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Abstract

First, we give an explicit description of all the mappings from the phace space of the
Kepler problem to the phase space of the geodesics on the sphere, which transform
the constants of motion of the Kepler problem to the angular momentum. Second,
among these we describe those mappings which in addition send Kepler solutions to
parametrized geodesics. Third, we describe those mappings which in addition are
canonical transformations of the respective phase space. Finally we prove that among
these the Ligon-Schaaf map is the unique one which maps the collison orbits to the
geodesics which pass through the north pole. In this way we also give a new proof that
the Ligon-Schaaf map has all the properties described above.

1 Introduction

In order to state our characterization we describe the Kepler problem in
n-dimensional space. As in Carath�eodory [1] and Moser [7] the general-
ization to arbitrary dimension can be made with almost no change in the
standard formulas.

We use the standard inner product hx; yi of x; y 2 Rn in order to
identify x 2 Rn with the linear form y 7! hx; yi on Rn. In this way we
identify the phase space P , the cotangent bundle of Rn nf0g, with the set
of (q; p) such that q 2 Rn, q 6= 0, and p 2 Rn. After suitable rescaling,
including the multiplication of the time variable with a constant factor,
the equations of motion of the Kepler problem take the form

_q = p;

_p = �jqj�3 q;
(1.1)
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where we have used the notation jqj = hq; qi1=2 for the Euclidean norm
of q 2 Rn. The right hand side of (1.1) is a Hamiltonian vector �eld XH

de�ned by the Hamiltonian function

H(q; p) = 1
2 jpj

2 � jqj�1; (q; p) 2 P;(1.2)

which is the total energy of the system.
The components �ij(q; p) := qi pj � pi qj of the angular momentum

�(q; p) := q ^ p(1.3)

are constants of motion; this follows from the rotational invariance ofXH .
Additional constants of motion are the components of the eccentricity
vector

"(q; p) := jqj�1 q � jpj2 q + hq; pi p = jqj�1 q + p �; � = q ^ p:(1.4)

Here we have freely identi�ed vectors with linear forms, for instance p �

is the interior product of the vector p with the two-form �. The linear
form p � in turn is viewed as a vector in Rn. For n = 3, the components
of " were described explicitly as constants of motion for the �rst time by
Laplace [5, Partie 1, Livre II, Chap. III]. We use the notation of Hamilton
[3], who observed that the norm of " is equal to the eccentricity e of the
orbit.

Gy�orgyi [2] seems to have been the �rst to observe that the components
of the eccentricity vector satisfy the Poisson bracket relations

f�ij ; "kg = �jk "i � �ik "j ;(1.5)

f"i; "jg = �2H �ij :(1.6)

Here the equations (1.5) express the equivariance of " under rotations,
whereas (1.6) is obtained by a direct computation.

From now on we shall restrict our attention to the open subset

P
�

:= f(q; p) 2 P j H(q; p) < 0g(1.7)

of the phase space de�ned by the condition that the energy is negative.
Because of the relations

e2 = j"j2 = 1 + 2H and j�j2 = jqj2 jpj2 � hq; pi2;(1.8)

we see that the elliptical orbits, that is 0 � e < 1, correspond to H < 0
and � 6= 0. The solutions with H < 0 and � = 0 run into the origin with



CHARACTERIZING THE LIGON-SCHAAF MAP 3

in�nite speed in �nite positive and negative time. These are the collision
orbits.

The Poisson bracket relations (1.6) led Gy�orgyi [2] to replace " by the
rescaled eccentricity vector

� := � "; � := (�2H)�1=2;(1.9)

for which (1.5), (1.6) take the form

f�ij ; �kg = �jk �i � �ik �j ;(1.10)

f�i; �jg = �ij :(1.11)

The equations (1.10) and (1.11) imply that the functions �ij and �i to-
gether span a Lie algebra, taking Poisson bracket as the Lie bracket, which
is isomorphic to so(n + 1). This is seen by letting the �i play the role of
�n+1;i. Viewing the �ij with 1 � i < j � n+1 together as the components
of a two-form on Rn+1, we get a mapping J from P

�

to the dual of the
Lie algebra so(n+1), which is the momentum mapping of an in�nitesimal
Hamiltonian action of so(n+ 1) on P

�

. This in�nitesimal action extends
the standard in�nitesimal rotations de�ned by the Lie subalgebra so(n).

