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) Abstract

w o ¥ A class of models is presented for the analysis of square contingency tables. The models fall in the class
of loglinear models or models with logbilinear terms for the association. The models in this class differ
= in three ways: 1. the association is either assumed to be symmetric or asymmetric 2. the association is
C obsorved assumed 10 be completely different in each subtable, to have the same form but having different
R swength, or to be the same and having the same strength 3. for each subtable separately the association
. that is proposed is full, or has a logbilinear form, or is uniform. An example from research on social
IS .‘gfmgg %.‘A} g 40 mobility will be discussed. The stability of the parameter estimates is studied with the jackknife,
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wary Heart Disease - bootstrap For the analysis of square contingency tabl_es many models are available in the loglinear framework.
More recently this abundance of models is extended by a way of parsimonious modeling of the
association that makes use of a logbilinear term. This extension is quite popular now.
In this paper our aim is to apply these ideas, that are developed in the context of two—way tables, for
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the literature (see Agresti, 1983, 1990; Becker and Clogg, 1989; Becker, 1989, 1990; Choulakian,
1988; Clogg, 1982; Goodman, 1979, 1985, 198¢: Mooijaart, in press). Thus, although the precise
formulation and presentation of many of the models is new, this paper should be seen as an application

(with Discussion) J. R. Statist.

ord University Press, Oxford.
on of Statistics (A.C. Atkinson

‘ourth Berkeley Symposium on
rotheses. J.R. Statist. Soc. B.

Proceedings 6th International
P.G.M van der Heijden, eds).
Computational

inear models.

nparison of non-nested gener-

lemiology. Appl. Stetist., 36.

- determine the pattern of en-

32.

paper,

2. Some models for Squarc two-way contingency tables
Let mjj be the expected frequency for category i (i=1,...,I) of the row variable and category j (i=1,...J)
of the column variable. Since the table is square, I=J. The saturated loglinear model is

logm§=u+um)+uyﬁ)+ urg) 1)

Some restrictions are necessary to identify this model. We choose the usual ANOVA-~type constraints P
U1y = Zj uz = i uigg = Ej uizgy = 0.

A recent development that stimulated much new research is the proposal by Goodman (1979) and
Andersen (1980), to model the association U12(ij) parsimoniously as ui2(gj) = kviWJ with identifying
restrictions % vj = Ziwj=0and L vi2 = Zj wi? = 1. Model (1) with upi = lviwj' is called the
RC-association model, The parameters vj and wj can be interpreted as scores for the row and column
categories, and, due to the identifying restrictions, the parameter A indicates the association strength,
Another idea is to fix the parameters v and wj to some scores, if there is any theoretical reason to do
50. If the categories i and J are ordered, then often used possibility is to fix these parameters to the
equidistant scores.

In the context of $quare contingency tables an often asked question is whether the association between

iand j is symmetric, i.e. whether U12ij) = v12gi).- Model (1) with this restriction is called the quasi—

model, but this restriction is not our first interest here. A restriction like U12(j) = u12(iy leads for the RC
issociation model to vi=wj.

In modeling square tables attention also often goes out to the diagonal, since for the diagonal cells the
"W category is identical to the column category. Processes that lead to the off-diagonal association will
ety often be different from the diagonal association. In order to be able to study the off-diagonal
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association without bothering about the diagonal association, sometimes diagonal cells are defined as
structural zeros, i.e. the likelihood is maximized over the off-diagonal cells only. Another way to reach
this effect is to add a separate parameter for each diagonal cell. So in this case such a parameter is &;juj,
where 81 = 1 if i=j, and 84 = 0 else.

So, concluding, we have sketched some ideas that have been used in the past for the analysis of
square two—way tables. One idea is to investigate whether the association is symmetric. A second idea
is whether the association can be modelled as RC—association. And a third idea is to give special
attention to the diagonals. Many more ideas have been proposed for the analysis of square two-way
contingency tables, but these can be implemented in a straightforward way into the ideas for the analysis
of sets of square two—way tables that we will introduce below (for references, see section 1).

3. A class of models for the analysis of a set of square contingency tables

For three-way tables the situation becomes more complicated, because we can generalize the models
discussed above along different lines. Let us start again from the saturated model. Let there be K square
contingency tables indexed by k (k=1,...,K). The expected frequency of cell (i,j,k) is denoted as Mijk.
The saturated model is for this three~way table is

MOW Mige = U + Wy + Uy + Usgy + Uyagk) + W) + UG + Uisg 2)

Below we will focus on particular ways to restrict (2). Not all possible restrictions will be
considered. The restrictions are:

1. the first order interactions u13(ik) and uz3(jk) are unconstrained. The interaction uy3(ik) takes care of
the fact that for row i the margins of the K square tables may be different. This does not really interest
us in this paper.

