On the Connes-Kreimer construction of Hopf Algebras

I. Moerdijk

Abstract: We give a universal construction of families of Hopf $\mathbb{P}\text{-algebras}$ for any Hopf operad P. As a special case, we recover the Connes-Kreimer Hopf algebra of rooted trees.

Keywords: Hopf operad, Hopf algebra, Hochschild cohomology.

In $[K]$, $[CK]$ a Hopf algebra H of rooted trees is discussed. This algebra originates in problems of renormalisation [K] and is closely related to the Hopf algebra introduced in [CM] in the context of cyclic homology and foliations. The algebra H is the polynomial algebra on countably many indeterminates T , one for each finite rooted tree T . Its comultiplication is given by the formula

$$
\Delta(T)=1\otimes T+T\otimes 1+\sum_c F_c\otimes R_c,
$$

see [CK]. Here c ranges over all "cuts" (prunings) of the tree T. Such cuts are assumed non-empty, and to contain at most one edge on each branch. R_c is the part of the tree which remains after having performed the pruning, and F_c is the product of subtrees which have fallen on the ground. In [CK] it is proved that this comultiplication indeed makes H into a Hopf algebra. Furthermore, H is equipped with a linear endomorphism λ , which is a universal cocycle for a suitably defined Hochschild cohomology of Hopf algebras.

The first aim of this note is to show that all these properties can in fact be deduced from a more basic universal property of H . Namely, H is the initial ob ject in the category of (commutative unitary) algebras equipped with a linear endomorphism. Having realized that this is the case, it becomes clear that H is in fact equipped with a large family of Hopf algebra structures, all making the endomorphism λ into a universal cocycle for the corresponding Hochschild cohomology. For example, for any two complex numbers q_1 and q_2 , there is a coproduct on H , uniquely determined by the identity

$$
\Delta(\lambda(T)) = \sum q_1^{|T_{(1)}|} \cdot T_{(1)} \otimes \lambda(T_{(2)}) + \lambda(T_{(1)}) \otimes q_2^{|T_{(2)}|} \cdot T_{(2)},
$$

where |T| denotes the number of nodes in the tree T. For $q_1 = 1$ and $q_2 = 0$ one recovers the Hopf algebra structure of [CK].

The second aim is to describe how this construction applies more generally to "algebras" for any operad $\mathbb P$ on an additive category, as soon as one has a well-behaved tensor product of algebras. More precisely, we will show that if $\mathbb P$ is a "Hopf operad" on a symmetric monoidal additive category, then the initial object in the category of \mathbb{P} -algebras equipped with a "linear" endomorphism is naturally equipped with a family of natural Hopf P-algebra structures. The algebra of rooted trees then becomes the extreme instance of this construction where the operad $\mathbb P$ is the unit object in each degree.

Acknowledgements. My attention was first drawn to the algebra H by A. Connes at the "Karoubi Fest" in Paris (November 1998). I would like to thank Ezra Getzler and Andre Joyal for helpful discussion. I am indebted to the Dutch Science Foundation (NWO) for financial support. The main results of this paper were first presented at the Newton Institute, in February 1999.

1Operads and algebras.

1.1 The underlying category. In this preliminary section we will consider operads on a category \mathcal{C} . We will assume that \mathcal{C} is a symmetric monoidal additive category, with countable sums and quotients of actions by finite groups on objects of $\mathcal C$. (In most cases, $\mathcal C$ will be closed under all small colimits.) As an example, the reader may wish to keep the category of vector spaces over a field k in mind in what follows. We will write k for the unit object of \mathcal{C} , and a, l, r for the associativity and unit isomorphisms. The symmetry will be denoted by c, with components cX;Y : ^X Y ! Y X. We will assume that is an additive functor in each variable separately. Often, the isomorphisms a, l, r will be suppressed from the notation, and we identify k X with X, and X (Y Z) with $(X \otimes Y) \otimes Z$, etc. This is justified, on the basis of Mac Lane's coherence theorem. See [CWM] for details.

1.2 Operads. ([M], [KM], [GK], \dots) We will consider operads $\mathbb P$ on such a category C, and write $\mathbb{P}(n)$ for the object (of C) of *n*-ary operations. We will always assume that our operads have a distinguished "unit element" $u : k \rightarrow$ $\mathbb{P}(0)$. We will not assume that this map is an isomorphism, i.e. that \mathbb{P} is unitary in the sense of [KM]. Many operads are unitary, but the constructions of 1.3 lead us out of unitary operads. Note that the unit $u : k \to \mathbb{P}(0)$ provides us with a unit $u_A : k \to A$ in any P-algebra A.

