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Abstract. We will show that the factorization condition for the Fourier integral
operators I}'(X,Y; A) leads to a parametrized parabolic Monge- Ampere equation.
In case of an analytic operator the fibration by the kernels of the Hessian of phase
function is shown to be analytic in a number of cases by considering more general
continuation problem for the level sets of a holomorphic mapping. The results
are applied to obtain LP-continuity for translation invariant operators in R”™ with
n < 4 and for arbitrary R™ with drx«y|a < n+ 2.

1. Introduction. Let X,Y be smooth paracompact manifolds of dimension n. Let
T € I*(X,Y;A) be a Fourier integral operator with the Lagrangian distributional kernel
of order p and the wavefront set contained in A" = {(«,&,y,n) : (2,&,y,—n) € A}. We
will always assume that A is locally a graph of a symplectomorphism between 7*X\0
and T*Y'\0, equipped with the standard symplectic forms doy and doy. The theory of
such operators is discussed in [4], [2], [13], [12]. Let mxyy be the natural projection from
T°X xT*Y to X x Y. It is well know that the operators of order 0 are continuous in
L?-spaces and this result does not depend on the singularities of 7xyy. The important
result of Seeger, Sogge and Stein [11] is that the Fourier integral operators T' € 1*(X,Y; A)
of order p < —(n —1)|1/p —1/2], 1 < p < oo, are continuous from L2 (Y') to Ly, (X).
This conclusion is sharp if dry«y|s has full rank equal to 2n — 1 somewhere and T' is
elliptic. However, if drxyy|s does not attain the rank of 2n — 1, then the estimate for
the order y is not sharp and may depend on the singularities of dzxyy|s. Thus, it was
shown in [11] that the continuity properties of Fourier integral operators in LP-spaces with
p # 2 depend on the singularities and the maximal rank of the canonical projection. The
important ingredient is the following smooth factorization condition for 7 x «y introduced in
[11]. Assume that there exists k, 0 < k < n—1, such that for every Ao = (0, &0, y0,70) € A
there is a conic neighborhood U,, C A of Ay, and a smooth homogeneous of degree 0 map
T - ANU,, — A with constant rank dry, =n + £,
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such that Txxy = 7xxy o my,. Under this assumption the operators T € I}(X,Y;A),
1/2 < p < 1, are continuous from LE (YY) to Ly (X) for I < p < oo and the order
w< —(kp+n(l— p)1/p—1/2].

We will show that the factorization of dry«y|s is equivalent to the factorization of the
Hessian of the phase function, which leads to the parametrized Monge- Ampere equation
(see also [5]). Then we will produce and discuss some examples showing that in general the
factorization condition is not trivial, but in comparison with [11] it is not always sufficient
to consider phase functions corresponding to the translation invariant operators. In case
of the analytic operators we will show that in a number of cases the factorization condition
is satisfied. This will be applied to the questions of the LP-continuity of Fourier integral
operators in R" with n <4 and arbitrary R" with rank drxyy|a < n+ 2.

By the analytic Fourier integral operators we understand the operators acting in real
analytic manifolds X and Y for which the canonical relation is analytic. For such operators
the phase function is analytic and the factorization condition can be extended to the
complex domain for the reduced function after factorizing away the conic variable. We
solve this problem partially in a more general setting with the gradient of a function
replaced by an arbitrary holomorphic mapping with affine fibres. We will show, that in
the case of fibres of dimension larger or equal than n — 2 and in 3-dimensional space
the fibration extends holomorphically to the whole domain. In other cases, by means of
examples we will show that in general this conclusion does not hold for lower dimensional

fibres.

2. Parametrized fibrations. We assume now that X and Y are open subsets
of R". This is not restrictive for the local analysis of Fourier integral operators, as it
is demonstrated in [2], [4], [12], [13]. The Lagrangian distribution of Fourier integral
operator in T*R"™ x T*R" can be viewed as a smooth family of Lagrangian submanifolds
of T"R". First we will show that in a suitable choice of the coordinate system the ranks
of their projections to the base space differ by n. By the equivalence-of-phase-function
theorem [4, Th.3.1.3], [2, Th.2.3.4], we can assume that the phase function of an operator
T € INX,Y;A) is equal to ®(x,y,{) = (z,§) — ¢(y,€) and A = Ag is locally given by
{(Ved(y,6),&,y, Vyo(y,€))}. The local graph condition is equivalent to

det ¢ (y, &) # 0 (1)
on the support of the symbol of T'. We start with a simple observation.

