n2+2n

D(n−D)
holds. Again knowing that n ≥ 3D, this equation is true for small cost ranges.

However, looking at the payoff for the central node c, we see that uc(g) = 1
D ∗

n−D
D + D−1

D ∗ n
D −

n−D
D ∗ c

is larger than ui(g− gic) =
n−D

D − n− DDc only if D−1
D > c. This condition on c and the condition found

by looking at the incentives of i to add a link, however, can never be satisfied at the same time. Thus such
networks can never be pairwise stable.
For the part on unequally sized star networks, see the discussion above. 2

In this section, we have thus seen that unlike in the benchmark case, neither the star nor the line
network are generally pairwise stable for the case of low linking costs. Indeed, only for a very small cost
range are there cases when the star network is pairwise stable at all. Looking at networks consisting of
multiple separated star or line components, we have seen that such networks can be pairwise stable for
certain cost ranges, if the components are equally sized. Thus if there is not one definite target for the
network disruptor but a multitude of different possible targets. We therefore have to look also at other
minimally connected networks to see if they might be pairwise stable. In the following section we will do
this and show that if the star network is not pairwise stable, no other minimally connected network can be
pairwise stable in this setting.

4.1.3. Minimally Connected Networks in general
We can directly exclude any minimally connected network from the analysis that is asymmetric - thus

any network in which there is one link that will definitely be targeted by the network disruptor because
there is one strictly largest part of the network that can be disconnected by the network disruptor if he
disrupts one link. In such a network, it is straightforward that the nodes that are adjacent to the link that
will be disrupted will benefit from deleting the link. At the same time, any node in the component that will
be disconnected benefits from adding a link to the rest of the network, such that a circle is formed and the
node cannot be disconnected. Consider an asymmetric network, where there is one link that the network
disruptor strictly prefers to disrupt. By disrupting this link, he can disconnect a set of m nodes from the
network. A player can then either be in the set of m nodes or in the remaining set of (n− m) nodes. If a
player i is in the set of m nodes, his payoff will be ui(g) = m− sic, where si denotes the number of links
player i currently has. If a player j is not in the set of m nodes, his payoff will be uj(g) = n−m− sjc, where
sj denotes the number of links player j currently maintains. Note that no player in set m has any incentive
to link to another player within this set, as the network disruptor’s strategy would remain the same. He
would disrupt the link between set m and the remaining network. Thus adding a link within the set m
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would only lead to higher costs for player i. By the same reasoning, no player within the remaining network
would link to another player in the remaining network. Consequently the only case we need to consider is
where player i in m would link to a player j not in m. Supposing that adding one link means that xi extra
nodes are connected, a player i in the set with m nodes wants to add a link iff m− sic < m + xi − (si + 1)c,
which holds iff c < xi. Supposing that the adding of one link means xj extra nodes are connected, a player
j in the set with n− m nodes will add a link iff (n− m)− sjc < (n− m) + xj − (sj + 1)c, which holds iff
c < xj. Since by assumption xi and xj are at least one, these conditions are always met for low linking
costs. It follows that no asymmetric minimally connected network can be pairwise stable for low linking
costs. Accordingly, the only minimally connected networks that may be pairwise stable are those where the
individual player is uncertain about the outcome - i.e. where the network disruptor is indifferent between
targeting a number of links. Thus the network needs to contain some degree of symmetry.

So assume that there are D components including m nodes that can be separated from the rest of the
network by taking out 1 link. Accordingly the network disruptor is then indifferent between disrupting
any one of the D links, which form link cuts. Then any node j included in the (n− Dm) nodes that cannot
be disconnected, will never form a link with a node in one of the D components, as his payoff will remain
the same, since the disruptor will simply disconnect one of the other components including m nodes. Thus
the only link that a node i in any of the components can form is to another node k in one of the other
components including m nodes. For the analysis, we consider two cases: D = 2 and D ≥ 3. For both cases
we look at the payoff of a player i in one of the D components of size m. To check for pairwise stability
we first look at the payoff of player i without added links and then compare this to the payoff he would
achieve by linking to a player k in one of the other components of size m. We have already shown above
that no node in the component that cannot be disrupted will accept a link so we need not consider this case.
By linking to any node k, player i ensures that he is part of a component that will not be disconnected, since
he will form a cycle with node k. We then go on to proof that such networks will indeed never be pairwise
stable for low linking costs when facing a network disruptor with a disruption budget of x = 1.

Theorem 1. For x = 1 and c < 1 no minimally connected network except for the star network is pairwise stable.

