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We construct locally supported, continuous wavelets on manifolds Γ that
are given as the closure of a disjoint union of general smooth parametric images of an
n-simplex. The wavelets are proven to generate Riesz bases for Sobolev spaces Hs(Γ)
when s ∈ (−1, 3

2 ), if not limited by the global smoothness of Γ. These results generalize
the findings from [DSt99], where it was assumed that each parametrization has a constant
Jacobian determinant. The wavelets can be arranged to satisfy the cancellation property of
in principal any order, except for wavelets with supports that extend to different patches,
which generally satisfy the cancellation property of only order 1.

1. Introduction

This paper deals with the construction of wavelets on Hölder continuous piecewise
smooth compact manifolds. As main application we have in mind the numerical solution
of operator equations, in particular boundary integral equations. Essential requirements
on the wavelets are then that they are locally supported, generate a Riesz basis for a rel-
evant Sobolev space giving uniformly well-conditioned stiffness matrices, and furthermore
that they have sufficiently many vanishing moments, or more generally cancellation prop-
erties, allowing for sparse but sufficiently accurate approximations of these matrices. For
a thorough treatment of these topics, we refer to [Dah97, Sch98, Coh00].

As shown in [Dah96], the key to get such wavelets is to search them as L2-stable bases
of the subspaces generating L2-biorthogonal multi-level space decompositions of two mul-
tiresolution analyses that satisfy Jackson and Bernstein estimates. Aiming at constructing
wavelets on general polygonal domains, in [DSt99, Ste00] for both multiresolution analyses
we used continuous Lagrange finite element type spaces. Having constructed once and for
all some local bases on a reference element, which determine the order of the wavelets, the
number of vanishing moments as well as the availability of locally supported dual wavelets,
the concept of affine equivalence was applied to obtain explicit simple formulas for the
wavelets in terms of the local topology of the mesh.

Other constructions of wavelets in (two-dimensional P1) finite element spaces can be
found in [KO95, FQ99, FQ00, CES00, HM00]. Alternative approaches to construct wavelet
bases on non-tensor product domains or manifolds are based on domain decomposition like
techniques, cf. [DSch99a, CTU99, DSch99b].
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As shown in [DSt99], our finite element wavelet construction can immediately be gen-
eralized to a restrictive class of manifolds consisting of a number of patches, where each
patch can be described by a parametrization having a constant Jacobian determinant. Ex-
amples of such patches include parts of hyperplanes, spheres or cylinders. The point that
hampers an application to general descriptions is that in case of non-constant Jacobian
determinants, L2-orthogonality between two functions on the reference element generally
does not imply orthogonality between their push-forwards with respect to the canonical
L2-scalar product on the manifold.

To circumvent this problem an approach followed in the literature, e.g. in [DSch99a,
CTU99, FQ99, FQ00], is to consider space decompositions that are biorthogonal with
respect to a modified L2-scalar product constructed by ignoring the Jacobian determinants.
A somewhat hidden problem with this approach is that if the Jacobian determinants have
jumps over the interfaces between patches, then the resulting wavelets cannot yield Riesz
bases of Sobolev spaces Hs(Γ) for s ≤ −1

2
. Another disadvantage is that in this case

wavelets with supports that extend to different patches have no cancellation properties,
except when patchwise cancellation properties are realized as in [CTU99].

Assuming that each patch is described by a smooth parametrization, the approach fol-
lowed in this paper is to ignore the Jacobian determinant for constructing wavelets with
supports inside one patch; whereas for wavelets with supports that extend to more than
one patches the Jacobian determinants are taken into account in the sense that they are
approximated by piecewise constants. The resulting wavelets span spaces which approxi-
mate the biorthogonal complements with respect to the canonical L2-scalar product. Using
a perturbation argument, we prove that the wavelets generate Riesz bases for Hs(Γ) when
s ∈ (−1, 3

2
), which interval safely includes the case s = −1

2
interesting for applications. De-

pending on the local bases applied on the reference element, wavelets with supports inside
one patch satisfy the cancellation property of in principal arbitrary order, whereas wavelets
with supports that extend to more than one patches satisfy the cancellation property of
at least order one, and in some cases even of the same order as the wavelets with supports
inside one patch. The wavelets can be implemented as efficiently as in the domain case.

The following notations will be used in this paper. In order to avoid the repeated use
of generic but unspecified constants, by C <∼ D we mean that C can be bounded by a
multiple of D, independently of parameters which C and D may depend on. Obviously,
C >∼ D is defined as D <∼ C, and C =∼ D as C <∼ D and C >∼ D.

For some countable collection Φ of functions in a separable Hilbert space H with scalar
product 〈 , 〉 and norm ‖ ‖, and for c = (cφ)φ∈Φ a vector of scalars, with cTΦ we will mean
the expansion

∑
φ∈Φ cφφ. We always consider spaces of scalar vectors as being equipped

with scalar product 〈c,d〉�2 =
∑

φ∈Φ cφdφ and norm ‖c‖�2 = 〈c, c〉
1
2

�2, and consequently,
the spaces of possibly infinite matrices as being equipped with the corresponding operator
norm. For x ∈ H , with 〈Φ, x〉 and 〈x,Φ〉 we will mean the column- and row-vectors
with coefficients 〈φ, x〉 and 〈x, φ〉, φ ∈ Φ. More generally, when Φ̃ is another countable

collection in H , with 〈Φ, Φ̃〉 is meant the matrix (〈φ, φ̃〉)φ∈Φ,φ̃∈Φ̃. A collection Φ is called a
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Riesz system when ‖cTΦ‖ =∼ ‖c‖�2, and Φ is called a Riesz basis when it is in addition a
basis for H .

2. Biorthogonal space decompositions

Continuing work from [DSt99, Ste00], we construct biorthogonal finite element type
wavelets on manifolds. In [DSt99] it was assumed that the manifold is given as a dis-
joint union of images of parametric mappings, where each of them has a constant Jacobian
determinant. Here and in the next sections, we will show how the construction can be
generalized to general descriptions that may not satisfy this condition.

Our starting point is the standard closed reference n-simplex

T = {λ ∈ IRn+1 :
n+1∑
�=1

λ� = 1, λ� ≥ 0}.

The intersection of T with any lower dimensional coordinate plane will be called a face
of T . To avoid some technical complications, we will always assume that n ≤ 3. We
fix a refinement, sometimes called a triangulation, of T into 2n congruent subsimplices
T 1, . . . ,T 2n , each of them determined by some ordered set of vertices.

For any closed n-simplex T , let λT (z) ∈ [0, 1]n+1 denote the barycentric coordinates of
z ∈ T with respect to the ordered set of vertices of T . Above dyadic refinement of T
induces such a refinement of T into 2n congruent subsimplices (λ−1

T ◦ λ−1
Tk

◦ λT )(T ). The

barycenter λ−1
T ( 1

n+1
, . . . , 1

n+1
) of T will be denoted by ζ(T ).

Starting with a collection τ0, consisting of one n-simplex T0 ⊂ IRn only, we obtain an
infinite sequence of collections of simplices (τj)j≥0 by defining τj+1 as the collection of all
simplices that arise by applying above refinement to all simplices from τj .

We consider compact n-dimensional manifolds Γ ⊂ IRn′
. We assume that either Γ ∈ Cm,0

for some 1 ≤ m ∈ IN , or Γ ∈ Ct for some 0 < t 
∈ IN , which means that for s ∈ [0, m] or
s ∈ [0, t), the Sobolev spaces Hs(Γ) can be defined in the usual way using a partition of
unity relative to some atlas. For s in above range, H−s(Γ) will be understood as the dual
of Hs(Γ).

We will assume that Γ is given as Γ = ∪pi=1Γi, where Γi = κi(T
int
0 ), with κi : IRn → IRn′

being some smooth regular parametrization, and T int
0 the interior of T0. We assume that

for 1 ≤ i 
= ı̆ ≤ p, the intersection Γi ∩ Γı̆ is either empty, or there exists a permutation
π : IRn+1 → IRn+1 such that

(2.1) π ◦ λT0 ◦ κ−1
i = λT0 ◦ κ−1

ı̆ on Γi ∩ Γı̆.