The functor underlying the monad on $\mathcal C$ whose algebras are $\mathbb P$ -algebras will be denoted by $F_{\mathbb{P}} : \mathcal{C} \to \mathcal{C}$; so for any object V in \mathcal{C} ,

$$
F_{\mathbb{P}}(V)=\coprod_{n\geq 0}{\mathbb{P}}(n)\otimes_{\Sigma_n}V^{\otimes n}.
$$

This object $F_{\mathbb{P}}(V)$ is the free \mathbb{P} -algebra generated by V.

1.3 Two constructions. (i) If \mathbb{P} is an operad on C and G is an object of C. there is an operad \mathbb{P}_G whose algebras are \mathbb{P} -algebras equipped with a map from G. Thus, \mathbb{P}_G is obtained from \mathbb{P} by adding G to the space $\mathbb{P}(0)$ of "constants" (nullary operations). Explicitly,

$$
\mathbb{P}_G(n) = \coprod_{p \geq 0} \mathbb{P}(n+p) \otimes_{\Sigma_p} G^{\otimes p}.
$$

Note that the initial \mathbb{P}_G -algebra $\mathbb{P}_G(0)$ is the free \mathbb{P} -algebra $F_{\mathbb{P}}(G)$ on G.

(ii) Let P be an operad on C. A $\mathbb{P}[t]$ -algebra is a pair (A, α) where A is a P-algebra and $\alpha : A \to A$ is a map in C. (We will often refer to maps in C as "linear maps", to contrast them with P-algebra homomorphisms.) A map between $\mathbb{P}[t]$ -algebras $(A, \alpha) \to (B, \beta)$ is a map of P-algebras $f : A \to B$ such that $\beta f = f\alpha$. This defines a category of $\mathbb{P}[t]$ -algebras. This category is the category of algebras for an operad, again denoted $\mathbb{P}[t]$. It is the operad obtained by freely adjoining a unary operation " t " to P. It is not difficult to give an explicit description of $\mathbb{P}[t]$ in terms of trees, analogous to constructions in [GK]. We will not need such an explicit description.

1.4 Example. Let C be the category of vector spaces over a field k, and let \mathbb{P} be the operad $\mathbb{P}(n) = k$. Its algebras are commutative unitary k-algebras, and the monad $F_{\mathbb{P}}$ associated to $\mathbb P$ is the symmetric algebra functor. The associated operad $\mathbb{P}[t]$ can be described as follows. The space $\mathbb{P}[t](n)$ is the vector space on rooted finite trees T, with one "output node", the root, and n "input nodes", labelled by x_1, \ldots, x_n . The *inner nodes* represent application of the new unary operation t . For example, the tree

represents the binary operation $t(t(x_1 \cdot x_2) \cdot t(1))$. The tree \circ consisting of just the output vertex represents the element (nullary operation) 1. We will refer to the algebra $\mathbb{P}[t](0)$ as the algebra of *finite rooted trees*. It can be identified with the Connes-Kreimer algebra H mentioned in the introduction. (There is a slight difference in notation, in that we have merged a product of trees into one tree with a new output node added to it.)

2Hopf operads.

2.1 Coalgebras. Let C be a category as in 1.1. A coalgebra $\underline{X} = (X, \varepsilon, \Delta)$ is an object X of C equipped with a coassociative comultiplication $\Delta : X \rightarrow$. We also a count that it is a counter the countries of the associated associated associated associated associated category $Coalg(\mathcal{C})$ is again a (symmetric) monoidal category, with the usual tensor product (i.e. \circ is as \circ is assumed that composition the composition of \circ X Y : ^X Y ! (X X) (Y Y) and the symmetry X c Y : (X X) (Y Y) ! (X Y) (X Y)).

2.2 Hopf operads. A Hopf operad on $\mathcal C$ is an operad $\mathbb P$ on $\mathcal C$ equipped with additional structure making it an operad on $\text{Coalg}(\mathcal{C})$. Thus, each $\mathbb{P}(n)$ has the structure of a coalgebra,

$$
k \stackrel{\varepsilon}{\longleftarrow} \mathbb{P}(n) \stackrel{\Delta}{\longrightarrow} \mathbb{P}(n) \otimes \mathbb{P}(n), \tag{1}
$$

this structure is Σ_n -invariant, and the structure maps of the operad $\mathbb{P}(n)$ $\mathbb{P}(v_1) \cup \mathbb{P}(v_2)$. $\mathbb{P}(v_1)$ is $\mathbb{P}(v_2)$ and $\mathbb{P}(v_3)$ are coalgebra maps. The notion of a Hopf operad has been introduced in [GJ]. (But beware that their coalgebras are not necessarily counital.) I will sometimes write $\mathbb P$ for this operad on $Coalg(\mathcal{C})$, as opposed to the operad $\mathbb P$ on C. The Hopf operad $\mathbb P$ is *cocommutative* if each of the coalgebras $\mathbb{P}(n)$ is.