Proof For asymmetric networks see the discussion above.
For D = 2, consider a non-line network that is minimally connected. Assume player i is in one of the 2
components of size m, then player i’s payoff is uig) = 1

2 m + 1
2 (n−m)− sic, where si denotes the number

of links of player i. Adding a link to node k, he will be part of a component of at least size n − (m − 1)
and his payoff will be ui(g + gik) = n− (m− 1)− (si + 1)c. The network is not pairwise stable iff ui(g) <
ui(g+ gij), which holds iff c < n+2−2m

2 . Given that n needs to be at least of size (2m+ 2) since size (2m+ 1)
would denote a line network and we have already excluded line networks, we can see that the network
will not be pairwise stable since substituting (2m + 2) for n would lead to c < 2 and by assumption for low
linking costs c < 1.
For D ≥ 3 node i’s payoff will be ui(g) = 1

D m + (1− 1
D )(n− m)− sic. Adding a link to node k will lead

to a payoff of ui(g + gik) = n− m− (si + 1)c. The network is not pairwise stable iff ui(g) < ui(g + gik),
which holds iff c < n−2m

D . Given that n needs to be at least of size (Dm + 1), we can see that the network

will not be pairwise stable since substituting (Dm + 1) for n would lead to c < 1+m(D−2)
D . Since D ≥ 3, we

can see that the right hand side of this equation will be larger than 1 for all cases if m ≥ 2. Since m = 1
would denote the star network and we have already analyzed this above, we can thus assume that m ≥ 2.
2

Thus unlike in the benchmark case, where minimally connected networks were stable and efficient, we
have shown here that with the exception of the star network (and there only for a very small range of
linking costs, namely 1 > c > n−2

n−1 , minimally connected networks are not stable when facing a network
disruptor. Looking at networks consisting of multiple minimally connected components, we have seen in
Lemmata 1 and 2 that there are indeed cases when such networks may be pairwise stable, even if, as in
the case of the line network, they are not pairwise stable once the network only consists of one component.
The bottom line here is, that such networks need to have more than one obvious link that the network
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disruptor may decide to target. Then there can be networks consisting of multiple separate minimally
connected components of any shape that can be pairwise stable. As soon as there is only one link that the
network disruptor may choose to target the network will not be pairwise stable. Thus in general, with the
exception of the star, such networks need to consist of multiple equally sized components to be pairwise
stable. For the star network this does not hold. In the star network, while there are multiple links that can
be deleted, as soon as one of the components includes one node less, it will no longer be a target at all.
Therefore the incentive of the center player, who bears most of the costs in the network, to delete a link is
too big for such a network to be stable.

Summarizing, we have not found a lot of networks that are pairwise stable for low linking costs, when
facing a network disruptor with a disruption budget of x = 1. This is possibly the case because these
networks are not "equal" enough, in that there are always links that will be targeted with a higher likelihood
than others. Consequently we need to turn to other classes of networks to find pairwise stable networks
in this setting, and those networks should divide cost and benefit more equally between players. We will
therefore now move to another frequently studied class of networks, namely regular networks.

4.2. Low Linking Costs and x = 1 - Regular Networks
In a r-regular network, each node receives exactly r links. One example of such a network is the 2-

regular network, which is the cycle.7 Next to being regular, the cycle network is also symmetric in the
graph theoretic sense of the word. This means that not only do all nodes receive the same amount of
links but in a symmetric network also every node has exactly Nx nodes at distance x, with x = 1, 2, ..., dmax,
where dmax denotes the maximal distance between any two nodes in a network. Whereas the cycle network
is both regular and symmetric, in general regular networks are not necessarily symmetric. However, for
each degree of regularity symmetric networks exist. For a proof of this see Hoyer and De Jaegher (2010).
By construction, in a symmetric network that is regular of degree x + 1, where x denotes the size of the
disruption budget of the network disruptor, no single node nor group of nodes can be disconnected from
the network. Thus as we have already discussed above, when facing a network disruptor with a disruption
budget of x = 1, in a cycle (which is a 2-regular symmetric network) no single node nor group of nodes can
be removed from the connected component. Thus any node i will have a payoff of ui(g) = n− 2c. There
is no incentive for any node to add a link, since they are already safe within the network. There is also no
incentive for any node to delete a link, as they would then move to being an end-player within the line
network.

Lemma 3. The cycle network is pairwise stable for low linking costs when facing a network disruptor with a disrup-
tion budget of x = 1, for any cost range.

Proof The payoff of any node in the cycle is ui(g) = n− 2c. The payoff should a node decide to delete a
link will be ui(g− gij) =

n
2 − c. For pairwise stability it needs to hold that:

ui(g) > ui(g− gij)

n− 2c >
n
2
− c

n
2
> c

Since by assumption c < 1, this condition always holds and thus the cycle network is pairwise stable. 2

However, we can also look at networks that are not exactly 2-regular, but regular and symmetric of a
higher order. Take a network that is x + 2-regular, thus 3-regular in our current case. Every node will have

7The cycle is in so far a special case of regular networks since it is the only 2-regular network. For all other degrees of regularity
there are more than one way to build a regular network.
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an incentive to delete a link, since they are then still part of a cycle and therefore safe within the network,
but they will have to pay only for two links instead of three. Thus networks that are regular of a degree
higher than (x + 1) are not pairwise stable. Regular networks of a lower order that include one connected
component only, do not exist for the case of x = 1, thus they play no role here.

4.3. Low Linking Costs and x = 1 - General Results
For a disruption budget of x = 1 when dealing with low linking costs, we can use the results we

obtained in the previous sections to state some general results. Before we move on to generalizing these
results, however, we will first have a look at the empty network, ge. Whereas in the benchmark case each
player has an incentive to form a link, here this one link will become an automatic target for the network
disruptor and will thus definitely be taken out. Therefore there is no incentive for players to add links and
the empty network is pairwise stable.

Lemma 4. For the case of low linking costs, the empty network, ge, is pairwise stable when facing a network disruptor
with a disruption budget of x = 1.