Another bonus of the change from " to � is that the energy is expressed
in terms of � and � by means of the formula

jJ j2 = j�j2 + j�j2 = �2 = (�2H)�1;(1.12)

whereas (1.8) yields a formula for H in terms of � and " only when � 6= 0.
The solutions of the Kepler system will be mapped to geodesics of

the unit sphere S of dimension n in Rn+1 on which the rotation group
SO(n + 1) acts naturally. Here we will take for the phase space the
complement T of the zero section in the (co)tangent bundle of S, which
can be described as the set of (x; y) 2 Rn+1�Rn+1 such that hx; xi = 1,
hx; yi = 0, and y 6= 0. The momentum mapping of the in�nitesimal
Hamiltonian action of so(n+ 1) on T is given by

eJ : (x; y) 7! x ^ y:(1.13)

The images of the Kepler solutions are geodesics with time rescaled
by a factor which only depends on the energy. To be precise, the Kepler
solutions are mapped to the solution curves of the Hamiltonian system
de�ned by the Delaunay Hamiltonian eH on T , de�ned by

eH(x; y) = �1
2

1

jyj2
= �1

2

1

j eJ j2 ; (x; y) 2 T:(1.14)
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The components of eJ are constant along the geodesics in T .
The Ligon-Schaaf regularization mapping is the mapping � = �LS :

P
�

! T given by

�(q; p) :=
�
(sin')A+ (cos')B; �� (cos')A+ � (sin')B

�
;(1.15)

where

A = A(q; p) :=
�
jqj�1 q � hq; pi p; ��1 hq; pi

�
;(1.16)

B = B(q; p) :=
�
��1 jqj p; jpj2 jqj � 1

�
;(1.17)

and ' = 'LS, with
'LS(q; p) := ��1 hq; pi:(1.18)

Recall that � = �(q; p) has been introduced in (1.9) in terms of the energy
H = H(q; p), which in turn has been de�ned in (1.2). No explanation was
given by Ligon and Schaaf [6] about how the mapping � (1.15) was found.
Moreover, we found it quite a lot of work to verify the statements following
their suggestions. For instance, the proof in [6] of property A) below
consists of a description of a mapping 	, followed by the statement that
one can check that 	 is the inverse of �LS. It took us more manipulations
than we liked to prove the equations 	�� = id on P

�

and ��	 = id on
T
�

.
Ligon and Schaaf [6] present the following properties of the mapping

�LS.

A) � is an analytic di�eomorphism from P
�

onto the open subset T
�

of T , which consists of the (x; y) 2 T such that x 6= en+1. Here
en+1 is the (n + 1)-th standard basis vector in Rn+1, which is the
north pole of the sphere S.

B) � is a canonical transformation.

C) If 
 is a solution curve of the Kepler vector �eld XH in P
�

, then
��
 is a solution curve of the Delaunay vector �eld XeH in T .

D) J = eJ��.
As an application, Ligon and Schaaf [6] observe that gP

�

= ��1�gT ��,
g 2 SO(n+ 1) yields a partially de�ned Hamiltonian action of SO(n+ 1)
on P

�

with momentum mapping equal to J . Here gT denotes the action
of g on T and gP

�

is de�ned on the set of (q; p) 2 P
�

such that the
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x-component of �(q; p) is not equal to g�1T (en+1). This set is equal to
P
�

if and only if g 2 SO(n); otherwise it is equal to the complement of a
closed analytic submanifold of codimension n in P

�

, which is actually a
Lagrange submanifold.

