






23 The interpretation ofdelay times in tomography 

cross-teon teon amounts to approximately 0.9 seconds. We note, however, that this can 
also be a situation where the use of Feonat's Principle for obtaining (5) is not warranted. 
Retaining the cross-term for its possible importance might contradict our assumption that 
Fermat's Principle can be applied. We restrict ourselves to studying slowness anomalies for 
which, on the average, the non-linear teon leads to a second order contribution to d and 
incorporate it in E. Equation (5) becomes: 

d = J Lls dlo + /lx·Vx" To (xo; So ;xs) + Llt + h(xo;so; xs) + E (6) 
L (xo ;So ;x.) 

This is the equation that we will further implement for delay time tomography. It is a basic 
equation that is suitable for both linear and non-linear inversion of delay time data. 

We note that Lls(r) relates to the velocity anomaly Llv (r) as 

Lls =s -So = lI(vo+Llv)-lIvo =-Llv/v0
2 

for small deviations Llv(r). We might as well have used v(r) and vo(r) for the derivation. 
The use of the slowness fields instead leads only to a somewhat simplified notation. 

1.3 Model parameterization 

We will now proceed with finding a form of (6) which is suitable for the inversion of large 
sets of delay time data. 

Equation (6) relates one datum, d, to the slowness anomaly field, Lls (r), the 
mislocation, /lx, the origin time error, Llt, and the station correction, h (xo;so ;xs )' Envisage 
the situation where we have obtained a huge number of delay times from the location of 
many events using many stations. The associated set of (reference) ray paths may sample 
Lls (r) in all directions with many "crossing" rays. Then, the combined equations (6) offer 
the possibility of extracting information about the unknowns from the data. We can 
combine the delay times of all events since (6) accounts separately for typical event and 
station effects on d. This allows the inversion algorithm to extract from all delays that part 
of a delay time which is consistent with Lls (r). 

Let i denote the i -th delay time (and ray), 1 the l-th event and k the k -th station. Note 
that for every ray, k and 1 are uniquely determined by i. A set of M data is expressed by 

. k 
d; = J Lls dl~ + YI + E; i =1, ... ,M (7a) 

L (x~ ;So ;x:) 

yl'=/lxl 'Vx"To(x~;so;xs~ +Lltl + hk(x~;so;x:> (7b) 

where the term yt has been separated for future notational convenience. We remark that 
every /lxl consists of three discrete parameters, i.e. /lxI, LlYI and Llz1 which account for the 
spatial mislocation. 

In the following we will assume that the station correction hie can also be expressed in 
terms of discrete parameters. A simple choice would be one constant hie for every station. If 
a station location is uncertain we can use a parameterization of hie (x~ ;So ;x:> that is quite 
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similar to the event mislocation term and invert for small deviations in the reference 
location x:. 

Hence, yf consists of discrete parameters only, whereas ~s(r) is a (piecewise) 
continuous function. The remainder of this section is concerned with modeling the 
slowness anomaly field. 

In practice, the earthquake and station distributions are discrete implying that the 
sampling of ~(r) is discrete which in tum leads to unsampled space between the 
geometrical rays. Hence, there is insufficient data to estimate the entire slowness anomaly 
field in all its detaiL In order to extract information from the data we have to formulate 
additional constraints for ~(r). 

Two approaches will be considered to define the a priori model constraints. The first 
implements the a priori parameterization of ~(r) by a number of slowness anomaly 
functions of known general shape but of unknown amplitude. The second approach defines 
a priori statistical constraints with respect to the admissible amplitudes and smoothness of 
~s(r) without approximating ~(r) by known functions. We will give a brief discussion of 
both methods. 

1.3.1 Projection of~ on a set ofdata-independent slownessfunctions 

Since we cannot resolve ~(r) in all its detail we may wish to confine ourselves to 
retrieving that part of ~(r) that is, for instance,locally constant over a particular volume. 
In this case we can divide the Earth's interior in cells or blocks of some shape, following 
the approach of Aki et al. (1977). The average velocity with which rays travel inside a cell 
is taken as typical for the entire cell volume, in this way fixing the anomalies in the 
unsampled space between the rays. Choosing cells for the model parameterization implies 
that we want to approximate ~s(r) by a number of cell-slowness functions with constant 
slowness values in every cell. 

In general, any a priori model parameterization invokes some kind of approximation of 
~(r) by a (set of) slowness anomaly function(s). Let the approximation of ~(r) be 
represented by, say M(r). If we would exactly specify ~§(r) and substitute it in (7), the 

'inversion would only lead to estimates of ~I' ~tl and hk • Rather we want to use a 
parameterization that leaves some constants to be determined through inversion, e.g. invert 
for the slowness values in cells of fixed spatial dimensions. 

An elegant treatment of this problem can be accomplished using the mathematical tools 
of linear functional spaces (e.g. Nolet 1985). Let «I> denote the set of square integrable 
piecewise continuous slowness fields that are defined on the Earth's interior, VEarth • We 
want to approximate any p(r)E«I> (where rEVEarth ) by a set of predefined functions. To 
achieve this we choose a set of N linearly independent slowness functions 
Ij (r), j=I, ... ,N. For instance, the Ij (r) can be non-overlapping cells with constant 
slownesses. The I/r) constitute a basis of a subspace n of «1>. For any approximation we 
need a measure that expresses what any two functions p (r), q (r) E «I> "have in common". 
This can be accomplished using the integral inner product: 
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<P, q > = I p (r) q (r) d3r (8a)
 
V

Earth 

with an associated function norm defined by 

Ip I=<p,p>'h (8b) 

Assume that the I j are orthonormal in the sense 

</,.,1",> =0,.". (9) 

where 0,.". is the Kronecker symbol. If the Ij are not orthonormal we can always construct 

an orthonormal basis from them (e.g. Nolet 1981). 
An approximation .1.f(r) E n of .1s(r) E C1> can be obtained by projection of .1s(r) on 

the basisl/r) as 

N 

.1.f(r) = L Sj I/r) (lOa) 
j=l 

(lOb) 

Of course how accurate the approximation is depends on the choice of the I j (r). The error 
due to the model choice itself, regardless of errors in the data, is at any location r: 

