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Chapter 1
Introduction

Imagine encountering a stranger at night, in a dark and deserted field. There is hardly any
Moon, but you can just see his scarred face as he approaches you. His shredded clothes are
hanging from his skinny shoulders and he does not speak as he passes. A closer look at his
mouth reveals several teeth are missing. The way he moves hisleft arm indicates a badly
healed fracture that must have been menacing him for years. Just moments later, time freezes
and everything stops moving, except you.

For some people, the discomfort of the situation might forcethem to run and leave this
place. For others, the sight of the petrified world around them and the exceptional being
that just passed may cause them to stand frozen themselves. Regardless of their response,
everyone will wonder where the stranger came from, what caused his dreadful looks, and
why he arrived in the first place. But he will never answer. Frozen as he stands, all you can
rely on is the image of a man in a field, marked by his history.

In the skies, our stranger is not alone. For centuries, humanity has been delving deeper
and deeper into a cosmos that appeared immobile at first sight, attempting to unravel its se-
crets and, in time, to understand thecausalityof things. The processes that shape the structure
of the universe – the formation and evolution of stars, star clusters, and galaxies, all the way
up to the scales of the cosmic web – tend to take place on time scales much longer than a
human lifetime. Despite the continuous motion, this difference of time scales creates the illu-
sion of a static cosmos. Observationally, astronomers havedeveloped indirect means to detect
motion, enabling them to discern kinematics that would otherwise go unnoticed. In terms of
the interpretation and underlying theory of such observations, the digital revolution of the
late twentieth century has left a spectacular imprint. State-of-the-art computer simulations
provide a new level of freedom that allows astrophysicists to study idealised representations
of the evolution of cosmic systems at any moment in time, in any configuration they prefer.
The outcomes of such simulations can be used to trace a systemback to its origin. Building
from certain assumptions, we can now make the stranger move.

This work concerns the formation and evolution of star clusters in the context of their
galactic environment. Our own Milky Way is surrounded by structures which are almost as
old as the universe itself. These ‘globular clusters’ are the strangers we aim to understand –
where did they come from, and what did they endure? What is theevolutionary history of
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2 Chapter 1

a population of star clusters, and how is it affected by the spectacular changes that its host
galaxy may have experienced? A large fraction of all observed galaxies is interacting with
other galaxies, often facing an inevitable coalescence into a single, larger galaxy. It seems
obvious that the star cluster systems harboured by such galaxies are influenced in some way,
but the nature of these effects should be quantified. In orderto grasp the role of star cluster
populations as tracers of a distant past, it is essential to understand their life from birth to
death. In the following chapters, the formation and evolution of star clusters will be treated,
going into the internal and external processes that influence their properties, up to the point
where we can witness theco-evolution of star clusters and galaxies.

1.1 Star formation

The history of a star cluster begins in a giant molecular cloud (GMC) that becomes locally
unstable to gravitational collapse (Jeans 1902), possiblyinduced by a density wave like a
spiral arm or another (tidal) perturbation. During the contraction of the cloud, smaller struc-
tures become self-gravitating. The cloud fragments into collapsing clumps, which eventually
reach densities high enough to ignite nuclear fusion. By that time, the cloud has formed
(proto)stars, which continue to accrete gas until their energy output1 inhibits further gas in-
flow and evacuates the star-forming region.

Protostars do not form in isolation. The turbulent fragmentation that occurs in a collapsing
GMC produces apopulationof protostars (e.g. Bonnell et al. 1998, Bate et al. 2003, Bonnell
et al. 2008). It depends on the efficiency of star formation and the density of the star-forming
structure whether these protostars could potentially merge to form fewer, more massive stars
(see Chapter 2 and Portegies Zwart et al. 1999, Gaburov et al.2010). Observations of star-
forming regions (see Fig. 1.1) reveal young stellar populations that are consistent with the
fragmentation model – star formation produces groups of stars that are spatially associated.
However, this does not necessarily indicate the birth of a star cluster. Recent observations of
star-forming regions in the solar neighbourhood show that star formation takes place with a
continuous range of stellar number densities (Bressert et al. 2010, also see Chapter 2), some
of which are so low that the stellar associations disperse almost immediately.

Star formation ends when the remaining gas is expelled by stellar winds or supernovae2.
Only then, the formation of a star cluster is finally definitive – whether the spatially associated
stellar structure is disrupted by the change of the gravitational potential or remains as a bound
(complex of) star cluster(s) is determined by its dynamicalresponse to the expulsion of the
remaining GMC gas. The disruption of gas-embedded star clusters by gas expulsion (Hills
1980, Elmegreen 1983) is called ‘infant mortality’ (Lada & Lada 2003) and has been thought
to be the driving mechanism behind the relatively low fraction of star formation that produces
bound clusters (Boily & Kroupa 2003a,b, Goodwin & Bastian 2006), which is about 3–20%
(Lada & Lada 2003, Bastian 2008, Portegies Zwart et al. 2010). Claims of two separate

1Feedback in the form of radiation, stellar winds, or supernova ejecta.
2This termination of the star formation process implies thatit is not efficient, i.e. not all gas is consumed in the

star formation process. Indeed, typical ‘star formation efficiencies’ are of the order of a few percent on the scales of
GMCs (McKee & Ostriker 2007).
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Figure 1.1: Hubble Space Telescope image of the Trapezium Cluster, located in the central part of the
Orion Nebula (M42).Left: WFPC2 optical image (credit: O´Dell & Wong; NASA).Right: NICMOS
infrared image (credit: Luhman et al.; NASA). The clusterednature of the stellar structure is clearest in
the infrared, which is less sensitive to extinction by the surrounding gas than optical light.

modes of star formation, yielding unbound field stars and clustered stars, have been refuted
by the aforementioned discovery of a continuous range of stellar densities produced by the
star formation process (Bressert et al. 2010). As we will explain in Chapter 2, the density
above which the stellar structure remains bound throughoutthe process of gas expulsion
is not constant and depends on the properties of the local environment. Consequently, the
division of the star formation process in two distinct modesis not adequate, and clusters and
field stars should be considered as the possible outcomes of asingle star formation process.

The transition of gas-embedded structure to isolated boundstar clusters poses a challeng-
ing observational problem. Visually, young stellar associations look very much alike and it
can therefore be hard to assess which end up as bound structures. This touches an essential
point: how is a star cluster defined? In a recent paper, Gieles& Portegies Zwart (2011) show
that star clusters and associations can be reliably separated by comparing the ageτ of the
stars with the crossing time (tcr ∝ ρ−1/2, with ρ the density) of the stellar structure. Struc-
tures with stellar ages larger than their crossing times (Π ≡ τ/tcr > 1) are star clusters. If the
age is smaller than the crossing time (Π ≡ τ/tcr < 1), the structure is an unbound association.
This distinction is enhanced by the time evolution of star clusters and unbound associations
– for star clusters,Π increases with time, while for unbound associations it decreases. In
this work, the term ‘star cluster’ will refer to the bound product that remains after the star
formation process ends and the remaining gas has been expelled.

As a result of the characteristics of the star formation process, star clusters are born with
certain properties. Because the stars in a star cluster are generally formed from the same
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GMC3, they share the same chemical composition. The short time scale on which star for-
mation takes place implies that the stars also share the sameages – by the time that stellar
structure can be identified as a star cluster, the age spread of the stars is much smaller than
the age itself.

Not only the stars within a single cluster show similaritiesthat reflect the imprint of
their formation process, but also different star clusters in a population of clusters do. The
distribution of stellar masses in young clusters (dn/dm, the ‘initial mass function’ or IMF)
is largely universal (Bastian et al. 2010) and follows a segmented power law with a slope
of −2.3 at massesm > 0.5 M⊙ and a turnover at lower masses (Kroupa 2001). The main
remaining debates in literature concern (1) the way in whichreal star clusters populate the
massive end of this distribution, i.e. whether or not it is possible (from a probabilistic point of
view) to form isolated O stars (Weidner et al. 2004, Bastian et al. 2010), (2) which underlying
physics cause the characteristic mass of the distribution (e.g. Bonnell et al. 2006), and (3)
whether the first generation of stars to populate the universe had a different IMF (e.g. Bromm
& Larson 2004). For the star clusters that are considered in this work, the (approximate)
universality of the stellar mass function is only violated due to cluster evolution, during the
millions or billions of years following their formation until their eventual destruction.

1.2 Star cluster evolution

After the expulsion of the primordial gas, the evolution of star clusters and the stellar mass
function is driven by a combination of internal and externalprocesses. All of these processes
yield a decrease of the star cluster mass, eventually leading to the destruction of a cluster.
Stellar evolutionremoves the massive stars, which have the shortest lifetimes, and replaces
them with stellar remnants, i.e. black holes, neutron starsor white dwarfs. This is the only
destruction mechanism that is tied to a specific time scale – irrespective of the cluster mass,
all clusters will have lost about 30% of their initial mass due to stellar evolution after 10 Gyr
(Lamers et al. 2005a). Under the right circumstances4, the change of the gravitational poten-
tial due to the mass loss by stellar evolution can induce a secondary, dynamical loss of mass
in the form of stars that were already moving at velocities close to the escape energy (Lamers
et al. 2010). This additional mass loss is of the same order ofmagnitude as the mass loss
due to stellar evolution itself. While the first-order effect of stellar evolution only removes
the massive stars from a cluster, the escape probability of stars due to induced mass loss is
largely independent of their mass, unless the cluster is mass-segregated (see below).

Two-body relaxationis the third internal disruption mechanism, but its implications are
also influenced by external factors. It is dynamical in nature and does not act on a fixed time
scale. Instead, the disruption rate due to two-body relaxation depends on the cluster mass

3There are certain exceptions to this rule, which is illustrated by the observation of multiple stellar populations
in the colour-magnitude diagrams of intermediate-age starclusters in the Magellanic Clouds (e.g. Mackey & Broby
Nielsen 2007, Mackey et al. 2008) and certain old globular clusters (e.g. Piotto et al. 2007). A possible explanation
is that these subpopulations are the product of two star formation events at different ages or metallicities, where the
second generation of stars possibly formed from the ejecta of the first generation (e.g. D’Ercole et al. 2008).

4This mainly depends on the density profile of the cluster and the effectiveness of the other disruption mecha-
nisms.
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and the tidal field in which a star cluster is situated. Two-body relaxation is the macroscopic
term for the many individual encounters of the stars in a cluster, during which they exchange
energy and evolve towards a state of energy equipartition (Spitzer 1987). The energy ex-
change affects the orbits of the stars, potentially moving them outside the Jacobi radius5 at
some point in time, which causes them to become unbound. The resulting rate at which mass
is lost from the cluster is determined by the cluster mass – massive clusters lose a smaller
fraction of their mass per unit time than low-mass clusters –and the tidal field strength –
clusters orbiting an idealised galaxy with a smooth potential have higher disruption rates near
the galactic centre than in the outskirts of a galaxy.

A secondary effect of two-body relaxation is mass segregation, i.e. the redistribution of
stars such that the mean stellar mass decreases with radius.As a cluster evolves towards
energy equipartition, to first order low-mass stars obtain higher velocities than massive stars,
which causes them to move to larger radii. The massive stars sink towards the cluster centre
(during which their velocity increases again) and stay there. The time scale on which mass
segregation is reached decreases with stellar mass, i.e. massive stars segregate to the centre
more quickly than low-mass stars move towards larger radii.The long-term effect of mass
segregation is that low-mass stars have a higher probability to escape a cluster than massive
stars. The mass function of stars in anevolvingcluster is far from universal (Hénon 1969,
Fukushige & Heggie 2000, Heggie & Hut 2003, Baumgardt & Makino 2003), because it is
affected by cluster disruption. The rate at which it changesis set by environmental factors
such as the tidal field as well as the mass of the cluster itself. This ‘low-mass star depletion’
or ‘preferential loss of low-mass stars’ also affects the integrated properties of clusters, such
as their mass-to-light ratios (see Chapters 3–7).

The last disruption mechanism is related to episodic changes of the tidal field, which
disrupt a star cluster by heating the kinematics of the stars(Spitzer 1958, Ostriker et al.
1972, Chernoff et al. 1986, Spitzer 1987, Gnedin & Ostriker 1997). Thesetidal shocksoccur
in nature when a cluster passes through a galaxy disc (a ‘discshock’), moves through the
pericentre of its orbit near the bulge of a galaxy (a ‘bulge shock’), encounters a GMC (Gieles
et al. 2006b) or passes a spiral arm (Gieles et al. 2007a). Anyprocess that changes the
tidal field in which a cluster is situated causes a tidal shockand thereby contributes to the
disruption of the cluster. The relative importance of the disruption rate due to tidal shocks
changes with the environment. For globular clusters, whichreside in the halo of large spiral
and elliptical galaxies, it is known that disc and bulge shocks do not outweigh the disruption
due to two-body relaxation (see Dinescu et al. 1999 and Chapter 5). However, tidal shocks do
dominate the mass loss of open clusters that orbit in the discs of spiral galaxies (see Lamers
et al. 2006 and Chapter 8). Although the energy injection occurs approximately uniformly
throughout a cluster, the stars in the outskirts are typicaly closer to the escape energy than the
stars residing in the cluster centre. Therefore, the mass function of the stars in a cluster can
change due to tidal shocks, but only if the cluster is mass-segregated.

Summarising the different disruption mechanisms, it is evident that the long-term dy-
namical evolution of star clusters is largely governed by their galactic environment. When

5This is the radius of the zero-point in the gravitational potential, which separates the volume in which stars are
bound to the cluster from the space where the stars become unbound due to the tidal field (see e.g. Fukushige &
Heggie 2000, Portegies Zwart et al. 2010).
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Figure 1.2: Left: optical image of the Pleiades (M45), an open cluster with anage of approximately
108 yr, taken with the Palomar 48-inch Schmidt telescope (credit: NASA/ESA/AURA/Caltech).Right:
optical image of the globular cluster M80, which has an age ofabout 1010 yr, taken with the Hubble
Space Telescope/WFPC2 (credit: the Hubble Heritage Team; AURA/STScI/NASA).

considering populations of star clusters, either in different galaxies or in different parts of a
single galaxy, it is important to recognise the imprints of the environment on the properties
of the population. The initial age distribution of star clusters is given by the cluster forma-
tion history, while the mass spectrum of star clusters (dN/dM ) is initially characterised by a
power law with index−2 down to a lower mass limit of about 50 M⊙ (Lada & Lada 2003,
Portegies Zwart et al. 2010). After some 108 years of dynamical evolution, these distributions
have changed. Because star clusters are disrupted as time progresses, the actual age distribu-
tion of star clusters deviates from the cluster formation history that defines its initial form –
at older ages, there is an increasing deficit of clusters, up to the point where none are left and
all have been disrupted (e.g. Hunter et al. 2003, Smith et al.2007). The mass distribution of
clusters evolves in a similar way. All disrupted clusters lose mass, but the relative fraction of
their mass that is lost per unit time increases as fewer starsremain (Lamers et al. 2005a). In
other words, the mass loss rate of a star cluster escalates. The absolute mass loss rate may
decrease, but the relative mass loss rate increases. As a result, disruption causes the initial
cluster mass spectrum to flatten at the low-mass end (Elmegreen & Efremov 1997, Vesperini
2001, Boutloukos & Lamers 2003, Lamers et al. 2005a, Larsen 2009).

The dynamical evolution of star clusters has a pronounced impact on the observed prop-
erties of cluster populations, primarily so in older systems. Within the Milky Way, these
imprints have given rise to the classical distinction between open and globular clusters (see
Fig. 1.2), which differ in terms of their ages, masses, metallicities and spatial configurations.
Open clusters reside in the disc of the Milky Way, are typically young (τ < 109 yr), low-mass
(M < 104 M⊙) and metal-rich (Z ∼ Z⊙). Globular clusters, on the other hand, are found in
the Milky Way halo, have ages comparable to the age of the universe6 (τ ∼ 12 Gyr), are mas-

6A ‘Hubble time’.
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sive (M ∼ 105 M⊙), and contain little metals (Z ∼ 0.05 Z⊙). Of these two populations, the
youngest should be expected to best reflect the initial properties of a population of star clus-
ters. Indeed, the mass distribution of open clusters in different age ranges can be described by
a power law with index close to−2 (Portegies Zwart et al. 2010), while the mass function of
globular clusters is depleted at the faint or low-mass end (Harris 1996). Over the past decade,
the origin of the globular cluster mass function has been extensively debated in literature.
Most studies consider a dynamical origin (Elmegreen & Efremov 1997, Vesperini 1998, Fall
& Zhang 2001, Vesperini & Zepf 2003), but other works have argued that the conditions in
the early universe could have been such that the initial massspectrum of star clusters differed
from its current form (Harris & Pudritz 1994, Parmentier & Gilmore 2007).