Lemma 1 The mapping v :Y X = — T*X x T*Y defined by

7(y7 f) = (vf¢(y7 5)7 57 y? vy¢(y7 f))

is a diffeomorphism between Y x = and A. For y € Y the restriction £ — ~(y,&) is
a diffeomorphism from = to A N (R™ x R x {y} x R") with the inverse given by the

projection (x,€,y,m) — £.



This implies that dzx«y |a is isomorphic to drxyy o dy|y = and, in particular, they have
isomorphic kernels. But

0%
0&?

D*¢

kerdrx v o dyly x=(y, &) = {(6y, 6¢) : dyoE

=5 (1, §)8E + (y,)éy = 0,6y = 0}

and in view of (1), we get

2

0
kerdms v 0 drlyaz(0.) = (O.ker 55 (0. )) 2)

Thus, we obtain a characterization of the projection in terms of the phase function, which
follows from (2) and the second part of Lemma 1.

Theorem 1 Let ®(x,y, &) = (v,€) — o(y,&) with Ae a canonical graph. Then for
0 <k <n-—1 the following conditions are equivalent

(i) rank drxyy|a, <n+ k.
(i) rank drxyy o dy|gyxz < k for ally € Y with v as in Lemma 1.

(iii) rank 2 852 C(y,E) <k forally €Y and £ € .

Note, that the condition £ < n — 1 leads to the parametrized Monge-Ampere equation for
the phase function:
09

0&?
for all (y,€) € Y x Z. The following example shows that the factorization condition is not
in general satisfied. In case of rank drx sy |as < n+k, it follows from Theorem 1, (iii) that
the function o(y,¢) = (y,£) + +— Zk""l(ylfl + y;&;)* satisfies the required rank conditions

in a neighborhood of a point fn = 1 and the fibration is defined by the quotients y; /vy,
2 <1< k41, so that we have

det —(y,¢) =0

Example 1 Let 1 <k <n—2 and x,y,& € R". The function

k+1

O(x,y,6) = (z —y,&) — — > (b +vi&i)”

n =2
satisfies the condition

rank drxyy|a, <n+k

and defines a canonical graph A¢, for which the fibration of wxyy s not continuously
extendible over y = 0.



Note, that in the case of k¥ = 0 we have conormal operators, which can be transformed to
the pseudo-differential operators by a coordinate change and for which the factorization
condition is trivially satisfied (see also [9]). The case k = n—1 corresponds to the condition
rank dry«y|a < 2n — 1, for which the factorization condition is satisfied in view of the
homogeneity of A with =, being the projection in the conic direction.

3. Holomorphic factorization. Now we will consider a more general factorization
problem. Let I" be a holomorphic mapping from a connected open subset ) of C™ x C”
to CP, let k < n, and assume that

(i) rank Ol'(y,&)/0¢ < k for all (y,&) € Q.

(ii) Iy, &) € Q so that rank 9l'(y,&)/0¢ = k.

The set Q can be decomposed into a union of Q) of the points (y,£) € Q  with
rank Ol (y,£)/06 = 14,7 =0,..., k. Then the set Q' = Q\Q¥ where rank II'(y, &)/ < k

is an analytic subset of  without interior points and in the open dense subset Q%) of Q
the mapping
oy, ¢)

74
is holomorphic from Q%) to the Grassmann manifold G, (C") of all (n — k)-dimensional

subspaces of C". Let us denote by Q°"8 the subset of w = (y,&) € ' such that x can not

be extended to a holomorphic mapping U — G,,_;(C") on a open neighborhood U of w in
Q.

£ (y,&) — ker

Lemma 2 Ifw € Q%8 then for every k-dimensional linear subspace C of C* there exisls
a Sequence w; € Q(k), such that w; converges to w as j — o0, K(w;) converges to k €

G,-1(C") as j — o0, and k N C # {0}.

PROOF. The set G(C) ={L € G,_x(C"): LNC ={0}} is holomorphically diffeomorphic
to CH=F) (see, for example, [6, B.6.6] and [6, Prop.,p.367]). It follows that if there exists
a neighborhood U of w in Q such that (U N Q™) is contained in a compact subset of
G(C), then w ¢ Q8. This implies the statement of Lemma 2.

