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Abstract

This paper presents a method to assess the uncertainty of an ecological spatial prediction model which is based on
logistic regression models, using data from the interpolation of explanatory predictor variables. The spatial
predictions are presented as approximate 95% prediction intervals. The prediction model is based on logistic
regression analysis of field data of a wetland area in the central parts of the Netherlands. The model predicts block
average probability of occurrences of 78 wetland plant species for 500 m x 500 m blocks. The explanatory variables
comprise groundwater chemistry, hydrological characteristics, and land use management. The uncertainty of the
spatial model output is assumed to be a function of the uncertainty in the estimated regression coefficients and
uncertainty in the interpolated values of explanatory variables. Monte Carlo analysis was used to assess the model
output error due to uncertainty in both the regression coefficients and the explanatory variables. Correlation between
errors in regression coefficients and spatial autocorrelation in explanatory variables are accounted for in the Monte
Carlo analysis. Spatial patterns of the relative contribution of uncertainty of the regression coefficients to the total
model uncertainty are presented. The patterns of the relative contributions of uncertainty to the total model
uncertainty give information on the most effective way to reduce error, i.e. either by reducing uncertainty in the
regression coefficients or in the interpolated input patterns. The spatial patterns and values of the 95% prediction
intervals vary widely between species but are in general large and the relative contribution of the uncertainty of the
regression coefficients is in general large (over 80%). © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction tems. Often, multiple logistic regression models
are used for this. These models are based on

There are scientific and practical needs to be empirical data sets of species abundance and envi-
able to predict the occurrence of species in ecosys- ronmental conditions (explanatory variables) and

on the assumption of an unimodal symmetric
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30-253-1145. Jongman et al., 1995; Mc.Cullagh anq Nelder,
E-mail address: e.pebesma@geog.uu.nl (E.J. Pebesma). 1989). Data are usually available for a limited set
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of sample sites and do not cover the study area
completely. Therefore the estimated regression co-
efficients in the logistic regression models have
associated estimation errors. Also the explanatory
variables themselves have associated levels of un-
certainty (Elston and Buckland, 1993; Turner et
al., 1995; Dunning and Stewart, 1995).

Most often, the use of logistic regression mod-
els for predicting the effect of management sce-
narios at a given location—i.e. change of
response to change of environmental condi-
tions—assumes zero uncertainty in the explana-
tory variables; so that when the values of
explanatory variables at the location are changed
the model predicts an exact change in response.

Calculating predictions for every location in an
area implies exact knowledge of explanatory vari-
ables every location. However, limited knowledge
(limited number of sample points) combined with
natural spatial variability may cause uncertainty
in values of explanatory variables. Also, regres-
sion coefficients are subject to estimation error.

In our application of a prediction model we are
not concerned with predicting occurrence proba-
bilities for point locations (i.e. areas the size of
individual observations, a few tens of squared
meters) but rather with predicting average proba-
bilities of occurrence for 500 m x 500 m square
blocks. The reason for this is that in contrast to
‘point locations’, for these blocks statistically
meaningful estimates may be obtained while re-
taining sufficient spatial resolution in the resulting
maps for policy making.

Assessing uncertainty in predictions of logistic
regression models when using spatially distributed
explanatory variables as input, means considering
the uncertainty in the regression coefficients of the
logistic regression model as well as the uncertainty
in the explanatory variables. In order to depict
this uncertainty, the model output is presented as
approximate 95% prediction intervals for block
mean values.

The aim of this paper is to quantify the spatial
distribution of 95% prediction intervals resulting
from predictions with a logistic regression model,
when uncertainties in explanatory variables and
uncertainties in regression coefficients are taken
into account.

2. Methods
2.1. Multiple logistic regression modeling

In logistic regression, the logit of the probabil-
ity of occurrence p(s;) of an observation y(s;) (y at
the spatial location s;) is modeled as a linear
function in p known explanatory variables x; (s;)

V4
E(y(s;)) = p(s;), logit(p(s;)) = o + ‘zl xj(si)ﬂj
=

(€]
with logit(u) = log(u/(u — 1)) and f,, j=0...., p the
p+ 1 unknown regression coefficients. Using the
logit transform is one way to ensure that a back-
transformed prediction (i.e. a species probability
of occurrence) is constrained to its physical
boundaries between 0 and 1.