Given the ages of globular clusters, it is not surprising that their properties differ so
strongly from those of open clusters. Not only is a Hubble time of dynamical evolution
bound to have a lasting impact on a population of star clusters, but the environmental condi-
tions under which globular clusters formed and evolved mustalso have changed widely. An
understanding of how the characteristics of star cluster populations change with time, under
a variety of conditions, will provide insight in the clusterpopulations that may result after
several gigayears of cluster formation and evolution. In turn, this approach can be reversed
to use (globular) cluster populations to trace the cosmic conditions throughout their history.

1.3 Galaxy evolution

Processes on galactic scales influence the properties of a star cluster population. The presence
or absence of spiral arms, the GMC number density, and the star formation rate all impact
the formation and destruction of star clusters in isolated galaxies. In the more irregular en-
vironments of interacting galaxies and dwarf galaxy accretion, large-scale processes such as
tidal stripping and violent relaxation continuously redistribute stars and star clusters. These
processes are capable of dominating the macroscopic evolution of star cluster populations.

Some of the main interests of modern astrophysics concern the formation and evolu-
tion of galaxies, and their hierarchical assembly through merging (e.g. Sanders & Mirabel
1996, Conselice et al. 2003). In the current picture of hierarchical cosmology (White & Rees
1978), galaxy mergers play a fundamental role. In the early universe, the first dwarf galax-
ies condensed from small fluctuations that deviated from an otherwise almost homogeneous
distribution of matter. As the gravitational contraction of the first structures continued, these
galaxies accreted gas and collided with other galaxies, coalescing to form larger and more
massive systems. This hierarchical build-up of galaxies has continued up to the present day
(McConnachie et al. 2009), producing a wide variety of galaxies. Some of the early dwarf
galaxies are still present, but in other cases the hierarchical assembly of mass has created
gas-rich spiral galaxies or giant elliptical galaxies, in which gas is absent. The cosmological
environment of a galaxy determines how much gas it can accrete or whether it can merge
with other galaxies. As a result, the galaxy population has emerged as an excellent tool to
test cosmological models (e.g. Kauffmann et al. 1993, Somerville & Primack 1999, Bell et al.
2005). By connecting the evolution of star clusters to that of their host galaxies, hierarchical
cosmology and star cluster populations become associated as well.
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Figure 1.3: Optical image of the Antennae galaxies (NGC 4038/9), taken with the Hubble Space
Telescope/ACS/WFC (credit: Whitmore et al.; the Hubble Heritage Team; AURA/STScI/NASA/ESA).
The blue dots and clumpy structure represent (complexes of)young star clusters, which are formed at
an increased rate due to the interaction between both galaxies. The orange regions are the bulges of the
galaxies, the pink haze surrounding the clusters represents the gas, and the brown filamentary structure
reflects the distribution of dust.

In isolated galaxies, the formation of stars and star clusters is governed by the density
structure of the interstellar medium (ISM) and internal perturbations that may trigger the
gravitational collapse of GMCs, which signifies the onset ofstar formation. On a global
scale, the star formation rate density7 is set by the gas density through the Schmidt-Kennicutt
law (Schmidt 1959, Kennicutt 1998b). The density of star formation is higher in dense re-
gions than in sparse ones. The clumpiness of the ISM in disc-like galaxies is known to have
evolved strongly over the course of a Hubble time. Massive and dense clumps dominated the
morphology of these galaxies at redshifts ofz ∼ 2 (Elmegreen & Elmegreen 2005), which
as a result have been put forward as the possible formation sites of the metal-rich part of the
globular cluster population (Shapiro et al. 2010).

The range of possible origins of globular clusters is not restricted to the dense clumps

7The star formation rate per unit area or volume.
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of isolated disc galaxies. Interacting and merging galaxies exhibit spectacular amounts of
star and cluster formation in relatively small volumes. When two disc galaxies interact and
merge, the tidal torques that are exerted on the galaxy discsyield an inflow of the gas towards
the centres of the galaxies, where the high density fuels a burst of star formation, potentially
up to 100 M⊙ yr−1 (Hernquist 1989, Mihos & Hernquist 1996). A certain fraction of this
star formation will result in bound star clusters (Holtzmanet al. 1992, Schweizer et al. 1996,
Whitmore et al. 1999), of which the most massive ones could bethe progenitors of globular
clusters that populate the halos of spiral and giant elliptical galaxies (see Ashman & Zepf
1992 and Chapter 9). In the nearby universe, galaxy mergers such as the ‘Antennae’ galaxies
(NGC 4038/9, see Fig. 1.3) are well known for their extremelyrich populations of young,
massive clusters. It is hard to imagine a better example of how the galactic (and cosmolog-
ical) environment can affect a star cluster population. Notonly do the starbursts change the
appearance of these merging disc galaxies by consuming (almost) all of the gas and even-
tually leaving a ‘dead’ giant elliptical galaxy, but they also produce the beacons that may
remain visible for billions of years after the collision hasended. It is one of the main aims of
the final part of this work to find out which star clusters can survive such galaxy interactions,
and how they are affected by these drastic events.

1.4 This thesis

This work concerns the formation and evolution of (populations of) star clusters in the con-
text of their galactic environment. It covers the internal dynamics of stellar clusters during
their formation and subsequent evolution, and also connects their evolution to galaxy-scale
events such as mergers. The key question that will be asked throughout is how star clusters
dynamically respond to their environment, and what the macroscopic implications are for a
population of star clusters. The first part of this work treats the formation of stellar subclusters
and their response to gas expulsion – the first stage of what could potentially become a (pop-
ulation of) star cluster(s). The second part discusses the internal dynamics of star clusters, the
effect cluster disruption has on their photometric properties, and what the implications are for
the characteristics of (globular) cluster populations. Inthe third and final part, the different
ingredients are combined to assess the evolution of star cluster populations in simulations of
(interacting) galaxies. This is the part in which the properties of star cluster populations and
the evolutionary histories of their host galaxies are connected.

Part A – The formation of star clusters

Chapter 2 During the turbulent fragmentation of GMCs, accreting protostars interact and
form small groups. These stellar subclusters are the seeds for the hierarchical formation of
actual star clusters. This chapter addresses the dynamics of subclusters in hydrodynamical
simulations of star formation, in order to investigate their response to gas expulsion and the
fraction of star formation that results in bound clusters. When ignoring the gravitational po-
tential of the gas, we find that the subclusters evolve towards a state of virial equilibrium
before the onset of gas expulsion. This surprising result iscaused by the fact that the subclus-
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ters are gas-poor on spatial scales corresponding to their half-mass radii, with gas fractions
below 10%. Due to their low gas fractions, the subcluster radii hardly change upon gas ex-
pulsion. By scaling the units of the simulation, we estimatethe mass and length scales on
which actual star clusters could become gas-poor before gasexpulsion. We propose that the
disruption of clusters during the transition from a gas-embedded to a gas-rid state is not al-
ways due to gas expulsion (infant mortality), but also due tothe tidal shocking of clusters by
the surrounding GMCs (the ‘cruel cradle effect’).

Part B – The evolution of star clusters in their galactic environment

Chapter 3 The photometric properties of star clusters are influenced by the IMF, their
metallicities, the retention of stellar remnants, and the evolution of the mass function due
to cluster disruption, which generally leads to low-mass star depletion (also see Chapter 7).
In this chapter, we present semi-analytic star cluster models in which these effects are in-
cluded. Low-mass star depletion is approximated to first order by increasing the lower mass
limit of the stellar mass spectrum as a cluster loses mass. Wecompute the evolution of star
clusters for a range of initial masses and disruption rates,and synthesise their broad-band
photometric properties by using stellar evolutionary isochrones. It is found that the choice of
IMF affects the mass and mass-to-light ratio evolution of clusters, the choice of metallicity
influences their magnitude, colour and mass-to-light ratioevolution, the inclusion of stellar
remnants alters their mass and mass-to-light ratio evolution, and accounting for low-mass
star depletion impacts their magnitude and mass-to-light ratio evolution. When considering a
population of clusters, low-mass (faint) clusters have typically experienced more disruption
than massive clusters. As a result, we find that the mass-to-light ratio of clusters increases
with cluster luminosity and mass. A comparison with the properties of Galactic globular
clusters gives good results, provided that low-mass star depletion and the retention of stellar
remnants are accounted for.

Chapter 4 The mass-to-light ratios of globular clusters are too low for their respective
metallicities when comparing them with simple stellar population models. We apply the
models from Chapter 3 to samples of globular clusters in the Milky Way, Centaurus A, M31,
and the Large Magellanic Cloud. We characterise evolutionary tracks and cluster isochrones
in the mass vs. mass-to-light ratio plane, and compare the model predictions to the distri-
bution of observed globular clusters in this plane. The models are found to be consistent
with the observed masses and mass-to-light ratios for a physically acceptable range of dis-
ruption rates. Without accounting for low-mass star depletion, only 39% of all clusters lie
within one standard deviation of their expected mass-to-light ratios. With our new models,
this percentage increases to 92%.

Chapter 5 Of all known Galactic globular clusters, a subset of 24 has known orbits and
mass-to-light ratios. Assuming a fixed orbit over their lifetimes, we model the disruption
history of these clusters to predict the mass-to-light ratio they should have according to our
models from Chapter 3. The disruption rates we derive for theglobular cluster orbits lie in the
same range as those needed in Chapter 4. Out of the 24 globularclusters in the sample under
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consideration, 12 clusters have observed mass-to-light ratios that are within one standard
deviation of the predicted ones. For about half of the discrepant clusters, the difference arises
because their central and global mass-to-light ratios are not similar. Our models predict global
mass-to-light ratios, while the observations are biased tothe stars inside the half-mass radius.
This leads to dissimilarities for clusters with high mass segregation and a long disruption time.
They can be excluded by imposing limits on the derived disruption rates and observed King
parameters. For the thus obtained sample of clusters, the predicted and observed mass-to-
light ratios are about 78% of the value they would have had without low-mass star depletion.
This depletion of low-mass stars should be present in observations of the stellar mass function
in globular clusters, which we confirm by considering the setof clusters for which the data is
available. We end the chapter by identifying targets for an observational campaign aimed at
constructing the stellar mass functions of globular clusters.

Chapter 6 The mass function of dissolving globular clusters becomes depleted in low-
mass stars, which have high mass-to-light ratios. Therefore, the cluster mass-to-light ratio
decreases with respect to clusters with a stellar mass function that still follows the shape of the
IMF. Statistically speaking, low-mass clusters have lost more stars than massive clusters. This
implies that for a fixed age, the mass-to-light ratio increases with cluster mass and luminosity.
We apply this trend to the conversion of the peaked globular cluster luminosity function to a
cluster mass function. The observed luminosity function isconsistent with an exponentially
truncated power law initial cluster mass function, provided that the mass loss rate of the
clusters depends on their mass. The slope of the globular cluster mass function at masses
below the peak is 0.7 when accounting for the effects of low-mass star depletion, and 1.0
when these effects are ignored. These results hold for a single relation between luminosity
and mass-to-light ratio, but also for a population of globular clusters with different orbits (and
disruption rates), for which this ‘relation’ is more of a trend with substantial scatter.

Chapter 7 The change of the stellar mass function in dissolving star clusters is caused by
two-body relaxation. In this chapter, a simple physical model is derived from the principles
of two-body encounters and energy considerations. The evolution of the stellar mass function
is determined by the disruption rate, the masses and retention fraction of stellar remnants, and
the IMF. The escape probability is typically highest at stellar masses around 15–20% of the
maximum stellar mass in a cluster. After about 400 Myr, stellar evolution has decreased this
mass to such an extent that stars of the lowest masses have thehighest escape probability.
Low-mass star depletion is inhibited by the retention of massive stellar remnants, such as
black holes, which efficiently eject stars with masses similar to those of white dwarfs and
neutron stars. As a result, the cluster mass constituted by the different remnant types is also
affected by the dynamical evolution of the mass function. A comparison of the predicted
mass function slopes to those of Galactic globular clustersgives excellent agreement.

Part C – The co-evolution of star clusters and galaxies

Chapter 8 The formation and evolution of star clusters is governed by the local environ-
ment. In isolated galaxies and galaxy mergers, the environments of star clusters should
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be expected to vary widely in time and space. To address the possible emergent prop-
erties of the cluster population that could arise in a complex environment, we presentN -
body/hydrodynamic simulations of galaxies in which a semi-analytic model for the star clus-
ter population is included. The model includes star formation, feedback, stellar evolution,
and star cluster disruption by two-body relaxation and tidal shocks. We validate the model by
comparing it to the results fromN -body simulations of dissolving star clusters. The evolu-
tion of selected individual clusters shows that their evolution is dominated by the variation of
their environment in time and space. In isolated disc galaxies, the disruption rate decreases
with cluster age, due to clusters escaping their dense formation sites (‘cluster migration’) and
the preferential disruption of clusters residing in dense environments (‘natural selection’).
These mechanisms exemplify the emergent properties of starcluster populations in complex
environments. In galaxy mergers, such effects are even moreprevalent. The evolutionary
histories of individual clusters in a galaxy merger are completely determined by their orbits
and the corresponding changes of the environment. Clustersthat escape into the stellar halo
survive the merger, while those clusters that stay near the central starbursts have very short
lifetimes. This form of natural selection has a lasting impact on the star cluster population of
a merger remnant.

Chapter 9 Galaxy mergers are famous for their high star formation rates and large numbers
of clusters. However, it is also known that dense environments and changes in the tidal field
can efficiently destroy clusters. We apply the model from Chapter 8 to asses the evolution
of the cluster population during a merger. It is found that the tidal shocks that occur during
a merger are strong enough to destroy clusters at such a rate that destruction dominates over
the formation of clusters. The number of clusters increasesonly for the subset of massive and
young clusters that is easily detected in observations. Thepreferential destruction of low-
mass clusters causes the power law initial cluster mass function to evolve into a peaked form.
Just after the merger, the peak mass is about 102.5 M⊙, which subsequentially evolves to
higher masses. This suggests that globular cluster systemscould be the natural consequence
of the large starbursts and the corresponding cluster disruption that took place in the early
universe.

Chapter 10 The model of Chapter 8 is applied to the case of the Antennae galaxies (see
Fig. 1.3), which is a textbook example of how the changing galactic environment can affect
the population of star clusters. It is found that the observed and predicted distributions of clus-
ter ages and masses are in excellent agreement. Moreover, their characteristics suggest that
the mechanisms of cluster migration and natural selection (see Chapter 8), and the resulting
decrease of the disruption rate with cluster age are important for ages belowτ ∼ 150 Myr.
This is verified by considering the mean ambient gas density of the clusters as a function
of age, which is also found to decrease until ages of aboutτ ∼ 150 Myr. We discuss the
results in the context of Chapter 2 and the cruel cradle effect, and conclude the chapter by
discussing how the Antennae galaxies illustrate the necessity of accounting for variations of
the environment when modelling cluster populations.
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The dynamical state of stellar structure in
star-forming regions
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Abstract The fraction of star formation that results in bound star clusters is influenced by the den-
sity spectrum in which stars are formed and by the response ofthe stellar structure to gas expulsion.
We analyse hydrodynamical simulations of turbulent fragmentation in star-forming regions to assess
the dynamical properties of the resulting population of stars and (sub)clusters. Stellar subclusters are
identified using a minimum spanning tree algorithm. When considering only the gravitational potential
of the stars and ignoring the gas, we find that the identified subclusters are close to virial equilibrium
(the typical virial ratioQvir ≈ 0.59, where virial equilibrium would beQvir ∼ 0.5). This virial state is a
consequence of the low gas fractions within the subclusters, caused by gas accretion and the accretion-
induced shrinkage of the subclusters. Because the subclusters are gas-poor, up to a length scale of
0.1–0.2 pc at the end of the simulation, they are only weakly affected by gas expulsion. The fraction of
subclusters that reaches the high density required to evolve to a gas-poor state increases with the density
of the star-forming region. We extend this argument to star cluster scales, and suggest that the absence
of gas indicates that the early disruption of star clusters due to gas expulsion (infant mortality) plays
a smaller role than anticipated, and is potentially restricted to star-forming regions with low ambient
gas densities. We propose that indensestar-forming regions, the tidal shocking of young star clusters
by the surrounding gas clouds could be responsible for the early disruption. This ‘cruel cradle effect’
would work in addition to disruption by gas expulsion. We suggest possible methods to quantify the
relative contributions of both mechanisms.