Lemma 3 Assume that in addition to (i), (ii) holds

(iii) If (y,€) € QW then T is constant on the set of (y,& + 2), for all z € k(y,£) =
ker d'(y, &) /0, such that (y,& + z) € Q.

Then for any (y,€) € Q%8 and for any k-dimensional linear subspace C' of C" there exists a
linear subspace L of C' with dim L > 1, such that for each | € L we have I'(y,{+1) = T'(y, §).

PROOF. By Lemma 2 there exists lim; #(w;) = & as w; — (y,€) with w; € Q¥ and
kN C #£{0}. We take L = kN C. By (iii) for each w; = (y;,¢;) and z € k(w;) we have
I'(y;, & +2) =1(y;,&;). By continuity of I' we obtain the statement of Lemma 3.

As a consequence, in the case & = 1 we have
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Theorem 2 Let T' satisfy (i),(ii) and (iii) with k = 1 and let (y,£) € Q6. Then the
mapping n — U'(y,n) is constant.

4. Translation invariant case. Now we will concentrate on the case when I'(y,{) =
I'(¢) for all y € Y, or rather on the mapping I'(y, {) with a fixed value of y. This reduces
to m = 0, so that the sets {y} x Q¥ we simply denote by Q) via the identification
{y} xC*" =Z C"and I' : & C C" — CP. From now on we will always assume the
conditions (i), (ii) and (iii) of the previous section satisfied. Thus, we have the mapping
#: QP — G, _;(C") defined on an open dense subset Q) of ). The graph of the mapping
K 18

G={(6L)€QxGi,(C"): £ € QW L =r(£)}
and we also define Gy = {(£,L) € Q@ X G,,_,(C") : L C kerdl'/9¢(€)}. Clearly Gy is a
closed analytic subset of Q x G,,_;(C") and

G =(QF % G (C") N Go = Go\{(£,L) € Q x G_x(C") : £ € MW, (3)

which is the complement in Gq of the closed analytic subset G N ((Q\Q(k)) X Gk (CT)).
Let &(¢) C G,_r(C") be the set of all limits of x(&;) as & — €, & € QW) (See also [8]).
With V' C G,_;(C") we associate the cone

V={cC:IeV,e ]

It is easy to see that if V' is analytic in G, (C"), then V is analytic in C™. Further, we
will often identify V and V for the kernels x(&) if it is clear in the context.

Proposition 1 The closure G of G is analytic. The set k(£) is analytic and connected for
every £ € Q. The point £ € Q8 if and only if dim&(¢) > 1, or dim&(£) > n — k + 1.
Moreover, if C' is an irreducible component of £(¢), then dimC > n — k + 1.

PrOOF. It follows from (3) that G is a difference of two analytic sets. Hence its closure
G is analytic in view of [6, IV.2.10]. It follows that (&) = {L € G,_,(C"): (¢, L) € G}
is an analytic subset of G,_x(C"™). Let U,V be open disjoint subsets of G,_;(C") and
RE C(UUV). Let A ={npec QP :kn)clU}and B={nc Q¥ : k() c V}.
Then A and B are disjoint open subsets of Q*). There is a connected open neighborhood
W of € such that W N QW c AU B and W N Q¥ is connected. It follows that the
intersection of W N Q") with either A or B is empty and hence £(£) N U or &(£) NV is
empty. Therefore, &(¢) is connected. If £ ¢ Q"¢ then %(¢) consists of one point, so that
dimz(€) = 0. Conversely, if £ € Q%8 we have that for every €' € G;(C") the intersection
of the hypersurface {L € G,,_;(C") : LN C # {0}} with () is not empty by Lemma 2.
This implies that £(&) is infinite, hence dim £(£) can not be equal to zero. The analyticity
of k(&) implies dim k(£) > n — k + 1.

Finally, let C' be an irreducible component with dim C' < n — k. Then C' is an element
of K(&) C G,—x(C"). The set £(£) is connected and dim£(§) > 1, implying that C is
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contained in the closure of a smooth part of £(£) of positive dimension and that C is
contained in an irreducible component of £(¢) of dimension strictly larger than n — k&, a
contradiction with definition of C'.