If ^P is a Hopf operad, then the tensor product A B of two P-algebras A and B is again a $\mathbb{P}\text{-algebra}$, by the maps

$$
\mathbb{P}(n) \otimes (A \otimes B)^{\otimes n} \xrightarrow{\Delta \otimes id} \mathbb{P}(n) \otimes \mathbb{P}(n) \otimes (A \otimes B)^{\otimes n} \xrightarrow{c} (\mathbb{P}(n) \otimes A^{\otimes n}) \otimes (\mathbb{P}(n) \otimes B^{\otimes n}) \longrightarrow A \otimes B.
$$

Moreover, the counits $\varepsilon : \mathbb{P}(n) \to k$ in (1) make k into a P-algebra, which is a unit for this tensor product of k -algebras. Thus, the category of \mathbb{P} -algebras is again a monoidal category (symmetric if $\mathbb P$ is cocommutative). A coalgebra in this category of \mathbb{P} -algebras is the same thing as a $\underline{\mathbb{P}}$ -algebra in the category Coalg(C) of coalgebras, and (as in [GJ]) will be referred to as a *Hopf* $\mathbb{P}\text{-}algebra$.

2.3 Example. The free P-algebra $F_P(G)$ on an object G has a canonical Hopf **P-algebra structure, cocommutative if P** is. Indeed, since $F_{\mathbb{P}}(G)$ is free, the maps 0 : G | : K and into G | | = G | + 1 | G | + 1 | | + 1 uniquely to P-algebra maps

$$
k \stackrel{\varepsilon}{\longleftarrow} F_{\mathbb P}(G) \stackrel{\Delta}{\longrightarrow} F_{\mathbb P}(G) \otimes F_{\mathbb P}(G),
$$

and one easily checks that this provides the claimed structure.

3The Connes-Kreimer construction.

Let $\mathbb P$ be a Hopf operad on a category C as before, and let $\mathbb P[t]$ be the associated operad whose algebras are P-algebras equipped with a \linear" endomorphism. We now present a general construction of Hopf P-algebras, of which the Connes-Kreimer Hopf algebra is a special case.

3.1 The initial P[t]-algebra. Let (H, λ) denote the initial P[t]-algebra, i.e. $(H, \lambda) = \mathbb{P}[t](0)$. Thus H is a \mathbb{P} -algebra, $\lambda : H \to H$ is a linear map (i.e. just an arrow in \mathcal{C}), and these have the following universal property: For any P-algebra A and any linear map $\alpha : A \to A$, there is a unique P-algebra map $\varphi : H \to A$ such that $\alpha \varphi = \varphi \lambda$.

3.2 Lemma. There is a unique augmentation $\varepsilon : H \to k$ with $\lambda \varepsilon = 0$.

Proof: Apply the universal property to the \mathbb{P} -algebra k with the zero endomorphism. In the case of the case

Next, let $\sigma_1, \sigma_2 : H \to H$ be two linear maps. Let

$$
(\sigma_1, \sigma_2) = \sigma_1 \otimes \lambda + \lambda \otimes \sigma_2 : H \otimes H \to H \otimes H.
$$

 \blacksquare . This gives H the structure of a P[t]-algebra. So there is a unique P-algebra. map

$$
\Delta=\Delta_{\sigma_1,\sigma_2}:H\to H\otimes H
$$

such that $(\sigma_1, \sigma_2) \circ \Delta = \Delta \circ \lambda$.

3.3 Lemma. (i) If $\epsilon \sigma_i = \epsilon$ for $i = 1, 2$ then $\epsilon : H \to k$ is a counit for Δ . (ii) If, in addition, i.e. $\{i\}\subset \{i\}$ is the interest of i is constant i .