Remark 2.1. We assume here that Γ is given as a disjoint union of parametric images of
an n-simplex. Alternatively, the wavelet construction outlined below can also be carried
out, even requiring a few technicalities less, when instead an n-cube is taken as reference
domain.
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With µ being the induced Lebesgue measure on Γ, we have∫
Γ

uvdµ =

p∑
i=1

∫
T0

u(κi(z)) v(κi(z)) |∂κi(z)| dz,

where |∂κi(z)| are the Jacobian determinants. Besides µ, for j0 ∈ IN we will make use of
auxiliary measures µj0 on Γ defined by dµj0(x) = mj0(x)dµ(x), where

(2.2) mj0(x) = |∂κi(ζ(T ))||∂κi(κ−1
i (x))|−1 if x ∈ κi(T

int), T ∈ τj0,

giving ∫
Γ

uvdµj0 =

p∑
i=1

∑
T∈τj0

|∂κi(ζ(T ))|
∫
T

u(κi(z)) v(κi(z)) dz.

All these measures are uniformly equivalent to µ, in the sense that for ν = µ or ν = µj0
the space L2(Γ) of ν-measurable functions u on Γ with

∫
Γ
|u|2dν <∞ is the same, and all

norms (
∫

Γ
|u|2dν) 1

2 are uniformly equivalent. The notation ‖u‖L2(Γ) will stand for any of
these norms of u. With 〈u, v〉ν we will mean

∫
Γ
uvdν, where for notational convenience we

suppress the fact that it concerns an L2-scalar product on Γ.
The smoothness of the κi shows that

(2.3) sup
1≤i≤p, T∈τj0 , z,z̆∈T

| |∂κi(z))| − |∂κi(z̆))| | <∼ 2−j0,

and so

(2.4) |〈u, v〉µ − 〈u, v〉µj0
| <∼ 2−j0‖u‖L2(Γ)‖v‖L2(Γ) (u, v ∈ L2(Γ)).

Let V be some finite dimensional space of continuous functions on the reference n-
simplex T , which is refinable in the sense that

(R) V ⊂ V (r) := {u ∈ C(T ) : u ◦ λ−1
Tk

∈ V , 1 ≤ k ≤ 2n}.
Apart from this ‘primal’ space V , we consider a ‘dual’ space Ṽ that is also refinable, with

dimV = dimṼ .

We assume that for some d, d̃ ≥ 2,

(2.5) V ⊃ Pd−1(T ), Ṽ ⊃ Pd̃−1(T ),

being the spaces of all polynomials over T of degree d− 1 and d̃− 1 respectively. We put

γ = sup{s : V ⊂ Hs(T )}, γ̃ = sup{s : Ṽ ⊂ Hs(T )}.
We define sequences of ‘global’ primal and dual finite element type spaces (Vj)j≥0 and

(Ṽj)j≥0 on Γ by

Vj = {u ∈ C(Γ) : u ◦ κi ◦ λ−1
T ∈ V , T ∈ τj , 1 ≤ i ≤ p},
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and analogous definition of Ṽj. Both sequences are nested by assumption (R).

We assume that some bases Φ = {φλ : λ ∈ I}, Φ̃ = {φ̃λ : λ ∈ I} for V , Ṽ are available
with index set I ⊂ T . To be able to use these bases as building blocks for constructing
bases for Vj and Ṽj , we assume that

φλ vanishes on any face that does not include λ,(V)

π(I ∩ ∂T ) = I ∩ ∂T and φλ|∂T
= (φπ(λ) ◦ π)|∂T

for any permutation

π : IRn+1 → IRn+1,

(S)

For e = T , or for e being any face of T , {φλ|e : λ ∈ I ∩ e} is independent,(I)

and analogous conditions on Φ̃.
A connection between (Vj) and (Ṽj) will be established by assuming that

(2.6) Re 〈Φ, Φ̃〉µ > 0,

where 〈u,v〉µ =
∫

T
uvdµ with µ being the induced Lebesgue measure on T .

With Ij := ∪pi=1 ∪T∈τj κi(λ−1
T (I)), we define collections Φj = {φj,x : x ∈ Ij} of functions

on Γ by
(2.7)

φj,x(y) =

{
2jn/2φλT (κ−1

i (x))(λT (κ−1
i (y))) if x, y ∈ κi(T ) for some 1 ≤ i ≤ p, T ∈ τj ,

0 elsewhere.

So these global functions result from connecting the local basis functions over the interfaces
between the ‘elements’ κi(T ). Note that because of our assumption that n ≤ 3, we have

an automatic matching of triangulations at interfaces. That is, if y ∈ κi(T ) ∩ κı̆(T̆ )

with 1 ≤ i 
= ı̆ ≤ p or T 
= T̆ ∈ τj , then λT (κ−1
i (y)) is equal to λT̆ (κ−1

ı̆ (y)) modulo
some permutation. Using (V), (S), one therefore concludes that the φj,x are well-defined,
continuous functions on Γ, and that the Φj are uniformly local in the sense that

diam(supp(φj,x)) =∼ 2−j.

Together with (I) it even follows that Φj is a basis for Vj.

Obviously, similar observations hold for the dual collections Φ̃j defined analogously using

Φ̃.

Remark 2.2. Although in this paper we focus on a construction of wavelets on compact
manifolds Γ, clearly it also applies to domains Ω. Possible essential homogeneous boundary
conditions can easily be incorporated just by removing the points on ∂Ω from the index
sets Ij . In that case, for s ≥ 0, Hs(Γ) should read as Hs(Ω) ∩ H1

0 (Ω). In case Ω is a
polygon, we may assume that the κi are affine mappings, which implies that µ = µj0 for
all j0 ∈ IN .

We constructed 〈 , 〉µj0
from 〈 , 〉µ by ‘freezing’ the Jacobian determinant on the pull-back

of each κi(T̂ ) for 1 ≤ i ≤ p and T̂ ∈ τj0. As a consequence, for j ≥ j0 ≥ 0 and x, y ∈ Ij ,
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we have

(2.8) 〈φj,x, φ̃j,y〉µj0

=

p∑
i=1

∑
{T̂∈τj0 ,T∈τj :T⊂T̂ , κi(T )�x,y}

|∂κi(ζ(T̂ ))|2jnµ(T )

µ(T )
〈φλT (κ−1

i (x)), φ̃λT (κ−1
i (y))〉µ

=∼
p∑
i=1

∑
{T∈τj :κi(T )�x,y}

〈φλT (κ−1
i (x)), φ̃λT (κ−1

i (y))〉µ.

Here and below, whenever it is relevant, the <∼, >∼ and =∼ symbols will not only refer to

uniformity in j (and here in x, y ∈ Ij), but also in j0 ∈ IN . By replacing φ̃j,y by φj,y
in (2.8), one easily infers that the Φj , and analogously the Φ̃j , are uniform L2(Γ)-Riesz
systems, with which we mean that ‖cTΦj‖L2(Γ)

=∼ ‖c‖�2 holds also uniformly in j.
Furthermore, using (2.8) one deduces that (2.6) implies that for j ≥ j0 ≥ 0,

Re〈Φj , Φ̃j〉µj0

>∼ 1. Since Φj and Φ̃j are uniform L2(Γ)-Riesz bases, the latter result shows
that for j ≥ j0 ≥ 0,

(2.9) inf
0�=ũj∈Ṽj

sup
0�=uj∈Vj

|〈uj, ũj〉µj0
|

‖uj‖L2(Γ)‖ũj‖L2(Γ)

>∼ 1.

From (2.4) we conclude that in any case when j0 is sufficiently large, for j ≥ j0,

(A) inf
0�=ũj∈Ṽj

sup
0�=uj∈Vj

|〈uj, ũj〉µ|
‖uj‖L2(Γ)‖ũj‖L2(Γ)

>∼ 1,

meaning that the 〈 , 〉µ-angle between Vj and Ṽj stays away from π
2

uniformly in j ≥ j0.
As shown in [DSt99, Theorem 2.1], (A) implies that there exists a unique sequence

(Qj)j≥j0 of uniformly bounded projectors Qj : L2(Γ) → L2(Γ) such that

Im(Qj) = Vj, Im(I −Qj) = Ṽ
⊥〈,〉µ
j ,

and so for the adjoints,

Im(Q∗j) = Ṽj, Im(I −Q∗j ) = V
⊥〈,〉µ
j .