We have the following general property of Q"8 as the indeterminacy set of a meromor-
phic mapping (see [8]).

Theorem 3 The set Q%8 is an analytic subset of Q with dim QM8 < n — 2.

Finally we want to mention that in general the fibration need not be holomorphically
extendible.

Theorem 4 For every 3 < k < n—1and 2 < d < min{k — 1,n — k + 1} there ex-
ist holomorphic mapping I' : C* — C" with affine fibres, satisfying rank DI' < k and
dim Q"¢ = n — d. Moreover, I' can be chosen such that Q\Q¥) = Qsine,

Note that the bounds for & and d are essential and, in fact, necessary, but we will not
pursue it here because of the different purpose of this paper. See [10] for more details.

5. The case n = 3. In this section we consider holomorphic mappings I' : Q@ C C* —
C’ satisfying conditions (i)-(iii) of Section 3. In view of Theorem 3 the set Q"¢ in C? is
at most one dimensional. For k = 1 Theorem 1 shows that the singular set Q"8 is empty.

The same holds for £ = 2:
Theorem 5 Ifn =3 and k = 2, then Q%8 is empty.

PROOF. Assume first that Q5% £ () and that dim Q¢ = 1. For £ € Q¥ the set £(£)
is contained in Q\Q®), which is an analytic subset of dimension less or equal to 2, so
any smooth part of x(£) is an open subset of Q\Q?), and therefore each 2-dimensional
irreducible component of &(¢) is equal to an irreducible component of Q\Q?). Because
the latter set has only finitely many irreducible components we get that the 2-dimensional
irreducible components of the infinitely many #(¢), ¢ € Q%28 can not all be distinct from
each other. Suppose £, € "8, £ £ 5 and (' is a 2-dimensional irreducible component of
both £(¢) and %(n). Then, for each ¢ € C' not on the line between ¢ and 5, the line from ¢
to ¢ and the line from 7 to ¢ both are limits of regular fibres, which implies that ¢ € Qsin8,
But this would imply that C' C Q%28 in contradiction with dim Q*"¢ = 1. Now we will
show that the condition dim Q*™8 = 1 is necessary, which will in turn imply the statement
of Theorem.

For £ € Q let a;;(&) = 9,1:(8), {ai;(§)} = DI'(§) € C™3, and let A;;j(f) be the
determinant of 2 by 2 matrix obtained by the intersection of rows p,: with columns m, j
in DI'(). Let « € ker DI'(¢) and let ¢ and j be such that a;; Z 0. For a function f by Z;
we denote its zero locus. Then the set of ¢ for which a;;(¢) = 0 is a hypersurface in C?
and on its complement Q\Z,; we have x; = —3";.; ap(€)/ai;(§)xy. Substitution of this
into the other r — 1 equations leads for p # ¢ to

D (apk — apjair/ag)(€)xr = 0. (4)
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This means that on Q(z)\Z% the projection of the fibre (&) to the hyperplane x; = 0 is
given by the equation (4), which define the same line for any p # ¢ in view of the condition
on the rank DI' < 2. Equation (4) is equivalent to

AN (&) + Ay (€2 = 0. (5)

Let 7; be the natural projection C* — {£ € C? : & = 0}. Let & € Q8. Then by
Proposition 1 we have dim £(&) > 2 and, therefore, there exists j such that dim7;k(&) =
2. Suppose first that there exists an open neighborhood U(&y) of £y in © such that a;;(£) =0
for all 1 < ¢ < rand & € U(&). By analyticity of a;; and connectedness of € we may
assume that U({y) = Q. Let k,m denote the other two columns of DI'. Because the
maximal rank of DI" is 2, there exist numbers p,: such that A’;;m % (0 and one of a;,, ai,
say @i, is not identically equal to zero. Then, as before, on QNZz, ‘the projection
Tmk(€) is determined by the equation AJY(&)z; + A’;Z”(f)xk = 0 and AJ7" = 0 implies
xr =0 on Q\(Z,, U Zpkm), that is k() are parallel to x = 0. Now, from Ak £ 0
we also get that a;; or apkpdoes not vanish identically. We denote it by a4, with ¢ = ¢ or
g = p. The same argument as before shows that on Q(z)\(Zaqk U ZA;’?Z") projections wik ()