We will take the property D) as our point of departure, and prove
that a mapping � from P

�

to T satis�es D) if and only if it is of the form
(1.15), where A and B are as in (1.16) and (1.17), respectively, but ' is
an arbitrary function on P

�

. Next we show that � satis�es D) and C),
if and only if ' � 'LS is constant along the XH -solution curves, if and
only if '� 'LS is a function of the components of � and �. In our proof
of these statements, the mapping �LS of Ligon and Schaaf appears in a
natural way.

Now assume that � : P
�

! T is di�erentiable and satis�es D). For
each h < 0 denote by Ph and Th the level set for the level h of the energies
H and eH in P and T , respectively. Let �h denote the restriction of �
to Ph. The fact that J and eJ are momentum mappings for in�nitesi-
mal Hamiltonian actions which are transitive on Ph and Th, respectively,
implies that �h pulls back the canonical symplectic form of T to the
restriction to Ph of the canonical symplectic form of P . In this sense
� is already quite close to being a canonical transformation. We prove
that a di�erentiable map � : P

�

! T satis�es D) and B), if and only
if ' � 'LS is a function of H only. Finally we show that � satis�es D),
B) and �

�
P
�

�
� T

�

, if and only if ' = 'LS, that is � = �LS. In this
case actually A) holds (which we verify without calculating the inverse
of �LS). The �nal conclusion is that the Ligon-Schaaf map is completely
characterized by the properties A) | D).

Moser [7] used his regularization in order to treat solutions near colli-
sion in perturbations of the Kepler problem. He did this by applying the
averaging method to the corresponding pertubation of the geodesic 
ow
in the (co)tangent bundle of the sphere. Due to the nonuniform repara-
metrization of the Kepler orbits, one has to apply the averaging method
energy level by energy level, see van der Meer and Cushman, [9, p.408].
With the Ligon-Schaaf mapping this complication does not arise. On
the other hand it may be harder here to recognize, from its asymptotic
behaviour as q ! 0, whether for a given function f on P

�

the function
g = f���1

LS on T� has an extension to T which near the north pole has the
smoothness which is required for the application of the averaging method.
This may be an interesting problem for further investigation.
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2 Intertwining the momentum maps

In (1.13) we identi�ed the (dual of the) Lie algebra so(n + 1) with the
space of two-forms on Rn+1 and both J and eJ take their values in

C := fj 2
^2
R
n+1 j rank j = 2g:(2.1)

The elements of C with a given norm form a single (co)adjoint orbit of
which the other orbits in C are the positive multiples. In this way C is
a cone over the manifold of oriented two-dimensional vector subspaces of
R
n+1.
For a mapping � : P� ! T the condition that eJ�� = J just means

that � maps the �bers of J into the �bers of eJ . It implies that the image
of J is contained in the image of eJ , with equality if and only if the image
of � meets every �ber of eJ . As a preparation of our description of the
mappings � : P� ! T such that eJ�� = J , we therefore investigate the
images and �bers of J and eJ .
Lemma 2.1 We have J

�
P
�

�
= C = eJ(T ). A �ber of J is equal to an

XH-orbit in P
�

. A �ber of eJ is equal to an XeH -orbit in T , which in turn
is equal to an orbit of the circle action �! �� in T de�ned by

��(x; y) =
�
(cos�) x+ jyj�1 (sin�) y; �jyj (sin�) x+ (cos�) y

�
;(2.2)

for (x; y) 2 T and � 2 R=2�Z.

Proof: We begin by proving that J
�
P
�

�
= C. In view of (1.8) with

H < 0 and (1.9), the equations �(q; p) = � and �(q; p) = �, where � and
� are not both equal to zero and satisfy � ^ � = 0, are equivalent to the
equations �(q; p) = � and "(q; p) = ", where � and " are not both equal
to zero and satisfy "^ � = 0, e = j"j � 1. Here e = 1 if and only if � = 0.