The existence of continuous, uniformly local, uniform L2(Γ)-Riesz bases implies (cf.
[Osw94]) the validity of the Bernstein inequality

(B) ‖uj‖Hs(Γ)
<∼ 2js‖uj‖L2(Γ) (uj ∈ Vj , s ∈ [0,min{3

2
, γ}) with s ≤ m or s < t),

and likewise for the dual sequence with γ replaced by γ̃. Assumption (2.5) implies the
Jackson estimate

(J) inf
uj∈Vj

‖u− uj‖L2(Γ)
<∼ 2−js‖u‖Hs(Γ) (u ∈ Hs(Γ), s ∈ [0, d] with s ≤ m or s < t),

and likewise for the dual sequence with d replaced by d̃. By (A), (B), (J), and the
nestedness of both sequences, the general theory about stability of biorthogonal space
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decompositions (cf. [Dah96, DSt99]) shows that with Qj0−1 := 0,

(2.10) ‖u‖2
Hs(Γ)

=∼
∞∑
j=j0

4js‖(Qj −Qj−1)u‖2
L2(Γ) (u ∈ Hs(Γ), s ∈ (−3

2
, 3

2
) ∩ (−γ̃, γ)

with |s| ≤ m or |s| < t).

and

(2.11) ‖u‖2
Hs(Γ)

=∼
∞∑
j=j0

4js‖(Q∗j −Q∗j−1)u‖2
L2(Γ) (u ∈ Hs(Γ), s ∈ (−3

2
, 3

2
) ∩ (−γ, γ̃)

with |s| ≤ m or |s| < t).

Remark 2.3. In all examples constructed in [DSt99, Ste00], the functions in V and Ṽ
are either polynomials or continuous piecewise polynomials. As a consequence, the values
of γ and γ̃ are either ∞ or 3

2
, meaning that in (B), (2.10) and (2.11), the conditions

involving γ and γ̃ are superfluous. Therefore, for ease of presentation in the following we
will drop these conditions. Yet, on the other hand one may think of interesting examples
were in particular Ṽ contains functions that are implicitly defined as the solution of some
refinement equation, which may have a lower regularity. For these cases, results derived
in this paper based on the Bernstein inequalities should be restricted to the corresponding
smaller ranges of Sobolev norms.

Remark 2.4. If one, at least formally, wants to include unbounded manifolds or domains,
yielding infinite dimensional spaces Vj and Ṽj , the maximum angle condition (A) should
be appended with the analogous condition, also resulting from (2.6), in which the roles of
Vj and Ṽj are interchanged.

Below, possibly for a j0 larger than in (2.10), we will construct uniform L2(Γ)-Riesz
bases Ψj for the spaces

Im(Qj+1 −Qj) = Vj+1 ∩ Ṽ ⊥〈,〉µ
j (j ≥ j0),

which elements are then called wavelets. Then (2.10) shows that

Φj0 ∪ ∪∞j=j02−jsΨj is a Riesz basis for Hs(Γ),

for the range of s as in (2.10).

For simplicity, let us assume that I is a subset of the ‘refined index set’

I(r) :=
2n⋃
k=1

λ−1
Tk

(I).

Suppose that collections Θ = {θλ : λ ∈ I} and Ξ = {ξλ : λ ∈ I(r)\I} of functions on T

are available, such that Θ ∪ Ξ satisfies (V), (S) and (I), Θ ∪ Ξ is a basis for V (r), and

(2.12) 〈Θ, Φ̃〉µ = I.
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As Φj and Φ̃j were defined from Φ and Φ̃, above Θ and Ξ give rise to collections
Θj = {θj,x : x ∈ Ij} and Ξj = {ξj,y : y ∈ Ij+1\Ij} of functions on Γ defined as in (2.7). The
same arguments that were used earlier show that Θj ∪ Ξj are uniform L2(Γ)-Riesz bases
for the spaces Vj+1.

Example 2.5. From [DSt99], we recall an example of such collections Φ, Φ̃, Θ and Ξ,
which quadruple will determine the whole wavelet construction. Let I be the set of vertices
of the n-simplex T , so that I(r) is the set of vertices and midpoints of edges of T . The
sets Φ̃ = Φ are defined by φλ(µ) = δλµ (λ, µ ∈ I). It holds that V = Ṽ = spanΦ =

P1(T ), giving d = d̃ = 2. Since V = Ṽ , in this case (2.10) refers to an orthogonal space
decomposition. Note that in the domain case, the spaces Vj = Ṽj are just the standard P1

finite element spaces. With φ
(r)
λ ∈ V (r) defined by φ

(r)
λ (µ) = δλµ (λ, µ ∈ I(r)), sets Θ and

Ξ satisfying above conditions are given by θλ = 2n+1(n+1)!√
n+1

(φ
(r)
λ − 2−(n+1)φλ) (λ ∈ I), and

ξλ = φ
(r)
λ (λ ∈ I(r)\I), see Figure 1.

Φ = Φ̃ Ξ

Θ

1

√
2

3
√

2

−1
2

√
2

{
{
}
} = I

= I(r)\I

Figure 1. Φ, Φ̃,Θ,Ξ from Example 2.5 for n = 1

Anticipating to the discussion at the end of §3, to get wavelets with more vanishing
moments, or more generally, a cancellation property of higher order, it makes sense to
select Ṽ 
= V such that Ṽ includes all polynomials of some higher degree. Examples are
given in [DSt99].

From (2.6) we obtained (2.9). So comparing (2.12) with (2.6), we may conclude that for
j ≥ j0 ≥ 0,

(2.13) inf
0�=ũj∈Ṽj

sup
0�=vj∈spanΘj

|〈vj, ũj〉µj0
|

‖vj‖L2(Γ)‖ũj‖L2(Γ)

>∼ 1,

and thus that for j0 being sufficiently large and j ≥ j0,

(2.14) inf
0�=ũj∈Ṽj

sup
0�=vj∈spanΘj

|〈vj, ũj〉µ|
‖vj‖L2(Γ)‖ũj‖L2(Γ)

>∼ 1.
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In [Ste00] it was shown that (2.14), together with the fact that Θj ∪Ξj and Φ̃j are uniform

L2(Γ)-Riesz bases for Vj+1 and Ṽj respectively, implies that for j ≥ j0,

(2.15) Ψj := Ξj − 〈Ξj, Φ̃j〉µ〈Θj, Φ̃j〉−1
µ Θj

are uniform L2(Γ)-Riesz bases for the spaces Vj+1 ∩ Ṽ ⊥〈,〉µ
j . Note that Ψj is the result of

projecting Ξj along spanΘj onto Ṽ
⊥〈,〉µ
j . In particular this means that Ψj is independent

of the choice of the bases of spanΘj and Ṽj. In the terminology from [Dah97], Ξj and Ψj

correspond to ‘initial’ and ‘target’ ‘stable completions’ of Θj in Vj+1.
Analogously, using (2.13), we conclude that for j ≥ j0 ≥ 0, the ‘auxiliary’ collections

(2.16) Ψ
(j0)
j := Ξj − 〈Ξj, Φ̃j〉µj0

〈Θj, Φ̃j〉−1
µj0

Θj

are uniform L2(Γ)-Riesz bases for Vj+1 ∩ Ṽ
⊥〈,〉µj0
j , where here ‘uniform’ also refers to j0.

The fact that the Ψ
(j0)
j are uniform L2(Γ)-Riesz systems will be used in §4.

3. Constant Jacobian determinants

In general, 〈Θj, Φ̃j〉−1
µ will be a densely populated matrix, meaning that (2.15) yields

wavelets with global supports, which is undesirable for practical computations. On the
other hand, formula (2.8) shows that assumption (2.12), i.e. 〈Θ, Φ̃〉µ = I, implies that

〈Θj, Φ̃j〉µj0
is diagonal for j ≥ j0 ≥ 0. By also expanding 〈Ξj, Φ̃j〉µj0

in terms of local scalar

products using (2.8), we infer that Ψ
(j0)
j = {ψ(j0)

j,y : y ∈ Ij+1\Ij} is given by
(3.1)

ψ
(j0)
j,y = ξj,y −

∑
x∈Ij

∑
{i,T̂∈τj0 ,T∈τj :T⊂T̂ ,κi(T )�x,y} |∂κi(ζ(T̂ ))| 〈ξλT (κ−1

i (y)), φ̃λT (κ−1
i (x))〉µ∑

{i,T̂∈τj0 ,T∈τj :T⊂T̂ ,κi(T )�x} |∂κi(ζ(T̂ ))| θj,x,

and in particular,

(3.2) ψ
(0)
j,y = ξj,y −

∑
x∈Ij

∑
{i,T∈τj :κi(T )�x,y} |∂κi(ζ(T0))| 〈ξλT (κ−1

i (y)), φ̃λT (κ−1
i (x))〉µ∑

{i,T∈τj :κi(T )�x} |∂κi(ζ(T0))| θj,x.

