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Abstract

For a site S (with enough points), we construct a topological space X(S) and a full
embedding ϕ∗ of the category of sheaves on S into those on X(S) (i.e., a morphism
of toposes ϕ: Sh(X(S)) → Sh(S)). The embedding will be shown to induce a full
embedding of derived categories, hence isomorphisms H∗(S, A) = H∗(X(S), ϕ

∗A) for
any abelian sheaf A on S. As a particular case, this will give for any scheme Y a
topological space X(Y ) and a functorial isomorphism between the étale cohomology
H∗(Yét, A) and the ordinary sheaf cohomology H∗(X(Y ), ϕ

∗A), for any sheaf A for
the étale topology on Y .

1 Introduction and statement of the theorem

Many cohomology groups arising in geometry and topology are (or can be) defined
as the cohomology groups of some topos; that is, as the sheaf cohomology groups of
some site. This applies directly to étale and other cohomologies of schemes [1, 10],
but also to many others such as Galois cohomology [12] and cyclic cohomology [2].

The purpose of this paper is to give a general construction which shows that all
these cohomology groups are isomorphic to the ordinary sheaf cohomology groups
of a topological space associated to the site or the topos. When the site is a group G
(with associated topos of G–sets), our construction gives a model for the classify-
ing space BG. In general, our result can be interpreted as the construction of a
“classifying space” for any site (satisfying the following technical condition).

Our construction applies to topoi with enough points. We recall that a point
p of a topos T is a topos morphism p:S → T , from the topos S of sets into T .
Such a morphism can equivalently be described as a functor p∗: T → S which
preserves colimits and finite limits, or as a morphism of sites F:C → S, where C
is any site of definition for T . The topos T is said to have enough points if for
any sequence A → B → C of abelian groups in T (i.e., sheaves of abelian groups
on C), the sequence is exact whenever for each point p of T the associated sequence
p∗A → p∗B → p∗C is an exact sequence of abelian groups. We hasten to point
out that virtually all topoi arising in geometric practice have enough points. This
applies, for example, to the presheaf topos Ĉ on an arbitrary small category C, and
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to the étale topos associated to a scheme. In fact, any “coherent” topos has enough
points (Deligne, Appendix to Exposé VI in [1]).

For any topological space X, the category Sh(X) of sheaves on X is a topos
(with enough points), whose cohomology groups are the ordinary sheaf cohomology
groups of X [3, 6]. We will prove the following result:

Theorem. Let T be a topos with enough points. There exists a topological space
XT and a topos morphism

ϕ: Sh(XT )→ T
such that

(i) ϕ∗ is a full and faithful embedding of T into Sh(XT );

(ii) for any abelian group A in T , the morphism ϕ induces isomorphisms

H∗(T , A) '→ H∗(XT , ϕ∗(A)), n ≥ 0.

Here H∗(XT , ϕ∗(A)) denotes the sheaf cohomology of the space XT with the
sheaf ϕ∗(A) as coefficients. We will give an explicit construction of this space XT
from T , which depends not only on T , but also on the choice of a site for T . For
this reason, the construction T 7→ XT is only functorial in T in a weak sense (see
Remark 2.4 below).

Note that, since the topos Sh(XT ) always has enough points, the (mild) as-
sumption that T has enough points is a necessary one, being implied by part (i) of
the theorem. For part (ii) of the theorem, we will actually prove that the derived
functors Rqϕ∗ of the direct image functor ϕ∗: Sh(XT )→ T have the property that

Rqϕ∗(ϕ∗A) =
{

A, q = 0,
0, q > 0,

for any abelian group A in T . This property states that ϕ: Sh(XT )→ T is an acyclic
morphism. It implies in particular that ϕ∗ induces a full and faithful embedding of
derived categories

D+(T ) ↪→ D+(XT ).

The same argument applies to ringed topoi: if OT is any ring in T and D+(T ,OT )
is the associated derived category of complexes of OT –modules [1], then ϕ∗ induces
a full and faithful embedding

D+(T ,OT ) ↪→ D+(XT , ϕ∗(OT )).

The theorem, as well as the construction of the space XT , have been inspired
by [8], where it is proved that any topos (not necessarily with enough points) is
cohomologically equivalent to the topos of sheaves on a “locale”. (A locale is an
abstract notion of “topological space without points”.) However, our theorem is
not a consequence of this result of [8]. Furthermore, our proof is different. The
proof in [8] made essential use of the “internal logic” of a topos and its behaviour
under change–of–base. These methods cannot be applied to the topological space
XT constructed here.
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2 Construction of the space XT and of the map ϕ

In this section, T denotes a fixed topos with enough points. Recall [1, 9] that
the latter means that the functors p∗: T → S, for all points p:S → T , are jointly
conservative. Although the collection of all such points p is in general a proper class
rather then a set, there will always be a set P of points p for which the functors p∗,
for p ∈ P , are already jointly conservative. We will fix such a set P , and henceforth
refer to points in this set as small points of T . For a point p of T and an object
(sheaf) E in T , we will also use the common notation Ep for the set p∗(E), and refer
to Ep as “the stalk of E at p”.

Next, we fix a sheaf G in T so that the collection of all subsheaves C ⊂ Gn,
n ≥ 0, generates T . For example, G can be the disjoint sum (coproduct) of all
the objects in some site of definition for T . But often, there is a smaller and much
more natural choice for G: the topos T will generally contain some “universal”
structure U of a certain kind. For example, in the case of the étale topos, U is the
universal strictly local ring [5]. More generally, if T is a classifying topos, U is the
universal model for the theory classified by T (see [9], Chapter VIII). This object U
will have the property required for G, namely that the subsheaves of finite products
U × · · · × U generate T .