N 

.1sE(r) = .1s(r) - L Sj Ij(r) (lOc) 
j=l 

For future considerations it is useful to calculate the norm of M 

N 
I~.f I=CLsl)'h (lOd) 

j=l 

where we have used the orthonormality (9). 
We can express equations (7a) in terms of the projection coefficients by using (lOc) 

which leads to 

N 
Edj = L Sj Aij + rl' + dj + Ej i =1, ... ,M (lla) 

j=l 

where 

A jj == I I/r) dl~ (lIb) 
L (x~ ;SD ;x:) 

~E= I .1sEd~ (lIe) 

L (x~ ;SD ;xs~ 

Equations (lla) constitute the general set of tomographic equations that is obtained from 
the projection of .1s(r) on the basis functions I/r). The A jj must be computed using the 
reference model. The inversion for the slowness anomaly field is now reduced to estimating 
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the N coefficients Sj (and the y/:) by inversion of equation (I la). Next, the solution ~s(r) 

can be computed from (lOa). Note that we transformed the problem of estimating a 
continuous function M (r) into the problem of estimating the values of a discrete set of 
projection coefficients. The inaccuracy of the approximation is reflected by the delay time 
error djE which is unknown and cannot be inverted for. 

The case of parameterization with non-overlapping cells of arbitrary size is obtained by 
specifying the basis functions as (Nolet 1985): 

Ij (r) = V/h. if r in cell j (12) 

= 0 otherwise 

where Vj is the cell volume. It is easily verified with (8) that the cell functions are 
orthonormal in the sense (9). The projection kernels Ajj can be obtained from (lIb) as 

L·
A .. =-')- (13)

I) V.ll> 
) 

where L jj is the ray path length of the i -th ray in cell j. 
So far, Sj is not the average slowness in the j -th cell. The connection with the set of 

equations that are more commonly used in delay time tomography can be shown easily. Let 
~ denote the average slowness anomaly in cell j. We express ~ in terms of the projection 
coefficients Sj as follows 

3~ =V/ J &' (r) d = V/'''' J ~S (r) Ij (r)d3r l (14)r 
V·ll> 

v cell j VEarth ) 

Substituting equations (13) and (14) in (1Ia) leads 10 

N 

dj = L. Sj L jj + yf + dt + Ej (IS) 
j=l 

The first term in equation (IS) expresses exactly what we intuitively expect from a cell 
parameterization, i.e. the total delay that is acquired by the i -th ray while crossing the cell 
model is a sum of individual cell delays that can be computed in a straightforward way by 
multiplying the average cell slownesses, Sj, with the ray segments L jj • 

The cell parameterization is originally due to Aki et aL (1977) and has been often 
followed. A number of unnecessary modeling assumptions in the original implementation 
(the "ACH method") are discussed by Gubbins (1981) and Koch (1985). 

Cell functions, in a sense, represent a rough parameterization of M(r). Alternatively, 
we can impose the constraint that the heterogeneities are (locally) smooth. This can be 
accomplished by projecting ~s(r) on smoothly varying basis functions. For instance, one 
can use cubic splines (Hovland et aI. 1981, Thompson and Gubbins 1982) or invert (on a 
global scale) for certain spherical harmonic components of the heterogeneities (Dziewonski 
1984, Morelli and Dziewonski 1987). The inversion of the limited number of data may lead 
to sufficiently accurate estimates of the projection coefficients which select the ~s(r)E n 
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that best fits (e.g. in a least squares sense) the data. Slowness anomaly values in the 
unsampled areas between rays can be obtained from the basis function expansion (lOa). 

We may even choose to fit special anomaly functions to the data. Spencer and Gubbins 
(1980) apply an a priori chosen subducted zone geometry of which the dip, strike, width 
and the velocity anomaly of the slab are determined from inversion of the data. 

Using cells is without doubt the simplest parameterization one can think: of. It has the 
advantages of clearness and tractability since it allows simple visual representation of the 
model parameterization and at the same time of the slowness anomaly values that are 
obtained from the inversion of (15). Moreover, it enables easy comparison of the slowness 
anomaly values with the cell hitcount, Le the total number of rays that traversed a cell. The 
cell hiteount proves to be a very important quantity for the inversion problem (Spakman 
and Nolet 1988). We note that cells that are not sampled by rays can be excluded from the 
inversion. 

The use of smooth basis functions has the advantage of obtaining smooth anomalies. 
However, if we choose cells of relatively small size, thereby possibly over-parameterizing 
the model, and at the same time impose additional smoothness constraints on the solution 
we can obtain relatively smooth anomalies (Spakman and Nolet 1988 (Chapter 2), Nolet 
1987). Using relatively small cells will also lead to smaller modeling errors, diE, (Eq Hc), 
which may hold in general for a detailed local parameterization. 

Under-parameterization of the model, Le. by using too large cells or too smooth 
anomaly basis functions may lead to relatively large errors dr For the forward modeling 
this is no problem since we can wish to resolve such large scale anomalies, but, as we shall 
notice in section 1.4, we possibly run the risk of introducing bias in the solution of the 
inversion problem. 

1.3.2 A Bayesian approach to retrieving the slowness anomalyfield 

The projection methods described in the previous section do not take ~s(r) as unknown 
function but, instead, ~.f(r) (Eq. (lOa)). Thus, one is inverting for those anomalies patterns 
whose shapes and amplitudes can be fit by a limited number of a priori defined spatial 
functions, neglecting all other anomaly patterns, Le. ~sE(r) (Eq. IOc). This approximation 
leads to (additional) delay time errors diE (Eq. Hc). 

Tarantola and Nercessian (1984) follow a different approach. They propose to invert 
directly for the entire continuous slowness field, ~s(r), without an a priori 
parameterization with slowness functions, thus retaining all models that may possibly 
satisfy (7a). The approach that is followed requires a priori constraints too, which result 
from Bayesian statistical considerations (see Tarantola 1987). The constraints are defined 
by means of model covariance functions that specify our a priori confidence in the 
reference model so' An often used model covariance function has a Gaussian shape: 

C (r,r) = a2exp[-Ihlr-rI 2 /D 2 
] (16)s o 

At every location r, (16) explicitly specifies that So (r) has an a priori uncertainty 0' and 
that the uncertainties are correlated in the neighbourhood r of r on a typical length scale D . 
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For L\s(r) this implies that we restrict in a statistical sense how much (amplitudes::: 0 (cr)) 
and in what way (smooth over distance D) the anomalies are allowed to deviate from the 
reference model. In principle, model covariance functions can be chosen to incorporate all 
a priori information that is available on the velocity anomalies. 