From the fact that Ξj, Φ̃j and Θj are uniformly local, we conclude that the sum over

x ∈ Ij in (3.1) is uniformly finite, and thus that the Ψ
(j0)
j are uniformly local. In particular,

with

(3.3) Λj,y(i) = {T ∈ τj : ∃ 1 ≤ ı̆ ≤ p, T̆ ∈ τj with y ∈ κı̆(T̆ ) and κi(T ) ∩ κı̆(T̆ ) 
= ∅},
it holds that

(3.4) suppψ
(j0)
j,y ⊂ ∪pi=1κi(Λj,y(i)),

see Figure 2.
In view of above observations, as in [DSt99], throughout this section we will assume that

µ = µ0,
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Γ1

Γ2
{

{

}

}
: y ∈ Ij+1\Ij ⊂ Γ1

= κ1(Λj,y(1))

= κ2(Λj,y(2))

Figure 2. Illustration of sets κi(Λj,y(i)) for a 2-dimensional manifold

meaning that all Jacobian determinants |∂κi| are constant functions. Apart from the polyg-
onal domain case discussed in Remark 2.2, manifolds consisting of patches that for example
are parts of hyperplanes, spheres or cylinders, can be described by such parametrizations.

Under this assumption, (A) and thus (2.10) are valid for j ≥ 0, and Ψj = Ψ
(0)
j . We con-

clude that Φ0 ∪ ∪j≥02
−jsΨj is a Riesz basis for Hs(Γ) for the range of s as in (2.10), where

moreover now the collections Ψj are uniformly local.

In the following three remarks, we discuss some generalizations or extensions of the
results we obtained so far.

Remark 3.1. Instead of µ = µ0, we could also have assumed that µ = µj0 for some j0 ∈ IN .
By breaking the Γi into the smaller patches κi(T ) (T ∈ τj0), it is easily seen that this
generalization can be reduced to the previous situation.

Remark 3.2. As discussed in [Ste00], the condition (2.12), i.e. 〈Θ, Φ̃〉µ = I, can be relaxed

as follows: With respect to some partitioning I = ∪q�=1I
(�), where π(I(�) ∩∂T ) = I(�) ∩∂T

for all permutations π, let 〈Θ, Φ̃〉µ be a block triangular matrix with identity matrices as
diagonal blocks. Then with respect to a corresponding partitioning of the sets Ij into q

subsets, for j ≥ j0 the matrices 〈Θj, Φ̃j〉µj0
are block triangular with diagonal matrices as

diagonal blocks. It follows that both the matrices 〈Θj, Φ̃j〉µj0
and 〈Θj , Φ̃j〉−1

µj0
are uniformly

bounded, and uniformly local in the sense that entries corresponding to x, y ∈ Ij with

distance larger than some multiple of 2−j are zero. The first property shows that Φ̃j

and 〈Θj, Φ̃j〉−1
µj0

Θj are 〈 , 〉µj0
-biorthogonal uniformly L2(Γ)-Riesz bases for Ṽj and spanΘj

respectively. The existence of such bases implies (2.13). As we have seen, (2.13) in turn

shows that the collections Ψ
(j0)
j from (2.16) are uniform L2(Γ)-Riesz bases for Vj+1∩Ṽ

⊥〈,〉µj0
j .

The uniform locality of 〈Θj, Φ̃j〉−1
µj0

shows that the Ψ
(j0)
j are uniformly local. Concluding,
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assuming that µ = µ0, the wavelets Ψj = Ψ
(0)
j are uniformly local, uniform L2(Γ)-Riesz

bases for Vj+1 ∩ Ṽ
⊥〈,〉µ
j . Note however that (3.1), and thus (3.2), and also (3.4) are no

longer valid.
Also the wavelet construction presented in §4 can be carried out when (2.12) is replaced

by above relaxed assumption. Yet, for ease of presentation, in the remainder of this paper
we stick to assumption (2.12), i.e., 〈Θ, Φ̃〉µ = I.

Remark 3.3. In [Ste00], examples of quadruples (Φ, Φ̃,Θ,Ξ) are given with Θ = Φ, that
is, 〈Φ, Φ̃〉µ = I, or more generally, 〈Φ, Φ̃〉µ is a block triangular matrix as in Remark 3.2.

In these cases, and assuming that µ = µ0, the sets Φj and 〈Φj , Φ̃j〉−1
µ Φ̃j are uniformly local,

〈, 〉µ-biorthogonal scaling functions. It can be shown that as a consequence also uniformly
local dual wavelets become available. Note that for Θ = Φ, it follows that spanΘj = Vj,
and so (2.9) and (2.13), and also (A) and (2.14) are equal.

Apart from generating Riesz bases, the other essential property that makes wavelets
suitable for solving operator equations is that they have vanishing moments, or more
generally, to cover cases where piecewise polynomials are not included in the dual spaces,

that they have cancellation properties. Still assuming that µ = µ0, the wavelets Ψj = Ψ
(0)
j

satisfy a cancellation property of order d̃, with with we mean that following estimate is
valid:

Proposition 3.4. For v being a continuous function on Γ, which is patchwise smooth, one
has

(3.5) |〈v, ψj,y〉µ| <∼ 2−j(d̃+n/2) max
1≤i≤p, T∈Λj,y(i)

|v ◦ κi|W d̃,∞(T )

Proof. For q ∈ IN , let N q : C(T ) → Pq(T ) be the interpolant defined by (N qv)(λ) = v(λ)
for λ ∈ (IN/q)n+1 ∩ T . We define Nj,q : C(Γ) →∏p

i=1

∏
T∈τj κi(Pq(T )) by

(Nj,qv) ◦ κi ◦ λ−1
T = N q(v ◦ κi ◦ λ−1

T ) (1 ≤ i ≤ p, T ∈ τj).

Since N q reproduces polynomials of order q, the Bramble-Hilbert lemma and a homogene-
ity argument show that for continuous, patchwise smooth v,

(3.6) ‖(I −Nj,q)v‖L∞(κi(T ))
<∼ 2−(q+1)j |v ◦ κi|W q+1,∞(T ).

The choice of the interpolation points and the matching condition (2.1) ensure that Nj,q

maps into C(Γ). As a consequence, from our assumption that Ṽ ⊃ Pd̃−1(T ) we infer that

Nj,d̃−1 maps into Ṽj. Finally, from ψj,y ⊥〈,〉µ Ṽj and diam(supp(ψj,y)) =∼ 2−j, we obtain
that

|〈v, ψj,y〉µ| = |〈(I −Nj,d̃−1)v, ψj,y〉µ|
<∼ ‖(I −Nj,d̃−1)v‖L2(supp(ψj,y))

<∼ 2−jn/2‖(I −Nj,d̃−1)v‖L∞(supp(ψj,y)).

The proof is completed by (3.4) and (3.6). �
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With a cancellation property of sufficiently high order, a wavelet representation of an
integral operator can be approximated by a sparse matrix without lowering the order of
convergence of the resulting discretization. For details, we refer to [Sch98, Dah97].

Remark 3.5. For the domain case discussed in Remark 2.2, if the functions from Ṽj satisfy
essential homogeneous boundary conditions, then (3.5) restricts to those v that also satisfy
these conditions.

4. General parametrizations

The assumption that µ = µ0 made in §3 clearly restricts the field of applications. There-
fore we now study the situation that this assumption is not valid. Then (2.15) will generally
not result in uniformly local wavelets.

A potential solution is to replace throughout §2, the Lebesgue measure µ on Γ by the
measure µ0, that is, to consider space decompositions that are biorthogonal with respect
to 〈 , 〉µ0 instead of with respect to 〈 , 〉µ. Then (2.10) holds with j0 = 0 and the wavelet

collections yielded by (2.15) are just the collections Ψ
(0)
j .

A point however that deserves attention is the interpretation of (2.10) if s < 0. The
operators Qj should be interpreted as extensions of mappings L2(Γ) → Vj to mappings
Hs(Γ) → Vj, by identifying u ∈ L2(Γ) with the functional v �→ 〈v, u〉µ, yielding a set that
is dense in Hs(Γ). Likewise, for the consequence that ‖∑j c

T
j 2−jsΨj‖2

Hs(Γ)
=∼
∑

j ‖cj‖2
�2,

the Hs(Γ)-norm of the series of functions in L2(Γ) should be interpreted with respect to
the same dense embedding of L2(Γ) into Hs(Γ).

