On the Connes-Kreimer construction of Hopf Algebras

I. Moerdijk

Abstract: We give a universal construction of families of Hopf \mathbb{P} -algebras for any Hopf operad \mathbb{P} . As a special case, we recover the Connes-Kreimer Hopf algebra of rooted trees.

Keywords: Hopf operad, Hopf algebra, Hochschild cohomology.

In [K], [CK] a Hopf algebra H of rooted trees is discussed. This algebra originates in problems of renormalisation [K] and is closely related to the Hopf algebra introduced in [CM] in the context of cyclic homology and foliations. The algebra H is the polynomial algebra on countably many indeterminates T, one for each finite rooted tree T. Its comultiplication is given by the formula

$$\Delta(T) = 1 \otimes T + T \otimes 1 + \sum_{c} F_{c} \otimes R_{c},$$

see [CK]. Here c ranges over all "cuts" (prunings) of the tree T. Such cuts are assumed non-empty, and to contain at most one edge on each branch. R_c is the part of the tree which remains after having performed the pruning, and F_c is the product of subtrees which have fallen on the ground. In [CK] it is proved that this comultiplication indeed makes H into a Hopf algebra. Furthermore, H is equipped with a linear endomorphism λ , which is a universal cocycle for a suitably defined Hochschild cohomology of Hopf algebras.

The first aim of this note is to show that all these properties can in fact be deduced from a more basic universal property of H. Namely, H is the initial object in the category of (commutative unitary) algebras equipped with a linear endomorphism. Having realized that this is the case, it becomes clear that H is in fact equipped with a large family of Hopf algebra structures, all making the endomorphism λ into a universal cocycle for the corresponding Hochschild cohomology. For example, for any two complex numbers q_1 and q_2 , there is a coproduct on H, uniquely determined by the identity

$$\Delta(\lambda(T)) = \sum q_1^{|T_{(1)}|} \cdot T_{(1)} \otimes \lambda(T_{(2)}) + \lambda(T_{(1)}) \otimes q_2^{|T_{(2)}|} \cdot T_{(2)},$$

where |T| denotes the number of nodes in the tree T. For $q_1 = 1$ and $q_2 = 0$ one recovers the Hopf algebra structure of [CK].

The second aim is to describe how this construction applies more generally to "algebras" for any operad $\mathbb P$ on an additive category, as soon as one has a well-behaved tensor product of algebras. More precisely, we will show that if $\mathbb P$ is a "Hopf operad" on a symmetric monoidal additive category, then the initial object in the category of $\mathbb P$ -algebras equipped with a "linear" endomorphism is naturally equipped with a family of natural Hopf $\mathbb P$ -algebra structures. The algebra of rooted trees then becomes the extreme instance of this construction where the operad $\mathbb P$ is the unit object in each degree.

Acknowledgements. My attention was first drawn to the algebra H by A. Connes at the "Karoubi Fest" in Paris (November 1998). I would like to thank Ezra Getzler and André Joyal for helpful discussion. I am indebted to the Dutch Science Foundation (NWO) for financial support. The main results of this paper were first presented at the Newton Institute, in February 1999.

1 Operads and algebras.

- 1.1 The underlying category. In this preliminary section we will consider operads on a category \mathcal{C} . We will assume that \mathcal{C} is a symmetric monoidal additive category, with countable sums and quotients of actions by finite groups on objects of \mathcal{C} . (In most cases, \mathcal{C} will be closed under all small colimits.) As an example, the reader may wish to keep the category of vector spaces over a field k in mind in what follows. We will write k for the unit object of \mathcal{C} , and a, l, r for the associativity and unit isomorphisms. The symmetry will be denoted by c, with components $c_{X,Y}: X \otimes Y \to Y \otimes X$. We will assume that \otimes is an additive functor in each variable separately. Often, the isomorphisms a, l, r will be suppressed from the notation, and we identify $k \otimes X$ with X, and $X \otimes (Y \otimes Z)$ with $(X \otimes Y) \otimes Z$, etc. This is justified, on the basis of Mac Lane's coherence theorem. See [CWM] for details.
- **1.2** Operads. ([M], [KM], [GK], ...) We will consider operads $\mathbb P$ on such a category $\mathcal C$, and write $\mathbb P(n)$ for the object (of $\mathcal C$) of n-ary operations. We will always assume that our operads have a distinguished "unit element" $u:k\to\mathbb P(0)$. We will not assume that this map is an isomorphism, i.e. that $\mathbb P$ is unitary in the sense of [KM]. Many operads are unitary, but the constructions of 1.3 lead us out of unitary operads. Note that the unit $u:k\to\mathbb P(0)$ provides us with a unit $u_A:k\to A$ in any $\mathbb P$ -algebra A.