2.1 Introduction

Over the past years, the implications of clustered star formation have touched a range of
astrophysical disciplines, from the scales of the star formation process itself (see the review by
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McKee & Ostriker 2007) to the fundamental properties of young star clusters (e.g. McMillan
et al. 2007, Allison et al. 2009a, Moeckel & Bonnell 2009), orpossibly even the global
stellar mass assembly of galaxies (see e.g. Pflamm-Altenburg et al. 2007, Bastian et al. 2010).
While it seems evident that most stars form in a clustered setting (e.g. Parker & Goodwin
2007), estimations of the exact fraction are hampered by thesubstantial dissociation of stellar
structure that occurs during (but is not necessarily related to) the transition from the gas-
embedded phase to classical, gas-poor star clusters (Lada &Lada 2003, Portegies Zwart
et al. 2010). The traditional interpretation that most, if not all stars form in clusters, with gas
expulsion leading to their early disruption (‘infant mortality’, see Lada & Lada 2003, Bastian
& Goodwin 2006, Goodwin & Bastian 2006) has recently been challenged by observational
studies suggesting that stars form with a continuous distribution of densities, of which only
the high-density tail eventually leads to bound stellar clusters (Bressert et al. 2010, Gieles &
Portegies Zwart 2011).

Current advancements in numerical calculations of turbulent fragmentation in star-forming
regions enable the study of clustered star formation in increasing detail (e.g. Bonnell et al.
1998, Klessen & Burkert 2000, Bate et al. 2003, Bonnell et al.2008). However, theoretical
investigations of the response of stellar structure to gas expulsion are still largely based on the
assumption of either a static gas potential or initial equilibrium between the stars and gas (e.g.
Tutukov 1978, Adams 2000, Geyer & Burkert 2001, Boily & Kroupa 2003a,b, Baumgardt &
Kroupa 2007, Parmentier et al. 2008), which need not apply tostar-forming regions in nature.
A more realistic setting was recently explored by Offner et al. (2009), who find that the ve-
locity dispersions of the stars in hydrodynamic simulations of star formation are smaller than
that of the gas by about a factor of 5, suggesting that the assumption of equilibrium between
both components indeed does not hold. The response of star clusters to gas expulsion has
also been investigated by Moeckel & Bate (2010), who consider N -body simulations of star
clusters using initial conditions from hydrodynamic simulations, and by Moeckel & Clarke
(2010), who address the dynamical evolution of star clusters under the condition of ongoing
gas accretion. They propose that the disruptive effect of gas expulsion is limited by the way
in which gas and stars are redistributed by the accretion-induced shrinkage of clusters.

The hydrodynamical calculations of Bonnell et al. (2008) cover the hierarchical formation
of several stellar (sub)clusters, which have been identified and analysed by Maschberger et al.
(2010). The simulation is very suitable for investigating the properties of the (sub)cluster
population due to the relatively large range of mass scales of the modelled structure (see
Sect. 2.2). In this paper, we analyse the simulations reported in Bonnell et al. (2008) to probe
the response of gas-embedded stellar structure to gas expulsion. We consider the dynamical
state of the stars while ignoring the gas, which is equivalent to observing the stellar structure
under the condition of instantaneous gas expulsion at any time in the simulation.

This paper starts with a discussion of the setup of the simulations, the subcluster identi-
fication algorithm, and the characteristics of the stellar structure in Sect. 2.2. An analysis of
the dynamical state of the subclusters follows in Sect. 2.3,which covers quantities such as
the virial ratio, bound mass fraction and gas content. The response of the clusters to gas ex-
pulsion and an extension to the length scales of actual star clusters is considered in Sect. 2.4.
The paper is concluded with a summary and an outlook in Sect. 2.5, where we discuss the
possible dependence of the results on the initial conditions of the simulations and the input
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physics, and suggest ways in which our analysis could be improved and extended.

2.2 Simulations and cluster selection

In this work, we analyse the hydrodynamical/N -body simulations of Bonnell et al. (2003)
and Bonnell et al. (2008), extending the analysis of Maschberger et al. (2010) and Masch-
berger & Clarke (2011). These smoothed particle hydrodynamics (SPH) simulations follow
the evolution of a initially marginally unbound, homogeneous gas sphere of 103 M⊙ with a
diameter of 1 pc (Bonnell et al. 2003), and a cylinder of 3× 10 pc that contains 104 M⊙

gas, bound in the upper part and unbound in the lower (Bonnellet al. 2008). Initial turbulent
motions are modelled with an initially divergence-free random Gaussian velocity field with
a power spectrumP(k ) ∝ k−4. The gas is kept at a temperature of 10 K, staying isothermal
throughout the 103 M⊙ simulation. In the 104 M⊙ simulation, the gas follows a modified
Larson-type equation of state (Larson 2005) comprised of three barotropic equations of state:

P = kργ , (2.1)

with P the pressure,ρ the density, and where

γ = 0.75; ρ ≤ ρ1

γ = 1.0; ρ1 < ρ ≤ ρ2

γ = 1.4; ρ2 < ρ ≤ ρ3

γ = 1.0; ρ > ρ3,

(2.2)

andρ1 = 5.5× 10−19g cm−3,ρ2 = 5.5× 10−15g cm−3,ρ3 = 2× 10−13g cm−3.
Star formation is modelled via sink particles, which are formed if the densest gas particle

and its∼ 50 neighbours are gravitationally bound (the critical density is 1.5× 10−15 g cm−3

for the 103 M⊙ simulation, and 6.8× 10−14g cm−3 for the 104 M⊙ simulation). The mass
resolutions of the sink particles are∼ 0.1 M⊙ and 0.0167 M⊙, respectively. Accretion
onto sink particles occurs if SPH particles move within the sink radius (200 AU for both
simulations) and are gravitationally bound, or if SPH particles move within the accretion
radius (40 AU for both simulations). Gravitational forces between sink particles are softened
at smoothing lengths of 160 AU (103 M⊙) and 40 AU (104 M⊙).

Under the influence of gravity, the initially smooth gas distributions quickly form fila-
ments in which the sink particles are formed. The sink particles themselves group together in
subclusters that merge into larger structures, leading to the formation of one ‘star cluster’ in
the 103 M⊙ simulation and about three ‘star clusters’ in the 104 M⊙ simulation. Throughout
this paper, we will focus on the 104 M⊙ simulation, which contains about ten times more
subclusters than the 103 M⊙ simulation, and therefore enables us to consider apopulation
of subclusters rather than a select set of examples. We also ran our analyses for the 103 M⊙

simulation, which gave results that are consistent with those from the 104 M⊙ simulation.
For the identification of the subclusters, we employ a minimum spanning tree (MST)

based clustering technique, which has been used in the context of young star forming regions
(e.g. Maschberger et al. 2010, Kirk & Myers 2011). The MST, which has the advantageous
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property of not imposing any geometrical symmetry on the data set, has also been used to
quantify the amount of substructure (e.g. Cartwright & Whitworth 2004, Schmeja et al. 2008,
Maschberger et al. 2010) and mass segregation (e.g. Allisonet al. 2009a,b, Maschberger et al.
2010, Parker et al. 2011 – see Moeckel & Bonnell 2009 and Maschberger & Clarke 2011 for
alternative methods) in star forming regions. The MST is a concept from graph theory, which
represents the unique connection of all points of a data set,so that there are no closed loops
(a ‘tree’), and so that the total length of all edges between the points is minimal. Typically,
two separated groups of points are connected with one single, long edge, whereas the points
within the groups have short edges. By simply removing edgesthat are longer than a chosen
break distance the tree can be split in subtrees, which connect the points of the subclusters in
the data set (further information on MST based clustering techniques can be found in Zahn
1971). To avoid spurious detections, we require that a subcluster contains a minimum number
of 12 stars.

The MST technique utilises one free parameter, which is the break distance. Automated
methods to determine the break distance are ill-suited for the analysis of the simulations due
to the highly varying properties of the stellar distribution. We therefore choose a break dis-
tance ofdbreak = 0.035 pc, which gives subclusters that are comparable to those identified
by the human eye, although they do not include the stellar haloes surrounding them. This
break distance is larger than the choice of Maschberger et al. (2010), but leads to comparable
clusters because we analyse the stellar structure in three spatial dimensions and not in projec-
tion. Because the choice of a single break distance could introduce an artificial length scale
into the analysis (Bastian et al. 2007), we have also performed our calculations for a set of
other break distances in the rangedbreak= 0.020–0.100 pc, of which the results are used when
discussing the implications and applicability of our findings in Sects. 2.4 and 2.5.

An example of the results of the subcluster identification method can be seen in Fig. 2.1,
which shows the spatial distribution of sink particles and subclusters at the end of the 104 M⊙

simulation att = 0.641 Myr, some 0.3 Myr after the onset of star formation. Atthis point in
the simulation, after one free-fall time, about 60% of all stellar mass is constituted by subclus-
ters. The spatial distribution shown in Fig. 2.1 is the result of a complex tree of hierarchical
merging of small subclusters (Maschberger et al. 2010). This process is still ongoing at the
end of the simulation, which is illustrated by the close proximity of the subclusters towards
the right in the plane of Fig. 2.1.

Following Casertano & Hut (1985), we use the projected distance to theN th nearest
neighbour to determine the surface density distribution ofthe sink particles. For a rank
numberN , the local surface density at the locations of each of the sink particles isΣsink =
(N −1)/(πD2

N ), with DN the projected distance to theN th nearest neighbour in the x-y plane.
The resulting distribution of surface densities forN = 7 is shown in Fig. 2.2, which includes
all sink particles at the end of the simulation (t = 0.641 Myr), as well as those from a snapshot
at t = 0.442 Myr, not too long after the onset of star formation (also see Fig. 2.3). The differ-
ence between the surface density distributions at both times shows that the stellar structure
in the simulation typically evolves towards higher densities, even though the densityrange
spanned by the sink particles does not change much. As shouldbe expected, the high end of
the surface density distribution is occupied by the sink particles that are residing in subclus-
ters (shaded area), reaching densities of more than 105 stars per pc2. These surface densities
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Figure 2.1: Spatial distribution of sink particles that are present at the end of the 104 M⊙ simulation
(t = 0.641 Myr), projected on the x-y plane. Black particles constitute subclusters, and dark grey
particles belong to the field population. Since the spatial extent of the simulation in the z-direction is
larger than in the x-y plane, some of the apparent clusteringis the result of the projection.

Figure 2.2: Surface density distributions of sink particles. The solidhistogram includes all sink
particles present at the end of the simulation (t = 0.641 Myr), with the shaded histogram marking
the subset of particles that belong to subclusters. The dashed curve represents a lognormal fit to the
distribution with a peak at log (Σsink) = 3.75 and a dispersion ofσlogΣ = 1.13. For comparison, the
dotted histogram denotes the surface density distributionof sink particles att = 0.442 Myr.
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Figure 2.3: Top: time evolution of the number of subclusters.Bottom: time evolution of the mean
subcluster mass. The star formation efficiency (SFE) of the entire simulation is indicate along the top
axis.

are several orders of magnitude higher than those observed in nearby (< 500 pc) star-forming
regions by Bressert et al. (2010), which is not surprising for three reasons. Firstly, crowding
obstructs the observation of the densest parts of star-forming regions, which are therefore
not included in their sample. Secondly, we consider a population of subclusters in a region
that would be identified as only one or two actual star clusters in their analysis. Lastly, the
high densities that are achieved in the simulation are likely the result of the initial conditions.
Nonetheless, the surface densities do compare well to the high-density region in the Orion
Nebula cluster (ONC;Σ ≥ 103 pc−2, Hillenbrand & Hartmann 1998, Bressert et al. 2010),
although the system under consideration here is about one order of magnitude younger than
the ONC.

The subcluster assembly history is considered in Fig. 2.3, which shows how the number
of subclusters and the mean subcluster mass evolve as a function of time and star formation
efficiency (SFE, the fraction of gas that has been converted to stars). The number of subclus-
ters initially increases until it reaches a maximum, which occurs when the formation of new



The dynamical state of stellar structure in star-forming regions 21

concentrations of sink particles is neutralised by the hierarchical merging of other subclus-
ters. This is nicely illustrated by the mean stellar subcluster mass, which steeply increases
aroundt = 0.55–0.60 Myr, when the merging of new-formed subclusterscauses the number
of clusters to decrease. The mean mass keeps increasing until the end of the simulation due
to the ongoing accretion of gas and small subclusters onto sink particles and the merging of
small subclusters with a few massive ones. This mass increase would eventually be halted on
time scales much longer than the duration of the simulation,when the available gas reservoir
is depleted or, more likely, when the further inflow of gas is obstructed by feedback from
supernovae and stellar winds (neither of which are includedin the simulation).

2.3 Dynamical state of stellar subclusters

Whether or not a gas-embedded stellar structure survives gas expulsion depends on its dy-
namical state. Excluding the gas from the dynamical analysis is equivalent to observing the
stellar structure at the moment of instantaneous gas removal. This represents the extreme case
of gas expulsion, since a more gradual expulsion could allowa subcluster to (adiabatically)
respond to the potential change and thereby retain a larger number of stars. As a result, the
analysis of the dynamical state of solely the stellar component in simulations of star formation
provides a lower limit to the retention of stellar structureupon gas removal.

2.3.1 Dynamical quantities

We have followed the evolution of several (dynamical) properties of the identified subclusters
over the course of the simulation of Bonnell et al. (2008), such as the stellar mass, the stellar
half-mass radius1, the fraction of the subcluster mass that is bound, and the virial ratio. The
properties of the stellar component are supplemented with information on the gas, including
the gas mass fractions within the subclusters.

The gravitational boundedness and virial ratio of subclusters are fundamental measures
for their dynamical state. Both quantities are based on the potential energy and internal
kinetic energy of a subcluster. For a sink particlei , the potential energyV i is defined as

V i = −
∑

j 6=i

Gmi mj

rij
, (2.3)

wheremi andmj are the sink particle masses andrij their mutual distance. The kinetic energy
Ti of a sink particle is

Ti =
1
2

mi |vi − vcl|2, (2.4)

wherevi andvcl are the respective velocity vectors of the sink particle andthe centre of mass
of the subcluster. A particle is gravitationally bound ifTi + V i < 0. We define the virial ratio

1The subclusters have predominantly small elongations (Maschberger et al. 2010, Fig. 10), which enables the use
of a half-mass radius.
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Qvir as

Qvir = −2
∑

i Ti
∑

i V i
. (2.5)

The factor 2 reflects the correction for counting the potential energy twice for each particle
pair when combining Eqs. 2.3 and 2.5. A subcluster is in virial equilibrium if Qvir ∼ 0.5 and
gravitationally bound ifQvir < 1. Supervirial subclusters haveQvir > 0.5, while subvirial
subclusters haveQvir < 0.5.

It is possible that a single, dynamically hard binary, triple or multiple system dominates
the energy of a subcluster. We correct for this by searching the sink particle list for binaries2

and replacing them with a single centre of mass particle. We repeat this step two more times,
thereby correcting for triples and higher-order multiple systems. During the last iteration, the
kinetic and potential energies of the subclusters generally remain unchanged, which indicates
that a correction for higher order multiples is not required. We quantify the effect of binaries
on the observables of interest below.

In previous studies, the SFE has been identified as a key parameter which determines
the survival chances of stellar clusters upon gas expulsion(e.g. Goodwin & Bastian 2006).
However, a more fundamental critical factor is the dynamical state of the stars when the gas
is removed. TheeffectiveSFE, eSFE = 1/2Qvir, was therefore introduced as a measure for
the survival probability of stellar structure at the momentof instantaneous gas expulsion (e.g.
Verschueren 1990, Goodwin 2009). If the gas and stars were invirial equilibrium before gas
expulsion, the eSFE is equivalent to the actual SFE. If they were not in virial equilibrium, the
eSFE no longer reflects the actual SFE. In that case, the survival chance of stellar clusters is
not related to the actual SFE, but is solely determined by their dynamical state. The eSFE is
naturally higher in the identified subclusters than in the simulation as a whole.