Proof: (i) Consider the maps

$$
(H, \lambda) \xrightarrow{\Delta} (H \otimes H, (\sigma_1, \sigma_2)) \xrightarrow{\mathrm{id} \otimes \varepsilon} (H, \lambda),
$$

where $\mathbf{H} = \mathbf{H} \mathbf{H}$ is the isomorphism H have been sup-field the isomorphisms H \mathbf{H} and \mathbf{H} pressed. By initiality of H, it is enough to prove that it was a word of the inter- $\mathbb{P}[t]$ -homomorphisms. This is indeed the case, since

$$
(\mathrm{id}\otimes\varepsilon)(\sigma_1,\sigma_2) = (\mathrm{id}\otimes\varepsilon)(\sigma_1\otimes\lambda + \lambda\otimes\sigma_2) \qquad \text{(definition)}
$$

\n
$$
= \sigma_1\otimes\varepsilon\lambda + \lambda\otimes\varepsilon\sigma_2
$$

\n
$$
= \lambda\otimes\varepsilon\sigma_2 \qquad (\varepsilon\lambda = 0)
$$

\n
$$
= \lambda\otimes\varepsilon \qquad \text{(assumption)}
$$

\n
$$
= \lambda\circ(\mathrm{id}\otimes\varepsilon),
$$

and similarly (\bullet) is the $\{1\}$ side of $\{1\}$. The side of $\{1\}$ is the side of $\{2\}$ of $\{3\}$. In the side of $\{2\}$ is the side of $\{3\}$ of $\{2\}$ of $\{3\}$ of $\{4\}$ of $\{5\}$ of $\{6\}$ of $\{7\$

(ii) Consider the map : H H H ! H H H,

$$
\nu = \lambda \otimes \sigma_2 \otimes \sigma_2 + \sigma_1 \otimes \lambda \otimes \sigma_2 + \sigma_1 \otimes \sigma_1 \otimes \lambda.
$$

This makes H° into a $\mathbb{F}[t]$ -algebra, so there is a unique $\mathbb{F}[t]$ -homomorphism $(H, \lambda) \to (H^{\circ}, V)$. It thus suffices to show that $(H \otimes \Delta) \Delta$ and $(\Delta \otimes H) \Delta$ both are. For the first,

$$
\begin{array}{rcl}\n(\mathrm{id}\otimes\Delta)\Delta\lambda & = & (\mathrm{id}\otimes\Delta)(\sigma_1\otimes\lambda+\lambda\otimes\sigma_2)\Delta \\
& = & (\sigma_1\otimes\Delta\lambda+\lambda\otimes\Delta\sigma_2)\Delta \\
& = & (\sigma_1\otimes\sigma_1\otimes\lambda+\sigma_1\otimes\lambda\otimes\sigma_2+\lambda\otimes\sigma_2\otimes\sigma_2)(\mathrm{id}\otimes\Delta)\Delta \\
& = & \nu(\mathrm{id}\otimes\Delta)\Delta.\n\end{array}
$$

The calculation for (id) is similar.

The preceding lemmas prove:

3.4 Theorem. The initial $\mathbb{P}[t]$ -algebra (H, λ) has a natural family of Hopf $\mathbb P$ -algebra structures, parametrized by pairs $\sigma_1, \sigma_2 : H \to H$ satisfying the conditions of Lemma 3.3.

3.5 Example. The conditions of Lemma 3.3 are always satisfied if one takes σ_i to be the identity $H \to H$ or the composition of the counit $\varepsilon : H \to k$ and the unit $u : k \to H$, or any convex combination $\alpha \cdot id + \beta \cdot u \in C \to C$ of these two (for $\alpha, \beta : k \to k$ with $\alpha + \beta = id$). This provides many different Hopf \mathbb{P} -algebra structures on H.

3.6 Example. Consider again the case of the commutative unitary algebra operad of 1.4. Then H is the algebra of finite rooted trees T. Note that $\varepsilon(T) = 0$ as soon as T has at least one inner node. Write $|T|$ for the number of inner nodes of T. Now let $q_1, q_2 \in k$ be any two numbers, and let

$$
\sigma_i = q_i^{|T|} \cdot T, \quad \text{for } i = 1, 2
$$

Then σ_1 and σ_2 satisfy the condition of Lemma 3.3. Thus for any two $q_1, q_2 \in k$, the algebra H has a Hopf algebra structure, with the usual counit, and with comultiplication completely determined by the identity

$$
\Delta\lambda(T)=\sum q_{1}^{|T_{(1)}|}T_{(1)}\otimes\lambda(T_{(2)})+\lambda(T_{(1)})\otimes q_{2}^{|T_{(2)}|}\cdot T_{(2)}
$$

where we write $\Delta(T) = \sum T_{(1)} \otimes T_{(2)}$ as usual [S]. For the values $q_1 = 1$ and $q_2 = 0$ one finds $\sigma_1 = id$ and $\sigma_2 = \varepsilon$, and one recovers the Hopf algebra structure of [CK].

