
Inferring Type Isomorphisms Generically

Frank Atanassow and Johan Jeuring

Institute of Information & Computing Sciences
Utrecht University
The Netherlands

{franka,johanj}@cs.uu.nl

Abstract. Datatypes which differ inessentially in their names and struc-
ture are said to be isomorphic; for example, a ternary product is isomor-
phic to a nested pair of binary products. In some canonical cases, the
conversion function is uniquely determined solely by the two types in-
volved. In this article we describe and implement a program in Generic
Haskell which automatically infers this function by normalizing types
w.r.t. an algebraic theory of canonical isomorphisms. A simple general-
ization of this technique also allows to infer some non-invertible coercions
such as projections, injections and ad hoc coercions between base types.
We explain how this technique has been used to drastically improve the
usability of a Haskell–XML Schema data binding, and suggest how it
might be applied to improve other type-safe language embeddings.

1 Introduction

Typed functional languages like Haskell [27] and ML [16, 25] typically support
the declaration of user-defined, polymorphic algebraic datatypes. In Haskell, for
example, we might define a datatype representing dates in a number of ways.
The most straightforward and conventional definition is probably the one given
by Date below,

data Date = Date Int Int Int

but a more conscientious Dutch programmer might prefer Date NL:

data Date NL = Date NL Day Month Year
data Day = Day Int
data Month = Month Int
data Year = Year Int .

An American programmer, on the other hand, might opt for Date US, which
follows the US date format:

data Date US = Date US Month Day Year .

If the programmer has access to an existing library which can compute with
dates given as Int-triples, though, he or she may prefer Date2,

data Date2 = Date2 (Int, Int, Int) ,

for the sake of simplifying data conversion between his application and the li-
brary. In some cases, for example when the datatype declarations are machine-
generated, a programmer might even have to deal with more unusual declarations
such as:

data Date3 = Date3 (Int, (Int, Int))
data Date4 = Date4 ((Int, Int), Int)
data Date5 = Date5 (Int, (Int, (Int, ()))) .

Though these types all represent the same abstract data structure1, they rep-
resent it differently; they are certainly all unequal, firstly because they have
different names, but more fundamentally because they exhibit different surface
structures. Consequently, programs which use two or more of these types to-
gether must be peppered with applications of conversion functions. In this case,
the amount of code required to define such a conversion function is not so large,
but if the declarations are machine-generated, or the number of representations
to be simultaneously supported is large, then the size of the conversion code
might become unmanageable. In this paper we show how to infer such conver-
sions automatically.

1.1 Isomorphisms

The fact that all these types represent the same abstract type is captured by
the notion of isomorphism: two types are isomorphic if there exists an invertible
function between them, our desired conversion function. Besides invertibility,
two basic facts about isomorphisms (isos for short) are: the identity function is
an iso, so every type is isomorphic to itself; and, the composition of two isos is
an iso. Considered as a relation, then, isomorphism is an equivalence on types.

Other familiar isos are a consequence of the semantics of base types. For
example, the conversion between meters and miles is a non-identity iso between
the floating point type Double and itself; (if we preserve the origin), the conver-
sion between cartesian and polar coordinates is another example. Finally, some
polymorphic isos arise from the structure of types themselves; for example, one
often hears that products are associative “up to isomorphism”.

It is the last sort, often called canonical or coherence (iso)morphisms, which
are of chief interest to us. Canonical isos are special because they are uniquely
determined by the types involved, that is, there is at most one canonical iso
between two polymorphic type schemes.

1 We will assume all datatypes are strict; otherwise, Haskell’s non-strict semantics
typically entails that some transformations like nesting add a new value ⊥ which
renders this claim false.

Monoidal isos. A few canonical isos of Haskell are summarized by the syntactic
theory below.2

a :*: Unit ∼= a Unit :*: a ∼= a (a :*: b) :*: c ∼= a :*: (b :*: c)
a :+: Zero ∼= a Zero :+: a ∼= a (a :+: b) :+: c ∼= a :+: (b :+: c)

The isomorphisms which witness these identities are the evident ones. The first
two identities in each row express the fact that Unit (resp. Zero) is a right and
left unit for :*: (resp. :+:); the last says that :*: (resp. :+:) is associative. We call
these isos collectively the monoidal isos.

This list is not exhaustive. For example, binary product and sum are also
canonically commutative:

a :*: b ∼= b :*: a a :+: b ∼= b :+: a

and the currying and the distributivity isos are also canonical:

(a :*: b) → c ∼= a → (b → c) a :*: (b :+: c) ∼= (a :*: b) :+: (a :*: c)

There is a subtle but important difference between the monoidal isos and the
other isos mentioned above. Although all are canonical, and so possess unique
polymorphic witnesses determined by the type schemes involved, only in the case
of the monoidal isos does the uniqueness property transfer unconditionally to
the setting of types.

To see this, consider instantiating the product-commutativity iso scheme to
obtain:

Int :*: Int ∼= Int :*: Int .

This identity has two witnesses: one is the intended twist map, but the other is
the identity function.

This distinction is in part attributable to the form of the identities involved;
the monoidal isos are all strongly regular, that is:

1. each variable that occurs on the left-hand side of an identity occurs exactly
once on the right-hand side, and vice versa, and

2. they occur in the same order on both sides.

The strong regularity condition is adapted from work on generalized multicate-
gories [15, 14, 10]. We claim, but have not yet proved, that strong regularity is
a sufficient—but not necessary—condition to ensure that a pair of types deter-
mines a unique canonical iso witness.

Thanks to the canonicality and strong regularity properties, given two types
we can determine if a unique iso between them exists, and if so can generate
it automatically. Thus our program infers all the monoidal isos, but not the
commutativity or distributivity isos; we have not yet attempted to treat the
currying iso.
2 We use the type syntax familiar from the Generic Haskell literature, i.e., Unit and

:*: are respectively nullary and binary product, and Zero and :+: are respectively
nullary and binary sum constructors.