are determined by Aéf(f)x] + Aggk(f)xm = 0 and are parallel to x,, = 0. It follows that
on the open dense subset U = Q@\(Z,, U Z,, U Znkm) of €1 the fibres £(¢) belong to
the intersection of two transversal families of parallel ;lanes, so that k(&) are parallel to
each other on U. Since U is dense in (), we have the constant extension of k to () and
Qsine — (). This is a contradiction with & € Q%" and, therefore, there exists an index ¢ such
that a;; # 0. As before, on Q(z)\Z% the projection 7;£({) is determined by the equation
(5) for some p # ¢. If one of A];f,A;;j does not vanish identically, our assumption of
dim 7;%(&) = 2 implies that the meromorphic function A];f/AZ;j or A;j/Aﬁf is multivalued
at & and we get ZAZ;J N ZA;I;J‘ C Q& On the other hand dim ZAZ;J N ZA;I;J‘ > 1, implying
dim Q"8 > 1 and completing the proof of Theorem 5.

Thus, the only case which is left is that Agf = A];f =0forall 1 <p<r. We will
show that this is impossible. First, the condition Azzj = A}?j = 0 for [, p,2 all different,
implies A;r;j = 0. Indeed, for each fixed { in U = Q\Z,,, we denote by A, B, the vectors
(a1 &)y arj(€)), (apm(€), ap;(€)), (aim (&), ai;(£)) respectively. The condition AZZL»] =AY =
0 implies the existence of «, 3,v,6 with |a| 4 |5| # 0, |v|+ |6| # 0, such that aB+ C =0
and YA+ 6C = 0. Because of (' # 0 we get that the condition « =0 orv=01imply 5 =0
or 6 = 0 respectively. Hence we can assume that o # 0 and v # 0. The condition 7 =0
implies B = 0 and hence in this case A and B are linearly dependent. If 5 # 0, then we
get vA — 6a37'B = 0 and A and B are linearly dependent again, implying A;r;j(f) = 0.
Because the argument holds for any ¢ in the open dense subset U of ), we obtain A;}j = 0.
The same argument implies AI;{ = 0. The same argument shows that A];f = Azzj =0
imply A’;;m = 0. Now, let M(£) € C**? be the submatrix of DIT'(¢) with rows p, [, 1.
The condition rank DI' < 2 implies 0 = det M (¢) = :I:(aikAZle — aimA];{ + aijA’;}”) and,
therefore, aijA’;}” =0 and A’;lm = 0 on U and also on €2 because it is holomorphic. The
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conclusion is that all two dimensional subdeterminants are identically equal to zero on 2,
a contradiction with & = 2. This completes the proof of Theorem 5.

6. The case k£ = 2. In this section we consider holomorphic mappings I' :  C C* —
C? satisfying conditions (i)-(iii) of Section 3 with k = 2.

Theorem 6 If k =2, then the singular set Q%8 is empty.

PROOF. Let £ € Q8. According to Proposition 1, the set x(£) is at least (n — 1)-
dimensional, which implies &(£) ¢ Q"8 by Theorem 3. The set &(£) is connected, therefore,
there exist different #y, k9 € £(€) C G,_2(C"), not contained in Q*"8. For 7 = 1,2 the sets

K;={H € G3(C") : dim(H Nk;) = 1},Kog = {H € G3(C") : HN k1 # H N k2}

and K of all H € G3(C") for which H N &; ¢ Q¢ are open and dense in G3(C"),
their intersection is open and dense in G3(C") and we take H € K1 N Ky N Ko N K. Let
n € Q) be close to ¢ with x(5) close to one of x;. Then, by transversality, dim(n 4 (1)) N
(6 + H) = 1. The set Q@ N (5 + #(n)) is open and dense in QN (n + x(5)). Therefore,
there exists ¢ € Q@ N (n 4 x(n)), ¢ close to (n 4 k(n)) N (€ + H), such that there exists
Hy e K1NKyNKoNK with ¢ € Hy. Thus, without loss of generality we may take H = H,
with ¢ € Q2 0 (n + k() N H. Now, x(n) = &(¢), implying that the mapping

v = Tlermna

satisfies ker Dv(() = k(¢) N H, which is one dimensional, and, therefore, rank D~(() =
dim H —1 = 2. Moreover, if § € ker D¥((), then v((+68) = I'((+0) = I'({) = v(() because
6 € k(() and property (iii) of Section 3. This means that the conditions (i), (ii) and (iii)
are satisfied for . Because the set

QOO(H)={Ce(n+ H)NQ: rank Dy(¢) =2}

is open and dense in (y + H) N Q, we can find ¢; € QP (H) which are arbitrary close to
(n+ H) N (n; + £(n;)), from which it follows that x((;) is arbitrary close to x(n;). Note,
that Q@ (H) C Q) and & is constant on an open dense subset of 5 + x(n), n € Q3.