The solution of the linear inversion of (7a) (ignoring yt> can be stated as (Tarantola 
and Nercessian 1984): 

M 

~ST (r) = L aj J C (r;rj) dl~ (17)
So 

j=l L (x~ ;So ;x:) 

where aj is a weight for every ray i. The CXj are constructed from the estimated errors in 
the data, the model covariance functions and all delay times. Using (16) as the model 
covariance function in (17) implies that we construct the solution by integrating along 
"Gaussian ray tubes". The rays that contribute most to the amplitude of the slowness 
anomaly in r travel within a distance D from r. In this way the slowness anomalies can be 
estimated in the unsampled space between the geometrical rays. Of course, the a priori 
restrictions that are imposed have their own filtering effect which depends on the 
specification of the model covariance functions. 

Tarantola and Nercessian (1984) show that the Backus and Gilbert (1970) approach to 
inversion when applied to three dimensional delay time tomography (see also Chou and 
Booker 1979, Gubbins 1981) can be seen as a special case of their formalism, i.e. the case 
where data errors are negligible and where the a priori knowledge is non-existent (i.e. Cs. = 
constant). 

The implementation of this Bayesian view on delay time tomography is based on a 
functional representation of quantities (Tarantola 1987). How it should be extended to 
include discrete parameters as the source mislocation illf./ is not obvious. 

The comparison of (17) with (lOa) indicates that (17) can also be interpreted in terms of 
a projection of the slowness field on basis functions. In the case of (lOa) these are 
subjectively chosen functions that, however, do not depend on the data. In (17) the basis 
functions (Le. the integrals as a function of r) depend on the reference ray path and the 
model covariance function (e.g. D and cr). The Sj in (lOa) are obtained from inversion 
(projection) of the data and determine the best ijchievable approximation of L\s (r) with 
respect to the chosen basis functions (and (8)). Equation (l7) reflects the fact that the 
anomaly field is entirely constructed from the data (the number of basis functions is thereby 
fixed) using a priori knowledge about the uncertainties in both the reference model as the 
data. In fact by specifying the model covariance functions we add (subjective) information 
to the system of equations by means of specifying correlations between the slowness 
anomalies. 

As far as the modeling aspects are concerned, (lOa) results from purely mathematical 
considerations whereas (17) includes a Bayesian statistical viewpoint from the start 
(Tarantola 1987). However, upon inversion of (1Ia) we often incorporate ad hoc Bayesian 
aspects as explicit damping of the solution which forces the solution in the direction of the 
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reference model (i.e. in absence of reliable constraints we prefer a solution that lies close to 
the reference model). We can also select the solution that renders the smallest model norm, 
e.g. minimizes the Euclidean norm (lOd). In this way we obtain the solution of (1Ia) that 
lies closest to the reference model in the sense of the employed model norm. In both 
examples we make use of our a priori confidence in the reference model. The need for such 
additional constraints up on inversion of (1Ia) will be discussed in the next section and in 
Chapter 2. 

We will only consider a model parameterization with slowness functions which leads to 
(1Ia), and therefore a detailed comparison of both approaches to delay time tomography is 
beyond the scope of this thesis. 

1.4 Towards the inversion of delay times 

In the previous section we only considered the forward modeling of delay times and briefly 
discussed the kind of solution one may formally expect to obtain in a linear inversion of 
the equations. In chapter 2 we will extensively discuss the inversion for 0 (H)'l) model 
parameters from 0 (06

) equations that arise from using a cell parameterization of a part of 
the Earth's interior. But before that we can already recognize a number of problems 
associated with the inversion of delay time data. We will discuss them in the context of cell 
tomography, but the observations hold in general. 

The success of a tomographic inversion depends, of course, on how well the solution is 
constrained by the available data (i.e. delay times and rays). In many practical cases we 
will invert for the slowness heterogeneities in areas that are partly densely and partly 
sparsely covered by rays. Dense ray coverage does not imply that the slowness anomalies 
are well resolvable. The illumination of the area by seismic rays may occur along rather 
parallel ray paths, which causes the related tomographic equations to be nearly dependent. 
Alternatively, slowness anomalies in regions that are traversed by relatively few "crossing" 
(independent) rays may be well resolvable. In general we will use many more data than 
unknowns. In spite of this fact, there maybe insufficient data to constrain the model 
parameters independently (e.g. the slowness values in adjacent cells). In this case, the 
inversion problem is underdetermined and an infinite number of slowness fields satisfy the 
equations. The extent to which the problem is underdetermined depends on the detail of the 
parameterization (e.g. using large and/or small cells) with respect to the number of delay 
time data and the associated set of rays. For problems using many cells, 0 (04

), it is 
practical to use a rather uniform cell size allowing both poorly and well sampled cells and 
cell anomaly solutions that are poorly and well resolved by the data. Hence we have to 
cope with the problem of underdeterminancy of the tomographic equations. 

Due to data errors dj 
E + €j the set of model equations is also expected to be inconsistent 

and we have to use inversion methods that can deal with inconsistent equations, e.g. least 
squares methods. In general the tomographic equations lead often to ill-conditioned 
inversion problems where data errors may give rise to large and rapidly varying 
(inaccurate) anomaly amplitudes, for instance, from one cell to another. This, despite a 
model parameterization that serves the purpose of retrieving only smoothly varying and 
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small amplitude anomalies, and the use of many more data than unknowns. 
In order to deal with these problems we must impose additional constraints prior to the 

inversion. This can be done either by adding (subjective) information that uniquely 
determines a solution and/or by selecting a unique solution that satisfies additional 
requirements, e.g. the solution with the smallest Euclidean norm. 