Datatype isos. In Generic Haskell each datatype declaration effectively induces
a canonical iso between the datatype and its underlying “structure type”. For
example, the declaration

data List a = Nil | Cons a (List a)

induces the canonical iso

List a ∼= Unit :+: (a :*: List a) .

We call such isos datatype isos.
Note that datatype isos are not strongly regular in general; for example the

List identity mentions a twice on the right-hand side. Intuitively, though, there
is only one witness to a datatype iso: the constructor(s). Again, we claim, and
hope in the future to prove, that isos of this sort uniquely determine a canonical
witness. Largely as a side effect of the way Generic Haskell works, our inference
mechanism does infer datatype isos.

1.2 Outline

The remainder of this article is organized as follows. In section 2 we give an
informal description of the user interface to our inference mechanism. Section 3
discusses a significant application of iso inference, a way of automatically cus-
tomizing a Haskell–XML Schema data binding. In section 4 we examine the
Generic Haskell implementation of our iso inferencer. Finally, in section 5 we
summarize our results, and discuss related work and possibilities for future work
in this area.

2 Inferring Isomorphisms

From a Generic Haskell user’s point of view, iso inference is a simple matter
based on two generic functions,

reduce{|t|} :: t → Univ
expand{|t′|} :: Univ → t′ .

reduce{|t|} takes a value of any type and converts it into a universal, normalized
representation denoted by the type Univ; expand{|t′|}, its dual, converts such a
universal value back to a ‘regular’ value, if possible. The iso which converts from
t to t′ is thus expressed as:

expand{|t′|} ◦ reduce{|t|} .

If t = t′, then expand{|t′|} and reduce{|t|} are mutual inverses. If t and t′ are
merely isomorphic, then expansion may fail; it always succeeds if the two types
are canonically isomorphic, t ∼= t′, according to the monoidal and datatype iso
theories.

As an example, consider the expression

(expand{|(Bool,Bool :+: (Int :+: String))|} ◦
reduce{|(Bool, ((), (Bool :+: Int) :+: String))|})

(True, ((), Inl (Inr 7))) ,

which evaluates to

(True, Inr (Inl 7)) .

Function reduce{|t|} picks a type in each isomorphism class which serves as a
normal form, and uses the canonical witness to convert values of t to that form.
Normalized values are represented in a special way in the abstract type Univ; a
typical user need not understand the internals of Univ unless expand{|t′|} fails.
If t and t′ are ‘essentially’ the same, yet structurally substantially different then
this automatic conversion can save the user a substantial amount of typing, time
and effort.

Our functions also infer two coercions which are not invertible:

a :*: b 6 a a 6 a :+: b

The canonical witnesses here are the first projection of a product and the left
injection of a sum. Thanks to these reductions, the expression

(expand{|Either Bool Int|} ◦ reduce{|(Bool, Int)|}) (True, 4)

evaluates to Left True; note that it cannot evaluate to Right 4 because such a
reduction would involve projecting a suffix and injecting into the right whereas
we infer only prefix projections and left injections. Of course, we would prefer our
theory to include the dual pair of coercions as well, but doing so would break
the property that each pair of types determines a unique canonical witness.
Nevertheless, we will see in section 3.4 how these coercions, when used with a
cleverly laid out datatype, can be used to simulate single inheritance.

Now let us look at some examples which fail.

1. The conversion

expand{|(Bool, Int)|} ◦ reduce{|(Int,Bool)|}

fails because our theory does not include commutativity of :*:.
2. The conversion

expand{|Bool|} ◦ reduce{|Int|}

fails because the types are neither isomorphic nor coercible.
3. The conversion

expand{|Bool|} ◦ reduce{|Either () ()|}

fails because we chose to represent certain base types like Bool as abstract:
they are not destructured when reducing.

Currently, because our implementation depends on the “universal” type Univ,
failure occurs at run-time and a message helpful for pinpointing the error’s source
is printed. In section 5, we discuss some possible future work which may provide
static error detection.

3 Improving a Haskell–XML Schema Data Binding

A program that processes XML documents can be implemented using an XML
data binding. An XML data binding [23] translates an XML document to a value
of some programming language. Such bindings have been defined for a number
of programming languages including Java [21, 24], Python [26], Prolog [7] and
Haskell [35, 37, 1]. The default translation scheme of a data binding may produce
unwieldy, convoluted and redundant types and values. Our own Haskell–XML
Schema binding, called UUXML [1], suffers from this problem.

In this section we use UUXML as a case study, to show how iso inference can
be used to address a practical problem, the problem of overwhelmingly complex
data representation which tends to accompany type-safe language embeddings.
We outline the problem, explain how the design criteria gave rise to it, and finally
show how to attack it.

In essence, our strategy will be to define a customized datatype, one chosen
by the client programmer especially for the application. We use our mechanism to
automatically infer the functions which convert to and from the customized rep-
resentation by bracketing the core of the program with reduce{|t|} and expand{|t|}.
Generic Haskell does the rest, and the programmer is largely relieved from the
burden imposed by the UUXML data representation.

The same technique might be used in other situations, for example, compilers
and similar language processors which are designed to exploit type-safe data
representations.

3.1 The Problem with UUXML

We do not have the space here to describe UUXML in detail, but let us briefly
give the reader a sense of the magnitude of the problem.

Consider the following XML schema, which describes a simple bibliographic
record doc including a sequence of authors, a title and an optional publication
date, which is a year followed by a month.