The functor underlying the monad on \mathcal{C} whose algebras are \mathbb{P} -algebras will be denoted by $F_{\mathbb{P}}: \mathcal{C} \to \mathcal{C}$; so for any object V in \mathcal{C} ,

$$F_{\mathbb{P}}(V) = \coprod_{n \geq 0} \mathbb{P}(n) \otimes_{\Sigma_n} V^{\otimes n}.$$

This object $F_{\mathbb{P}}(V)$ is the free \mathbb{P} -algebra generated by V.

1.3 Two constructions. (i) If \mathbb{P} is an operad on \mathcal{C} and G is an object of \mathcal{C} , there is an operad \mathbb{P}_G whose algebras are \mathbb{P} -algebras equipped with a map from G. Thus, \mathbb{P}_G is obtained from \mathbb{P} by adding G to the space $\mathbb{P}(0)$ of "constants" (nullary operations). Explicitly,

$$\mathbb{P}_{G}(n) = \prod_{p \geq 0} \mathbb{P}(n+p) \otimes_{\Sigma_{p}} G^{\otimes p}.$$

Note that the initial \mathbb{P}_G -algebra $\mathbb{P}_G(0)$ is the free \mathbb{P} -algebra $F_{\mathbb{P}}(G)$ on G.

(ii) Let \mathbb{P} be an operad on \mathcal{C} . A $\mathbb{P}[t]$ -algebra is a pair (A, α) where A is a \mathbb{P} -algebra and $\alpha: A \to A$ is a map in \mathcal{C} . (We will often refer to maps in \mathcal{C} as "linear maps", to contrast them with \mathbb{P} -algebra homomorphisms.) A map between $\mathbb{P}[t]$ -algebras $(A, \alpha) \to (B, \beta)$ is a map of \mathbb{P} -algebras $f: A \to B$ such that $\beta f = f\alpha$. This defines a category of $\mathbb{P}[t]$ -algebras. This category is the category of algebras for an operad, again denoted $\mathbb{P}[t]$. It is the operad obtained

by freely adjoining a unary operation "t" to \mathbb{P} . It is not difficult to give an explicit description of $\mathbb{P}[t]$ in terms of trees, analogous to constructions in [GK]. We will not need such an explicit description.

1.4 Example. Let \mathcal{C} be the category of vector spaces over a field k, and let \mathbb{P} be the operad $\mathbb{P}(n) = k$. Its algebras are commutative unitary k-algebras, and the monad $F_{\mathbb{P}}$ associated to \mathbb{P} is the symmetric algebra functor. The associated operad $\mathbb{P}[t]$ can be described as follows. The space $\mathbb{P}[t](n)$ is the vector space on rooted finite trees \mathbb{T} , with one "output node", the root, and n "input nodes", labelled by x_1, \ldots, x_n . The inner nodes represent application of the new unary operation t. For example, the tree

represents the binary operation $t(t(x_1 \cdot x_2) \cdot t(1))$. The tree \circ consisting of just the output vertex represents the element (nullary operation) 1. We will refer to the algebra $\mathbb{P}[t](0)$ as the algebra of *finite rooted trees*. It can be identified with the Connes-Kreimer algebra H mentioned in the introduction. (There is a slight difference in notation, in that we have merged a product of trees into one tree with a new output node added to it.)

2 Hopf operads.

- **2.1** Coalgebras. Let \mathcal{C} be a category as in 1.1. A coalgebra $\underline{X} = (X, \varepsilon, \Delta)$ is an object X of \mathcal{C} equipped with a coassociative comultiplication $\Delta: X \to X \otimes X$, and a counit $\varepsilon: X \to k$ for this comultiplication. The associated category Coalg(\mathcal{C}) is again a (symmetric) monoidal category, with the usual tensor product $(\underline{X} \otimes \underline{Y} \text{ is } X \otimes Y \text{ with as comultiplication the composition of } \Delta_X \otimes \Delta_Y: X \otimes Y \to (X \otimes X) \otimes (Y \otimes Y) \text{ and the symmetry } X \otimes c \otimes Y: (X \otimes X) \otimes (Y \otimes Y) \to (X \otimes Y) \otimes (X \otimes Y)$.
- **2.2** Hopf operads. A *Hopf operad* on \mathcal{C} is an operad \mathbb{P} on \mathcal{C} equipped with additional structure making it an operad on $\operatorname{Coalg}(\mathcal{C})$. Thus, each $\mathbb{P}(n)$ has the structure of a coalgebra,

$$k \stackrel{\varepsilon}{\longleftarrow} \mathbb{P}(n) \stackrel{\Delta}{\longrightarrow} \mathbb{P}(n) \otimes \mathbb{P}(n),$$
 (1)

this structure is Σ_n -invariant, and the structure maps of the operad $\mathbb{P}(n) \otimes \mathbb{P}(k_1) \otimes \cdots \otimes \mathbb{P}(k_n) \to \mathbb{P}(k_1 + \cdots + k_n)$ are coalgebra maps. The notion of a Hopf operad has been introduced in [GJ]. (But beware that their coalgebras are not necessarily counital.) I will sometimes write $\underline{\mathbb{P}}$ for this operad on $\operatorname{Coalg}(\mathcal{C})$, as opposed to the operad \mathbb{P} on \mathcal{C} . The Hopf operad \mathbb{P} is $\operatorname{cocommutative}$ if each of the coalgebras $\mathbb{P}(n)$ is.