Not all species respond to the same explanatory
variables and usually a stepwise variable selection
procedure is carried out to select essential vari-
ables. If it is assumed that species response to
explanatory variables is unimodal, on the logit
scale only first and second order linear models are
considered for inclusion (Jongman et al., 1995).
For instance, consider a species y that seems to
respond only to changes in salinity .S and nutrient
content N, a second order logistic regression
model for the observation at location s; of this
species would be:

logit(p(s;))
= o+ £1S(s;) + 28%(s;) + B3N(s,) + faN*(s))

with S(s;) and N(s;) the salinity and nutrient
content respectively at location s,.

2.2. Spatial prediction

At any location s, given the values of the
explanatory variables x; (s;) and the estimates ﬁ_/
of f,, the (logit of the) occurrence of a plant
species is predicted by:

logit(p(so) = (o) = o+ 3. ) )

and this value can be back-transformed using the
inverse logit transform:
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exp(7 (o))
1+ exp(7 (so))

In standard applications, predictions are made
for given (i.e. known) values of the explanatory
variables and the prediction error of logit(5(s,))
can be derived from the estimation error variances
and covariances of ﬁ,

For the prediction of probabilities of occur-
rences at 500 m x 500 m blocks B, we need to
estimate the explanatory variables by interpola-
tion from known data. Assuming that the spatial
variation of these variables can be modeled as
intrinsic random functions, their predicted values
and associated prediction variances can be ob-
tained for each location by using ordinary block
kriging (Journel and Huijbregts, 1978; Cressie,
1993). Kriging has been proven to be a robust and
useful method for spatial interpolation (Burrough
and McDonnell, 1998). Block kriging (Journel
and Huijbregts, 1978; Pebesma and Wesseling,
1998), as opposed to point kriging, is used to
estimate 500 m x 500 m block average values of
the explanatory variables

P (s0) = logit = '(77(s)) = 3)

x,(By) = 1J x;(s) ds
|BO| By

with |B,| the area of the block. When these esti-
mated values of explanatory variables are used for
predictions p(B,) with Eq. (2) and Eq. (3), the
uncertainty of these spatial predictions not only
depends on the variances and covariances of the
estimates of the regression coefficients but also on
the variance of the estimates of the explanatory
variables.

2.3. Estimation of uncertainty

Because standard regression software does not
allow for prediction with random explanatory
variables, a Monte Carlo simulation was per-
formed for this. All error distributions were as-
sumed to be normal on the logit scale. Mean and
variances of explanatory variables and regression
coefficients were used to simulate a simple ran-
dom sample.

For each block, a prediction of #(B,) was ob-
tained by Eq. (2) using this simulated set of
regression coefficients and explanatory variables

as input. This ensemble of predictions was used to
estimate the prediction variance, (B,), at each
location. For a given block B, uncertainty is
expressed as an approximate 95% prediction inter-
val by:

[logit (7 (Bo) — 20 (By)), logit ~ '(77(B,) + 20 (By))]
4)

The prediction variance at B, ¢3(B,), com-
prises the prediction variance as a result of uncer-
tainty in the regression coefficients, o2(B,), and
the variance as a results of uncertainty in explana-
tory variables, o2(B,). Assuming independence be-
tween the two variance parts, in our model the
prediction variance can be decomposed as:

UZ(BO) = 0’3(30) + ag(Bo)- (5
The relative variance contribution due to re-

gression (RVC,) is then calculated by:

03(30)

UZ(BO)

RVC, = x 100% (6)

3. Case study

The analysis of uncertainty of logistic regres-
sion models with spatially interpolated input was
carried out for an area with wetlands in the
central parts of the Netherlands. The data for this
case study were taken from fieldwork carried out
for the development of regional vegetation models
(Barendregt and Wassen, 1989; Barendregt and
Nieuwenhuis, 1993) and for the description of
regional hydrology (Schot, 1989; Schot and Mole-
naar, 1992; Schot and Van Der Wal, 1992).

The regional vegetation models are based on a
database with 306 sample locations in the area. At
each location the abundance of 78 wetland plant
species were recorded together with 21 environ-
mental characteristics (Barendregt and Wassen,
1989). Thirteen of these 21 environmental vari-
ables describe chemical concentrations in ground-
water: pH, HCO;, Cl—, SO3—, PO;—, NO;,
NH;, Na*, Mg?>*+, Ca?*, K+, SiO, and Fe,,,,.