Replacing µ by µ0 changes this embedding from

E : u �→ (v �→ 〈v, u〉µ)
into E0 : u �→ (v �→ 〈v, u〉µ0). For s ≤ −1

2
, and for an m0, defined in (2.2), that has jumps

over the interfaces between patches, both embeddings result in a non-equivalent Hs(Γ)-
norms of L2(Γ)-functions. Indeed, suppose that the norms would be equivalent, then for
v ∈ H−s(Γ),

‖v‖H−s(Γ) = sup
0�=f∈Hs(Γ)

|f(v)|
‖f‖Hs(Γ)

= sup
0�=u∈L2(Γ)

|〈v, u〉µ|
‖E(u)‖Hs(Γ)

=∼ sup
0�=u∈L2(Γ)

|〈v, u〉µ|
‖E0(u)‖Hs(Γ)

= sup
0�=u∈L2(Γ)

|〈v/m0, u〉µ|
‖E(u)‖Hs(Γ)

= ‖v/m0‖H−s(Γ),

which is known not to be valid for s ≤ −1
2

and such m0. We conclude that for m0 having

jumps and s ≤ −1
2
, a space decomposition that is biorthogonal with respect to 〈 , 〉µ0 results

in a wavelet system that cannot be a Riesz basis for Hs(Γ) with respect to the embedding
of L2(Γ) into Hs(Γ) using 〈 , 〉µ, and vice versa.

The application of wavelets that we focus on is that of Galerkin discretizations of operator
equations. In applications the variational formulations of these equations are formed using
the duality pairing with respect to 〈 , 〉µ. This implies that the relevant embedding of
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L2(Γ) into Hs(Γ) for s < 0 is the embedding E based on 〈 , 〉µ. Another consequence is
that cancellation properties should indeed be measured with respect to 〈 , 〉µ.

Instead of µ0, more generally one may consider the option to replace µ by µg defined by
dµg = gdµ, where g > 0 with g, 1/g ∈ L∞(Γ). Above analysis shows that the approach
to construct space decompositions that are biorthogonal with respect to 〈 , 〉µg give rise
to ‘stable splittings’ of Hs(Γ) for s < 0, in the sense of (2.10) and with respect to the
embedding E, if and only if

(4.1) f �→ fg is a homeomorphism in H−s(Γ).

On the other hand, our approach to construct uniformly local, uniform L2(Γ)-Riesz bases

for the subspaces Vj+1 ∩ Ṽ
⊥〈,〉µg

j only applies when for each 1 ≤ i ≤ p,

(4.2) Γi → IC : x �→ g(x)|∂κi(κ−1
i (x))| is constant.

Before trying to circumvent these restrictive conditions, in the following simple one-
dimensional example we illustrate above findings with numerical results, at the same time
exemplifying the wavelet formula (3.2):

Example 4.1. Let Γ = ∪2
i=1Γi be the unit circle in IR2, and T0 = [0, 1]. We use

(Φ, Φ̃,Θ,Ξ) from Example 2.5 (with n = 1). We take

κ1 : z �→ (cos(2
3
πz), sin(2

3
πz)),

κ2 : z �→ (cos(4
3
π(z + 1

2
)), sin(4

3
π(z + 1

2
))).

Both Jacobian determinants are constants, with values 2
3
π and 4

3
π, and so

〈u, v〉µ =

2∑
i=1

|∂κi|
∫ 1

0

u(κi(z))v(κi(z))dz.

Since µ = µ0, formula (3.2) yields locally supported wavelets ψj,y = ψ
(0)
j,y . Yet, to

illustrate the preceding analysis, here we also consider wavelets, denoted by ψ̆j,y, that result
from ignoring the jump in the Jacobian determinant, which approach has been followed
in the literature. These wavelets ψ̆j,y arise from replacing µ by µg throughout §2, where
g(x) = |∂κi(κ−1

i (x))|−1 if x ∈ Γi, or

〈u, v〉µg =
2∑
i=1

∫ 1

0

u(κi(z))v(κi(z))dz.

Note that this g does not satisfy (4.1) for s ≤ −1
2
.

For y ∈ Ij+1, let us denote with yL and yR both its direct neighbours in Ij+1. Using that

〈Ξ, Φ̃〉µ =
[

1
4

√
2 1

4

√
2
]

and ξj,y = φj+1,y, formula (3.2) yields

ψj,y = φj+1,y − 1
4

√
2

∑
x∈{yL,yR}

w(y)

w̃(x)
θj,x,
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where

w(y) = |∂κi| if y ∈ Γi, w̃(x) =

{
2|∂κi| if x ∈ Γi,

|∂κ1| + |∂κ2| if x ∈ Γ1 ∩ Γ2.

By substituting
θj,x = 3

√
2φj+1,x − 1

2

√
2 (φj+1,xL

+ φj+1,xR
),

we find ψj,y given as a linear combination of 5 nodal basis functions, generalizing the well-
known ‘prewavelet’ construction on uniform partitions of the line, which can for example
be found in [CW92]. Replacing µ0 by µg yields

ψ̆j,y = φj+1,y − 1
8

√
2

∑
x∈{yL,yR}

θj,x.

Both ψj,y and ψ̆j,y are illustrated in Figure 3. Note that ψj,y is equal to ψ̆j,y except when

{
{
{

}
}
} = Ij

= Ij+1\Ij
= Γ1 ∩ Γ2

Figure 3. Wavelets ψj,y (‘−’) and ψ̆j,y (‘−−’) with supports that intersect

an interface, and wavelets ψj,y = ψ̆j,y (‘−·’) with support inside one patch

their supports intersect an interface between the two patches Γ1 and Γ2, in which case ψ̆j,y
has no cancellation properties.

Let us define Ψ
(j)
s = Φ0 ∪ ∪j−1

�=02
−�sΨ� and Ψ̆

(j)
s = Φ0 ∪ ∪j−1

�=02
−�sΨ̆�. We are interested in

κHs(Γ)(Ψ
(j)
s ) and κHs(Γ)(Ψ̆

(j)
s ), where for a countable collection of functions Υ ⊂ Hs(Γ) ∩

L2(Γ),

κHs(Γ)(Υ) := sup
0�=c=(cυ)υ∈Υ

‖cTΥ‖2
Hs(Γ)

‖c‖2

/
inf

0�=c=(cυ)υ∈Υ

‖cTΥ‖2
Hs(Γ)

‖c‖2
,

where thus for s < 0 we use the embedding E : L2(Γ) → Hs(Γ). We start with searching
for equivalent quantities that are computable for general |s| ≤ 1.

As norm on H1(Γ), we may use ‖u‖H1(Γ) :=
√∑2

i=1 ‖u ◦ κi‖2
H1(T0). We have

‖uTj Φj‖2
H1(Γ) = 〈Ăjuj ,uj〉�2 + 〈M̆juj ,uj〉�2,
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where

Ăj =

(
2∑
i=1

∫ 1

0

(φj,x ◦ κi)′(z)(φj,y ◦ κi)′(z)dz
)
x,y∈Ij

and

M̆j

(
= 〈Φj,Φj〉µg

)
=

(
2∑
i=1

∫ 1

0

φj,x(κi(z))φj,y(κi(z))dz

)
x,y∈Ij

are 2j+1 × 2j+1 Toeplitz matrices with ‘stencils’ 4j[−1 2 −1] and [16
2
3

1
6 ] respectively.

Using ‖uTj Φj‖L2(Γ)
=∼ ‖uj‖�2 , and by applying interpolation, we find that

(4.3) ‖uTj Φj‖Hs(Γ)
=∼ ‖(Ăj + M̆j)

s
2uj‖�2 (s ∈ [0, 1]).

As follows from (2.10), the 〈, 〉µ-orthogonal projector Qj : L2(Γ) → Vj satisfies

‖Qj‖Hs(Γ)←Hs(Γ)
<∼ 1 (|s| < 3

2
). As a consequence, for uj ∈ Vj and s ∈ (−3

2
, 0], we

have

sup
0�=vj∈Vj

|〈uj, vj〉µ|
‖vj‖H−s(Γ)

≤ ‖uj‖Hs(Γ) = sup
0�=v∈H−s(Γ)

|〈uj, Qjv〉µ|
‖v‖H−s(Γ)

<∼ sup
0�=vj=Qjv∈Vj

|〈uj, vj〉µ|
‖vj‖H−s(Γ)

,

and so for s ∈ [−1, 0],

(4.4) ‖uTj Φj‖Hs(Γ)
=∼ sup

0�=vj=vT
j Φj∈Vj

|〈Mjuj ,vj〉|
‖(Ăj + M̆j)

− s
2 vj‖�2

= ‖(Ăj + M̆j)
s
2Mjuj‖�2,

where Mj = 〈Φj ,Φj〉µ.
From (4.3), (4.4), one infers that for Υj being a basis for Vj , and T

Φj

Υj
the matrix such

that ΥT
j = ΦT

j T
Φj

Υj
, and (T

Φj

Υj
)∗ its matrix adjoint,

(4.5) κHs(Γ)(Υj) =∼ κs,j(Υj) :=

{
κ((T

Φj

Υj
)∗(Ăj + M̆j)

sT
Φj

Υj
) if s ∈ (0, 1],

κ((T
Φj

Υj
)∗Mj(Ăj + M̆j)

sMjT
Φj

Υj
) if s ∈ [−1, 0].