Finally, we fix an infinite set I , which is big enough so that it surjects onto all
the stalks Gp, for all small points p of T ; in other words,

card(Gp) ≤ card(I).

The construction of the space XT will depend on these choices, of the set P
of points, of the sheaf G, and of the set I . (We come back to this dependence in
Remark 2.4 below.)

The points of the space X = XT are now defined to be equivalence classes of
pairs

(p, α)

where p is a small point of T and α is a function from a subset of I to Gp,

I ⊃ dom(α) α→ Gp,

with the property that α−1(g) is infinite, for each g ∈ Gp. Two such pairs (p, α)
and (q, β) are equivalent (i.e., define the same point x ∈ X), if there exists a natural
isomorphism of functors θ: p∗ → q∗ so that β = θG◦α. We will often write x = (p, α)
for a point x ∈ X, and not distinguish explicitly between such pairs (p, α) and their
equivalence classes.

The topology on this set X of points is defined as follows: For any n ≥ 0 and
any subsheaf C ⊂ Gn, and any i1, . . . , in ∈ I , the set

Ui1,...,in,C = {(p, α) | i1, . . . , in ∈ dom(α) and (α(i1), . . . , α(in)) ∈ Cp} (1)

is to be a basic open set. Note that this set is well–defined on equivalence classes,
i.e., (p, α) ∈ Ui1,...,in,C iff (q, β) ∈ Ui1,...,in,C. In the sequel, we will usually write i for
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i1, . . . , in and α(i) for (α(i1), . . . , α(in)), so that

Ui,C = {(p, α) | i ∈ dom(α) and α(i) ∈ Cp}. (2)

We remark that, by changing C, we can always assume that the sequence i =
(i1, . . . , in) does not contain repetitions. For example, Ui,i,C for C ⊂ G2 is equal to
Ui,C′ for C ′ the pullback of C along the diagonal ∆:G→ G2. In the sequel we will
often tacitly assume that a sequence i does not contain repetitions.

Lemma 2.1 The sets Ui,C form a basis for a topology on X.

Proof. This is clear form the formula

Ui,C ∩ Uj,D = Ui,j,C×D,

for any C ⊂ Gn, D ⊂ Gm, i = (i1, . . . , in), j = (j1, . . . , jm), and i, j the concatena-
tion of these two sequences. 2

It can be shown that the space X thus defined is always a sober topological
space ([1], IV.4.2.1), although it is not a Hausdorff space.

Next, we describe the morphism ϕ: Sh(X) → T occurring in the statement of
the theorem. Recall that such a morphism of topoi is given by an inverse image
functor ϕ∗: T → Sh(X) and a direct image functor ϕ∗: Sh(X) → T , right adjoint
to ϕ∗. The functor ϕ∗ preserves colimits and finite limits, and these properties imply
that ϕ∗ has a right adjoint, unique up to isomorphism. So, to define ϕ, it suffices to
define such a functor ϕ∗: T → Sh(X). For any sheaf E in T , consider the set

ϕ∗(E) = {(p, α, e) | (p, α) ∈ X, e ∈ Ep},

with obvious projection π: ϕ∗(E)→ X. (Again, being more precise we should speak
about equivalence classes of such triples, where (p, α, e) is equivalent to (q, β, g) if
there exists a natural isomorphism of functors θ: p∗ → q∗ so that β = θG ◦ α and
θE(e) = g.) The set ϕ∗(E) carries a natural topology, with basic open sets

Vi,C,f = {(p, α, e) | (p, α) ∈ Ui,C and e = f(α(i))},

for any i = (i1, . . . , in) and C ⊂ Gn as above, and any morphism f : C → E in T .

Lemma 2.2 These sets Vi,C,f form the basis for a topology on ϕ∗(E), which makes
the projection π: ϕ∗(E)→ X into a local homeomorphism.

Proof. Consider two such basic open sets Vi,C,f and Vj,D,g. Let h: C ×E D → E
be the map from the pullback, h = f ◦ π1 = g ◦ π2. Then

Vi,C,f ∩ Vj,D,g = Vi,j,C×ED,h.

Thus the sets Vi,C,f form a basis for a well–defined topology on ϕ∗(E). Furthermore,
the sections

σ: Ui,C → Vi,C,f , σ(p, α) = fp(α(i))
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are well–defined on equivalence classes and show that the projection π: ϕ∗(E)→ X
restricts to a homeomorphism Vi,C,f → Ui,C. 2

Thus π: ϕ∗(E) → X is a sheaf on X. Note that for the stalk of this sheaf at a
point (p, α) of X we have

ϕ∗(E)(p,α) = Ep. (3)

Proposition 2.3 The construction E 7→ ϕ∗(E) defines the inverse image functor
of a topos morphism ϕ: Sh(X)→ T .