The points on a noncircular Kepler orbit which are the easiest to de-
scribe are the perihelion and the aphelion, namely, the points which are
at the smallest and largest distance to the origin, respectively. These are
the points (q; p) for which hq; pi = 0. Using (1.8) we get

jpj2 = jqj�2 j�j2; where j�j2 = �2
�
1� e2

�
:

From (1.4) we obtain

�
jqj�1 � jqj�2 j�j2

�
q = " and 1� jqj�1 j�j2 = �e:
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The positions q� of the aphelion and q� of the perihelion therefore are
given by

q� = �2 (1 + e) e�1 "; q� = ��2 (1� e) e�1 ":(2.3)

Taking the interior product of (1.3) with ", we �nd that the respective
velocities p� and p� of the aphelion and the perihelion are determined by
the equations

" � = �2 (1 + e) ep� and " � = ��2 (1� e) e p�;(2.4)

respectively. Conversely we �nd that �(q; p) = �, and "(q; p) = " when
(q; p) = (q�; p�) or (q; p) = (q� ; p�) are given by (2.3) and (2.4). Equation
(2.3) holds for the aphelia under the sole condition that " 6= 0; whereas
for the perihelia we also have to require that 0 � e < 1, that is, � 6= 0.
In other words, on the set where " 6= 0, the aphelia de�ne a cross-section
for the mapping J .

The (q; p) with "(q; p) = 0 and �(q; p) = � 6= 0 are given by q = �2 v,
p = ��2 v �, where v is an arbitrary unit vector in Rn. (These solutions
also arise as the limits of the above aphelia and perihelia.) This completes
the proof that J

�
P
�

�
= C.

For the description of the �bers of J , we start with the case that
� 6= 0. From (1.3) we see that q and p form a basis in the two-dimensional
orthogonal complement N of the kernel of �. For a given q, the vector
p 2 N is uniquely determined from p � = jqj�1 q � ", see (1.4). Taking
inner product with q in (1.4) and using (1.8) we obtain jqj+ j�j2 = hq; "i,
which is an equation for q which describes the Kepler ellipse in N . Thus
when � 6= 0, each �ber of J is equal to a Kepler orbit in phase space.

Every two-form in Rn+1 of rank two can be written as x ^ y where x
and y are linearly independent vectors in Rn+1, which subsequently can
be chosen such that jxj = 1 and hx; yi = 0. This shows that eJ(T ) = C.
The �ber of eJ consists of the (u; v) 2 T such that u ^ v = x ^ y. This
means that there exist real numbers a; b; c; d such that u = a x + b y,
v = c x + d y. The conditions hu; ui = 1, hu; vi = 0 and u ^ v = x ^ y
are equivalent to a2 + b2 jyj2 = 1, a c + b d jyj2 = 0 and a d � b c = 1,
respectively. These hold if and only if there exists an angle � such that
a = cos�, b = jyj�1 sin�, c = �jyj sin�, d = cos�.

The fact that J
�
P
�

�
= eJ(T ) is an encouragement to look for mappings

� : P
�

! T which satisfy J = eJ��. If ' is an arbitrary R=2�Z-valued
function on P

�

, then we will write �' for the mapping � : P
�

! T as
de�ned in (1.15), where A and B are as in (1.16) and (1.17), respectively.
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A comparison of (1.15) and (2.2) shows that

�'(q; p) = �'(q; p) (�0(q; p)) ; (q; p) 2 P
�

;(2.5)

where � is given by (2.2)

Proposition 2.2 A mapping � from P
�

to T satis�es J = eJ�� if and
only if there exists an R=2�Z-valued function ' on P

�

, such that � = �'.