If \mathbb{P} is a Hopf operad, then the tensor product $A \otimes B$ of two \mathbb{P} -algebras A and B is again a \mathbb{P} -algebra, by the maps

$$\mathbb{P}(n) \otimes (A \otimes B)^{\otimes n} \xrightarrow{\Delta \otimes \mathrm{id}} \mathbb{P}(n) \otimes \mathbb{P}(n) \otimes (A \otimes B)^{\otimes n} \xrightarrow{c} (\mathbb{P}(n) \otimes A^{\otimes n}) \otimes (\mathbb{P}(n) \otimes B^{\otimes n}) \longrightarrow A \otimes B.$$

Moreover, the counits $\varepsilon: \mathbb{P}(n) \to k$ in (1) make k into a \mathbb{P} -algebra, which is a unit for this tensor product of k-algebras. Thus, the category of \mathbb{P} -algebras is again a monoidal category (symmetric if \mathbb{P} is cocommutative). A coalgebra in this category of \mathbb{P} -algebras is the same thing as a $\underline{\mathbb{P}}$ -algebra in the category $\operatorname{Coalg}(\mathcal{C})$ of coalgebras, and (as in [GJ]) will be referred to as a $\operatorname{Hopf} \mathbb{P}$ -algebra.

2.3 Example. The free \mathbb{P} -algebra $F_{\mathbb{P}}(G)$ on an object G has a canonical Hopf \mathbb{P} -algebra structure, cocommutative if \mathbb{P} is. Indeed, since $F_{\mathbb{P}}(G)$ is free, the maps $0: G \to k$ and id $\otimes 1 + 1 \otimes \mathrm{id}: G \to F_{\mathbb{P}}(G) \otimes F_{\mathbb{P}}(G)$ into \mathbb{P} -algebras extend uniquely to \mathbb{P} -algebra maps

$$k \stackrel{\varepsilon}{\longleftarrow} F_{\mathbb{P}}(G) \stackrel{\Delta}{\longrightarrow} F_{\mathbb{P}}(G) \otimes F_{\mathbb{P}}(G),$$

and one easily checks that this provides the claimed structure.

3 The Connes-Kreimer construction.

Let \mathbb{P} be a Hopf operad on a category \mathcal{C} as before, and let $\mathbb{P}[t]$ be the associated operad whose algebras are \mathbb{P} -algebras equipped with a "linear" endomorphism. We now present a general construction of Hopf \mathbb{P} -algebras, of which the Connes-Kreimer Hopf algebra is a special case.

- **3.1** The initial $\mathbb{P}[t]$ -algebra. Let (H,λ) denote the initial $\mathbb{P}[t]$ -algebra, i.e. $(H,\lambda)=\mathbb{P}[t](0)$. Thus H is a \mathbb{P} -algebra, $\lambda:H\to H$ is a linear map (i.e. just an arrow in \mathcal{C}), and these have the following universal property: For any \mathbb{P} -algebra A and any linear map $\alpha:A\to A$, there is a unique \mathbb{P} -algebra map $\varphi:H\to A$ such that $\alpha\varphi=\varphi\lambda$.
- **3.2** Lemma. There is a unique augmentation $\varepsilon: H \to k$ with $\lambda \varepsilon = 0$.

Proof: Apply the universal property to the \mathbb{P} -algebra k with the zero endomorphism.

Next, let $\sigma_1, \sigma_2: H \to H$ be two linear maps. Let

$$(\sigma_1, \sigma_2) = \sigma_1 \otimes \lambda + \lambda \otimes \sigma_2 : H \otimes H \to H \otimes H.$$

This gives $H \otimes H$ the structure of a $\mathbb{P}[t]$ -algebra. So there is a unique \mathbb{P} -algebra map

$$\Delta = \Delta_{\sigma_1,\sigma_2} : H \to H \otimes H$$

such that $(\sigma_1, \sigma_2) \circ \Delta = \Delta \circ \lambda$.

3.3 Lemma. (i) If $\varepsilon \sigma_i = \varepsilon$ for i = 1, 2 then $\varepsilon : H \to k$ is a counit for Δ . (ii) If, in addition, $\Delta \sigma_i = (\sigma_i \otimes \sigma_i) \Delta$ for i = 1, 2 then Δ is coassociative.