In most cases the inversion of the tomographic equations is performed with a least 
squares method. A requirement for least squares methods to produce an unbiased minimum 
variance solution is that the data errors are uncorrelated, have zero mean and equal 
variance (e.g. Montgomery and Peck 1982). If, for instance, the errors are non-normally 
distributed, - especially if the distribution exhibits longer or heavier tails than a Gaussian 
distribution -, the least squares solution may suffer from the presence of outliers that are 
generated by the non-Gaussian probability density function of the errors. The effect of 
outliers is to "pull" the least squares fit too much in their direction (Montgomery and Peck 
1982). Furthermore, any asymmetry in the error distribution will be mapped into the least 
squares solution. Not all outlying data need to pertain to data errors. Outliers can also result 
from an insufficiently accurate model parameterization, such that some data are too far 
away from any acceptable (forward) model prediction. 

As noted in section 1.1 delay times are not normally distributed nor is their distribution 
symmetric with respect to zero. This observation is obtained by comparing frequency 
distributions of delay times with. Gaussian distributions. Their non-normality has direct 
bearing on the statistics of the earthquake location process (Buland 1986). Since the delay 
times are input for the tomographic inversion problem the non-Gaussian character of the 
delay time distributions need not worry us, unless we have reason to assume that the errors 
in the delay times do not follow the normal law of statistics. In practice, we asswne that 
(most) of the non-normality of their apparent distribution results from "signal" in the data. 
In particular systematic differences between the velocity structure of the laterally averaged 
Earth and the reference velocity model which is (implicitly) used in the earthquake location 
process may explain (part of) the non-normality of the delay time distribution (Zielhuis et 
al. 1988). Hence this delay time "signal" can be inverted for (see also section 1.5). 
However, this is probably not valid for the larger outliers. 

A nwnber of possible causes for errors, £i' with a non-Gaussian distribution, are 
(Jeffreys 1931): phase misidentifications, (temporal) systematic instrwnent errors, and 
misread minute marks on seismograms. Another cause for errors may be systematically late 
picks of emergent phases. Moreover, errors, diE, are introduced by the a priori model 
parameterization. These errors can be small and may be unbiased if the parameterization is 
detailed enough, but if not, they can be mapped into the least squares fit A way to study the 
sensitivity of the solution to realistic non-Gaussian noise in the data is discussed in Chapter 
2. In practice, we deal with possible outliers in a simple way, Le. by deleting prior to 
inversion all data that exceed certain (subjective) limits. 

Ideally, we would like to perform a non-linear inversion of the delay times using either 
(7a) or (lla). Methods are discussed by, e.g. Spencer and Gubbins (1980), Tarantola and 
Nercessian (1984), Koch (1985) and Nakanishi and Yamaguchi (1986). These methods all 
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require (repeated) seismic ray-tracing through three-dimensional slowness fields in order to 
compute model quantities. Unfortunately, current ray-tracing algorithms become 
computationally too expensive when we are dealing with 0 (106

) data. 
A linear inversion problem can be posed as a matrix inversion problem. For a relatively 

small number of model parameters attractive algorithms, like Singular Value 
Decomposition, enable a full matrix inversion and formal calculations of a posteriori errors 
(e.g. Aki et al. 1977, Spencer and Gubbins 1980). For models using many thousands or 
even tens of thousands unknowns, explicit storage of matrices for inversion in the computer 
memory becomes practically impossible. Solution methods that do not involve explicit 
storage of large matrices are then needed (e.g. Nolet 1985). In the following Chapter we 
will study the characteristics of such methods and apply them to a large scale tomographic 
problem. 

1.5 Model validity 

In section 1.2 we made the following basic assumptions in the derivation of a model for 
delay time interpretation: (i) the ray approximation is a valid description for wave 
propagation, (ii) Fermat's Principle may be applied to obtain (5) and (iii) the mislocation Xl 

is small enough to drop second order terms in the Taylor expansion of the travel time. 
These assumptions constrain us to accept as solutions to the inverse problem only those 
slowness anomalies that are of relatively small amplitude and do not vary significantly on 
the length scale of the mislocation vector. If these assumptions hold, the success of the 
model still depends on the question whether computed delay times are unbiased estimates 
of true delay times (section 1.2). 

Little is known about the (non-trivial) admissible slowness anomalies that satisfy the 
application of Fermat's Principle to obtain (5). In synthetic experiments involving non­
linear inversion of noise-free delay time data Koch (1985) and Nakanishi and Yamaguchi 
(1986) report a considerable increase in resolution if the true ray geometry is employed in 
imaging slowness contrasts on the order of 5-7%. In the presence of noise the resolution 
improvement becomes less significant when the standard deviation of the noise is 
comparable to the second order error in the travel time that would result from applying 
Fermat's Principle to obtain (5). Thompson and Gubbins (1982) performed both linear and 
non-linear inversions of delay times for the velocity structure of the lithosphere beneath the 
NORSAR array. Peak to peak: slowness anomaly contrasts on the order of 10 % are mapped 
by both methods. With synthetic data the non-linear inversion results achieve a better fit to 
the data. When using real data the anomaly models obtained from linear and non-linear 
inversion posses marked differences. However, due to data errors and poor resolution, they 
do not differ substantially in their ability to fit the data. The inference we can make at this 
point is that the noise level in the data controls how far we can go in violating Fermat's 
Principle without getting results that differ significantly from those obtained from the non­
linear inversion. We note that the noise includes the modeling errors, dr Therefore, the 
detail that we put in the parameterization is also of influence. To keep on the safe side, the 
above results indicate that in the presence of noise we can perform a linear inversion for 
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slowness anomalies that are on the order of a few percent. 
In the case that the reference model deviates systematically over large distances from 

the Earth's velocity structure, the computed ray geometries also deviate systematically 
from the true ray path and we cannot rely on the application of Fermat's Principle any 
more. Zielhuis et al. (1988) determine an improved upper mantle reference model for S 
wave velocity beneath Europe from S delay time data. Deviations between rays paths 
computed from the Jeffreys-Bullen model for S waves and from the improved model can 
be as large as 50 to 100 km over considerable distances. The associated differences in 
travel time are on the order of the S delay times and, hence, not of second order which is 
required for a valid application of stationarity Principle of Fermat. These deviations were 
largely caused by the rather pronounced Low Velocity Zone under western Europe and we 
expect this effect to be much less for P delays. 