Proof. We observe first that the construction is functorial in E. If h: E → F is
a morphism in T , the induced map

ϕ∗(h): ϕ∗(E)→ ϕ∗(F ), (p, α, e) 7→ (p, α, hp(e))

is continuous for the topologies just defined. To see this, take any point (p, α, e)
of ϕ∗(E), and let Vi,C,f be a basic open neighbourhood of (p, α, hp(e)) in ϕ∗(F ),
where f : C → F . Since the subsheaves of Gn generate T , it follows that there
is a B ⊂ Gm and a map u: B → C ×F E so that, for c = α(i), there exists a
point b ∈ Bp with up(b) = (c, e) ∈ (C ×F E)p. Choose j = (j1, . . . , jm) with
jk ∈ I , so that b = α(j) = (α(j1), . . . , α(jm)). Let v = π1 ◦ u: B → C, and let
D = graph(v) ⊂ B × C ⊂ Gm ×Gn. Then

W = Vj,i,D,π2◦u

is a basic open set in ϕ∗(E), such that (p, α, e) ∈W and ϕ∗(h) maps W into Vi,C,f .
This shows that ϕ∗ is a functor. It remains to verify that ϕ∗ preserves colimits

and finite limits. But it suffices to show that this holds at the level of the stalks,
where it is obvious from the identity (3). 2

Remark 2.4 (We recommend the reader to skip this remark, as we will make no
future use of it in the present paper.) The construction of X = XT depends on P ,
G and I , in a functorial way. Clearly, for a larger set P ′ ⊃ P of small points, there
is a map X(P)→ X(P ′) over T . Similarly, it will be clear from §3 that a surjection
s: J � I induces a map s∗: X(I) → X(J), while if G′ ⊃ G is a larger choice of an
object so that the subsheaves of its finite powers generate, there is a restriction map
X(G′)→ X(G). It is a consequence of our theorem that all these comparison maps
induce isomorphisms in cohomology for abelian coefficients which come from T , so
that the dependence of X on P , G and I is inessential in this sense.

If f : T1 → T2 is a topos morphism, we can fix first the parameters P1 and I1 for
T1 and G2 for T2, and then choose P2 large enough to include all composites f ◦ p
for p ∈ P1, and G1 ⊃ f∗(G2), and finally I2 so large that there exists a surjection
I2 → I1. Then the constructed spaces X1 and X2 fit into a commutative diagram

Sh(X1) //f̃

��
ϕ1

Sh(X2)

��
ϕ2

T1 //
f

T2.
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3 Enumeration spaces

The fibres of the morphism ϕ: Sh(XT )→ T will turn out to be (approximated by)
certain acyclic topological spaces, which we will discuss separately in this section.

Let I be a fixed infinite index set. For any set S, with cardinality card(S) ≤
card(I), the enumeration space

En(S) (or EnI(S))

has as points all functions α: D → S defined on some subset D = dom(α) ⊂ I , and
with the property that α−1(s) ⊂ D is infinite for each s ∈ S. The basic open sets of
En(S) are the sets of the form

Vi1,...,in,s1,...,sn = {α | α(ik) = sk, for k = 1, . . . , n},

for any i1, . . . , in ∈ I and s1, . . . , sn ∈ S. It will be convenient to use a shorter
notation, and write u for the finite partial function from I to S defined by u(ik) = sk
(k = 1, . . . , n), and write

Vu = {α ∈ En(S) | u ⊂ α}

for the same basic open set. Note that for n = 0 (i.e., u = ∅) the entire space En(S)
occurs among these basic open sets.

Notation 3.1 These finite partial functions u induce various continuous operations
on En(S), which will be used in the sequel. For α ∈ En(S), denote by α − u the
restriction of α to dom(α) − dom(u). Furthermore, denote by α ∪ u the union of
these partial functions, defined only in case dom(α) ∩ dom(u) = ∅. Finally, we will
use the notation (u/α) for (α − u) ∪ u, which is the function obtained by “writing
u over α”.

Remark 3.2 In relation to Remark 2.4, we note that if S ′ ⊂ S is a subset, the
restriction of α: D → S to {i ∈ D | α(i) ∈ S′} defines a continuous map res: En(S)→
En(S ′). Furthermore, any surjection t: J → I defines by composition an obvious
continuous map t∗: EnI(S)→ EnJ(S).

Lemma 3.3 Each enumeration space En(S) is connected and locally connected; in
fact, each basic open set Vu is connected.

Proof. Fix an open set Vu, and let Vu = O1 ∪ O2 be a cover by two non-empty
open sets. Choose points α1 ∈ O1 and α2 ∈ O2, and basic open sets Vu1 and Vu2 with
α1 ∈ Vu1 ⊂ O1 and α2 ∈ Vu2 ⊂ O2. These are given by finite partial functions u1, u2

with u ⊂ u1 ⊂ α1 and u ⊂ u2 ⊂ α2. Let β = u2/α1 ∈ O2 and γ = (α1 − u2) ∪ u.
Thus γ ⊂ β and γ ⊂ α1, hence β and α1 belong to every open neighbourhood of γ
in En(S). Now γ ∈ Vu, so γ ∈ O1 or γ ∈ O2. But if γ ∈ O1, then β ∈ O1 ∩O2, and
if γ ∈ O2 then α1 ∈ O1 ∩O2. Thus O1 ∩O2 6= ∅, showing that Vu is connected. 2

Next we consider Čech homology of En(S). The following proposition forms the
crucial part of the proof of our theorem.
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Proposition 3.4 For any cover U of En(S) by basic open sets, we have

Hn(U ,Z) = 0 (n > 0).