<element name="doc" type="docType"/>

<complexType name="docType">

<sequence>

<element ref="author" minOccurs="0" maxOccurs="unbounded"/>

<element ref="title"/>

<element ref="pubDate" minOccurs="0"/>

</sequence>

<attribute name="key" type="string"/>

</complexType>

<element name="author" type="string"/>

<element name="title" type="string"/>

<complexType name="pubDateType">

<sequence>

<element ref="year"/>

<element ref="month"/>

</sequence>

</complexType>

<element name="pubDate" type="pubDateType"/>

<element name="year" type="int"/>

<element name="month" type="int"/>

An example document which validates against this schema is:

<doc key="homer-iliad">

<author>Homer</author>

<title>The Iliad</title>

</doc>

Our binding tool translates each of the types doc and docType into a pair of
types (explained in the next section),

data E doc u = E doc (Elem LE E doc LE T docType u)
data LE E doc u = EQ E doc (E doc u)
data T docType u = T docType (Seq A key (Seq (Rep LE E author ZI)

(Seq LE E title (Rep LE E pubDate
(ZS ZZ)))) u)

data LE T docType u = EQ E docType (T docType u)
| LE T publicationType (LE T publicationType u)

and the example document above into:

EQ E doc (E doc (Elem () (EQ T docType (T docType (Seq (A key (Attr
(EQ T string (T string "homer-iliad"))))(Seq (Rep (ZI [EQ E author
(E author (Elem () (EQ T string (T string "Homer"))))])) (Seq (EQ E title
(E title (Elem () (EQ T string (T string "The Iliad")))))(Rep
(ZS Nothing (Rep ZZ))))))))))

Even without knowing the details of the encoding or definitions of the unfa-
miliar datatypes, one can see the problem here; if a user wants to, say, retrieve
the content of the author field, he or she must pattern-match against no less
than ten constructors before reaching "homer-iliad". For larger, more complex
documents or document types, the problem can be even worse.

3.2 Conflicting Issues in UUXML

UUXML’s usability issues are a side effect of its design goals. We discuss these
here in some depth, and close by suggesting why similar issues may plague other
applications which process typed languages.

First, UUXML is type-safe and preserves as much static type information
as possible to eliminate the possibility of constructing invalid documents. In
contrast, Java–XML bindings tend to ignore a great deal of type information,
such as the types of repeated elements (only partly because of the limitations of
Java collections).

Second, UUXML translates (a sublanguage of) XML Schema types rather
than the less expressive DTDs. This entails additional complexity compared
with bindings such as HaXML [37] that merely target DTDs. For example, XML
Schema supports not just one but two distinct notions of subtyping and a more
general treatment of mixed content3 than DTDs.

Third, the UUXML translation closely follows the Model Schema Language
(MSL) formal semantics [4], even going so far as to replicate that formalism’s
abstract syntax as closely as Haskell’s type syntax allows. This has advantages:
we have been able to prove the soundness of the translation, that is, that valid
documents translate to typeable values, and the translator is relatively easy
to correctly implement and maintain. However, our strict adherence to MSL
has introduced a number of ‘dummy constructors’ and ‘wrappers’ which could
otherwise be eliminated.

Fourth, since Haskell does not directly support subtyping and XML Schema
does, our binding tool emits a pair of Haskell datatypes for each schema type
t: an ‘equational’ variant which represents documents which validate exactly
against t, and a ‘down-closed’ variant, which represents all documents which
validate against all subtypes of t.4 Our expectation was that a typical Haskell
user would read a document into the down-closed variant, pattern-match against
it to determine which exact/equational type was used, and do the bulk of their
computation using that.

Finally, UUXML was intended, first and foremost, to support the develop-
ment of ‘schema-aware’ XML applications using Generic Haskell. This moniker
describes programs, such as our XML compressor XComprez [1], which oper-
ate on documents of any schema, but not necessarily parametrically. XComprez,
for example, exploits the type information of a schema to improve compression
ratios.

Because Generic Haskell works by traversing the structure of datatypes, we
could not employ methods, such as those in WASH [35], which encode schema
information in non-structural channels such as Haskell’s type class system. Such
information is instead necessarily expressed in the structure of UUXML’s types,
and makes them more complex.

For schema-aware applications this complexity is not such an issue, since
generic functions typically need not pattern-match deeply into a datatype. But

3 “Mixed content” refers to character data interspersed with elements. For example,
in XHTML a p element can contain both character data and other elements like em.

4 To help illustrate this in the example schema translation, we posited that docType

had a hypothetical subtype publicationType. It appears as the body of the second
constructor of LE T docType in section 3.1.

if we aim to use UUXML for more conventional applications, as we have demon-
strated, it can become an overwhelming problem.

In closing, we emphasize that many similar issues are likely to arise, not only
with other data bindings and machine-generated programs, but also with any
type-safe representation of a typed object language in a metalanguage such as
Haskell. Preserving the type information necessarily complicates the representa-
tion. If the overall ‘style’ of the object language is to be preserved, as was our
desire in staying close to MSL, then the representation is further complicated.
If subtyping is involved, yet more. If the representation is intended to support
generic programming, then one is obliged to express as much information as
possible structurally, and this too entails some complexity.

For reasons such as these, one might be tempted to eschew type-safe embed-
dings entirely, but then what is the point of programming in a statically typed
language if not to exploit the type system? Arguably, the complexity problem
arises not from static typing itself, but rather the insistence on using only a single
data representation. In the next section, we show how iso inference drastically
simplifies dealing with multiple data representations.

3.3 Exploiting Isomorphisms

Datatypes produced by UUXML are unquestionably complicated. Let us con-
sider instead what our ideal translation target might look like. Here is an obvious,
very conventional, Haskell-style translation image of doc:

module Doc where
data Doc = Doc{key :: String,

authors :: [String],
title :: String,
pubDate :: Maybe PubDate}

data PubDate = PubDate{year :: Integer,
month :: Integer}

Observe in particular that:

– the target types Doc and PubDate have conventional, Haskellish names which
do not look machine-generated;

– the fields are typed by conventional Haskell datatypes like String, lists and
Maybe;

– the attribute key is treated just like other elements; and
– intermediate ‘wrapper’ elements like title and year have been elided and do

not generate new types;
– the positional information encoded in wrappers is available in the field pro-

jection names;
– the field name authors has been changed from the element name author ,

which is natural since authors projects a list whereas each author tag wraps
a single author.