2. in all models we are not interested in the diagonal cells of the square tables. Therefore we would like
eliminate the effect of the diagonal cells on parameters that are also used to model effects for the off—
diagonal cells.

The focus described in points 1 and 2 is not really essential. They are only introduced to structure the
discussion below. In applications they can easily be dropped.

We now discuss our proposals. The models we will discuss differ along three dimensions. First,
cither symmetry is assumed in each of the K square tables, or symmetry is not assumed. Second, either
the association in each of the K square tables can be completely different, or it is only different in
strength but otherwise the same, or it is completely identical. Third, either the association in each of the
square tables is unrestricted, or it is constrained to follow a constraint similar to »fé, or it is
constrained even further by fixing the scores v; and wj.

To simplify the discussion, we introduce the models in two groups. One group of proposals pertains
to an assumption of asymmetry (i.e. symmetry is not assumed). This group is discussed in section 3.1.
The other group of proposals pertains to an assumption of symmetry. This group is discussed in section
3.2. In order to focus attention on the most interesting part of the model, we rewrite (2) as log mjjx =
Bi23cijk) + U12G)) + U123y where hig3giky = u + uig) + u2G) + iy + u13gK) + W2ack).

3.1. Asymmetric versions

We will start with the most general model for the set of square contingency tables. This model is the
saturated model (8). We denote it as model C1:

log mig = hyzgi + unzgy + uinagy ()

A first property of this model is that the association is not symmetric (this holds for all the models to
follow in section 3.1, so we will not mention this property again but focus instead on other properties).
A second property is that the association may be different in each of the K square tables. The part of the
association that the K tables have in common is parameterized by the u12Gij)- This may be interpreted as
the average association over the K tables. The second order interaction U123(ijk) shows how the
association for square table k differs from this average association. A third property is that the
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association is unconstrained. Basically, C1 comes down to fitting a saturated model to each square table

separately.
The second model, C2, is

log my = —:BA..E + mmcg + P?v<n5e<8c C2)

In this model we have eliminated the influence of the diagonal cells g introducing %o. term SYupgk for
each distinct square table k. More interesting is that, compared with C1, the wmmoem.soaw u2Gj) and
u123(ijk) are now replaced by the term ARVid)Wick)- cS..onoum.E O_. a mmeB"oa model is firted to %mn:

square table k separately, C2 can be understood as a model in which in each of the K Ecw.ao tables a
separate model of the form Aviwj is fitted. Over the K tables the parameters Ay Vigy and Wik) are not
in any way restricted (apart from identifying restrictions). So nﬁ association may be ncBEn:mQ E,m.mnn.mw"
in each of the square tables, but the association is restricted in each of the square tables in a similar
way.

The third model, C3, is

log Mg = hyggo + 8upgx + MoV 1 (C3)
ik = 123650

where the symbols '* indicate that the parameters vix) and wijx) are fixed to some predetermined

scores. The parameters Ay are still free parameters. . ) .
The BoaM_m C1, C2 and C3 are nested, in the sense that C3 is a mﬁon_.a case of C2, and C2 is a
special case of C1. We will now discuss three other models that are nested in models C1, C2 and C3.

The fourth model is
log my = hingo + mccgw + Az (C4)

In this model there is first order interaction between i and j for each table k. The basic wo:.:.om 3.;
interaction, denoted by {uj2(j)}, is identical in each table k, but the parameter Ak makes that this basic
form gets a different strength in each table k. .

We have to identify this last term, and we do this, first by setting ujogi = 0, and, mawo:a. by
imposing the rtestriction Iyhy/K = 1. Thus we can rewrite the term »w,.:wav =23 + y* :5@,
where Ax* = Ax — 1. This shows that the basic form of the interaction _mén mHmT..o_dQ Eﬁmnwn:c:
described by u12(jj), and the different strengths generate second order Swanwo:os described by .»w .Emc -

If Ax > 1, then the basic form of the interaction as defined by uyy(j) is larger than average in EMQ x
and if O < A < 1 then it is smaller than average in layer k. If A < 0, then the form of the interaction in
layer k has an opposite form compared to the average form. ) o -

Model C4 is a special case of model Cl: in C4 the first—order interaction in each table k is different,
but it only differs in strength.