2.3.2 Virial ratio

As star formation progresses, the population of subclusters grows in terms of its total mass.
The hierarchical merging of the subclusters inhibits the increase of their number and causes
it to level off towards the end of the simulation, when the formation of new subclusters is bal-
anced by their accretion onto more massive ones (see Fig. 2.3and Maschberger et al. 2010).
Another consequence of this hierarchical buildup is that the properties of the subcluster pop-
ulation as a whole is not a direct representation of the evolution of individual subclusters,
but also include ‘emergent’ properties of the population due to the interactions between the
subclusters. This is also relevant when considering the mean virial ratio of the subclusters
as a function of time. Individual subclusters can be formed either subvirially or supervirially
with respect to the total potential, and would eventually virialise with the total potential if
kept in isolation. Deviations from this trend occur when subclusters merge or accrete smaller
stellar aggregates, which temporarily increases the virial ratio of the merger product due to
the relative velocity of the progenitors. Another thing to keep in mind is that we only include

2Binaries are selected by identifying a most bound partner for each sink particle. If it exists and the semimajor
axis is smaller than 1000 AU, it is considered a binary.
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Figure 2.4: Time evolution of the mean virial ratio of the stellar subclusters (black solid line), of the
mean virial ratio weighted by subcluster mass (grey dash-dotted line), and of the total virial ratio of
all sink particles in the simulation (dashed line). The horizontal dotted lines indicate the marginally
gravitationally bound case (Qvir < 1) and the virialised case (Qvir = 0.5). After t = 0.5 Myr, about
40–60% of the stars resides in subclusters.

the stars in our dynamical analysis, implying that the obtained virial ratio is always higher
than its actual value by an amount that depends on the gas fraction. This affects the mean
virial ratio of the population of subclusters, in which there is a continuous formation of new,
gas-rich subclusters, which are typically still supervirial and only reachQvir = 0.5 after some
further evolution.

Despite the complex setting of hierarchical star formation, the evolution of the mean virial
ratio can be used as a first indication of how the dynamical state of the subcluster population
evolves over time. This is shown in Fig. 2.4, which also includes the time evolution of the
virial ratio of the entire simulation. As indicated earlier, we ignore the contribution of the
gas to the gravitational potential, in order to assess the dynamical state of the stellar structure
under the assumption of instantaneous gas removal. Even without accounting for the gas
potential, the population of subclusters evolves to a near-virialised state on a time scale of
only a few tenths of a Myr. This would suggest that the subclusters are typically gas-poor
on length scales corresponding to their half-mass radii. The difference between the mean
virial ratio and the mean virial ratio weighted by subcluster mass in Fig. 2.4 indicates that
more massive subclusters are typically somewhat closer to virial equilibrium than low-mass
subclusters. This is more of a trend than a relation: a simplelinear regression of the virial
ratio and subcluster massM yields a best fit ofQvir = 0.86−0.16 logM , but with scatter larger
than the fitted slope. Lastly, it is also shown by Fig. 2.4 thatthe entire stellar population in
the simulation does not reach virial equilibrium, but does become marginally bound. This
occurs because the simulation as a whole has a higher gas fraction than the subclusters (see
Sect. 2.3.3), which illustrates that the SFE depends on the location and length scale on which
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Figure 2.5: Dependence of the bound mass fraction (ratio of the total mass of the bound sink particles
to the subcluster mass) on the virial ratio for the subclusters from all snapshots of the simulation. Each
symbol represents a subcluster. The dashed line representsa linear fit to the data. Like in Fig. 2.4,
the dotted lines indicate the marginally gravitationally bound case (Qvir < 1) and the virialised case
(Qvir = 0.5).

it is computed. The dynamical state of the entire simulationalso bears some traces of the
initial conditions, covering a cylinder that contains a bound upper half and an unbound lower
half (see Sect. 2.2).

The virial ratios of individual subclusters do not show notable correlations with subcluster
mass or half-mass radius3. Instead, they depend more strongly on the recent mass evolution of
the subclusters. The virial ratio temporarily increases whenever the subcluster mass increases,
be it due to the merging with other subclusters or by individual sink particles moving inside
the MST break distance. When sink particles move more than a break distance away and the
subcluster mass decreases, the virial ratio decreases as well. Both are natural consequences
of the inclusion or exclusion of transient substructure in the identification of the subclusters.
The same dependence is found when using different MST break distances to identify the
subclusters: larger break distances yield more extended subclusters and consequently the
mean virial ratio is higher. When set to extreme values (dbreak > 0.050 pc), close passages
of subclusters are incorrectly picked up as merger products, causing a spurious increase of
the virial ratio. For the largest break distance used in our analysis (dbreak = 0.100 pc), these
fluctuations can yield mean virial ratios briefly hitting〈Qvir〉 = 1, in clear contrast with the
result from Fig. 2.4.

The quantity that most strongly correlates with the virial ratio is the bound mass fraction
of the subclusters, i.e. the fraction of their mass that is bound even without accounting for
the potential of the gas (see the definition in Sect. 2.3.1, a sink particle is bound ifTi +

3Except for the unbound sublcusters (Qvir > 1), which are generally small (rh < 0.04 pc) and low-mass (M <
30 M⊙).
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Figure 2.6: Histogram of the virial ratios of the subclusters from all snapshots of the simulation (solid
line). The shaded histogram represents the set of subclusters from the last snapshot att = 0.641 Myr.
The dashed line is a Gaussian fit to the data for all snapshots,with mean valueQvir = 0.59 and standard
deviationσQ = 0.16. The vertical dotted lines again indicate the marginally gravitationally bound case
(Qvir < 1) and the virialised case (Qvir = 0.5).

V i < 0.). It is shown in Fig. 2.5 that subclusters with high virialratios tend to have lower
bound mass fractions, albeit with substantial scatter. This is not surprising, because the virial
ratio is efficiently increased by fast, unbound sink particles that are included by the MST
algorithm but would be left out with a physically motivated identification. For larger break
distances, the correlation between bound mass fraction andvirial ratio is stronger, due to
the erroneous identification of kinematically hot structure as subclusters. Nonetheless, most
subclusters contain only very few unbound stars, with typical bound mass fractions of 0.95.
Figure 2.5 also confirms that most subclusters are close to virial equilibrium, which was
already suggested by the evolution of the mean virial ratio in Fig. 2.4. For further illustration,
Fig. 2.6 shows the distribution of the virial ratios of the subclusters from all snapshots, as
well as those from the last snapshot, which are shown as the shaded region. Only 8% of
the subclusters are unbound when excluding the gas, while 25% remains subvirial. When
considering the subclusters from all snapshots, a Gaussianfit to the distribution of virial
ratios gives a mean ofQvir = 0.59 and a standard deviation ofσQ = 0.16. As in Fig. 2.4,
the gradual decrease of the mean virial ratio towardsQvir = 0.5 is also visible in Fig. 2.6. A
comparison of the two histograms shows that the subclustersin the last snapshot are closer
to being virialised than the population of subclusters fromall snapshots. These virial ratios
imply that the eSFE is close to unity, i.e. the majority of subclusters will not be strongly
affected by gas expulsion (see Sect. 2.4).

Replacing hard binaries and higher order multiples by theircentre of mass particles is
essential to obtain a reliable picture of the subcluster dynamics. The disruption of the sub-
clusters during gas expulsion is controlled by the dynamical state of the binary centres of
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mass rather than the binaries themselves. If we would not correct for binaries or higher order
multiples, the measures for the dynamical state of the subclusters would fluctuate with the
orbital phase of a few tightly bound and eccentric binaries.

The bound mass fraction of the subclusters is not strongly affected by the presence of
binaries (unbound sink particles are generally single), but because binaries are in virial equi-
librium4 or slightly subvirial, the mean virial ratio of the subclusters from all snapshots is
decreased by 0.1–0.2 if it is not corrected for multiples. About two thirds of this difference
is due to binaries, while the remaining third is accounted for by triples and quadruples. This
shift of the virial ratio means that without correcting for binaries, the subclusters could be in-
correctly interpreted as being slightly subvirial5 (Qvir ∼ 0.45–0.50), and the entire simulation
would be close to virialised (Qvir ∼ 0.60–0.65) instead of the marginally bound state that is
shown in Fig. 2.4. With respect to the binary-corrected results from Fig. 2.4, this rather mod-
est difference arises because the finite gravitational smoothing length used in the simulation
inhibits the formation of very hard binaries. Nonetheless,the correction for binaries improves
the accuracy of our analysis, and therefore all results shown in this paper are corrected for
binaries and higher order multiple systems.

2.3.3 Gas content

The key question iswhythe subclusters are so close to virial equilibrium when neglecting the
gas potential. An obvious answer would be that the subclusters are generally gas-poor, which
would imply that they are hardly affected by the gas potential in the first place. To assess
the gas potential and its time evolution, we have analysed the distribution of the gas in two
snapshots of the simulation, at timest1 = 0.442 Myr (when star formation is ongoing) andt2 =
0.641 Myr (the last snapshot of the simulation, after one free-fall time; also see Fig. 2.3). For
each of the identified subclusters in these snapshots, we calculate the fraction of the total mass
within the stellar half-mass radius of the stellar distribution that is constituted by gas. The
distribution of these gas fractions is shown in Fig. 2.7, which confirms that the subclusters are
indeed gas-poor on their typical length scales, with gas fractions of〈fgas〉 = 0–0.2. Because
the simulation does not include feedback, this means that the accretion of gas onto the sink
particles can keep up with the overall gas inflow towards the subclusters. Another mechanism
that naturally leads to gas-poor subclusters is their accretion-driven shrinking (Bonnell et al.
1998, Moeckel & Bate 2010, Moeckel & Clarke 2010), which increases the density contrast
between the subclusters and the surrounding gas.

Gas accretion and the time evolution of the structural properties of the population of sub-
clusters both further decrease the gas fraction as time progresses. This evolution is illustrated
by comparing the data of the two snapshots in Fig. 2.7, corresponding to timest1 = 0.442 Myr
andt2 = 0.641 Myr. During the enclosed time interval, the mean gas fraction of all detected
subclusters decreases by 0.63 dex, from〈fgas(t1)〉 = 0.238 to〈fgas(t2)〉 = 0.056. The mean

4Instantaneously, this only holds for binaries on circular orbits. Binaries on eccentric orbits exhibit a variation
of the virial ratio, with a subvirial state near apocentre and a supervirial state near pericentre. When considering the
time-averaged virial ratio, eccentric binaries are in virial equilibrium. However, because the phase velocity is lowest
near apocentre, a sampled population of randomly oriented binaries will typically be slightly subvirial.

5As in all of Sect. 2.3.2, this statement excludes the gravitational potential of the gas.
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Figure 2.7: Histogram of the gas fraction within the stellar half-mass radiusrh of each subcluster from
the two snapshots att1 = 0.442 Myr andt2 = 0.641 Myr (solid line). The shaded histogram only shows
the gas fractions for the last snapshot att = 0.641 Myr.

half-mass radius of the subclusters decreases from〈rh(t1)〉 = 0.020 pc to〈rh(t2)〉 = 0.013 pc,
which is a decrease of 0.18 dex. Even though the shrinking of subclusters is a second order
effect caused by gas accretion, it is interesting to ask which of both mechanisms contributes
most to the decrease of the gas fraction. Is it mainly driven by the increasing mean stellar
density of the subclusters or by the ongoing gas accretion onto the sink particles?

To assess the relative contributions to gas depletion by accretion and subcluster shrinking,
we consider the spatial distribution of the sink particles and the gas. Due to the relatively
small numbers of stars in individual subclusters, it is bestto examine the mean density profiles
of the populations of subclusters in the two snapshots att1 andt2. Such a combination of the
different density profiles decreases the influence of low-number statistics on the result. In
Fig. 2.8, we show the subcluster mass-weighted, mean cumulative mass distributions of gas,
sink particles, and both combined. The distributions represent the enclosed mass fractions
µ, normalised to the sum of the subcluster massMcl and the enclosed gas mass within three
stellar half-mass radiiMgas:

µi (ξ) ≡
M i (ξ)

Mcl + Mgas
, (2.6)

with i = {stars, gas, all} andM i (ξ) the enclosed mass atξ ≡ r/rh, which is the radial distance
in units of the stellar half-mass radius. The mean distributions shown in Fig. 2.8 are weighted
by subcluster mass to emphasise those subclusters with better statistics. A first comparison
of both panels in Fig. 2.8 shows that the gas fraction indeed decreases betweent1 andt2. The
contribution to this decrease by subcluster shrinking can be estimated by a simple thought
experiment, in which the gas distribution is kept fixed and the distribution of stellar mass
is compressed by the appropriate amount. In the top panel of Fig. 2.8, the half-mass radii
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Figure 2.8: Subcluster mass-weighted, mean cumulative mass fractions〈µ(ξ)〉 (see Eq. 2.6) of sink
particles (dashed line), gas particles (dash-dotted line)and the sum of both (solid line), as a function of
the radial distance in units of the half mass radius (ξ ≡ r/rh). Top: mean cumulative distributions for
the subclusters present att1 = 0.442 Myr. Bottom: mean cumulative distributions for the subclusters
present att2 = 0.641 Myr. The shaded areas enclosed by the dotted lines mark the 16th and 84th
percentiles and illustrate the typical spread of the enclosed mass fractions of sink particles (dark grey)
and gas (light grey).

〈rh(t1)〉 and〈rh(t2)〉 correspond toξ = 1 andξ = 0.66, between which the enclosed gas mass
differs by 0.26 dex. In other words, if the gas distribution was held fixed and the stellar
distribution was shrunk appropriately, then the gas fraction within the new half-mass radius
would have declined by 0.26 dex. This is a probe for the decrease of the gas fraction that is
solely caused by the shrinking of the subclusters. Comparing it with the actual decrease of
the mean gas fraction betweent1 andt2 of 0.63 dex, we see that it covers about half of the
decrease, with the remaining 0.37 dex covered by gas accretion itself – not only by adding
to the mass in stars, but also by decreasing the gas mass. We conclude that the evacuation of
the gas due to ongoing gas accretion is about equally important for the gas depletion as the
shrinking of the subclusters.

Apart from enabling a quantitative comparison of the effectof gas accretion and cluster
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shrinking, Fig. 2.8 also demonstrates the spatial variation of the gas fraction in the subclusters.
At early times, the gas is still prevalent in the outskirts ofthe subclusters, contributing 20–
60% of the enclosed mass atξ = 3. At the end of the simulation this gas has mostly vanished,
leaving only a few percent of the mass within the stellar half-mass radius as gas, and typically
20% atξ = 3. It is interesting to note that the relative increase of the enclosed gas mass
fraction with respect to the enclosed sink particle mass fraction only occurs at radii where the
latter flattens, i.e. the subclusters only become gas-rich at radii where very little stellar mass
is present. The influence of the gas on the subcluster dynamics is therefore best evaluated at
radii smaller than where the flattening ofµstarsoccurs. Att1, the ratio between the enclosed
stellar mass and gas mass just before the flattening is about 4:1, while att2 it has increased to
11:1. This suggests that if feedback starts at a timet > t2, the resulting gas expulsion will not
strongly affect the subcluster dynamics, and that their virialised state (see Sect. 2.3.2) will be
largely retained.

2.4 Response to gas expulsion

Motivated by the low gas fractions found in Sect. 2.3, we now address the response of the
subclusters to gas expulsion in more detail.

2.4.1 The expansion of subclusters

The long-term response of the subclusters to gas expulsion can be evaluated by once again
omitting the gas from the simulations and considering only the identified stellar subclusters
and their evolution towards virial equilibrium. Given a certain virial ratio and bound mass
fraction, does a subcluster expand or shrink after gas removal? We combine the data from
the simulations with a simple energy argument similar to Hills (1980) to estimate how the
subcluster masses and half-mass radii evolve after the expulsion of the gas. It is insightful to
consider the system at two key moments.

(1) The time of instantaneous gas removal, which is equivalent to the current system in
the simulations while omitting the gas. This can be done for each snapshot, thereby
providing a larger sample of subclusters than when only the last snapshot were to be
considered. Of course, including subclusters from different snapshots implies a corre-
spondingly extended range of moments of gas expulsion.

(2) The time at which each subcuster attains virial equilibrium. These times are different
for each cluster per definition, but by considering the subclusters at their respective
times of virialisation the long-term impact of gas removal is most clearly isolated and
identified.

The evolution of the subclusters between these two moments can be quantified by evaluating
the conservation of energy. For any subcluster, we can express the kinetic energy as

T =
1
2

Mcl〈v2〉 ≡ −VQvir ≈
GM2

cl

2rv
Qvir , (2.7)
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whererv is the virial radius, and〈v2〉 denotes the mean square velocity, which as a result can
be written as

〈v2〉 = Qvir
GMcl

rv
. (2.8)

The total energy at the moment of instantaneous gas removal thus becomes

E1 = (Qvir,1 − 1)
GM2

cl,1

2rv,1
, (2.9)

where the relevant quantities have been marked with subscript ‘1’ to indicate the moment of
gas expulsion.