Proof: Write x = (ex; xn+1), y = (ey; yn+1), with ex; ey 2 Rn and
xn+1; yn+1 2 R. Using this notation and the de�nition of J , we see thateJ(x; y) = J(q; p) is equivalent to

ex ^ ey = � = q ^ p(2.6)

xn+1 ey � yn+1 ex = � = Mq +Np;(2.7)

where, in view of the de�nitions (1.9) and (1.4),

M = �
�
jqj�1 � jpj2

�
and N = � hq; pi:(2.8)

Suppose that � 6= 0. Then (2.6) implies that there exist unique real-valued
functions a; b; c; d such that

ex = a q + b p and ey = c q + d p:(2.9)

Because q ^ p = ex ^ ey = (a d� b c)(q ^ p), we �nd that

a d� b c = 1:(2.10)

Substituting (2.9) into (2.7) and using the linear independence of q and
p gives a set of linear equations for x4 and y4 which using (2.10) may be
solved to give

xn+1 = aN � bM and yn+1 = cN � dM:(2.11)

The equations jxj2 = 1 and hx; yi = 0 for (x; y) 2 T become

jexj2 + x2n+1 = 1 and hex; eyi+ xn+1 yn+1 = 0;(2.12)

respectively. Substituting the expressions (2.9) for ex and ey and the ex-
pressions (2.11) for xn+1 and yn+1 into (2.12) gives

1 = a2jqj2 +
�
� hq; pi a+ � jqj�1 b

�2
;(2.13)

0 = a c
�
jqj2 + �2 hq; pi2

�
+ (a d+ b c) �2 hq; pi+ b d �2 jqj�2:(2.14)
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Here we have used the identities8>>>><
>>>>:

jqj2 +N2 = jqj2 + �2 hq; pi2;

hq; pi �M N = �2 jqj�1 hq; pi;

jpj2 +M2 = �2 jqj�2;

which follow from the de�nition (2.8) of M and N and the identity jpj2�
jqj�1 = jqj�1 � ��2, (which is a consequence of the de�nition (1.9) of �).
Multiplying (2.13) by c and (2.14) by �a, adding the results gives

c = �a �2 jqj�1 hq; pi � b �2 jqj�2;(2.15)

after using (2.10). Similarly we obtain that

d = a
�
jqj2 + �2 hq; pi2

�
+ b �2 jqj�1 hq; pi:(2.16)

A solution of (2.13), (2.15) and (2.16) is given by

a = 0; b = ��1 jqj; c = �� jqj�1; and d = � hq; pi:(2.17)

These functions clearly satisfy (2.10), (2.13) and (2.14). A comparison
with (1.15) shows that (x; y) = �0(q; p) if and only if (2.9) and (2.11)
hold, with a; b; c; d as in (2.17). This means that we have checked that
J = eJ��0 on the subset of P

�

where � 6= 0. Because this subset is dense

in P
�

and �0 : P
�

! T is analytic, by continuity we �nd that J = eJ��0

on P
�

.
The statement of the theorem now follows from (2.5) and the descrip-

tion of the �bers of eJ in Lemma 2.1.

3 Intertwining the Kepler and Delaunay 
ows

As preparation of our description of the mappings � : P� ! T such
that eJ � � = J and � sends every XH-solution curve to an XeH -solution
curve, we determine the derivative of the vector valued functions A and
B, de�ned in (1.16) and (1.17), along the solution curves of the Kepler
problem.

Lemma 3.1 XHA = ��1 jqj�1B and XHB = ���1 jqj�1A.

Proof: Proposition 2.2 and Lemma 2.1 imply that �0 = (B; �� A)
maps XH-solution curves to orbits of the system _x = jyj�1 y, _y = �jyj x.
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Using the fact that jAj = jBj = 1, it follows that there exists a real-valued
function � on P

�

such that

XHB = ��A and � � XHA = �(�� B):

Each of these equations imply that � is analytic, because A, B and XH

are analytic.
In order to determine � we compute the derivative of the last coordi-

nate of (1.16) using (1.1) as follows.

XHAn+1 = ��1XHhq; pi = ��1
�
jpj2 � jqj�1

�
= ��1 jqj�1Bn+1;(3.1)

see (1.17). Consequently � = ��1 jqj�1 on the dense subset of P
�

where
Bn+1 6= 0. By continuity the same equation must hold on P

�

.