Proof: (i) Consider the maps

$$(H,\lambda) \xrightarrow{\Delta} (H \otimes H, (\sigma_1, \sigma_2)) \xrightarrow[\varepsilon \otimes \mathrm{id}]{\mathrm{id} \otimes \varepsilon} (H,\lambda),$$

where on the right the isomorphisms $H \otimes k = H = k \otimes H$ have been suppressed. By initiality of H, it is enough to prove that $\mathrm{id} \otimes \varepsilon$ and $\varepsilon \otimes \mathrm{id}$ are $\mathbb{P}[t]$ -homomorphisms. This is indeed the case, since

$$\begin{aligned} (\operatorname{id} \otimes \varepsilon)(\sigma_1, \sigma_2) &= & (\operatorname{id} \otimes \varepsilon)(\sigma_1 \otimes \lambda + \lambda \otimes \sigma_2) & (\operatorname{definition}) \\ &= & \sigma_1 \otimes \varepsilon \lambda + \lambda \otimes \varepsilon \sigma_2 \\ &= & \lambda \otimes \varepsilon \sigma_2 & (\varepsilon \lambda = 0) \\ &= & \lambda \otimes \varepsilon & (\operatorname{assumption}) \\ &= & \lambda \circ (\operatorname{id} \otimes \varepsilon). \end{aligned}$$

and similarly $(\varepsilon \otimes id)(\sigma_1, \sigma_2) = \lambda \circ (\varepsilon \otimes id)$.

(ii) Consider the map $\nu: H \otimes H \otimes H \to H \otimes H \otimes H$,

$$\nu = \lambda \otimes \sigma_2 \otimes \sigma_2 + \sigma_1 \otimes \lambda \otimes \sigma_2 + \sigma_1 \otimes \sigma_1 \otimes \lambda.$$

This makes $H^{\otimes 3}$ into a $\mathbb{P}[t]$ -algebra, so there is a unique $\mathbb{P}[t]$ -homomorphism $(H,\lambda) \to (H^{\otimes 3},\nu)$. It thus suffices to show that $(\mathrm{id} \otimes \Delta)\Delta$ and $(\Delta \otimes \mathrm{id})\Delta$ both are. For the first,

$$\begin{aligned} (\operatorname{id} \otimes \Delta) \Delta \lambda &= & (\operatorname{id} \otimes \Delta)(\sigma_1 \otimes \lambda + \lambda \otimes \sigma_2) \Delta \\ &= & (\sigma_1 \otimes \Delta \lambda + \lambda \otimes \Delta \sigma_2) \Delta \\ &= & (\sigma_1 \otimes \sigma_1 \otimes \lambda + \sigma_1 \otimes \lambda \otimes \sigma_2 + \lambda \otimes \sigma_2 \otimes \sigma_2) (\operatorname{id} \otimes \Delta) \Delta \\ &= & \nu (\operatorname{id} \otimes \Delta) \Delta. \end{aligned}$$

The calculation for $(\Delta \otimes id)\Delta$ is similar.

The preceding lemmas prove:

- **3.4 Theorem.** The initial $\mathbb{P}[t]$ -algebra (H,λ) has a natural family of Hopf \mathbb{P} -algebra structures, parametrized by pairs $\sigma_1, \sigma_2 : H \to H$ satisfying the conditions of Lemma 3.3.
- **3.5** Example. The conditions of Lemma 3.3 are always satisfied if one takes σ_i to be the identity $H \to H$ or the composition of the counit $\varepsilon : H \to k$ and the unit $u : k \to H$, or any convex combination $\alpha \cdot \operatorname{id} + \beta \cdot u\varepsilon : C \to C$ of these two (for $\alpha, \beta : k \to k$ with $\alpha + \beta = \operatorname{id}$). This provides many different Hopf \mathbb{P} -algebra structures on H.
- **3.6 Example.** Consider again the case of the commutative unitary algebra operad of 1.4. Then H is the algebra of finite rooted trees T. Note that $\varepsilon(T)=0$ as soon as T has at least one inner node. Write |T| for the number of inner nodes of T. Now let $q_1, q_2 \in k$ be any two numbers, and let

$$\sigma_i = q_i^{|T|} \cdot T$$
, for $i = 1, 2$

Then σ_1 and σ_2 satisfy the condition of Lemma 3.3. Thus for any two $q_1, q_2 \in k$, the algebra H has a Hopf algebra structure, with the usual counit, and with comultiplication completely determined by the identity

$$\Delta \lambda(T) = \sum q_1^{|T_{(1)}|} T_{(1)} \otimes \lambda(T_{(2)}) + \lambda(T_{(1)}) \otimes q_2^{|T_{(2)}|} \cdot T_{(2)}$$

where we write $\Delta(T) = \sum T_{(1)} \otimes T_{(2)}$ as usual [S]. For the values $q_1 = 1$ and $q_2 = 0$ one finds $\sigma_1 = \mathrm{id}$ and $\sigma_2 = \varepsilon$, and one recovers the Hopf algebra structure of [CK].

