
A Reference Framework for Utilization of Software Operation Knowledge

Henk van der Schuur, Slinger Jansen, Sjaak Brinkkemper
Department of Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

{h.schuur, s.jansen, s.brinkkemper}@cs.uu.nl

Abstract—Knowledge of in-the-field software operation is
a broad but ill-defined and fragmentarily supported subject
and it is unclear how software vendors can take advantage of
such knowledge. This paper introduces and defines software
operation knowledge to unify existing definitions, and presents
an empirically evaluated framework that is designed to aid
product software vendors in gaining insight in the potential
role of such knowledge in advancement of their products,
practices and processes. The results of extensive case studies
performed at three European software vendors show that if
used correctly, software operation knowledge enables vendors
to increase software quality and improve end-user experience.
However, case study results also illustrate that the state of
knowledge integration is still pragmatic and immature. Vendors
have to adapt their workflows, processes and tools to enable
structural software operation knowledge utilization.

Keywords-software performance, software quality, software
usage, software feedback, software process improvement

I. INTRODUCTION

Software vendors have recently begun discovering the
yields of software and end-user feedback. For example, by
implementing feedback reporting in its operating systems, a
large software vendor discovered that circa 50% of failures
are caused by one percent of software bugs [1]. If used
correctly, feedback enables software vendors to establish
how successful their products and services are at achieving
their goals in the field. These goals are dependent on soft-
ware end-users, and constitute aspects such as performance,
quality and usability.

With the increase of software complexity and ever higher
end-user expectations, advanced techniques are required to
monitor operations of software in the field. Common exam-
ples are crash reporting applications and service performance
monitoring tools. More exotic mechanisms exist, such as
‘software tomography’ [2] for monitoring specific aspects
of an application, end-user tracing for UI improvement,
as well as mechanisms for providing and delivering end-
user feedback. The software community has picked up
on the need for tools to support software and end-user
feedback concerns. Google, for example, has created the
Google Website Optimizer1, which enables website builders
to leverage end-user behavior by presenting end-users with

1http://www.google.com/websiteoptimizer/, verified 26/05/2010

different user interfaces and then measuring differences in
conversion rates, site effectiveness, visitor satisfaction, etc.
As another example, Mozilla has developed the Firefox Test
Pilot plug-in2 to get operation feedback and usage traces
from circa one percent of its end-users.

It remains unclear, however, how and to which extent
software and end-user feedback can be used to improve a
software vendor’s practices, processes and products. Sev-
eral research examples that focus on specific solutions and
domains can be found. The Skoll project [3] focuses on
user community-supported quality assurance of software
operating in large configuration spaces. Furthermore, the
GAMMA project [4] uses software tomography to gather
useful information from deployed software and focuses on
determining effective probe insertion locations. While these
examples show that research in this area is fragmented,
software and end-user feedback are generally used as main
data source.

An integrated view is needed that provides product soft-
ware vendors with insight in the potential role of such
feedback in advancement of their products, practices and
processes. The contribution of this paper is twofold:

• A definition is introduced to unify existing definitions
and uses of software feedback, as well as types of
knowledge emerging from in-the-field software operation

• A framework is presented that models the life cycle of
such knowledge as well as product software perspectives
from which processes of this life cycle can be perceived.

Both the definition and the framework are empirically
evaluated with a questionnaire and three investigative case
studies at European software vendors.

This paper continues with placing our work into context
and with the introduction of the software operation knowl-
edge definition (section II) and framework (section III). The
research evaluation approach is described in section IV.
Next, results of our empirical study are presented in sec-
tions V and VI. Finally, limitations of this research are dis-
cussed in section VII and research conclusions are presented
in section VIII.

2http://labs.mozilla.com/testpilot/, verified 26/05/2010

2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4170-9/10 $26.00 © 2010 IEEE

DOI 10.1109/SEAA.2010.20

245

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

II. SOFTWARE OPERATION KNOWLEDGE (SOK)

Till date, various research has been conducted concerning
the subject of knowledge of in-the-field software opera-
tion. For example, software measurement, monitoring and
feedback techniques have been proposed [5]–[7] and soft-
ware operation data acquisition techniques and tools have
been developed [2], [8]. Little research has been initiated
to incorporate all processes in one framework, however.
Selby et al. [9] have proposed a framework that supports
multiple evaluation and feedback paradigms, but mainly
focus on architectural principles for designing metric-driven
analysis and feedback systems; the authors do not address
integration, presentation and utilization aspects of software
feedback. The work of Lehman and Ramil [10] analyzes
and quantifies the impact of feedback on (improving) ‘the
global software process’ and can be seen as an argument
for using software operation knowledge to advance software
engineering processes. However, the research focuses on
process improvement through software evolution process
measurement and modeling, and does not consider the life
cycle of feedback itself (as detailed in section III). Tautz
and Althoff [11] propose case-based reasoning techniques
to reuse software knowledge, but concentrate on ‘improving
productivity and reliability of software development’ and do
not consider other software engineering processes.

In short, knowledge of in-the-field software operation is
an emerging and broad subject and is ill-defined till date.
We provide the following definition:

Software Operation Knowledge - Knowledge of in-
the-field performance, quality and usage of software, and
knowledge of in-the-field end-user software experience
feedback.

SOK (κ) consists of four knowledge types: performance
(κP), quality (κQ), usage (κU) and end-user feedback (κF)
knowledge. Next, we detail each SOK type in terms of
concepts and metrics that are encountered in research on
software analysis, measurement and feedback3.