The assumption that rays are of infinitely small width (geometrical ray approximation, 
limit of zero wavelength) enables a mathematically tractable model parametrization bilt it is 
physically unreal. Nolet (1987) estimates that for a wavelength of 10 km the maximum ray 
width varies between 36 to 112 km for ray lengths of 1000 km to 10000 km, respectively. 
True delays are acquired by sampling the Earth along the entire ray width, which imposes 
constraints on the roughness of the anomalies and maximum spatial detail that can be 
resolved from inversion of the data and, hence, on the detail put into the model 
parameterization. We can amend a cell model parameterization with respect to the finite ray 
width by applying a smoothing procedure to the slowness anomalies concurrently with 
inverting (6) (Spakman and Nolet 1988, Chapter 2)). We rather welcome this since it 
stabilizes the inversion and it also filters the effect of rapidly varying anomalies. Instead of 
using ray paths one might also consider to account for the finite ray width by replacing the 
line integrals in (11) by volume integrals over e.g. Gaussian ray tubes. At present, for data 
of O(lO~, this is computationally too expensive. 

A serious problem concerning the ray approximation is discussed by Wielandt (1987). 
He shows that waves diffracted from the boundaries of low velocity heterogeneities may 
arrive earlier than the transmitted wave which gives rise to a smaller true delay time than is 
acquired by the geometrical ray. A systematic underestimation of low velocity 
heterogeneities in tomographic reconstructions should result when inverting true delays 
using the ray approximation. As yet, this is not inferred in tomographic results. Diffracted 
waves from high velocity anomalies do not arrive earlier behind (as viewed from the 
source) the heterogeneity than the geometrical ray. However, laterally to the geometrical 
arrival diffracted waves may again be the fastest wave (from which the delay time is 
calculated). Wielandt remarks that this may result in an overestimation of the spatial size of 
the imaged high velocity anomaly. 

This brings us to the question whether computed delay times are unbiased estimates of 
true delay times. Wielandt's results imply that the distribution of true delays is likely 
biased towards negative values due to faster arrivals of diffracted waves. A set of estimated 
delay times that is derived from locating one earthquake tends to be distributed around a 
value near zero. This is necessarily so because during the minimization process any value 
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they have in common (i.e. with respect to their assumed a priori statistical distribution) will 
be assigned to the estimated origin time (e.g. Buland 1986). Hence, the location procedure 
more or less centers the true delays around O. This explains why low velocity 
heterogeneities have comparable amplitudes to high velocity heterogeneities in large scale 
tomographic reconstructions, which is in contrast to what one expects from Wielandt's 
results. 

1.6 Summary and discussion 

The main purpose in this Chapter is to elucidate the basic principles of delay time 
tomography, the inherent complexity of the delay time data and the problems one may 
encounter in the inversion of delay times (without dwelling on the technical aspects of 
inversion). We note that we restricted this discussion to three-dimensional delay time 
tomography using data derived from earthquakes. 

A linearized model for interpretation of delay times is derived that treats a delay time as 
the sum of four contributions (eq. 6). The first contribution is the time delay which is 
acquired along the reference ray path that originates from the reference source location and 
which is due to the slowness anomalies of the actual Earth with respect to a reference 
slowness model. The error that we make by taking the reference source, instead of the 
(unknown) true location, as the starting point of the ray paths is incorporated in the second 
model contribution, the mislocation term. The third term corrects the delay time for the 
origin time error and the fourth for any possible systematic station influences. In this 
derivation we had to drop a non-linear term. This term may become important in regions 
with large amplitude heterogeneity contrasts. Every model contribution is equally 
important. In particular, the mislocation and origin time terms are strongly connected to the 
cause of delay times and must always be included. This also important from the viewpoint 
of delay time inversion. Spakman and Nolet (1988) show that the apparent reliability of 
tomographic results obtained without inverting for the event mislocation error is likely to 
be an overestimate of actual reliability. 

We briefly described the two approaches commonly used in three-dimensional delay 
time tomography, i.e. the projection of the slowness field on a set of data-independent 
slowness functions and a Bayesian approach. We noted that both approaches use subjective 
means to accomplish an inversion of the delay time model equations. The first method 
assumes that one can approximate the actual slowness anomaly field by a number of 
predefined slowness anomaly functions. The Bayesian approach assumes that we can define 
our a priori confidence in the shapes and amplitudes of the (unknown) slowness anomaly 
field. In principle, the degree of subjectivity of both methods can be small. Current 
inversion algorithms allow inversions with an enormous number of model parameters, 
hence we can use, e.g. very small cells to approximate the slowness anomalies (as far as the 
data allow this). In the Bayesian approach we can compute the slowness covariance 
function after the inversion, which expresses the reliability of the inversion result. It can be 
used as a priori model covariance function (updated confidence) in a successive inversion 
with new data. 
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In this Chapter we noted a number of uncertainties that make the interpretation of 
tomographic reconstructions of the Earth's interior very complex. Data errors and lack of 
independence of the tomographic equations lead to amplitude errors in the estimated 
slowness anomalies and lack of spatial resolution. Moreover, we cannot feel completely 
confident that the delay times are unbiased estimates of true delays. Hence, part of the 
slowness solution obtained may result from other causes than the Earth's anomalous 
velocity structure. In Chapter 2 we will further complicate these problems by 
demonstrating that the solution obtained also depends on the way on which we invert the 
tomographic equations. 

In spite of all these problems large scale delay time tomography has provided us with 
encouraging results of velocity structures that correlate with other observables both on a 
global (e.g. Hager et al. 1985) and on a more regional (e.g. Spakman et al. 1988) scale. 
Moreover, we will demonstrate in Chapter 2 that even delay times that are heavily 
contaminated with errors contain significant information on the Earth's velocity structure. 
For an overview of achieved tomographic results we refer to Thurber and AId (1987) and 
for more technical aspects and applications to Nolet (l987b). 
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Chapter 2 

Imaging algorithms, accuracy and resolution in delay time 
tomography 

W. Spakman and G. Nolet 

In this chapter we will discuss a linearized tomographic method for the simultaneous 
inversion of delay time data in body wave velocity, earthquake relocation parameters and 
station corrections. We apply this method to investigate how well two different iterative 
least squares algorithms are able to solve tomographic problems in which many model 
parameters and a large amount of data are used. Specifically we will demonstrate how 
estimates of accuracy and spatial resolution can be obtained and discuss the different 
image-distorting effects of the employed algorithms in the results of tomographic mapping. 