3.7 Remark. The results and examples in this section have been stated for the initial $\mathbb{P}[t]$ -algebra $(H,\lambda) = \mathbb{P}[t](0)$. Similar facts hold for the free $\mathbb{P}[t]$ -algebra generated by any object G of C. Writing $(H[G],\lambda)$ for this algebra and $j:G\to H[G]$ for the universal map from G, one defines $\Delta:H[G]\to H[G]\otimes H[G]$ from σ_1 and σ_2 as the unique map of $\mathbb{P}[t]$ -algebras satisfying $\Delta\lambda=(\sigma_1\otimes\lambda+\lambda\otimes\sigma_2)\Delta$ as before and extending the map $u\otimes j+j\otimes u:G\to H[G]\otimes H[G]$ (where $u:k\to H[G]$ is the unit). However, rather than doing the calculation again, this can be seen as a formal consequence of the statements made for the initial algebra, because the free $\mathbb{P}[t]$ -algebra on G is the initial $\mathbb{P}_G[t]$ -algebra (cf. 1.3.(i)), and \mathbb{P}_G is a Hopf operad whenever \mathbb{P} is.

4 Hochschild cohomology.

In [CK] it is proved that for the Connes-Kreimer algebra (H, λ) (cf. Example 3.6), the map λ is a universal 1-cocycle for Hochschild cohomology. In this section, we show that this result extends to our more general construction.

Recall the definition of the Hochschild cohomology groups $H^*(A,M)$ for any algebra A and any bimodule M, from the complex with maps $A^{\otimes n} \to M$ as cochains (see e.g. [L, formula (1.5.1.1)]). Turning around all the arrows in a diagrammatic form of this definition, one obtains a cohomology $H^*(E,C)$ of a coalgebra C with coefficients in a bicomodule E, as the cohomology of the complex $C^n(E,C) = \operatorname{Hom}_{\mathcal{C}}(E,C^{\otimes n})$. Explicitly, this is the cohomology of the simplicial abelian group with the face maps $d_i: C^{n-1}(E,C) \to C^n(E,C)$ defined for $\varphi: E \to C^{\otimes (n-1)}$ by

$$d_{i}(\varphi) = \begin{cases} E \xrightarrow{l} C \otimes E \xrightarrow{C \otimes \varphi} C \otimes C^{\otimes n-1} = C^{\otimes n} & (i = 0) \\ E \xrightarrow{\varphi} C^{\otimes n-1} \xrightarrow{\Delta^{(i)}} C^{\otimes n} & (0 < i < n) \\ E \xrightarrow{r} E \otimes C \xrightarrow{\varphi \otimes C} C^{\otimes n} & (i = n). \end{cases}$$

Here l and r are the left and right coactions, and $\Delta^{(i)} = C^{\otimes (i-1)} \otimes \Delta \otimes C^{(n-i-1)}$. Note that this cohomology $H^*(E,C)$ is contravariant in E and covariant in C.

In particular, given "linear" maps $\sigma_1, \sigma_2 : C \to C$, we can view C itself as a C-bimodule $\sigma_1 C_{\sigma_2}$, with left action $C \xrightarrow{\Delta} C \otimes C \xrightarrow{\sigma_1 \otimes C} C \otimes C$ and right action $C \xrightarrow{\Delta} C \otimes C \xrightarrow{C \otimes \sigma_2} C \otimes C$. We denote the corresponding cohomology by

$$HH_{\sigma_1,\sigma_2}^*(C). \tag{2}$$

A map $\varphi: C \to C$ is a 1-cocycle for this cohomology precisely when

$$\Delta \circ \varphi = (\sigma_1 \otimes \varphi + \varphi \otimes \sigma_2) \Delta. \tag{3}$$

Now let us go back to the context of a Hopf operad $\mathbb P$ on our underlying category $\mathcal C.$

4.1 Natural twisting functions. Call σ a natural twisting function if σ assigns to each Hopf \mathbb{P} -algebra C a linear endomorphism $\sigma = \sigma^{(C)}: C \to C$, which is natural for morphisms of augmented \mathbb{P} -algebras (i.e. if $f: C \to D$ is such a morphism then $f \circ \sigma^{(C)} = \sigma^{(D)} \circ f$), and has the property that $\sigma^{(k)}$ is the identity. Note that this implies that $\varepsilon \circ \sigma^{(C)} = \varepsilon$. For example, the identity $C \to C$ and the composition $C \xrightarrow{\varepsilon} k \xrightarrow{u} C$ of the augmentation and the unit are natural twisting functions, as is any convex combination $\alpha \cdot \mathrm{id} + \beta \cdot u\varepsilon : C \to C$ of these two (for $\alpha, \beta: k \to k$ with $\alpha + \beta = \mathrm{id}$).