In the proof of the following proposition, the Ligon-Schaaf angle func-
tion 'LS = ��1 hq; pi makes its appearance in a natural way.

Proposition 3.2 The mapping �' (2.5) sends every XH-solution curve
to an XeH-solution curve, if and only if '�'LS is constant along the XH-
solution curves.

Proof: The condition that �' sends every XH-solution curve to an
XeH-solution curve implies that the function � is di�erentiable along the
XeH-solution curves. For the moment we make no further hypotheses on
'.

In view of Proposition 2.2 and Lemma 2.1 and the fact that XeH spans

the tangent space of the �bers of eJ , we �nd that there exists a uniquely
determined real-valued function � on P

�

, such thatXH�' = �XeH. From
(1.15) and Lemma 3.1 we see that if we write �'(q; p) = (x; y) where x
and y are regarded as functions on P

�

, then

XHx = (cos') (XH')A+ (sin') ��1 jqj�1B � (sin ') (XH')B

�(cos') ��1 jqj�1A

= ��1
�
��1 jqj�1 �XH'

�
y:

On the other hand the XeH-solution curves satisfy _x = jyj�4 y. Further-
more, from (1.12) it follows that that jyj = �. Thus comparing these
results we obtain

� = �3
�
��1 jqj�1 �XH'

�
:
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The condition that �' sends every XH-solution curve to an XeH-
solution curve implies that � = 1. In other words,

XH' = ��1 jqj�1 � ��3 = ��1
�
jqj�1 + 2H

�

= ��1
�
jpj2 � jqj�1

�
= XH'LS;

where the last equality follows from (3.1) and (1.18). In turn XH' =
XH'LS if and only if ' � 'LS is constant along the XH-solution curves.

Corollary 3.3 The Ligon-Schaaf map �LS is bijective from P
�

onto
the set T

�

of the (x; y) 2 T such that x 6= en+1.

Proof: Here \orbit of a vector �eld v in a manifold M" means the
orbit of the maximal v-solution curve in the manifold M . Proposition
3.2 implies that for each maximal XH -solution curve 
 in P�, the curvee
 := �LS � 
 is an XeH{solution curve in T . The maximal solution curves
of the Kepler problem are either periodic, which corresponds to case that
� 6= 0, or run into a collision in a �nite time, both in the positive and in
the negative time direction. In the �rst case the image of the XH-orbit
O in P is a full orbit XeH-orbit eO in T , but �LS could still be a multiple

covering from O to eO. After we have shown that this cannot occur, we
conclude the proof by an investigation of �LS(
(t)) when 
(t) runs into
a collision and of the time between the collisions.

From Proposition 2.2 and Lemma 2.1 we see that �LS induces a bi-
jection from the space of XH -orbits in P

�

onto the space of XeH-orbits
in T . This latter space can be identi�ed with the space of XeH -orbits in
T
�

, because each geodesic which starts with at en+1 leaves en+1, so the
corresponding XeH-orbit meets T� . What remains to be shown is that for
each XH -orbit O the restriction to O of �LS is a bijection from O onto
the corresponding XeH -orbit in T

�

.

An XH-orbit O in the subset P 0
�

of P
�

where � 6= 0 is the orbit
of a periodic solution 
 : R ! P

�

of the Kepler problem. Because
of Proposition 3.2 the curve e
 = �LS�
 : R ! T is an XeH-solution,
which is maximal since it is de�ned on R. Therefore �LS(O) is equal
to an XeH-orbit eO in T and �LS de�nes a k-fold covering from O ontoeO, where the period of 
 is equal to k times the period of e
. Because
the orbits in P 0

�

and T form a �bration, the number k is the same for
all orbits. For circular solutions where " = 0 we have hq; pi = 0 and

jpj2 = jqj�1 = constant. Thus the period of 
 is equal to 2�jqj3=2 = 2��3.
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On the other hand XeH is equal to jyj�3 times the velocity �eld of the

circle action (2.2). Thus the period of e
 is equal to 2�jyj3. This is equal
to the period of 
 because jyj = � by (1.12). Hence k = 1. In passing
we note that we have veri�ed that every solution in P 0

�

has period 2��3,
which is a classically know fact.