2.1 Introduction 

Tomographic images of the Earth's interior reflect, apart from true velocity heterogeneities, 
the effects of data errors, imperfect illumination by seismic waves, model parameterization, 
linearization and algorithm performance. These influences cannot be separated easily and 
often result in artificial anomalies in the final image with amplitudes comparable to those of 
the velocity heterogeneities we seek to resolve. If we also realize that, up to now, large 
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scale tomographic results are not often supported by any attempt to estimate the spatial 
resolution in the inverted model, it is not hard to understand the reluctance one feels in 
accepting tomographic images as an accurate portrayal of actual velocity heterogeneities, 
or even of their sign. 

Obtaining an image is not the most difficult problem in the process of a tomographic 
research. The major problem lies in identifying the influence of all of the above mentioned 
effects in the final image. In this chapter we will attempt to tackle some of this problem 
from a practical point of view. When using many model parameters in seismic tomography, 
at present no feasible method exist that allows us to estimate the spatial resolution directly 
from the data (see also Nolet 1985). However, we may study the image-distorting effects 
by applying sensitivity tests to the system of equations using synthetic models of velocity 
heterogeneity. We will use this technique to study the spatial resolution in an experiment, 
which is typical for large scale body wave tomography. In the same experiment we will 
focus our attention on how well two different iterative algorithms perform on the same 
tomographic problem. This will enable us to explicitly study the influence of the equation 
solvers on the tomographic results. The algorithms in question are the conjugate gradient 
solver LSQR of Paige and Saunders (1982) and a member of the SIRT family of 
backprojection methods. Both methods are being used in large scale body wave 
tomography using P-wave data. Spakman (1985) applied LSQR to solve for the upper 
mantle heterogeneities in Eurasian-Mediterranean area. SIRT has been used by Clayton and 
Comer (1984) to image the Earth's lower mantle heterogeneities. 

2.2 The tomographic problem 

The data commonly used in body wave tomography are delay times, Le. the difference 
between the estimated travel time of a seismic wave and the computed travel time from a 
(not necessarily radially symmetric) reference Earth velocity model. In the ISC earthquake 
location procedure the delay times are the residuals of the minimization process in which 
observed travel times are compared to the Jeffreys-Bullen travel time tables. Although 
these delays contain observational errors and their values depend on the event location 
procedure, in seismic tomography we also rely on their descriptive value for the Earth's 
lateral heterogeneity. 

We consider the tomographic problem arising from a division of a part of the Earth's 
interior into a large number of cells. Our interest is to estimate the slowness 
heterogeneities in these cells by inversion of the delay times. The lateral heterogeneity of 
the Earth induces a delay time dj (i -th ray), which we can divide into 

(1a) 

djM is the delay time caused by the lateral heterogeneity in that part of the Earth that is 
covered by the cells, dt is the error in origin time and event location, caused by the fact 
that we use a reference model instead of the real Earth to locate the earthquake, and dP 
represents the delay time acquired by the ray segment that does not intersect the cells. 
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We assume that the actual Earth's heterogeneous velocity structure deviates only by a 
small amount from the reference model. We can linearize the ray-integral for the travel 
time with respect to the reference velocity model by applying Fermat's principle leading to 
a description in terms of the reference ray path L i and obtain an approximate expression of
dr in terms of the cell slowness anomalies s/ (l-th cell) as 

Ndr = 'LLj/s/ (lb) 
/=1 

in which Lj/ is the length of the (reference) ray path segment in celli. Although the total 
number of cells N is large, only 0 (N 113) L i/ will be non-zero. 

We can express dt in terms of the change in total travel time T due to a small change 
g(Mo,M ) in the source vector L(to,r ), where to is the origin time and r the source s s s 

location vector. In general we shall use a local cartesian coordinate system so that we write 
L=(to,xs,ys,zs)' We then have for the j-th event and the i-th ray in first order 
approximation: 

4 

df = V"Xlij 'gj = 'L G[jgr (1c) 
m=1 

where Vx contains derivatives with respect to the components of x.. and where Gij is the 
m -th component of VXTij evaluated at the (reference) source location rj. Note that any 
combination of j and m represents one unknown, hence the j -th event adds 4 unknowns 
gr, origin time error respectively and source location error, to equation (la). 

The last term in (la), dP, is difficult to parameterize because we do not plan to cover 
the remaining part of the Earth's volume with cells. Yet for an observing station outside the 
cell model we may at least attempt to invert for the 'near' station heterogeneity by placing 
a cell beneath the station, replacing dP by 

(ld) 

with HiJr. the ray path segment of ray i in the station cell k with slowness anomaly hk • 

Existing estimates of station delay time corrections (e.g. Dziewonski & Anderson 1983) 
can be used to correct the delay time prior to inversion. In that case the station delay 
correction (ld) can be deleted from (1a). 

Combining equations (la-d) we arrive at the basic set of equations describing the 
linearized cell-tomographic problem, which for M rays reads: 

N 4 

di = 'LLi/S/ + 'LG[jgr+Hilchk , i=l,... ,M (Ie) 
/=1 m=1 

where j and k are uniquely determined by the ray index i. 
In large scale body wave tomography the number of rays M amounts easily to 0 (106) 

and this system of equations has to be solved for NT = N +4N£+Ns , 0 (104
), model 

parameters, where NE is the number of events and Ns is the number of stations for which a 
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station delay time correction is estimated. 
At present only radially symmetric reference models are used in large scale delay time 

tomography. The determination of the delay time data, the event location and the 
calculation of the reference ray paths, L;, depend on the choice of this velocity model. 
Locally, both laterally and in depth, the average Earth's velocity structure may differ too 
strongly from the employed model, which may induce (i) systematic errors in the event 
location which (ii) biases the estimation of the delay times toward the reference model and 
(iii) may cause the actual ray paths to differ systematically from the ones we employ in (Ie) 
(Chapter 1). 