In model C5 we get a special case of both model C2 as well as model C4:

_OW My = _‘:Nx._mc + mmcgun + vrrfcf, (CS)

If vi and wj are restricted as in (4), no further identifying Rm.i.o:oi E<a, 1o be made. Similar ,ﬁ.o Oa
the basic interaction is vjwj, and Ax defines the strength of this interaction in E.«dn k. Note Gur sirmilar
to C4, we can rewrite Acviwj = Aviwj + A" viwj, where Ax” = Tihy/K, m:oi_mm that the first order
interaction is defined by Avijw; and the second order interaction is aam:wa,g Ax ViWj. .

C5 is a special case of C4 since the interaction uy2(j) is further constraint. ﬂm is a special case of C2
since there is basic interaction defined by viwj that is used as a building block in each SEM k. .

In model C6 we simply have model C5 with fixed parameters v; and wj, denoted by v;™ and wj":
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log my = h + 8t tw!
i 1236%) Upgx + Pwﬁﬁq (Ce)
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4. Example: a comparison of British and Danish mobility

The example deals with a comparison of a British occupational mobility table (Glass, 1954) with a
Danish one (Svalastoga, 1959). An earlier comparison of these data by standardizing margins of each of
the tables can be found in Bishop, Fienberg and Holland (1975).

Considering the models C1 to C9 and Al to A9, we might want to go in a structured way through
them. The path we choose is a bit arbitrary, but for this example different paths lead all 1o the same end
result. The objective will be to start with the saturated model C1, and to come as close as possible o
A9, because this is the most restrictive model. (For the fixed scores vi* and 3} we use equidistant
scores —2, —1, 0 1 2, and therefore models C9 and A9 are equivalent, and C3, A3, C6 and A6 arc

equivalent).

Table 1: models fitted to the British and Danish social mobility tables

Non—symmetric models: Symmetric models
Terms models  Df G? X2 models  Df G2 x2
8123(iik) &3] 0 0 0 Al i2 1i.1 1.0
AMK)Vi(k)Wj(k) 2 8 9.9 98 A2 14 15.0 15.6
MOViK) Witk) C3 20 295 348 A} 20 295 348
AkU12(i) C4 10 141 3.6 Ad 15 19.8 19.4
v(xéi.‘ Cs 14 184 18.3 AS 17 224 230
Mevi wi” 6 20 295 M8 A6 20 95 348
U12(ij) 7 11 246 23.6 AT 16 29.1 27.%
Aviwj c8 15 284 271 A8 18 309 29.6
Avitwi 9 21 391 304 AY 21 391 394

Starting in C1, we might go to C2. In C2 the rows as well as the columns of each of the two tables
are scaled in an optimal way, which may be different for each of the tables. This models fits nicely (G2
=909, df = §). A natural question is then to ask whether the scalings for the Danish table are the same
as those for the British table. This is the case: model C5 is not significant (G2 = 18.4, df = 14), and the
difference between models C5 and C8 is not significant either. We then might want to know whether the
row scalings are identical to the column scalings. This corresponds with model A5, and AS cannot be
rejected (G2 = 22.4, df = 17; the difference between C5 and A5 is not significant either, G2= 4.0, df =
3). Subsequently we would like to know whether the scalings are equidistant (model A6). This test is
unclear: the likelihood ratio chi~sguare is not significant at p=.05, G2 =29.5 (df = 20), but the Pearson
chi~square is significant at p=.05: X2 = 34.8. Therefore we rather stick to model AS. As u final test we
test whether the strength of the association as parameterized by Ay is the same in each of the tables, ie.
whether it can be replaced by A. This is not the case: model A8 is significant, G2 =309 (df = 18),
which is significant at p = .05, and the difference between A5 and A% is also significant. Therefore we
choose model AS as our final model.

The parameter estimates for vi = wj are ~2.28, ~1.84, —.57, .50, .94 for levels 1 to 5 respectively.
the parameter estimates are identified by imposing the restriction that MWEOW =0 and Zipi¥'i2 = 1, where
pi = (Pi+++pis)/2. For i#j we find by <>w»q the off—diagonal association for cells (i,j) and (},1) that
both tables have in common. This shows that it is relatively easy to go from levels 110 2, and 4105,
but it is much harder to go from 2 to 3, and 3 to 4. Making more than two occupational steps is even
harder. The association strength parameter estimates for A are .356, 474, showing that the association
is much stronger in Denmark than in Britain. For more details concerning parameler interpretation, we
refer to Agresti (1990).