Proof The payoff for any node i in the empty network is ui(ge) = 1. Should node i decide to add a link
this link will be the only link in the network and therefore the automatic target of the network disruptor.
Thus the payoff for node i would be ui(ge + gij) = 1− c. Since ui(ge) < ui(ge + gij), the empty network is
pairwise stable. 2

This result, while very straightforward, is also a marked distinction between this analysis and the
benchmark case, since in the benchmark case the empty network is only pairwise stable for high linking
costs.

Now turning to generalizing the results we have introduced before. We have seen that the star network
can be pairwise stable, although only for a very limited cost range and that if the star is not pairwise
stable, then no other minimally connected network will be. We have shown that networks consisting of
more than one minimally connected component can be pairwise stable for certain cost ranges if they leave
multiple targets for the network disruptor, and we have also seen that the cycle network is pairwise stable
for any costs below 1. Of course there are still numerous other networks to look at. However, most can
be dismissed directly. First we can dismiss any network that is not minimally connected but includes end-
players. They will not be pairwise stable, as we have already seen in the discussion of minimally connected
networks that the star network is the only one that might be pairwise stable, and there chances of being
disconnected are lowest. If there are now networks that include a core network that is interlinked and
some periphery nodes that are end-players the chances of being disconnected are automatically increased
because there are less nodes that may be disconnected. If, for example, the core consists of 3 nodes, there
can maximally be n− 3 end-players. Therefore even if everything else is as in the star network, the network
will not be pairwise stable.

Next we can look at any connected network that does contain a cycle spanning all nodes and no end-
players. Any network that includes a cycle spanning all nodes but also includes some additional links (i.e.
links not necessary to form the cycle) will not be pairwise stable, as the players will have an incentive to
delete this superfluous links because they do not add any value, only costs. However, we need to look at
not only the simple cycle network (the 2-regular network discussed above) but also at networks include
one cycle spanning all nodes but also have one or more central nodes. For examples of such a network see
Figure 2. These two networks only differ in the number of nodes that are in each petal.

Such networks are also pairwise stable, for any cost range when looking at low linking costs. Thus
we can conclude that the only networks that consist of one single connected component that are pairwise
stable for low linking costs when facing a network disruptor with a disruption budget of x = 1 are the star
network and networks including a cycle spanning all nodes and no additional links.

Theorem 2. For the case of low linking costs when facing a network disruptor with a disruption budget of x = 1 the
only pairwise stable networks consisting of only one connected component are the star network and the cycle spanning
all nodes and no additional links.
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Proof For the proof on the star network see Theorem 1 and Section 4.1.3.
Any network that includes a cycle spanning all nodes, consists either of a simple cycle or a cycle going
through one central node. Any additional links in such a network only increase costs but not the value
of any one player, therefore they cannot be pairwise stable. For a proof that the simple cycle is pairwise
stable, see Lemma 3. For the cycle going through a central node, we can define the payoff for any one of
the players in the petals as ui(g) = n− 2c. There is no incentive to add a link, as they are all already safe
within the network. Should the player delete a link, his payoff will depend on the size of the petal and
on whether the deleted link is to the central node or another node in the petal. We can show that in either
case the network is pairwise stable for any cost range for c < 1. To do so we have to look at 3 different cases.

1. A link between the petal and the central node is deleted

• There is never an incentive to delete a link for the central node (see analysis of the star network)

• If player i within the petal deletes his link to the central node, he will become part of a dis-
connected petal. In the best case scenario this would lead to a payoff of ui(g − gic) = n

2 − c.
Comparing this payoff to ui(g), we see that ui(g) > ui(g− gic) if n

2 > c. Since by assumption
c < 1 this holds for any c if n > 2.

2. A link within the petal is deleted such that the network disruptor is indifferent between which parts
of the petal to disconnect.

• This can only be the case if node i deletes a link to node j within a petal with an even number of
nodes where i and j are exactly in the middle.

• Assume that the size of the petal is y. The payoff of node i is then ui(g − gij) = 1
2 (n −

1
2 y) +

1
2 (

1
2 y)− c. Where the left part denotes the payoff if node i is not disconnected and the right part

denotes the payoff if it is disconnected.

• Comparing this payoff with ui(g), we can see that ui(g) > ui(g− gij) if n
2 > c. Since by assump-

tion c < 1 this holds for any c if n > 2.

3. A link within the petal is deleted by node i such that node i will not be disconnected.

• This can only be the case if node i deletes a link to node j within a petal of size y in such a way
that the network disruptor can disconnect a larger part of the petal by disconnecting the part of
the petal including node j.

• The payoff of node i in this case depends on the size of the petal. However, it can maximally be
ui(g)− ui(g− gij) = n− 2− c, if the network disruptor can only disconnect 2 nodes from the
network.8

• Comparing this payoff with ui(g), we can see that ui(g) > ui(g− gij) if 2 > c. Since by assump-
tion c < 1, this holds in any case.

Thus the cycle network going through a central node is pairwise stable for any c < 1 if n > 2. 2

8Only 1 nodes does not work because then he would be indifferent between disconnecting j and i.
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(a) Flower (b) Bow-Tie

Figure 2: Cycles with a central node

Finally we still need to look at cycle networks that include more than one component, as we did for
the minimally connected networks. Since we have described the components needed for this already in the
previous sections, we can summarize the results here as follows.