We have computed numerical values of κs,j(Ψ
(j)
s ) and κs,j(Ψ̆

(j)
s ) using the Lanczos method.

By evaluating the application of (Ăj+M̆j)
s using the FFT, each iteration can be performed

in O(dimVj log(dimVj)) operations. As expected, the results given in Figures 4 and 5 show

that in contrast to κs,j(Ψ
(j)
s ), for s ≤ −1

2
, κs,j(Ψ̆

(j)
s ) is not bounded as function of j. In

the limit case s = −1
2
, the growth is approximately linear in j. For s < −1

2
, κs,j(Ψ̆

(j)
s )

turns out to be exponentially increasing as function of j.

For general parametrizations, often a g satisfying both (4.1) for s ≤ −1
2

and (4.2) does
not exist. Therefore, below we will give up biorthogonality of the space decompositions.
That is, we will construct collections

(4.6) Ψj = {ψj,y : y ∈ Ij+1\Ij} ⊂ Vj+1,

that will not (exactly) span spaces Vj+1 ∩ Ṽ
⊥〈,〉µg

j . Nevertheless, as it will turn out, they

will give rise to Riesz bases for a range of Sobolev spaces, including Hs(Γ) for s ≤ −1
2
, and
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Figure 4. κs,j(Ψ
(j)
s ) (‘−’) and κs,j(Ψ̆

(j)
s ) (‘−−’) for s = −1

2
and j = 2, . . . 13
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Figure 5. κs,j(Ψ
(j)
s ) (‘−’) and κs,j(Ψ̆

(j)
s ) (‘−−’) for s = −3

4
and j = 2, . . . 13.

For s = −3
4

and j = 13, we found κs,j(Ψ̆
(j)
s ) = 8.3 × 103

their elements ψj,y will satisfy cancellation properties, which means that it is appropriate
to call them wavelets. Note that the notations ψj,y and Ψj that up to now were reserved

for wavelets that span Vj+1 ∩ Ṽ ⊥〈,〉µ
j are now used for the new collections.

Given j ∈ IN and y ∈ Ij+1\Ij, for all 1 ≤ i ≤ p for which Λj,y(i), defined in (3.3) and
illustrated in Figure 2, is non-empty, select some

(4.7) zj,y(i) ∈ Λj,y(i).

Now define

(4.8) ψj,y = ξj,y −
∑
x∈Ij

∑
{1≤i≤p,T∈τj :κi(T )�x,y} |∂κi(zj,y(i))|〈ξλT (κ−1

i (y)), φ̃λT (κ−1
i (x))〉µ∑

{1≤i≤p,T∈τj :κi(T )�x} |∂κi(zj,y(i))|
θj,x.
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Note that as suppψ
(j0)
j,y , suppψj,y is contained in ∪pi=1κi(Λj,y(i)). Furthermore, if all but

one sets Λj,y(i) are empty, i.e. suppψj,y is contained inside one patch Γi, then ψj,y = ψ
(0)
j,y ,

and the choice of zj,y(i) is irrelevant. So in this case the non-constant Jacobian determinant
is ignored, which however is assumed to be smooth on suppψj,y. In the other case that
suppψj,y extends to different patches, the non-constant Jacobian determinant is taken into

account, in the sense that it is replaced by a piecewise constant. Generally ψj,y and ψ
(0)
j,y

are now different.

We start by showing that these new wavelets induce a ‘stable two-level splitting’. By
using (2.3), comparison of (4.8) and (3.1) shows that for 0 ≤ j0 ≤ j,

(4.9) ‖ψj,y − ψ
(j0)
j,y ‖L2(Γ)

<∼ 2−j0.

By the uniform locality of both Ψj and Ψ
(j0)
j , it follows that

‖cTj (Ψj − Ψ
(j0)
j )‖L2(Γ)

<∼ 2−j0‖cj‖�2 .
Since, as was shown in §2, for j ≥ j0 ≥ 0 the Ψ

(j0)
j are uniform L2(Γ)-Riesz systems, we

conclude that for j0 being sufficiently large and j ≥ j0, the Ψj are uniform L2(Γ)-Riesz
systems.

For j ≥ j0, let Ŵj := spanΨj. By (4.9) and (2.4) it holds that for x ∈ Ij , y ∈ Ij+1\Ij ,
|〈φ̃j,x, ψj,y〉µ| = |〈φ̃j,x, ψj,y − ψ

(j)
j,y 〉µ + 〈φ̃j,x, ψ(j)

j,y〉µ − 〈φ̃j,x, ψ(j)
j,y〉µj

| <∼ 2−j.

Since Φ̃j , Ψj are uniformly local, uniform L2(Γ)-Riesz bases for Ṽj, Ŵj , we conclude that

(4.10) |〈ṽj, ŵj〉µ| <∼ 2−j‖ṽj‖L2(Γ)‖ŵj‖L2(Γ) (ṽj ∈ Ṽj , ŵj ∈ Ŵj),

meaning that Ψj spans a subspace of Vj+1 which is nearly orthogonal to Ṽj.
Possibly for a larger j0, for j ≥ j0 let Qj : L2(Γ) → L2(Γ) be the uniformly bounded

projectors from §2, satisfying Im(Qj) = Vj and Im(I−Qj) = Ṽ
⊥〈,〉µ
j , and so for the adjoints,

Im(Q∗j ) = Ṽj and Im(I −Q∗j ) = V
⊥〈,〉µ
j . From (4.10), for ŵj ∈ Ŵj we have

‖Qjŵj‖L2(Γ)
=∼ sup

0�=vj∈Vj

|〈vj, Qjŵj〉µ|
‖vj‖L2(Γ)

= sup
0�=vj∈Vj

|〈Q∗jvj, ŵj〉µ|
‖vj‖L2(Γ)

<∼ 2−j‖Q∗j‖L2(Γ)←L2(Γ)‖ŵj‖L2(Γ)
<∼ 2−j‖ŵj‖L2(Γ).(4.11)

With Wj := Im(Qj+1 −Qj) = Im((I−Qj)|Vj+1
), the uniform boundedness of the projec-

tors Qj shows that the pairs (Vj,Wj) satisfy the following uniform strengthened Cauchy-
Schwarz inequality,

(4.12) sup
j≥j0

sup
0�=vj∈Vj ,0�=wj∈Wj

|〈vj, wj〉µ|
‖vj‖L2(Γ)‖wj‖L2(Γ)

< 1.

Writing for vj ∈ Vj and ŵj ∈ Ŵj,

〈vj, ŵj〉µ = 〈vj, Qjŵj〉µ + 〈vj , (I −Qj)ŵj〉µ,
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from (4.11) and (4.12), we infer that for j0 being sufficiently large and j ≥ j0, also the

(Vj, Ŵj) satisfy a uniform strengthened Cauchy-Schwarz inequality. Since furthermore

Vj, Ŵj ⊂ Vj+1 and dimVj+1 = dimVj +dimŴj , we may conclude that for j ≥ j0 there exist
uniformly bounded projectors

Q̂j : L2(Γ) ⊃ Vj+1 → Vj ⊂ L2(Γ),

such that ImQ̂j = Vj and Im(I − Q̂j) = Ŵj, which result we meant by stability of the
two-level splitting. Note that Φj0 ∪ ∪�j=j0Ψj is a basis for V�+1.

An immediate consequence of (4.11) and the uniform boundedness of Q̂j is that for
j ≥ j0,

(4.13) ‖Qj − Q̂j‖L2(Γ)←L2(Γ) = ‖Qj(I − Q̂j)‖L2(Γ)←L2(Γ)
<∼ 2−j.

Theorem 4.2. Consider the wavelet collections Ψj defined by (4.6), (4.8). From (4.13),

and the fact that these Ψj are uniform L2(Γ)-Riesz bases for Ŵj = Im(I − Q̂j), it follows
that Φj0 ∪ ∪j≥j02−jsΨj is a Riesz basis for Hs(Γ) when s ∈ (−1, 3

2
) with |s| ≤ m or |s| < t.