Proof. Let U = {Vuσ | σ ∈ Σ} be such an open cover, indexed by a set Σ. To
avoid too many indices, we will in this proof write σ for uσ, and Vσ for Vuσ . Let
C•(U) be the usual Čech complex, i.e., Cn(U) is the free abelian group on the set
Nn(U) = {(σ0, . . . , σn) | Vσ0 ∩ · · · ∩ Vσn 6= ∅}. Note that (σ0, . . . , σn) ∈ Nn(U) iff
the finite partial functions σ0, . . . , σn are compatible, in the sense that their union
σ0∪· · ·∪σn (short for uσ0∪· · ·∪uσn) is well–defined. We will show that this complex
is chain contractible, by exhibiting an explicit chain homotopy h:

0← Z
∂

�
h−1

C0(U)
∂

�
h0

C1(U)
∂

�
h1

C2(U)
∂

�
h2

· · ·

∂ ◦ h−1 = id, ∂hn + hn−1∂ = id. (4)

To define h, we fix a point α ∈ En(S) and an index τ ∈ Σ with α ∈ Vuτ . Fur-
thermore, for each sequence σ = (σ0, . . . , σn) ∈ Nn(U), we choose an index f(σ) so
that

α− (σ0 ∪ · · · ∪ σn ∪ τ ) ∈ Vf(σ). (5)

The hn are now defined by induction, by

h−1(1) = τ

hn(σ) = (−1)n+1[σf(σ)− hn−1(∂σ)f(σ)].
(6)

Here σ is the tuple (σ0, . . . , σn), σf(σ) = (σ0, . . . , σn, f(σ)), and hn−1(∂σ)f(σ)
is the sum

∑
(−1)ihn−1(σ0 . . . σ̂i . . . σn)f(σ) obtained by adding f(σ) to the end of

every term in hn−1(∂σ). For example,

h0(σ0) = −(σ0f(σ0)− τf(σ0))

h1(σ0σ1) = σ0σ1f(σ0σ1) + σ1f(σ1)f(σ0σ1)− τf(σ1)f(σ0σ1)

− σ0f(σ0)f(σ0σ1) + τf(σ0)f(σ0σ1),

etc. Let us observe first that hn(σ) is a well–defined element of Cn+1(U); i.e., that
for any sequence µ = (µ0, . . . , µn+1) occurring in hn(σ), the corresponding basic
open Vµ = Vµ0 ∩ · · · ∩ Vµn+1 is non-empty. We will show by induction on n that for
any generator µ occurring in hn(σ), there exists a point β = βσ(µ) in En(S) such
that

β ⊃ α− (σ0 ∪ · · · ∪ σn ∪ τ ) and β ∈ Vµ = Vµ0 ∩ · · · ∩ Vµn+1 (7)

For n = 0, the two generators occurring in h0(σ0) are σ0f(σ0) and τf(σ0) and,
by (5), we can choose

β(σ0f(σ0)) = α − (σ0 ∪ τ ) ∪ σ0 ∈ Vσ0f(σ0),

β(τf(σ0)) = α − (σ0 ∪ τ ) ∪ τ ∈ Vτf(σ0).

7



Suppose, then, that we have found a point β as in (7) for each (σ0, . . . , σn) and each
generator µ in hn(σ). Now consider a sequence σ = (σ0, . . . , σn+1) ∈ Nn+1(U), with

hn(σ) = (−1)n+1[σf(σ)− hn−1(∂σ)f(σ)] (8)

as in (6). For the generator σf(σ), we can take β = (α − (σ0 ∪ · · · ∪ σn+1 ∪
τ )) ∪ (σ0 ∪ · · · ∪ σn+1) = (σ0 ∪ · · · ∪ σn+1)/(α − τ ), since by (5), this β will satisfy
β ∈ Vσf(σ). Next consider hn−1(∂σ)f(σ). For a generator µ = (µ0, . . . , µn+1) in
h(σ0 . . . σ̂i . . . σn), we have by induction found a β0 so that

β0 ⊃ α− (σ0 ∪ . . . σ̂i . . . ∪ σn ∪ τ ) and β0 ∈ Vµ.

Also, f(σ) ⊂ α− (σ0 ∪ · · · ∪ σn ∪ τ ) ⊂ α− (σ0 ∪ · · · σ̂i · · · ∪ σn ∪ τ ), so β0 ∈ Vµf(σ).
Thus β0 is also a witness for the fact that the part µf(σ) occurring in hn−1(∂σ)f(σ)
corresponds to a non-empty intersection of basic open sets.

It remains to prove the identities (4) for a chain homotopy. Clearly, ∂h−1 = id,
while for σ0 ∈ C0(U),

∂h0(σ0) + h−1(∂σ0) = −∂(σ0f(σ0)) + ∂(τf(σ0)) + τ

= −(f(σ0) + σ0) + (f(σ0)− τ ) + τ

= σ0.

We proceed by induction, and suppose the identity ∂hn+hn−1∂ = id has been proved.
Consider, then, any generator σ0 . . . σn+1 ∈ Cn+1(U). The induction hypothesis
implies that

∂hn(∂σ) = ∂σ − hn−1(∂2σ) = ∂σ,

whence
∂hn(∂σ)f(σ) = (∂σ)f(σ). (9)

Thus, using the general identity

∂(µ0 . . . µnρ) = ∂(µ0 . . . µn)ρ + (−1)n+1µ0 . . . µn (10)

we find
∂hn+1(σ) = ∂(−1)n[σf(σ)− hn(∂σ)f(σ)] (by definition)

= (−1)n[(∂σ)f(σ) + (−1)nσ − ∂(hn(∂σ)f(σ))] (by (10))

= σ + (−1)n[(∂σ)f(σ)− (∂hn(∂σ))f(σ)− (−1)n+2hn(∂σ)] (by (10))

= σ − hn(∂σ) + (−1)n[(∂σ)f(σ)− ∂hn(∂σ)f(σ)]

= σ − hn(∂σ).