Given a deviation from virial equilibrium, a subcluster will respond by changing its radius
and/or mass. As can be verified from Fig. 2.5, most subclusters contain a certain number of
unbound sink particles, which were either previously retained by the gas potential, or are
randomly passing the subcluster close enough to be includedby the cluster identification
algorithm. These unbound sink particles will escape the subcluster upon gas expulsion and
take away some of the kinetic energy. We now consider a secondmoment in time, at which
the gas-rid subcluster has reached virial equilibrium (Qvir,2 = 0.5) and the unbound sink
particles have successfully escaped. At this time, energy conservation dictates

E1 = E2 + Eesc = −
GM2

cl,2

4rv,2
+ (Mcl,1 − Mcl,2)

β〈v2
2〉

2
, (2.10)

whereE2 is the total energy of the (virialised) subcluster,Eescis the total energy of the escaped
stars, and the relevant quantities have been marked with subscript ‘2’ to indicate the moment
of virialisation. The parameterβ denotes the surplus energy per unit mass of the escaped
stars after they clear the potential of the subcluster, in units of its mean square velocity. The
values ofβ can be estimated from the simulation by computing (Ti +V i )/(GMcl,2mi /2rv,1) for
each of the unbound sink particles6. For this, we use the relation between the virial and half-
mass radius corresponding to a Plummer (1911) potential, which is given byrv = 1.3rh (e.g.
Heggie & Hut 2003). The escaping sink particles are the tail of an approximately Maxwellian
velocity distribution of the sink particles in the subcluster, and consequently the distribution
of β declines exponentially asf (β) ∝ exp(−β/β0), with β0 around unity. The mean of such
a distribution equalsβ0 per definition, which illustrates that unbound stars typically retain
velocities similar to the mean square velocity in the subcluster after they escape.

Combining Eqs. 2.8 and 2.10, one obtains an expression for the evolution of the gas-
rid subcluster as it approaches virial equilibrium, which relates the half-mass radii, masses,
initial virial ratio andβ. It is given by

rh,2

rh,1
≈ rv,2

rv,1
=

1
1− Qvir,1

[

1 +β
2

(

Mcl,2

Mcl,1

)2

− β

2
Mcl,2

Mcl,1

]

, (2.11)

6The denominator holds a slightly modified form of the mean square velocity〈v2
2〉 (see Eq. 2.8) and assumes that

the virial radius does not change much between gas expulsionand virialisation (i.e.rv,1 ≈ rv,2). This is required
sincerv,2 is not available in the simulation. The assumption will be verified below.
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whererh,2 is the only unknown and all other variables given by the simulation. Forβ = 0,
i.e. all escaping stars are only marginally unbound, the expression returns the basic result that
when unbound stars escape from a virialised system (Qvir,1 = 0.5), it contracts to reattain virial
equilibrium7. Inserting typical values ofβ = 1 (see above),Qvir,1 = 0.59 andMcl,2/Mcl,1 =
0.95 (see Sect. 2.3.2) in Eq. 2.11 yieldsrh,2/rh,1 = 1.04, which justifies the earlier assumption
that the radius does not change much between instantaneous gas removal and virialisation (see
footnote 6). This minor expansion is driven by the slightly supervirial state of the subclusters,
and inhibited by the escape of unbound stars, which have velocities larger than the escape
velocity.

As discussed in Sect. 2.3.2, the virial ratios of the subclusters give an indication of their
survival fraction after gas removal. Out of all 140 subclusters identified in the simulation,
only 10 have virial ratiosQvir > 1 and are therefore unbound. In the last snapshot of the
simulation, only one of the 21 subclusters will disperse after the removal of the gas8. As a
result, typically 90–95% of all the identified subclusters survive gas expulsion. The fate of
these survivors depends on whether they expand, and how their environment affects them.
Expanded subclusters with lower densities are more susceptible to disruption by tidal shocks.
The evolution of the half-mass radii after gas expulsion canbe considered in more detail by
evaluating Eq. 2.11 for each of the subclusters in the simulation. This enables a comparison
of the distribution of half-mass radii of the current subclusters (at the moment of instanta-
neous gas removal) with the distribution of their half-massradii when they have reached
virial equilibrium, which is shown in Fig. 2.9. The distribution of half-mass radii changes
remarkably little after gas removal, as the means of the lognormal functions that are fitted to
both distributions differ by 0.035 dex. This impliesrh,2/rh,1 = 1.08, very similar to the earlier,
simple estimate ofrh,2/rh,1 = 1.04. The subclusters in the last snapshot experience roughly
1.5 times this expansion after gas removal, which is of the same order of magnitude as the
expansion of the other subclusters. The relative stabilityof the half-mass radii indicates that
the subclusters themselves do not become more susceptible to tidal perturbations due to their
expansion following gas expulsion.

2.4.2 The cluster formation efficiency

The instantaneous gas removal discussed in this paper is an extreme form of the more gradual
expulsion occurring in nature. As a result, the described weak effect of gas expulsion should
be even weaker in real subclusters. It seems that gas expulsion plays a negligible role on the
length scales of the compact stellar aggregates in star-forming regions. However, the regions
between subclusters may still be gas-dominated, implying that feedback could prevent the
further merging of subclusters and thereby inhibit their hierarchical growth.

7This situation, in which the naturally unbound component ofa system escapes, should not be confused with
the response of a virialised system to mass loss due to stellar evolution, when energy is injected into the system to
unbind mass. In such a case, the surplus energy of the escaping mass is supplied by the energy injection and not by
the dynamical system itself, which therefore mainly loses potential energy. This does not apply to the case under
consideration in Eq. 2.11, where no energy is injected and the unbound stars take away more kinetic energy than
potential energy.

8These unbound subclusters are typically low-mass, compactsystems, and are often newly formed or have just
experienced a subcluster merger.
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Figure 2.9: Histogram of the stellar half-mass radii of the subclustersfrom all snapshots (solid line).
The shaded histogram represents the set of subclusters fromthe last snapshot att = 0.641 Myr. Top:
for the simulated radii, representing the moment of instantaneous gas removal.Bottom: for analytically
computed radii, reflecting the subclusters at a later moment, when they have reached virial equilibrium.
The dashed lines are lognormal fits to the data for the subclusters from all snapshots, with mean values
log (rh/pc) = {−1.98,−1.95} and standard deviationsσlog r = {0.73, 0.61} for the top and bottom
panel, respectively, with median half-mass radii log (rh/pc) = {−1.96,−1.91}.

The length scale on which the subclusters will have merged and have become gas-poor
depends on the moment at which feedback starts. For the MST break distance and corre-
sponding length scale that is used in most of this paper, the subclusters are gas-poor irrespec-
tive of time. However, there should be a break distance at which a notable time-evolution
of the gas fraction appears. By comparing the subcluster gasfractions for different break
distances, we find that at the end of the simulation (after onefree-fall time), the subclusters
have become gas-poor (〈fgas〉 < 0.1) on a length scale of about 0.1–0.2 pc. This length scale
will increase further with the number of free-fall times that are completed before the onset of
feedback. In turn, this increases the spatial extent over which the subclusters are allowed to
merge before gas expulsion, which implies that the most massive bound structure is inversely
related to the free-fall time.
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The free-fall time is related to the density astff ∝ ρ−1/2, which implies that the time
of the onset of feedbacktfb is associated with a densityρfb that has a free-fall time equal to
tfb. For a given density spectrum of subclusters (see e.g. Bressert et al. 2010), only those
subclusters with densitiesρ ≫ ρfb ∝ t−2

fb have the opportunity to undergo the collapse and
shrinkage that we find in the simulations. The CFE increases with the fraction of subclusters
that forms in these density peaks. As subclusters merge, accrete gas and shrink, the density
of the stellar structure further increases (see Sect. 2.3).Each free-fall time, more subclusters
evolve into the density regime whereρ ≫ ρfb, also on larger length scales. This means that
the length scales on which star-forming regions produce virialised stellar systems that are
insensitive to gas expulsion are larger in dense sites of star formation than in sparse ones.
The resulting dense clusters are also less susceptible to disruptive tidal effects from their
environment, which potentially further increases their survival chances. As a result, the CFE
should increase with density. Through the Schmidt-Kennicutt law (Schmidt 1959, Kennicutt
1998b), this suggests a relation between the CFE and the starformation rate per unit volume
ρSFR or per unit surface areaΣSFR. Indeed, first observational indications for such a relation
have been found by Larsen & Richtler (2000), Larsen (2004), and recently also by Goddard
et al. (2010), who obtain CFE∝ Σ

0.24
SFR. A relation between the CFE and the star formation rate

density would also be consistent with the high cluster formation efficiencies that are found in
starburst galaxies (e.g. Zepf et al. 1999). However, dense star-forming regions are generally
also more disruptive to clustered structure due to the higher frequency and amplitude of tidal
shocks (Lamers et al. 2005b, Kruijssen et al. 2011c). This implies that a relation between
the CFE and the ambient density would be weakened or could even be cancelled (also see
Sect 2.4.3).

2.4.3 Infant mortality and the ‘cruel cradle effect’

It is often said that most stars form in stellar clusters. Theconcept of ‘infant mortality’
(Lada & Lada 2003), i.e. the rapid dispersal of stellar structure following the change of the
gravitational potential due to gas expulsion, has been put forward in the literature to explain
the observed rapid, mass-independent decline of the numberof stellar clusters between ages
of a few Myr and several tens of Myr (e.g. Bastian & Goodwin 2006). Because the majority
of stars has been thought to form in clusters, infant mortality was also held responsible for
the low number of clusters per unit field star mass. However, recent (observational) evidence
is pointing towards a picture in which star clusters are the dense end of a continuous density
spectrum of star formation (see Fig. 2.2 and Bressert et al. 2010, Gieles & Portegies Zwart
2011). This view challenges the need for infant mortality inthe early disruption of stellar
structure.

The results presented in this paper show that stellar substructure can evolve towards a
virialised state before the gas is removed. This occurs because the dynamics of the stars
and the gas are decoupled (also see Offner et al. 2009), as theaccretion of gas onto the
stars together with the subcluster shrinkage can compensate the overall gas inflow onto the
subclusters. In time, this causes the subclusters to becomegas-poor, thereby diminishing the
disruptive effect of gas expulsion. It depends on the lengthand mass scales on which the
gas is evacuated whether this result can be extended from subclusters to actual star clusters.
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Towards the end of the simulation, after about 0.3 Myr of starformation, the subclusters have
a mean mass of 40 M⊙ and are gas-poor on length scales of 0.1–0.2 pc. As a very crude
first-order estimate, one can re-scale the units of the simulation to have the subclusters match
the typical properties of young star clusters9. By multiplying the mass unit by a factor of 25
and the length unit by a factor of 5, we re-scale the mean cluster mass to 103 M⊙, and the
length scale on which the stellar structure will be gas-poorto 0.5–1 pc. By scaling the time
unit accordingly, we see that such gas depletion is reached on a time scale of 0.8 Myr, which
is of the same order as the expectedtfb due to stellar winds and ionisation feedback. This
order-of-magnitude estimate is of course far from conclusive, but it does show the relevance
of pursuing this problem further.

If clusters reach a relatively gas-poor state before the onset of feedback, the influence of
gas expulsion on the dynamical state of the clusters will be smaller than previously expected.
Rather than leading to the disruption of clusters (‘infant mortality’), the different spatial dis-
tributions of gas and stars imply that gas expulsion could leave clusters marginally affected,
unbinding only a certain fraction of their stars (e.g. Moeckel & Bate 2010). This is in clear
contrast with earlier (theoretical) approaches in literature (e.g. Boily & Kroupa 2003a,b, Bas-
tian & Goodwin 2006, Goodwin & Bastian 2006, Baumgardt & Kroupa 2007, Parmentier
et al. 2008), which assumed a model where the gas and stars arein equilibrium during gas
expulsion. Clearly, this is not the case in the simulation ofBonnell et al. (2008).

Because the density of the stellar structure determines whether or not gas expulsion af-
fects the survival chances of star clusters, a continuous density spectrum of young stellar
structure as in Bressert et al. (2010) and Fig. 2.2 naturallyleads to the situation in which the
dispersed part of the new-born stellar structure is affected by gas expulsion, while the other,
dense and clustered part is not. However, this does not implythat the survival chances of
these clusters are necessarily higher. Recent papers have argued that the disruption of star
clusters due to tidal shocks from the natal environment could be substantial (Elmegreen &
Hunter 2010, Kruijssen et al. 2011c, Kruijssen & Bastian 2011). Although the disruption
rate due to tidal shocks decreases with cluster density, sufficiently strong10 shocks could still
disrupt dense clusters. Such shocks could be prevalent in dense star-forming regions. As
clusters move out of their primordial environment, the typical ambient gas density decreases
(Elmegreen & Hunter 2010, Kruijssen et al. 2011c), which lessens the disruptive effect of
tidal shocks. Observationally, this mechanism affects thestar cluster population in a way that
is very similar to infant mortality: the fact that young clusters are more efficiently disrupted
than older clusters gives rise to a strong decline of the number of clusters with age at young
ages. This decline acts on the age scale corresponding to thetime it takes to migrate out
of the star-forming region. Rather than being an internal effect, like infant mortality is, the
primordial disruption by tidal shocks is driven by the stateof the environment in which the
clusters are born. We will therefore refer to this mechanismas the ‘cruel cradle effect’.

It will be interesting to quantify what the relative contributions of gas expulsion and the
cruel cradle effect are to the early disruption of young stellar clusters. It is likely that both ef-
fects coexist, and that the relative importance changes with the environment. It was explained

9The simulations are scale-free except for the sink particleradius and accretion radius mentioned in Sect. 2.2.
For the scaling used in this example, these respective radiiare 103 AU and 200 AU.

10The strength of a tidal shock corresponds to the amount of energy it injects into the cluster.
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in Sect. 2.4.2 that the fraction of clusters that is affectedby gas expulsion decreases with the
ambient density of the star-forming region. The cruel cradle effect shows the opposite de-
pendence, as the disruptive effect of tidal shocks increases with the ambient gas density. It
would therefore not be unlikely that gas expulsion and the cruel cradle effect each dominate
a different side of the gas density spectrum of star-formingregions. Their relative strength
would then determine the relation between the CFE and the ambient gas density.

2.5 Summary and outlook

In this paper, we have assessed the dynamical state of stellar structure in star-forming regions
and its response to gas expulsion by analysing the properties of the stellar structure in the
SPH/sink particle simulations of Bonnell et al. (2003, 2008). Subclusters have been identified
using a minimum spanning tree algorithm (MST, following Maschberger et al. 2010), and
binaries have been replaced by their centre-of-mass particles when computing the global
dynamical properties of the subclusters. We have also discussed the long-term implications
of gas expulsion for the properties of star cluster populations. The main results are as follows.

(1) The surface density distribution of sink particles follows an approximately lognormal
distribution similar to that observed by Bressert et al. (2010). However, the surface
density corresponding to the peak of the distribution is several orders of magnitudes
higher than the observed one, because the subclusters considered in our study are part
of a region that would represent only one or two clusters in the observations. The high-
density end of the distribution is occupied by sink particles belonging to the subclusters
that are identified with the MST.

(2) When excluding the potential of the gas from the dynamical analysis and only con-
sidering the sink particles, we find that the simulation as a whole becomes marginally
bound after one free-fall time, and the population of individual subclusters is close to
virial equilibrium. The mean value of a Gaussian fit to the distribution of virial ratios
from all snapshots isQvir = 0.59, where virial equilibrium would implyQvir = 0.5. The
mean virial ratio of the population slowly decreases with time, fromQvir = 0.70–0.80
early on toQvir = 0.55–0.60 towards the end of the simulation.

(3) The virialisation of the subclusters occurs due to theirlow gas fractions. We consider
the spatial distributions of gas and sink particles at two characteristic moments during
the simulation (t1 = 0.442 Myr andt2 = 0.641 Myr, reflecting the system early on and
after one free-fall time), and find that the mean gas fractionwithin the stellar half-mass
radii of the subclusters decreases by 0.63 dex during the enclosed time interval, from
〈fgas(t1)〉 = 0.238 to〈fgas(t2)〉 = 0.056. By comparing the density profiles of gas and
sink particles, we conclude that this decrease is caused by gas accretion and subcluster
shrinkage to approximately the same degree.

(4) Because the subclusters are relatively gas-poor, they are only weakly affected by gas
expulsion and the subsequent evolution towards virial equilibrium. According to our
analytical estimate, they expand by an average factor of 1.08 after gas removal. The
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length scale on which the subclusters are gas-poor (〈fgas〉 < 0.1) is about 0.1 pc at the
end of the simulation. By scaling up the units of the simulation from subcluster to star
cluster scales, we find that after about 0.8 Myr of star formation, star clusters with a
mean mass of 103 M⊙ would be gas-poor on a length scale of 0.5–1 pc.