Proof. We define the auxiliary spaces Hs(Γ) for s ≥ 0 as the closure of

Us := {u ∈ C(Γ) : u ◦ κi ∈ Hs(T0), 1 ≤ i ≤ p}
with respect to the norm ‖u‖Hs(Γ) =

√∑p
i=1 ‖u ◦ κi‖2

Hs(T0), and for s < 0 as H−s(Γ)′. For

s ∈ [0, 3
2
) with s ≤ m or s < t, Us is also a dense subset of Hs(Γ). Since furthermore

‖u◦κi‖Hs(T0)
=∼ ‖u‖Hs(Γi), we infer that Hs(Γ) and Hs(Γ) agree as sets and have equivalent

norms. By duality, these results extend to s ∈ (−3
2
, 0) with s ≥ −m or s > −t. We

conclude that it is sufficient to prove that

(4.14) Φj0 ∪ ∪j≥j02−jsΨj is a Riesz basis for Hs(Γ) when s ∈ (−1, 3
2
).

The point of introducing the spaces Hs(Γ) is that it is now sufficient to prove the Riesz
basis property for s in an interval that is always open.

The spaces Hs(Γ) were also used in [DSt99] to prove the stability (2.10) of biorthogonal
space decompositions. With respect to the Hs(Γ) spaces, the Bernstein inequalities (B),

and the Jackson estimates (J) hold for the ‘full’ ranges s ∈ [0, 3
2
), and s ∈ [0, d] or s ∈ [0, d̃]

respectively, yielding for |s| < 3
2
,

(4.15) ‖u‖Hs(Γ)
=∼

∞∑
j=j0

4js‖(Qj −Qj−1)u‖2
L2(Γ) (u ∈ Hs(Γ)),

and

(4.16) ‖u‖Hs(Γ)
=∼

∞∑
j=j0

4js‖(Q∗j −Q∗j−1)u‖2
L2(Γ) (u ∈ Hs(Γ)).

We will show that for any s ∈ (−1, 3
2
), there exists an ω < 1 such that

(4.17) |〈ŵj, ŵ�〉Hs(Γ)| <∼ ω�−j2js‖ŵj‖L2(Γ)2
�s‖ŵ�‖L2(Γ) (j0 ≤ j ≤ �),



FINITE ELEMENT WAVELETS ON MANIFOLDS 19

and that for any s ∈ (−1, 0],

(4.18) sup
�≥j≥j0

‖Q̂jQ̂j+1 · · · Q̂�‖Hs(Γ)←Hs(Γ) <∞.

Then, using (4.15), for s ∈ (−1, 3
2
) an application of [Ste98, Theorem 3.1] (with ‘r’= 0 and

‘q’∈ (−1,min{s, 0}]) shows that

‖vj0 +

�∑
j=j0

ŵj‖2
Hs(Γ)

=∼ ‖vj0‖2
L2(Γ) +

�∑
j=j0

4js‖ŵj‖2
L2(Γ) (vj0 ∈ Vj0, ŵj ∈ Ŵj).

Since Φj0 , Ψj are uniform L2(Γ)-Riesz bases for Vj0 , Ŵj respectively, it follows that Φj0 ∪
∪�j=j0Ψj are uniform (in �) Hs(Γ)-Riesz bases for V�+1, and thus that Φj0 ∪ ∪∞j=j0Ψj is a
Riesz system in Hs(Γ). Since its span includes ∪jVj , we conclude (4.14).

First we prove (4.17). It is sufficient to show that for s ∈ (−1, 3
2
),

(4.19) ‖ŵj‖Hs(Γ)
<∼ 2js‖ŵj‖L2(Γ) (ŵj ∈ Ŵj),

since this implies that for s ∈ (−1, 3
2
), and with ε > 0 such that s± ε ∈ (−1, 3

2
),

|〈ŵj, ŵ�〉Hs(Γ)| <∼ ‖ŵj‖Hs+ε(Γ)‖ŵ�‖Hs−ε(Γ)
<∼ (2−ε)(�−j)(2js‖ŵj‖L2(Γ))(2

�s‖ŵ�‖L2(Γ)).

For s ≥ 0, (4.19) follows from the Bernstein inequality. Now let s < 0. Then the
uniform boundedness of ‖Q∗j+1‖H−s(Γ)←H−s(Γ), which is an easy consequence of (4.15) or
(4.16), shows that

‖ŵj‖Hs(Γ) = sup
0�=v∈H−s(Γ)

|〈ŵj, v〉µ|
‖v‖H−s(Γ)

= sup
0�=v∈H−s(Γ)

|〈ŵj, Q∗j+1v〉µ|
‖v‖H−s(Γ)

<∼ sup
0�=v∈H−s(Γ)

|〈ŵj, Q∗j+1v〉µ|
‖Q∗j+1v‖H−s(Γ)

= sup
0�=ṽj+1∈Ṽj+1

|〈(I − Q̂j)ŵj, ṽj+1〉µ|
‖ṽj+1‖H−s(Γ)

.

Now by

|〈(I − Q̂j)ŵj, ṽj+1〉µ| = |〈(Qj − Q̂j)ŵj , ṽj+1〉µ + 〈ŵj, (Q∗j −Q∗j+1)ṽj+1〉µ|
<∼ 2−j‖ŵ‖L2(Γ)‖ṽj+1‖L2(Γ) + ‖ŵ‖L2(Γ)2

js‖ṽj+1‖H−s(Γ)

which follows from (4.13) and (4.16), we conclude (4.19) and thus (4.17).
Now we will show (4.18), which is the crucial part of this proof. Given some s ∈ (−1, 0],

for j0 ≤ j ≤ � + 1, let

ρ
(�)
j := max

j0≤k≤j
||QkQ̂jQ̂j+1 · · · Q̂�‖Hs(Γ)←Hs(Γ),

εj := max
j0≤k≤j

||Qk(Q̂j −Qj)‖Hs(Γ)←Hs(Γ).

Then from QkQj = Qk, and thus

QkQ̂jQ̂j+1 · · · Q̂� = Qk(Q̂j −Qj)Q̂j+1 · · · Q̂� + QkQ̂j+1 · · · Q̂�,
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we find that ρ
(�)
j ≤ (εj + 1)ρ

(�)
j+1. By the uniform boundedness of ‖Qk‖Hs(Γ)←Hs(Γ), we have

ρ
(�)
�+1

<∼ 1 and εj <∼ ‖Q̂j − Qj‖Hs(Γ)←Hs(Γ)
<∼ 2−js‖Q̂j − Qj‖L2(Γ)←L2(Γ)

<∼ 2j(−1−s) by (4.13).
We infer that

sup
�≥j≥j0

‖Q̂jQ̂j+1 · · · Q̂�‖Hs(Γ)←Hs(Γ) ≤ sup
�≥j≥j0

ρ
(�)
j
<∼ sup

�≥j≥j0

�∑
m=j

εm <∼
∞∑
m=0

2m(−1−s) <∞,

which completes the proof of the theorem. �
We now discuss the cancellation properties of the wavelets defined in (4.8). Let y ∈

Ij+1\Ij, and let Λj,y(i) and zj,y(i) be as in (3.3) and (4.7). Define g on Γ by

(4.20) g(x) = |∂κi(zj,y(i))||∂κi(x)|−1 if x ∈ Γi with i such that Λj,y(i) 
= ∅,
and say g(x) = 1 otherwise. Then by construction, ψj,y ⊥〈,〉µg

Ṽj . Proposition 3.4 with 〈 , 〉µ
replaced by 〈 , 〉µg shows that for v being a continuous function on Γ, which is patchwise

smooth, and IN � k ≤ d̃ it holds that

(4.21) |〈v, ψj,y〉µg | <∼ 2−j(k+n/2) max
i,T∈Λj,y(i)

|v ◦ κi|W k,∞(T ).

In fact, it is sufficient when v restricted to ∪iκi(Λj,y(i)) ⊃ suppψj,y is continuous, and
smooth on each κi(Λj,y(i)).

Obviously, one has

(4.22) 〈v, ψj,y〉µ = 〈v/g, ψj,y〉µg .

So in case all but one sets Λj,y(i) are empty, and so suppψj,y is contained in one patch Γi,
the smoothness of g on this patch shows that

|〈v, ψj,y〉µ| <∼ 2−j(d̃+n/2) max
i,T∈Λj,y(i)

‖v ◦ κi‖W d̃,∞(T ),

i.e., ψj,y has the cancellation property of the full order d̃.
Now consider ψj,y with support that extends to more than one patches Γi. Then, if the

zj,y(i) can be selected such that the function g from (4.20) is continuous on ∪iκi(Λj,y(i)),
then above arguments show that again ψj,y has the cancellation property of the full order

d̃. For example, for a one-dimensional manifold this can always be realized by selecting
zj,y(i) as the pull-back of the interface point inside suppψj,z.

