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Preface

These notes are meant to form the material for an introductory course on
quantum statistics at the graduate level� aimed at mathematical statisti�
cians and probabilists� No background in physics �quantum or otherwise� is
required� They are still far from complete�
Quantum statistics as we mean it here is statistical inference based on

data obained from measurement of a quantum system� The reader is proba�
bly aware that quantum physics makes stochastic predictions about reality�
The actual outcome of an experiment involving measurements on some small
number of elementary particles cannot be predicted� Rather� quantum me�
chanics allows one to compute the probability distribution of the outcomes�
This probability distribution will depend on a speci�cation of the system
under study and on the chosen measurement apparatus� Often such a spec�
i�cation depends on parameters which are not known in advance and then
the data could be used to gain information about them� These parameters
could correspond to classical� macroscopic features of the system producing
these elementary particles� Examples could be the orientation or position
of apparatus producing a stream of photons in a quantum communication
system� or properties of some distant star or other astronomical object so
distant or weak that we can only detect a �nite number of photons from this
source during a �nite observational period�
In the past� physical predictions made on quantum systems typically in�

volved huge numbers of identical particles and focussed on their collective
behaviour� The random nature of the outcome was submerged by the law
of large numbers� and the aim was to compute expectated values and cor�
relations� Thus quantum physics provided exact predictions of non�random�
aggregate properties� Statistical questions might have been important but
the underlying stochastic nature of the phenomenon under study at the level
of individual particles did not play a role� Nowadays however experimenta�
tion and theory are focussing more and more on manipulating truly small
quantum systems consisting of just one or a really small number of atoms�
electrons� photons or whatever� Technology will surely follow� Theory and
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speculation on such topics as quantum computing� quantum cryptography�
and quantum communication channels� far outrun experiment and technol�
ogy but these are also developing fast and will in the near future� we believe�
supply real life statistical problems prototypical forms of which are studied
in these notes�
Does the reader need a background in physics in order to study quantum

statistics� We believe not� A beautiful feature of quantum mechanics is that
it can be described abstractly on the basis of a fairly straightforward mathe�
matical apparatus� the mathematics of linear operators on a complex Hilbert
space �the so�called state�space� together with some elementary probability
theory� Moreover� when we are concerned purely with 	discrete
 properties of
a quantum system such as spin of a �nite number of electrons� polarization
of a �nite number of photons� the energy level �ground state or excited� of a
�nite array of atoms at very low temperature� and can ignore other aspects
of the system under study� �nite�dimensional Hilbert spaces su�ce� Thus
the mathematical model can be formulated in the language of �nite dimen�
sional complex vectors and matrices� Already in such a �nite�dimensional
set�up one can pose and try to solve important and non�trivial problems of
quantum statistical inference� And these problems could turn up in quite
diverse applications since the basic model could apply to di�erent aspects of
quite di�erent systems� We do not yet know if the particular 	toy
 problems
we consider will turn up in practice in the coming years� but we are con�
�dent that what we have learnt from their study will be of value in future
applications�
The notes concentrate on the natural statistical problems arising from

the simplest possible quantum settings� Moreover we study whether vari�
ous key notions in mathematical statistics
such as exponential families or
transformation models
have extensions or analogues in quantum statistics�
In particular the statistical notion of information� and information bounds
based on the Fisher information matrix� have already turned out to be very
useful in quantum statistical design and inference problems� As we have said�
the results of measurement of a quantum system are random� and quantum
theory tells us how to compute the resulting probability distributions� Con�
sequently quantum statistical inference is 	ordinary
 statistics applied to the
kind of models which turn up in quantum mechanics�
Quantum theory places fundamental limits to the amount of information

which can be obtained from a single quantum system� We have a very precise
description of the class of all possible measurements on a given quantum
system and this generates fundamental limits to the precision with which
the state of the system can be determined through measurements on the
system� Moroever one can distinguish subclasses of measurements which
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might be more easy to implement in practice� Thus 	experimental design

problems with a clean mathematical description arise very naturally�
Despite the enormous success of quantum mechanics� its foundations are

still the subject of much controversy� This could be either an appealing or
an o��putting feature of this problem area for readers� depending on their
personal inclinations� Fortunately we do not need to take sides concerning
foundational aspects of quantum mechanics� We simply take the model of
quantum mechanics as a description of empirical reality� However the reader
who is interested in foundational aspects
which involve what we mean by
randomness and determinism� and hence could be of interest to philosoph�
ically inclined probabilists and statisticians
can meet all the paradoxical
features of quantum mechanics arising from wave�particle duality such as
entanglement� non�locality� and the measurement problem� in the context
of simple �nite�dimensional models� The controversies concern the proper
interpretation and consistency of this mathematical picture� We plan to in�
clude some introductory material on these matters but emphasize that it is
not necessary to take sides or even become aquainted with these problems in
order to solve concrete quantum statistical problems� just as quantum physi�
cists manage very well to make perfect predictions about the world without
any agreement on the interpretation of their theory�
In recent years a large body of theory has been developed under the name

of quantum probability� This sophisticated mathematical theory� which cer�
tainly has much to say about quantum physics itself� is largely inspired by a
powerful analogy between the mathematics� in quantum theory� of so�called
states and observables� and the mathematics of probability measures and ran�
dom variables as studied in ordinary probability theory� One can consider
quantum probability as a generalisation of ordinary probability obtained by
dropping the requirement of commutativity of certain objects� This re�ects
the physical fact that measurement of a quantum system disturbs that sys�
tem� its state changes as a result of the measurement and the sequence in
which one performs certain measurements in�uences strongly the outcomes
one will obtain� Quantum probability theory has however not traditionally
been much interested in the 	ordinary
 probability theory of the outcomes of
measurements� but rather has studied the internal evolution of a quantum
system� and exploiting mathematical analogy has brought into the quantum
world generalisations of classical notions from stochastic processes such as
Markov processes� di�usions� and stochastic di�erential equations� Conse�
quently we will not have much to say on this kind of quantum probability
theory� though we hope to give some introduction to some current develop�
ments in that �eld�



Contents

� Introduction �
��� The Stern�Gerlach experiment � � � � � � � � � � � � � � � � � � �
��� The basic model � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� States � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Measurements � � � � � � � � � � � � � � � � � � � � � � � �

��� Spin half � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� The geometry of spin half � � � � � � � � � � � � � � � � ��
����� Measurement for spin half � � � � � � � � � � � � � � � � ��
����� Polarization� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Problems and further results � � � � � � � � � � � � � � � � � � � ��
��� Bibliographic comments � � � � � � � � � � � � � � � � � � � � � ��

� Observables and wave functions ��
��� Observables and functions of observables � � � � � � � � � � � � ��

����� Obervables � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Decomposition of C d � � � � � � � � � � � � � � � � � � � ��
����� Function of an observable � � � � � � � � � � � � � � � � ��
����� Compatibility � � � � � � � � � � � � � � � � � � � � � � � ��
����� Function of several compatible observables � � � � � � � ��

��� Measuring an observable on a pure state � � � � � � � � � � � � ��
����� Pure states � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Unitary evolution � � � � � � � � � � � � � � � � � � � � � ��
����� Measurement of an observable � � � � � � � � � � � � � � ��

��� Back to mixed states � � � � � � � � � � � � � � � � � � � � � � � ��
����� Schr�odinger evolution of mixed states � � � � � � � � � � ��
����� Measurement of mixed states � � � � � � � � � � � � � � ��
����� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Product states � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Marginalization of a product state � � � � � � � � � � � � ��

��� Repeated measurements � � � � � � � � � � � � � � � � � � � � � ��
����� Repeated and joint measurements � � � � � � � � � � � � ��

v



vi CONTENTS

����� The unconscious quantum statistician � � � � � � � � � � ��
����� Conditioning � � � � � � � � � � � � � � � � � � � � � � � ��

��� Quantum randomized measurement � � � � � � � � � � � � � � � ��
����� Quantum randomization � � � � � � � � � � � � � � � � � ��
����� Generalized measurements � � � � � � � � � � � � � � � � ��

��� Ordinary versus quantum probability � � � � � � � � � � � � � � ��

� In�nite dimensional systems ��
��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Unbounded operators� � � � � � � � � � � � � � � � � � � � � � � ��
��� Observables and states� � � � � � � � � � � � � � � � � � � � � � � ��

����� Summary� � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Chapters to come � � � ��
��� Parametric estimation � � � � � � � � � � � � � � � � � � � � � � ��
��� Exponential families and transformation models � � � � � � � � ��
��� Quantum tomography � � � � � � � � � � � � � � � � � � � � � � ��
��� Quantum stochastic processes � � � � � � � � � � � � � � � � � � ��
��� Future quantum technology � � � � � � � � � � � � � � � � � � � ��

� Hidden variables ��
��� Kochen�Specker vs� noncontextual h�v�
s � � � � � � � � � � � � ��
��� Gleason
s theorem � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� A geometric lemma � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Proof of the Kochen�Specker theorem � � � � � � � � � � � � � � ��
��� Bell vs� contextual local hidden variables � � � � � � � � � � � � ��
��� The Mermin array and other constructions � � � � � � � � � � � ��

	 Quantum Tomography 	�
��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Hermite polynomials � � � � � � � � � � � � � � � � � � � ��
����� Generalized Fourier transforms � � � � � � � � � � � � � ��

��� Tomography � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

References ��



Chapter �

Introduction

In the �rst section of this introductory chapter we will describe a famous
quantum experiment� the Stern�Gerlach experiment measuring the spin of
the electron� Then in the second section we will give some rather abstract def�
initions of quantum state and measurement for a so�called �nite�dimensional
quantum system� In the d�dimensional case� these de�nitions involve various
d� d complex matrices� Our aim in the rest of the chapter is to bring these
two apparently unconnected starting points together� In fact it turns out
that the spin of the electron can be described by the simplest non�trivial
case of the abstract theory� the case d � �� An electon
s spin is always 	up

or 	down
� relative to whatever direction you measure it� just � possibili�
ties� An electron is a so�called spin�half particle� for a spin�j particle� with
j � �� �

� � ��
�
� � � � � one takes d � �j � ��

Before bringing the experiment and the theory together in the case d �
�� it will be helpful in section � to learn some remarkable facts about the
�� � complex matrices� showing how their structure is closely linked to the
structure of orientations and rotations in real three�dimensional space� With
these preparations done we can �nally �in section �� show how our abstract
set�up can be applied to the Stern�Gerlach experiment�
The mathematical model for d � � applies to a huge number of com�

pletely di�erent physical systems� As well as to the spin of electrons� it
applies to the polarization of photons� and to the energy levels of a so�called
two level system� an object at such low temperature that only its 	ground
state
 and a �rst 	excited state
 are relevant� The orientations and rotations in
three�dimensional space which are naturally associated with the same math�
ematical model for all these systems� correspond to 	real
 orientations and
rotations for the spin of a spin�half particle like an electron� However for
other systems there may be no real directions involved at all �the two level
system� or the connection with real directions might be di�erent and incom�

�



� CHAPTER �� INTRODUCTION

plete �polarization� where 	horizontal
 and 	vertical
 play the role of 	up
 and
	down
�� In quantum computation the word qubit is used to represent an ar�
bitrary two�dimensional quantum system in its role a carrier of information�
The phrases 	spin half
 and 	two level system
 are also often used to denote
an arbitrary two�dimensional quantum syste�
In subsequent chapters we will develop the theory more systematically�

but many times coming back to the two�dimensional case for illustration�
Chapter � gives a systematic study of the �nite�dimensional case� while chap�
ter � extends to the in�nite�dimensional case�

��� The Stern�Gerlach experiment

It seems only possible to give circular de�nitions of 	what is a quantum
system
� and what is a measurement of a quantum system� So let us not try
but instead start by discussing in as simple terms as possible an exemplary
special case� measuring the spin of electrons in a Stern�Gerlach device� This
simple example shows that it is di�cult if not impossible to really visualise
what goes on when a quantum system is measured� Fortunately� despite
the impossibility of understanding quantum phenomena in classical terms�
we will see that the mathematical model for these phenomena
at least� the
most simple kinds of quantum phenomena
is very simple indeed�
In ���� Stern and Gerlach carried out an experiment to determine the

size of the magnetic moment of the electron� The electron was conceived of
as spinning around an axis and would therefore behave as a magnet pointing
in some direction� Mathematically� each electron carries a vector 	magnetic
moment
� One might expect the size of the magnetic moment of all electrons
to be the same� but the directions to be uniformly distributed in space�
Stern and Gerlach made a beam of silver atoms move transversely through
a steeply increasing vertical magnetic �eld� A silver atom has �� electrons
but it appears that the magnet moments of the �� inner electrons cancel
and essentially only one electron determines the spin of the whole system�
Classical physical reasoning predicts that the beam would emerge spread out
vertically according to the size of the component of spin of each atom �or
electron� in the direction of the gradient of the magnetic �eld� The spin in
this direction would not be altered at all by passage through the magnet�
However� amazingly� the emerging beam consisted of just two well separated
components� as if the component of the spin vector in the vertical direction
of each electron could only take on two di�erent values�
Changing the orientation of the magnet did not alter the fact that the

beam is split into two components� equally far apart� and of equal size�
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There is no way that a cloud of points in R� �the magnetic moments of
a population of electrons� can project onto just two equally distant points
when one projects them onto a straight line in any direction whatsover� A
�rst conclusion seems to be that the passage through the magnet has changed
the spin of each electron�
Versions of this experiment have later been carried out on other particles�

Depending on the particle under study a possibly di�erent �nite number of
values of spin are observed� One says that an electron has spin half� more
generally� particles of spin k�� where k is some integer are split into k � �
equally spaced beams by a Stern�Gerlach device�
Returning to the electrons carried by silver atoms� let us suppose now the

top beam emerging from the �rst� vertically oriented Stern�Gerlach device�
is sent again through another magnet in the same orientation as the �rst�
Now all the silver atoms emerge in the top beam� This suggests that the
direction of spin of the silver atoms has been changed by passage through
the �rst magnet but is no longer altered by the second� More generally� if
the second magnet makes an angle � with the �rst� then the proportion of
the top beam from the �rst magnet which comes out top of the second �i�e��
with spin in the direction �� is cos������� Repeating the process many times�
using di�erent angles� the picture emerges that after any splitting the atoms
in one of the emerging beams have no memory of their earlier past and have
a state determined in a stochastic fashion just by the last selection procedure
to which they were subjected�
As long as we only split beams non�physicists will not �nd this experi�

ment very though�provoking� since a layperson is perhaps not surprised that
passage through the magnet alters spin into one of two di�erent values� It
appears that we should think of this passage through the magnet as chang�
ing the spin state of the atoms according to some simple Markovian rules�
However if we add the possibility of merging beams new and extraordinary
things happen�
The following discussion for silver atoms and the Stern�Gerlach device is

only a thought experiment� but for other particles such an experiment has
been done� If two emerging beams from a Stern�Gerlach device are made
to recombine by passing them through an exactly reversed apparatus the
result would again be a single beam� indistinguishable from the original� In
itself this may not appear surprising but a further thought experiment shows
that there is something wrong with our idea of a memoryless change of state
during each passage�
Suppose a second magnet is placed horizontally across the path of the

atoms in the upper beam emerging from a �rst� vertical� magnet� The beam
emerging from the second magnet splits into two halves� spin left and spin
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right say� What happens if these two beams are recombined into one� And
then passed through a vertically oriented magnet� The electrons seem to
remember their past and all emerge in the top beam of the last �fourth�
magnet� If the �rst magnet is removed �the one which inititally split the
beam into spin up and spin down particles� of which only the spin up particles
were further treated� then the result would be two outgoing beams�
The picture that the spin of the electron is altered while passing through

the magnetic �eld in a Markovian �memoryless� way now seems untenable�
Is there some complicated mechanism whereby the past history of the atom
is remembered and sometimes taken account of� This doesn
t turn out to
be a fruitful avenue of thought� There is a radical alternative� impossible
to comprehend in classical terms� but which does give the right predictions�
As long as no interaction with the outside world has taken place each silver
atom passes out of the magnet as a wave with components in both beams�
When the beam is stopped by a screen interaction takes place with the many
particles in the screen� irreversible and macroscopic changes take place� and
during the course of this process the wave with two components in the two
beams has to make up its mind whether to be a particle in the lower or
the upper beam� Similarly when we select one of the two beams for further
experimentation� each atom has to decide whether to have taken the one
path or the other� But without the selection� both paths were taken�
A very similar story can be told about polarization of photons� Through�

out history whether light should be considered as a wave or a particle phe�
nomenon has oscillated as new kinds of data became available� The nine�
teenth century view and the view of classical physics is that light is a wave
phenomenon and the experimental fact that sometimes it behaves like a
stream of particles belongs to the twentieth� One can split a beam of pho�
tons by passing it through a crystal of calcite �iceland spar� into two parts
of di�erent polarization� The emergent beams can be selected� Also po�
larization �lters behave as selectors of photons of a particular direction of
polarization� Photodetectors can register the arrival of a single photon at
a detector� We will return to a further description of polarization in later
sections� The mathematical model of states and measurements will appear
the same� except that the correspondence between directions in space and
these mathematical objects is slightly di�erent� rotating a Stern�Gerlach de�
vice through ���� reverses its e�ect� while rotating a polarization �lter ����

leaves its e�ect unchanged �a ��� rotation reverses the e�ect��
The above story is undoubtedly confusing� However let us draw from it

the following conclusions� Particles produced in a laboratory� or arriving at
a measurement apparatus from some external source� have a state� Mea�
surement involves irreversible interaction of those particles with macroscopic
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apparatus and produces outcomes which are random� From the state of the
particles we will be able to compute the probability distribution of the out�
come of any particular measurement which we may carry out� One should
think of the state as a summary characteristic of how the particles were pre�
pared� on the basis of which predictions of the future can be made� Whether
a state can be ascribed to one particular particle or only to a potential stream
of similarly prepared particles is a topic of debate in the foundational liter�
ature� It is connected to the similarly fundamental question of what one
means by probability� We will say that a particular particle has� or is in� a
particular state and use this to compute probabilities of particular outcomes
when a measurement of just that particle is made� Unless the probability
of some event happens to be zero or one� one can empirically interpret the
prediction as being a statement about relative frequencies in a large sequence
of identical repetitions of the experiment� It is in this sense that quantum
mechanics is empirically tested in the laboratory�
Some measurements are selectors
we can separate particles according to

the outcome of the measurement� In that case the state of the particles after
measurement has changed and depends on the selection�
Measurement and selection involve irreversible interaction of the quantum

system with the outside world� As electrons pass through a succession of
Stern�Gerlach devices no measurement takes place
only when particles are
absorbed or selected by a screen blocking all or some emergent beams can
one say that measurement or selection has taken place� Which measurement
has been taken depends on the whole con�guration of devices prior to this
interaction�
We will mainly be concerned with the mathematical model of measure�

ment and the resulting statistical problems� That means that we will intro�
duce mathematical objects to represent �a� the state of a quantum system�
and �b� the measurement device� Some measurements can be also used as
selectors in order to prepare a particle in a particular state�
Also of interest is how a quantum system evolves in isolation from the

outside world
what happens between measurements� one could say� This
evolution is deterministic and follows a so�called Schr�odinger equation� We
will see that it provides some interesting statistical models� as well as ways of
building new measurement procedures from old� The reconciliation of these
two di�erent ways of evolution of a quantum system �random selection by
measurement versus deterministic Schr�odinger evolution� is called the mea�
surement problem� a major topic in the foundations of quantum mechanics�
Di�ering schools of thought exist� strongly coloured by the question whether
one should see physics as merely giving recipes for succesful predictions of
observable phenomena� in which case only an issue of self�consistency arises�



� CHAPTER �� INTRODUCTION

or whether one sees physics as giving a picture of an objective underlying
reality� in which case that underlying reality is a very strange one indeed if
quantum mechanics is to be fully believed�

��� The basic model

We now give a compact mathematical description of measurement of �nite�
dimensional quantum systems� as used to describe for example spin and
polarization �as long as the spin or polarization can be considered in isolation
from other aspects of the physical system concerned�� On the other hand� to
study position and momentumwould require in�nite�dimensional spaces and
the mathematics becomes more delicate� However the main de�nitions are
identical� the word matrix should then be replaced by the word operator�
and the space C d by an arbitrary separable complex Hilbert space H� In
Chapter � we will provide the technical details of this generalization�

����� States

De�nition � 
State� density matrix� density operator�
 The state of
a d�dimensional quantum system is speci�ed by a d � d complex matrix ��
called the density matrix or density operator of the system� A density matrix
is self�adjoint� nonnegative� and has trace equal to ��

The technical terms in this de�nition �self�adjoint� nonnegative� trace�
will be explained in a moment� To illustrate the choice of dimension� we
note that the state of spin of one electron �a so�called spin half particle��
can be described with d � �� More generally a spin k�� particle needs a
description with d � k � �� Photons are actually spin � particles but the
polarization of one photon can be modelled with d � �� As we will later see�
the state of a system of n spin half particles will be described with d � �n�

De�nition � 
Self�adjoint matrix� operator�
 Using as usual a bar to
denote complex conjugation and the symbol � to denote transpose of matrix�
the adjoint of a matrix is simply the transpose and element�wise complex
conjugate of the matrix� So saying that � is self�adjoint is saying that �ij �
�ji for all i� j � �� � � � � d� Using a star to denote taking the adjoint� i�e��
transposition and complex�conjugation� we can write this as � � �� � ���

When we extend to the in�nite�dimensional case� matrices will be replaced
by operators� Some authors use the word Hermitian instead of self�adjoint�
and a dagger instead of a star� But be warned� for other authors Hermitian
and self�adjoint mean di�erent things�
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De�nition � 
Nonnegative matrix� operator�
 One may check that if a
matrix � is self�adjoint then for any complex column vector �� the quadratic
form ���� is a real number� When we say that � is nonnegative we mean
that ���� � � for all vectors ��
De�nition � 
Bra�s and ket�s�
 We will often use the Dirac bra�ket no�
tation whereby we write j�i for the complex column vector � and h�j for
the complex row vector ��� Thus h� j �i is the real scalar quantity ���� the
inner product of � with itself or its squared length� while j�i h�j is the self�
adjoint� rank one� matrix ���� Instead of ���� one would write h� j � j �i
and so on�

De�nition � 
Trace�
 The trace of a matrix is the sum of its diagonal
elements�

The diagonal elements of a self�adjoint matrix are real numbers�
The key fact we need about self�adjoint matrices is that they have real

eigenvalues� and eigenvectors which can be taken to form an orthonormal
basis of C d � Thus any density matrix can be written as � �

Pd
i�� pi�i�

�
i � or

if you prefer � �
Pd

i�� pi j�ii h�ij where the pi are eigenvalues and the �i are
corresponding orthornormal eigenvectors� The latter notation will often be
abbreviated for instance to

Pd
i�� pi jii hij� The trace of a self�adjoint matrix

is equal to the sum of its eigenvalues and a nonnegative self�adjoint matrix
has nonnegative eigenvalues� Hence the eigenvalues pi are nonnegative and
add up to one
they form a probability distribution over the d eigenvectors
�i� i � �� � � � � d� In fact each of the d matrices �i��i is itself a density
matrix� One says that the density matrix � is the mixture of the pure states
�i�

�
i � sometimes referred to just by the vectors �i� As we will later see� if one

prepares with probability pi a quantum system in the pure state �i� the result
is indistinguishable from preparing the system in the state � �

Pd
i�� pi�i�

�
i �

����� Measurements

The result of measurement of a quantum system could be an integer� a real
number� a vector of numbers� In the Stern�Gerlach experiment choosing a
particular orientation of the magnet and letting one particle pass through it�
then observing whether it takes the top or the bottom route� is a measurement
whose outcome only takes two values which we might arbitrarily label ���
��� But we emphasize that each di�erent orientation of the magnet is a
di�erent measurement� a di�erent experiment which one could do� whether
or not we use the same or di�erent labels for the two outcomes of each possible
experiment� In that example experiments are possible taking more di�erent
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values� For instance� repeatedly splitting a beam of spin half particles by n
Stern�Gerlach devices into �n possible output beams gives a measurement�
on one particle� with �n di�erent outcomes� Merging some of the output
beams would give measurements with a smaller number of di�erent outcomes�
Finally� suppose one chooses an angle uniformly at random between � and
�� and lets a particle pass through one Stern�Gerlach device oriented at
that angle� and notes the angle and �� according to the route taken by the
particle� This is now a measurement taking values in ��� ��� � f�����g�
Obviously it can be described in terms of ordinary randomisation and one of
the simple measurements �rst considered� but still it constitutes in itself a
measurement with values in the space mentioned� As we shall see later there
are yet more possibilities�
It turns out �and we will also explain later why� that the broadest possi�

ble class of measurements can be represented mathematically with the class
of operator�valued probability measures� or OProM
s as we shall abbreviate
them� Sometimes one also uses the name 	generalised measurement
� and
sometimes the abbreviation 	povm
 is used �positive operator valued mea�
sure�� Within that huge class of all conceivable measurements there is a spe�
cial subclass of measurements� called simple or von Neumann measurements�
and represented by projector�valued probability measures or ProProM
s� In
the Stern�Gerlach example� a single Stern�Gerlach device corresponds to a
simplemeasurement� but any combination of any number of devices
and yet
more complicated experiments too
will be modelled by generalized measure�
ments� Here are the de�nitions�

De�nition 	 
Measurement�
 Let �X �B� be a measurable space� A �gen�
eralised� measurement or OProM on a d�dimensional quantum system� tak�
ing values in the space X � can be represented by a collection M of d � d
self�adjoint complex matrices M�B� � B � B forming an operator�valued
probability measure� i�e�� satisfying the following three conditions�

�� each M�B� is non�negative�

�� for any countable collection of pairwise disjoint Bi with B � �iBi we
have M�B� �

P
M�Bi��

�� M�X � � �� the identity matrix�

Note that these three conditions are the usual axioms of a probability
measure except that the values are self�adjoint operators� not real numbers�
If the sample space X is countable then just as in ordinary probability theory
it is more convenient to describe a measurement with values in X just with
the values M�fxg� which we would notationally abbreviate to M�x�� Then
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each M�x� is self�adjoint and nonnegative� and they add up to the identity
��

De�nition � 
Simple Measurement�
 A simple or von Neumann mea�
surement or ProProM is a measurement for which eachM�B� is a projector�
i�e�� a matrix which projects onto a subspace of C d � Equivalently� along�
side being self�adjoint and nonnegative� eachM�B� is idempotent�M�B�� �
M�B��

Much more can be said �and later will be said� concerning properties of
OProM
s and ProProM
s� or �generalised� measurements and simple mea�
surements respectively� but let us complete the outline by now giving the
so�called trace rule assigning to the combination of a quantum state and a
measurement� the probability distribution of the outcome of the measure�
ment� The outcome is random and takes values in X � Let us denote it by a
random variable X� Then we have

PrfX � Bg � trace��M�B�� for all B � B� �����

The reader should verify at this point that this does indeed specify a proba�
bility measure on �X �B�� Note that if M�A� � � for some A � X � then the
outcome X lies with probability � in the set A�
We can now de�ne quantum statistics� or quantum statistical inference�

Suppose the state � of a quantum system depends on an unknown parameter
� �typically a real vector taking values in a parameter space �� so we write � �
���� and in ����� the distribution of X� the outcome of measurement of M �
depends on the unknown �� Can we identify interesting quantum statistical
problems for which natural physical properties of the model lead to special
or attractive statistical features of the inference problem� What can be said
about which measurement should be taken in order to get most information
about �� How can one implement a desired measurement M� Sometimes
the measurement to be taken in practice has some unknown features too�
e�g�� noise levels or imperfect detection rates� and then not only � but also
�or instead� M depends on unknown parameters�
We can deduce a lot more about the nature of a simple measurement�

The sum of two projectors is only itself a projector if the corresponding two
subspaces are orthogonal� Therefore for disjoint B�� B�� it must be that
M�B�� and M�B�� project onto orthogonal subspaces and M�B� � B�� �
M�B�� �M�B�� projects onto the sum space generated by these two sub�
spaces� In the d�dimensional case considered at the moment� one can see
that a simple measurement takes on at most d di�erent values� i�e�� for some
x�� � � � � xk with k 	 d� M�fx�� � � � � xkg� � � and hence the measurement is
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characterized just by the projectorsM�xi� �M�fxig� or equivalently by the
k orthogonal subspaces� together spanning C d � onto which they project�
Simple measurements can be used to prepare a quantum system in a

certain state� since there is a rather simple rule which tells us the state of
the system after measurement has yielded the value x� namely the system is
now in the stateM�x��M�x�� trace �M�x�� This rule is called the projection
postulate� and often associated with the names of von Neumann and L�uders�
For generalised measurements the situation is much more complicated� and
we will postpone discussion of that till chapter ��

��� Spin half

A two�dimensional quantum system is the simplest we can study� It has
important applications as well as already very rich structure� Furthermore�
there is an elegant geometric picture of states and simple measurements in
terms of directions in three dimensional real space� This will allow us to
visualise a correspondence between the abstract notions of state and mea�
surement on the one hand� and real physical systems on the other� The key
applications are to the spin of electrons �or other spin half particles�� and
the polarization of photons�

����� The geometry of spin half

First we take some time to study some special features of the � � � self�
adjoint matrices� The properties we �nd will greatly simplify calculations�
Let � denote the identity matrix and de�ne the Pauli spin matrices as follows�

De�nition � 
Pauli spin matrices�


	x �

�
� �
� �

�
� 	y �

�
� �i
i �

�
� 	z �

�
� �
� ��

�
� �����

These three matrices are self adjoint� each have trace zero and determi�
nant minus one� hence have eigenvalues ��� They satisfy �check this your�
self��

	x	y � �	y	x � i	z�
	y	z � �	z	y � i	x�
	z	x � �	x	z � i	y�
	�
x � 	�

y � 	�
z � ��

�����
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An arbitrary self�adjoint �� � complex matrix has to be of the form

X �

�
u� z x� iy
x� iy u� z

�
�����

where x� y� z� u are real numbers� Thus we can write

X � u�� x	x � y	y � z	z �����

and the representation is unique� This shows that the space of all �� � self�
adjoint �complex� matrices can actually be thought of as a four�dimensional
real vector space�
Specializing to density matrices� the requirement that trace � � � imposes

the condition that u � �
�
� The requirement that � is nonnegative is equivalent

to its determinant being nonnegative� or u��z��x��y� � �� or x��y��z� 	
�
�

�
� It is convenient then to write

� � ��
a� �
�

�
��� 
a 
 
	� �����

where 
a � �ax� ay� az� � R� and satis�es

k
ak� � a�x � a�y � a�z 	 � �����

while 
	 � �	x� 	y� 	z� and 	

 denotes the inner�product� Thus the space of
density matrices of a two�dimensional quantum system can be represented
by the closed unit ball in three dimensional Euclidean space� The sphere� or
surface of the unit ball� then corresponds to density matrices �

����
a 

	� withk
ak� � � which are singular since their determinant is zero� Such a density
matrix has therefore eigenvalues � and � and hence is a projector matrix�
projecting onto a one�dimensional subspace of C � � Letting 
u denote a unit
vector in R�� let us write  �
u� � �

��� � 
u 
 
	� for this matrix� Check using
����� that  �
u� is idempotent� And check that  �
u� and  ��
u� commute �in
fact� their product is the zero matrix� and add to the identity matrix� Thus
the projectors  �
u� and  ��
u� project onto two orthogonal one�dimensional
subspaces of C � � We will determine these spaces exactly in a moment�
In fact� the only other projector matrices are the zero matrix � and the

identity matrix �� which are of rank � and rank � respectively�
It follows that for an arbitrary density matrix � � ��
a�� de�ning the unit

vector 
u � 
a�k
ak� we have
��
a� � �

���� 
a 
 
	� � �
��� � k
ak���
a�k
ak� � �

���� k
ak����
a�k
ak�
� �

��� � k
ak� �
u� � �
���� k
ak� ��
u��

�����
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It has eigenvalues �
�
�� � k
ak� and �

�
�� � k
ak�� and its eigenvectors� column

vectors in C � � generate the spaces onto which  �
u� and  ��
u� project�
So what are these spaces exactly� The vector 
u is a point on the unit

sphere in R�� Let � and � denote its polar coordinates� where � � ��� �� is
the latitude measured from the North pole �z�axis� and � � ��� ��� is the
longitude� measured from the x�axis� Thus 
u � �sin � cos�� sin � sin�� cos ���
De�ne the column vector j�i � j���� ��i in C � by

j���� ��i �
�

e�i��� cos�����
ei��� sin�����

�
� �����

Note that h� j �i � � while

j�i h�j �
�
e�i��� cos�����
ei��� sin�����

��
ei��� cos����� e�i��� sin�����

�
�

�
cos������ e�i� cos����� sin�����

ei� cos����� sin����� sin������

�
� �

�

�
� � cos��� �cos �� i sin�� sin �

�cos �� i sin�� sin � �� cos �
�

� �
���� 
u 
 
	� �  �
u��

������

Note that any complex vector j�i of length � can be written as ei����� �� for
some � � ��� ��� and polar coordinates �� �� Note that j�i h�j � j�i h�j �
 �
u�� And that j���� ��i and j��� � �� �� ��i are orthogonal� The corre�
sponding points on the unit sphere are opposite to one another� Combining
these facts we obtain�

Rule � 
Spin half density matrices and projectors�
 The density ma�
trix ��
a�� where 
a is a point in the unit ball in R�� has eigenvalues �

����k
ak�
and �

��� � k
ak� and eigenvectors j���� ��i� j��� � �� �� ��i� where � and �
are the polar coordinates of 
u � 
a�k
ak� The projector matrix  �
u� projects
onto the one�dimensional subspace of C � spanned by j���� ��i� The projector
onto the space orthogonal to this� spanned by j��� � �� �� ��i� is  ��
u��
Let 
u and 
v be two unit vectors in R� and write j
ui and j
vi for the

corresponding unit vectors in C �� so j
ui is an abbreviation for j���� ��i
where �� � are the polar coordinates of 
u� Since  �
u� � j
ui h
uj we see that
trace �
u� �
v� � trace j
ui h
uj j
vi h
vj � h
v j 
ui h
u j 
vi � j h
u j 
vi j�� On the
other hand� using the properties ����� of the Pauli matrices� one can com�
pute �and the reader should do this for him or herself�� trace �
u� �
v� �
�
��� � 
u 
 
v�� Now 
u 
 
v is the cosine of the angle between the vectors 
u and

v� hence �

�
�� � 
u 
 
v� is the squared cosine of half the angle between 
u and 
v�
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Rule � 
Calculation rule�
 The absolute value of the squared inner prod�
uct between the complex vectors j
ui and j
vi in C � is the squared cosine of half
the angle between the corresponding unit vectors 
u and 
v in R�� In particular�
opposite points on the unit sphere correspond to orthogonal vectors in C � �

With these geometric and algebraic facts on record� we now return to
measurement of a spin half system�

����� Measurement for spin half

The state of a spin half particle is modelled by a �� � density matrix of the
form ��
a� � �

�
��� 
a 
 
	� where 
a is a point in the closed unit ball in R��

What have we learnt from the previous subsection about the classes of
simple and generalised measurements� ProProM
s and OProM
s� For the
simple measurements� the description is indeed very simple�
Consider a simple measurement M taking values in a set X consisting

of just two elements� let
s call these elements ��� We need to associate a
projector M�B� with B equal to each of �� f��g� f��g� and X � f�����g�
such that the sums of the projectors for disjoint sets B is the projector for
their union� and the projector for the whole set X is the identity matrix� This
forces M��� � �� M�X � � �� projecting onto the zero�dimensional subspace
f�g and the two�dimensional subspace C � respectively� One�dimensional sub�
spaces of C � are each generated by a vector of the form j
ui for some 
u on
the unit sphere� and the associated projectors are  �
u�� Recall that oppo�
site points �
u on the unit sphere correspond to orthogonal vectors j�
ui in
C � � and hence to orthogonal projectors  ��
u�� Thus a particular projector�
valued probability measure for a measurement with values in X is given by
M�f��g� �  ��
u� � �

���� 
u 
 
	� for some 
u�
Some thought will show that even if X has more elements than just two�

really every ProProM is equivalent to the one we have just described� or
otherwise to a trivial ProProM only taking a single value� Let us continue by
using the trace rule ����� to compute the probabilities of the two outcomes
�� when the measurementM�f��g� �  ��
u� is carried out on a system in
the state ��
a� � �

����
a 

	�� Using the properties ����� of the Pauli matrices�
the reader should verify that these probabilities are

trace ��
a� ��
u� � �

�
��� 
a 
 
u�� ������

What is the state of the system after the measurement has yielded the
value ��� We must compute M�f��g��M�f��g� �  ��
u���
a� ��
u� and
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divide by its trace� which is just the probability ������� The �rst step yields

 �
u���
a� �
u� � j
ui h
uj � j
ui h
uj � h
u j � j 
ui j
ui h
uj � trace�� j
ui h
uj� j
ui h
uj
������

which is just the density matrix ��
u� �  �
u� times the corresponding prob�
ability �������
Thus after measurement has yielded the value ��� the system is in the

pure state speci�ed by the vector j�
ui�
In the Stern�Gerlach experiment� the initial state of the silver atom would

be described by the density matrix ��
�� � �
�
�� One can think of this state as

corresponding to an electron having spin in a random direction 
u uniformly
distributed over the unit sphere� Indeed� if one takes the mean of ��
u� �
�
�
�� � 
u 
 
	� with 
u uniformly distributed over the sphere� the matrix �

�
�

results� However this representation of the 	completely random
 state ��
�� as
a mixture of pure states is obviously not unique� One also �nds this state as
the result of choosing with equal probabilities �

� an electron in either of the
orthogonal pure states j�
ui�
A Stern�Gerlach magnet oriented in the direction 
u implements the simple

measurement M�f��g� �  ��
u�� Since for 
a � 
� the probabilities ������
both equal �

�
� one will �nd electrons with spin in the directions �
u with equal

probabilities� Electrons in the emerging 	�
 beam are in the pure state ��
u��
Sending them through a Stern�Gerlach device with orientation 
v splits them
again� now with probabilities �

���� 
u 
 
v� into two beams of electrons in the
states ���
v� and so on� Recall that �

���� 
u 
 
v� is the squared cosine of half
the angle between the directions 
u and 
v�
If the electrons started out in the arbitrary mixed state ��
a� then the �rst

Stern�Gerlach magnet splits them into two output beams in the pure states
���
u� in the proportions �

��� � 
a 
 
u�� So if 
a was unknown� we do learn
something about it from counting the numbers of electrons in each beam�
Further operations on the output beams however will not teach us any more
as the state of the electrons in either output beam no longer depends on 
a�
If we are allowed to measure a large number of electrons each in the same

mixed state ��
a�� we see that a large number of Stern�Gerlach measurements
in three linearly independent directions will determine 
a�
At this stage we will not say much about generalized measurements� The

class of all generalized measurements is very large� and to explain how the
more interesting ones might be realised� we will need to go further into the
theory� However one can build some generalised measurements by carrying
out a succession of simple ones� or choosing simple ones at random� The
problem section at the end of this chapter give some examples�
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����� Polarization�

Polarization is the movement in an ellipse in the plane prependicular to the
direction of propagation of an electromagnetic wave� e�g�� light� Map ellipses
to sphere� circles clockwise� anticlockwise at North� South pole� ellipse �clock�
wise on Northern hemisphere� anticlockwise on Southern� collapses to line in
each possible direction on equator� Rotation of ellipse by ���� restores it to
original� Polarization �lters and simple measurements� For other possibilities
see Peres� Ammonia maser
another example of a two state system�

��� Problems and further results

Problem �
 Show that the trace rule ����� does indeed de�ne a probability
distribution on �X �B��
Problem �
 Show that a simple measurement on a d�dimensional quantum
system takes on at most d di�erent values�

Problem �
 Show that the matrices M�B� of a simple measurement are
idempotent and commute�M�B��M�B�� �M�B��M�B�� �M�B� �B���

Problem �
 Verify the properties ����� of the Pauli spin matrices�

Problem �
 Show that �
a 
 
	��
b 
 
	� � �
a 

b��� i�
a�
b� 
 	
Problem 	
 Verify that trace ��
a� �
u� � �

��� � 
a 
 
u��
Problem �
 Suppose that 
u�� 
u�� 
u� are the results of a rotation in R�

acting on the unit vectors in the x� y and z directions respectively� Show
that the three matrices 	i � 
ui 
 
	 satisfy the same properties ����� as the
Pauli matrices themselves�

Problem �
 De�ne the matrix U � e�i��u����� by formal use of the power
series expansion of the exponential function� Show that U � cos�
���� �
i sin�
���
u 
 
	� Show that U��
a�U� transforms the state ��
a� into the state

��
b� where 
b results from 
a by rotation about the direction 
u through an
angle �� Hint� check the result �rst for the case when 
u � ��� �� �� and when
��
a� is the pure state j���� ��i h���� ��j� Next use the result of the previous
problem to convert the general case into this special case�

Problem �
 Suppose that electrons are to be sent �rst through a Stern�
Gerlach device with orientation 
u� and then that each emergent beam is
sent through devices with orientiation 
v� so that four possible output beams
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result� Use this device to make a measurement on an electron with four
possible outcomes ��� Show that this is a generalised measurement with
M������ �  ���
u� ���
v� ���
u��

Problem ��
 Suppose that a Stern�Gerlach device is oriented in a random
direction 
u� uniformly distributed on the sphere� and then used to measure
spin resulting in �� Thus we have a measurement taking values �� ��� where
�� � are the polar coordinates of 
u� Show that this measurement corresponds
to the OProM M�d��d���� �  ��
u��� ��� sin �d�d�����
Problem ��
 Show that M�d��d�� �  �
u��� ��� sin �d�d���� de�nes an�
other OProM�

Problem ��
 Compute the Fisher information matrix for the unknown pa�
rameter 
a based on either of the measurements of the last two problems�

��� Bibliographic comments

Some references which we found specially useful in getting to grips with
the mathematical modelling of quantum phenomena are the books by Peres
������� and Isham ������� To get into quantum probability� we recommend
Biane ������ or Meyer ������� Also highly recommended are the lecture
notes of Preskill ������� Werner ������ and Holevo �������
The classic books by Helstrom ������ and Holevo ������ are still the

only books on quantum statistics and they are very di�cult indeed to read
for a beginner� A more recent resource is the survey paper by Malley and
Hornstein ������� However the latter authors� among many distinguished
writers both from physics and from mathematics� take the stance that the
randomness occurring in quantum physics cannot be caught in a standard
Kolmogorovian framework� We argue elsewhere �Gill� ������ in a critique of
an otherwise excellent introduction to the related �eld of quantum probability
�K�ummerer and Maassen� ������ that depending on what you mean by such
a statement� this is at best misleading� and at worst simply untrue�
See Penrose ������ for an eloquent discussion of why there is something

paradoxical in the peaceful coexistence of the two principles of the deter�
ministic� unitary evolution of an isolated quantum system� and the random
jump which occurs when it is measured� See Percival ������ for interesting
stochastic modi�cations to Schr�odinger
s equation which might o�er some
reconciliation� Also highly recommended� Sheldon Goldstein� 	Quantum me�
chanics without observers
� Physics Today� March� April ����� letters to the
editor� Physics Today� February �����



Chapter �

Observables and wave functions

In Chapter � we stated that the state of a quantum system was speci�ed
by a density matrix �� while a measurement on that system is speci�ed by
an operator�valued probability measure� We noted the existence of a special
kind of state� namely the pure states for which � is a rank one projector�
and a special kind of measurement� called a simple measurement� speci�ed
by a projector �valued probability measure� In this chapter we will start by
considering these special states and special measurements in more detail� For
both these objects a more compact description is available� A density matrix
� of rank � is of the form � � j�i h�j for some vector j�i of length �� i�e��
such that h� j �i � �� The state vector or wave�function � is unique up
to multiplication by a complex number of absolute value �� As for the sim�
ple measurements� recall that a simple measurement on a �nite�dimensional
state� of dimension d� is characterized by k 	 d distinct values x�� � � � � xk
and projectorsM�x��� � � � �M�xk�� the latter projecting onto orthogonal sub�
spaces together spanning C d � Without loss of generality we may assume that
none of these projectors is the trivial projector �� otherwise� simply delete
it and the corresponding xi from our list� Whatever the state of the system�
the probability will be � to obtain this value� Write  A for the projector onto
the subspace A and suppose that M�xi� �  Ai

� Suppose the sample space
X is the real line or a subset thereof� so that the xi are real numbers� Then
we note that X �

P
i xi Ai

is a self�adjoint operator� Its eigenvalues are
x�� � � � � xk and the corresponding eigenspaces are A�� � � � � Ak� On the other
hand� any self�adjoint operator is of this form� Thus there is a one�to�one
correspondence between real�valued simple measurements� and self�adjoint
operators� When thinking of a self�adjoint operator X as a description of
a simple measurement� we call it an observable� The associated projector�
valued probability measure is then also called its spectral decomposition�

��
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��� Observables and functions of observables

����� Obervables

Let X be an observable on a d�dimensional quantum system� Let us denote
by �X � x! the eigenspace of X corresponding to eigenvalue x� that is

�X � x! � f� � X� � x�g� �����

Thus if x is not actually an eigenvalue of X� �X � x! is the trivial subspace
f�g� For a Borel set B on the real line� write �X � B! for the sumspace
generated by all �X � x! for x � B� Write  �X�B� for the projector onto this
space� Note that � �X�B� � B � B� is a projector�valued probability measure
with values in �R�B��
We can write

X �
X
x

x �X�x� �����

where we need only sum over x in the spectrum of X� the set of all its
eigenvalues�

����� Decomposition of C d

A collection A�� � � � � Ak of subspaces of C d is called a decomposition of C d

if they are orthogonal and their sumspace is all of C d � The decomposition
is called proper if none of the Ai are the trivial subspace f�g� There is
thus a one�to�one correspondence between proper decompositions of C d each
element of which is labelled with a distinct real value� and observables�

����� Function of an observable

If f is a real function and X is an observable� then by f�X� we denote the
new observable

f�X� �
X
x

f�x� �X�x�� �����

In other words� the eigenvectors remain the same but the eigenvalues are
replaced by f of the original eigenvalues� If f is not one�to�one then some
eigenspaces of X may be merged together into eigenspaces of f�X�� This def�
inition agrees with the more obvious �algebraic� de�nition of such functions
of X as aX � b� X�� X�� �if X is non�singular�� and so on� All functions of
one observable commute� i�e�� f�X�g�X� � g�X�f�X��



���� OBSERVABLES AND FUNCTIONS OF OBSERVABLES ��

Taking for f the indicator function �B of a Borel set B we note that
�B�X� �  �X�B��
A projector  A is an observable� with spectrum just the two values �

and �� and with the subspaces A and its orthocomplement A� being the
eigenspaces�

����� Compatibility

We say that two subspaces A� A� of C d are compatible if A � �A � A�� 

�A � A��� and vice versa for A�� Equivalently� the projectors  A and  A�

commute�
We say that two observables are compatible if and only if as operators

they commute� In this case each pair of subspaces �X � x! and �Y � y! is
compatible and the subspaces �X � x! � �Y � y!� which we abbreviate to
�X � x� Y � y!� form a decomposition of C d as x and y vary throughout the
spectra of X and Y � Equivalently� X and Y possess a common orthonormal
basis of eigenvectors� If X and Y commute they are both functions of a third
observable Z� this can for instance be de�ned by giving a distinct label z to
each of the non�zero subspaces �X � x! � �Y � y!�

����� Function of several compatible observables

We can also de�ne functions of two �or more� commuting observables by

f�X�Y � �
X
x

X
y

f�x� y� �X�x�Y�y�� �����

Again� f�X�Y � commutes with X and Y � Taking f to be the sum or product
gives an alternative de�nition of X � Y and XY � restricted to the case that
X and Y commute� Fortunately it agrees with the usual algebraic de�nition
of the sum or product of two operators �in our case� matrices� for which of
course no assumption of commutativity is needed�

Example � 
spin half�
 In the spin half case �d � ��� two observables X�
Y commute if and only if they can both be written in the form a� � b
u 
 
	
with the same 
u but with possibly di�erent a� b� Thus any collection of
commuting observables is a collection of functions of 
u 
 
	 for some 
u�
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��� Measuring an observable on a pure state

����� Pure states

A quantum system in a pure state is characterized by its state�vector j�i�
an element of C d of unit length� h� j �i � �� The corresponding density ma�
trix is j�i h�j which can equivalently be characterised as the matrix which
projects onto the one�dimensional subspace ��! � fc j�i � c � C g� Multi�
plying j�i by a complex number of modulus � does not change the density
matrix� As we will see� the choice of phase needed when we step over to the
state�vector description is arbitrary
it does not a�ect any predictions we
make�
There are two basic ways in which the state of a quantum system may

change� If the quantum system is left in isolation from the outside world then
its state changes deterministically according to the Schr�odinger equation�
However� if an observable is measured the state of the system makes an
instantaneous random jump to a new state� corresponding to the outcome of
the measurement�

����� Unitary evolution

A pure quantum state evolves in isolation from the outside world according
to the Schr�odinger di�erential equation

d

dt
��t� � iH��t� �����

where H is a self�adjoint operator called the Hamiltonian� �Usually H is
written as �H where � is Planck
s constant but we will absorb this factor
into the Hamiltonian�� For instance� when we model a spin half particle in a
magnetic �eld the Hamiltonian will depend on the strength and orientation
of the magnetic �eld� In the �nite�dimensional case the equation can be
solved explicitly as

��t� � eiHt����� �����

Note that the matrix U � eiHt is unitary� that is� it satis�es UU� � U�U � ��
Consequently transformation of a collection of vectors � by multiplying by
U does not change the lengths or the innerproducts of the vectors� One
says that the state ��t� follows a unitary �or Hamiltonian� or Schr�odinger�
evolution� For later reference note that equivalently the density matrix � �
j�i "� satis�es the equation

d

dt
��t� � iH��t�� i��t�H � i�H� ��t�! �����
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where the commutator of two observables X� Y is de�ned by �X�Y ! � XY �
Y X� This equation has as solution

��t� � eiHt����e�iHt� �����

Example � 
spin half�
 Consider the spin half case and suppose � �
���� � j
ui while suppose H � a� � b
v 
 
	� This corresponds to a mag�
netic �eld in the direction 
v of strength b� From problem � we see that that
eiHt j
ui h
uj e�iHt � j
u�t�i h
u�t�j where 
u�t� � R� is the result of rotating 
u
about 
v through the angle ��bt� Thus ��t� � ei��t� j
u�t�i� and since we may
ignore the phase ei��t� �which we do not try to compute in general� the evo�
lution of the system is that the direction of its spin 
u precesses around the
direction of the magnetic �eld 
v at constant rate ��b� One can now imagine
statistical problems such as� suppose 
u is known� and the spin half system
evolves in this way for a known length of time t subject to a Hamiltonian H
for which 
v is known but b is unknown� The state at time t now depends in
a known way on the parameter b� which we could try to estimate by making
a suitable measurement on the system in its �nal state�

����� Measurement of an observable

By a suitable interaction with the outside world one may measure an ob�
servable X� The measurement is supposed to be instantaneous� The result
of the measurement is a random macroscopic change labelled by a value or
outcome x while the quantum system after the measurement is in a new state
corresponding to the value x� The rules of measurement are as follows�

Rule � 
Probability of the outcome�
 The probability of the outcome x
is equal to k �X�x��k�� the squared length of the projection of the state vector
� onto the subspace �X � x!�

Rule � 
State after measurement�
 After measurement� the state of the
system is now  �X�x���k �X�x��k� the renormalised projection�

Example � 
Spin half�
 For example� in the spin half case any pure state
� is of the form j
ui for some unit vector 
u � R

�� Any observable X is of
the form a�� b
v 
 
	� This observable has eigenvalues a� b with eigenvectors
j�
vi� Recall that j h
v j 
ui j� � �

��� � cos���� � cos
������ where � is the angle

between 
u and 
v� We compute that the probabilities of the outcomes a� b
are cos������� sin������ and the corresponding state of the system after the
measurement is j�
vi�
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Example � 
Collapse of the wave function�
 Consider the self�adjoint
operator X � diag�� � � � � d�� the d� d diagonal matrix with the numbers �
to d on the diagonal� This operator has as eigenvalues these same numbers�
and as eigenvectors the orthonormal basis e�� � � � � ed of C d where the vector
ex has zeros at all positions except the x
th� where it has the value � �or
indeed any complex number whose absolute value is ��� The eigenspace �ex!
generated by the x
th eigenvector consists of all vectors whose only non�zero
component is the x
th� Suppose � is the pure state j�i h�j corresponding
to a certain normalised vector �� k�k� � P j�ij� � �� Measurement of X
produces the values x � �� � � � � d with probabilities

trace�� �X�x�� � trace� �	� �ex��
� trace�j�i h�j jexi hexj�
� trace�hexj j�i h�j jexi�
� hex j �i h� j exi� � �x�x � j�xj��

�����

If the value x is found the system is now in a state with density matrix

 �ex� j�i h�j �ex��j�xj� � jexi hexj j�i h�j jexi hexj �j�xj�
� j hex j �i j� jexi hexj �j�xj�
� jexi hexj �

������

i�e�� in the pure state corresponding to the vector ex�
The 	collapse of the wave function
 is graphically visible here� with a

transition from a state vector � of arbitrary complex numbers �neglecting
normalisation to length one� into a vector containing zeros only� except for
one position� Measurement of X forces the state vector into one of the
eigenspaces �X � x! and reveals the choice through the obtained value x� The
probability distribution of these outcomes is given by the squared absolute
values of the elements of the wave function �� After measurement� if the value
x is found� the state now has the wave function ex� If the same observable is
measured again on the new system� the same value x will be obtained with
probability one� and the state remains unaltered as the 	collapsed
 state ex�

The above example seems special but it actually gives a fairly general
picture� Our observable had a special set of eigenvalues but the precise values
played no role� only the fact that they were all di�erent� Our observable was
represented by a diagonal matrix� but all observables can be put into diagonal
form by appropriate choice of basis� We are going to show that the picture
for a general �mixed� state corresponds precisely to an ordinary probabilistic
mixture of pure states� So the only really special feature of the example was
that the eigenspaces of X were all one�dimensional�
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��� Back to mixed states

Consider a quantum system with density matrix �� Any such density ma�
trix can be written as � �

P
pi jii hij for some collection of pure states

jii� The representation is not unique� More generally one can write � �R j�i h�jP �d�� for some probability measure P over the pure state vectors
�� We claim that the system � behaves indeed as an ordinary probabilistic
mixture of systems j�i h�j� in other words� one chooses a state � according to
the distribution P � which thereafter undergoes measurement or Schr�odinger
evolution according to the rules of the previous section� For each type of
evolution the result is that the system is in a new pure state� according to
certain probabilities� Mixing those pure states according to the probabilities
yields a density matrix describing the �nal� mixed state of the system� We
consider separately the two kinds of evolution�

����� Schr�odinger evolution of mixed states

Choose an initial state �	 according to the probability distribution P �d�	��
Write ���� �

R j�	i h�	jP �d�	�� At time t� by ����� the system is then in
the pure state eiHt�	� Thus with probability P �d�	� it is in the state with
density matrix eiHt j�	i h�	j e�iHt� Mixing according to this distribution we
�nd it is in the state eiHt����e�iHt� cf� ������
No surprises here� note that the Schr�odinger equation for a mixed state

����� follows from di�erentiating ��t� � j��t�i h��t�j with respect to t and
then mixing with respect to P �d�	��
The matrix U � eiHt has the property that UU� � U�U � �� such a

matrix is called unitary� Any unitary matrix is of the form U � eiH for some
self�adjoint H�

����� Measurement of mixed states

Suppose we are in the pure state � with probability P �d�� and de�ne
� �

R j�i h�jP �d��� We measure the observable X� With probability
k �X�x��k� the value x is observed and the system is now in the pure state
 �X�x���k �X�x��k� The joint probability of starting in state � and getting
the outcome x is P �d��k �X�x��k�� Let us compute the marginal probability
of the outcome x� and after that the probability distribution of �nal state
given outcome�
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For the probability of the outcome x� it is equal toR
	
P �d��k �X�x��k� �

R
	

�
 �X�x�� j  �X�x��

�
P �d��

�
R
	
trace�

�
 �X�x��

�� �� �X�x��
�
P �d��

�
R
	
trace�

�� �X�x��
��
 �X�x��

���P �d��
�

R
	
trace� �X�x� j�i h�j �X�x��P �d��

� trace�� �X�x���

������

The conditional distribution of the �nal pure state  �X�x���k �X�x��k given
the outcome x is therefore P �d��k �X�x��k�� trace�� �X�x��� The density
matrix of this pure state is  �X�x� j�i h�j �X�x��k �X�x��k�� Multiplying by
the conditional distribution and integrating over � we �nd the �nal mixed
state� given the outcome x� to be  �X�x�� �X�x�� trace�� �X�x���
To summarize�

Rule � 
Probability of the outcome�
 The probability of the outcome x
is equal to trace � �X�x��

Rule 	 
State after measurement�
 After measurement� the state of the
system is now  �X�x�� �X�x�� trace � �X�x�j� the renormalised projection�

����� Conclusion

In just the same way one can show that taking a system with probability
distribution P �d�� in the mixed state �� and then either allowing it to undergo
a Schr�odinger evolution or measuring an observable X leads to the same �nal
states or joint distribution of outcome and �nal state� as if we had started
with the initial mixed state

R
�P �d��� The rules we have given for studying

a quantum system in the pure state � and the mixed state � are consistent
with the picture that being given a mixed state 	is
 nothing else than being
given a system in a pure state with a certain probability� This should be
surprising from two points of view� Firstly� di�erent mixtures of pure states
can lead to the same mixed state� Apparently there is no physical way of
determining how a mixed state was prepared� For spin half� if I give you
�as many times as you like� with probability half a spin up or a spin down
electron� this cannot be distinguished from my giving you with probability
half a spin left or a spin right electron� You will never be able to determine
which procedure I am using� The second surprising fact is that the phase
of the state � does not play any role� It is preserved during Schr�odinger
evolution� and in the projection of states on measurement of an observable�
but it is irrelevant to the distribution of outcomes of measurement� Assuming
there is no other way in which information from a quantum system becomes
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available in the macroscopic real world� the phase is indeed irrelevant� Phase
di�erence only plays a role when we are solving the Schr�odinger equation for
a complicated situation by considering separate solutions from sub�problems�
For instance� the solution for a general initial condition might be the sum of
solutions for di�erent sets of initial conditions� In this case the phases of the
di�erent solutions do play a role as we actually add wave functions for the
di�erent solutions� An example of this phenomenon is the famous two�slit
experiment where the interference pattern at the screen follows from adding
the solutions to two wave equations� one each for having one slit open and
the other closed�
However we indicated in chapter � that measurements of observables� so

called simple measurements� are not the only way in which quantum systems
have macroscopic interactions with the outside world� We shall next show
how generalized measurements can also be brought into the picture so far
through the introduction of a further key concept� product states� Later �in
chapter ���� we will further extend the notion of measurement to continu�
ous time rather than instantaneous measurement� But no new ideas� only
mathematical complications� are involved�

��� Product states

If two separate quantum systems are modelled by state spaces C d
�

and C d
� �

then it is natural to describe the system obtained when the two subsystems
are brought together by the state space

C
d�	d�� � C

d� � C
d� �� ������

the tensor product of the two components� It consists of all linear combina�
tions of elements �� � ���� where �� � C d

�

and ��� � C d
� �

� If �� and ��� are
themselves linear combinations� then one can expand bilinearly to express
�� � ��� in terms of tensor products of the components� An orthonormal
basis of C d

�	d�� is formed by the tensor products of elements of bases of C d
�

and C d
� �

� The dimension of the product space is indeed the product of the
dimensions of its components� The idea behind this construction is that a�
any combination of states of the two subsystems must be a state of the joint
system� and b� because the joint system is also a quantum system� arbitrary
linear combinations of states are also states�
One can also now form tensor products of operators� say X � X � �X ���

de�ned by linearity and the rule �X � � X ������ � ���� � X ����� � X ��������
In particular� if �� and ��� are mixed states on the component systems� then
� � �� � ��� is a mixed state on the compound system� Similary if �� and
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��� are pure states of the components� then � � �� � ��� is a pure state of
the compound system� However it is important to realise that the tensor
product space allows many other pure states� many other mixed states� and
many other observables� than these special cases�
Considering mixed states as mixtures of pure states� the state � � ������

is the same as the mixture of states ������ where the components are chosen
independently according to the mixing distributions involved in �� and ����
An observable X � on the �rst subsystem can be represented by X ����� on

the joint system� and similarly for an observableX �� on the second subsystem�
Note that X � � ��� and �� � X �� commute� so separate measurements on
the two subsystems are automatically compatible in this construction� The
joint probability distribution of joint measurements of the two just described
observables� when the joint system is in the product state � � ������� is that
of independent measurements of X � on �� and X �� on ���� as we will see in
the next section� The fun starts when we realise that there are also states
in the product space which are not tensor products of separate states on the
two subsystems� Pure states which are linear combinations of more than one
product state �� � ��� are called entangled �
We will come back to examples after we have discussed the joint mea�

surement of several observables in the next section�

����� Marginalization of a product state

Consider a quantum state � of a product�system� If one only considers mea�
surements on the �rst component of the system� then one does not need to
know � in its entirity� It is not di�cult to see that all predictions about the
�rst component are the same as for a one�component system whose state
is the partial trace� over the second system of the joint state� Written out
componentwise� �trace� ��i��j� �

P
i�� �i��i��
j��i���

��� Repeated measurements

����� Repeated and joint measurements

Having described the e�ects of a measurement of a single observable� we can
study the e�ects of repeated measurements of a sequence of observables� We
simply iterate rules � and �� if we prefer a description in terms of density
matrices �general mixed states�� or rules � and �� if we prefer to work with
wave functions �pure states�� The two sets of rules are mutually consistent
using the fact that a probabilistic mixture of states is represented by the same
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mixture of corresponding density matrices� We do not mix state vectors� but
mix projectors onto the subspaces generated by state vectors�
It follows immediately from either representation that repeated measure�

ment of the same observable simply repeats the �rst obtained value� and
does not alter the state further� The �rst measurement projects the state
into an eigenstate of the operator� and on repetition� it stays there� If di�er�
ent observables are measured in sequence� the results are strikingly di�erent
according to whether the corresponding operators commute or not�
Commuting self�adjoint operators represent so�called compatible observ�

ables� that is� physical quantities which in principle can be measured si�
multaneously� We describe the mathematical facts behind this statement
which at least allow it to make sense� Suppose X and Y are commuting
self�adjoint operators� Recall that this implies that they can both be written
as a function of a third operator Z� say X � f�Z�� Y � g�Z�� Of course
Z can be replaced by any one�to�one function of Z� Subject to this non�
uniqueness� we choose Z 	minimally
� to be precise� with as few as possible
eigenspaces� The fact that X and Y commute implies that the subspaces
�X � x� Y � y! � �X � x! � �Y � y!� as x and y vary through the spectra of
X and Y � form a decomposition of C d �orthogonal subspaces spanning C d��
We can then specify Z by letting its eigenspaces be the nontrivial subspaces
�X � x� Y � y! �i�e� those for which �X � x! � �Y � y! �� f�g�� We assign
each of these a distinct value z�
Joint measurement of X and Y could conceivably be modelled now in

three di�erent ways� �� �rst measure X� then measure Y � �� �rst measure Y �
then measure X� �� measure Z and report the values x � f�z� and y � g�z��
The reader should verify that the speci�cations are probabilistically identical�
i�e�� they result in a pair of values �x� y� and a new state �x�y depending on
the original state � where the joint distribution of values x� y does not depend
on which of the three routes we took� and the �nal state �x�y also depends
only on x� y and � and not on the route which was taken�
Whichever route the reader prefers� the answer he or she obtains should be

the following natural generalization of rules � and �� the joint measurement
of commuting observables X and Y on a quantum system in state � produces
the pair of values x� y and leaves the system in the state

�x�y �
 �X�x�Y�y�� �X�x�Y�y�

trace�� �X�x�Y�y��
������

with probability

trace�� �X�x�Y�y��� ������
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The description in terms of pure states � is similarly perfectly analogous to
rules � and ��
It is easy to check that the marginal distribution of the measurement of

X in a joint measurement of compatible X and Y is the same as that of
the measurement of X alone� The experimental set�ups would generally be
quite di�erent since the resulting possible states of the system after the joint
measurement are not the same as after the single measurement� the decom�
position into subspaces �X � x� Y � y! of C d is �ner than the decomposition
into subspaces �X � x!� unless Y is actually a function of X�
If X and Y do not commute� and one is measured after the other� then

the distribution of values of each observable depends on the order in which
they are measured� The possible �nal states of the system also depend on
the order�

����� The unconscious quantum statistician

The above discussions can be extended� obviously� to the joint observation
of any number of compatible observables� Let us summarize one of the main
conclusions as a formal rule�

Rule � 
Marginal distributions�
 If one set of observables is a subset of
a larger set of compatible observables� then the joint distributions of the vari�
ables in the subset when they alone are measured� and when the whole set is
measured� are the same�

Now suppose that X and Y are two commuting observables� and Z �
X � Y is their sum� Z commutes with X and Y and it makes sense to
consider a joint measurement of all three variables� By the natural extension
of ������ above� the probability of obtaining any triple of values �x� y� z� is
given by

trace�� �X�x�Y�y�Z�z��� ������

The reader should verify that this probability distribution is the same as the
distribution obtained by measuring just X and Y simultaneously� yielding
pairs of values �x� y�� and then appending z � x � y to generate a triple
�x� y� z�� More generally�

Rule � 
Law of the unconscious quantum statistician�
 If a number
of compatible observables satisfy a functional constraint f�X�Y�Z� � � � � � �
�e�g�� X�Y �Z � ��� then the values obtained in a joint measurement of the
same observables will satisfy the same functional constraint with probability
one�
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These results are not di�cult to establish� at least in the discrete case� but
they are hardly ever stated explicitly in treatments of quantum probability�
We feel they deserve to brought into the open� They are perfectly analogous
to the 	law of the unconscious statistician
 known from ordinary probability
theory� according to which one can compute the expectation of a function
of a random variable directly by integration with respect to the distribution
of the original variable� rather than via a computation of the distribution of
the transformed variable�

����� Conditioning

Measurement of an observable X on a system in state � produces the value
x with probability trace�� �X�x��� the system has then made a transition
into the new state  �X�x�� �X�x�� trace�� �X�x��� Suppose we now go on to
measure a new observable Y � Denote by X
� Y
�X a pair of random variables
having the joint distribution of values found when �rst X is measured� then
Y � The previously established rules tell us

E�Y
�X jX
 � x� �
trace� �X�x�� �X�x�Y �

trace�� �X�x��
� ������

We consider this as a function of x� and hence also of the operator X and
the random variable X
� Since by de�nition f�X� �

P
f�x� �X�x� we �nd

for the function of the operator� which we denote by E
�Y jX��

E
�Y jX� �
X
x

trace� �X�x�� �X�x�Y �

trace�� �X�x��
 �X�x�� ������

The expected value of a measurement of this observable is

E
�
�E
�Y jX��


�
� trace

�
�E
�Y jX�

�
�

X
x

trace� �X�x�� �X�x�Y �

������

which is typically unequal to E�Y
� � trace��Y �� It is the same a� when
Y commutes with X� b� when X commutes with �� The same conditions
guarantee the more general result that the random variables Y
 and Y
�X
have the same distributions� since

PrfY
�X � yjX
 � xg � trace� �X�x�� �X�x� �Y�y��

trace�� �X�x��
������
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yielding

PrfY
�X � yg �
X
x

trace� �X�x�� �X�x� �Y�y��� ������

Condition a� says X and Y are both functions of a third observable� say Z�
and can be measured simultaneously� with the marginal distributions of their
measurements remaining unchanged according to the law of the unconscious
quantum statistician� Condition b� says that the quantum system can be
considered to be in an ordinary random mixture of pure states in each of
which X has a �xed value� Measuring X does not change the state of the
system� hence it does not change the probability distribution of a subsequent
measurement of the observable Y �
This account of conditioning shows that it is easy� at least in the discrete

case� to introduce conditioning and joint distributions in a physically mean�
ingful way into quantum probability� The fact that the distributions and in
particular expectations of Y
 and Y
�X are generally di�erent� is a natural
consequence of the fact that measuring an observable changes the quantum
system�
Modern quantum probability theory employs a notion of conditioning

where E�Y jX� is de�ned to be that function of X� say g�X�� such that
trace���Y � g�X���� � E�Y � g�X���
 is minimal� This imitates a de�ning
property of classical conditional expectation� and has such nice properties
as trace��E�Y jX�� � trace��Y �� i�e�� E�E�Y jX�
� � E�Y
�� However� if Y
and X do not commute� then neither do Y and g�X�� and hence the observ�
able Y � g�X� has no physical interpretation in terms of the incompatible
observables X and Y �

��� Quantum randomized measurement

����� Quantum randomization

We now have a background of theory and examples in quantum probabil�
ity� from which we can start to study problems in quantum statistics� For
instance� given a particle is in an unknown state � � ���� parametrised by
a quantity � of physical signi�cance� how can we estimate �� The obvious
answer is� take an observable X and measure it� The probability distribution
of the result of measurement depends on � and we now have a classical in�
ference problem� Perhaps we can repeat this experiment n times� each time
independently producing a particle in the same state ���� and measuring the
same observable� Now we have a classical i�i�d� sample from the distribution
of measurements of X on a particle of state �����
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This description suggests that the main element of choice is the observable
X and the sample size n� However� the theory we have built up suggests many
more possibilities�
For instance� measure one observable� forcing a collapse of the wave func�

tion� and record the value obtained� then measure another� �nally take some
numerical function of both the values� Do the same thing in any number of
stages� not just two�
Between measurements of basic observables allow the quantum system to

evolve unitarily under various Hamiltonians H�
Allowing a time evolution and then measuring an observable is actually

equivalent to measuring a di�erent observable� use the fact that

trace
�
�e�iHt�eiHt�A

�
� trace

�
� �eiHtAe�iHt�

�
� ������

This transferral of the unitary operator eiHt between state and observable is
called the switch from the Schr�odinger picture of quantummechanics� accord�
ing to which states evolve but observables remain �xed� to the Heisenberg
picture� in which it is the other way round� In practice� measurements of
observables are often realised this way� measure with� say� a single physical
apparatus� e�g�� the same Stern�Gerlach device� but �rst subject the particles
to time evolution according to various Hamiltonians H�
Yet more possibilities come up if we bring randomisation� in the classical

sense� into the picture� Choose observables or Hamiltonians at random ac�
cording to the results of classical randomisation devices like throwing dice�
tossing coins� picking cards from a shu#ed pack� or pulling balls out of
vases� Let the measurements and the measurement devices be macroscopi�
cally perturbed by macroscopic random noise� Suppose the lengths of time
of Hamiltonian evolutions are not exactly known but are random�
A fundamental new option is provided by our mathematical construction

of joint quantum systems from separate components� We call this construc�
tion quantum randomisation� Suppose we want to study a particle in a state
� � ����� Take a separate quantum system with another� possibly much
larger state space� in a known state ��� Allow the particle whose state �
we are interested in to interact with the second system� The two systems
taken together are modelled by the state $� � � � �� in the product space�
Measure an observable $X on the compound system� This could for instance
be realised by letting the two particles interact together for some time under
some Hamiltonian $H �not of the special form H � �� � � � H �� and then
measuring an observable on the second subsystem�
The point of the parenthetical remark is that for a Hamiltonian of that

special kind� the energy of the joint system is the sum of the energies of the
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separate systems� hence no interaction takes place� the two subsystems would
evolve independently according to their own Hamiltonians� However if there
really is interaction between the two particles� what we generate in this way
cannot be represented as the measurement of an ordinary observable on the
�rst system on its own�
After this measurement one could separate the two systems again� or to

put it another way� only consider further operations on the �rst system� Our
rule for the state of a quantum system after measurement of an observable
followed by the operation of taking the partial trace can be used to deduce the
state of the original subsystem after a speci�ed interaction and measurement�
Now yet more measurements can be made on the system under study�
Quantum randomisation need not just be thought of as based on inter�

action between di�erent particles� The tensor product construction can also
be used to represent di�erent aspects of the same particle� e�g�� spin and
location� or �anticipating the extension to continuous observables� location
in the x direction and location in the y direction� and so on� For instance in
a Stern�Gerlach apparatus we measure spin by observing location�
By the way� if we are allowed to make nmeasurements on n independently

and identically prepared particles� we might also be allowed to make one
measurement on the compound system in the state �
n � ��
 
 
�� obtained
by considering these n particles as one system� We come back to this later�
but for the time being restrict attention to measurement of just one particle�
The practical possibilities sketched above are vast� certainly when one

realises that one can combine all these operations in sequence� From a math�
ematical point of view however� it fortunately turns out that all the measure�
ment strategies we have mentioned� and indeed any we may have omitted�
can be brought under a single heading called 	generalised observables
� More�
over� at least in principle� every generalised observable can be realised by a
quantum randomisation� In the next subsection we take an abstract look at
these matters� The key point is that all the measurement procedures we have
discussed are a�ne� that is� commute under the taking of mixtures� In plain
probabilistic language� measurement on a mixed state is equivalent to mixing
the results of measurement on the components of the mixture� This follows
as far as time evolution is concerned from the linearity of the Schr�odinger
equation� as far as measurement of observables is concerned from the linear�
ity in both the distribution of measured values �linearity of trace operator�
and in the resulting unnormalised states �projections�� as far as classical ran�
domisation is concerned it follows from the linearity of convolution� and as
far as quantum randomisation is concerned it follows from the linearity of
the tensor product in each component and again the linearity of the trace
operator�
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����� Generalized measurements

First we repeat some of the material of chapter � by mathematically extend�
ing the notion of observable� We do this in as simple way as possible� while
preserving the mixing properties of measurement as far as the distribution
of the measured values is concerned�
Recall that an observable X stands in one�to�one correspondence with

a collection of values and orthogonal subspaces� Replacing the subspaces
by the projectors onto those subspaces� and considering the values of the
observable merely as arbitrary labels� one can identify an observable with a
orthogonal resolution of the identity A�� � � � � An

A� � � � � � An � � ������

where the Ai are projectors �idempotent self�adjoint non�negative operators��
mutually orthogonal and commuting� AiAj � AjAi � � for i �� j� A�

i � Ai�
��Ai� � � for all �� Here� n cannot exceed the dimension d of the space C d
if the Ai are all nontrivial�
We call any collection of non�negative self�adjoint operators Ai satisfyingP

iAi � � a �generalised or non�orthogonal or arbitrary� resolution of the
identity� Now the number of components n is arbitrary� It can be veri�ed
�see problem �� that the Ai are all idempotent �A�

i � Ai� if and only if they
are orthogonal projectors� Thinking geometrically� an idempotent self�adjoint
operator is a projector� and a sum of projectors can only be the identity if
the projectors project onto a decomposition of the Hilbert space�
Let � be any density matrix� It is a mixture of pure states �	 � ��� �

 �	�� � �
R
 �	�P �d��� Now let �Ai� be a resolution of the identity� and

de�ne pi � trace��Ai�� Since the Ai are nonnegative� we have

pi �

Z
trace� �	�Ai�P �d�� �

Z
��Ai�P �d�� � �� ������

Since
P

Ai � � we haveX
pi �

X
trace��Ai� � trace���

X
Ai�� � trace��� � �� ������

Thus the pi form a probability distribution�
For a given resolution of the identity �Ai� we consider the mapping