This completes the proof of the proposition. 2

Proposition 3.5 Let V be a basic open set in En(S), and let U be a cover of V by
basic open sets. Then

Hn(U ,Z) = 0 (n > 0).

Proof. This is proved in exactly the same way as the previous proposition.
If V = Vu, then one modifies the proof by restricting all constructions to finite
sequences v or points α with u ⊂ v, α. 2
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4 Construction of ϕ! and a projection formula

The enumeration spaces En(S) are related to the space X = XT , constructed for a
topos above, in the following way. For each small point p:S → T , with stalk Gp of
the special sheaf G, there is a continuous map

ip: En(Gp)→ X, ip(α) = (p, α).

Denote by π: En(Gp) → pt the unique map into the one–point space. These two

maps induce topos morphisms S π← Sh(En(Gp))
ip→ Sh(X), which relate to the map

ϕ: Sh(X)→ T in the following way.

Lemma 4.1 The square

Sh(En(Gp)) //ip

��
π

Sh(X)

��
ϕ

S //p
T

(11)

commutes up to natural isomorphism.

Proof. Let E be an object in T , with sheaf ϕ∗(E) on X as constructed in §2.
Using the notation of the proof of Lemma 2.2, consider a canonical section

σ: Ui,C → Vi,C,f ⊂ ϕ∗(E), σ(p, α) = fp(α(i)),

of the sheaf ϕ∗(E). The connected components of i−1
p (Ui,C) are the basic open sets

Vg = {α | α(i1) = g1, . . . , α(in) = gn}, for all g = (g1, . . . , gn) ∈ Cp ⊂ Gn
p . The

section σ is constant on Vg , with value fp(g1, . . . , gn). This shows that i∗pϕ
∗(E) is a

constant sheaf, with stalk Ep since i∗pϕ
∗(E)(p,α) = ϕ∗(E)(p,α) = Ep. 2

We note that the square (11) need not be a pullback of topoi, although it is very
close to being one: En(Gp) is the space of points of the topos theoretic pullback.

Corollary 4.2 Let σ: Ui,C → ϕ∗(E) be any section of the sheaf ϕ∗(E), defined on
the basic open set Ui,C . Then for any two points (p, α) and (p, β) in Ui,C,

α(i) = β(i) ⇒ σ(p, α) = σ(p, β). (12)

Proof. The section σ restricts along ip: En(Gp) → X to a section on i−1
p (Ui,C)

of the constant sheaf with stalk Ep. This section is constant on the connected
components Vg = {α | α(i) = g} of i−1

p (Ui,C) already occurring in the proof of
Lemma 4.1. Formula (12) follows. 2

Recall that a topos morphism ϕ: T ′ → T consists of two particular functors
ϕ∗ and ϕ∗, with ϕ∗ left exact and left adjoint to ϕ∗. The particular morphism
ϕ: Sh(X)→ T constructed above, has the following additional property.
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Proposition 4.3 There exists a functor ϕ!: Sh(X) → T which is left adjoint to
ϕ∗: T → Sh(X), i.e.,

HomT (ϕ!(F ), E) ∼= HomSh(X)(F, ϕ∗(E)) (13)

for any sheaf F on X and any object E of the topos T .

Proof. For the proof of this proposition, we will construct for each sheaf F on
X an object ϕ!(F ) of the topos T . Note that each basic open set Ui,C ⊂ X can
be viewed as a sheaf on X (where the sheaf projection is the inclusion Ui,C ↪→ X).
Furthermore, an arbitrary sheaf F is the colimit of such sheaves Ui,C (the colimit
being taken over the poset of sections of F defined on basic open sets). Thus,
since the desired left adjoined ϕ! must necessarily commute with colimits, it suffices
to construct ϕ!(Ui,C) for each basic open set Ui,C and prove the natural bijective
correspondence of (13) in this special case:

Hom(ϕ!(Ui,C), E) ∼= Γ(Ui,C , ϕ∗(E)) (14)

We define
ϕ!(Ui,C) =def C. (15)

To prove (14) for this definition, we shall use the following two lemmas.

Lemma 4.4 Let Ui,C and Uj,B be two basic open sets in X, and suppose Uj,B 6= ∅.
Then Uj,B ⊂ Ui,C iff the sequence i = (i1, . . . , in) is a subsequence of j = (j1, . . . , jm),
and the corresponding projection Gm → Gn maps B into C.

Proof. The implication (⇐) is clear. For (⇒), choose a point (p, α) ∈ Uj,B . If ik
is any index in i which does not occur among (j1, . . . , jm), let α′ be the restriction
of α to dom(α) − {ik}. Then (p, α′) ∈ Uj,B but (p, α′) /∈ Ui,C . This shows that
if Uj,B ⊂ Ui,C then i must be a subsequence of j. Now consider the projection
π: Gm → Gn coming from the fact that i is a subsequence of j. (Here we use that we
can assume that both i and j do not contain repetitions, as explained just below (2).)
To prove π(B) ⊂ C, it suffices to prove that, for each small point p,

πp(Bp) ⊂ Cp,

(because the stalks at the small points are jointly conservative, by assumption).
Take (g1, . . . , gm) ∈ Bp, and let α ∈ En(Gp) be any enumeration with α(jk) = gk

(k = 1, . . . , m). Then (p, α) ∈ Uj,B ⊂ Ui,C , so πp(g1, . . . , gm) = (α(i1), . . . , α(in)) =
α(i) ∈ Cp. 2

Lemma 4.5 Let Ui,C be a basic open set. Let {Ujξ,Bξ} be a family of non-empty
basic open subsets of Ui,C, with associated projections πξ: Bξ → C as in Lemma 4.4.
Then Ui,C is covered by {Ujξ,Bξ} in the space X iff {πξ: Bξ → C} is an epimorphic
family in T .
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Proof. To simplify notation, we just treat the case where i = i1 and C ⊂ G,
while j = (i1, jξ) is a sequence of length 2 and Bξ ⊂ G2. By Lemma 4.3, the
projection π2: G2 → G maps each Bξ into C, giving a map πξ: Bξ → C.