3.7 Remark. The results and examples in this section have been stated for the initial $\mathbb{P}[t]$ -algebra $(H, \lambda) = \mathbb{P}[t](0)$. Similar facts hold for the free $\mathbb{P}[t]$ -algebra generated by any object G of C. Writing $(H[G], \lambda)$ for this algebra and $j : G \rightarrow$ $\mathbf{H}(\mathbf{C})$ for the universal map from G, one define denote define the universal map from G, one define the \sim 1 and 2 \sim 2) as the unique map of P[t]-algebras satisfying \sim (1 \sim (1 \sim 11 \sim 2) \sim as before and the map j -find the map y is a given up to α . Hence, where α is a given up to α $H[G]$ is the unit). However, rather than doing the calculation again, this can be seen as a formal consequence of the statements made for the initial algebra, because the free $\mathbb{P}[t]$ -algebra on G is the initial $\mathbb{P}_G[t]$ -algebra (cf. 1.3.(i)), and \mathbb{P}_G is a Hopf operad whenever $\mathbb P$ is.

4Hochschild cohomology.

In [CK] it is proved that for the Connes-Kreimer algebra (H, λ) (cf. Example 3.6), the map λ is a universal 1-cocycle for Hochschild cohomology. In this section, we show that this result extends to our more general construction.

Recall the definition of the Hochschild cohomology groups $H^-(A, M)$ for any algebra A and any bimodule M , from the complex with maps $A^> \to M$ as cochains (see e.g. $[L, \text{ formula } (1.5.1.1)]$). Turning around all the arrows in a diagrammatic form of this definition, one obtains a cohomology $H^-(E,\cup)$ of a coalgebra C with coefficients in a bicomodule E , as the cohomology of the complex $C^{\alpha}(E,\mathbb{C}) = \text{Hom}_{\mathcal{C}}(E,\mathbb{C}^{\otimes n})$. Explicitly, this is the cohomology of the simplicial abelian group with the face maps $u_i : C^{n-1}(E,\mathbb{C}) \to C^{n}(E,\mathbb{C})$ defined for $\varphi : E \to C^{\omega(n-1)}$ by

$$
d_i(\varphi) = \begin{cases} E \stackrel{l}{\longrightarrow} C \otimes E \stackrel{C \otimes \varphi}{\longrightarrow} C \otimes C^{\otimes n-1} = C^{\otimes n} & (i = 0) \\ E \stackrel{\varphi}{\longrightarrow} C^{\otimes n-1} \stackrel{\Delta^{(i)}}{\longrightarrow} C^{\otimes n} & (0 < i < n) \\ E \stackrel{r}{\longrightarrow} E \otimes C \stackrel{\varphi \otimes C}{\longrightarrow} C^{\otimes n} & (i = n). \end{cases}
$$

Here l and r are the left and right coactions, and $\Delta \vee \equiv C \vee \cdots \vee \otimes \Delta \otimes C$ Note that this conomology $H^-(E,\mathbb{C})$ is *contravariant* in E and *covariant* in \mathbb{C} .

In particular, given "linear" maps $\sigma_1, \sigma_2 : C \to C$, we can view C itself as a C-bimodule $\sigma_1 C_{\sigma_2}$, with left action $C \longrightarrow C \otimes C \longrightarrow C \otimes C$ and right action $C \longrightarrow C \otimes C \longrightarrow C \otimes C$. We denote the corresponding cohomology by

$$
HH_{\sigma_1, \sigma_2}^*(C). \tag{2}
$$

A map $\varphi : C \to C$ is a 1-cocycle for this cohomology precisely when

$$
\Delta \circ \varphi = (\sigma_1 \otimes \varphi + \varphi \otimes \sigma_2) \Delta. \tag{3}
$$

Now let us go back to the context of a Hopf operad $\mathbb P$ on our underlying category \mathcal{C} .