Lemma 5. For the case of low linking costs and a disruption budget of x = 1, networks consisting of more than one
not minimally connected component are pairwise stable if:

• each component is pairwise stable in itself and

• the cost range for pairwise stability of these components also holds for lower n

Proof In any network that consists of multiple in itself pairwise stable components, where none of the
components is minimally connected, and thus none of the components includes an end-players (we have
shown above that no pairwise stable network that is not minimally connected can include an end-player),
no player has an incentive to delete a link by definition. There is also no incentive to add a link to a node in
the other pairwise stable component, since this link will be an automatic target for the network disruptor
and therefore will be taken out, meaning that only costs will be increased for the players but not the value.
Thus pairwise stable networks can consist of multiple cycles or cycles and single nodes. 2

We can thus conclude the analysis of the case of low linking costs and a disruption budget of x = 1,
where we have found that minimally connected networks are in general not pairwise stable, with the excep-
tion of the star for a very small range of linking costs. Instead, networks that are regular and symmetric and
therefore distribute benefits and costs of the network very equally are pairwise stable for all cost ranges. At
the same time, networks that are separated into multiple components may also be pairwise stable, which
is a marked difference from the benchmark case. Thus for the case of low linking costs, the presence of a
network disruptor has on the one hand a cohesiveness inducing effect, by making players link more than
without a disruptor, on the other hand, however, it can also lead to the separation of different connected
components up to the occurence of the empty network as an equilibrium.

4.4. High Linking Costs and x = 1
Next we analyze the case of high linking costs, thus c > 1, when facing a network disruptor with a

disruption budget of x = 1. We have seen in the benchmark case that for the case of high linking costs
the only network that is pairwise stable is the empty network. This is due to fact that it is not worth to
be linked to one node for the value of this one node alone. We will see in the analysis below that when
facing a network disruptor this changes. We find that connected networks can be pairwise stable even for
high linking costs. While for low linking costs, the fact that pairwise stable networks are more dense - thus
include more links - when facing a network disruptor than in a game without a disruptor can be easily
accepted since it makes the network structure more robust, it seems highly counterintuitive at first glance
that the introduction of a network disruptor will lead to connected networks being pairwise stable for high
linking costs, when without a disruptor no connected network is pairwise stable. Here comes the common
enemy effect that we have referred to in the introduction in to play. While without the threat of disruption
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cooperation among the players is impossible if linking costs are high, the threat of disruption enables the
purely selfish players to cooperate, while their behavior remains selfish. Thus the incentives change in
such a way that what is best for each single player is also best for the group. While this phenomenon has
often been explained with psychological characteristics of persons, what we show here is that there are also
purely economic reasons that can explain this effect. As the analysis below (and in Section 5.2 for the case of
a general disruption budget) will show, the introduction of a network disruptor changes the incentives of
the players in such a way that while the empty network remains pairwise stable, also connected networks
as well as networks consisting of multiple separate components may be pairwise stable.

For the simple case of x = 1 the discussion of the case of high linking costs is a straightforward ex-
tension of the analysis of low linking costs. Therefore, before starting the main part of the analysis for this
setting, we can already dismiss a number of networks. We can dismiss all minimally connected networks
as well as any network including end-players, since the value of each node is 1 and costs are above 1, thus
you will no longer link to any one player just for the value of this player alone.The possible candidates for
pairwise stable networks are thus only networks that do not include end-players. Remember that in the
benchmark case the only network that is stable for high linking costs is the empty network. Therefore we
will start our analysis with this network as well. The reasoning is the same as in Lemma 4. Thus we can
directly deduce that the empty network is also pairwise stable for the case of high linking costs.

In the discussion on low linking costs, we have seen that the simple cycle network is pairwise stable
for n

2 > c. Thus the cycle network is also pairwise stable for high linking costs as long as this condition
is fulfilled. The difference to the case of low linking costs is then that here the pairwise stability is not
automatically fulfilled but depends on the number of players within the network. Equally affected by the
change to high linking costs are networks consisting of more than one component. The same holds for the
cycle networks with a central node. Here the cost range for pairwise stability now depends on the number
of players within the petals. Again take into account Figure 2. Both networks are pairwise stable for certain
cost ranges, as we will show below. Take the flower network for example. The payoff for node i will be
ui(g) = n− 2c. If node i deletes the link to node j the payoff will be ui(g− gij) =

1
2 (n− 1) + 1

2 ∗ 1− c. The
payoff of the original network is larger for 1

2 n > c. If node i deletes the link to player c, the payoff will be
ui(g− gic) = 2− c, which is less attractive than deleting the link to node j. Node c’s incentive to delete a
link, however, is somewhat higher, as node c’s payoff for the original network is only uc(g) = n− (n− 1)c,
whereas deleting the link to node i, the payoff will be uc(g− gci) = n− 2− (n− 2)c. The only cost range
for which this network remains pairwise stable is then for 2 > c > 1, since otherwise the central node has
an incentive to cut a link.