Achieving an analogous result in Java with a data binding like JAXB would
require annotating (editing) the source schema directly, or writing a ‘binding
customization file’ which is substantially longer than the two datatype declara-
tions above. Both methods also require learning another XML vocabulary and
some details of the translation process, and the latter uses XPath syntax to
denote the parts which require customization—a maintenance hazard since the
schema structure may change.

With our iso inference system, provided that the document is known to be
exactly of type doc and not a proper subtype, all that is required is the above
Haskell declaration plus the following modest incantation:

expand{|Doc|} ◦ reduce{|E doc|}

This expression denotes a function of type E doc → Doc which converts the
unwieldy UUXML representation of doc into the idealized form above.

For example, the following is a complete Generic Haskell program that reads
in a doc-conforming document from standard input, deletes all authors named
“De Sade”, and writes the result to standard output.

module Censor where
import UUXML -- our framework
import XDoc -- automatically translated XML Schema
import Doc -- the two datatype declarations above
main = interact work
work = toE doc ◦ censor ◦ toDoc
censor d = d{authors = filter (6≡ "De Sade") (authors d)}
toE doc = unparse{|E doc|} ◦ expand{|E doc|} ◦ reduce{|Doc|}
toDoc = expand{|Doc|} ◦ reduce{|E doc|} ◦ parse{|E doc|}

3.4 The Role of Coercions

Recall that our system infers two non-invertible coercions:

a :*: b 6 a a 6 a :+: b

Of course, this is only half of the story we would like to hear! Though we could
easily implement the dual pair of coercions, we cannot implement them both
together except in an ad hoc fashion (and hence refrain from doing so). This
is only partly because, in reducing to a universal type, we have thrown away
the type information. Even if we knew the types involved, it is not clear, for
example, whether the coercion a → a :+: a should determine the left or the right
injection.

Fortunately, even this ‘biased’ form of subtyping proves quite useful. In par-
ticular, XML Schema’s so-called ‘extension’ subtyping exactly matches the form
of the first projection coercion, as it only allows documents validating against
a type t to be used in contexts of type s if s matches a prefix of t: so t is an
extension of s.

Schema’s other form of subtyping, called ‘restriction’, allows documents val-
idating against type t to be used in contexts of type s if every document val-
idating against t also validates against s: so t is a restriction of s. This can
only happen if s, regarded as a grammar, can be reformulated as a disjunction
of productions, one of which is t, so it appears our left injection coercion can
capture part of this subtyping relation as well.

Actually, due to a combination of circumstances, the situation is better than
might be expected. First, subtyping in Schema is manifest or nominal, rather
than purely structural : consequently, restriction only holds between types as-
signed a name in the schema. Second, our translation models subtyping by gener-
ating a Haskell datatype declaration for the down-closure of each named schema
type. For example, the ‘colored point’ example familiar from the object-oriented
literature would be expressed thus:

data Point = Point ...
data CPoint = CPoint ...
data LE Point = EQ Point Point

| LE CPoint LE CPoint
data LE CPoint = EQ CPoint CPoint

| ...

Third, we have arranged our translator so that the EQ . . . constructors always
appear in the leftmost summand. This means that the injection from the ‘equa-
tional’ variant of a translated type to its down-closed variant is always the left-
most injection, and consequently picked out by our expansion mechanism.

EQ Point :: Point → LE Point
EQ CPoint :: CPoint → LE CPoint

Since Haskell is, in itself, not so well-equipped at dealing subtyping, when reading
an XML document we would rather have the coercion the other way around, that
is, we should like to read an LE Point into a Point, but of course this is unsafe.
However, when writing a value to a document these coercions save us some work
inserting constructors.

Of course, since, unlike Schema itself, our coercion mechanism is structural,
we can employ this capability in other ways. For instance, when writing a value
to a document, we can use the fact that Nothing is the leftmost injection into
the Maybe a type to omit optional elements.

3.5 Conclusion

Let us summarize the main points of this case study.
We demonstrated first by example that UUXML-translated datatypes are

overwhelmingly complex and redundant. To address complaints that this prob-
lem stems merely from a bad choice of representation, we enumerated some of
UUXML’s design criteria, and explained why they necessitate that representa-
tion. We also suggested why other translations and type-safe embeddings might

succumb to the same problem. Finally, we described how to exploit our iso in-
ference mechanism to address this problem, and how coercion inference can also
be used to simplify the treatment of object language features such as subtyping
and optional values which the metalanguage does not inherently support.

4 Generic Isomorphisms

In this section, we describe how to automatically generate isomorphisms between
pairs of datatypes. Our implementation platform is Generic Haskell, and in par-
ticular we use dependency-style GH [17]. This section assumes a basic familiarity
with Generic Haskell, but the definitions are all remarkably simple.

We address the problem in four parts, treating first the product and sum
isos in isolation, then showing how to merge those implementations. Finally, we
describe a simple modification of the resulting program which implements the
non-invertible coercions.

In each case, we build the requisite morphism by reducing a value v :: t to a
value of a universal data type u = reduce{|t|} v :: Univ. The type Univ plays the
role of a normal form from which we can then expand to a value expand{|t′|} u ::t′

of the desired type, where t 6 t′ canonically, or t ∼= t′ for the isos.