Now let (H, λ) be the initial $\mathbb{P}[t]$ -algebra, and let $\sigma_1 = \sigma_1^{(H)}, \sigma_2 = \sigma_2^{(H)}$: $H \to H$ be the components of two natural twisting functions. Suppose that σ_1 and σ_2 define a Hopf \mathbb{P} -algebra structure (H, Δ, ε) on H, by Theorem 3.4. Observe that the defining equation $(\sigma_1, \sigma_2)\Delta = \Delta\lambda$ for the coproduct states precisely that λ is a 1-cocycle for $HH^*_{\sigma_1,\sigma_2}(H)$. The following theorem is now a consequence of the universal property (3.1) of (H, λ) .

4.2 Theorem. The map λ is the universal 1-cocycle. More explicitly, if B is a Hopf \mathbb{P} -algebra and γ is a 1-cocycle in the complex defining $HH^*_{\sigma_1,\sigma_2}(B)$, there is a unique Hopf \mathbb{P} -algebra map $c_{\gamma}: H \to B$ such that $c_{\gamma} \circ \lambda = \gamma \circ c_{\gamma}$.

Proof: By the universal property of H and λ , there is a unique \mathbb{P} -algebra map $c = c_{\gamma} : H \to B$ such that $\gamma c = c\lambda$. It suffices to show that c is a coalgebra map. First, we show that c is a map of augmented algebras, i.e. $\varepsilon \circ c = \varepsilon$. By initiality of (H, λ) , it suffices to show that the composite $(H, \lambda) \stackrel{c}{\longrightarrow} (B, \gamma) \stackrel{\varepsilon}{\longrightarrow} (k, 0)$ is a map of $\mathbb{P}[t]$ -algebras; in other words, that $\varepsilon \gamma = 0$. To prove this, apply $\varepsilon \otimes \varepsilon$ to the cocycle condition $\Delta \gamma = (\sigma_1 \otimes \gamma + \gamma \otimes \sigma_2)\Delta$. Using that $(\varepsilon \otimes \varepsilon)\Delta = \varepsilon$, and $\varepsilon \sigma_i = \varepsilon$ (as observed above), this yields $\varepsilon \gamma = (\varepsilon \otimes \varepsilon \gamma + \varepsilon \gamma \otimes \varepsilon)\Delta = \varepsilon \gamma + \varepsilon \gamma$. Thus $\varepsilon \gamma = 0$, as desired.

Next, we show that the map c preserves coproducts. Observe that, by initiality of (H, λ) , the square

necesarily commutes as soon as all four maps are $\mathbb{P}[t]$ -algebra homomorphisms. The map $c \otimes c$ is the only one for which this still has to be shown. But, we have just proved that c is a map of augmented \mathbb{P} -algebras, so $c \circ \sigma_i^{(H)} = \sigma_i^{(B)} \circ c$ by naturality. Since alse $c\lambda = \gamma c$, the map $c \otimes c$ is indeed a map of $\mathbb{P}[t]$ -algebras. This completes the proof of the theorem.

5 Remarks on functoriality.

We continue to work in the context of Hopf operads on a category \mathcal{C} as in 1.1.

5.1 Adjoint functors. Let $\varphi: \mathbb{Q} \to \mathbb{P}$ be a map of Hopf operads. Then φ induces functors $\varphi^*: (\mathbb{P}\text{-algebras}) \to (\mathbb{Q}\text{-algebras})$ and $\overline{\varphi}^*: (\text{Hopf } \mathbb{P}\text{-algebras}) \to (\text{Hopf } \mathbb{Q}\text{-algebras})$. Also, φ gives a functor $\varphi^*: (\mathbb{P}[t]\text{-algebras}) \to (\mathbb{Q}[t]\text{-algebras})$, by $\varphi^*(B,\beta) = (\varphi^*(B),\beta)$. If the relevant coequalizers exists in \mathcal{C} then the first functor φ^* has a left adjoint $\varphi_!: (\mathbb{Q}\text{-algebras}) \to (\mathbb{P}\text{-algebras})$, see e.g. [GJ]. Note that $\varphi^*(k) = k$ and that the (first) functor φ^* commutes with tensor products of algebras. Hence by adjointness, there are canonical maps of \mathbb{P} -algebras $\varphi_!(k) \to k$ and $\varphi_!(A \otimes B) \to \varphi_!(A) \otimes \varphi_!(B)$. Using these maps, one obtains a lifting of $\varphi_!$ to a left adjoint $\overline{\varphi}_!: (\text{Hopf-}\mathbb{P}\text{-algebras}) \to (\text{Hopf-}\mathbb{Q}\text{-algebras})$ for $\overline{\varphi}^*$.