Suppose now that Ui,C =
⋃

Ujξ,Bξ . To show that {πξ: Bξ → C} is an epimorphic
family, it suffices to prove, for each small point p,

Cp =
⋃
ξ

πξ(Bξ)p.

Take any c ∈ Cp, and choose an enumeration α ∈ En(Gp) with α(i) = c. Then
(p, α) ∈ Ui,C , hence for some ξ also (p, α) ∈ Ujξ ,Bξ. Thus jξ ∈ dom(α) and b =
(α(i), α(jξ)) ∈ (Bξ)p, whence c = πξ(b) ∈ πξ(Bξ)p, as desired.

The converse is similar. 2

We now continue the proof of Proposition 4.3, and show the isomorphism (13)
for ϕ!(Ui,C) = C. In one direction, any map f : C → E in T defines a canonical
section

σf : Ui,C → ϕ∗(E), σf(p, α) = fp(α(i)), (16)

(as in the proof of Lemma 2.2).
In the other direction, suppose σ: Ui,C → ϕ∗(E) is an arbitrary section of ϕ∗(E).

Locally, σ must be a canonical section as described in §2. Thus, there is a cover

Ui,C =
⋃
ξ

Ujξ ,Bξ (17)

and for each ξ a map
fξ: Bξ → E

so that
σ(p, α) = (fξ)p(α(jξ)), for (p, α) ∈ Ujξ ,Bξ. (18)

By Lemma 4.5, the identity (17) implies that the Bξ form a cover of C in the
topos T . Let us simplify the notation as in the proof of Lemma 4.5, and write
i = i1, j = (i1, jξ), C ⊂ G, Bξ ⊂ G2, and πξ: Bξ → C for the restriction of the first
projection G2 → G. We claim that the maps fξ: Bξ → E form a compatible family
for this cover {Bξ → C}, hence define a unique map f : C → E with f ◦ πξ = fξ.
For this, it needs to be shown, for any two indices ξ and ζ, that the square

Bξ ×C Bζ
//π2

��
π1

Bζ

��
fζ

Bξ
//

fξ
E

(19)

commutes in T . It suffices to check that the corresponding diagram of stalks com-
mutes for every small point p. Choose such a point p, and consider an element

11



b ∈ (Bξ ×C Bζ)p. Write π1(b) = (c, bξ) ∈ (Bξ)p and π2(b) = (c, bζ) ∈ (Bζ)p. Choose
now two enumerations α, β ∈ En(Gp), such that

α(i) = c, α(jξ) = bξ,
β(i) = c, β(jζ) = bζ.

Then (p, α) ∈ Ujξ,Bξ and (p, β) ∈ Ujζ ,Bζ , so

(fξ ◦ π1)p(b) = (fξ)p(c, bξ)
= (fξ)p(α(i), α(jξ))
= σ(p, α) (by (18)),

and similarly (fζ ◦ π2)p(b) = σ(p, β). But (p, α), (p, β) ∈ Ui,C, while α(i) = β(i), so
σ(p, α) = σ(p, β) by Lemma 4.2. This proves that (fξ ◦ π1)p(b) = (fζ ◦ π2)p(b) for
any b ∈ (Bξ×C Bζ)p, and hence that (19) commutes. Thus the fξ together uniquely
determine a map f = fσ: C → E.

It is now straightforward to check that these constructions, of σf from f and of
fσ from σ, are mutually inverse, and prove the required bijection (14).

This completes the proof of Proposition 4.2. 2

Let us reconsider the square (11) at the beginning of this section. Since En(Gp) is
a locally connected space (Lemma 3.3) the inverse image functor π∗:S → Sh(En(Gp)),
which sends a set to the constant sheaf, has a left adjoint π!: Sh(En(Gp))→ S. For
a sheaf F on En(Gp), π!(F ) is simply the set of connected components of F , where
F is viewed as an étale space over En(Gp).

Corollary 4.6 For the square (11), the projection formula

π!(ip)∗ = p∗ϕ!

holds.

Proof. First, a more precise formulation of this corollary should state that the
canonical natural transformation

π!(ip)∗(F )→ p∗ϕ!(F ), (20)

obtained from the isomorphism i∗pϕ
∗ ∼= π∗p∗ and the adjunctions, is an isomorphism.

Since the functors in (20) all preserve colimits, it suffices to check that (20) is an
isomorphism in case F is (the sheaf corresponding to) a basic open set Ui,C. But
π!i∗p(Ui,C) is the set of connected components of i−1

p (Ui,C), and these are exactly the
basic open sets Vg = {α | α(i1) = g1, . . . , α(in) = gn}, for g = (g1, . . . , gn) ∈ Cp ⊂
Gn
p , hence are in bijective correspondence with elements of Cp = p∗(C) = p∗ϕ!(Ui,C)

by (15). 2
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5 Proof of the theorem

We will now prove the theorem, stated in the introduction and repeated here:

Theorem 5.1 For any sheaf of abelian groups A in T , the morphism ϕ: Sh(XT )→
T induces an isomorphism ϕ∗: Hn(T , A)→ Hn(XT , ϕ∗A), for any n ≥ 0.