(5) Only those (sub)clusters with densities much larger than the density that is associated
with a free-fall time equal to the gas expulsion time can exhibit the shrinkage and
accretion that causes them to become gas poor. The fraction of clusters that reaches the
required density to become insensitive to gas expulsion before the onset of feedback
therefore increases with ambient gas density. This suggests a relation between the
cluster formation efficiency (CFE) and the ambient gas or star formation rate density,
with a larger fraction of star formation resulting in bound clusters in dense regions.

(6) A possible relation between the CFE and the ambient gas density is affected by a sec-
ond mechanism. In dense regions, the survival chances of stellar structure are not
determined by gas expulsion or ‘infant mortality’, but by the disruptive effect of tidal
shocks from the surrounding gas (Elmegreen & Hunter 2010, Kruijssen et al. 2011c).
This disruption of young clusters by their environment is titled the ‘cruel cradle effect’
and is suggested to take over the disruptive role of gas expulsion in dense star-forming
regions. The strength and relative contributions of infantmortality and the cruel cra-
dle effect as a function of ambient gas density will be the decisive factor to assess the
relation between the CFE and the ambient gas density. This needs to be quantified in
future studies, because the time scale covered by the simulation is too short to include
the disruption of subclusters due to the cruel cradle effect.

Throughout the paper, we have mentioned directions in whichfurther research should
be undertaken to verify and expand our conclusions. It is essential to check to what extent
these results depend on the properties of the simulations weanalysed, such as their initial
conditions and input physics. The three chief concerns would be whether the results are
affected by (1) the turbulence spectrum and initial setup ofthe simulation, (2) the inclusion
or exclusion of feedback and magnetic fields, (3) the choice of sink particle radius.

(1) The turbulence spectrum and overall boundedness of the simulation primarily influ-
ence the time evolution of the overall star formation efficiency (McKee & Ostriker
2007, Dale & Bonnell 2008), and will only impact the evolution of subclusters if the
inflow of gas becomes too high to be compensated by accretion and subcluster shrink-
age. Judging the relative ease at which the subclusters in the current simulation become
gas-poor, it is unlikely that the situation of a saturating gas inflow would take place.
However, a dynamical analysis of a larger set of simulationswill be needed to obtain
a conclusive picture, also to include the formation of starsand subclusters in environ-
ments with lower densities.

(2) Feedback from accreting sink particles would inhibit the inflow of the gas, which in
turn would lead to a lower gas fraction within the subclusters. There have been several
efforts in literature to quantify the effect of (positive ornegative) feedback on the star
formation process, which generally consider effects on thelength scales of the giant
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molecular clouds in which the star formation takes place (see e.g. McKee & Ostriker
2007). While global effects could influence the gas-poor state of the (sub)clusters,
the nature of feedback is such that it evacuates the gas on stellar scales, which would
therefore should not lead to a fundamentally different conclusion than made in this
paper. Magnetic fields could slow down the accretion process. If this decrease of
the accretion rate would be smaller in the outskirts of the subclusters than within the
stellar half-mass radius, it would increase the gas fractions and virial ratios of the stellar
component. Therefore, the influence of magnetic fields on ourresults will need to be
investigated.

(3) If the accretion and/or sink radii of the sink particles were comparable to the typical
interstellar separation, the gas-poor nature of the subclusters would be a trivial result
of a high ‘filling factor’ of the subclusters by the sink particles, as the volume where
the gas could reside without being accreted would be too small to achieve a stable
configuration. We have addressed this to first order by computing the accretion and sink
volumes taken up by sink particles and dividing it by the enclosed volume. This was
done for each sink particle while taking the nearest neighbour11, and also by calculating
a mean radial ‘filling factor’ profile for each subcluster, analogous to Fig. 2.8. Both
methods returned low filling factors, with typical values of10−2 for the sink radius
and 10−4 for the accretion radius. In other words, less than 1% of the volume inside
the subclusters is taken up by the sink particles. In order toassess to which extent
this allows us to neglect spurious accretion, we ran a set of simple test simulations with
different accretion and sink particle radii. These tests show that the gas accretion rate is
hardly affected by the accretion and sink radii, which validates our results. The details
of the tests are given in the Appendix Sect. 2.A.

Ideally, the next step would be to perform the same type of calculation as in Bonnell et al.
(2008) for different initial conditions, including descriptions for radiative and mechanical
feedback, potentially accounting for magnetic fields, and varying the sink particle radius. The
dynamical analysis of such simulations would provide a goodverification of our conclusions,
and would improve the current understanding of the dependence on initial conditions and
input physics.

The order-of-magnitude extension of our results from subcluster to actual star cluster
scales should be investigated further. With the continuously improving computational facil-
ities, it will be possible to simulate systems on the scales needed to cover the formation of
star clusters. The key ingredients of such an effort will be larger particle numbers and smaller
sink particle radii. Additionally, infrared or spectroscopic observations can be used to verify
the length scales on which star-forming regions are gas-poor prior to the onset of feedback.
The current and upcoming generation of telescopes will provide excellent opportunities for
this.

If gas expulsion indeed only weakly affects the survival chances of stellar structure, it will
need to be verified in which regimes infant mortality still plays a role. In order to understand
the relation between the CFE and the local environment, the relative contributions to early

11We used the particle list that was corrected for multiples, implying that bound neighbours were ignored.
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star cluster disruption of infant mortality and the cruel cradle effect will need to be quantified.
The kinematic signatures of both effects should differ and would therefore be measurable in
the velocity maps of young disrupted clusters. Possible ways in which this could be done ob-
servationally include searching for young clusters that are currently going through gas expul-
sion and mapping the radial velocities of the stars, or tracing the velocity dispersion profiles
of young, gas-poor clusters in dense regions. To aid this effort, the differences between the
kinematic signatures of energy injection into a star cluster by gas expulsion or tidal shocks
have to be established theoretically. The combination of these approaches should provide a
conclusive picture of the mechanisms that determine which fraction of star formation results
in bound star clusters.

Acknowledgements This research is supported by the Leids Kerkhoven-Bosscha Fonds (LKBF)
and the Netherlands Organisation for Scientic Research (NWO), grant 021.001.038. JMDK acknowl-
edges the kind hospitality of the Institute of Astronomy in Cambridge, where a large part of this work
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2.A Appendix: Independence of results on sink parameters

In this appendix we verify that the resolution of the SPH simulation is not playing an impor-
tant role in the evolution of the stellar-to-gas mass ratio of the subclusters. We accomplish
this via a series of controlled, idealised tests in which a cluster of 10 sink particles accretes
from an envelope of gas. The total mass of the system is 1, divided equally between the
sinks and the gas. The sinks are initially of equal mass, thuseach has mass 0.05. They are
placed randomly in a Plummer model of virial radiusrsinks = 1, and we use the same initial
configuration of the stars in each test. The median nearest neighbour separation of the sinks
is 0.43. The gas is likewise in a Plummer sphere spatially, although with a larger radius than
the sinks. The gas has zero initial kinetic energy and minimal thermal support, so that the
gas falls onto the sink cluster and is accreted. We run two sets of tests, one in which the gas
sphere’s virial radius is ten timesrsinks, i.e. rgas = 10, and one in whichrgas = 3.

The two numerical scales we are concerned with are the accretion radius of the sinks
racc, and the smoothing length of the gas particles. For the sink radii, we use the setracc =
{0.125, 0.0625, 0.03125}. The middle value yields approximately the ratio of the neighbour
distance to the accretion radius seen in the clusters in the simulation. The smoothing length
of the gas is determined by the number of gas particles. To roughly match the simulated
value, suppose the sinks have masses 1 M⊙. The total gas mass is then 10 M⊙, and 5× 104

gas particles approximates the resolution of the large-scale simulation. We run the 0.0625
accretion radius cases with four times more and fewer gas particles, i.e. 2×105 and 1.25×104.

In Fig. 2.10 we show the gas mass as a function of time for the test runs. In the top panel
we show the results for the case withrgas = 3. Time is measured dimensionlessly where we
have taken the gravitational constantG = 1; the crossing time of the sink cluster is∼ 2. In
this setup, the gas free-fall time is∼ 6 and the gas accretes quickly compared to the time
for the N -body dynamics to dissolve the small-N sink system. The agreement between all
the test runs is excellent. The bottom panel shows thergas = 10 cases, and the gas falls
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Figure 2.10: Remaining gas mass as a function of time for our tests of the SPH simulation sink param-
eters. Top panel: the runs withrgas = 3rsinks; bottom panel, the runs withrgas = 10rsinks. Grey lines have
racc = 0.125, black lines haveracc = 0.0625, and light grey lines haveracc = 0.03125. Solid lines have
5 × 104 gas particles. The dashed lines have 2× 105 particles, and the dotted lines have 1.25× 104

particles.

onto the sink system over a longer time scale, with a free-fall time ∼ 35. At early times the
agreement is quite good, with some disagreement between theruns appearing aftert ∼ 20.
We attribute this to the fact that at this point theN -body dynamics of the different runs have
set the clusters on clearly divergent paths; recall that thegravitational smoothing length of
the sinks is proportional to their sink radius. Byt = 80 the cluster of sinks has effectively
dissolved. We conclude that gas accretion time scale is not greatly affected by the choices of
the sink radius.
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Chapter 3
The photometric evolution of star clusters and the
preferential loss of low-mass bodies – with an
application to globular clusters∗

J. M. Diederik Kruijssen and Henny J. G. L. M. Lamers
Astronomy & Astrophysics, v. 490, p. 151–171 (2008)†

Abstract To obtain an accurate description of broad-band photometric star cluster evolution, certain
effects should be accounted for. Energy equipartition leads to mass segregation and the preferential loss
of low-mass stars, while stellar remnants severely influence cluster mass-to-light ratios. Moreover, the
stellar initial mass function and cluster metallicity affect photometry as well. Due to the continuous
production of stellar remnants, their impact on cluster photometry is strongest for old systems like
globular clusters. This, in combination with their low metallicities, evidence for mass segregation,
and a possibly deviating stellar initial mass function, makes globular clusters interesting test cases for
cluster models. In this chapter we describe cluster models that include the effects of the preferential
loss of low-mass stars, stellar remnants, choice of initialmass function and metallicity. The photometric
evolution of clusters is predicted, and the results are applied to Galactic globular clusters. The cluster
models presented in this chapter represent an analytical description of the evolution of the underlying
stellar mass function due to stellar evolution and dynamical cluster dissolution. Stellar remnants are
included by using initial-remnant mass relations, while cluster photometry is computed from the Padova
1999 isochrones. Our study shows that the preferential lossof low-mass stars strongly affects cluster
magnitude, colour and mass-to-light ratio evolution, as itincreases cluster magnitudes and strongly
decreases mass-to-light ratios. The effects of stellar remnants are prominent in the evolution of cluster
mass, magnitude and mass-to-light ratio, while variationsof the initial mass function induce similar,
but smaller changes. Metallicity plays an important role for cluster magnitude, colour and mass-to-light
ratio evolution. The different effects can be clearly separated with our models. We apply the models

∗The models presented in this chapter are publicly availablein electronic form at
the CDS via anonymous ftp to http://cdsweb.u-strasbg.fr/ (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/.

†Reproduced with permissionc© ESO.
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to the Galactic globular cluster population. Its properties like the magnitude, colour and mass-to-light
ratio ranges are well reproduced with our models, provided that the preferential loss of low-mass stars
and stellar remnants are included. We also show that the mass-to-light ratios of clusters of similar
ages and metallicities cannot be assumed to be constant for all cluster luminosities. Instead, mass-to-
light ratio increases with cluster luminosity and mass. These models underline the importance of more
detailed cluster models when considering cluster photometry. By including the preferential loss of low-
mass stars and the presence of stellar remnants, the magnitude, colour and mass-to-light ratio ranges
of modelled globular clusters are significantly altered. With the analytic framework provided in this
chapter, observed cluster properties can be interpreted ina more complete perspective.

3.1 Introduction

In recent studies, the photometric evolution of star clusters has been extensively treated from
various approaches (e.g. Anders & Fritze-v. Alvensleben 2003, Lamers et al. 2006, von Hip-
pel et al. 2006, Fagiolini et al. 2007). Because cluster photometry is used for a broad range
of applications, like age-dating galaxies and tracking their formation history, it is crucial to
obtain an accurate description of the photometric evolution of clusters. WhileSimple Stel-
lar Population(SSP) models (e.g. Leitherer et al. 1999, Bruzual & Charlot 2003, Anders &
Fritze-v. Alvensleben 2003, Maraston 2005) only consider the changing photometric prop-
erties due to stellar evolution, other models that also use the dynamical input ofN -body
simulations can predict the photometric evolution of clusters under a wider variety of condi-
tions (e.g. Lamers et al. 2006, Fagiolini et al. 2007, Borch et al. 2007). In reality, not only
stellar evolution but also the dynamical interaction of a cluster with its environment causes
it to lose stars (e.g. Baumgardt & Makino 2003). This process, which is called dissolution,
occurs due to internal two-body relaxation and external effects like tidal perturbation, spiral
arm passages or encouters with Giant Molecular Clouds (e.g.Baumgardt & Makino 2003,
Gieles et al. 2006b, 2007a). It can change the shape of the stellar mass function, and will
also affect photometric cluster evolution. This is the caseas a cluster evolves towards energy
equipartition, causing it to preferentially lose low-massstars (e.g. Portegies Zwart et al. 2001,
Baumgardt & Makino 2003, Hurley et al. 2005).

The physical driving force of the preferential loss of low-mass bodies is subject to debate.
On the one hand, energy equipartition between the bodies constituting a cluster increases the
velocities of low-mass objects and thereby gives rise to thepreferential loss of low-mass stars.
On the other hand, it has been proposed that mass segregation, a phenomenon in which due
to energy equipartition the more massive stars sink towardsthe cluster centre and low-mass
objects move outwards, leads to the same effect since bodiesin the cluster outskirts are more
loosely bound than objects in the cluster centre and are thusmore easily lost (e.g. Leon et al.
2000, Portegies Zwart et al. 2001, Lamers et al. 2006). This line of reasoning is not compat-
ible with King (1966), where it is shown that the escape rate of stars from a cluster does not
vary with radius. In that scenario, the preferential loss oflow-mass stars and mass segregation
are both the effects of energy equipartition, but do not necessarily share any causal connec-
tion (e.g. de la Fuente Marcos 2000). Regardless of its specific nature, in the remainder of
this chapter we consider energy equipartition to be the fundamental cause of the preferential
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loss of low-mass stars: either directly, via mass segregation, or a combination of the two. In
any case, mass segregation can serve as an indicator for clusters that have undergone a strong
preferential loss of low-mass stars (e.g. Portegies Zwart et al. 2001, Baumgardt & Makino
2003) and will therefore be used in that respect.

There have been many observations of Galactic open and globular clusters in which evi-
dence of mass segregation was found (e.g. Anderson & King 1996, Hillenbrand & Hartmann
1998, Zoccali et al. 1998, Albrow et al. 2002, Richer et al. 2004, Koch et al. 2004, Pasquali
et al. 2004). These clusters can be expected to exhibit non-canonical photometric evolution.
Furthermore, for a number of clusters overall mass-to-light ratios are observed that strongly
deviate from the mean value presented in McLaughlin (2000) (e.g. Baumgardt et al. 2003b,
van de Ven et al. 2006), which suggests a range of scenarios for photometric cluster evolution.
This, in combination with the high mass-to-light ratioin the centreof some globular clusters
(e.g. Pasquali et al. 2004, van den Bosch et al. 2006) and the consequent invocation of in-
termediate mass black holes (IMBHs) (e.g. Portegies Zwart &McMillan 2002, Gürkan et al.
2004), asks for a cluster model that can explain the observedrange of mass-to-light ratios.
While some studies suggest IMBHs to explain the high mass-to-light ratio in the centres of
globular clusters (e.g. Gebhardt et al. 2005, Noyola et al. 2006), others show that these are not
required and central concentrations of stellar remnants also provide a solution (e.g. Baum-
gardt et al. 2003a,b, Hurley 2007). Therefore, it is important to investigate to what extent
either model can be used to explain the observed range of mass-to-light ratios, colours and
magnitudes. A model describing cluster mass-to-light ratios may also be able to provide in-
sight in the connection between globular clusters and ultra-compact dwarf galaxies (UCDs),
the latter having a different mass-to-light ratio range than globular clusters (e.g. Haşegan et al.
2005, Evstigneeva et al. 2007, Rejkuba et al. 2007, Mieske & Kroupa 2008).