Hydrological characteristics are described by
three variables: phreatic groundwater level,
groundwater flux and seepage versus infiltration.
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Soil texture on four depths (0-30, 30-60, 60-90,
and 90-120 cm below surface level) is described
and finally land use management is described in
three classes (Barendregt and Wassen 1989). Sam-
ple locations in the area are given in Fig. 1. A
stepwise multiple logistic regression analysis on
this data set resulted in a unique regression model

for each of the 78 plant species. Regression coeffi-
cients and covariances were estimated using gen-
eralized linear model theory (McCullagh and
Nelder, 1989) and S-Plus software (Chambers and
Hastie, 1993). For the regression analysis the
chemical concentrations, phreatic levels and seep-
age or infiltration fluxes were log transformed
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o groundwater chemistry sample locations
s regression model sample locations

Fig. 1. Map with sample locations for plant species data and groundwater chemistry survey data.
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while the other variables were treated as class
variables (Barendregt and Wassen, 1989).

The regional patterns of the groundwater chem-
istry variables, used as explanatory variable for the
regression models, are based on an independent set
of groundwater chemical data (Schot and Van Der
Wal, 1992). Fig. 1 shows locations of the ground-
water chemical sample points with an observation
well depths between 0 and 10 m minus surface
level. Apart from pH, each of the groundwater
chemical variables are log transformed to obtain
symmetric distributions. Variogram analysis was
conducted on each of the 13 groundwater chemical
variables. These variograms were used to construct
spatial predictions of 500 m x 500 m block mean
concentrations using block kriging (Journel and
Huijbregts, 1978). This method has been applied to
similar problems (e.g. Myers et al., 1982; Pebesma
and De Kwaadsteniet, 1997). Information on land
use and soil type were taken from topographical
and soil maps, while information on phreatic lev-
els, infiltration and seepage were taken from Schot
(1989), and was treated as known variables.

The mean and variance of estimated regression
coefficients, their correlation matrix and the mean
and variance of the 13 groundwater chemical
variables were used to obtain a simple random
sample of size 100. For each of the 78 plant species
(regression models) Monte Carlo analysis was car-
ried out and maps of the spatial patterns of the
approximate 95% prediction limits and RVC, were
made.

The upper en lower prediction limits are pre-
sented in separated maps to facilitate comparison
on an absolute scale. The RVC, is presented in one
map.

4. Results
4.1. Prediction intervals

For two species, Calamagrostis canescens and
Sphagnum palustre, the approximate 95% predic-
tion limits are given in Fig. 2. In case of negligible
uncertainty, the upper and lower prediction limits
would show identical values. The legend of Fig. 2
is deliberately made coarse to present large differ-

ences in prediction limits. If a finer legend had
been chosen, more precise prediction limits could
be distinguished in the maps, but then the general
picture would be blurred in numerous gray tones.

The prediction intervals of C. canescens are
wide, having an interval width of nearly 0.9-1.0
throughout the whole area, indicating large uncer-
tainties in the spatial predictions. The prediction
intervals of Sphagnum palustre are narrower, hav-
ing a width between 0.1 and 0.5 for large parts of
the study area, indicating less uncertain predic-
tions. Two alternative approaches for merging the
information of upper and lower prediction limits
in a single map are given in Pebesma and De
Kwaadsteniet (1997).

4.2. Uncertainty contributions

Spatial patterns of relative variance contribu-
tions of the regression model (RVC,) to the model
output of C. canescens and S. palustre are given in
Fig. 3. If both sources of uncertainty contribute
equally to the total uncertainty of the model, the
maps in Fig. 3 should have a constant value of
50% throughout the whole area. Apparently this is
not the case. Areas with percentages much lower
or much higher appear in the maps of both species.
Areas where the RVC, is lower than 50% indicate
locations where the uncertainty of the interpolated
input data dominates the total uncertainty of the
prediction, especially in areas where RVC, is be-
tween 0 and 25%. Areas where the RVC, is higher
than 50% indicate locations where uncertainty due
to regression coefficients dominates the total un-
certainty, especially in areas where RVC, is be-
tween 75 and 100%.