It remains to investigate the XH-solutions 
 in P
�

for which � = 0.
These are the orbits which are mapped by �LS to points (x; y) such that
ex ^ ey = 0. In other words they are precisely the points on the \vertical"
geodesics, that is, the geodesics which pass through the north (and south)
pole. If we approximate 
 by a solution b
 in P 0

�

, for instance by taking the
aphelion of b
 close to the aphelion of 
, then we see that the perihelion
of b
 approaches the orgin. The velocity of b
 is large there. Thus the
time which b
 spends near the origin tends to zero. Conseqently the time
interval [0; T ] on which 
 is de�ned is approximated by a period [0; 2�b�3]
of b
. Therefore T = 2��3.

This implies that �LS maps O bijectively onto the complement of
a single point of the XeH-orbit in T and the missing point is the limit
point of �LS(
(t)) as the position q(t) of 
(t) runs to the origin. From
jpj2�2jqj�1 = 2H we �nd that jpj ! 1 and jpj2 jqj ! 2. Hence jpj jqj ! 0
and therefore 'LS ! 0. Consequently the x-coordinate of �LS(
(t))
converges to en+1, see (1.15).

4 Canonical transformations

Let ! and e! denote the canonical symplectic form in P
�

and T , respec-
tively. In Proposition 4.3 below we describe the di�erentiable angle func-
tions ' on P

�

, for which the mapping � = �' (2.5) is a canonical trans-
formation from P

�

to T , that is, for which ��e! = !.

Lemma 4.1 If � = �LS, then ��e! = !.

Proof: Let N denote the hypersurface in P
�

where hq; pi = 0, that
is, the hypersurface of perihelia and aphelia, in other words the hypersur-
face where 'LS = 0 (1.18). Then the restriction of �LS to N is equal to
the restriction of �0 = (B; �� A) to N . We denote this mapping by �N .
We also write �N : N ! P

�

for the embedding of N into P
�

.
From (1.16) and (1.17) we see that �� A(q; p) =

�
�� jqj�1 q; 0

�
on N .

Thus
��
N (hy; dxi) = ��N hq; d pi;(4.1)

because the the interior product of �� jqj�1 q with d
�
��1 jqj

�
p vanishes

in N . Taking the exterior derivative of (4.1) and using the fact that the
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exterior derivative commutes with pull-backs, we obtain

��
N e! = ��N !:(4.2)

We now restrict our attention temporarily to the subset P 0
�

of P
�

where " 6= 0. In the proof of Lemma 2.1 we have seen that the perihelia
and the aphelia form analytic cross-sections for the momentum mapping
J , the �bers of which are the XH-orbits. It follows that in P 0

�

every XH-
orbit transversely intersects N (twice if � 6= 0 and only once at the aphelia
if � = 0). In particular, XH(q; p) =2 T(q; p)N when (q; p) 2 N \ P 0

�

.
Write � = ��

LSe! � !. Let (q; p) 2 N \ P 0
�

. From (4.2) it fol-
lows that �(q; p)(u; v) = 0 if u; v 2 T(q; p)N . So in order to show that
�(q; p) = 0, it su�ces to verify that �(q; p)(u; v) = 0 if u = XH(q; p)
and v 2 T(q; p)N . Observe that T(q; p)�LS maps XH(q; p) to XeH(x; y),
where (x; y) = �LS(q; p) (see Proposition 3.2). Since the interior prod-
uct of a Hamiltonian vector �eld with the symplectic form is equal to the
derivative of the Hamiltonian function, we see that T(q; p)�LSXH(q; p) =

XeH(x; y) is equivalent to the condition ��
LSd

eH = dH at points of N .