A. Performance (κP)

Software performance can be specified on many types
of software resources, with different measurement units. In
their research on performance techniques for commercial
off-the-shelf (COTS) software, Putrycz et al. [12] state that
software performance characteristics can be described by
using benchmarks (giving the delay for a component in a
particular configuration, for example) or by using a causal
model based on performance data. As Putrycz further states,
performance data consist of three kinds of data: device

3Note that the concepts and metrics mentioned are considered character-
istic, exemplary and not complete.

demands (e.g., average CPU time for a component’s opera-
tion), interaction attributes (e.g., number of required service
operations demanded per component operation) and logical
resources (e.g., threads, buffers and caches associated with a
component). According to Johnson et al. [13], elapsed time,
transaction throughput and transaction response time are
among most common ways to specify software performance.
In their research, performance areas are (1) response time
for input and output operations, (2) maximum sustainable
throughput and response time, and (3) time consumed
by each software layer. The performance of service-based
software in particular is measured in terms of throughput
(number of service requests served in a given time frame)
and latency (round-trip time between sending a request and
receiving the response), where higher throughput and lower
latency values represent higher service performance [14].
Software performance knowledge (κP) consists of all per-
formance data types identified by Putrycz, as well as the
performance specifications of Johnson and both throughput
and latency metrics.

B. Quality (κQ)

Several software quality models with diverse sets of
characteristics have been proposed, and as observed by
Bøegh [15], many perspectives on what composes a software
quality model’s key quality characteristics exist. The ISO
9126 quality model [16] is well-known and accepted in
both industry and empirical research. The model classifies
software quality into a structured set of characteristics and
sub characteristics, divided into three quality views: internal
quality, external quality and quality in use. While the internal
quality view (based on the characteristics Functionality, Re-
liability, Usability, Efficiency, Maintainability, Portability) is
concerned with static software properties that do not depend
on software operation, the external quality view (which is
based on the same characteristics as the internal quality
view) is related to metrics applicable to the dynamic aspects
of deployed software operating on computer hardware (e.g.,
number of exceptions, crash report details and mean time
between failures [15]). The quality-in-use view of the model
(based on characteristics Effectiveness, Productivity, Safety,
Satisfaction) is concerned with end-users performing tasks
by using software in the field. Characteristics related to the
quality-in-use view can only be measured when the deployed
software product is used in real conditions. Examples of
metrics related to this view include end-user productivity
and end-user satisfaction. As shown by Gyimóthy et al. [17],
software quality can be estimated by means of source code
(metrics) analysis: forming the DNA of software, source
code determines behavior of in-the-field software operation
(e.g., algorithm complexity influences software quality).

Quality of service-based software and Web services has
also been researched extensively. Yu and Lin [18] propose
a set of QoS attributes (e.g. Cost, Reliability, Availability),

246

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

as impact factors of service selection algorithm creation.
In their research on the construction of a Web service
quality model, Zeng et al. [19] present four generic service
quality criteria: Execution price, Reliability, Availability and
Reputation. With respect to the SOK concept, characteristics
associated with both external quality and quality-in-use
views, as well as the source code metrics and service quality
metrics referred to are covered by the software quality
knowledge type κQ.

C. Usage (κU)
Software usage describes how software is used in the

field by its end-users and how software responds to end-
user behavior. Analogously to the quality-in-use view of the
ISO 9126 quality model, knowledge of software usage can
only be acquired during in-the-field software operation. The
usage model presented by Simmons [20] contains three tiers:
supporting data, usage overview and usage details, where
the usage details tier contains actual usage data. Software
usage is described in terms of user interface paths, method
calls and object initiations.

Concerning service-based software and Web services,
software usage is specified in terms of service requests, web
method calls and service error types [21]. κU is covered by
the usage details tier of Simmon’s usage model: we consider
the extent to which the software usage specifications of tiers
other than the usage details tier contribute to this knowledge
type, as minimal.

D. End-user Feedback (κF)
End-user feedback is a collection of end-user software

appreciation, criticism on certain software usage aspects, and
general software experience. For example, feedback from
end-users frequently consists of (1) a subject that describes
the aspect of the software the end-user is giving feedback
on, (2) a rating that quantifies the end-user’s appreciation
of the aspect, and (3) feedback motivation or explanation.
Average feedback rating and customer satisfaction level are
metrics corresponding to end-user feedback. In short, end-
user feedback knowledge (κF) consists of all feedback on
software operation provided by end-users of the software.

III. SOK FRAMEWORK

Partially based on our observations of industry practices,
the software operation knowledge framework (see figure 1)
describes the SOK life cycle processes, and models the
flow of software operation data, information and knowledge
through software vendor tools and processes, from three
product software perspectives. The framework and serves
as a guiding substrate in determining the scope of our
SOK research, and might fulfill an equivalent role in other
research initiatives on software engineering and evolution,
tool development or change management. The stakeholders,
processes and perspectives that constitute the framework are
detailed in the following sections.

Acquisition

Integration

Presentation

Utilization

Identification

Customer Software Vendor

Customer
Perspective

Company
Perspective

Development
Perspective

behavior

Software
Operation Data

Data Mining +
Abstraction

Relationship
management

Training
modification
Customized

licensing
Pro-active

support

Resource
management

Roadmap
construction

Strategy
determination

Directed
marketing

Informed
development

Usability
improvement

Software
maintenance

Release
management

Management
dashboard
Operation
summary

Usage
summary

Exception type
graph

Bug priority list Usage report

Performance
reportUsage report

Performance
report

IDE

Bug tracker Management
tools

Marketing tools

Support system

Training
software

operation information

operation
data

 Data Mining +
Abstraction

Logic

data mining logic
abstraction logic

operation knowledge
demands

software
modification

(updates,
licenses,etc.)