Now the network that looks like a bow-tie, is like a flower network with only two petals. In the
network the payoff to node i will be ui(g) = n− 2c. If node i deletes the link to node j, it’s payoff will be
ui(g− gij) = n− 3− c. Thus the network is pairwise stable only for 3 > c > 1. The central node only has
an incentive to cut a link if c < 4. Thus the condition on node i is binding.

Both networks are thus pairwise stable for limited cost ranges. The size of these cost ranges does not
depend so much on the number of nodes in the network as it depends on the size of the ’petals’. From the
point of view of the central player, it is easy to see that the larger the petal, the lower his incentive to delete
a link. To see this, compare the flower network in Figure 2(a) with the bow-tie network in Figure 2(b). Both
networks use n = 9 players, but whereas in the flower network, the petals are only of order 2, in the bow-tie
network they are of order 4. We have shown above that from the point of view of the central player, the
flower network is pairwise stable, if 2 > c, where the 2 is only due to the fact that there are only 2 players
in the petal. In the bow-tie network, there are 4 players in the petal and it is pairwise stable from the point
of view of the central player if 4 > c, where again the 4 is only due to the fact that there are 4 players in the
petal. Thus, from the point of view of the central player, the incentive to delete a link decreases in the size
of the petals. Accordingly, the network that is pairwise stable for the largest cost range from the point of
view of the central player has the largest possible petal, which is of size n− 3.9 However, contrary to the

9Otherwise there cannot at least be 2 petals.
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central player’s incentives, are the incentives of player i, who is part of the petal but directly linked to the
central player. Player i’s incentives to delete the link to the central player increase in the size of the petal.
To see this, again look at the flower network introduced in Figure 2(a) versus the bow-tie network in Figure
2(b). Player i only has an incentive to delete the link to c if c > n− 2 in the flower network. However, in
the bow-tie network his incentives to delete the link increase such that he will delete the link if c > n− 4.
Again this is solely due to the size of the petals. Thus taking these two contrary incentives into account, it
is easy to see that the largest possible cost range for such a network to be pairwise stable is only achieved,
if one petal is of size n

2 . In that case the constraint on pairwise stability is the same for the central player
and player i. The network is then pairwise stable if n

2 > c > 1, which is the same constraint on pairwise
stability as for the cycle network.

Lemma 6. For c > 1 and facing a network disruptor with a disruption budget of x = 1, the only pairwise stable
network for any cost range is the empty network, ge. The (simple) cycle networks and networks consisting of more
than one in itself pairwise stable component are also pairwise stable, however, only for a maximal cost range of n

2 > c.

Proof The payoff of node i in the empty network is ui(ge) = 1, by adding a link to node j this payoff will
decrease to ui(ge + gij) = 1− c. For c > 0 it holds that ui(ge) < ui(ge + gij), so the empty network is
pairwise stable for any cost range. We have shown in the section above that the simple cycle network is
pairwise stable for n

2 > c and that cycle networks with a central node can be stable for maximally the same
cost range. The same holds for networks consisting of more than one in itself pairwise stable component,
as here as well the pairwise stability depends on the number of nodes within each component. 2

This concludes the complete characterization of the case of a network of self interested players facing
a network disruptor with a disruption budget of x = 1. We can summarize the results in the following
theorem.

Theorem 3. For the case of a network of self-interested players facing a network disruptor with a disruption budget
of x = 1, we found that

• the empty network is pairwise stable irrespective of the level linking costs c

• the star network is pairwise stable for c > n−2
n−1

• the simple cycle network is pairwise stable for n
2 > c and cycle networks with a central node are pairwise stable

maximally for the same cost range

• networks consisting of more than one component are pairwise stable if each of the components is in itself
pairwise stable. The cost range for pairwise stability, however, is decreasing in the size of the components
as the pairwise stability then depends on the size of the component

Proof This follows from Theorem 1 and Theorem 2 and from Lemmata 3, 4, 5 and 6. 2

5. General Disruption Budget

After having given a complete characterization for the case of x = 1, we will now move to give more
extensive results for a general disruption budget. Here we cannot provide a full characterization of all
networks that are pairwise stable for all cost ranges and number of nodes, due to the multitude of possible
networks. Nevertheless, we can provide results showing that what we have shown in the section on a
disruption budget of x = 1 in some cases holds also for a general disruption budget (such as the pairwise
stability of regular networks and the empty network), whereas in other cases such as the pairwise stability
of the star network, the results are clearly special to the case of x = 1. As before, we will start with an
analysis of the case of low linking costs and then move to high linking costs.

5.1. Low Linking Costs
Just as for the case of x = 1 we will first look at two well studied classes of networks, namely minimally

connected networks and regular networks before making more general statements about low linking costs.
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5.1.1. Minimally Connected Networks
We have seen that even for a disruption budget of x = 1 the only minimally connected network that

maybe stable is the star network. Consequently this is the only network we need to look at for higher
disruption budgets. We know from the discussion of x = 1 that the central player does not have any
incentive to delete a link in the case of low linking costs. Therefore from the point of view of the central
player the star network is pairwise stable. Looking at the end-players, we know that the chance for any
end-player to be disconnected in a star network for a disruption budget of x is x