However, (1.12) and (1.14) imply that H = �1
2 jJ j

2 and eH = �1
2 j
eJ j2.

Thus J = eJ��LS implies that H = ��
LS
eH . Hence dH = ��

LSd
eH , even on

P
�

.

Finally we use the fact that the XH-
ow Ft and the XeH -
ow eFt leave
! and e! invariant, respectively. Then Proposition 3.2 yields �LS�Ft =eFt��LS. Thus

F �
t �

�
LSe! = ��

LS
eF �
t e! = ��

LSe!;
which implies that F �

t � = �. It follows that � = 0 at all points of Ft(N)
for every t 2 R. So � = 0 in P 0

�

. Because P 0
�

is dense in P
�

, we obtain
� = 0 on P

�

.

Corollary 4.2 �LS is an analytic di�eomorphism from P
�

onto T
�

.

Proof: We already know from Corollary 3.3 that �LS is bijective
from P

�

onto T
�

. From ��
LSe! = ! and the nondegeneracy of ! we

�nd that T(q; p)�LS is injective for every (q; p) 2 P
�

. Hence T(q; p)�LS
is bijective because dimP

�

= dim T
�

. The conclusion now follows by
applying the global inverse mapping theorem for analytic mappings.

Proposition 4.3 A di�erentiable map � : P
�

! T satis�es J = eJ��
and ! = ��e!, if and only if � = �' where ' � 'LS is a function of H
only. Moreover, if this is the case and �

�
P
�

�
� T

�

, then � = �LS.
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Proof: In view of Proposition 2.2 it su�ces to describe those di�er-
entiable angle functions ' on P

�

for which ! = ��
'e!. Writing � = '�'LS,

we know that

�(q; p) = ��(q; p) (�LS(q; p)) ; when (q; p) 2 P
�

:

Di�erentiating this relation in the direction of the vector v 2 T(q; p)P
�

,
we get

T(q; p)�(v) = d�(q; p)(v)XjeJj(�(q; p))
+T�LS(q; p)

��(q; p)�T(q; p)�LS(v):(4.3)

Here j eJ(x; y)j = jyj (1.14), that is, �t is the 
ow of X
jeJj.

For every � 2 R we have ���e! = e!. From Lemma 4.1 we see that
��
LSe! = !. Therefore applying e!�(q; p) to the pair of vectors of the form

given by the second term of the right hand side of (4.3) with v replaced
by v1 and v2, we obtain !(q; p) (v1; v2). Using (4.3) and the fact that

X
jeJj e! = dj eJ j, from (4.3) we �nd that

��e! = d� ^ ��dj eJ j+ !:

Because ��dj eJ j = d��j eJ j = djJ j, we see that ��e! = ! if and only if
d�^djJ j = 0. This last condition is equivalent to saying that � is locally
constant on the level sets of jJ j and hence on level sets of H , (see (1.12)).
Because the level sets of H are connected, this holds if and only if � is
constant on each level set of H . Consequently � is a function of H .

To prove the last statement in the proposition, assume that ' = 'LS+
��H , where � is an R=2�Z-valued function on R<0. If Ph denotes the
level set H = h in P

�

, then � = ��(h)��LS on Ph. Now �LS (Ph) is equal

to the set of (x; y) 2 T such that x 6= en+1 and jyj = (�2h)�1=2 = �. ��(h)
maps the set of (en+1; y) with jyj = � to a subset of the normal bundle
of the geodesic sphere S�(h) in S around en+1 with geodesic distance to
en+1 equal to �(h). Here S�(h) degenerates to fen+1g and to f�en+1g
if �(h) = 0 and �(h) = � (modulo 2�), respectively. It follows that
en+1 =2 S�(h). Hence � (Ph) is not contained in T

�

, unless �(h) = 0
modulo 2�.
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