4.1 Natural twisting functions. Call σ a natural twisting function if σ assigns to each Hopf F-algebra C a linear endomorphism $\sigma = \sigma^{++} : C \to C$, which is natural for morphisms of augmented P-algebras (i.e. if f : C ! Dis such a morphism then $f \circ \sigma^{(+)} = \sigma^{(-)} \circ f$, and has the property that $\sigma^{(+)}$ is the identity. Note that this implies that $\varepsilon \circ \sigma \to -\varepsilon$. For example, the identity $C \to C$ and the composition $C \to k \to C$ of the augmentation and the unit are natural twisting functions, as is any convex combination α id $+\beta \cdot u \varepsilon : C \to C$ of these two (for $\alpha, \beta : k \to k$ with $\alpha + \beta = id$).

Now let (H, λ) be the initial $\mathbb{P}[t]$ -algebra, and let $\sigma_1 = \sigma_1^{(1)}, \sigma_2 = \sigma_2^{(2)}$: $H \rightarrow H$ be the components of two natural twisting functions. Suppose that σ_1 and σ_2 define a Hopf P-algebra structure (H, Δ, ε) on H, by Theorem 3.4. Observe that the defining equation $(\sigma_1, \sigma_2) \Delta = \Delta \lambda$ for the coproduct states precisely that λ is a 1-cocycle for $HH_{\sigma_1,\sigma_2}^*(H)$. The following theorem is now a consequence of the universal property (3.1) of (H, λ) .

4.2 Theorem. The map λ is the universal 1-cocycle. More explicitly, if B is a Hopf \mathbb{P} -algebra and γ is a 1-cocycle in the complex defining $HH^*_{\sigma_1,\sigma_2}(B)$, there is a unique Hopf \mathbb{P} -algebra map $c_{\gamma} : H \to B$ such that $c_{\gamma} \circ \lambda = \gamma \circ c_{\gamma}$.
Proof: By the universal property of H and λ , there is a unique \mathbb{P} -algebra map

 $c = c_{\gamma}: H \to B$ such that $\gamma c = c\lambda$. It suffices to show that c is a coalgebra map. First, we show that c is a map of augmented algebras, i.e. $\varepsilon \circ c = \varepsilon$. By initiality of (H, λ) , it suffices to show that the composite $(H, \lambda) \longrightarrow (B, \gamma) \longrightarrow (k, 0)$ is a map of P[t]-algebras; in other words, that " () we have the state μ and μ apply μ) and μ \sim (1 \sim 1). Using the cocycle condition \sim (1 \sim 1). Using the cocycle condition \sim (1 \sim 1). and $\begin{pmatrix} 0 & 0 \end{pmatrix}$, the contract above $\begin{pmatrix} 0 & 0 \end{pmatrix}$, the contract $\begin{pmatrix} 0 & 0 \end{pmatrix}$, the contract of $\begin{pmatrix} 0 & 0 \end{pmatrix}$ Thus $\varepsilon \gamma = 0$, as desired.

Next, we show that the map c preserves coproducts. Observe that, by initiality of (H, λ) , the square

$$
(H, \lambda) \xrightarrow{\Delta} (H \otimes H, \sigma_1^{(H)} \otimes \lambda + \lambda \otimes \sigma_2^{(H)})
$$

\n
$$
\downarrow^{c} \qquad \qquad \downarrow^{c} \otimes c
$$

\n
$$
(B, \gamma) \xrightarrow{\Delta} (B \otimes B, \sigma_1^{(B)} \otimes \gamma + \gamma \otimes \sigma_2^{(B)})
$$

necesarily commutes as soon as all four maps are $\mathbb{P}[t]$ -algebra homomorphisms. The map c is the only one for which this still has to be shown. But, we have still has to be shown. But, we have just proved that c is a map of augmented \mathbb{P} -algebras, so $c \circ \sigma_i^{z^{-\gamma}} = \sigma_i^{z^{-\gamma}} \circ c$ by naturality. Since a map of the map computer \sim is independent a map of P[t]-algebras. This completes the proof of the theorem. \Box

5Remarks on functoriality.

We continue to work in the context of Hopf operads on a category $\mathcal C$ as in 1.1.

5.1 Adjoint functors. Let $\varphi : \mathbb{Q} \to \mathbb{P}$ be a map of Hopf operads. Then φ induces functors φ : (P-algebras) \to (Q-algebras) and φ : (Hopf P-algebras) \to (Hopf Q-algebras). Also, φ gives a functor $\varphi : (\mathbb{P}[t]$ -algebras) \to (Q[t]-algebras), by $\varphi^*(B,\beta) = (\varphi^*(B),\beta)$. If the relevant coequalizers exists in C then the first functor φ^* has a left adjoint φ : (Q-algebras) \rightarrow (P-algebras), see e.g. [GJ]. Note that $\varphi^*(\kappa) = \kappa$ and that the (first) functor φ^* commutes with tensor products of algebras. Hence by adjointness, there are canonical maps of P-algebras $\varphi_!(\kappa) \to \kappa$ and $\varphi_!(A \otimes B) \to \varphi_!(A) \otimes \varphi_!(B)$. Using these maps, one obtains a lifting of $\varphi_!$ to a left adjoint $\overline{\varphi}_!$: (Hopf-P-algebras) \rightarrow (Hopf-Q-algebras) for $\overline{\varphi}^*$