Legend
Operation information visualisation

Operation knowledge utilization

feedback
response

Software

Acq.

acquisition criteria

operation
data

License
activation tools

Order
administration

Planning tools

Feedback
history overview

Feedback
summary

Relationship
profile

Figure 1. Software Operation Knowledge framework

A. Stakeholders

The SOK framework distinguishes two stakeholders: soft-
ware vendors and customers. The ‘Customer’ stakeholder
represents a software vendor’s business-to-consumer (B2C)
customers as well as business-to-business (B2B) customers.
End-users, or end-users of third party enterprises are con-
sidered B2C customers, while external software vendors,
partners that have licensed software of the software vendor
as well as end-users of these external software vendors are
considered B2B customers. End-users and their behavior
form the initial source of software operation knowledge;
software vendors assemble operation data from their cus-
tomers and potentially respond to these data, for example
through their software development, release, marketing or
quality assurance processes. Other parties operating within
a vendor’s ‘ecosystem(s)’, like those defined by Jansen et
al. [22], are considered out the scope of the framework.

247

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

B. Processes

The SOK life cycle processes depicted in figure 1
form the SOK life cycle and illustrate the transformation
of software operation data (Identification, Acquisition)
via software operation information (Acquisition,
Integration, Presentation) to software operation knowledge
(Presentation, Utilization). The processes take place
subsequently, cyclically and independently per SOK type.
Five life cycle processes can be identified:

Identification The first SOK process encompasses iden-
tification of SOK utilization goals and associated operation
knowledge demands. Since software operation data acqui-
sition potentially introduces a data explosion that hinders
software vendors to successfully utilize SOK, directed acqui-
sition is required. The amount of software operation data that
is acquired, is controlled by acquisition criteria. Operation
data are associated to one or more SOK types, and to each
type k ∈ κ, a weight w is assigned that represents the
acquisition priority of k. Furthermore, abstraction logic is
defined for software operation data aggregation and encap-
sulation. Operation knowledge demands resulting from the
utilization process are translated into acquisition criteria to
direct SOK acquisition, and transformed into mining and
abstraction logic to control mining of acquired data. The
SOK identification process results in a set of acquisition
criteria, as well as mining and abstraction logic to steer
acquisition of SOK in the next process.

Acquisition The SOK acquisition process is concerned
with a number of sub processes. First, the behavior of
end-users is translated to software operation data, taking
into account the acquisition criteria defined in the SOK
identification process. Secondly, software operation data
are transferred from servers or workstations at which the
software is deployed, to the software vendor. Next, based
on mining and abstraction logic defined in the previous
process, software operation data sources are identified and
software operation information is extracted from all acquired
operation data. Software operation information constitutes
the input for the SOK integration process.

Although software operation data are often acquired
manually by extending the software code base with log
code or trace classes, software operation data can also be
automatically deduced from deployed software [2], [4], [23].
Like logging, software operation data acquisition can be
considered as a typical cross-cutting concern and can thus be
implemented by using aspect-oriented programming (AOP)
techniques [8]. Note that the amount of software operation
data that is acquired depends on both an end-user’s software
usage behavior as well as the type of software operation
knowledge k ∈ κ that is eventually extracted from the
operation data. While operation data associated with most
operation knowledge types (κP , κQ, κU) can be acquired

automatically during software operation, the amount of
acquired operation data associated with κF depends on and
end-user’s willingness to submit feedback.

Depending on security, regulation or capacity constraints,
software operation data may be transferred to the software
vendor in real-time or according to a schedule. Compres-
sion, AOP and tomography techniques [2] can be used to
configure and limit the amount of data that is transferred.
Abstraction and data mining techniques are applied to the
operation data stored at the software vendor, to aggregate,
generalize or filter operation data, or to verify the data
are representative with respect to the identified utilization
goals. The mining and abstraction of operation data results
in software operation information.

Integration In the (optional) integration process, software
operation information resulting from the acquisition process
is integrated into a software vendor’s existing processes
and infrastructures. Existing processes and workflows may
have to be adapted, and plug-ins, conversion components
or mediator services may be developed to make use of
the available software operation information and to enable
purposeful, context-dependent presentation and utilization of
acquired SOK. For example, a plug-in may be developed
to integrate software operation information of a particular
code file into integrated development environments (IDE).
Also, a software information conversion service could be
developed to automatically register unhandled exceptions in
the software vendor’s bug tracker.

Presentation The fourth SOK process is concerned with
the presentation of software operation information. Data
resulting from the integration process is visualized using
graphs, diagrams or other presentation artefacts, possibly
by means of the integration plug-ins or tools developed in
that process. For example, based on exception event data, a
bar chart can be created showing exception frequencies per
software component. Note that each of the framework per-
spectives (described in section III-C) may require a different
visual representation of software operation information, il-
lustrating the data at various levels of detail. Especially when
presented in combination with historical software operation
information or with other data (e.g., release schedules or
bug tracker data), new insights and SOK are gained in the
presentation process.

Utilization The last SOK process describes processes as
well as response actions that may be the result of effective
SOK utilization. For example, integration and presentation
of query timings, exception statistics and usage traces in an
IDE respectively provides software developers with knowl-
edge and insights about the performance, quality and usage
of their software in the field, which contributes to ‘informed
software development’. Also, acquired software operation
knowledge supports concrete decision making. For instance,
software quality knowledge and end-user feedback knowl-
edge support usability and release management decisions.