These are highly important problems which cause hardly traceable bias and artifacts in 
the slowness solution. In this chapter we shall not deal further with these complications, but 
rather concentrate on how well we can solve (1 e) assuming that it is a correct description of 
the effects of the Earth's lateral heterogeneity. 

One characteristic of tomographic experiments is that (i) many unknowns are not 
resolved, despite the fact that M »NT and (ii) that data errors are large so that a large 
redundancy is needed to obtain a reliable statistical estimate. The addition of station and 
event corrections has an important functi'ln. It allows part of the data to be explained by 
other factors than lateral heterogeneity. For as far as these added unknowns to the system 
(Ie) are independent they will certainly improve the data fit. But results to be discussed 
later show that they also add an ambiguity: on the one hand their inclusion improves or at 
least does not impair the data fit, but on the other hand our experiments show that most of 
the event and station corrections are among the least constrained unknowns and hence their 
estimation may absorb part of the delay time which may also be explained by velocity 
heterogeneity. In a joint inversion, as we consider here, this will have a damping effect on 
the estimation of the heterogeneities. Since the corrections have a firm physical basis we do 
not think this is too conservative but rather welcome the damping effect. 

As for the event corrections, we expect these to be correlated with the lateral 
heterogeneity, and thus with the event location. In large scale tomography the number of 
events can be large, 0(104

), and since an event adds 4 unknowns to (Ie), we would 
probably overdo the damping if we would attach corrections to every event separately. This 
can be prevented by assigning the same corrections to all events within a cell, and hence 
instead of relocating every single event, we estimate the 4 corrections for event 'clusters'. 

As an alternative for a simultaneous inversion for heterogeneity, event, and station 
corrections, one may iterate between relocating events and estimating the slowness 
heterogeneity, using the updated slowness model in every next relocation step 
(Dziewonski, 1984). Convergence of this process will lead to a quasi simultaneous 
inversion of heterogeneity and event relocation parameters, but there is poor control on 
how much of the delay time that is actually due to heterogeneity is finally absorbed in the 
relocation of events or vice versa. 

Generally speaking (1e) can be applied to a limited part of the Earth's interior as well 
as to the entire Earth. However applications of (Ie) to very large volumes would at present 
necessarily require a parameterization in large cells. This may be sufficient for lower 
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mantle and core tomography, but it is certainly unwanted for upper mantle imaging, since 
short wavelength heterogeneities certainly exist in the upper mantle. And then, even if we 
could parameterize the entire upper mantle in cells of lOOxlOOxlOO km, an exercise which 
would involve 356,000 unknowns for merely the slowness anomalies, this would result in a 
model that combines regions with a dense ray coverage (Europe, N. America) with regions 
that are covered very badly (oceans). In upper mantle tomography one might as well apply 
(Ie) to a relative small region (i.e. compared to the entire upper mantle) taking advantage 
of the possibility of using 'small' cells, and try to correct for the delay time contributions of 
those ray path segments outside the cell model. 

If we have events located inside the cell model and an observing station at teleseismic 
distance that 'sees' the cell model with a relatively small solid angle, most rays will acquire 
delays from the same mantle region outside the cell model. We anticipate that the station 
correction will absorb most of the contribution to the delay time which is caused by the 
intermediate mantle region. The same holds for an event at teleseismic distances which is 
observed by stations at the surface of the cell model. In this case the estimation of event 
mislocation and origin time may be biased, but conveniently absorb the influence of the 
mantle heterogeneities outside the cell model. 

2.3 Least squares inversion 

We will set up a system of equations for least squares inversion of (Ie). In matrix notation 
(Ie) can be written as: 

Ax=(L I G I H) x=d • X= [g] (2) 

with L the matrix of ray cell path lengths, G the matrix of relocation coefficients, H the 
matrix of station correction coefficients, (s g h l the corresponding parts of the solution 
vector x and d the delay time vector. 

Eq. (2) will be solved by least squares. If the data errors have zero mean and if (AT Ar1 

exists the least squares solution of (2) is x = (AT Ar1ATd. (e.g. Draper and Smith, 1982, 
page 87). In tomography, however, AT A is usually singular. We may obtain a Bayesian 
estimate of the solution by adding our a priori expectations Ix=O as 'phoney' data to 
equation (2). In addition, if we scale (2) with a priori uncertainties we find: 

(3a) 

where Fd and Fx are the covariance matrices of the data and model parameters, 
respectively and 11 is a constant governing the amount of solution damping that is applied 
by the inclusion of Iz=O. Note that we do not need to compute the inverse F;'h explicitly. 
After solving the second equation of (3a) for z, we obtain the solution x from x = Fi'hz. 
Equation (3a) has a unique solution, which can be shown to be the maximum likelihood 
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estimate if the errors in both types of 'data' have a Gaussian distribution. This estimate is 
biased, however, towards O. 

We will solve our least squares problems with two different iterative row action 
methods, Le. SIRT and LSQR, whose details will be discussed in the next section. Both 
methods possess intrinsic damping properties whose effect on the solution decreases with 
increasing iteration number (Van der Sluis and van der Vorst 1987). Since we anticipate 
stopping the iterative least squares processes after a relatively small number of iterations, 
we may take advantage of the intrinsic damping properties to obtain a solution of (2) that is 
not biased by explicit damping, by selecting among all possible solutions the x that 
minimizes xT F;1X • Again, with z = F;'hx, we then solve: 

(3b) 

subject to the condition Min (zT z). This equation is the same as (3a) but with 11=0. The bias 
introduced by implicit damping is one of the algorithm characteristics that we shall study in 
this paper. 

Equations (3a) and (3b) are subjective choices for setting up a least squares system of 
equations. Alternatives exist which favour a more elaborate minimum model criterion (for 
a brief review see NolelI987). 