For n = 0, this follows from

Lemma 5.2 The inverse image functor ϕ∗: T → Sh(XT ) is full and faithful.

Proof. The statement of the lemma is equivalent to the assertion that the counit
of the adjunction ϕ!ϕ∗(E)→ E is an isomorphism, for every sheaf E on T . It suffices
to check this for the stalks at each small point p. But there we have

ϕ!ϕ∗(E)p = p∗ϕ!ϕ∗(E)
= π!(ip)∗ϕ∗(E) (by Corollary 4.6)
= π!π∗(Ep) (by Lemma 4.1)
= Ep,

the latter since En(Gp) is connected (Lemma 3.3). 2

Latter, we will have to compare the Čech complex of an open cover in X to its
inverse image along the map ip: En(Gp) → X, where p is any small point of the
topos T . We will use the following simple observation:

Lemma 5.3 Let U1, . . . , Un ⊂ U ⊂ X be basic open sets, and let V ⊂ i−1
p (U) be a

connected component. Then the connected components of i−1
p (U1∩. . .∩Un) contained

in V are the non–empty intersections V1 ∩ . . .∩Vn, where Vi ⊂ V is a component of
i−1
p (Ui).

Proof. We already observed (e.g. in the proofs of 4.1 and 4.5) that for any
basic open set U ⊂ X, the connected components of i−1

p (U) are basic open sets V
in En(Gp). These basic open sets in En(Gp) are all connected (Lemma 3.3) and
closed under intersection. The lemma follows immediately from this. 2

Lemma 5.4 Let I be any injective abelian sheaf in T . Let U ⊂ X be a basic open
set, and let U be a cover of U by basic open sets. Then Hn(U , ϕ∗(I) � U) = 0 for
n > 0.

Proof. Write U = {Uσ | σ ∈ Σ}, and Nn(U) =
∑
σ0...σn Uσ0...σn where the sum is

over all (n+1)–tuples of indices, and Uσ0...σn = Uσ0 ∩ . . .∩Uσn . Viewing each Uσ0...σn

as an object of Sh(X), we see that N•(U) is a simplicial object in Sh(X). The Čech
complex Cn(U , ϕ∗(I) � U) computing H∗(U , ϕ∗(I) � U) can now be described as

Cn(U , ϕ∗(I) � U) = HomSh(X)(Nn(U), ϕ∗(I))
= HomT (ϕ!Nn(U), I),
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the latter by the adjunction of 4.3. To prove the lemma, it thus suffices to show that
the associated chain complex Z[ϕ!N•(U)] of abelian groups in T is exact at n > 0.
It is enough to check this for the stalk at each small point p. But

Z[ϕ!Nn(U)]p = Z[ϕ!(Nn(U))p]
= Z[π!(ip)∗Nn(U)], (by Corollary 4.6),

which is the chain complex of the simplicial set π!i∗p(N•(U)). Now

π!i
∗
p(Nn(U)) = {(σ0 . . . σn, W ) | W a connected component of i−1

p (Uσ0...σn)}.

For each connected component V ⊂ i−1
p (U), let UV be the cover of V by connected

components W ⊂ i∗p(Uσ), for all σ ∈ Σ. By Lemma 5.3, π!i∗p(N•(U)) is the dis-
joint sum of the Čech nerves of these covers UV , and these nerves are acyclic by
Proposition 3.5. Thus π!i∗p(N•(U)) is acyclic also, and the lemma is proved. 2

Proof of Theorem 5.1. By general homological algebra, it suffices to show that for
any injective abelian group I in T the sheaf cohomology groups Hn(X, ϕ∗(I)) vanish
for n > 0. By Lemma 5.4, the sheaf ϕ∗(I) � U is ‘Čech–acyclic’ for each basic open
set U ⊂ X. The result follows by applying Cartan’s criterion [1], Proposition V.4.3,
[3], Théorème 5.9.2. 2

As stated in §1, the argument actually proves the somewhat stronger assertion
that the higher right derived functors of ϕ∗: Sh(X)→ T vanish. Before stating this
as Corollary 5.6 below, we observe the following corollary.

Corollary 5.5 Let E be any sheaf (of sets) in T . Then in the pullback of topoi

Sh(ϕ∗E) //π

��
ϕE

Sh(X)

��
ϕ

T /E // T

the map ϕE induces isomorphisms

Hn(T /E, A)
∼=→ Hn(ϕ∗(E), ϕ∗E(A)),

for any abelian sheaf A in T /E.

Here T /E denotes the “induced topos” ([1], Exposé IV.5) of T –objects over E,
and T /E → T is the canonical morphism (loc. cit. (5.2.1)).

Proof. We claim that the map ϕE is again of the form ϕ: Sh(XT ) → T
so that Corollary 5.5 is actually a special case of Theorem 5.1. More precisely,
ϕE: Sh(ϕ∗E)→ T /E is precisely the map Sh(X(T /E))→ T /E, for a suitable choice
of the various parameters. Indeed, suppose XT is defined using the set of small
points P , the object G so that subsheaves of Gn generate T , and the index set I .
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Then H = (G × E → E) is an object of T /E so that subsheaves of Hn gener-
ate T /E. Moreover, the points of T /E are in bijective correspondence with pairs
(p, e), where p is a point of T and e ∈ Ep. For such a pair (p, e), the stalk of an
object (f : F → E) at (p, e) is given by

(f : F → E)(p,e) = f−1
p (e) ⊂ Ep.