4.1 Handling Products

We define the functions reduce{|t|} and expand{|t|} which infer the isomorphisms
expressing associativity and identities of binary products:

a :*: Unit ∼= a Unit :*: a ∼= a (a :*: b) :*: c ∼= a :*: (b :*: c)

We assume a set of base types, which may include integers, booleans, strings
and so on. For brevity’s sake, we mention only integers in our code.

data UBase = UInt Int | UBool Bool | UString String | · · ·

The following two functions merely serve to convert back and forth between the
larger world and our little universe of base types.

type ReduceBase{[?]} t = t → UBase

reducebase{|t :: κ|} :: ReduceBase{[κ]} t
reducebase{|Int|} i = UInt i
type ExpandBase{[?]} t = UBase → t

expandbase{|t :: κ|} :: ExpandBase{[κ]} t
expandbase{|Int|} (UInt i) = i

Now, as Schemers well know, if we ignore the types and remove all occurrences
of Unit, a right-associated tuple is simply a cons-list, hence our representation,
Univ is defined:

type Univ = [UBase] .

Our implementation of reduce{|t|} depends on an auxiliary function red{|t|}, which
accepts a value of t along with an accumulating argument of type Univ; it returns
the normal form of the t-value with respect to the laws above. The role of
reduce{|t|} is just to prime red{|t|} with an empty list.

type Red{[?]} t = t → Univ → Univ

red{|t :: κ|} :: Red{[κ]} t
red{|Int|} i u = reducebase{|Int|} i : u
red{|Unit|} () = id
red{|a :*: b|} (a :*: b) = red{|a|} a ◦ red{|b|} b
reduce{|t :: ?|} :: t → Univ
reduce{|t|} x = red{|t|} x []

Here is an example of reduce{|t|} in action:

reduce{|((Int, (Int, Int)), ())|} ((2, (3, 4)), ()) = [UInt 2,UInt 3,UInt 4] .

Function expand{|t|} takes a value of the universal data type, and returns a value
of type t. It depends on the generic function len{|t|}, which computes the length
of a product, that is, the number of components of a tuple:

type Len{[?]} t = Int

len{|t :: κ|} :: Len{[κ]} t
len{|Int|} = 1
len{|Unit|} = 0
len{|a :*: b|} = len{|a|}+ len{|b|} .

Observe that Unit is assigned length zero.
Now we can write expand{|t|}; like reduce{|t|}, it is defined in terms of a

helper function exp{|t|}, this time in a dual fashion with the ‘unparsed’ remainder
appearing as output.

type Exp{[?]} t = Univ → (t,Univ)
exp{|t :: κ|} :: Exp{[κ]} t
exp{|Int|} (u : us) = (expandbase{|Int|} u, us)
exp{|Int|} [] = error "exp"
exp{|Unit|} us = (Unit, us)
exp{|a :*: b|} us = let (u, us ′) = exp{|a|} us

(v , us ′′) = exp{|b|} us ′

in (u :*: v , us ′′)
type Expand{[?]} t = Univ → t

expand{|t :: κ|} :: Expand{[κ]} t
expand{|t|} u = case exp{|t|} u of

(v , []) → v
(v ,) → error "expand"

In the last case, we compute the lengths of each factor of the product to
determine how many values to project there—remember that a need not be a
base type. This information tells us how to split the list between recursive calls.

Here is an example of expand{|t|} in action:

expand{|((Int, (Int, Int)), ())|} [UInt 2,UInt 3,UInt 4] = ((2, (3, 4)), ())

4.2 Handling Sums

We now turn to the treatment of associativity and identity laws for sums:

a :+: Zero ∼= a Zero :+: a ∼= a (a :+: b) :+: c ∼= a :+: (b :+: c) .

We can implement Zero as an abstract type with no (visible) constructors:

data Zero .

As we will be handling sums alone in this section, we redefine the universal type
as a right-associated sum of values:

data Univ = UInl UBase | UInr Univ .

Note that this datatype Univ is isomorphic to:

data Univ = UIn Int UBase .

We prefer the latter as it simplifies some definitions. We also add a second integer
field:

data Univ = UIn Int Int UBase .

If u = UIn r a b then we shall call a the arity of u—it remembers the “width”
of the sum value we reduced; we call r the rank of u—it denotes a zero-indexed
position within the arity, the choice which was made. We guarantee, then, that
0 6 r < a. Of course, unlike Unit, Zero has no observable values so there is no
representation for it in Univ.

UBase, reducebase{|t|} and expandbase{|t|} are defined as before.
This time around, function reduce{|t|} represents values by ignoring choices

against Zero and right-associating sums. The examples below show some example
inputs and how they are reduced (we write I for Int and u for UInt i):

i :: I 7→ UIn 0 1 u
Inl i :: I :+: Zero 7→ UIn 0 1 u
Inr i :: Zero :+: I 7→ UIn 0 1 u
Inl i :: I :+: I 7→ UIn 0 2 u
Inr i :: I :+: I 7→ UIn 1 2 u
Inl (Inl i) :: (I :+: I) :+: I 7→ UIn 0 3 u
Inl (Inr i) :: (I :+: I) :+: I 7→ UIn 1 3 u
Inr i :: (I :+: I) :+: I 7→ UIn 2 3 u

Function reduce{|t|} depends on the generic value arity{|t|}, which counts the
number of choices in a sum.

type Arity{[?]} t = Int

arity{|t :: κ|} :: Arity{[κ]} t
arity{|Int|} = 1
arity{|Zero|} = 0
arity{|a :+: b|} = arity{|a|}+ arity{|b|}

Now we can define reduce{|t|}:

type Reduce{[?]} t = t → Univ

reduce{|t :: κ|} :: Reduce{[κ]} t
reduce{|Int|} i = UIn 0 1 (reducebase{|Int|} i)
reduce{|Zero|} = ⊥
reduce{|a :+: b|} (Inl x) = UIn r (a + arity{|b|}) u

where UIn r a u = reduce{|a|} x
reduce{|a :+: b|} (Inr x) = UIn (r + arity{|a|}) (arity{|a|}+ a) u

where UIn r a u = reduce{|b|} x .