In this chapter we present cluster models that are based on stellar isochrones like all SSP
models, but analytically incorporate dynamical effects oncluster photometry by following
the results fromN -body simulations (Baumgardt & Makino 2003). The resultingspeed and
applicability to a large parameter space makes it very suitable for studying the effect of a
range of parameters on cluster evolution. We show how photometric properties of clusters
like their magnitude, colour and overall mass-to-light ratio are affected by the preferential loss
of low-mass stars, the inclusion of stellar remnants, the stellar initial mass function (IMF) and
metallicity.

The structure of the chapter is as follows. Our cluster evolution models are presented in
Sect. 3.2. In Sect. 3.2.2 it is shown how stellar evolution affects the cluster content, including
the production of stellar remnants. We derive the equationsdescribing dynamical effects of
cluster evolution on a multi-component powerlaw IMF (e.g. Kroupa 2001) in Sect. 3.2.3. The
effects of the preferential loss of low-mass stars and the dynamical loss of remnants are in-
cluded. In that section, we also provide the final set of equations to describe cluster evolution
with our models. The computation of photometric evolution is treated in Sect. 3.3. The re-
sults are presented in Sect. 3.4, where also the influences ofthe preferential loss of low-mass
stars, stellar remnants, IMF and metallicity are investigated, and the results are compared to
previous studies. In Sect 3.5, the models are applied to Galactic globular clusters. Section 3.6
contains a discussion of the results, while our conclusionsare provided in Sect. 3.7.
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3.2 Cluster evolution

In this section we describe cluster evolution: first we formulate the stellar mass function in
the cluster, secondly we describe cluster mass loss due to stellar evolution, and thirdly cluster
mass loss due to dissolution. We include the effects of the preferential loss of low-mass stars
and stellar remnants. The models presented here represent the cluster evolution part of our
new cluster population synthesis codeSPACE1, which is a fast code to predict observables
like age, mass and magnitude distributions of clusters for arange of galactic conditions.

3.2.1 The stellar mass function

Stars in a cluster are distributed according to a mass function, for which we assume a general
expression for a multi-component powerlaw mass function, which is a function of time:

Ns(t , ms)dms = C(t)η(ms)ms
−β(ms)dms, (3.1)

for mmin(t) < ms < mmax(t), whereNs(t , ms) represents the number of stars per M⊙ at age
t , C(t) is the (time-dependent) normalisation of the mass function, η(ms) is introduced to
preserve continuity at the stellar mass where the slopeβ(ms) changes, andms denotes stellar
mass in M⊙. Settingt = 0 gives theinitial mass function (IMF):Ns(0,ms). For a Salpeter
IMF, we have constant valuesη(ms) = 1 andβ(ms) = 2.35 withmmin,i ≈ 0.1 M⊙, while a
Kroupa IMF is described by

β(ms) =

{

β1 = 1.3 for 0.08 M⊙ ≤ ms < 0.50 M⊙,
β2 = 2.3 for 0.50 M⊙ ≤ ms,

(3.2)

with initial minumum stellar massmmin,i = 0.08 M⊙ andη(ms ≥ 0.50 M⊙) = 2η(ms <
0.50 M⊙).

After cluster formation, clusterslosemass due to stellar evolution and dissolution2. This
section provides a description of how both mechanisms affect the stellar mass function and
cluster content. Clusters with and without the preferential loss of low-mass stars are treated.

3.2.2 Stellar evolution

The total mass loss due to stellar evolution and dissolutioncan be written as

dM tot
cl

dt
=

(

dM tot
cl

dt

)

ev

+

(

dM tot
cl

dt

)

dis

. (3.3)

In this section we describe the mass loss due to stellar evolution. We separate cluster mass
into its two constituents: the mass in stars, or the luminousmassM lum

cl (t), and the mass in
stellar remnantsM sr

cl (t). The total massM tot
cl (t) is then obtained from

M tot
cl (t) = M lum

cl (t) + M sr
cl (t). (3.4)

1This is an acronym for Stellar Population Age Computing Environment.
2As shown by Mieske & Baumgardt (2007), the capture of stars byclusters is ineffective.
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Luminous mass

The first right-hand term of Eq. 3.3 can be expressed in terms of a mass fractionµtot
ev(t) ≡

M tot
cl (t)/Mcl,i that is still present in the cluster if stellar evolution were the only mass loss

mechanism3:
(

dM tot
cl

dt

)

ev

=
dµtot

ev(t)
dt

Mcl,i
C(t)
C(0)

, (3.5)

where the fractionC(t)/C(0) is included to correct the mass loss for a possible changing
mass function normalisation due to dissolution (which willbe described in Sect. 3.2.3). Con-
sequently, the mass fraction lost due to stellar evolution is defined byqtot

ev (t) ≡ 1 − µtot
ev(t).

The remaining total mass fractionµtot
ev(t) is the sum of the luminous mass fractionµlum

ev (t) and
the stellar remnant (sr) mass fractionµsr

ev(t):

µtot
ev(t) = µlum

ev (t) + µsr
ev(t). (3.6)

Lamers et al. (2005a) have shown that for luminous cluster mass,qlum
ev (t) ≡ 1− µlum

ev (t) can
be approximated as

logqlum
ev = (log t − aev)bev + cev, (3.7)

for log t > aev, and whereaev, bev andcev are constants determined by the IMF and metallicity
of the cluster. We use the Padova 1999 isochrones (Bertelli et al. 1994, AGB treatment as in
Girardi et al. 2000) to determine the maximum stellar massmmax(t) that is still present in the
cluster at timet . This also provides the initial maximum stellar massmmax,i, which is taken
to be the maximum mass at the youngest isochrone (logt = 6.6). After assuming an IMF, i.e.
Ns(0,ms), we can write the remaining mass fraction of luminous mass as

µlum
ev (t) =

∫ mmax(t )
mmin,i

msNs(0,ms)dms

Mcl,i
, (3.8)

from which exact values forqlum
ev (t) ≡ 1 − µlum

ev (t) can be determined. The resulting fitting
constantsaev, bev andcev are summarised in the top half of Table 3.14. The method assumes
the instantaneous removal of stars and ignores mass loss by stellar winds, but this assumption
is legitimate since massive stars hardly contribute to overall cluster mass and low-mass stars
only suffer significant mass loss during the last 10% of theirlifetime. In order to determine
µtot

ev(t) and evaluate Eq. 3.5 alsoµsr
ev(t) is required, which will be discussed separately in

Sect. 3.2.2.
Since in the present study the stellar content of clusters isconsidered, we will be evolving

the stellar mass function of a cluster (and thereby indirectly the cluster mass) rather than
evaluating cluster mass itself. Therefore, we will usemmax(t) from the isochrones instead
of Eq. 3.5 to incorporate stellar evolution. The time evolution of mmax(t) is shown in the
left-hand panel of Fig. 3.1 for metallicitiesZ = {0.0004, 0.004, 0.02}.

3If cluster mass also decreases due to dissolution, then the mass loss would be larger, see Sect. 3.2.3.
4Values for the case of a Salpeter IMF are also provided by Lamers et al. (2005a), but these are based on an older

version of theGALEV models (Schulz et al. 2002, Anders & Fritze-v. Alvensleben 2003).
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Luminous cluster mass (qlum
ev )

Salpeter IMF Kroupa IMF

Z mmax,i aev bev cev aev bev cev

0.0004 68.5101 6.83 0.316 -1.824 6.84 0.298 -1.648
0.0040 69.8779 6.80 0.313 -1.844 6.80 0.295 -1.667
0.0080 71.6802 6.76 0.309 -1.853 6.77 0.291 -1.674
0.0200 68.1211 6.70 0.308 -1.872 6.71 0.290 -1.691
0.0500 49.4481 6.63 0.314 -1.897 6.65 0.297 -1.714

Total cluster mass (qtot
ev )

Salpeter IMF Kroupa IMF

Z mmax,i aev bev cev aev bev cev

0.0004 68.5101 6.93 0.271 -1.855 6.93 0.255 -1.682
0.0040 69.8779 6.89 0.271 -1.872 6.90 0.256 -1.696
0.0080 71.6802 6.88 0.265 -1.877 6.88 0.250 -1.701
0.0200 68.1211 6.82 0.263 -1.893 6.83 0.248 -1.716
0.0500 49.4481 6.78 0.263 -1.908 6.79 0.249 -1.731

Table 3.1: Top: Fitting values foraev, bev andcev for the luminousfractional cluster mass decrease
due to stellar evolutionqlum

ev (t) using the Padova 1999 isochrones (see text) at five different metallicities
for Salpeter (0.1 M⊙ < ms < mmax,i) and Kroupa (0.08 M⊙ < ms < mmax,i) IMFs. The values of
the initial maximum stellar massmmax,i correspond to the maximum masses at the youngest isochrones
(log t = 6.6). The maximum difference between the fits and the exactqlum

ev (t) curves is 3% after 19 Gyr.
Bottom:Same as above, but fortotal fractional cluster mass decrease due to stellar evolution,accounting
for stellar remnants. The maximum difference between the fits and the exactqtot

ev (t) curves is less than
10% after 19 Gyr.

Stellar remnants

Stellar remnants can constitute a large fraction of the total cluster mass5. Especially during
the later stages of cluster lifetime, the cluster content islikely to be dominated by remnants.
As will be shown in Sect. 3.4 several observables can be significantly affected, making it
essential to include remnants when studying cluster evolution.

The distinction between total and luminous cluster mass canbe made by writingM tot
cl =

M lum
cl + M sr

cl , whereM sr
cl denotes the part of the total cluster mass constituted by stellar rem-

nants. The evolution of dark cluster mass can be expressed as

dM sr
cl

dt
=

(

dM sr
cl

dt

)

ev

+

(

dM sr
cl

dt

)

dis

, (3.9)

where at the right-hand side the first (positive) term describes the production of remnants
due to stellar evolution, and the second (negative) term represents remnant loss due to dis-

5If stellar mass-dependent cluster dissolution is omitted,after 12 Gyr stellar remnants constitute about 30% of
the total cluster mass. Within this fraction, the summed mass ratios of black holes, neutron stars and white dwarfs
are 1:3.5:9. These ratios change when mass-dependent dissolution is included.
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Figure 3.1: Left: Maximum stellar massmmax(t) as a function of age forZ = {0.0004, 0.004, 0.02}
(dotted, dashed and solid lines, respectively).Right: Produced stellar remnant massmsr(t) as a function
of age forZ = {0.0004, 0.004, 0.02} (dotted, dashed and solid lines, respectively). The peak corre-
sponds to the transition from neutron star production to white dwarf production, i.e. the lifetime of an
8 M⊙ star.

solution. Stellar evolution removes stars at the high-massend of the mass function. Stellar
remnant production can be included by assuming an initial-remnant mass relation and leaving
a remnant massmsr upon such removal.

From Kalirai et al. (2008), for white dwarfs (ms < 8 M⊙) this relation is given by

msr = 0.109ms + 0.394 M⊙, (3.10)

with msr the remnant mass andms the stellar mass, wherems is equal to the initial stellar
mass in our models since instantaneous death is assumed. Forms < 0.45 M⊙, Eq. 3.10 is not
valid since the remnant mass then exceeds the progenitor mass. However, this does not cause
any problems because it only occurs for agesmuchlarger than the Hubble time.

For neutron stars (8 M⊙ ≤ ms < 30 M⊙), the initial-remnant mass relation is taken to be
(Nomoto et al. 1988):

msr = 3.63636× 10−2 (ms − 8 M⊙) + 1.02 M⊙. (3.11)

Stars with massesms ≥ 30 M⊙ result in a black hole and since no definitive models for
black hole formation exist, the corresponding remnant massis assumed to be

msr = 8 M⊙. (3.12)

This value is in agreement with dynamical masses obtained from X-ray binary observations
(e.g. Casares 2007). When the above initial-remnant mass relation is linked to the maximum
stellar massmmax(t), the remnant massmsr(t) that is produced at timet can be obtained. This
varies with metallicity; forZ = {0.0004, 0.004, 0.02} examples are shown in the right-hand
panel of Fig. 3.1.
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We can now compute the total cluster mass fraction in stellarremnantsµsr
ev(t) by integrat-

ing the remnant massesmsr over the mass function for the mass range of all stars that have
ended their lives:

µsr
ev(t) =

∫ mmax,i

mmax(t )
msr(ms)Ns(0,ms)dms

Mcl,i
, (3.13)

with Ns(0,ms) the initial form of Eq. 3.1. The total remaining mass fractionµtot
ev(t) is obtained

by adding this to the mass fraction in luminous mass (see Eq. 3.6). Similarly toqlum
ev , we

provide fitting constants as in Eq. 3.7 forqtot
ev ≡ 1 − µtot

ev in the bottom half of Table 3.1.
Again, we will not use these fits in the remainder of this study, since the stellar content
of clusters is treated. Instead, the initial-remnant relations from Eqs. 3.10—3.12 are used.
Nonetheless, Table 3.1 is provided for convenience.

Given the expression forµsr
ev(t), the remnant production per unit time (first right-hand

term of Eq. 3.9) can now be determined. By multiplying the time derivative ofµsr
ev(t) with

initial cluster mass and correcting the normalisation of the stellar mass function for a possible
decrease due to dissolution, this fraction can be translated into the time derivative of non-
luminous cluster mass

(

dM sr
cl

dt

)

ev

=
dµsr

ev(t)
dt

Mcl,i
C(t)
C(0)

, (3.14)

which is similar to the expression derived for the total cluster mass evolution due to stellar
evolution (Eq. 3.5).

The above approach does not account for kick velocities thatare obtained by neutron
stars and black holes upon their creation. The implicationsfor integrated cluster properties
are discussed in Sect. 3.6.1, point (3).

3.2.3 Dissolution

The effect of dissolution on the stellar mass function differs for clusters with or without
the preferential loss of low-mass stars. In clusters that have reached energy equipartition,
the low-mass objects tend to reside in the outer regions, while the most massive bodies are
generally located near the cluster centre, and the cluster preferentially loses low-mass objects.
In clusters without the preferential loss of low-mass stars, bodies6 of different masses are lost
with almost equal probabilities. Both cases are treated in this section.

The dynamical mass loss (second right-hand term of Eq. 3.3) can be expressed as

(

dM tot
cl

dt

)

dis

= −M tot
cl

τdis
= − M tot

cl

t0M tot
cl

γ = −M tot
cl

1−γ

t0
, (3.15)

whereτdis is the dissolution timescale. In empirical studies it was shown to be related to
present cluster mass asτdis = t0(Mcl/M⊙)γ by Boutloukos & Lamers (2003) and Lamers
et al. (2005a). Boutloukos & Lamers (2003) foundγ = 0.62±0.06, the same value as derived

6‘Bodies’ denotes either stars or stellar remnants.
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by Gieles et al. (2004) for theN -body simulations of clusters in tidal fields by Baumgardt &
Makino (2003). Please note thatM tot

cl represents the total cluster mass and thus includes stars
as well as their remnants.

The rapidity of the exponential mass decrease in Eq. 3.15 is set by the dissolution timescale
parametert0, which is essentially the dissolution timescale for a hypothetical 1 M⊙ cluster.
Because the total disruption timet total

dis of a cluster is determined by dynamical dissolution
andstellar evolution and thus depends on the adopted IMF and on metallicity, we prefer the
use oft0 over t total

dis to characterise the strength of dissolution alone. Throughout this chapter
we will give the typical total disruption times associated with used values of the dissolution
timescalet0.

Mass loss from clusters without the preferential loss of low-mass stars: the ‘canonical
mode’

Cluster mass evolution can be computed numerically from itstime derivatives due to stellar
evolution and dissolution (Eqs. 3.5 and 3.15). For a more detailed and more accurate de-
scription of cluster evolution we turn to its stellar content. We distinguish between stellar
mass-independent dissolution (‘canonical mode’) and the preferential loss of low mass stars
(‘preferential mode’). When considering mass loss in the canonical mode, i.e. the evolution
of the stellar mass function of a cluster without the preferential loss of low-mass stars, the
influence of mass loss due to stellar evolution and dissolution is twofold. Stellar evolution
decreases the maximum stellar massmmax(t), while dissolution decreases the normalisation
factor of the mass functionC(t) (see Eq. 3.1) because stellar masses are randomly distributed
throughout the cluster and thus all bodies have approximately similar probabilities of being
ejected.