5. Discussion and conclusions

In this paper the uncertainty of a spatial logistic
regression model has been quantified on the basis
of two contributing uncertainty components.
The error in the spatial predictions is presented as
maps with approximate 95% prediction limits. It
can be concluded that spatial predictions with
logistic regression models and explanatory vari-
ables with some margin of uncertainty can lead to
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Fig. 2. Maps of approximate 95% prediction limits for Calamagrostis canesces (left) and Sphagnum palustris (right). Top row: upper

prediction limit, bottom row: lower prediction limit.

considerably large 95% prediction limits. These
confidence limits vary considerably, both spatially
as well as for different logistic regression models
(species prediction models). The relative contribu-
tions of uncertainty in both regression coefficients
and explanatory variables are quantified and pre-
sented as maps. These maps tell us where the
main source of uncertainty is located and as such

indicate where improvements may be most cost
effective. The uncertainty in the estimated regres-
sion coefficients will decrease by collecting more
plant abundance data; the estimation error in the
(interpolated) explanatory data will decrease by
collecting more groundwater chemistry data. Fig.
3 shows that the dominant source of uncertainty
varies spatially.
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Presenting model results as 95% prediction
intervals results in maps that are harder to
read than the single map with the mean model
result. However if model results do have a con-
siderable margin of error, showing the mean
value p(B,) may give a false impression of the
knowledge we have about possible occurrence of
plants.

The uncertainty of model predictions was pre-
sented as block mean values. The choice of 500
m x 500 m blocks for interpolation was a trade-
off: choosing smaller blocks would result in
higher resolution of spatial patterns but in more
inaccurate predictions (larger prediction vari-
ances). Choosing larger blocks would result in
more accurate predictions (smaller prediction
variances) on a low spatial resolution: much of
the spatial pattern would average out.

The 95% prediction limits are approximate
confidence intervals because several assumptions
remain unverified. The most important of these
are:

e prediction intervals were calculated using Eq.

(2) assuming normality of prediction error and

known prediction variances

e cross-correlations between explanatory vari-
ables were assumed to be zero

e regression residual errors were assumed to be
spatially uncorrelated (resulting in zero pre-
dicted block mean regression residuals)

e the measurement error of explanatory variables
is assumed to be zero at the plant measurement
locations

e crror contributions were quantified by assum-
ing independence between uncertainty of ex-
planatory variables and regression coefficients

e the regression models selected were assumed to
be the ‘true’ models
These assumptions suggest that the error analy-

sis given in this paper underestimates the true

uncertainty. True prediction intervals will therefor
be even wider than those presented here.

In addition to addressing the unverified as-
sumptions above, a number of possible methodo-
logical enhancements would be:

e The Monte Carlo analysis should have been
done for point locations on a very dense grid
(e.g. 100 m x 100 m) and the back transformed
point values j(s,) should be aggregated to pre-
dicted block mean occurrences to avoid bias

Fig. 3. Relative variance contribution of regression (RVC,) for Calamagrostis canescens (left) and Sphagnum palustris (right).
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resulting from back transforming block aver-

ages (King, 1991; Phillips and Marks, 1996;

Heuvelink and Pebesma, 1998).

o The 95% prediction limits would have been
calculated more accurately by using 97.5 and
2.5 sample percentiles and thus avoiding the
assumption of normality of the error distribu-
tion. To do this, a larger Monte Carlo sample,
and therefore a larger computational effort is
needed.

The methodology presented here is not re-
stricted to logistic regression modeling. More in
general, when predictions can be expressed as
some function of known predictor variables x(s,)
and estimated regression coefficients f,

P(s0) = f(x(s0), B)

a Monte Carlo analysis can be carried out to
quantify the effect of uncertainty with respect to
x(s) on p. Here, f(*) may be anything from a
generalized additive model to a neural network
(Hastie et al., 2001). Addressing estimation error
of f for such cases is usually done by bootstrap-
ping (Efron and Tibshirani, 1993).

The methods used here to predict spatial pat-
terns of explanatory variables and propagate er-
rors through the regression model have not often
been used in ecological studies. Phillips and
Marks (1996) used a similar approach to perform
uncertainty analysis in a spatially distributed
model for the spatial prediction of potential evap-
otranspiration, however, they did not use block
kriging nor stochastic simulation of the input
variables. The use of geostatistics in ecological
studies is usually confined to description of local
spatial variance patterns of soil nutrients with
variograms (e.g. Robertson, 1987; Schlesinger et
al., 1996) but rarely to spatial prediction of abun-
dance of organisms (Villard and Maurer, 1996). A
notable exception is Gotway and Stroup (1997),
who address spatial correlations in residuals for
prediction under the generalized linear model
framework.

The results of this study raises the question
about the value of spatial predictions of logistic
regression models without an uncertainty analysis.
It is unclear whether the large prediction intervals
in this type of spatial modeling are due to inade-

quate modeling methods, e.g. the incapability of
logistic regression modeling to handle (spatially)
correlated data, or due to the quality and spatial
coverage of the data.
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