This treats base types as unary sums, and computes the rank of a value by
examining the arities of each summand, effectively ‘flattening’ the sum.

The function expand{|t|} is defined as follows:

type Expand{[?]} t = Univ → t

expand{|t :: κ|} :: Expand{[κ]} t
expand{|Int|} (UIn 0 1 u) = expandbase{|Int|} i
expand{|Zero|} = error "expand"
expand{|a :+: b|} (UIn r a u)

| a ≡ aa + ab ∧ r < aa = Inl (expand{|a|} (UIn r (a − ab) u))
| a ≡ aa + ab = Inr (expand{|b|} (UIn (r − aa) (a − aa) u))
| otherwise = error "expand"
where (aa, ab) = (arity{|a|}, arity{|b|}) .

The logic in the last case checks that the universal value ‘fits’ in the sum type
a :+: b, and injects it into the appropriate summand by comparing the value’s
rank with the arity of a, being sure to adjust the rank and arity on recursive
calls.

4.3 Sums and Products Together

It may seem that a difficulty in handling sums and products simultaneously
arises in designing the type Univ, as a näıve amalgamation of the sum Univ (call
it UnivS) and the product Univ (call it UnivP) permits multiple representations of
values identified by the canonical isomorphism relation. However, since the rules
of our isomorphism theory do not interact—in particular, we do not account

for any sort of distributivity—, a simpler solution exists: we can nest our two
representations and add the top layer as a new base type. For example, we can
use UnivP in place of UBase in UnivS and add a new constructor to UBase to
encapsulate sums.

data UnivS = UIn Integer UnivP
data UnivP = UNil | UCons UBase UnivP
data UBase = UInt Int | USum UnivS

We omit the details, as the changes to our code examples are straightforward.

4.4 Handling Coercions

The reader may already have noticed that our expansion functions impose some
unnecessary limitations. In particular:

– when we expand to a product, we require that the length of our universal
value equals the number computed by len{|t|}, and

– when we expand to a sum, we require that the arity of our universal value
equals the number computed by arity{|t|}.

If we lift these restrictions, replacing equality by inequality, we can project a
prefix of a universal value onto a tuple of smaller length, and inject a universal
value into a choice of larger arity. The modified definitions are shown below for
products:

expand{|t|} u = case exp{|t|} u of
(v ,) → v

and for sums:

expand{|a :+: b|} (UIn r a u)
| a 6 aa + ab ∧ r < aa = Inl (expand{|a|} (UIn r (a − ab) u))
| a 6 aa + ab = Inr (expand{|b|} (UIn (r − aa) (a − aa) u))
| otherwise = error "expand"
where (aa, ab) = (arity{|a|}, arity{|b|}) .

These changes implement our canonical coercions, the first projection of a prod-
uct and left injection of a sum:

a :*: b 6 a a 6 a :+: b

Ad Hoc Coercions. Schema (and most other conventional languages) also de-
fines a subtyping relation between primitive types. For example, int is a subtype
of integer which is a subtype of decimal. We can easily model this by (adding

some more base types and) modifying the functions which convert base types.

expandbase{|Decimal|} (UDecimal x) = x
expandbase{|Decimal|} (UInteger x) = integer2dec x
expandbase{|Decimal|} (UInt x) = int2dec x
expandbase{|Integer|} (UInteger x) = x
expandbase{|Integer|} (UInt x) = int2integer x
expandbase{|Int|} (UInt x) = x

Such primitive coercions are easy to handle, but without due care are likely to
break the coherence properties of inference, so that the inferred coercion depends
on operational details of the inference algorithm.

5 Conclusions

In this paper, we have described a simple, powerful and general mechanism
for automatically inferring a well-behaved class of isomorphisms, and demon-
strated how it addresses some usability problems stemming from the complexity
of our Haskell-XML Schema data binding, UUXML. Our mechanism leverages
the power of an existing tool, Generic Haskell, and the established and growing
theory of type isomorphisms.

We believe that both the general idea of exploiting isomorphisms and our
implementation technique have application beyond UUXML. For example, when
libraries written by distinct developers are used in the same application, they
often include different representations of what amounts to the same datatype.
When passing data from one library to the other the data must be converted to
conform to each library’s internal conventions. Our technique could be used to
simplify this conversion task; to make this sort of application practical, though,
iso inference should probably be integrated with type inference, and the class
of isos inferred should be enlarged. We discuss such possibilities for future work
below.

5.1 Related Work

Besides UUXML, we have already mentioned the HaXML [37] and WASH [35]
XML data bindings for Haskell. The Model Schema Language semantics [4] is
now superseded by newer work [32]; we are investigating how to adapt our encod-
ing to the more recent treatment. Special-purpose languages, such as XSLT [36],
XDuce [12], Yatl [6], XMλ [22, 31], SXSLT [13] and Xtatic [9], take a different
approach to XML problems.

In computer science, the use of type isomorphisms seem to have been popu-
larized first by Rittri who demonstrated their value in software retrieval tasks,
such as searching a software library for functions matching a query type [29].
Since then the area has ballooned; good places to start on the theory of type
isomorphisms is Di Cosmo’s book [8] and the paper by Bruce et al. [5]. More
recent work has focused on linear type isomorphisms [2, 33, 30, 20].

In category theory, Mac Lane initiated the study of coherence in a seminal
paper [18]; his book [19] treats the case for monoidal categories. Beylin and Dyb-
jer’s use [3] of Mac Lane’s coherence theorem influenced our technique here. The
strong regularity condition is sufficient for ensuring that an algebraic theory is
cartesian; cartesian monads have been used by Leinster [15, 14] and Hermida [10]
to formalize the notion of generalized multicategory, which generalizes a usual
category by imposing an algebraic theory on the objects, and letting the domain
of an arrow be a term of that theory.