n−1 . Accordingly the payoff
to any end-player i will be ui(g∗) = x

n−1 ∗ 1+ (1− x
n−1 )(n− x)− c. To check for pairwise stability, we need

to verify that no player would like to delete a link and no pair of players would benefit from adding a link.
By deleting its link, the payoff for player i will be ui(g∗ − gic) = 1. The condition on pairwise stability is
then x

n−1 ∗ 1 + (1− x
n−1 )(n− x)− c > 1. This can be rearranged to: n2+x2+2x−2n−2xn+1

n−1 > c. Simplifying

this we get n− 1− 2x + x2

n−1 > c, which can indeed be satisfied. We thus have to check the incentives an
end-player may have to add a link. We have seen that for the case of x = 1, adding one link meant that
player i was ensured to remain within the network. For x > 1 this is no longer the case, but still, due to the
lexicographic preferences of the network disruptor, adding a link will ensure the player to remain within
the network since the network disruptor will rather disconnect two single nodes than one pair of nodes.
Consequently the payoff for player i when adding a link will be ui(g∗ + gij) = n− x− 2c. Comparing this

payoff with ui(g), we can see that the network is only pairwise stable if c > x − x2

n−1 holds. This is the

case if x2

n−1 > n− 1 holds. For x → ∞ the left hand side of this equation goes towards 1. Thus it reaches
its largest value for x = 2, namely 4. Therefore, we can conclude that the star network is never pairwise
stable, as we only look at cases for n > 4. From this we can conclude the following lemma:

Lemma 7. For c < 1 and x > 1, no minimally connected network is pairwise stable.

Proof We have already seen for the case of x = 1 that the only network that may be pairwise stable is the
star network. Since by assumption n > 4, we have shown above that the star network is not pairwise stable
for x > 1 and thus no minimally connected network will be pairwise stable for x > 1. 2

5.1.2. Regular Networks
Next to minimally connected networks we have seen for the case of x = 1 that x + 1-regular networks

(namely the cycle) are pairwise stable. This indeed also holds true for x > 1. However, unlike for the case
of x = 1, where the only x + 1-regular network was the cycle for all other numbers of x there are more than
one way to build an x + 1-regular network. In Figure 3, you can find 3 examples of a 3-regular network
with 16 nodes.

Figure 3: 3 regular networks

The type of network we will concern ourselves with here, is the one to the right. This network is not
only 3-regular, it is also symmetric (in the graph theoretic sense of the word).10 As we’ve explained in

10For a formal definition see e.g. Chartrand (1977) and our previous paper (Hoyer and De Jaegher, 2010).
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section 4.2 this means that the network is build in such a way that not only do all nodes receive the same
amount of links but in a symmetric network also every node has exactly Nx nodes at distance x, with
x = 1, 2, ..., dmax, where dmax denotes the maximal distance between any two nodes in a network. This
construction implies that a network disruptor with a disruption budget of Dis = x, where x < r, can not
disconnect a single node from the network irrespective of which links he chooses to delete. In both of the
other networks, the network disruptor can disconnect a number of nodes by taking out 2 links or even
only 1 link (in the middle network). Neither the left nor the middle network is pairwise stable against a
disruption budget of 2, as can easily be verified, whereas the right network is pairwise stable against a
disruption budget of 2. We will therefore now treat the case of symmetric r-regular networks, now in more
detail.

As has been shown in our previous paper, in a symmetric r-regular network, by construction, a network
disruptor with a disruption budget of x, where x = r− 1 cannot disconnect a single node, nor a group of
nodes, from the network. Thus any node i in such a network will have a payoff of ui(g) = n− r ∗ c. There
is no incentive for any node to add a link, because they are already safe within the network and adding a
link can only increase their costs. Deleting a link, will automatically make the node that deletes the link,
as well as the one to whom the link is deleted a target of the network disruptor, as they then only have
x links. By the way these symmetric networks are constructed, the network disruptor can then take out
exactly node i who deleted the link or node j to whom the link used to be, but no other nodes. Therefore
the expected payoff to node i and j is ui(g− gij) =

1
2 ∗ 1 + 1

2 (n− 1)− (r− 1) ∗ c. Thus the network will be
pairwise stable, if n− r ∗ c > 1

2 ∗ 1 + 1
2 (n− 1)− (r − 1) ∗ c holds. This is the case if n

2 > c, which always
holds, since we look only at networks of at least n = 4. Thus the symmetric r-regular network is pairwise
stable against network disruption with a disruption budget of x = r− 1.

As we have discussed for the case of x = 1, r-regular networks need not necessarily be x + 1-regular.
They can also be x + y-regular. We have shown in section 4.2 that if y > 1 the network will never be
pairwise stable since each node has an incentive to delete a link. The same holds true here. For y < 1 we
will first look at the case for y = 0 and then at y < 0. For a network with y = 0, we have to differentiate
between the cases of x = 2 and x > 2. For x = 2, the only x-regular network is the cycle. The payoff for any
node i in the cycle when faced with a network disruptor with a disruption budget of 2, is ui(g) = n

2 − 2c.
If node i adds a link to a node j in such a way that this link spans exactly half of the network, the payoff
for node i will be ui(g + gij) = n