248

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

In-retrospect consideration of the SOK utilization process
potentially results in new operation knowledge demands,
which form input for the identification process. Also, SOK
utilization may result in software modification, feedback
response as well as propagation of SOK to particular stake-
holders (e.g. partner vendors).

C. Perspectives

The route of SOK through integration, presentation and
utilization processes can be observed from three product
software perspectives, that find their origin in the product
software research framework of Brinkkemper and Xu [24].

First, the Development perspective concerns all processes
that contribute to production of software products that can
readily be deployed at customers. Secondly, the Company
perspective concerns processes indirectly related to software
development, such as marketing, sales, and quality control.
Thirdly, the Customer perspective represents all factors and
processes that influence the existing relationship between a
software vendor and its customers, such as training, support
and relationship management processes.

SOK that is integrated with development tools, sup-
ports software engineering processes or results in software
modifications, routes through the development perspective.
Software operation knowledge that is instrumental to the
indirect effects of a vendor’s software engineering processes
(e.g. resource management, strategy determination, roadmap
development) routes through the company perspective. SOK
that contributes to processes regarding a vendor’s existing
customers, or contributes to effective response to end-user
feedback, routes through the customer perspective.

IV. EMPIRICAL EVALUATION

The SOK framework (and therewith the SOK definition)
has been empirically evaluated in two ways. First, to identify
the soundness of the framework, a questionnaire with ques-
tions on the SOK definition and framework was presented
to a focus group consisting of chief technology officers and
managers of European software vendors, and several group
discussions were held. Secondly, to identify the utility of
the SOK framework and evaluate it in practice, extensive
industrial case studies have been carried out at three software
vendors that have implemented one or more SOK life cycle
processes. The maturity with which such processes were
implemented was used as a basis for selecting organizations.

A. Questionnaire Approach

The questionnaire consists of 21 questions divided over
four sections4. The first section considers subject employ-
ment and experience, the size of the vendor and the vendor’s
main software product or service. Next, for each software
operation knowledge type described in section II, the focus
group participants were asked whether they considered the

4See http://people.cs.uu.nl/schuurhw/soksurvey/ for a list of all questions.

knowledge type to be part of software operation knowledge.
Thirdly, the participants were asked if they found any pro-
cesses, perspectives, flows or other elements missing from
the framework that should be added. Finally, in the fourth
questionnaire section, participants were inquired about ac-
tivities and processes that can be improved by utilization of
(a particular type of) software operation knowledge.

The questionnaire was answered by three CTOs, four
product research and development managers and three lead
software architects. All subjects are employed by different
European software vendors, varying in size from 15 to
more than 2,500 employees (626 employees on average,
σ = 1, 065 employees). The vendors build product or service
software that has been available for between three months
and 25 years (12.3 years on average, σ = 8.8 years), and
of which each vendor has released five to twenty major
versions. The subjects were recruited by means of an invita-
tion sent to our professional and educational networks. All
subjects were physically present in one room and answered
the questionnaire questions digitally. In a one-hour presen-
tation, the SOK concept and framework were introduced to
the subjects prior to filling in the questionnaire, in order to
assure common understanding among the subjects.

B. Case Study Approach

Case study techniques described by Yin [25] have
been used to gather evidence and determine the state of
practice regarding identification, acquisition, integration,
presentation and utilization of software operation knowledge
at each of the participating case study vendors:

Document Study Software architecture specifications,
process descriptions and memos provided by the vendor
were studied to get insight in its SOK life cycle processes.

Interviews Fifteen semi-structured interviews have been
conducted with product managers, senior software engineers
and software testers employed by the vendor. Interviewees
were asked questions related to SOK identification, acquisi-
tion, integration, presentation and utilization processes and
tools currently implemented at the vendor, and were asked
to criticize and complement the stakeholders, processes and
perspectives that constitute the SOK framework.

Software Study The software of (and with) which the
vendor acquires operation data was studied, in order to
identify the type and complexity of the software and to
analyze the vendors’ data acquisition techniques.

Direct Observations Observations were made during our
presence at the vendors. For example, software development
and release management meetings were attended.

Before any evidence was gathered at each of the vendors,
an introductory session was held. During this session, the
SOK framework and all related SOK concepts and defini-
tions were presented to minimize discrepant understanding

249

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

and to ensure that case study results could be compared
adequately. Document and software study findings were
cross-checked with interview questions and answers to gain
correct and consistent evidence. Additional interviews were
performed to clarify vague answers and to substantiate
results (triangulation). To diminish our personal bias, (1)
case study participants were informed about the goals of the
study in advance; (2) each of the case studies was carried
out with researchers present at the vendor site and (3) case
study results were reviewed by corresponding case study
interviewees. The case study database was reviewed by other
researchers on completeness and consistency afterwards.

V. QUESTIONNAIRE RESULTS

Concerning the definition of the SOK concept, eight
subjects indicated that they consider knowledge types κP ,
κQ, κU as well as κF as part of the concept. Most subjects
considered the SOK definition complete in terms of its
knowledge types: only subject [S6] suggested an additional
k ∈ κ, κE , representing knowledge of the effectiveness of
software in the field. As described in section II, we consider
κE ⊂ κQ, in conformity with the quality-in-use view of the
ISO 9126 quality model. One subject [S3] considered none
of the types k ∈ κ as part of the SOK concept, and one
subject [S10] only found κQ part of the concept.