Now let (H,λ) be the initial $\mathbb{P}[t]$ -algebra and (K,μ) the one for \mathbb{Q} . Let $j_0:(K,\mu)\to (\varphi^*(H),\lambda)$ be the unique map of $\mathbb{Q}[t]$ -algebras, and note that this is a map of augmented \mathbb{Q} -algebras. Let $j:\varphi_!(K)\to H$ be the adjoint map; this is a map of augmented \mathbb{P} -algebras. Next, consider natural twisting functions σ_1,σ_2 on \mathbb{Q} -algebras. These also induce $\sigma_i:H\to H$ on any \mathbb{P} -algebra H, by $\sigma_i=\sigma_i^{(\varphi^*(H))}$.

5.2 Proposition. Suppose σ_1 and σ_2 satisfy the conditions of Theorem 3.4 so as to make H and K into Hopf \mathbb{P} -(respectively \mathbb{Q} -)algebras. Then $j_0: K \to \varphi^*(H)$ and $j: \varphi_!(K) \to H$ are maps of Hopf \mathbb{P} -(resp. \mathbb{Q} -)algebras.

Proof: The second assertion for j follows from the first for j_0 by adjointness. To see that the map j_0 preserves the coproduct, simply apply initiality of (K, μ) to the square

$$(K,\mu) \xrightarrow{\Delta} (K \otimes K, \sigma_1^{(K)} \otimes \mu + \mu \otimes \sigma_2^{(K)})$$

$$\downarrow_{j_0 \otimes j_0}$$

$$(\varphi^*(H),\lambda) \xrightarrow{\Delta} (\varphi^*(H) \otimes \varphi^*(H), \sigma_1^{(H)} \otimes \lambda + \lambda \otimes \sigma_2^{(H)}),$$

exactly as in the proof of Theorem 4.2.

5.3 The operad \mathbb{B} . A pointed object is an object X of \mathcal{C} equipped with a "basepoint" $u: k \to X$. We call X well-pointed if X is equipped with an augmentation $\varepsilon: X \to k$ with $\varepsilon u = \mathrm{id}$. Such an object splits as $X = k \oplus \tilde{X}$ where $\tilde{X} = \mathrm{Ker}(\varepsilon)$. Let \mathbb{B} be the operad whose algebras are pointed objects. If \mathbb{P} is any (Hopf) operad then the unit of \mathbb{P} gives a map of operads $u: \mathbb{B} \to \mathbb{P}$. We consider the left adjoint u_1 of the induced functor $u^*: (\mathbb{P}$ -algebras) $\to (\mathbb{B}$ -algebras).

5.4 Lemma. If X is well-pointed then $u_!(X) = F_{\mathbb{P}}(\tilde{X})$, the free \mathbb{P} -algebra on \tilde{X} .

Proof: Let $k \stackrel{u}{\longrightarrow} X \stackrel{\varepsilon}{\longrightarrow} k$ be a well-pointed object. Let $w: X \to F_{\mathbb{P}}(\tilde{X}) = F(\tilde{X})$ be the map $k \oplus \tilde{X} \to F(\tilde{X})$ obtained from the unit $u_{F(\bar{X})}: k \to F(\tilde{X})$ of this free algebra together with the canonical map $\mu: \tilde{X} \to F(\tilde{X})$. We claim that w is the universal base-point preserving map from X into a \mathbb{P} -algebra. Indeed, suppose $f: X \to A$ is any map into the underlying object A of a \mathbb{P} -algebra A, with $A \to B$ is the free algebra, the restriction $A \to B$ is $A \to A$.

extends uniquely to a \mathbb{P} -algebra map $\underline{f}: F(\tilde{X}) \to \underline{A}$. It is easy to check that $f \circ w = f$ for this map f.

Now let (A, α) be the initial $\mathbb{B}[t]$ -algebra, and (H, λ) the initial $\mathbb{P}[t]$ -algebra as before. Let σ_1, σ_2 be natural twisting functions on \mathbb{B} -algebras. Suppose $\sigma_1^{(A)}, \sigma_2^{(A)}: A \to A$ define a Hopf algebra structure on A, and $\sigma_1^{(H)}, \sigma_2^{(H)}: H \to H$ one on H, by Theorem 3.4.

5.5 Proposition. There is a canonical retraction

$$u_!(A) \xrightarrow{j} H, \quad r \circ j = \mathrm{id},$$

where j is a map of Hopf \mathbb{P} -algebras and r one of augmented \mathbb{P} -algebras.