Now let (H, λ) be the initial $\mathbb{P}[t]$ -algebra and (K, μ) the one for Q. Let $j_0 : (\Lambda, \mu) \to (\varphi_\Lambda(\overline{H}), \overline{\Lambda})$ be the unique map of $\mathbb Q[t]$ -algebras, and note that this is a map of augmented Q-algebras. Let $j : \varphi_!(K) \to H$ be the adjoint map; this is a map of augmented P-algebras. Next, consider natural twisting functions σ_1, σ_2 on Q-algebras. These also induce $\sigma_i : H \to H$ on any P-algebra H, by $\sigma_i = \sigma_i^{(\varphi_{-(H)})}$.

5.2 Proposition. Suppose σ_1 and σ_2 satisfy the conditions of Theorem 3.4 so as to make H and K into Hopf \mathbb{P} -(respectively Q-)algebras. Then $j_0 : K \to$ φ (H) and $j : \varphi_!(K) \to H$ are maps of Hopf ν -(resp. $\mathbb Q$ -)algebras.

Proof: The second assertion for j follows from the first for j_0 by adjointness. To see that the map j_0 preserves the coproduct, simply apply initiality of (K, μ) to the square

$$
(K, \mu) \longrightarrow K \otimes K, \sigma_1^{(K)} \otimes \mu + \mu \otimes \sigma_2^{(K)})
$$

\n
$$
\downarrow_{j_0} \downarrow_{j_0 \otimes j_0} (\varphi^*(H), \lambda) \longrightarrow (\varphi^*(H) \otimes \varphi^*(H), \sigma_1^{(H)} \otimes \lambda + \lambda \otimes \sigma_2^{(H)}),
$$

exactly as in the proof of Theorem 4.2.

5.3 The operad \mathbb{B} . A *pointed object* is an object X of C equipped with a "basepoint" $u : k \to X$. We call X well-pointed if X is equipped with an augmentation $\varepsilon : X \to k$ with $\varepsilon u = id$. Such an object splits as $X = k \oplus X$ where $X = \text{Ker}(\varepsilon)$. Let B be the operad whose algebras are pointed objects. If P is any (Hopf) operad then the unit of $\mathbb P$ gives a map of operads $u : \mathbb B \to \mathbb P$. We consider the left adjoint $u_!$ of the induced functor u_- : (F-algebras) \rightarrow (B-algebras).

5.4 Lemma. If X is wen-pointed then $u(\Lambda) = P(\Lambda)$, the free production \ddot{X} .

Proof: Let $k \longrightarrow X \longrightarrow k$ be a well-pointed object. Let $w : X \longrightarrow F_{\mathbb{P}}(X) =$ $F(X)$ be the map $\kappa \oplus X \to F(X)$ obtained from the unit $u_{F(X)}$. $\kappa \to F(X)$ of this free algebra together with the canonical map $\mu : \tilde{X} \to F(\tilde{X})$. We claim that w is the universal base-point preserving map from X into a $\mathbb P$ -algebra. Indeed, suppose $f: X \to A$ is any map into the underlying object A of a P-algebra \underline{A} , with $f \circ u = u_A$. Since $F(\tilde{X})$ is the free algebra, the restriction $f \restriction \tilde{X} : \tilde{X} \to A$

extends uniquely to a P-algebra map $f : F(\tilde{X}) \to \underline{A}$. It is easy to check that $\underline{f} \circ w = f$ for this map \underline{f} .

Now let (A, α) be the initial $\mathbb{B}[t]$ -algebra, and (H, λ) the initial $\mathbb{P}[t]$ -algebra as before. Let σ_1, σ_2 be natural twisting functions on B-algebras. Suppose σ_1^+ ', σ_2^+ ': A \to A define a Hopf algebra structure on A, and σ_1^+ ', σ_2^+ ': H \to H one on H , by Theorem 3.4.