Finally, if above requirement is not satisfied, then from supx∈supp(ψj,y) |1/g(x)−1| <∼ 2−j,
(4.22) and (4.21), one infers that

|〈v, ψj,y〉µ| <∼ 2−j(1+n/2) max
i,T∈Λj,y(i)

‖v ◦ κi‖W 1,∞(T ),

or, in any case ψj,y has the cancellation property of order 1.

Remark 4.3. Instead of applying the Ψj defined by (4.8), another option to handle the

general case of non-constant Jacobian determinants would be to use the collections Ψ
(j)
j .

As shown in §2, these Ψ
(j)
j are uniform L2(Γ)-Riesz bases for Vj+1 ∩ Ṽ

⊥〈,〉µj

j . Furthermore,
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the same arguments that were used to prove Theorem 4.2 show that Φ0∪ ∪j≥02
−jsΨ(j)

j is a

Riesz basis for Hs(Γ) when s ∈ (−1, 3
2
) with |s| ≤ m or |s| < t. The reason however not to

propose this wavelet construction is that each ψ
(j)
j,y , thus also when its support is contained

in one Γi, generally has the cancellation property of only order 1.

Remark 4.4. Just as the wavelets corresponding to the case of constant Jacobian deter-
minants, our new wavelets are given in the form Ψj = Ξj − GT

j Θj , where the Gj are
matrices that are uniformly local. This means that the discussion from [DSt99] about
constructing an efficient implementation of the inverse wavelet transform, i.e., the trans-
formation from wavelet to single-scale basis, here applies without modification. Instead of
expressing an expansion dTj Ψj directly in the form cTj+1Φj+1, the idea is to express it first

as dTj Ξj − (Gjdj)
TΘj , and then to write dTj Ξj in the form c̃Tj+1Φj+1, and (Gjdj)

TΘj in

the form
∑�

k=0 c̆Tj+1−kΦj+1−k for some fixed �; the latter step by expressing each θj,x as a
minimal linear combination of elements from Φj+1, . . . ,Φj+1−�. Often Ξj is just a subset of
Φj+1, whereas the transformation involving Θj is cheap since cardΘj/cardΨj ≈ (2n−1)−1.

Remark 4.5. As was already noted in Remark 3.3, in [Ste00], examples of quadruples

(Φ, Φ̃,Θ,Ξ) are given with Θ = Φ, meaning that when µ = µ0, the sets Φj and 〈Φj , Φ̃j〉−1
µ Φ̃j

are uniformly local, 〈, 〉µ-biorthogonal scaling functions. With non-constant Jacobian de-
terminants, this biorthogonality on the global level is lost, and so we do not obtain formulas
for the dual wavelets. On the other hand, since for Θ = Φ each ψj,y is given as ξj,y mi-
nus a uniformly finite linear combination of coarse-grid scaling functions θj,x = φj,x, the
wavelet transform, i.e., the transformation from single-scale to wavelet basis, is of optimal
complexity also in case of non-constant Jacobian determinants.

Finally, we give some numerical results obtained with the newly introduced wavelets:

Example 4.6. As in Example 4.1, let Γ = ∪2
i=1Γi be the unit circle in IR2, and T0 = [0, 1].

Again we take (Φ, Φ̃,Θ,Ξ) from Example 2.5 (with n = 1). This time, we take κ1(z) =
κ(z), κ2(z) = κ(z + 1), where

κ(z) := (cos(2π(2z/2 − 1)), sin(2π(2z/2 − 1))),

yielding

〈u, v〉µ = π log(2)

∫ 2

0

u(κ(z))v(κ(z)) 2z/2dz.

Note that the Jacobian determinant is not equal to any piecewise constant function, and
so µ 
= µj0 for all j0 ∈ IN .

The new wavelets defined by (4.8) read as

ψj,y = φj+1,y − 1
4

√
2

∑
x∈{yL,yR}

w(y)

w̃(x)
θj,x,

where now with zj,y(i) being some point in Λj,y(i),

w(y) = |∂κi(zj,y(i))| if y ∈ Γi, w̃(x) =

{
2|∂κi(zj,y(i))| if x ∈ Γi,

|∂κ1(zj,y(1))| + |∂κ2(zj,y(2))| if x ∈ Γ1 ∩ Γ2,
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and

θj,x = 3
√

2φj+1,x − 1
2

√
2 (φj+1,xL

+ φj+1,xR
).

If both yl, yR 
∈ Γ1∩Γ2, the choice of zj,y(i) is irrelevant. In the other case, to ensure that for
j > 0 all ψj,y satisfy the cancellation property of the full order order 2, we take zj,y(i) being
the pull-back of the interface point inside suppψj,z. That is, either zj,y(1) = 1 and zj,y(2) =
0 and so |∂κ1(zj,y(1))| = |∂κ2(zj,y(2))| thus yielding an ‘unmodified’ wavelet, which is
appropriate since the Jacobian determinant connects continuously over this interface, or
zj,y(1) = 0 and zj,y(2) = 1 and so |∂κ1(zj,y(1))| = 1

2
|∂κ2(zj,y(2))| yielding a wavelet adapted

to the jump in the Jacobian determinant over the other interface, cf. Figure 6. The lowest

{
{
{

}
}
} = Ij

= Ij+1\Ij
= Γ1 ∩ Γ2

Figure 6. Wavelets ψj,y (‘−’) and ψ̆j,y (‘−−’) with supports that intersect
the interface where the Jacobian determinant has a jump, and wavelets ψj,y =

ψ̆j,y (‘−·’) with support inside one patch

level corresponds to an exceptional case: Both wavelets ψ0,y for y ∈ I1\I0 have supports
equal to Γ and therefore intersect both interfaces. We took z0,y(1) = 0, z0,y(2) = 1.

With Ψj being the resulting wavelet collections defined by (4.6) and (4.8), and Ψ
(j)
s =

Φ0 ∪ ∪j−1
�=02

−�sΨ�, we computed κs,j(Ψ
(j)
s ) defined as in (4.5), where obviously Mj =

〈Φj ,Φj〉µ and T
Φj

Ψ
(j)
s

now refer to the current parametrizations and wavelet collections. As

in Example 4.1, for comparison we also computed κs,j(Ψ̆
(j)
s ) where Ψ̆

(j)
s = Φ0∪ ∪j−1

�=02
−�sΨ̆�,

and Ψ̆j results from ignoring the non-constant Jacobian determinants, i.e.,

ψ̆j,y = φj+1,y − 1
8

√
2

∑
x∈{yL,yR}

θj,x.

Recall that Ψ̆j spans Vj+1 ∩ V ⊥µg

j where g(x) = |∂κi(κ−1
i (x))|−1 if x ∈ Γi, or

〈u, v〉µg =

∫ 2

0

u(κ(z))v(κ(z))dz.



FINITE ELEMENT WAVELETS ON MANIFOLDS 23

As in Example 4.1, the results given in Figures 7 and 8 show that in contrast to κs,j(Ψ
(j)
s ),
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70

Figure 7. κs,j(Ψ
(j)
s ) (‘−’) and κs,j(Ψ̆

(j)
s ) (‘−−’) for s = −1

2
and j = 2, . . . 13
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Figure 8. κs,j(Ψ
(j)
s ) (‘−’) and κs,j(Ψ̆

(j)
s ) (‘−−’) for s = −3

4
and j = 2, . . . 13.

For s = −3
4

and j = 13, we found κs,j(Ψ̆
(j)
s ) = 4.2 × 103

for s ≤ −1
2
, κs,j(Ψ̆

(j)
s ) is not bounded as function of j. In the limit case s = −1

2
, the growth

is approximately linear in j. For s < −1
2
, κs,j(Ψ̆

(j)
s ) turns out to be exponentially increasing

as function of j. Unfortunately, although the Ψ
(j)
s are uniform Hs(Γ)-Riesz systems, our

computation of κs,j(Ψ
(j)
s ) as the spectral condition number of a product of a number of

matrices which are not all uniformly well-conditioned starts to become numerically unstable
around level j = 13, which slightly shows up in the figures.

An alternative would have been to compare with the wavelets that span Vj+1 ∩ V
⊥µ0
j ,

that is, the wavelets yielded by (3.2). Since |∂κ1(
1
2
)|/|∂κ2(

1
2
)| = 1

2

√
2, this construction
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yields ‘wrong’ wavelets at both interfaces. We may expect similar results as obtained with
Ψ̆j.
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