2 + 1− 3c. Thus the network will only be pairwise stable if c > 1. Since
by assumption c < 1, the cycle network is never pairwise stable when facing a network disruptor with a
disruption budget of x = 2. Now for the cases of x > 2, we know that the payoff to any node in a x-regular
network will be ui(g) = 1

n ∗ 1 + (1− 1
n )(n− 1)− xc. If player i adds a link to player k, his payoff will be

ui(g+ gik) = n− 1− (x+ 1)c. Thus for the x-regular network to be pairwise stable, the following condition
needs to hold. 1

n ∗ 1 + (1− 1
n )(n− 1)− xc > n− 1− (x + 1)c. This only holds if c > n−2

n . However, since
we assume that 1 > c, this condition is only fulfilled for very high costs of linking. The higher the number
of players, the smaller the cost range between 1 and n−2

n for which these networks will actually be pairwise
stable. Lastly we need to look at the case for y being negative. Again these networks will typically not
be pairwise stable. However, general statements about this case cannot be made as it largely depends on
issues of divisibility if the networks will remain pairwise stable or not.

Lemma 8. For c < 1 and x > 1 the x + 1-regular network is pairwise stable. The x + y-regular network

• is never pairwise stable if y > 1

• is pairwise stable if n−2
n for y = 0 and x 6= 2

• is never pairwise stable for y = 0 if x = 2

Proof See discussion in the section above. 2

5.1.3. General Results
Although we cannot define all networks that are pairwise stable for c < 1 and x > 1, we can state

some general conditions that need to be fulfilled to achieve pairwise stability. We have already seen in the
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case for x = 1 that the empty network is pairwise stable for any cost range and any disruption budget, so
this holds true here as well. The same applies to the reasoning behind networks consisting of more than
one component. The condition that each component needs to be pairwise stable in itself also needs to hold
here.

Unlike for the case of x = 1 we cannot make a general statement about the existence of end-players
within pairwise stable networks. For x = 1, end-players were always automatic targets. Consequently,
adding one link would ensure the position of each player within the network. In cases where x > 1,
because of the lexicographic preferences of the network disruptor, links to end-players are not necessarily
automatic targets. For an example see Figure 4.

Figure 4: Pairwise Stable Networks with End-Players

In Figure 4 the network includes end-players. If you assume a disruption budget of x = 2, the tar-
get links are going to be within the closed cycle because then the network can be cut in half, instead of
disconnecting only 2 end-players. Therefore, the network may be stable even when including end-players.

We can summarize the results in the following theorem:

Theorem 4. For c < 1 and x > 1 conditions for pairwise stability are fulfilled if:

• the network is the empty network

• the network is x + 1-regular

• the network is x + y-regular and y = 0 and x 6= 2 if n−2
n

• the network consists of multiple components that are in itself pairwise stable

For c < 1 and x > 1 conditions for pairwise stability are not fulfilled if:

• the network is minimally connected

• the network is x + y-regular and y > 1 or y = 0 and x = 2

• the network consists of more than one component and at least one is not pairwise stable in itself

Proof For the proof on when the conditions for pairwise stability are fulfilled, see Theorem 2 and Lemmata
4, 5 and 8.

For the proof on when the conditions for pairwise stability are not fulfilled, see Lemmata 7 and 8
Theorem 4. 2

5.2. High Linking Costs
As for the case of x = 1, here we will also continue our analysis by looking at the case for c > 1. In

this case it is not worth to be linked to one node just for the value of this one node alone. Consequently, in
the benchmark case, the only pairwise stable network is the empty network. As in the previous cases, of
course the empty network is also stable in this case. However, as for the case of x = 1, we find that when
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a network disruptor is introduced into this setting, we can find networks that are connected and are still
pairwise stable. We have also already discussed that x + 1-regular networks remain pairwise stable, also
for high linking costs. However, they are only pairwise stable up to a cost level of n

2 > c. The same holds
for networks consisting of more than one component. They can remain pairwise stable, however, the cost
range for pairwise stability will be lower, since it depends on the size of the components now.

While defining all networks that will be pairwise stable for any given disruption budget for high link-
ing costs is analytically untractable, we can define certain criteria that all pairwise stable networks need to
fulfill.

Theorem 5. For c > 1 and x > 1 conditions for pairwise stability are fulfilled if:

• the network is the empty network

• the network is x + 1-regular and n
2 > c

• the network consists of multiple components that are in itself pairwise stable for a cost range depending on the
size of the components

Additionally, for c > 1 and x > 1, any network that is pairwise stable needs to fulfill the following criteria:

• there are no end-players in the network

• the network is not x + y-regular if y > 1

Proof For the proof on when the conditions for pairwise stability are fulfilled, see Theorem 2 and Lemmata
4 and 5.