In order to study the stability of the parameter estimates, we carried out 2 jackknife study (compare
van der Burg and de Leeuw, 1988). We have written a special purpose program for fitting the model
that uses the uni—dimensional Newton algorithm. This procedure converges very stowly (the likelihood
is rather flat), and therefore we let the algorithm stop when the increase in the liketihood was smaller
than 10712, The program was written in APL68000, which has 16 digit accuracy. We think that the
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numerical instability due to APL is small, but that the numerical instability caused by the algorithm can
be large. The jackknife provides estimates of the population parameters, the bias, and approximations of
the standard errors. The results are shown in table 2. We find the 95 % confidence intervals (+/-
1.96SE) rather large, given the sample size of 5891, The parameter estimates for Ay are biased upwards,

Table 2: Jackknife results: column 1: sample estimates; column 2: population estimates;
column 3: bias; column 4: standard errors.

At 3570 .3488 0082 0289
A2 4744 4617 .0127 0391
vi 2.2752 2.2901 ~.0149 2935
vy 1.8460 1.8548 -.0088 1274
v3 5707 57177 -.0070 0792
V4 -.5044  -5067 0023 0974
vs -.9393 -.9480 .0087 1220
References

Agresti, A. (1983) A survey of strategies for modeling cross—classifications having ordinal variables.
Journal of the American Statistical Association, 78, 184-198.

Agresti, A. (1990) Categorical data analysis. New York: John Wiley & Sons.

Andersen, E.B. ( 1980) Discrete statistical models with social science applications. Amsterdam: North—
Holland Publ. Cy.

Becker, M.P. (1989). Models for the analysis of association in multivariate contingency tables. Journal
of the American Statistical Association, 84, 1014-1019,

Becker, M.P. (1990) Quasisymmetric models for the analysis of square contingency tables, Journal of
the Royal Statistical Society, Series B, 26, 35-50.

Becker, M.P. & C.C. Clogg (1989) Analysis of sets of two—way contiugency tables using association
models, Journal of the American Statistical Association, 83, 142-156.

Bishop, Y M.M,, S.E. Fienberg & P.W. Holland (1975) Discrete multivariate analysis. Theory and
practice. Cambridge, Mass.: MIT Press.

Choulakian, V. (1988) Exploratory analysis of contingency tables by loglinear formulation and
generalizations of correspondence analysis. Psychometrika, 53, 235-250.

Clogg, C.C. (1982) Some models for the analysis of association in multiway cross~classifications
having ordered categories, Journal of the American Statistical Association, 77, 803-815.

Glass. D.V. (ed.) (1954) Social mobility in Britain. London: Routledge and Kegan Paul.

Goodman, L.A. (1979) Simple models for the analysis of association in cross—classifications having
ordered categories, Journal of the American Statistical Association, 74, 537552,

Goodman, L.A. (1985) The analysis of cross—classified data having ordered and/or unordered
categories: association models, correlation models, and asymmetry models for contingency tables with or
without missing entries, The Annals of Statistics, 13, 10~69.

Goodman, L.A. (1986) Some useful extensions of the usual correspondence analysis approach and the
usual log-linear models approach in the analysis of contingency tables. International statistical review,
54, 243-309.

Mooijaart, A. (in press). Three factor interaction models by log—trilinear terms in three~way contingency
tables. Staristica Applicata, Italian Journal of Applied Statistics.

Svalastoga, K. (1959) Prestige, class and social mobility. Copenhagen: Gyldendal.

van der Burg, E., and de Leeuw, J. (1988). Use of the multinomial jackknife and bootstrap in

generalized non-linear canonical correlation analysis. Applied stochastic models and data analysis, 4,
159-172.

Estimation of the parameters of the bilinear
association model using the Gibbs sampler

By LUIS MILAN and JOE WHITTAKER

University of Lancaster, England

The purpose of aper is to show the results of the ap lication of Gibbs sam-
ts h PP 13 G
purp 18 pap! 4 I 1
association model in order to obtain estimates of the U-OTWTH—;V\ &.wa;%
{ p -
functions for each pal ete brief description of the Gibbs .wz::»?a technique is presentec The
param ter. A iel P g .
Pﬂ_._L cation of Gibbs mﬁzxgm ng to produce est mates of the association odel paramet m—m(/\_m discussed.
he O=AO~_:C:m ﬂp._ww_ ity density function used in the Gibbs iterations is presente € also show
y nsiLy C usec t t t ted 1 h
OW MO— ditional u:&WTMDQm:Qv can be used to reduce the hos.z‘vcfﬁm time. The ‘mnc: que 18 the
aj d al _‘VT and :5« resul ing densi y estimales of the parameters ol the association moae:
pplhie to an exampie 3 t { t 1 { ) {1l 1 d

e pr in the form of graphics. . . , 4
e w,_mmmuwww._goiw Carlo techniques, Gibbs sampling, contingency
eyt ; e G e

Summary:
pling technique to the RC

table, association model.

1 Introduction
‘The bilinear association model proposed by Goodman (1985, 1986) is
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