In particular, H(p,e) = Gp for each e. Now for the set of small points of T /E we can
take all these pairs (p, e) where p ∈ P , and we can then take the same index set I .

The space X(T /E) defined from these choices then is the space of triples (p, e, α),
where p is a small point of T , e ∈ Ep, and α ∈ En(H(p,e)) = En(Gp). But this is
exactly the space ϕ∗(E) defined in §2. Further details are straightforward. 2

Corollary 5.6 For any abelian sheaf A in T , and any n > 0,

(Rnϕ∗)(ϕ∗A) = 0.

Proof. As before, it suffices to prove this for A injective. For an arbitrary sheaf
B on X, Rnϕ∗(B) is the associated sheaf of the presheaf

E 7→ Hn(ϕ∗(E), π∗(B))

(where π: ϕ∗(E) → X is the sheaf projection); see [1], Proposition V.5.1 and [7],
Lemma 8.18. For B = ϕ∗(I) where I is injective, the result thus follows from
Corollary 5.5. 2

6 Etale cohomology

By way of example, we will give an explicit description of the space XT in the case
where T is the étale topos over a scheme. The main reference for this section is
Grothendieck’s Exposé VIII in [1]. For basic properties of strictly henselian local
rings and strict henselization, see [11].

Fix a ground field k, and a scheme Y (over k). Let Yét be the étale site over Y ,
and let Ỹét be the associated étale topos. For a point y ∈ Y , k(y) denotes the
residue field of the local ring OY,y, and k(y) its separable closure. The Galois group
Gal(k(y)/k(y)) is denoted by πy.

The functor A on Yét which associates to each object f : Z → Y of the étale site
the ring Γ(Z, f∗(OY )) is a sheaf, and defines a local ring A in the topos Ỹét. The
functor Ahs on Yét which associates to f : Z → Y the ring Γ(Z,OZ) is again a sheaf,
and a strictly henselian local ring in Ỹét [5]. The extension A → Ahs is a universal
strict henselization of OY in the topos Ỹét. The sheaf Ahs will play the role of the
object G.

The étale topos has enough points. We recall from [1], Exposé VIII, that each
point y ∈ Y defines first a geometric point y: Spec(k(y))→ Y of the scheme Y , and
then a point of the topos Ỹét, whose inverse image functor is the composition

Γ ◦ y∗: Ỹét → ˜Spec(k(y))ét → S,
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and denoted F 7→ Fy. By loc. cit., Corollaire VIII.3.6, the set of all these points is
jointly conservative. So we can take this set of points y ∈ Y for the set P .

Consider again the extension A → Ahs in the topos Ỹét. As explained in [1],
Exposé VIII.4, for any y ∈ Y the stalk map Ay → Ahs

y is a (the) strict henselization
of OY,y = Ay, relative to the separable closure k(y) ↪→ k(y). Thus we will write Ohs

Y,y

for Ahs
y , and we will identify OY,y with a subset of Ohs

Y,y.
By the universal property of the strict henselization [4], §18, [11], Section VIII.2,

the group πy acts on Ohs
Y,y, say from the left. The local ring OY,y ⊂ Ohs

Y,y is fixed
under this action.

Let I be a set whose cardinality is at least as big as that of all these strict
henselizations Ohs

Y,y.
We can now describe the space X = XT of Theorem 5.1 in this special case where

T = Ỹét. Let y ∈ Y , and consider all functions (“enumerations”) α: dom(α)→ Ohs
Y,y

defined on a subset dom(α) ⊂ I ; and with the property that α−1(b) is infinite
for each b ∈ Ohs

Y,y. Call two such enumerations α and β equivalent, α ∼ β, if
dom(α) = dom(β), and if there is a g ∈ πy so that g·α(i) = β(i) for each i ∈ dom(α).
The points of the space X are defined to be equivalence classes of pairs (y, α), with
(y, α) equivalent to (z, β) iff y = z and α ∼ β.

In this particular case, the topology of the space X, defined in general in §2,
can be described more explicitly by using standard étale extensions. Fix for this
an affine open U = Spec(R) of Y and (for some n) polynomials p1, . . . , pn in
R[T1, . . . , Tn] such that the determinant det(J) of the Jacobian J = (∂pj/∂Tk)j,k
is invertible in R[T1, . . . , Tn]/(p1, . . . , pn). Moreover, we fix a finite sequence of in-
dices i = (i1, . . . , in). Together these data define the open set

V = {(y, α) | y ∈ U, i1, . . . , in ∈ dom(α),

and pk(α(i1), . . . , α(in)) = 0 for k = 1, . . . , n }.

Note that this makes sense, since each pk has coefficients in R, and R maps to the
localization Ry = OY,y and then to Ohs

Y,y. Thus pk can be evaluated at the tuple
(α(i1), . . . , α(in)). These open sets of the form V generate the topology on X.

The construction of §2 gives for each étale sheaf E ∈ Ỹét a sheaf ϕ∗(E) on this
topological space X, with stalks

ϕ∗(E)(y,α) = Ey.

Our theorem asserts that there is a natural isomorphism

Hn(Yét, A) ∼= Hn(X, ϕ∗A),

for any abelian sheaf A on Yét and any n ≥ 0.
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