Regarding the soundness of stakeholders, processes and
perspectives that constitute the framework, subjects [S2, S6,
S7, S8, S10] indicated that the SOK framework should
contain external stakeholders, such as ‘external vendors’ that
have licensed software from the software vendor or technical
partners that supply software components to the software
vendor. As stated in section III, external stakeholders are
represented by the ‘Customer’ stakeholder of the framework.
Furthermore, questionnaire participants suggested a number
of additional perspectives. [S4] suggested a ‘Competition
perspective’ but noted that this perspective could also be
part of the company perspective. [S9] proposed a ‘Business
perspective’ that encompasses the role of SOK in con-
text of a vendor’s partners and competitors. Regarding a
vendor’s partners, we consider this perspective covered by
the company perspective and the customer stakeholder; the
role of SOK in the context of a vendor’s competitors is
considered out of the scope of the SOK framework. The
questionnaire participants were in harmony with respect to
their opinion on the five software operation knowledge life
cycle processes: no subject suggested a new process that
is not already covered by a processes currently part of the
framework. [S1] noted that it is not essential for operation
data to pass all processes in all situations, and indicated that
under certain circumstances, processes could be skipped or
merged. As stated in section III-B, the framework processes
are descriptive rather than prescriptive and it is possible to
skip or stop a process when it is clear that the goals of a
certain improvement have been reached. Lastly, subject [S2]

advocated to also include external systems to measure the
availability and response times of those systems. As detailed
in section II, these metrics are part of the SOK definition.
External systems are considered out of the SOK framework
scope, however.

With respect to improvement of existing activities and
processes by means of SOK, subjects [S1, S2, S6, S7]
mentioned that their software development processes could
be improved by using κP , for example in the process of
prioritizing bug reports. Subjects [S3] and [S10] indicated
that κP could contribute to improvement of research and
development processes. Furthermore, subjects noted that
software development, software maintenance and software
testing processes could be improved by utilization of κQ and
κU . [S5] and [S6] mentioned that software quality could be
increased by using κU , since they consider software quality
knowledge to be supportive in the process of pro-active bug
fixing; [S5] added that ‘[without κU ,] software developers
may have a very distorted notion of the concept of software
quality’. Software testing was mentioned by subjects [S1]
and [S5] as a process that can be improved by utilization of
κQ and κU . According to these subjects, SOK potentially
contributes to ‘the design of realistic test scenarios’. Finally,
subjects [S5, S6, S10] noted that κF enables ‘to determine
which software requirements are important, and which are
not, from a customer’s point of view’, and therefore is
contributive to improvement of software product and release
management processes.

VI. CASE STUDY RESULTS

Case study results are presented per case study participant.
Since all participating software vendors conduct software
development activities in European countries, we consider
the case study results representative for similar-sized Euro-
pean software vendors at the minimum; case study results
might be generalizable to vendors operating in non-European
countries. We regard the research as repeatable with the
same results, presuming similar circumstances (similar in-
terviewees, similar explanatory sessions, etc.). Note that
for reasons of confidentiality, the names of all case study
participants and their software products and services have
been anonymized.

A. Wareex

Wareex develops business software for small, medium-
sized and large enterprises. In addition to ERP software, Wa-
reex develops HRM, CRM, project and workflow solutions.
With 2,500 employees and establishments in 40 countries,
the vendor is established on six continents. Wareex was
founded in 1984 and serves customers in 125 different coun-
tries. During the case study, two product managers, three
research engineers, two software architects and one cus-
tomer support manager were interviewed. All interviewees
considered the framework sound; no alternative processes,

250

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Performance graph of Wareex’s software operation dashboard,
showing the impact of a database version change on Lineex performance

stakeholders or flows were suggested. The interviewees
could easily project the vendor’s situation in terms of SOK
on the SOK framework. Wareex has implemented processes
of the SOK life cycle for several products and services of
its software portfolio. First, Lobeex is an off-line desktop
software product that facilitates one integrated back office
implementation for multiple business processes. Concerning
Lobeex, Wareex has rudimentarily implemented a subset of
the SOK life cycle processes presented in section III-B.
Wareex’s principle research engineer identified performance
knowledge (κP) as most relevant and valuable type of
SOK: due to the size and complexity of some back office
administrations, a significant part of Lobeex support calls
are related to performance of its software. Wareex built a
Lobeex operation knowledge acquisition tool that is installed
separately from the Lobeex software. The tool acquires non-
sensitive customer data, such as hardware, memory and
operating system details, database statistics as well as SQL
query performance data. Neither the tool nor the data it
acquires is integrated with other tools or processes. The
data are presented in ad-hoc generated performance analysis
reports, triggered by requests from the product manager or
the support department. Wareex’s principle research engineer
as well as Wareex’s Lobeex product manager indicated
that the acquired software performance data are utilized in
software maintenance and customer support processes, and
is used to detect and repair query performance problems
and to optimize database index schemes. Also, Wareex uses
Lobeex operation knowledge to propose new hardware or
database configuration prospects to its end-users.

A second product that is part of Wareex’s software port-
folio is Lineex. Lineex is an accounting solution provided as
a secure online web application. Regarding Lineex, Wareex
has developed specific SOK acquisition and presentation
tools. While SOK identification occurs ad-hoc, triggered
by occurrence of concrete problems, software operation
data are acquired and converted into SOK automatically.
The data are stored by the application’s base layer (on

which all application functionality is based). The acquired
operation data are stored in four logs: an application log
(containing software usage and performance data such as
HTTP requests, page view sequences and response times), an
error log (containing software quality data such as unhandled
exceptions, query timeouts and other errors), a help log
(containing software feedback data like end-user help page
feedback and appreciation) and a process log (containing
response times and performance statistics of background
processes). The data are not (yet) integrated with external
tools, so for example bugs causing unhandled exceptions
are still manually entered into Wareex’s bug repository. One
of the Wareex software engineers is entrusted with analysis
of all logs. He decides which log entries are relevant and
undertakes immediate action when required. Wareex has
developed comprehensive SOK presentation software, which
is used daily by developers, product managers and support
assistants to monitor the load of background processes, look
into recent software usage history and inspect error messages
and corresponding exceptions. Lineex’s SOK is presented
via an online software operation dashboard, which provides
detailed software performance, quality, usage and feedback
data: figure 2 shows a graph that visualizes the impact
of a transition from Microsoft SQL Server 2000 to 2005
on average query duration. Software developers, product
managers and project leaders indicated that Wareex utilizes
Lineex operation knowledge to improve software develop-
ment, maintenance and release management processes.