5.2 Future Work

Schema matching. In areas like database management and electronic com-
merce, the plethora of data representation standards—formally, ‘schemas’—used
to transmit and store data can hinder reuse and data exchange. To deal with
this growing problem, ‘schema matching’, the problem of how to construct a
mapping between elements of two schemas, has become an active research area.
Because the size, complexity and number of schemas is only increasing, finding
ways to accurately and efficiently automate this task has become more and more
important; see Rahm and Bernstein [28] for a survey of approaches.

We believe that our approach, which exploits not only the syntax but seman-
tics of types, could provide new insights into schema matching. In particular, the
notion of canonical (iso)morphism could help clarify when a mapping’s semantics
is forced entirely by structural considerations, and when additional information
(linguistic, descriptive, etc.) is provably required to disambiguate a mapping.

Implicit coercions. Thatte introduced a declaration construct for introducing
user-defined, implicit conversions between types [34], using, like us, an equational
theory on types. Thatte also presents a principal type inference algorithm for
his language, which requires that the equational theory is unitary, that is, every
unifiable pair of types has a unique most general unifier. To ensure theories
be unitary, Thatte demands they be finite and acyclic, and uses a syntactic
condition related to, but different from, strong regularity to ensure finiteness.
In Thatte’s system, coherence seems to hold if and only if the user-supplied
conversions are true inverses.

The relationship between Thatte’s system and ours requires further inves-
tigation. In some ways Thatte’s system is more liberal, allowing for example
distributive theories. On the other hand, the unitariness requirement rules out
associative theories, which are infinitary. The acyclicity condition also rules out
commutative theories, which are not strongly regular, but also the currying iso,
which is. Another difference between Thatte’s system and ours is that his catches
errors at compile-time, while the implementation we presented here does so at
run-time. A final difference is that, although the finite acyclicity condition is
decidable, the requirement that conversions be invertible is not; consequently,
users may introduce declarations which break the coherence property (produce
ambiguous programs). In our system, any user-defined conversions are obtained

structurally, as datatype isos from datatype declarations, which cannot fail to
be canonical; hence it is not possible to break coherence.

The Generic Haskell implementation. We see several ways to improve our
current implementation of iso inference.

– We would like to detect inference errors statically rather than dynamically
(see below).

– Inferring more isomorphisms (such as the linear currying isos) and more
powerful kinds of isomorphisms (such as commutativity of products and
sums, and distributivity of one over the other) is also attractive.

– Currently, adding new ad hoc coercions requires editing the source code;
since such coercions typically depend on the domain of application, a better
approach would be to somehow parametrize the code by them.

– We could exploit the fact that Generic Haskell allows to define type cases on
the → type constructor: instead of providing two generic functions reduce{|t|}
and expand{|t|}, we would provide only a single generic function:

coerce{|t → t′|} = expand{|t′|} ◦ reduce{|t|} .

– The fact that the unique witness property does not readily transfer from
type schemes to types might be circumvented by inferring first-class poly-
morphic functions which can then be instantiated at suitable types. Generic
Haskell does not currently allow to do so, but if we could write expressions
like coerce{|∀a b . (a, b) → (b, a)|} we could infer all canonical isos, without
restriction, and perhaps handle examples like Date NL and Date US from
section 1.

Inference failure. Because our implementation depends on the “universal”
type Univ, failure occurs dynamically and a message helpful for pinpointing the
error’s source is printed. This situation is unsatisfactory, though, since every
invocation of the expand and reduce functions together mentions the types in-
volved; in principle, we could detect failures statically, thus increasing program
reliability.

Such early detection could also enable new optimizations. For example, if
the types involved are not only isomorphic but equal, then the conversion is the
identity and a compiler could omit it altogether. But even if the types are only
isomorphic, the reduction might not unreasonably be done at compile-time, as
our isos are all known to be terminating; this just amounts to adjusting the data
representation ‘at one end’ or the other to match exactly.

We have investigated, but not tested, an approach for static failure detection
based on an extension of Generic Haskell’s type-indexed datatypes [11]. The idea
is to introduce a type-indexed datatype NF{[t]} which denotes the normal form
of type t w.r.t. to the iso theory, and then reformulate our functions so that they
are assigned types:

reduce{|t|} :: t → NF{[t]}
expand{|t|} :: NF{[t]} → t .

For example, considering only products, the type NF{[t]} could be defined as
follows:

type NF{[t]} = Norm{[t]} Unit
data Norm{[Unit]} t = NUnit t
data Norm{[a :*: b]} t = NProd (a :*: (b :*: t))
data Norm{[Int]} t = NBase (Int :*: t) .

This would give the GH compiler enough information to reject bad conversion
at compile-time.

Unfortunately, the semantics of GH’s type-indexed datatypes is too “gener-
ative” for this approach to work. The problem is apparent if we try to compile
the expression:

expand{|Int|} ◦ reduce{|(Int, ())|} .

GH flags this as a type error, because it treats NF{[Int]} and NF{[(Int, ())]} as
distinct (unequal), though structurally identical, datatypes.

A possible solution to this issue may be a recently considered GH extension
called type-indexed types (as opposed to type-indexed datatypes). If NF{[t]} is
implemented as a type-indexed type, then, like Haskell’s type synonyms, struc-
turally identical instances like the ones above will actually be forced to be equal,
and the expression above should compile. However, type-indexed types—as cur-
rently envisioned—also share the limitations of Haskell’s type synonyms w.r.t.
recursion; a type-indexed type like NF{[List Int]} is likely to cause the compiler
to loop as it tries to expand recursive occurrences while traversing the datatype
body. Nevertheless, of the several approaches we have considered to address-
ing the problem of static error detection, type-indexed types seems the most
promising.