� �� �pi � trace��Ai� � i � �� � � � � n� ������

taking density matrices into probability distributions on f�� � � � � ng� i�e�� into
the n�dimensional simplex� This mapping is a�ne� in other words� it com�
mutes with the taking of convex combinations� Note that both the space
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of density matrices and the n�dimensional simplex are convex sets though of
essentially di�erent character� The simplex looks like a tetrahedron� with the
degenerate distributions forming the corners� The space of density matrices
has a smooth boundary �all density matrices of less than full rank�� with the
pure states �rank one density matrices� forming a continuum on part of the
boundary� They supply the extreme points� As we saw� if d � � the space
of density matrices can be a�nely identi�ed with the three dimensional unit
ball� the so�called Poincar%e representation� the extreme points now form all
of the boundary� Any density matrix is the convex combination of a �nite
number of pure states �the same number as the rank of the matrix� but the
representation is not unique and a continuum of pure states is required to
generate all of the density matrices� The simplex has a �nite number of ex�
treme points and every point in the simplex is a unique convex combination
of them�
It is an easy theorem that every a�ne map from the density matrices to

the simplex can be expressed as � �� �pi � trace��Ai� � i � �� � � � � n� for some
resolution of the identity �Ai�� The proof runs as follows� consider a single pi
as real function of �� extend to all self�adjoint operators by linearity� it has
to be of the form trace��Ai� for some self�adjoint operator Ai� then use the
fact that pi forms a probability distribution to get the remaining required
properties of nonnegativity and adding to ��
Thus all the measurement strategies we described in the last section cor�

respond to resolutions of the identity� In particular this applies to quan�
tum randomisation
measurement of a classical observable on a compound
system formed by taking the tensor product of the system of interest with
another system�
A celebrated theorem of Naimark �called the Gel
fand�Naimark�Segall

construction in functional analysis�� states that quantum randomisation ex�
hausts the class of all possible measurements� We have to show that for
any resolution of the identity Ai in C d � there exist d���� and an orthogonal
resolution of the identity $Ai in C d � C d

�

such that

trace��� �� $Ai� � trace��Ai� ������

for all states � on H� A proof of the theorem in this discrete setting is given
in Holevo ������ ���� and is simple and explicit� One says that � $Ai� forms a
realization of �Ai��

proof to be included�

It can be shown that this measurement can be implemented by �rst al�
lowing a Hamiltonian evolution of the joint system� and then measuring an
observable on the ancillary system� thus $Ai � U �X�i� for some unitary U on
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the joint system and an observable X which only operates on the auxiliary
system�
More generally one can generate measurements taking a continuum of

di�erent values by allowing the ancillary system to be in�nite dimensional�
The results we have just mentioned generalise� the outcome of any measure�
ment is representable by an operator valued probability measure� and any
operator valued probability measure is representable by the measurement of
an observable on a compound system�
We described not just the distribution of results of measurement of ordi�

nary observables� but also the new state of the system after measurement�
One may ask if there is a similar theory for generalised observables� If the
generalised observable was indeed realised in a quantum randomisation ex�
periment then we know in principle the answer to this question� But clearly�
there can be many di�erent quantum randomizations which reproduce the
same OProM� but lead to quite di�erent �nal states� Is there a simple way
to describe the possible �nal states resulting from this procedure� And is
it possible to transform a quantum state in other ways than by quantum
randomization�
The answer is given by another celebrated theorem� the Kraus repre�

sentation theorem� see Kraus ������� Ozawa ������� Preskill ������� Werner
������� Holevo ������� it is based on a result from functional analysis called
the Stinespring theorem� It shows that there are no other ways to transform
a quantum state than by quantum randomization� Moreover� the theorem
gives a simple representation of all physically possible mappings from in�
put states to output states� Consider a measurement with discrete outcome
space� which can produce the outcome x with probability px� in which case
the quantum system is transformed into state �x� De�ne e�x � px�x and note
that the mapping from � to e�x is linear� and sends density matrices to unnor�
malised density matrices with trace less than one� Moreover� from e�x one can
recover pxand �x� Suppose we place another quantum system �	 alongside of
the state � but do not let it interact in any way with the original system and
the measurement process� then our measurement transforms the two systems
together from � � �	 to e�x � �	� when the outcome x is observed �and does
this with the same probability as before�� We are now looking at an extended
measurement on product systems� and we know how it operates on all tensor
products� It must be linear by the interpretation of mixed states as statistical
mixtures� By linearity and by its action on product states� its action on all
states in the product system is determined� and this must be an action which
sends density matrices to unnormalized density matrices �with trace less than
one�� It turns out that this requirement� termed total positivity� restricts the
original mapping to have the form� � �� e�x �Py V

�
x�y�Vx�y where the Vx�y �a
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countable collection of matrices� must just satisfy
P

y Vx�yV
�
x�y 	 ��

Moreover� any such mapping can be represented can be represented as
a quantum randomization� there exists an auxiliary system in the state ���
a unitary matrix U on the joint system� and two commuting observables X
and Y on the joint system� such that Vx�y�V �

x�y � trace�� �X�x�Y�y�U�� �
���U� �X�x�Y�y��� This means that the measurement procedure can be in�
terpreted as follows� The system � is brought into interaction with another
system ��� A unitary evolution transforms the two initially independent sys�
tems into one joint system� An observable Z � �X�Y � of the auxiliary system
is measured� projecting the joint state to an eigenstate� The outcome of Y
is not observed� but that of X is� so that the �nal state of the original sys�
tem is the partial trace of the mixture over possible outcomes y� of the state
resulting when the outcome is �x� y��
If the outcome x of the measurement is not discrete� the description of

the transformation of the input state to the output state is mathematically
rather delicate and involves subtle functional analytic considerations� but
the picture remains essentially unchanged� especially when we restrict atten�
tion to �nite dimensional input systems and measurements taking values in
Borel subsets of the real line �or on measureable spaces which are measure�
theoretically isomorphic to a Borel subset of the real line� i�e�� Borel subsets
of separable metric spaces� See Ozawa ������ ����� ������ Holevo �������
A considerable modelling e�ort is required� for a speci�c measurement

situation� to decide how all the operators involved are to be speci�ed� This
involves doing a lot of real physics in the grey area between quantum �mi�
croscopic� and classical �macroscopic�� involving heuristics� approximations�
and hard calculations�
We shall return to transformations of state in the chapter on quantum

stochastic processes� There we shall study measurement continuous in time�
When we study for instance radioactive decay� observations are typically
random time points of de�nite events �the clicking of a Geiger counter��
rather than random events observed at one de�nite time point� This type
of situation is modelled with a product space to represent the combined
system of atom and emitted particle� the observation process is modelled by
measurements�closely repeated in time� to detect the emitted particle�

��	 Ordinary versus quantum probability

Over the years� a hotly debated issue has been whether the randomness of
quantum mechanics can be described using ordinary probability theory� Of
course that strongly depends on what one means by 	ordinary
� Physicists
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on the one hand� and pure mathematicians on the other� have generally
agreed that quantum probability is a di�erent kind of probability �Feynman�
����� and that the axioms of Kolmogorov are too restrictive �Accardi� ����
K�ummerer and Maassen� ������ Again� whether one holds this view or not
depends very much on what is considered to be the ambit of probability the�
ory� We have argued that� in any case� the randomness in quantummechanics
is de�nitely the business of ordinary probabilists and statisticians�
According to most probabilists� Hilbert
s tenth problem� to axiomatize

parts of physics and in particular probability theory� was solved by Kol�
mogorov ������ with his now familiar axiomatisation� The germinating event
was the discovery of the Radon�Nikodym theorem� allowing conditioning to
be given a �rm measure�theoretic basis �the probability space �&�F �P� had
been available for some decades�� However a year before the appearance of
Kolmogorov
s work� von Neumann ������ gave an axiomatization of quan�
tum mechanics nowadays called quantum probability� and seen by many as
a real alternative to classical or Kolmogorov probability� In a mathemat�
ical sense it is a weaker set of axioms so is applicable to a wider class of
real�world phenomena� In this axiomatization� the probability space & with
its elements� the elementary outcomes �� seem to be missing� But one can
recognise analogues of random variables X� expectations� even probabilities
of events �expectations of �'� valued random variables� and so on�
The analogy can be useful� For instance� the notion of 	observable
 plays

a similar and equally fundamental role in quantum probability as that of
	random variable
 in ordinary probability� Our notation has emphasized the
analogy� for instance we use the symbol X to denote a typical observable
even though it is represented by a mathematical object quite di�erent from
that used to represent a random variable� However the analogy also has its
dangers and in the past has caused plenty of confusion�
	Quantum probability
 is the branch of mathematics where we study the

abstract structure of observables X and density matrices �� with expecta�
tion given by trace��X�� This mathematical structure can be seen as a non�
commutative extension of the Kolmogorov structure of random variables and
probability measures� However as we have described it above� there is no con�
�ict whatsoever between these di�erent models of probability theory� Take a
quantum system� choose a set of compatible observables� and measure them�
the rules above tell us the probability distribution
in the classical sense

of the results obtained� including the resulting state of the system� 	Mixed
states
 are just probabilistic mixtures� If one wants to go to the trouble of
explicitly constructing a probability space for the results of a speci�ed ex�
periment� there is no barrier to doing this� Conditioning can be e�ortlessly
introduced into the picture
the distribution of a measurement of Y � after
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a measurement of X has been taken yielding the value x� can be calculated
straightforwardly� If X and Y commute this will be the same as the usual
conditional distribution of the Y measurement given the X measurement
computed from the joint distribution of a simultaneous measurement of the
two �and it is only for commuting variables that simultaneous measurement
is physically speaking meaningful��



Chapter �

In�nite dimensional systems

��� Introduction

After some introductory comments� we will give in Section ��� a survey of
the necessary operator theory for in�nite dimensional Hilbert spaces� The
survey is of necessity both technical and lengthy but we have tried to keep it
as compact as possible� A quite readable source for this material is Chapters
VI'VIII of Reed and Simon ������� Methods of Mathematical Physics� Part I�
Still� they go into many di�cult topics which we do not need to know about
while they skip very brie�y over what for us are some of the key issues�
In the third section of the chapter� we show how the theory can be used

to represent states and observables as in the discrete case� and conclude with
a summary of the key results which emphasizes the close resemblance to the
discrete case� The reader might prefer to read these sections in reverse order�
For interesting and important applications as well as for mathematical el�

egance we need to develop an in�nite�dimensional theory� Naturally enough�
if we replace the �nite�dimensional Hilbert space H � C d by an in�nite�
dimensional spaceH� but with a countable basis� much of the previous theory
can be easily extended just by replacing �nite sums everywhere by in�nite
sums� Surprisingly perhaps� this simple extension not only yields discrete
probability models with countable numbers of di�erent outcomes but also
provides continuous models� This does depend on some subtle mathematical
issues� We will continue to identify observables �	physical quantities
� with
self�adjoint operators� but in doing so we will extend the notion of operator
a little� including so�called unbounded operators which are linear maps de�
�ned on a dense subset of the Hilbert space H rather than the whole space�
However� as we have emphasized� it is the accompanying projector�valued
probability measure which is the most important feature of an observable�

��



�� CHAPTER �� INFINITE DIMENSIONAL SYSTEMS

The operator representation is just a convenient packaging of these items�
The key mathematical result which allows this correspondence to continue
to hold is the celebrated spectral theorem� which establishes a one�to�one
correspondence between unbounded self�adjoint operators and the projector�
valued probability measures on the real line� We will also be able to include
generalised observables in the picture through the concept of operator�valued
probability measures� Recall that these notions were introduced in de�nitions
� and � in Chapter �� Those de�nitions remain valid� simply replacing the
words matrix by operator and the space C d by H�

��� Unbounded operators�

Let H be a separable complex Hilbert space� It consequently has a countable
orthonormal basis �in fact� many di�erent bases�� An operator X on H
is a continuous linear map from H� or just from a dense subset of H� to
itself� If it is de�ned everywhere it is automatically a bounded operator�
i�e�� sup	�k	k�� kX�k � �� if it cannot be de�ned �so as to be continuous�
everywhere it is called unbounded and correspondingly sup	�k	k�� kX�k ��
where the supremum is now taken over � in the domain of X�
It is useful to know that in complex Hilbert space an operator can be

de�ned by just specifying the values of h�jX�i for all �� or all � in a dense
subset of H� We do not need to know how to do this� but as a hint for the
interested reader we mention that it depends on the so�called polarization
identity

h�jX�i � �
�

�
h��� �� j X�� � ��i

�h��� �� j X�� � ��i
�ih��� i�� j X�� � i��i
�ih��� i�� j X�� � i��i

	 �����

which allows us to express h�jX�i in terms of what has been given� After
that� if we know the inner product of � with X� for every � �or for every �
in a dense subset of H�� we know the value of X��
The adjoint of an operator X is the operator X� de�ned by requiring

hX��j�i � h�jX�i �����

for all � in dom�X�� Its �we emphasize� maximal� domain consists of precisely
those � for which the linear function h�jX�i of � � dom�X� can be extended
continuously to all of H� If so� this continuous linear function must by the
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Riesz representation theorem �the self�duality of Hilbert space� be an inner
product h
j�i for some 
 in H� which is then the value of X��� An operator
is called self�adjoint if X� � X� by which we imply that the two functions
also have the same domains� Some authors use the word 	Hermitian
 instead
of 	self�adjoint
� but for others 	Hermitian
 does not imply equality of the
domains of X and X�� so that being Hermitian is a weaker property of an
operator than being self�adjoint�
A projector on H is a bounded self�adjoint idempotent operator� Its im�

age is a closed subspace of H and the operator does simply project onto
this subspace� The self�adjoint operators stand in one�to�one correspondence
with the projector�valued probability measures� A projector�valued probabil�
ity measure or ProProM is a mapping B ��  �B� from the Borel sets of the
real line to the projectors on H such that

 ��� � �� �����

 �R� � �� �����

and for every countable collection of disjoint Borel sets BiX
i

 �Bi� �  �


i

Bi�� �����

The countable sum of operators in the property of 	�additivity is de�ned as
the strong operator limit of its partial sums� i�e�� by requiring

P�
i�� �Bi�� �

limn��

Pn
i�� �Bi�� for all � � H� Correspondingly the closed subspaces

onto which the projectors project are related as follows� the closure of the or�
thosum of the images  �Bi��H� equals the image of the sum of the projectors
 ��Bi��H��
As we said there is a one�to�one correspondence between self�adjoint op�

erators and projector�valued �probability� measures� We will now show how
one direction of this correspondence works� Let a projector�valued measure
�B ��  �B�� be given� Anticipating the result of the construction� write
�X � B! for the closed subspace onto which  �B� projects� and similarly
write  �X�B� �  �B�� The operator X will be determined by specifying
h�jX�i for � in an� as large as possible� dense subset of H� This subset will
also be the domain of the operator� Here is the recipe�

h�jX�i �
Z

xh�j �X�dx��i �����

for all � such that Z
x�h�j �X�dx��i � �� �����
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where the notation h�j �X�dx��i denotes ordinary integration with respect
to the real measure

��B� � h�j �X�B��i
� h�j� �X�B��

��i
� h �X�B��j �X�B��i
� k �X�B��k��

�����

Here we exploited the self�adjointness and idempotence of a projector to write
the measure in such a form that it is evident that it is a bounded� nonnegative�
real measure� of total mass k�k�� We have kX�k� � R x�h�j �X�dx��i for �
in the domain of X�
Borel functions of self�adjoint operators can be de�ned via their projector�

valued measures as follows� f�X� is de�ned by

h�jf�X��i �
Z

f�x�h�j �X�dx��i �����

for all � �forming the domain of f�X�� such thatZ
f�x��h�j �X�dx��i � �� ������

The domain is dense in H� as can be seen by noting that it contains the union
of the closed subspaces �X � f�����n� n!�!� This set may not be all of H but
it can be argued to be dense by using the fact that  �X�f�����n�n��� � � as
n�� �strong operator limit��
In fact the projector�valued measures of X and f�X� are related by the

fact that f�X� has the projector�valued measure

B ��  �X�f���B��� ������

In view of the one�to�one correspondence between self�adjoint operators and
projector�valued measures� this supplies an alternative way to de�ne f�X��
In particular we obtain for the indicator function �B that

�B�X� �  �X�B�� ������

One can also de�ne f�X� as the measure�theoretic integral of the real function
f with respect to the projector�valued measure B ��  �X�B��

f�X� �

Z
f�x� �X�dx�� ������
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This de�nition follows the usual route in de�ning the Lebesgue integral �via
simple functions and nonnegative functions�� taking special care with domain
questions of the resulting sequences of operators� In the literature usually
integrals of bounded functions are de�ned in this way� and then unbounded
functions treated by the usual approach in Riemann integration� i�e�� by
taking the limit as n�� of integrals over ��n� n!�
The smallest closed set A � R such that �X � A! is all of H is called the

spectrum of X� It is the complement of the set of points x such that X �x�
has a bounded inverse� This includes any eigenvalues of X since if x is an
eigenvalue corresponding to the eigenvector �� we have �X � x��� � ��
The so�called operator calculus we have described here extends to func�

tions of several commuting operators� To avoid the nuisance caused by do�
main problems we de�ne commutativity of two operators to mean that their
projector�valued measures commute� i�e�

 �X�B� �Y �B�� �  �Y �B�� �X�B� ������

for all Borel sets B and B�� It follows that we do have XY � � Y X�
for all � where both sides are de�ned� but this property alone does not
imply commutativity� If two operators X and Y commute it can be easily
seen that the product  �X�B� �Y �B�� is also a projector� which we denote by
 �X�B�Y�B��� These projectors form a projector�valued probability measure
on the Borel rectangles B�B� of R�� It can be extended to a projector�valued
measure on all the Borel sets of R�� which we denote by A ��  ��X�Y ��A�� For
a Borel function f from R� to R we can now de�ne a new operator

Z � f�X�Y � ������

�which commutes with both X and Y � by any of the three routes�

h�jf�X�Y ��i �
Z Z

f�x� y�h�j �X�dx�Y�dy��i� ������

 �Z�B� �  ��X�Y ��f���B��� ������

f�X�Y � �

Z Z
f�x� y� �X�dx�Y�dy�� ������

A theorem of von Neumann states that a collection of self�adjoint op�
erators are pairwise commuting if and only if they are all functions of one
self�adjoint operator�
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If an operator has a discrete �countable� spectrum then the locations
x � R of the atoms of its projector�valued measure are its eigenvalues and
the subspaces �X � x! are the corresponding eigenspaces� An operator is
bounded if and only if its spectrum is bounded�

Example � 
Observable with continuous spectrum�
 De�ne H as the
set of square integrable �measurable� complex functions on the real line�
functions which are Lebesgue almost everywhere equal to one another being
identi�ed� We can represent a vector � � H by some function a �� ��a��
a � R� where we use a as argument in order to distinguish between pos�
sible values x of observables� there is not necessarily any connection be�
tween the two� The space H is separable� For instance� the usual Haar
functions or trigonometric functions provide countable bases for the sub�
spaces of functions zero outside of a bounded interval� these can be put
together over the intervals �j� j � �!� integer j� Consider the operator X
which is pointwise multiplication of the function � by the identity func�
tion � � a �� a� The projector valued measure associated with X is de�
termined by

R
xk �X�dx��k� � h�jX�i � R

aj��a�j�da for � such thatR
a�j��a�j�da ��� indeed a dense subset of H� Inspection of this equation

suggests that  �X�B� is the operator which projects onto the functions zero
outside of B� If this conjecture were true� then h�j �X�B��i would equalR
B
j��a�j�da� The measure h�j �X�dx��i would then be j��x�j�dx makingR
xk �X�dx��k� equal� as we hoped� to

R
aj��a�j�da� This equality �for all

�� characterizes  �X�B�� so our conjecture is correct�
The spectrum of X is all of R� however X has no eigenvectors �and no

eigenvalues� since if X� � x� we would have a��a� � x��a� for all a which
would make ��a� zero for almost all a� i�e�� � would be the zero element of
H� The situation can in a sense be saved by using generalised functions �the
Dirac delta functions then form a continuum of eigenfunctions� leading to so�
called rigged Hilbert spaces� but these rather involved and delicate technical
modi�cations do not make any di�erence to the results we want to use�
Since the subspace �X � B! is the space of functions zero outside of B�

we see that �X � x! � �X � fxg! is actually the trivial subspace of functions
zero almost everywhere� in other words� the zero function�
Replacing X by a bounded one�to�one function of itself� e�g�� arctan�X��

supplies an example of a bounded self�adjoint operator with continuous spec�
trum�
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��� Observables and states�

Having �xed the notion of a �possible unbounded� self�adjoint operator and
its projector�valued measure we are now able to carry over the theory of
discrete quantum systems to the general continuous case� The state space of
a continuous quantum system is a complex Hilbert space H with countable
orthonormal basis� i�e�� H is in�nite�dimensional but separable�
We identify the physical notion of observable �or physical quantity� of the

system with self�adjoint operator� We identify the state of the system with a
non�negative self�adjoint operator � of trace �� also called a density matrix�
The trace of an operator X is by de�nition equal to

Ph�ijX�ii where ��i�
is an orthonormal basis of H� if this sum is absolutely convergent then it
does not depend on which basis we take� and the operator is called a trace�
class operator� Products of bounded self�adjoint operators and self�adjoint
trace�class operators are again trace class� Inside a trace we may cyclically
permute operators�
Self�adjoint trace�class operators �self�adjoint operators of �nite trace� al�

ways have discrete spectrum and therefore any density matrix can be written
as � �

P
pi ��i� where the �i form an orthonormal basis ofH and the pi are a

probability distribution� Any projector onto a one�dimensional subspace is a
density matrix and any �probabilistic� mixture of density matrices is again a
density matrix� A state � which is a one�dimensional projector is called a pure
state� all others are called mixed� A mixed state can always be represented as
a discrete mixture of pure states� A density matrix � has a square root ����

which is also non�negative� Hence for any non�negative self�adjoint operator
X and a density matrix � we have trace��X� � trace�����X����� � ��
Consider a quantum system in state � and an observable �self�adjoint

operator� X� Since  �X�B� is a nonnegative self�adjoint matrix we have that
trace�� �X�B�� � �� Since it forms a projector�valued probability measure
and since trace��� � � it follows that B �� trace�� �X�B�� is an ordinary
probability measure on the real line� In fact if � �

P
pi ��i� then using the

fact that  ��i� � �i�
�
i we can calculateX
pi trace��i�

�
i �X�B�� �

X
pik �X�B��ik�� ������

We continue therefore to make the interpretation that measurement of the
observable X on a system in state � produces values x distributed according
to the probability distribution PrfX
 � Bg � trace�� �X�B��� These values
lie in the spectrum of the corresponding operator� It is possible that X has a
continuous spectrum� then X has no eigenvalues and the subspaces �X � x!
are the zero subspace for each value x� Projection of a pure state into that
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subspace and renormalisation does not make sense� It seems reasonable to
interpret this by saying that exact measurement of an observable with contin�
uous spectrum is impossible without destroying the system� However for an
observable with discrete spectrum �and hence eigenvalues and eigenspaces��
X �

P
xi �X�xi�� we may keep to our interpretation that when the value x

is found� which occurs with probability trace�� �x�x��� the system is now in
the state  �x�x�� �x�x�� trace�� �x�x���
Everything else we said about discrete quantum systems generalises im�

mediately to continuous ones� In particular we emphasize that the laws of the
unconscious quantum statistician� concerning the preservation of functional
constraints between commuting observables in simultaneous measurements
of those observables� remain valid� The tensor product construction of in�
teracting systems built up from subsystems is still available� The notion of
generalised observable or generalised measurement� replacing projector�valued
probability measures by �self�adjoint� operator�valued probability measures
carries over unchanged� The result characterizing all generalised measure�
ments of a quantum system with an operator�valued measure remains true�
and the Naimark extension theorem still allows any operator�valued measure
to be represented as a quantum randomisation� Time evolution according to
Schr�odinger
s equation takes the same form as before�
We include here a proof of one form of the law of the unconscious quan�

tum statistician� We could not locate an explicit statement or proof of this
result in the literature� except in either highly abstract or� alternatively� in
rather restrictive forms� This is rather surprising since it is both practically
and conceptually important� and it is often used without argument� We use
the following notation� �X
�X�Y�Z � Y
�X�Y�Z� Z
�X�Y�Z� denotes a triple of ran�
dom variables with the joint distribution of a simultaneous measurement of
three compatible observables X� Y and Z on a quantum system in state
�� and similarly for other numbers of compatible observables� The theorem
is concerned with properties of� and relationships between� such probability
distributions� but it is easier to state in terms of random variables having
these distributions� The probability spaces on which they are de�ned are
irrelevant�

Theorem � 
Preservation of functional constraints�
 Suppose

Z � f�X�Y � ������

where X and Y commute� then

Z
�X�Y�Z � f�X
�X�Y�Z � Y
�X�Y�Z� with probability �� ������
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As a corollary we have

Z
 � f�X
�X�Y � Y
�X�Y � in distribution� ������

Proof� The steps in the proof are as follows� some in fact already intro�
duced above� We are given that the projector�valued measures of X and Y
commute� so we can de�ne a projector�valued measure on the Borel rect�
angles of R� by B � B� ��  �X�B� �Y�B��� We can extend this to a unique
projector�valued measure on all of the Borel sets of R�� which we denote by
C ��  ��X�Y ��C�� Next we de�ne a new projector�valued measure on R by
B ��  ��X�Y ��f���B��� This projector�valued measure corresponds to a unique
observable Z in the standard way� �Z � B! � ��X�Y � � f���B�!� The new
observable commutes with the two given ones and the joint distribution of
measurements of all three is determined by its values on the Borel rectangles
of R� which are

PrfX
�X�Y�Z � B�Y
�X�Y�Z � B�� Z
�X�Y�Z � B��g
� trace�� �X�B� �Y �B�� �Z�B����
� trace�� ��X�Y ��B	B�� ��X�Y ��f���B�����
� trace�� ��X�Y ���B	B��
f���B�����
� Prf�X
�X�Y � Y
�X�Y � � �B �B�� � f���B���g
� PrfX
�X�Y � B�Y
�X�Y � B�� f�X
�X�Y � Y
�X�Y � � B��g�

������

This is the same as the distribution of �X
�X�Y � Y
�X�Y � f�X
�X�Y � Y
�X�Y �� and
is therefore concentrated on fz � f�x� y�g in R��

Let us summarize the main points of this chapter�

����� Summary�

�� Observables �physical quantities� are represented by self�adjoint opera�
tors X� Self�adjoint operators are in a one�to�one correspondence with
projector�valued measures� The correspondence can be expressed as
X �

R
x �X�dx�� This representation yields the distribution of values

found when X is measured on a system in state �� as we will describe
in the following items�

�� States are represented by self�adjoint� non�negative� unit trace opera�
tors �� Such an operator is called a density matrix� It can be written
�generally in many ways� as � �

R
 �	�P �d�� where P �d�� is a prob�

ability distribution over normalized state vectors �� If this mixing
distribution is degenerate the state is called pure� otherwise it is called
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mixed� A mixed state can always be written as a discrete mixture of
one�dimensional orthogonal projectors�

�� With X
 denoting a random variable having the distribution found
when X is measured on a system in state �� we have PrfX
 � Bg �
trace�� �X�B��� Consequently E�X
� � trace��X� if the expectation

or the trace
exists�

�� If X has a discrete spectrum� i�e�� X �
P

x �X�x�� then if on mea�
surement of X the value x is found� the system is now in the state
 �X�x�� �X�x�� trace�� �X�x���

�� For a Borel function f � by de�nition f�X� �
R
f�x� �X�dx�� it follows

that �f�X��
 � f�X
� in distribution �the simplest form of the law of
the unconscious quantum statistician��

Example 	 
Classical as special case of quantum�
 Let �&�F �P� be a
probability space� Suppose F is countably generated� Now de�ne the sepa�
rable Hilbert space H to be the space of absolute�square�integrable complex�
valued random variables� Let � be any real random variable and let � be the
pure state corresponding to ei
� Each real random variable X on the original
probability space corresponds to an observable� or self�adjoint operator X�
de�ned as follows� it acts on � � H by pointwise multiplication of the values
����� � � � &� by the values �X��� � � � &� to produce the complex random
variable � �� X�������� The projector�valued measure of the observable X
corresponds to the subspaces �X � B! of square�integrable complex random
variables which are zero outside of the event fX � Bg� The observables X
de�ned in this way all commute and the joint distribution of measurements
of them is exactly their distribution as random variables on �&�F �P�� Many
other observables also exist of course�
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Chapters to come � � �

��� Parametric estimation

We concentrate on the quantum Cram%er�Rao bound and its application to
estimation of the spin half state� given n identical copies of the system� see
Barndor��Nielsen and Gill ������ ������ Gill ������� Gill and Massar �������

��� Exponential families and transformation

models

Various generalisations of the notion of exponential family� Transformation
models� Relations and properties�

��� Quantum tomography

Nonparametric estimation of the state of an in�nite dimensional system� The
quantum simple harmonic oscillator� This material continues from the chaper
on in�nite dimensional quantum systems�

��� Quantum stochastic processes

Main theme� evolutions of a density matrix modelled as continuous measure�
ment�

��
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��� Future quantum technology

A survey of the basic ideas in quantum computing� communication� informa�
tion� teleportation and cryptography�
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Hidden variables

This chapter surveys some celebrated results showing that any deterministic
explanation for the randomness apparent in quantum measurements will of
necessity possess some highly unattractive features� A theory purporting
to underlie quantum mechanics is called a 	hidden variables theory
� The
aim of such a theory is to express the phenomena described so e�ectively by
quantum theory as just the surface expression of a more fundamental level�
to which� hopefully� more classical physical laws apply� The mathematical
results show on structural grounds that such programmes will fail� Hidden
variables models can be constructed �and work on them continues today� but
the models exhibit of necessity features even more surprising than those of
quantum mechanics itself�
Research in this direction centres around the famous Bell ������ inequal�

ities� these are inequalities which should hold for any model satisfying some
apparently harmless physical constraints� but which are violated by quantum
mechanical predictions� The violation has been con�rmed experimentally� in
particular� in the famous Aspect experiment� Aspect et al� ������ Earlier cen�
tral results in this area are the fundamental theorems of Gleason ������ and
Kochen and Specker ������� In recent years various authors have derived
further Bell�type paradoxes� in a sense 	almost�sure
 versions of Bell
s result�
and we will also discuss one of these� the so�called Mermin ����� array� Bell
s
example� and even more clearly these later examples� show that already the
surface phenomena of quantum mechanics violate cherished physical princi�
ples� independently of any attempt to 	explain
 quantum phenomena�

��
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��� Kochen�Specker vs� noncontextual h�v�
s

Could the randomness in the outcome of measurement of any observable on
a quantum system in a given state � simply be the expression of statistical
variability in further� 	hidden
� state variables� In other words� when we
say that the system is in state �� in fact the real state of the system is not
completely �xed� There are other variables which we are not able to control
or keep constant� variation in which completely explains the variability of
measurement results�
We �rst discuss the most simplistic type of hidden variables model� Keep�

ing a particular quantum state � �xed in the following discussion� let us
denote by � a possible con�guration �set of values� of all necessary hidden
variables� Let & denote the collection of all possible �� Measurement of the
observable X on the system in hidden state � results in a value which is a
deterministic function of X and �� which we will denote by X
���� This
notation makes explicit a key assumption that this value does not depend on
which other �compatible� observables are being measured at the same time as
X� In other words� the hidden variables truly reside in the quantum system
under study� not in the apparatus which is employed to measure it� Such
a hidden variables model is called non�contextual� A non�contextual hidden
variables model can be interpreted to say that the result of the measurent of
the observable X already exists� independently of the measurement� as the
value x � X
���� Measurement simply reveals this pre�existing value�
Indeed such a model seems very simplistic� Measurement devices are built

up of very� very many quantum subsystems� and if there is variability in a
single fundamental particle which we cannot control� then surely even more
so in macroscopic measuring devices� However nature itself gives a clear
signal that we should entertain such non�contextual models� the probability
distribution of a measurement of X when it is measured jointly with a com�
patible variable Y � is exactly the same as when it is measured jointly with a
di�erent compatible variable Z� even though Y and Z are incompatible� so
that completely di�erent experimental set�ups are required for the two ex�
periments� In other words� statistically the context in which X is measured
makes absolutely no di�erence to the results� so why should this also not be
true at the level of individual outcomes�
Recall that we denote by X
��� the result of measuring X on a system

in the hidden state �� From quantum mechanics we can write down the
joint probability distribution of measurements of any collection of compat�
ible observables X� Y � � � � � According to our hidden variables model this
joint distribution is the same as that inherited by �X
�
�� Y
�
�� � � � � from the
variability in the hidden argument ��
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A modern�day probabilist or statistician will formulate this mathemati�
cally as follows� there exists a probability measure P on the space of hidden
states &� on which a sigma�algebra F is de�ned making the functions X


measurable� Under this probability measure� the joint distribution of any set
�X
� Y
� � � � � corresponding to compatible observables �X�Y� � � � � is the one
predicted by quantum mechanics�

P�X
 � B�Y
 � C� � � � � � trace�� �X�B� �Y�C� � � � �� �����

We should be careful however not to make our argument heavily de�
pendent on technical issues such as measurability� We will show that the
non�contextual hidden variables programme is doomed to failure already if
we only consider a �nite number of observables� each taking with probability
one a �nite number of di�erent values� This implies that our sigma�algebra
F of measurable sets can be taken to be �nite� and the question is whether
the values of P implied by ����� for various events in F �involving only com�
patible observables� can be extended consistently �additively� nonnegatively�
to the rest of this algebra� in other words� to events involving arbitrary com�
binations of our �nite collection of observables�
As such we can connect the hidden variables programme to the ordinary

probabilistic notion of coupling� We are given a collection of probability
spaces� each one modelling an experiment in which a set of compatible ob�
servables are measured� Can we construct a coupling of these spaces� i�e��
a single probability space on which there is a single random variable corre�
sponding to each observable� and such that the marginal distributions of sets
of variables corresponding to compatible observables reproduces the right
hand side of ������
The Kochen�Specker theorem which we are going to state� and in the

next section prove� implies that from dimension � onwards� one can exhibit
a �nite collection of discrete observables which cannot be coupled in this
way� This kind of result is called a no�go theorem� prohibiting a certain type
of hidden variables model
in this case all non�contextual models� First we
make some preparatory arguments� interpreting the problem in terms of �'�
valued observables �projectors�� projecting onto one�dimensional subspaces
of a ��dimensional subspaces of H�
Now if a collection of compatible observables satisfying a functional re�

lation X � f�Y�Z� � � � � are measured simultaneously� we know that with
probability one the outcomes will satisfy X
��� � f�Y
���� Z
���� � � � �� The
outcomes are also contained in the spectrum of the observables with proba�
bility one� Now suppose dim�H� � �� Then there exists a subspace A of H
of dimension � such that trace�� A� � ��
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A projector is a �'� valued observable� The assumption trace�� A� � �
means that a measurement of  A yields a value � with positive probability�
If �� �� and ��� are orthogonal and span A� then

 A �  �	� � �	�� � �	��� �����

and the four projectors commute� So a simultaneous measurement of the set
of four yields with positive probability a � on the left hand side and two �
s
and a � on the right hand side� Restrict attention to a �nite collection of
non�zero vectors ��� ��� � � � in A� We have that� for each � in the list� with
probability ��

� �	��
���� � � or �� �����

for each orthogonal triple� with probability ��

� A�
��� � � �	��
��� � � �	���
��� � � �	����
���� �����

and �nally� with positive probability�

� A�
��� � �� �����

Since exceptions to ����� and ����� only hold with zero probability� and there
are only a �nite number of vectors � and orthogonal triples �� �� and ����
there must exist a point � such that ������ ����� and ����� all hold for all
vectors and triples under consideration�
In geometric language this says that any �nite set of non�zero vectors in a

three�dimensional subspace of H can be assigned the colours red �for �� and
green �for �� subject to the constraint that in any orthogonal triple� there is
one and only one assignment red�
The Kochen�Specker theorem states that there exist �nite sets of vectors�

for which such a colouring is not possible� Since on the other hand existence of
a non�contextual hidden variables model implies the existence of a colouring
for any �nite set of vectors� we have as a corollary of the theorem that a
non�contextual hidden variables model is impossible in any dimension from
� onwards �and whatever the state ��� For dimension �� and for arbitrary
contextual models� see the exercises at the end of this section�
Kochen and Specker proved their theorem by an explicit construction of

��� vectors in C � � for which a colouring satisfying the just mentioned con�
straints is impossible� Actually a similar construction can be extracted from
the key paper of Bell������ ����� In both cases� the construction only needs
R�� i�e�� one only needs vectors which are real linear combinations of a given
basis� Later authors have tried to 	improve
 the theorem by reducing the
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number of vectors� the current world record stands at �� �an example due to
Conway and Kochen� reported by Peres �������� Checking that the colouring
is impossible is now a fairly involved combinatorial exercise� In the next sec�
tion we will give a recent and geometrically inspired construction due to Gill
and Keane ������� which is similarly extravagant in terms of the number of
vectors involved as the original Kochen�Specker or Bell arguments� but has
the advantage that it can be 	seen
 rather than relying on combinatorial or
algebraic computations� Moreover its proof is built on a key lemma for the
proof of the related Gleason theorem� which we will also discuss�
The reader may however skip that section and proceed with Section ����

on the Bell inequalities� These inequalities also yield a no�go result for a
less restricted class of hidden�variables models� and therefore also contain
an example of Kochen�Specker type� However dimension four� at least� and
a special choice of state �� are needed to build this example� As such it
exempli�es the Kochen�Specker theorem� but does not prove it�
We �nish this section with two more technical remarks and an exercise�

The Kochen�Specker theorem can be interpreted to be say that 	joint dis�
tributions of incompatible observables do not exist� In fact theorems with
apparently such a content go back to the early days of quantum mechanics�
For instance� there is a theorem stating that if X and Y are two incompatible
obervables� then there is no joint distribution of a pair of random variables
X
� Y
 such that the marginal law of �X
��Y
 is equal to the distribution of
measurements of the observable �X � �Y for all real �� �� However this re�
sult has no bearing on the issue of hidden variables� since there is no a priori
reason why the observable �X ��Y should have any connection whatsoever
with the conjectured random variable �X
 � �Y
�
Pitowsky ����� has claimed that the whole problem is solved by allowing

the X
 not to be measurable� but in our opinion this is not the correct
interpretation of his results� which merely show that there is no problem
if one leaves probabilities unde�ned which otherwise would be forced to be
negative� He manages to disguise this 	solution
 by a most elaborate and
technical construction involving laws of large numbers for non�measurable
random variables� but the heart of his argument is that if two observables
are not compatible� then probabilities involving values of both should be
unde�ned� This completely avoids the whole issue�

Problem �� 
Hidden variables for dimension ��
 Construct a hidden
variables model for a given state on two�dimensional Hilbert space�

Problem �� 
Product construction�
 A given collection of probability
spaces can always be coupled� e�g�� the product construction yields a single
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probability space on which all of the random variables on each of the com�
ponent spaces exist� and therefore have joint distributions� Show that this
construction supplies a trivial �though physically unattractive� contextual
hidden variables theory in which X
�X�Y������� denotes the result of measuring
the observable X� in the company of compatible observables Y � Z� � � � � when
the quantum system is in the hidden state ��

��� Gleason
s theorem

Fixing a state � on a quantum system� consider the mapping p from closed
subspaces of H to the interval ��� �! de�ned by

p�A� � trace�� A�� �����

This mapping associates a probability with each subspace� namely the prob�
ability that measurement of the binary �or Bernoulli� observable  A would
yield the value �� Thinking of the subspaces A as 	properties of the quantum
system
� we have de�ned a probability measure on the spaces of properties
in the sense that p�A� is the probability that the system 	would be found to
possess property A
� if that property were measured� Now the term 	proba�
bility measure
 is quite well justi�ed because it is easy to check that p satis�es
the usual axioms of a probability measure if we draw the following analogies�
orthogonality of subspaces and disjointness of events� the orthosum of or�
thogonal subspaces and the union of disjoint events� the zero subspace and
the empty event� the whole space and the certain event� Thus �with some
redundancy�

� 	 p�A� 	 �� �����

for any countable collection of orthogonal Ai

p�
Ai� �
X

p�Ai�� �����

and

p�f�g� � �� p�H� � �� �����

Gleason
s ������ theorem states that any probability measure p on the
lattice of subspaces of a separable Hilbert space has to be of the form p�A� �
trace�� A� for some density matrix �� This result is fundamental in a long�
lasting research programme to derive the mathematical structure of quantum
mechanics from a more appealing� more qualitative set of axioms� If one could
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argue from some general principles that 	properties
 of a quantum system
must of necessity have the same algebraic structure as subspaces of a Hilbert
space� and their 	probabilities
 must satisfy the above axioms� then one has
derived the whole Hilbert space set�up with operators and the trace operation
as a necessary consequence of the initial axioms�
Gleason
s theorem �already conjectured by von Neumann� has a long

history� The �rst proofs of it �Piron ���� were not entirely rigorous and
Gleason
s own proof was very long and complicated� it used di�cult methods
from harmonic analysis� An 	elementary
 proof was �rst given by Cooke�
Keane and Moran ������� This proof needs fairly elementary analysis only�
together with a a geometric lemma due to Piron� We will use exactly this
lemma in our proof of the Kochen�Specker theorem� After that we will prove
that theorem� and then comment on some other links between the Kochen�
Specker and the Gleason theorems�

��� A geometric lemma

Consider the one�dimensional subspaces corresponding to non�zero� real� lin�
ear combinations of three orthogonal vectors in C k � k � �� These subspaces
may be represented by points on �the surface of� the Northern hemisphere
of the globe� The original triple is represented by North pole together with
two points on the equator whose longitudes di�er by ����
Now �x a point � in the Northern hemisphere� not at the North pole nor

on the equator� Consider the great circle through this point which crosses
the equator at the two points di�ering in longitude by ���� from �� Choose

one of these equatorial points and call it �E� Call the point on the Northern
hemisphere orthogonal to the great circle ��� Its longitude is that of �

plus ���� and its latitude is ��� minus that of �� The triple �� �E� �� are
orthogonal�
The great circle we just de�ned has � as its most Northerly point� We

call it the great circle descent from ��
Starting from a point � � �	 go down its descent circle some way to a new

point ��� Now consider the new great circle descent from ��� Go down some
way to a new point ��� and so on� After n steps arrive at �n� Obviously �n is
more Southerly than �	� Cooke� Keane and Moran
s geometric lemma states
that one can reach any more Southerly point than �	 by a �nite sequence of
great circle descents� For instance� one can �y from Amsterdam to Tokyo by
a �nite sequence of great circle descents�
The lemma is proved by projecting the Northern hemisphere from the

centre of the earth onto the horizontal plane tangent to the earth at the North
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pole� Circles of constant latitude project onto concentric circles� a great circle
descent projects onto a straight line tangent to the circle of constant latitude
at its summit�

PICTURE

��� Proof of the Kochen�Specker theorem

The theorem is proved by exhibiting a �nite collection of unit vectors in R�

such that it is impossible to colour each vector either red or green subject
to the following constraints� ��� within any orthogonal triple� exactly one
vector is red and the other two are green� ��� if one vector lies in the subspace
generated by two orthogonal vectors and those two are both coloured green�
then the third is coloured green as well� The second constraint follows from
the �rst by constructing a vector orthogonal to the �rst two� It must be
coloured red� Call these three vectors ��� �� and ��� where �� is red and
�� and �� are green� We are interested in a vector � in the plane generated
by �� and ��� It is automatically orthogonal to �� �red� and there exists
another vector� say 
� in the plane generated by �� and ��� and orthogonal
to �� Now ��� � and 
 form an orthogonal triple� while �� is already coloured
red� The other two� in particular �� therefore have to be green�
Now we start the construction� Fix an an orthogonal triple� Colour one

point red and the other two green� Let the red point be the North pole and
the other two green points be on the equator� Any further points selected
on the equator get coloured green by rule ��� Take a point � at latitute

��� above the equator� Together with �� and �E we have a new orthogonal

triple� Since �E gets coloured green� if � is coloured green then �� is coloured
red� Note that �� lies at ��� above the equator� more Southerly than ��
Suppose � is coloured green� Since any point on its great circle descent

is a linear combination of � and �E� it is also coloured green� Repeating
this argument� any point which can be reached by a �nite number of great
circle descents from � is also coloured green� But this applies to ��� a
contradiction�
Therefore � is coloured red just like the North pole� So we have shown

that any point within ��� of a red point is also coloured red� Now go in three
steps of ��� from the North pole down to the equator� then in three steps of
��� along the equator� then in three steps of ��� back up to the North pole�
One of the three 	corners
 of this circuit has to be coloured red� hence they
all are� a contradiction� �
It has been claimed that Gleason
s theorem itself supplies a very direct

and short proof of the no�go theorem for noncontextual hidden variables
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models� The putative proof is as follows� Fix a point � and consider all
evaluations e�A� � � A�
���� Almost surely� each evaluation takes the values
zero and one� Almost surely� e�A� is additive on disjoint subspaces� zero on
the zero subspace and equal to one on the whole space� If the point � is not
in any of the exceptional �zero probability� events� then e is a probability
measure on the lattice of subspaces of H and hence of the form trace�� A�
for some density matrix A� However such a probability measure takes values
strictly between zero and one on some subspaces A� while e only takes these
values�
Unfortunately this argument requires us to exclude uncountably many

null sets� and these could exhaust &� It does not seem easy to repair this�

��� Bell vs� contextual local hidden variables

The results above show that hidden�variables models have to be contextual�
Hidden variables must reside in the measurement apparatus as well as in the
quantum system under investigation� The result of measuring one particular
observable depends not only on the quantum system but also on the mea�
surement apparatus� and in particular depends on what other observables
are being measured at the same time�
Now if we model two separate particles as a single quantum system using

the tensor product construction� we can also consider an observable on one
of the subsystems as an observable on the joint system� Two observables�
one on each subsystem� are compatible� Now in some physical examples�
the two particles� at the time of measurement� might be widely separated
in space� so that measurement on one particle can be done 	independently

of measurement of the other� In particular the result of measuring one of
the two particles should not depend on which observable is measured on the
other�
Let X and X � represent two incompatible observables on the �rst subsys�

tem� and Y and Y � represent two incompatible observables on the second�
However X is compatible with Y and with Y �� and X � is also compatible
with both Y and Y �� There are now four di�erent experiments which might
be carried out� measure X and Y � or measure X and Y �� or measure X �

and Y � or measure X � and Y �� A contextual hidden variables model will
specify four pairs of random variables� let us write for example X
�X�Y ��� for
the result of measuring X on the �rst subsystem when simultaneously Y is
measured on the second subsystem� where � stands for all hidden variables
needed to specify the outcome of any of the possible experiments� There is
no problem in �nding a probability space on which all these four pairs are
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de�ned simultaneously with the right probability distributions�
There may however be a problem if want to impose the natural restric�

tion stated above� That the result of measuring one subsystem should
not depend on which measurement is made on the other� translates into
X
�X�Y ��� � X
�X�Y ���� and three other identities� There are now just four
random variables� which we abbreviate to X
� X

�

� Y
 and Y ��� We ask the

question� can we construct a single probability space with just these four
random variables such that each of the four pairs �X
 or X �


 together with
Y
 or Y �


� have the same bivariate distribution as that of joint measurements
of the corresponding pair of compatible observables �X or X � together with
Y or Y ���
Let us specialise further and suppose that the observables under consid�

eration are all binary� Let us suppose that the coupling is possible� This puts
some constraints on the bivariate distributions� For instance� the marginal
distribution of one variable can be computed from two di�erent pairs� and
these must give the same answer� for instance� X
 occurs in the pair �X
� Y
�
and in �X
� Y

�

�� This constraint will be satis�ed� as we know already� We will

derive a further inequality relating the distributions of the four pairs� Then
we will turn to a speci�c example� and show that the inequality is violated�
Fix a point � and consider the four values x � X
���� x� � X �


����
y � Y
��� and y� � Y �


���� These four values are all � or �� Moreover it is
easy to verify that

x �� y� ( y� �� x� ( x� �� y �� y �� x� ������

simply �ll in �without loss of generality� x � � and calculate the value of y�
Conversely we must have

x � y �� x � y� or y� � x� or x� � y� ������

Therefore we obtain Bell
s inequality

P�X
 � Y
� 	 P�X
 � Y �

� � P�X

�

 � Y �


� � P�X
�

 � Y
�� ������

One can write down three other inequalities of this type and it turns out
�Fine� ���� that a joint distribution of all four binary variables exists if and
only if the univariate marginals match �four equality constraints� and these
four inequalities are satis�ed�
Let us now consider a speci�c quantum model� Polarization measure�

ments on a coupled pair of photons can be modelled in the four dimensional
space H � C

� � C
�� Denote the unit vector �cos �� sin ��� in C

� by jl�i�
Write  � � jl�i hl�j� De�ne furthermore two basis vectors jli � j�i and
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j�i � j���i� Recall that these vectors describe the states of a single photon
polarized vertically and polarized horizontally respectively� We write product
states for instance as jl�i � jli � j�i� Note that

hl�jl�i � cos � cos �� sin � sin� � cos�� � ��� ������

Consider a pair of photons in the pure state corresponding to the unit vector�
called the singleton or Bell state

jSi � �
�
�jl�i � j�li�� ������

The corresponding density matrix is

� � jSi hSj ������

��
�

�
�jli hlj�� �j�i h�j�

� �jli h�j�� �j�i hlj�
� �j�i hlj�� �jli h�j�
� �j�i h�j�� �jli hlj��

where we used the bilinearity and the rule �A�B��C �D� � �AC�� �BD��
The projector for the event 	photon � passes through a polarization �lter
aligned at angle � to the vertical is  � � �� and similarly� the projector for
	photon � passes through a polarization �lter aligned at angle � to the vertical
is � �  �
� These two projectors commute and their product is  � �  ��
projector for the event 	photons � and � simultaneously pass through �lters
at angles � and ��
The joint distribution of a measurement of these two is determined by

the marginal probabilities trace�� � � �� and trace���� ��� and the joint
probability trace�� � � ��� Now�

trace�� � � �� � �
�

�
trace�jli hlj � j�i h�j  � � ��

� trace�jli h�j � j�i hlj  � � ��
� trace�j�i hlj � jli h�j  � � ��

� trace�j�i h�j � jli hlj  � � ��

�
�

������

Using the rule

trace�A�B C �D� � trace�AC �BD� � trace�AC� trace�BD�� ������
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together with trace�jii hjj �� � trace�jii hjj� � �ij� two of the four terms
here disappear� We also have trace�jli hlj �� � trace 	 � � cos����� and
trace�j�i h�j �� � trace ��� � � sin

����� Thus the marginal probability
we are computing reduces to �

�
�cos���� � sin����� � �

�
� Similarly the other

marginal probability is also �
�
� Finally�

trace�� � � �� �
�
�

�
trace�jli hlj jl�i hl�j� trace�j�i h�j jl�i hl�j�

� trace�jli h�j jl�i hl�j� trace�j�i hlj jl�i hl�j�
� trace�j�i hlj jl�i hl�j� trace�jli h�j jl�i hl�j��
� trace�j�i h�j����� trace�jli hlj������

�

� �
�

�
cos � cos � sin � sin�

� sin � cos � cos � sin�
� cos � sin � sin� cos �

� sin � sin � cos � cos �

�
� �

�� cos � sin �� sin � cos���
� �

�
sin��� � ���

������

The probabilities that each photon passes� or each photon does not pass� the
two �lters are therefore both �

� sin
������� the probabilities that one does and

the other does not are both �
�
cos������� The probability that both photons

do the same is therefore sin��� � ��� If the two �lters are aligned the same�
exactly one of the photons will pass its �lter� each choice with probability
half� If the two �lters are aligned at right angles then both the photons will
pass or neither will pass� again� each with probability half� Marginally� each
photon has probability half to pass any polarization �lter�
Consider now a pair of �lter settings for each of the two �lters� We set

� � �� �� � ���� � � ���� �� � ���� The angles �� ��� ��� � in sequence
therefore increase in three steps of ��� from �� to ���� De�ne X �  � � ��
X � �  �� � �� Y � � �  �� and Y � � � �  ��� Since sin

������ � �
�
while

sin������ � �� we have P�X
 � Y
� � � while P�X
 � Y �

� �

�
�� P�Y

�

 � X �


� �
�
�� and P�X

�

 � Y
� �

�
� � This violates Bell
s inequality since � �

�
� �

�
� �

�
� �

A corresponding experiment was carried out by Alain Aspect and his
coworkers in Orsay� Paris� ����� and has since been replicated in many other
places and in many forms� Apect considered ���



���� THE MERMIN ARRAY AND OTHER CONSTRUCTIONS ��

��� The Mermin array and other construc�

tions

Our derivation of the Bell inequality made clear that it is not probability
theory which leads to paradoxes with quantum theory� it is fairly innocent
looking deterministic reasoning� The starting point was that 	the result of
measuring X on the �rst particle does not depend on whether Y or Y � is
measured on the second
� This point is made especially clear in Maudlin
������� where the author asks you to consider the following experiment� You
are in a room with a friend and you are about to each leave the room by a
separate door� Outside the door you are each going to be asked a question
and you may only give one of two answers� 	pass
 or 	don
t pass
� The question
will actually specify an angle� one of you is going to be asked either �� or ����
the other is going to be asked ��� or ���� You want to agree on a strategy
such that� whenever the two questions at the two doors di�er by ���� you
each give the same answer� but in any of the other three cases� you want
your answers only to be the same in ��) of the time� You are allowed to
randomise your answers using dice� cards or whatever� what you may not do
is communicate in any way after you have left the room �and get to see which
question is posed to you�� Start to consider your possible strategies� Maudlin
shows by a simple argument that no strategy whatsoever will enable you to
reproduce the photons
 statistics in the Orsay experiment� The conclusion is
that the Bell inequalities do not torpedo just the ambition to build hidden
variables models subject to locality� they torpedo locality altogether�
Recently a plethora of new examples� involving more observables or more

particles� have been invented� which make this point even more clearly �or
at least� in di�erent ways�� The simplest of these examples involves again
two spin half particles in the special so�called singlet state � of the Aspect
experiment� We consider the spin observables for the x� y� z directions on
each of the two particles� the observables now being normalised to have
eigenvalues plus or minus �� Denote the operators �represented by the tensor
products of the Pauli matrices for the one particle with the identity for the
other� by X�� Y�� Z�� X�� Y�� Z�� Any observable for particle � is compatible
with any for particle �� but for a single particle the operators are pairwise
incompatible� in fact they all anticommute� X�Y� � �Y�X�� etc� We have
the identities X�Y� � iZ�� Y�Z� � iX�� Z�X� � iY� and similarly for particle
��
Suppose the particles are in the singlet state � for which simultaneous

measurement of the spins in the same direction of the two particles gives
opposite results with probability one� the two possibilities then each having
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probability ���� Consider the six operators X�Y�� Y�X�� X�� Y�� Y�� X��
Suppose a noncontextual hidden variables model existed for measurements
of these observables� The measurements can all only be plus or minus one and
various functional relations exist within compatible subsets� for instance the
two products are products of commuting operators and hence each product
together with its two constituents forms a compatible triple� Moreover in the
singlet state� measurement of the 	same
 spin component of the two particles
gives opposite results� We have some more functional relations� X�Y� Y�X� �
X�Y� Y�X� � �iZ�iZ� � Z�Z� � iZ���i�Z� � X�Y� Y�X� � X�Y�Y�X� �
Y�X�X�Y�� Thus the two products commute with one another and with their
own product Z�Z�� Suppose measurement of X� and Y� yields the values x�
and y�� so X�Y� yields x�y�� Alternatively one could have measured Y� and
X� yielding y� and x�� so that Y�X� yields y�x�� Had we measured Y� and
Y� we would have obtained y� and y� with �with probability one� y� � �y��
similarly x� � �x�� Therefore y�x� � x�y� and their product equals ���
However� had we measured X�Y�� Y�X�� and their product Z�Z� we would
have obtained x�y�� y�x� and ��� a contradiction�
This example is due to Peres ������ and it shows that for a particular

system in a particular state� a noncontextual hidden variables model is not
possible� Mermin ������ shows how it can be generalised to give a no�go
result for noncontextual models for arbitrary state� Though we gave an
interpretation in terms of spins of two interacting spin half particles� any
quantum system of dimension at least four allows construction of a set of
operators having the required properties� Therefore Mermin
s extension is
an almost general no�go result� it requires dim�H� � � rather than the best
possible dim�H� � ��
Here it is� consider the � � � array of operators �all having spectrum

f��� �g�
X� Y� X�Y�
Y� X� Y�X�

X� X� X�X�

Y� Y� Y�Y�
X�Y� Y�X� Z�Z�

X�X� Y�Y� Z�Z��

������

We already studied the �rst �ve rows� The �rst two operators in each row
commute and their product is the third operator in the row� each row is
therefore a commuting triple� The sixth row is also a commuting triple as
can be veri�ed by a similar computation as the one we did above� however�
now the third operator in that row is minus the product of the �rst two�
Note that in the whole table just � operators appear� each one twice� The
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product of the operators in any row is the square of the last and is the identity
operator� with the exception of the last row which yields minus the identity�
Suppose a noncontextual hidden variables model could be constructed for

these observables� Then we could assign values plus or minus one to the nine
observables in the table such that the product of values in each row is plus
one� except the last row� where it is minus one� However this is impossible�
the product of all �� must be plus one since each observable appears twice�
while the product of the row products has to be minus one�
The singlet state is a shared eigenstate of the last row of operators� In that

state� measurement of each produces the value �� with certainty� The other
rows give three ��
s or two ��
s and one ��� each of the four possibilities
with probability ����
This example cannot be used to provide a no�go result for contextual

models subject to locality� The reason for this is as follows� Clearly such a
result must assume a state involving interaction of the two particles� Fur�
thermore we may only consider assignments of values to operators� indepen�
dently of the context� when the corresponding observables can be measured
by well separated devices� It makes physical sense to propose that 	observ�
ableX� gets a certain value� independently of whether X� or Y� is measured
�
However it does not make sense to propose that X�Y� gets a certain value�
independently of whether we also measure the pair X�� Y� or the pair Y�X��
Z�Z�� The simultaneous measurement of the latter triple X�Y�� Y�X�� Z�Z�

requires a highly non�local device to be constructed�
It turns out that only a slightly more complex example does work� Con�

sider now three interacting spin half particles� and consider the following
� � � array of plus or minus one valued observables� Each row consists of
a commuting quadruple� the last operator in each row is the product of the
three others except for the �nal row� where a minus sign is introduced� The
product over the whole row yields the identity operator in all rows but the
last� where it produces the negative identity� In the whole array ten di�erent
observables appear� each one twice�

X� Y� Y� X�Y�Y�
Y� X� Y� Y�X�Y�
Y� Y� X� Y�Y�X�

X� X� X� X�X�X�

X�Y�Y� Y�X�Y� Y�Y�X� X�X�X�

� ������

Suppose a noncontextual hidden variables model was possible� Then we could
assign a plus or minus one to each observable in the table� such that the row
products are all plus one� except for the last row� which should yield minus
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one� This is impossible since the product of all twenty values will always be
plus one�
This gives a no�go result for dimension at least �� not so exciting� but

what is nice is that a variant of the example also provides a no�go result for
a contextual hidden variables model subject to locality�
For a contextual model subject to locality prepare the three particle sys�

tem in a shared eigenstate of the bottom row of observables� for instance�
simultaneous measurement of them would yield ������������� with cer�
tainty� Such a state does exist� In this state� measurement of the �rst three
observables in any one of the �rst four rows would yield plus or minus ones
with product ����������� according to the row� Now a contextual hidden
variables model subject to locality would propose that the value obtained on
measuring� for instance� spin in the x�direction on particle �� does not depend
on which spin component is measured on the other two �distant� particles�
So the model would lead one to suppose the joint existence of six random
variables X�
� Y�
�X�
� Y�
�X�
� Y�
 corresponding to the six operators which
each appears twice in the ��� top left part of the Mermin array� Each repre�
sents the result of measuring a certain spin component on a certain particle�
independently of which components are measured on the other particles� The
joint distribution of these six random variables would be such that the prod�
uct of triples in each row is� with probability one� ����������� according
to the row� But the product of all the twelve values in this part of the table
must be �� since each appears twice� a contradiction�
The no�go results obtained from this table have been described as non�

statistical� in the Aspect experiment� it was relative frequencies of various
outcomes which� if the sample is large enough� would lead one to statistically
reject the hidden variables model� Now we get no�go results by a built�in con�
tradiction in each and every single outcome of the hidden variables model�
From a mathematical point of view this is nice� however from an experimen�
tal point of view one might well ask what physical experiment could be used
to verify the quantum theoretical predictions� and hence empirically reject
hidden variables� This question does not seem to have been considered be�
fore� Veri�cation of the contextual no�go result would require one to produce
interacting triples of particles in this special state� and then check that in the
four possible experiments described in the �� � top left part of the Mermin
array� the products are always ������������ Empirical veri�cation of the
noncontextual result has to be done in a speci�c state� and then the same
experiment as we have just described would su�ce�
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Quantum Tomography

��� Introduction

Quantum tomography means the reconstruction of the state of an in�nite�
dimensional quantum system from measurements on that system� The word
tomography is used for historical reasons� the �rst method for this task
was based on a mathematical analogy with the problem of reconstructing
a two�dimensional image from one�dimensional projections� also known as
computer�aided tomography� as it arises in various kinds of medical imaging�
We will expand on this connection later� We discuss the simplest possible ver�
sion of the problem as it comes from quantum optics� a so�called homodyne
measurement of a single mode of an electromagnetic �eld� with perfect de�
tector e�ciency� From our perspective one can consider this as the prototype
quantum�statistical version of the problem of non�parametric estimation of
a probability distribution on the real line� given independent and identically
distributed observations from that distribution� In ordinary statistics we re�
alise that di�erent methods are called for when one is interested in di�erent
functionals of the distribution� and when one has more or less prior infor�
mation on the distribution� Thus one might be satis�ed with the empirical
distribution function as estimator of the distribution function� but would use
a kernel estimator or something more sophisticated to estimate the proba�
bility density� The appropriate choice of density estimator would depend on
prior information about the smoothness of the density� and the optimal rate
of convergence will depend on the smoothness too� A similar situation arises
in quantum tomography but has so far not been systematically studied�
First of all we introduce some notation� Let j�i� j�i� j�i� � � � � denote

an orthonormal basis of a separable Hilbert space H� In the context of a
homodyne measurement in quantum optics� these represent the state of �� ��

��
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�� � � � photons in a pulse of light at a particular frequency� We will de�ne
various linear operators by specifying their action on the basis elements�
These operators are then de�ned by linearity on the set of �nite complex
linear combinations of our basis elements� which is a dense subset of H� The
question as to what is the maximal domain of de�nition of each operator is
a key issue in the mathematical underpinnings of this subject� but we shall
not have to go into details�
Here are the de�nitions �beware� not all authors use the same ones��

A� jni �
p
n � � jn � �i Creation

A� jni �
p
n jn� �i Annihilation

N jni � n jni Number

Q � �A� �A���
p
� Position

P � �
i
�A� �A���

p
� Momentum

X� � cos�Q� sin�P Quadrature at phase �

�����

One should observe that

N � A�A� � A�A� � � � �
�
�Q� � P � � ��

X	 � Q
X��� � P
X� � �X����

�����

Also useful are

Q� iP �
p
�A�

Q� iP �
p
�A�

�A�� A�! � �
�Q�P ! � i��

�����

The names 	position
 and 	momentum
 come from another application of
the same mathematical model
the position and momentum of a particle in
a quadratic potential �eld on the real line� the quantum simple harmonic
oscillator � For that application� the number operator corresponds to energy
and the states in the basis are its eigenstates� Our de�nition of 	quadrature
at phase �
 di�ers from the usual de�nition in quantum optics by a factor of
root ��
It turns out that the operators N � Q� P � and X�� � � ��� ��! are self�

adjoint on their natural �maximal� domains of de�nition� They therefore
each have a spectral decomposition� and in theory each of these operators can
be measured on a quantum system in state �� The statistical problem which
we consider in this chapter is the following� suppose * is chosen uniformly at
random from ��� ��!� and conditional on * � �� let the random variable X be
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the outcome of a measurement of the operator X�� Given are n independent
and identically distributed observations from the joint distribution of �*�X��
Problem� estimate ��
For instance� the probability distribution of the outcome of a measure�

ment of the position operator Q in state � is trace�� �Q�B�� where  �Q�B�

is the projector�valued probability measure associated with Q and B � R

is a Borel set� For future reference we mention another characterization of
this probability distribution� For any bounded Borel function f of Q� the
expectation of f of the outcome of measurement of Q is trace��f�Q��� In
particular� taking for f the function exp�it
� we �nd that the characteristic
function of the probability distribution of the outcome of measurement of Q
is trace��eiQt�� We note that the operator eiQt is de�ned on all of H and is
unitary� The family of unitary operators eiQt forms a semigroup with genera�
tor Q� Commutation relations between the semigroups generated by various
of the operators mentioned above� and the trick of characterizing probability
distributions by characteristic functions� will provide a means of transfering
distributional results from one operator to another�
We will show that the problem is well�posed� in that the state � is iden�

ti�ed from the joint probability distribution of �*�X�� In particular� we
will show that the matrix elements �m�m� � hm� j � j mi� which determine
�� can be estimated unbiasedly and with �nite variance by sample averages
of certain functions of each observation� We will discuss various alternative
estimation strategies� and also mention various functionals of the state� and
parametrizations �representations� of the state� which could be of interest in
practice�
Actually� in the real world the problem will be somewhat harder� A

standard homodyne measurement in quantum optics does not produce a
measurement of the observable X�� but a measurement of X� plus Gaussian
noise� with a variance which is related to the e�ciency of certain photodetec�
tors� ���) e�ciency corresponds to no noise� and this is not experimentally
realisable at the moment �and probably never�� However this extra compli�
cation seems not to essentially change the nature of the statistical problem
we are facing� for the kind of detector e�ciency met with in practice �say
��) e�cient��
We need a number of mathematical tools to solve the problem� On the

one hand� we will use an explicit representation of the abstract Hilbert space
H as L�

C
�R�� that is� the space of complex�valued� Borel measurable� square

integrable functions on the real line� The basis vectors jni will be represented
by normalized Hermite polynomials times the square root of the error func�
tion� the normal density with mean zero and variance half� The observables
Q and P become rather easy to describe in this representation� On the other
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hand� algebraic results from the theory of representations of groups� provide
further relations between the observables X�� N � Q and P � and also with
theory of Fourier transforms�
For the functional analysis� useful references are Biane ������� Zeidler

������� Stroock ������� for the quantum tomography see d
Ariano �����a�b��
Banaszek et al ������� d
Ariano ������� Unfortunately de�nitions of Fourier
transform and Hermite polynomial vary tremendously throughout the liter�
ature� In particular� as far as the Hermite polynomials are concerned� prob�
abilists base their de�nition on the standard normal density� while physicists
prefer the error function� At �rst instance the probabilists
 choice leads to
cleaner formulas� but later on the physicist
s choice pays o�� On the whole
we follow Zeidler ������� d
Ariano �����a�b� and the physicists�

����� Hermite polynomials

The Hermite polynomials Hn�x�� n � �� �� � � � � � are �for us and for the
physicists� de�ned by

Hn�x� � ex
�

����n d
n

dxn
e�x

�

� �����

It follows that Hn�x� is an n
th order polynomial with leading term ��x�n�
Equvialently� they can be de�ned from the generating function

exp��tx� t�� �
�X
n�	

tn

n�
Hn�x�� �����

It turns out that they can also be obtained from the simple polynomials
��x��� n � �� �� �� � � � by Gramm�Schmidt orthogonalisation with respect to
the normal density with mean zero and variance half� also known as the error
function erf�x� � ���

p
�� exp��x��� The Hermite polynomials are orthogo�

nal with respect to the error function� but not normalized� It turns out that
if X is normal with mean zero and variance half� then E�Hn�X�

�� � �nn��
By dividing by the square root of �nn� and multiplying by the square root of
the error function we therefore produce an orthonormal sequence un in the
space of square integrable functions with respect to Lebesgue measure on the
line�

un�x� �

r
erf�x�

�nn�
Hn�x�� �����

This sequence is not only orthonormal but complete
it forms a basis of
L�
C
�R�� This means that one can set up a Hilbert space isomorphism� or
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if you prefer a unitary equivalence� between our abstract space H and the
concrete space L�

C
�R�� Now from the generating function one can derive two

key recurrence formulas for the the functions un
p
�xun�x� �

p
n� �un���x� �

p
nun��x� �����

d

dx
un�x� �

p
�
p
nun���x�� xun�x�� �����

This shows us that under the unitary equivalence de�ned by jni �� un� one
has the following correspondences

Q �
p
��A� �A���

p
� �� x� 


P � �
i
�A� �A���

p
� �� �

i
d
dx

�N � � � Q� � P � �� �x� � d�

dx�
�

�����

In Chapter � �in�nite dimensional theory� we showed that the operator Q
	multiplication by X
 on the space L�

C �R� is associated with the projector�
valued measure  �Q�B� equal to 	multiplication by �B�x�
� the indicator func�
tion for Borel set B � R� In other words� the subspace �Q � B! is the
subspace of L� functions with support in B� Thus for a pure state j�i � H
represented by the wave function ��x� � L�

C
�R�� the probability that a mea�

surement of Q takes a value in B is equal to k�B�k� �
R
B
j��x�j�dx� thus

the outcome of the measurement has probability density j��x�j�� We can
write j�i � P

m cm jmi where cm � hm j �i � R
um�x���x�dx� and the in��

nite sum converges in L� sense� If the sum actually converges pointwise� the
probability density can also be written asX

m

jcmum�x�j� �
X
m

X
m�

cmcm�um�x�um��x�� ������

In particular� if the state j�i � j�i� then the distribution of the outcome
of a measurement of Q is the normal density with mean zero and variance
half�
Suppose now the state is mixed� and obtained from pure states j�ki �P

m ck�m jmi by mixing with respect to the probabilities pk� If we denote
the mixed state by � it follows that �m�m� �

P
k pkck�mck�m� � Therefore� by

mixing our previous expression over the probabilities pk� we might hope that
the probability density of a measurement of Q on the state � isX

m

X
m�

�m�m�um�x�um��x�� ������
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As it stands this expression is not necessarily meaningful� since our deriva�
tion assumes pointwise convergence when we only are guaranteed L� limits�
However� if one truncates the double in�nite sum at a �nite level M � one
obtains a sequence of functions with total mass

PM
m�� �m�m� yielding a se�

quence of sub�probability distributions which converge as M � � in the
sense of convergence in distribution to the distribution of the outcome of the
measurement�
Shortly we will be able to generate from this result� the probability dis�

tribution of a measurement of any of the operators X� in an arbitrary mixed
state ��
The observable N has eigenvalues n and eigenfunctions jni� Hence mea�

surement of N on the pure state � results in the outcome m with probability
jcmj� where as before cm � hm j �i � R

um�x���x�dx� On a mixed state �
the outcome is m with probability hm j � j mi � �m�m�

����� Generalized Fourier transforms

The next item of functional analysis we need is the beautiful relation between
Fourier transforms and Hermite polynomials� Again there are many di�erent
de�nitions in the literature� Recall that un�x� denotes the n
th normalized
Hermite polynomial� multiplied by the square root of the error function�
Then it turns out that the Fourier transform of un is equal to ��i�n times
itself� and the inverse Fourier transform is in times itself�

�p
��

Z �

x���

e�itxun�x�dx � ��i�nun�t�� ������

�p
��

Z �

t���

eitxun�t�dx � inun�x�� ������

De�ne the operator F by F jni � ��i�n jni� and F � jni � in jni� Thus
F � exp��i�����N� and F � � exp�i�����N� are unitary operators� one
another
s adjoints� extending the Fourier transform and its inverse in a con�
tinuous way� in the L� sense� from the basis elements un�x� of L�

C
�R� to all

of that space� Now the Fourier transform of ��i times the derivative of a
smooth function is t times the transform of the function itself� Thus in terms
of the operators Q �position� and P �momentum�� we have FQ � PF or
P � F �QF � The same relation holds for functions of Q and P � in particular
�B�P � �  �P�B� � F ��B�Q�F for any Borel setB� Now the probability that a
measurement of P on a pure state j�i takes a value in the Borel set B equals
k�B�P � j�i k� � kF ��B�Q�F j�i k� � k�B�Q�F j�i k� �

R
B
jF j�i �x�j�dx�
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Thus the probability density of the outcome of a measurement of the mo�
mentum operator P on a pure state � is equal to j�F���x�j�� with F the
Fourier transform �extended to arbitrary L� functions� and de�ned modulo
L� equivalence�� In particular� in the state j�i the density is normal� mean
zero� variance half� For mixed states we can make similar remarks�
These results can be generalized even further� Let z � rei� be a complex

number and de�ne the unitary operator� called a Weyl operator �again� other
de�nitions are possible�� Wz � exp�irX�� where X� � cos �Q � sin�P is
the quadrature at phase � de�ned at the outset� Now it turns out that
ei�NWze

�i�N � Wei�z� or in terms of X�� ei�NeitX�e�i�N � eitX��� �
First we show how this relation allows us to rederive the relations between

the distributions of measurements of Q and of P we found before� With
� � ��� and � � � we recover the relation between position Q� and momen�
tum P and Fourier transform F � F �eitQF � ei�����NeitQe�i�����N � eitP � In
the mixed state � the characteristic function of a measurement of the po�
sition operator Q is trace��eitQ�� Similarly� that of a measurement of the
momentum operator is

trace��eitP � � trace��ei�����NeitQei������N�
� trace��e�i�����N�ei�����N�eitQ�
� trace��F�F ��eitQ��

������

If � is a pure state j�i h�j then the �nal result is equal to
trace�jF�i hF�j eitQ� � �F� j eitQ j F�� � ������

In other words� the distribution of a measurement of P on state j�i is the
same as that of a measurement of Q on the Fourier transform of ��
For the observable X�� since ei�NeitX�e�i�N � eitX��� and X	 � Q� we

have ei�NeitQe�i�N � eitX�� For the pure state case� if � �
P

cm jmi then
the distribution of a measurement of X� in state j�i is the same as that
of a measurement of Q in the state e�i�N j�i � P

e�mi�cm jmi� Thus from
������� the density of this distribution can be formally written asX

m

X
m�

cmcm�ei�m�m
���um�x�um��x�� ������

The word formally means that the double summation does not necessarily
converge pointwise� To be precise� the density is obtained via a limiting
operation in the L� sense� In the mixed case� generalizing ������� we have
formally the probability densityX

m

X
m�

�m�m�ei�m�m
���um�x�um��x�� ������
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These expressions are both literally correct when only a �nite number of
terms are not zero� In general� the truncated sums provide approximations
to the actually density in the sense of convergence in distribution�

��� Tomography

Can one recover the state � from the probability distribution of measurements
of all X�� The answer to this question is yes� A most elegant way to see this
follows from the following identity of d
Ariano�
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