We will now discuss our a priori estimates of F%. Let us write 

F;S) 0 ] 
F% = F;S) (4) 

[ o F;h) 

with F~s)=diag{f/s», F%~)=diag{fj~» and F~h)=diag{f1h» in correspondence with the 
subdivision of x in (2). The notation jm denotes the m -th relocation parameter of the j -th 
event 

We would like to scale the model parameters to a priori unit variance using for F% the 
covariance matrix of x, but, since we do not have the reliable uncertainty estimates nor 
information on the correlation between the individual Xj , we assume F% diagonal and apply 
a simple, though sensible, uniform length scaling using the subjectively expected slowness 
amplitude of Sz of 0.002 lan/so To this purpose, we scaled the amplitudes of the elements of 
g, using a priori estimates of I second for the standard error in the origin time and a 10 Ian 

mislocation of the source coordinates. Let the scaling factors be denoted by Y~, m=I,.. ,4 
then f j~ )='Ym • 

We also wish to control the expected trade off between cell slowness heterogeneity s, 
the relocation parameters (now F;S )-'hg ) and station corrections h if these are not 
independently constrained. A scaling of the latter two, both with one constant, say J..l and lC, 

1respectively, will accomplish this. Now f j~ )=J..l-1Ym and It(h )=lC- • The starting value for 11 
and lC in the present scaling is 1. But this can (subjectively) be changed, after some 
experience has developed with test inversions, on the basis of the amplitude behaviour of 
the different parts of x. 
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In the case that cells of different sizes are involved, the different ray sampling, 
combined with the model minimization, tends to attribute larger slowness anomalies to 
large cells with respect to the anomalies in the smaller ones. Adjacent cells of different 
sizes that are not spatially resolved may hence develop a heterogeneity contrast which is 
unwanted. We may partially prevent this by scaling the cell heterogeneities SI of z by some 
typical cell size dependent number 0/. One choice is taking 01 =VI-V>, VI being the cell 
volume of the l-th cell. This scaling conforms to projecting the cell part of the solution on 
the space of all possible Earth models spanned by the orthonormal 'cell-functions' 

1h
C/(r)=vl- ifr is inside cellI and C/(r)=O elsewhere (t, Nolet, 1987). We will use the cell 
volume scaling only in the case that we solve our tomographic problem with the LSQR 
method, since, as we shall discuss later, the SIRT algorithm employs implicitly its own 
cell-size dependent scaling. 

We adopt f/s)=V,- I (and I in case of the SIRT method), i.e. x,=zdtl>. Note that we 
have now destroyed the property that the components of z are of approximately equal 
absolute magnitude, since we now have expected slowness heterogeneity amplitudes on the 
order of 0.002xvth 

, but the expected amplitudes of Zjm (=y'l2gjm ) are still on the order of 
0.002. This is easily amended by an additional scaling of f j~) with the reciprocal of the 
average cell volume V-I. 

With F;s)=diag(vl-I), F;g)=diagij.l-1v-1Ym) and F;h)=diag(K-Ivk-ll, F% as in (4) and 

Fd=I (assuming unit variance in the data), the system (2) is transformed to 

x =FV'z 
% 

(5)
AF;nz =d 

In solving (5) we wish to minimize zT z (=xTF;IX). 

Due to large errors in the delay time data and often poor station-event distribution we 
may not expect to resolve more from (3) than rather smoothly varying anomalies. Using 
our physical intuition, we also expect, apart from regions where large slowness 
heterogeneity contrasts may be expected (e.g. slab regions), that adjacent cells will have 
correlating velocity heterogeneities. On the other hand, errors and resolution artifacts may 
lead to poorly constrained solutions in cells, more than once resulting in large heterogeneity 
contrasts between those cells and neighbouring cells with good ray coverage. 

We can combine expectations and physical intuition and at the same time constrain (Le. 
stabilize) the inversion by applying a smoothing procedure to the solution z. There are two 
possible ways to perform this. A posteriori smoothing of z will result in a smooth picture 
but also destroy the least squares character of the fit. The alternative is to include 
smoothing in (3) and obtain a smoothed z which is also in accordance with our least 
squares procedure. This approach is easily incorporated in (5). 
Let S be a smoothing operator (e.g. a matrix with row sums I) that maps zon z. Then we 
have 

t In terms of the quantities used in Chapter I: we choose to minimize Ls?VI =Lsl rather than 

"Ls[ (section 1.1.3, cf equations (14) and (10d». 
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z = Sz (6) 
AF~hSZ =d 

We solve the last equation of (6) for z subject to Min (zT z) and obtain the smoothed 
solution from z =Si, and finally the 'physical' solution from x=F;'hZ• Notice that the 
approach of this smoothing procedure is an another example of scaling the columns of A 
(cf. 3), in this case fixing correlations between the unknowns. Indeed one may look upon 
S2, or its generalized equivalent, as an (our subjective) approximation of the covariance 
matrix of z. We remark that we take the smoothing operation S confined to the cell 
heterogeneities, thus if we write zas i=(i(s >'i(81,z(l· », then Sz=(z(s >,z(g) ,z(" ». 

The last adaptation we will perform of the tomographic system of equations (6) 
concerns a row averaging procedure. Since in most seismic regions events are closely 
clustered, we may sum rays from predetermined event clusters arriving in one station into 
one row of the last equation of (6). In the same way we combine the corresponding delay 
times into one delay time belonging to what one may call a composite ray. Any desired 
row scaling can easily be incorporated (i.e. we may take a weighted combination of rays 
and corresponding delay times to construct the composite ray). This procedure serves the 
purposes of averaging the data errors and smoothing the solution, and it also reduces the 
number of rows involved in the last equation of (6). Mathematically this row condensing 
operation can be expressed as a left multiplication of the third equation of (6) with a M 'xM 
matrix D. 

Then we finally arrive at the tomographic system of equations, which we will further 
employ in this chapter 

z =SZ 
(7)

A =DAF'hS 
~ 

Az =Dd=d 

from which we want obtain x by least squares inversion of AZ=d subject to minimizing
zTz. 
2.4 Algorithms 

We present a brief introduction of the LSQR and SIRT algorithms which we will 
investigate. 

In large scale tomography, using many parameters and data, A is sparse and very large 
(0 (10+1<) elements is common). Finding a solution of (5) using techniques that require 
explicit memory storage of A will therefore not be possible. Row action methods like 
LSQR and SIRT require only access to one row of A at a time and consequently A may 
reside on secondary storage. Row action methods are iterative methods. At each iterative 
step an approximate solution of (7) is obtained, which is used as a starting point for the 