Acknowledgements. The authors thank Dave Clarke, Bastiaan Heeren and An-
dres Löh for their comments on this paper, and Eelco Dolstra and Fermin Reig
for comments on an earlier version. Tom Leinster kindly clarified some of our
questions about cartesian monads and the strong regularity condition. Wouter
Swierstra helped investigate approaches to static detection of inference failure.

References

1. Frank Atanassow, Dave Clarke, and Johan Jeuring. Scripting XML with Generic
Haskell. In Proc. 7th Brazilian Symposium on Programming Languages, 2003. See
also Utrecht University technical report UU-CS-2003.

2. Vincent Balat and Roberto Di Cosmo. A linear logical view of linear type isomor-
phisms. In CSL, pages 250–265, 1999.

3. Ilya Beylin and Peter Dybjer. Extracting a proof of coherence for monoidal cate-
gories from a proof of normalization for monoids. In TYPES, pages 47–61, 1995.

4. Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. MSL: A model
for W3C XML Schema. In Proc. WWW10, May 2001.

5. Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms
of types. Mathematical Structures in Computer Science, 2(2):231–247, 1992.

6. Sophie Cluet and Jérôme Siméon. YATL: a functional and declarative language
for XML, 2000.

7. Jorge Coelho and Mário Florido. Type-based XML processing in logic program-
ming. In PADL 2003, pages 273–285, 2003.

8. Roberto Di Cosmo. Isomorphisms of Types: From lambda-calculus to Information
Retrieval and Language Design. Birkhäuser, 1995.

9. Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In European
Conference on Object-oriented Programming (ECOOP 2003), 2003.

10. C. Hermida. Representable multicategories. Advances in Mathematics, 151:164–
225, 2000.

11. Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In Pro-
ceedings of the 6th Mathematics of Program Construction Conference, MPC’02,
volume 2386 of LNCS, pages 148–174, 2002.

12. Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing language.
In Third International Workshop on the Web and Databases (WebDB), volume
1997 of Lecture Notes in Computer Science, pages 226–244, 2000.

13. Oleg Kiselyov and Shriram Krishnamurti. SXSLT: manipulation language for
XML. In PADL 2003, pages 226–272, 2003.

14. Thomas S.H. Leinster. Operads in Higher-Dimensional Category Theory. PhD
thesis, Trinity College and St John’s College, Cambridge, 2000.

15. Tom Leinster. Higher Operads, Higher Categories. Cambridge University Press,
2003.

16. Xavier Leroy et al. The Objective Caml system release 3.07, Documentation and
user’s manual, December 2003. Available from http://caml.inria.fr/ocaml/

htmlman/.
17. Andres Löh, Dave Clarke, and Johan Jeuring. Dependency-style Generic Haskell.

In Proceedings of the International Conference on Functional Programming (ICFP
’03), August 2003.

18. Saunders Mac Lane. Natural associativity and commutativity. Rice University
Studies, 49:28–46, 1963.

19. Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 1997. (1st
ed., 1971).

20. Bruce McAdam. How to repair type errors automatically. In Trends in Functional
Programming (Proc. Scottish Functional Programming Workshop), volume 3, 2001.

21. Brett McLaughlin. Java & XML data binding. O’Reilly, 2003.
22. Erik Meijer and Mark Shields. XMLambda: A functional language for constructing

and manipulating XML documents. Available from http://www.cse.ogi.edu/

~mbs/, 1999.
23. Eldon Metz and Allen Brookes. XML data binding. Dr. Dobb’s Journal, pages

26–36, March 2003.
24. Sun Microsystems. Java Architecture for XML Binding (JAXB). http://java.

sun.com/xml/jaxb/, 2003.

25. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, May 1997.

26. Uche Ogbuji. Xml data bindings in python, parts 1 & 2. xml.com, 2003. http:

//www.xml.com/pub/a/2003/06/11/py-xml.html.
27. Simon Peyton Jones, John Hughes, et al. Haskell 98 — A non-strict, purely func-

tional language. Available from http://haskell.org, February 1999.
28. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic

schema matching. VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.
29. Mikael Rittri. Retrieving library identifiers via equational matching of types. In

Conference on Automated Deduction, pages 603–617, 1990.
30. Mikael Rittri. Retrieving library functions by unifying types modulo linear iso-

morphism. Informatique Theorique et Applications, 27(6):523–540, 1993.
31. Mark Shields and Erik Meijer. Type-indexed rows. In The 28th Annual ACM

SIGPLAN - SIGACT Symposium on Principles of Programming Languages, pages
261–275, 2001. Also available from http://www.cse.ogi.edu/~mbs/.

32. Jérôme Siméon and Philip Wadler. The essence of XML. In Proc. POPL 2003,
2003.

33. Sergei Soloviev. A complete axiom system for isomorphism of types in closed cat-
egories. In A. Voronkov, editor, Proceedings 4th Int. Conf. on Logic Programming
and Automated Reasoning, LPAR’93, St. Petersburg, Russia, 13–20 July 1993,
volume 698, pages 360–371. Springer-Verlag, Berlin, 1993.

34. Satish R. Thatte. Coercive type isomorphism. In Proceedings of the 5th ACM con-
ference on Functional programming languages and computer architecture, volume
523 of LNCS, pages 29–49. Springer-Verlag New York, Inc., 1991.

35. Peter Thiemann. A typed representation for HTML and XML documents in
Haskell. Journal of Functional Programming, 12(4&5):435–468, July 2002.

36. W3C. XSL Transformations 1.0. http://www.w3.org/TR/xslt, 1999.
37. Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators or

type-based translation? In International Conference on Functional Programming,
pages 148–159, 1999.