This proves that at the limit point £ in ({ + H) N (€ 4 x) we get all H N &(£) as limits
of HNk(¢), ¢; € VI(H), (; — £, in particular two different lines H N &; by H € Ko, or
¢ is in the singular set for the mapping ~. But this is in contradiction with Theorem 5,
which says that for n = 3,k = 2 the singular set is empty.

7. Application. Consider an analytic operator T' € I¥(X,Y;A), 1/2 < p < 1,
commuting with translations, X and Y open subsets of R®. This means that it is equal
to the convolution with some distribution p. The theory of such operators as multipliers
is well known and they can exhibit quite irregular behavior (e.g. [7], [13]). See also [3] for
the case p = 1/2. This distribution p is a Fourier integral distribution defined by some
conic Lagrangian manifold A? C T*(R"). It follows from the proof of [2, Prop.3.7.3], that
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locally A? = A, with homogeneous ¢(z,€) = (z,€) — H({) and Ay = {(VH({),€)}. Then
p is given by

pz) = [ @0z, ¢)de

with some symbol « € S¥. The operator T is then of the form

Tue) = urple) = [ [ Data =y, e)uly)dédy
with the phase function ®(x,y,¢) = (v —y,£) — H({). We assume that
rank dryuy|pa <n+k (6)

for some 0 < k < n — 1. The condition (iii) of Theorem 1 becomes rank D*H (&) < k for
all £ € =. Now, let £ = (0,7) € R"! x R be the splitting of ¢ with 7 being the conic
variable. For ¢ € R"™! define F({) = H((,1). Then using the homogeneity of H, we
obtain H(0,7) = 7F(0/7). Now, we have

VeH(0,7) = VF(/7),

8H(0 T) = —(VF(@/7),0/r)+ F(0]T),
H(0,7) = D*F(/7)/T,

6 VgH(@, ) = —(D*F(0/7),0/7)/T,

ZHO,7) = (0/7)D*F(O/7)(0/7)/,

so that for ( = 0/7 we get
1 D*F(C)  —(D*F((), () )
D2H(0,7) = — . 6
R P
It follows that rank D?H(#,7) = rank D?F(0/7) and, therefore, (6) is equivalent to
rank D*F({) < k.

The mapping VF(() is analytic in R*™!, so it allows a holomorphic extension to a mapping
I': Q — C" ! with some open 2 C C" !, If 1 <k < n — 2, then I satisfies conditions
(i)-(iii) of Section 2, if the maximal rank k is attained somewhere.

Theorem 7 Let T € I}(X,Y;A) be an analytic translation invariant Fourier integral
operator, 1/2 < p < 1. Let rank drxxy|a <n+k, 0 <k < 2. Then T is bounded from
LEomp(Y) to L, (X), if p < =(k+ (n —k)(1 = p))[1/p—1/2|,1 <p < oc.

PRrROOF. Follows from Theorems 2, 6 and Theorem 5.1 of [11].

Theorem 8 Let X, Y be open subsets of R*, n < 4 and let T € I}'(X, Y A) be an analytic
translation invariant Fourier integral operator, 1/2 < p < 1. Let 0 < k < 3 be such that
rank drxyy|n < n+ k. Then T is bounded from L, (Y') to Ly, (X), if p < —(k+ (n —

E)(1—p))|L/p—1/2],1 <p < oo.
PROOF. For k =n — 1 and k = 0 the statement follows from [11, Th.5.1]. For k =1 it
follows from Theorem 7. The last case is n = 4,k = 2 and this follows from Theorem 5.

8. Acknowledgements. [ am grateful to professor J.J. Duistermaat for the discus-
sions and encouragement.
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