One product manager noted that ‘the SOK identification
process determines the complexity of the subsequent pro-
cesses’: the effort needed to acquire, integrate, present and
utilize software operation knowledge is to a large extent de-
termined by the operation knowledge demands defined in the
SOK identification process. As described in section III-B,
logic defined in the identification process determines the
extent to which data explosion is prevented. Also, another
product manager as well as the software architects indi-
cated that a SOK integration process is not implemented
at Wareex: acquired data are directly presented in logs and
reports. They mentioned that at Wareex, SOK is utilized
to detect, identify and fix software problems faster and
therewith improve software quality. The support manager
indicated that SOK would be useful for support assistants
to better understand a calling customer and its situation.
Regarding future SOK developments, a product manager
stated that by means of data mining techniques, Wareex
foresees to automatically distinguish customer profiles and
usage trends from acquired SOK.

The research engineers, a software architect and a prod-
uct manager mentioned that it is a goal to continuously
determine and quantify the thresholds that separate ‘bad’
situations from ‘good’ situations regarding the state of
software in the field. This was found particularly relevant in
the light of software scalability issues: the aforementioned

251

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

interviewees found that changing circumstances (number of
end-users, software updates, hardware environments) cause
new issues which are hard to predict and quantify. The
interviewees found it challenging to objectively acquire and
prioritize SOK, and asked questions such as ‘when is good
software good enough?’ and ‘to which extent does a software
vendor contribute to the “badness” of its software?’. One
software architect envisaged self-repairing or self-recovering
software, but added that realization of such software would
be difficult since ‘causes of problems and failures are not
always automatically traceable or distinguishable’.

B. Sionag

Sionag is specialized in development of software for the
agricultural sector. The vendor, founded in 1985, serves
thousands of customers in 22 countries with 20,000 licenses
in total. The vendor is established in Europe and employs
100 people, of which 20 are software engineers. Two
product managers, two senior software analysts, one soft-
ware engineer, one database administrator and one support
assistant were interviewed. While no framework elements
were rejected or new elements were suggested, interviewees
noted that the framework visualizes an ‘ideal situation’ that
is not completely representative for the situation at their
organization. ‘Currently, we are acquiring operation data
and planning to implement new data mining techniques’,
one product manager stated. Next, the manager noted that
he expected software operation information to be initially
supportive from a development perspective, in terms of
time and cost savings. For example, he expected their
software maintenance and release management processes
to be improved by means of acquired SOK. The manager
expected acquired software operation information to be
secondarily supportive from a customer perspective (in terms
of customer intimacy improvement) and to be supportive
from a company perspective in the long term.

Sionag has started SOK identification and acquisition
for one of its software products, Eropt. Eropt is used to
advise animal food compositions. When an optimal diet is
composed at a farm, all nutrition data are synchronized.
Eropt connects with a synchronization web service hosted
by Sionag, which provides access to Sionag’s main nutrition
database. Synchronization is realized by means of XML
SOAP messages, which Sionag utilizes to acquire SOK:
apart from updated nutrition data, software operation data
acquired by Eropt the last synchronization is sent to Sionag.
These data consist of recent usage details, customer and
agent identification data, exception data (error message,
stack traces), hardware and system details and Eropt ver-
sion information. While acquired data are not explicitly
integrated with other tools or processes, Sionag software
engineers have developed a tool, Ayopt, to present and
analyze acquired software operation data. With Ayopt, a
farm’s synchronization and usage history can be analyzed,

for example. As recognized by the software analyst, the data
synchronization process is critical to the success of Eropt,
since synchronization errors (concurrency violations caused
by deleted nutrition data, for example) imply loss of crucial
data and re-do of two days of work. The engineer and one
software analyst indicated that SOK (κP and κQ in particu-
lar) is utilized to reproduce software failures and quickly find
bugs, therewith speeding up software maintenance processes
and increasing the robustness and usability of the software.
Concerning Sionag’s future SOK developments, one soft-
ware analyst and one product manager indicated that an
online, service-based version of Eropt will be developed in
order to eliminate the need to explicitly synchronize nutrition
data and to be able to apply data mining techniques to
acquired operation data more easily.

C. Ansta

Ansta is a European software vendor that was founded in
1990. The vendor develops an industrial drawing application,
Adsta, which is targeted on the Microsoft Windows platform
and is used daily by more than 4,000 customers in five coun-
tries. Since the start of its development in 1995, four major
versions of the application have been released. Currently,
Ansta employs 100 people and is performing development
activities in the Netherlands, Belgium and Romania.