No end-players can be in the network, since it is not worth to be linked to any player for the value
of that one player alone. Thus any player that is linked to an end-player has an incentive to delete that
link, irrespective of the threat of disruption. That the network can not be x + y-regular and y > 1 has been
shown in Lemma 8. 2

6. Value and Efficiency

In the model described in Jackson and Wolinsky (1996), which we have used as a benchmark case in
our analysis, there is a tradeoff between stability and efficiency in the case of high linking costs. For low
linking costs in the model without decay, all minimally connected networks are pairwise stable and equally
efficient, since they connect all nodes in one component using the minimal number of links to do so. The
value of the network can thus easily be calculated as v(g) = n ∗ n− 2(n− 1)c. That this is larger than the
value of the same network with one additional link is obvious, since this link will only add costs and no
benefits. The payoff if a link is removed, also has to be lower, since the cost of one link is by definition lower
than the value of one node. Thus for low linking costs are minimally connected networks not only stable
but also efficient in the benchmark case. For high linking costs in the benchmark case the only pairwise
stable network is the empty network, which has a value of v(ge) = n. It is easy to see that other networks
might have a higher value. Take for example the minimally connected value. Comparing the values, we
find that v(g) > v(ge) holds if n2−n

2n−1 > c. The numerator as well as the denominator move towards infinity
for increasing values of n. The numerator does so more quickly though because of the squared value of n.
Therefore this holds for a large cost rance of c, especially for high values of n.11 Thus for the case of high
linking costs the only pairwise stable network is not efficient.

We have shown, however, that when introducing a network disruptor, minimally connected networks
are generally not pairwise stable (with the exception of the star network for x = 1 and c > n−2

n−1 ). Instead
we have shown that (x + 1)-regular networks, as well as networks consisting of separated components,

11Even for n = 4, it already holds for any value of c < 4.
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where each component is pairwise stable in itself, and the empty network are pairwise stable, for certain
cost ranges. The question is now, are these networks also more efficient than the empty network. The value
of the (x + 1)-regular network can be calculated as v(gx+1) = n2 − (x + 1)c. Comparing this to the value
of the empty network, we find that the (x + 1)-regular network is more efficient than the empty network
if n−1

x+1 > c. This means that for low linking costs, the (x + 1)-regular network is always more efficient than
the empty network. For high linking costs, it depends on the value of x and the level of linking costs. For
the case of x = 1, we can see that the cycle network is pairwise stable if n

2 > c and it is more efficient than
the empty network in almost all these cases (except for the extreme case where c = n−1

2 ). For an increasing
x it is no longer the case though that whenever the (x + 1)-regular network is stable it is also more efficient
than the empty network. However, since by assumption x < n − 2, there are always cases also for high
linking cost where the (x + 1)-regular network is not only stable but also more efficient than the empty
network.

The value of pairwise stable networks that consist of multiple in itself pairwise stable components will
always be lower than that of any pairwise stable network consisting of only one component. This is due to
the fact that this way the nodes only have access to the information of the nodes in their own component.
Therefore, while using the same amount of links as if it was one pairwise stable component encompassing
all n nodes, the value generated in each component is less than that generated in the network as a whole.

Theorem 6. For low linking costs, connected pairwise stable networks are always more efficient than the empty
network, where networks connecting all nodes in one component are the most efficient. For high linking costs, there
are for every combination of n and x cost ranges for which pairwise stable networks which connect all nodes in one
connected component are more efficient than the empty network.

Proof Comparing v(ge) with v(gx+1) we find that v(gx+1) > v(ge) holds if n−1
x+1 > c. For c < 1 this

condition is always satisfied. For c > 1, there are always cases for which this condition is satisfied, since
by assumption x < n − 2, thus n−1

x+1 > 1. For networks consisting of multiple components, the same
amount of links is used as in a pairwise stable network of the same form consisting of only one component.
However, the value generated within one component consisting of less than n nodes is always lower than
that generated in one component consisting of n nodes. Thus the value of the network as a whole is lower
than that of a pairwise stable network encompassing all nodes in one connected component. 2

7. Conclusion

In this paper we looked at the implications for stability and efficiency of networks made up of self-
interested players when they are facing a network disruptor in the setting of a pairwise stability model.
We have found that for low as well as high costs of linking there are connected networks that are pairwise
stable as well as more efficient than the unconnected empty network. This is an interesting finding since
in the model without a network disruptor, the only network that is pairwise stable for high linking costs is
the highly inefficient empty network. What we have shown here is that when facing an outside force that
aims to destroy the value of the network as a whole, it is possible for a group of self-interested, myopic
players to build a network that is stable and actually more efficient than they would be able to do without
this outside threat. We have thus given a purely economic explanation for the psychological concept of
a common enemy effect. We have also shown that once players are caught in the empty network or in a
network consisting of multiple components, they are caught in these inefficient equilibria, because they are
also stable.

This paper suggests that an effect rooted in psychology can also be explained by purely economic
means. Future research should consequently aim at exploring the economic incentives for the common
enemy effect more thoroughly in this setting by adding heterogeneous players, information asymmetry or
looking at ’coalition’-stability, where groups of more than 2 players can deviate at the same time. Addi-
tionally, in the pairwise stability model, the focus lies purely on which networks are stable but not on how
players can actually reach such networks. Future research should therefore focus on implementing actual
mechanisms on how such a network can be formed (e.g. in an economic laboratory experiment) and if
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myopic players can reach all equilibrium networks. Another avenue of research focusses on the farsighted
behavior of players. Theoretical work on networks assuming farsightedness of players (see for example
the work by Morbitzer and Buskens (2009) or Herings et al. (2009)) shows that a concept of (perfect) far-
sighted stability can be established. Network experiments (see for example the work by Mantovani et al.
(2011)) on the same topic show that players do tend to behave more farsightedly than myopic in such ex-
periments. Future research may analyze how the assumption of farsightedness would change the results
we have found here.
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