5.5 Proposition. There is a canonical retraction

$$
u_!(A) \xrightarrow[r]{j} H, \quad r \circ j = \text{id},
$$

where j is a map of Hopf $\mathbb P$ -algebras and r one of augmented $\mathbb P$ -algebras.

Proof: The map $j : u_1(A) \rightarrow H$ is the one of Proposition 5.2. The map $r: H \to u_1(A)$ is the unique map $(H, \lambda) \to (u_1(A), \overline{\alpha})$ of $\mathbb{P}[t]$ -algebras, for the map $\overline{\alpha}$ defined as follows. Since A has an augmentation ε with $\varepsilon \alpha = 0$ (Lemma 3.2 , we can write $A = k \oplus A$ where α maps A into A. Also, the free P-algebra $u_!(A) = F_{\mathbb{P}}(A)$, briefly $F(A)$, is augmented, hence splits as $u_!(A) = k \oplus F(A)$. Now define $\overline{\alpha}$ on these two summands separately: on k it is the composition

$$
k \xrightarrow{u} A \xrightarrow{\alpha} \tilde{A} \to F(\tilde{A})
$$

and on the other summand it is the map

$$
F(\tilde{A})^{\tilde{}} \subseteq F(\tilde{A}) \stackrel{F(\tilde{\alpha})}{\longrightarrow} F(\tilde{A})
$$

where α . $A \rightarrow A$ is the restriction of α . To the that the map α thus defined satisfies the identities

$$
\overline{\alpha}w = w\alpha, \ \varepsilon\overline{\alpha} = 0,
$$

where $w : A \to u_1(A)$ is the universal map as in the proof of the previous lemma.

We claim that $r \circ j = id$. By adjointness, it suffices to show $rju = w$ as maps of pointed objects. Now $w\alpha = \overline{\alpha}w$ as we have seen. Also, $j : u_!(A) \to H$ is obtained from $j_0: A \to u \; (H)$ by adjointness, hence $jw = j_0$. Thus $(rjw)\alpha =$ $r_{10} \alpha = r \lambda j_0 = \overline{\alpha} r j_0 = \overline{\alpha} (r_j w)$. This shows that w and $r_j w$ are both maps of $\mathbb{B}[t]$ -algebras on (A, α) , hence equal by initiality.

It remains to observe that r respects the augmentation. Since $r : (H, \lambda) \rightarrow$ $(u_1(A), \overline{\alpha})$ and $\varepsilon : (u_1(A), \overline{\alpha}) \to (k, 0)$ are both maps of $\mathbb{P}[t]$ -algebras, so is the composite ϵr . So $\epsilon r = \epsilon$ by initiality of (H, λ) . This shows that r preserves the augmentation, and completes the proof.

5.6 Example. Let (H, λ) be the Connes-Kreimer Hopf algebra of Example 3.6. For the same twisting functions $\sigma_1 = id$ and $\sigma_2 = u\varepsilon$, the initial $\mathbb{B}[t]$ -algebra (A, α) is the vector space with basis x_0, x_1, x_2, \ldots , where x_0 is the base point and $\alpha(x_n) = x_{n+1}$. Thus $u_1(A)$ is the algebra $k[x_1, x_2,...]$, where we identify x_0 with $1 \in u_1(A)$. The Hopf algebra structure is given by $\Delta(x_n) = \sum_{i=0}^n x_i \otimes x_{n-i}$. The embedding j identifies $u_!(A)$ with the subalgebra of "linear trees" of H

(considered also in $|CN|$), and x_n with λ (1) \in H. The retraction $r : H \to u_!(A)$ sends a tree T to the product of all the maximal branches through T . For example, the tree

representing $\lambda(\lambda^-(1) + \lambda(1))$ is sent to $x_3 + x_1$. Note that r does not commute with coproducts.

References

- [CK] A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199 (1998), 203-242.
- [CM] A. Connes, H. Moscovici, Hopf algebras, cyclic homology and the trans verse index theorem, Comm. Math. Phys., 198 (1998), 199-246.
- [GJ] E. Getzler, J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, Preprint, 1992.
- [GK] V.A. Ginzburg, M.M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203-272.
- [K] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theo. Math. Phys. 2.2 (1998), 303-334.
- [KM] I. Kriz, J.P. May, Operads, algebras, modules and motives, Asterisque 233 (1995).
- [L] J.-L. Loday, *Cyclic Homology*, Springer-Verlag, 1992.
- [CWM] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.
- [M] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer-Verlag, 1972.
- [S] M. Sweedler, Hopf Algebras, Benjamin, New York, 1964.

Utrecht, April 1999.