During the case study, the SOK framework was discussed
with Ansta’s CEO, software development manager and mar-
keting manager. In general, the framework was considered
sound. However, the marketing manager suggested to add a
block ‘directed marketing’ to the SOK utilization process in
the company perspective. He indicated that acquired SOK,
whether or not integrated with external tools or presented
on various media, could be used to direct the company’s
marketing, for example to highlight certain features of the
software that are highly appreciated by a significant part
of the vendor’s customer base. The CEO and managers
indicated that successful utilization of SOK could, in the
long term, result in higher quality release plans, increased
customer intimacy and improved knowledge building of soft-
ware developers, trainers and supporters. They also stated
that, of all SOK types, they found software usage knowledge
(κU) and software performance knowledge κP to be the
most contributive and valuable in the context SOK utilization
at Ansta. Furthermore, it was mentioned that in order to
successfully utilize SOK, SOK should actually be analyzed
and combined with other data (e.g. mailing conversion statis-
tics, license data, etc.): the marketing manager expressed
that integration of SOK with the workflows, processes and
tools used by employees could significantly contribute to the
effectiveness of SOK utilization.

Like Sionag, Ansta has implemented SOK identification
and acquisition processes for its drawing application Adsta.
Ansta has realized an infrastructure for assembly and ac-
quirement of software performance and quality knowledge

252

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

Figure 3. A graph from Ansta’s SOK presentation tool, Denerr, showing
the top 10 crash memory locations based on submitted error reports. 16%
of the submissions report errors on one and the same memory location

in the form of error reports. In the case of an unhandled
exception, Adsta shows an error dialog that offers users
the option to send an error report to Ansta, and provides
functionality for end-users to determine which information
is contained in the report. Potentially, an Adsta error report
consists of (1) a crash log, containing exception details, as
well as hardware and software environment data (processor
type, amount of installed memory, operating system version,
current user, etc.), (2) a crash dump consisting of the
recorded state of Adsta’s working memory at the time it
crashed, and (3) a registry file containg Adsta’s Windows
registry settings.

To acquire error reports sent by end-users, Ansta has
implemented a web service to which the reports are sub-
mitted. Via this web service, Adsta error reports are stored
in a database. Ansta developed an intranet application called
Denerr (see figure 3), by which all error reports are presented
to all of the vendor’s employees. Denerr provides function-
ality to search for and select error reports that meet certain
search criteria (regarding time, contents, source, etc.). Also,
error reports can be downloaded for further analysis.

Currently, Ansta is implementing tighter integration of
acquired SOK with its processes and tools. For instance,
the vendor is developing a tool that enables mapping of
error report crash dumps to source code files line numbers.
By integrating this tool with its Denerr application, the
vendor expects to pinpoint software failures faster and more
accurately. Also, Ansta plans to increase SOK utilization by
adding report generation functionality to Denner.

D. Summary

The results of the case studies performed at Wareex,
Sionag and Ansta can be summarized as follows:

(1) Demand: product software vendors lack a long-term
vision regarding SOK utilization and are in need of a guiding
substrate that aids in establishing that vision; (2) Utility:
the SOK framework is considered useful: vendors gained
insight by mapping their practices, processes and tools onto
the framework; and (3) State of practice: while vendors
have identified which SOK types they consider valuable
and have implemented SOK acquisition processes by means

of specific software operation logging or monitoring tools,
acquired SOK is not (yet) integrated or utilized with pro-
cesses and tools already in place. Software vendors indicate
and acknowledge that tight integration of acquired SOK
contributes to mature SOK utilization.

VII. THREATS TO VALIDITY

The validity of the research results is threatened by several
factors. A primary threat to the validity of the questionnaire
results is the number of subjects. Due to the small number of
subjects, (differences between) questionnaire results are not
statistically significant. However, taking into account the role
of the subjects in their organizations as well as the variety in
organizations, we consider the questionnaire results indica-
tive and representative. Of the validity criteria for empirical
research defined by Yin [25] and others, the external validity
of our case study research is threatened by the number of
case studies carried out. While we believe that the case study
results of the three multinational software vendors are typical
for European vendors of similar size, results might be less
applicable to smaller software vendors. Further empirical
research is needed to mitigate these threats. In this research,
the selection of case study participants was pragmatic; we
plan to perform case studies at software vendors that are
more mature in terms of SOK utilization in the future.

VIII. CONCLUSIONS AND FUTURE WORK

All too often in software engineering, software and end-
user feedback are overlooked as instruments to guide and
advance a software vendor’s activities. In this paper, software
operation knowledge is presented to unify existing defini-
tions of knowledge of in-the-field software operation, and
a framework is proposed that is designed to aid software
vendors in gaining insight in both the life cycle of such
knowledge, as well as in product software perspectives from
which processes of this life cycle can be perceived. Based
on the results of our empirical evaluation approach, we
conclude that the SOK definition is complete in terms of
knowledge types, and the SOK framework is sound and
useful. The framework aids vendors in determining next
steps in terms of their path to effective SOK utilization.

Although software vendors consider SOK valuable, inte-
gration with existing activities and infrastructure is missing.
Case study results show that while software vendors have
implemented several processes of the SOK life cycle defined
by the framework (i.e., identification, acquisition, integra-
tion, presentation and utilization), acquired SOK is rarely
integrated with (tools to support) vendors’ existing practices
and processes. As a result, SOK is used ad hoc and software
engineering processes still advance only modestly as a result
of SOK utilization.

Through the questionnaire answers, we found that of each
software operation knowledge type k ∈ κ, utilization of end-
user feedback knowledge (κF) is expected to contribute to

253

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

improvement of software engineering processes the most.
Such knowledge can be used to challenge software engineer-
ing and SOK practice assumptions, and to enhance future
SOK acquisition, integration and presentation tools. Future
research plans include development and validation of SOK
acquisition tools, such as a tool for generic recording of in-
the-field software operation. Also, analysis of the (potential)
role of SOK integration, presentation and utilization in
software vendor organizations will be subject of future work.