Proof: The map $j:u_!(A)\to H$ is the one of Proposition 5.2. The map $r:H\to u_!(A)$ is the unique map $(H,\lambda)\to (u_!(A),\overline{\alpha})$ of $\mathbb{P}[t]$ -algebras, for the map $\overline{\alpha}$ defined as follows. Since A has an augmentation ε with $\varepsilon\alpha=0$ (Lemma 3.2), we can write $A=k\oplus \tilde{A}$ where α maps A into \tilde{A} . Also, the free \mathbb{P} -algebra $u_!(A)=F_{\mathbb{P}}(\tilde{A})$, briefly $F(\tilde{A})$, is augmented, hence splits as $u_!(A)=k\oplus F(\tilde{A})$. Now define $\overline{\alpha}$ on these two summands separately: on k it is the composition

$$k \xrightarrow{u} A \xrightarrow{\alpha} \tilde{A} \to F(\tilde{A})$$

and on the other summand it is the map

$$F(\tilde{A})^{\tilde{}} \subseteq F(\tilde{A}) \xrightarrow{F(\bar{\alpha})} F(\tilde{A})$$

where $\tilde{\alpha}: \tilde{A} \to \tilde{A}$ is the restriction of α . Note that the map $\overline{\alpha}$ thus defined satisfies the identities

$$\overline{\alpha}w = w\alpha, \ \varepsilon \overline{\alpha} = 0,$$

where $w: A \to u_!(A)$ is the universal map as in the proof of the previous lemma. We claim that $r \circ j = \text{id}$. By adjointness, it suffices to show rjw = w as maps of pointed objects. Now $w\alpha = \overline{\alpha}w$ as we have seen. Also, $j: u_!(A) \to H$ is obtained from $j_0: A \to u^*(H)$ by adjointness, hence $jw = j_0$. Thus $(rjw)\alpha = rj_0\alpha = r\lambda j_0 = \overline{\alpha}rj_0 = \overline{\alpha}(rjw)$. This shows that w and rjw are both maps of $\mathbb{B}[t]$ -algebras on (A, α) , hence equal by initiality.

It remains to observe that r respects the augmentation. Since $r:(H,\lambda) \to (u_!(A), \overline{\alpha})$ and $\varepsilon:(u_!(A), \overline{\alpha}) \to (k,0)$ are both maps of $\mathbb{P}[t]$ -algebras, so is the composite εr . So $\varepsilon r = \varepsilon$ by initiality of (H,λ) . This shows that r preserves the augmentation, and completes the proof.

5.6 Example. Let (H, λ) be the Connes-Kreimer Hopf algebra of Example 3.6. For the same twisting functions $\sigma_1 = \operatorname{id}$ and $\sigma_2 = u\varepsilon$, the initial $\mathbb{B}[t]$ -algebra (A, α) is the vector space with basis x_0, x_1, x_2, \ldots , where x_0 is the base point and $\alpha(x_n) = x_{n+1}$. Thus $u_1(A)$ is the algebra $k[x_1, x_2, \ldots]$, where we identify x_0 with $1 \in u_1(A)$. The Hopf algebra structure is given by $\Delta(x_n) = \sum_{i=0}^n x_i \otimes x_{n-i}$. The embedding j identifies $u_1(A)$ with the subalgebra of "linear trees" of H

(considered also in [CK]), and x_n with $\lambda^n(1) \in H$. The retraction $r: H \to u_!(A)$ sends a tree T to the product of all the maximal branches through T. For example, the tree

representing $\lambda(\lambda^2(1) \cdot \lambda(1))$ is sent to $x_3 \cdot x_1$. Note that r does not commute with coproducts.

References

- [CK] A. Connes, D. Kreimer, Hopf algebras, renormalization and non-commutative geometry, Comm. Math. Phys., **199** (1998), 203-242.
- [CM] A. Connes, H. Moscovici, Hopf algebras, cyclic homology and the transverse index theorem, Comm. Math. Phys., **198** (1998), 199-246.
- [GJ] E. Getzler, J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, Preprint, 1992.
- [GK] V.A. Ginzburg, M.M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203–272.
- [K] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theo. Math. Phys. 2.2 (1998), 303-334.
- [KM] I. Kriz, J.P. May, Operads, algebras, modules and motives, Astérisque 233 (1995).
- [L] J.-L. Loday, Cyclic Homology, Springer-Verlag, 1992.
- [CWM] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.
- [M] J.P. May, *The geometry of iterated loop spaces*, Lecture Notes in Math. **271**, Springer-Verlag, 1972.
- [S] M. Sweedler, *Hopf Algebras*, Benjamin, New York, 1964.

Utrecht, April 1999.