IX. ACKNOWLEDGMENTS

This research was supported by Stabiplan B.V., the
Netherlands. We thank all questionnaire subjects and case
study interviewees for sharing their ideas and experiences.

REFERENCES

[1] H. Brelsford, M. S. Toot, K. Kiri, and R. V. Steenburgh,
Connecting to Customers. Microsoft Press, February 2002.

[2] J. Bowring, A. Orso, and M. J. Harrold, “Monitoring De-
ployed Software Using Software Tomography,” in PASTE ’02:
Proceedings of the 2002 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering.
ACM, 2002, pp. 2–9.

[3] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt,
and B. Natarajan, “Skoll: Distributed Continuous Quality
Assurance,” in ICSE’04: Proceedings of the 26th Int. Conf.
on Software Engineering. IEEE Computer Society, 2004,
pp. 459–468.

[4] A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma
System: Continuous Evolution of Software after Deploy-
ment,” in ISSTA’02: Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis.
ACM, 2002, pp. 65–69.

[5] C. Ebert and R. Dumke, Software Measurement. Springer,
2007.

[6] N. H. Madhavji, J. Fernandez-Ramil, Juan, and D. Perry,
Software Evolution and Feedback: Theory and Practice. John
Wiley & Sons, 2006.

[7] B. V. Rompaey, B. D. Bois, S. Demeyer, J. Pleunis, R. Put-
man, K. Meijfroidt, J. C. Dueas, and B. Garca, “SERIOUS:
Software Evolution, Refactoring, Improvement of Operational
and Usable Systems,” in CSMR’09: Proceedings of the Euro-
pean Conference on Software Maintenance and Reengineer-
ing. IEEE Computer Society, 2009, pp. 277–280.

[8] H. van der Schuur, S. Jansen, and S. Brinkkemper, “Becom-
ing Responsive to Service Usage and Performance Changes
by Applying Service Feedback Metrics to Software Main-
tenance,” in 23rd IEEE/ACM International Conference on
Automated Software Engineering - Workshop Proceedings
(ASE Workshops 2008). IEEE Computer Society, 2008, pp.
53–62.

[9] R. W. Selby, A. A. Porter, D. C. Schmidt, and J. Berney,
“Metric-driven analysis and feedback systems for enabling
empirically guided software development,” in ICSE’91: Pro-
ceedings of the 13th Int. Conf. on Software Engineering.
IEEE Computer Society, 1991, pp. 288–298.

[10] M. M. Lehman and J. F. Ramil, “The impact of feedback
in the global software process,” Journal of Systems and
Software, vol. 46, pp. 123–134, 1999.

[11] C. Tautz and K.-D. Althoff, “Using Case-Based Reasoning
for Reusing Software Knowledge,” Case-Based Reasoning
Research and Development, pp. 156–165, 1997.

[12] E. Putrycz, M. Woodside, and X. Wu, “Performance Tech-
niques for COTS Systems,” IEEE Software, vol. 22, no. 4,
pp. 36–44, 2005.

[13] M. J. Johnson, C.-W. Ho, E. M. Maximilien, and L. Williams,
“Incorporating Performance Testing in Test-Driven Develop-
ment,” IEEE Software, vol. 24, no. 3, pp. 67–73, 2007.

[14] A. Mani and A. Nagarajan, “Understanding
quality of service for Web services.” IBM, 2002,
www.ibm.com/developerworks/java/library/ws-quality.html.

[15] J. Bøegh, “A New Standard for Quality Requirements,” IEEE
Software, vol. 25, no. 2, pp. 57–63, 2008.

[16] International Organization for Standardization, “ISO/IEC
9126-1:2001: Software engineering – Product quality – Part
1: Quality model,” 2001.

[17] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction,” IEEE Transactions on Software Engineering,
vol. 31, no. 10, pp. 897–910, 2005.

[18] T. Yu and K.-J. Lin, “Service selection algorithms for Web
services with end-to-end QoS constraints,” Inf. Systems and
E-Business Management, vol. 3, pp. 103–126, July 2005.

[19] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng, “Quality Driven Web Services Composition,” in WWW
’03: Proceedings of the 12th Int. Conf. on World Wide Web.
ACM, 2003, pp. 411–421.

[20] E. Simmons, “The Usage Model: Describing Product Usage
during Design and Development,” IEEE Software, vol. 23,
no. 3, pp. 34–41, 2006.

[21] C. Kallepalli and J. Tian, “Measuring and Modeling Usage
and Reliability for Statistical Web Testing,” IEEE Trans. on
Software Engineering, vol. 27, no. 11, pp. 1023–1036, 2001.

[22] S. Jansen, S. Brinkkemper, and A. Finkelstein, “A Sense of
Community: A Research Agenda for Software Ecosystems,”
in ICSE’09: Proceedings of the 31st ICSE Conference on
Software Engineering, 2009.

[23] J. Clause and A. Orso, “A Technique for Enabling and
Supporting Debugging of Field Failures,” in ICSE ’07: Pro-
ceedings of the 29th Int. Conf. on Software Engineering.
IEEE Computer Society, 2007, pp. 261–270.

[24] S. Brinkkemper and L. Xu, “Concepts of Product Software,”
European Journal of Information Systems, vol. 16, pp. 531–
541, 2007.

[25] R. K. Yin, Case Study Research: Design and Methods
(Applied Social Research Methods). SAGE Publications,
December 2002.

254

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 08,2024 at 08:45:48 UTC from IEEE Xplore. Restrictions apply.