The normalisation of the mass functionC(t) is directly proportional to luminous cluster
massM lum

cl (t) because the latter is obtained by integrating the mass function (Eq. 3.1) over
stellar mass. We define a parameterfpref(t) to describe the fraction of mass loss occurring in
preferential mode (see Sect. 3.2.3) and a fractionfsr(t) of the mass loss to occur in the form of
stellar remnants. This implies that the factor 1− fpref(t) denotes the fraction of mass loss that
occurs in the canonical mode, while the factor 1− fsr(t) represents the fraction of mass loss
that takes place in the form of luminous mass (i.e. not in stellar remnants). For mass loss in
the canonical mode, i.e. without the preferential loss of low-mass stars, we havefpref(t) = 0.
Then the time derivative of luminous cluster mass from a cluster in the canonical mode, i.e.
without the preferential loss of low-mass stars, is writtenas

(

dM lum
cl

dt

)can

dis

= [1 − fpref(t)][1 − fsr(t)]
(

dM tot
cl

dt

)

dis

=
M lum

cl

C(t)
dC
dt

, (3.16)

whereC ∝ M lum
cl and thus d lnC/dt = d lnM lum

cl /dt leads to the last equality, and the label
‘can’ indicates we are dealing with mass loss in the canonical mode. Substituting the total
mass derivative from Eq. 3.15 yields after rearranging

dC
dt

= −[1 − fpref(t)][1 − fsr(t)]
M tot

cl
1−γ

t0M lum
cl

C(t). (3.17)
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In the canonical mode, the influence of mass loss on the stellar mass function is completely
described by this expression. If either the cluster only loses stars of the lowest masses
(fpref(t) = 1) or all mass is lost in the form of stellar remnants (fsr(t) = 1), we have constant
normalisationC(t) and mass loss affects the cluster content in different ways(see below and
Sect. 3.2.3).

To include the loss of stellar remnants, we specify the expression for the fraction of mass
loss that occurs in the form of remnantsfsr(t). For mass loss in the canonical mode the spatial
distribution of bodies is random. This implies that the fraction of the total mass lost due to
dissolution that is lost in the form of remnants is equal to the ratio of remnant mass to total
cluster mass

fsr(t) = M sr
cl (t)/M

tot
cl (t). (3.18)

We can use this parameter to describe how the cluster mass in stellar remnants changes due
to dissolution (the second right-hand term of Eq. 3.9):

(

dM sr
cl

dt

)can

dis

= [1 − fpref(t)]fsr(t)
(

dM tot
cl

dt

)

dis

= −[1 − fpref(t)]fsr(t)
M tot

cl
1−γ

t0
, (3.19)

where we use the description of the total mass loss derivative due to dissolution from Eq. 3.15.
Again, the factor 1− fpref(t) represents the fraction of mass loss that takes place in thecanon-
ical mode, while the factorfsr(t) denotes the fraction of mass loss that occurs in the form
of stellar remnants. This expression completely describesthe influence of mass loss in the
canonical mode on the total cluster mass in stellar remnants.

Mass loss from clusters including the preferential loss of low-mass stars: the ‘preferen-
tial mode’

FromN -body simulations, it is shown by Baumgardt & Makino (2003) how energy equipar-
tition affects the evolution of the stellar mass function. From their study it is evident that most
clusters exhibit the preferential loss of low-mass stars, making it a very important mechanism
when considering cluster evolution. In Lamers et al. (2006), analytical models for the evolu-
tion of the mass function are presented which are based on these simulations. In their models,
dissolution no longer induces a uniform effect on the mass function by decreasing its normal-
isation. Instead, preferentially low-mass stars are removed. This can be approximated by a
gradual increase in the lower mass limit of the stars presentin the clustermmin(t) (Lamers
et al. 2006). By using this description, theslopeof the mass function remains unchanged as
the loss of low-mass stars is incorporated by increasing thelower mass limit. This is done
in such a way that the mean stellar mass is always comparable to the mean stellar mass in
the N -body simulations by Baumgardt & Makino (2003), in which theshape of the mass
functiondoeschange due to the preferential loss of low-mass stars.

To describe mass loss in the preferential mode, i.e. mass loss including the preferential
loss of low-mass stars, we use the parameterfpref(t) that represents the fraction of cluster
mass loss that occurs in preferential mode at timet . The formulation allows for intermediate
cases of energy equipartition, sincefpref(t) can have any value between 0 and 1. TheN -
body simulations by Baumgardt & Makino (2003) suggest a rapid transition from a random
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ejection of bodies to the preferential loss of low-mass stars, resulting in almost a step function
for fpref(t). For a cluster that initially does not preferentially loselow-mass stars but reaches
complete energy equipartition att = tpref we can then write

fpref(t) =

{

0 for t < tpref

1 for t ≥ tpref.
(3.20)

However, because complete energy equipartition (fpref(t) = 1) is unlikely to occur (see the
discussion in Sect. 3.4), we will probably havefpref(t) < 1 for t ≥ tpref.

By explicitly integrating stellar mass over the mass function (Eq. 3.1), the luminous clus-
ter mass is obtained. Because in the preferential mode dissolution only affects the minimum
stellar mass, we can write for the time derivative of luminous cluster mass:

(

dM lum
cl

dt

)pref

dis

= fpref(t)[1− f pref
sr (t)]

(

dM tot
cl

dt

)

dis

= −C(t)η(mmin)
2− β(mmin)

d
dt

m2−β(mmin)
min , (3.21)

for β(mmin) 6= 2 and

(

dM lum
cl

dt

)pref

dis

= fpref(t)[1 − f pref
sr (t)]

(

dM tot
cl

dt

)

dis

= −C(t)η(mmin)
d
dt

ln(mmin), (3.22)

if β(mmin) = 2, whereβ(mmin) is the slope of the stellar mass function (see Eq. 3.1) and the
label ‘pref’ indicates we are dealing with mass loss in the preferential mode. The fraction
of mass loss occurring in the preferential mode is represented by the factorfpref(t), while
the factor 1− f pref

sr (t) denotes the fraction of mass loss in the preferential mode occurring in
the form of luminous mass (i.e. not in the form of remnants, see below for more details).
Again, we substitute the total mass derivative (Eq. 3.15), which yields a differential equation
describing the effect of the preferential loss of low-mass stars. After rearranging the terms,
mass loss in the preferential mode thus results in an evolution of the lower mass limitmmin(t):

dmmin

dt
= fpref(t)[1 − f pref

sr (t)]
M tot

cl
1−γmmin(t)β(mmin)−1

C(t)η(mmin)t0
, (3.23)

for all values ofβ(mmin). If a cluster is has not reached energy equipartition (fpref(t) = 0),
mass loss is independent of stellar mass. In that case, the time derivative dmmin/dt = 0 and
we thus have constantmmin(t).

We now describe stellar remnant loss from clusters that havereached energy equipartition.
If a cluster is completely mass-segregated, remnants are produced in the cluster centre and
only become available for dissolution if remnants are the least massive bodies in the cluster.
Therefore, the fraction of mass loss taking place in the formof stellar remnants that is used
heref pref

sr (t) differs from the expression for canonical mass loss (Eq. 3.18).
From Fig. 3.1 we know that the produced remnant mass nearly always decreases with

time, whilemmin(t) is a monotonously increasing function oft . This implies that there is a
time tsr at whichmmin(t) increases to a value larger than the smallest stellar remnant mass
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msr(t)7. For all t ≥ tsr mass can be lost in the form of remnants8. For these values oft ,
all remnant massesmsr(t) ≤ msr ≤ mmin(t) are considered to be immediately available for
dissolution (see the Appendix Sect. 3.A for a justification of this assumption). Consequently,
they are immediatelylost by dissolution, because they are the least massive bodies inthe
cluster.

The fraction of mass loss occurring in the form of stellar remnants is different for clus-
ters with and without the preferential loss of low-mass stars. Therefore, we define a separate
parameterf pref

sr (t) for the fraction of mass loss in the form of remnants if the cluster preferen-
tially loses low-mass bodies. The time derivative of dark cluster mass (the second right-hand
term in Eq. 3.9) thus becomes:

(

dM sr
cl

dt

)pref

dis

= fpref(t)f pref
sr (t)

(

dM tot
cl

dt

)

dis

= −fpref(t)f pref
sr (t)

M tot
cl

1−γ

t0
, (3.24)

which is nearly the same expression as Eq. 3.19 that is valid in the canonical mode. The
fraction of mass loss occurring in the preferential mode is again represented by the factor
fpref(t). We have yet to specify the fraction of mass loss in the form of remnants for a the
preferential loss of low-mass starsf pref

sr (t). If we consider a certain time interval dt , there are
two possibilities: either the remnant mass available for dissolution (M sr,dis

cl , which is the total
mass of all remnants with masses smaller than the lowest stellar mass present at timet) is
so large that all mass loss during the interval dt can be accounted for by removing remnants
only, or luminous mass has to be lost as well. In the former case, the minimum stellar mass
mmin(t) is not reached before the end of the time interval dt while losing the lowest mass
bodies (i.e. remnants) and all mass loss takes place in the form of stellar remnants. For the
latter case,mmin(t) is reached during the interval dt , and the fraction of mass loss to occur
in the form of remnants is then described by the ratio of the available remnant mass and the
total mass loss during the time interval dt . This implies

f pref
sr (t) = min

[

1,−M sr,dis
cl

/dM tot
cl

dt
dt

]

, (3.25)

where the denominator of the second term between brackets can be obtained from the ex-
pression for cluster mass loss due to dissolution (Eq. 3.15)and the numerator is computed
numerically from

M sr,dis
cl (t) =

∫ mmin,sr
s (t )

mmax(t )
msr(ms)Ns(t , ms)dms −

∫ t

0
fpref(t ′)f pref

sr (t ′)
M tot

cl (t ′)1−γ

t0
dt ′. (3.26)

7Incidentally, because the produced stellar remnant mass nearly always descreases with time, the smallest rem-
nant mass at timet is the stellar remnant mass that is produced at that time.

8Strictly spoken, this merely holds formmin(t) that intersectmsr(t) only once. From Fig. 3.1 we see that at
the transition from neutron star production to white dwarf production there is a possibility for curves ofmmin(t) to
increase to a value larger thanmsr(t), before briefly being overtaken again due to the change of produced remnant
type. In that case,mmin(t) intersectsmsr(t) three times. However, the slope ofmmin(t) is typically very steep
compared tomsr(t), and thus only a very small fraction of all cluster initial masses will pass through the described
fluctuation over a negligible timespan. Therefore, we can indeed assume that for allt ≥ tsr mass can be lost in the
form of stellar remnants.
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Figure 3.2: Left: Evolution of minimum and maximum masses of stars (solid) and stellar remnants
(dotted) in a cluster withMcl,i = 106 M⊙, t0 = 3 Myr and without the preferential loss of low-mass stars.
Right: Same as left, but including the preferential loss of low-mass stars. The tickmark at logt ≈ 9.5
indicates the onset of the preferential mode (see Sect. 3.4.1).

The first right-hand term denotes the total produced remnantmass that is available for a
givenpresentmass functionNs(t , ms) and increases with time. The upper integration limit
of the integralms

min,sr(t) represents the initial stellar mass corresponding to remnants with
mass equal tommin(t)9 and the mass function is thus integrated for produced remnant masses
msr(t) ≤ mmin(t). By introducing the second right-hand term in Eq. 3.26, we subtract the
part of the produced remnant mass that has already been lost by dissolution. This integral
follows from the time derivative of non-luminous cluster mass (Eq. 3.24) and describes all
remnant mass that was lost in the preferential mode. Using the present mass function in
the first right-hand term of Eq. 3.26 assumes that any change in the normalisation of the
stellar mass function has a proportional effect on total remnant mass. The normalisation
only changes for mass loss in the canonical mode (i.e. mass loss from clusters without the
preferential loss of low-mass stars), for which dissolution is stellar mass-independent. Hence,
if the normalisation of the stellar mass function were to change, the total mass in remnants
would be affected accordingly, thereby justifying the above assumption.

3.2.4 Total cluster evolution

The description of cluster evolution from Sects. 3.2.1 to 3.2.3 includes stellar evolution and
four modes of mass loss: luminous mass loss and stellar remnant loss from clusters without
the preferential loss of low-mass stars, and luminous mass loss and stellar remnant loss from
clusters that have reached energy equipartition and do preferentially lose low-mass stars. In
this section the derived expressions are combined.

The evolution of the stellar mass function is completely described by (1) the time deriva-
tive of its normalisation factorC(t) (Eq. 3.17) that describes the general decrease of the mass

9These are the most massive remnants that are available for dissolution.
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function, (2) the time derivative of the minimum stellar massmmin(t) (Eq. 3.23) that describes
the loss of low-mass stars, and (3)mmax(t) that describes the loss of high-mass stars due to
stellar evolution. When combining these equations, the luminous cluster mass follows from

M lum
cl (t) =

∫ mmax(t )

mmin(t )
msNs(t , ms)dms, (3.27)

with Ns(t , ms) the stellar mass function from Eq. 3.1.
Similarly, the expressions describing stellar remnant loss for clusters with and without the

preferential loss of low-mass stars (Eqs. 3.19 and 3.24) canbe combined with the expression
representing remnant production (Eq. 3.14) to write

dM sr
cl

dt
=

dµsr
ev(t)
dt

Mcl,i
C(t)
C(0)

−
{

[1 − fpref(t)]fsr(t) + fpref(t)f pref
sr (t)

} M tot
cl

1−γ

t0
, (3.28)

with µsr
ev(t) from Eq. 3.13. The first right-hand term denotes the production of stellar rem-

nants, while the second represents the loss of stellar remnants in the canonical mode (rep-
resented by the factor [1− fpref(t)]fsr(t)) and in the preferential mode (represented by the
factorfpref(t)f

pref
sr (t)). This equation can be integrated for the total remnant mass in the cluster

M sr
cl (t). Finally, addition of the total remnant mass to the luminous cluster mass from Eq. 3.27

yields the total cluster mass as formulated in Eq. 3.4.
The above set of equations can be solved numerically and represents a range of models

that describe the complete evolution of cluster content forclusters with and without the pref-
erential loss of low-mass stars. A simple recursive integration scheme is used. As a criterion
for total cluster disruption, we use a lower luminous cluster mass limitM lum

cl = 100 M⊙,
though other values can be adopted if necessary.

We now briefly illustrate the time evolution of the mass ranges of stars and remnants in
a 106 M⊙ cluster. These are shown in Fig. 3.2 for models with and without the preferential
loss of low-mass stars. Solid lines describe the upper and lower mass limits of the stars in
the cluster, while the minimum and maximum masses of stellarremnants are represented by
dotted curves. The left panel shows the evolution without the preferential loss of low-mass
stars, while for the right panel it is included.

Without the preferential loss of low-mass stars, the minimum stellar mass is constant since
mass loss occurs by removing stars of all masses and thus by decreasing the normalisation of
the mass functions of stars and remnants. Stellar evolutioncauses the maximum stellar mass
to decrease. The maximum remnant mass remains constant at the maximum remnant mass
that was produced in the cluster. On the other hand, the minimum remnant mass decreases as
remnants of lower masses are produced. Until total cluster disruption, bodies from a broad
mass range can be retained. The cluster is completely disrupted when the normalisation
constantC(t) approaches zero.

When including the preferential loss of low-mass stars, theminimum stellar mass starts
to increase as soon as mass loss occurs in the preferential mode. The maximum stellar and
remnant masses exhibit the same behaviour as for clusters without the preferential loss of
low-mass stars. Initially, the same holds for the minimum remnant mass. However, when
the minimum remnant mass reaches the minimum stellar mass, the lowest mass bodies in the
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cluster are stars and remnants. This leads to a combined evolution of the lower mass limits of
both. The cluster is completely disrupted when the stellar mass limits meet.

3.3 Computation of photometric cluster evolution

Cluster photometry is computed from the Padova 1999 isochrones, that are described in
Bertelli et al. (1994) and are based on spectral energy distributions from Kurucz (1992),
but use a treatment of AGB stars as in Girardi et al. (2000). The photometry computation is
accomplished by direct integration of luminosities over the stellar mass function for a given
age and initial cluster mass. This approach allows for greater flexibility when including the
preferential loss of low-mass stars, since the evolving mass function is explicitly included in
the computation. If existing SSP models had been adopted, this would not have been the case
because such models only include fading by stellar evolution for a fixed mass function.

For a cluster of arbitrary aget and initial massMcl,i, the stellar luminosities of the two
isochrones at agesti , i = {1, 2} closest tot are integrated over the computed mass functions
at these ages, with t1 < t andt2 > t . This results in total cluster luminositiesLcl,λ(ti , Mcl,i)
for passbandλ. These luminosities are then interpolated to obtainLcl,λ(t , Mcl,i) and converted
to absolute magnitudes.

For existing SSP models, which only account for the effect ofstellar evolution and there-
fore do not treat clusters near their total disruption, the above procedure suffices to determine
photometric cluster evolution. However, ift1 < t < tdis < t2 the cluster is disrupted beforet2
and there are no stars left att2. This leads to inadequate luminosity computations if the above
interpolation is used. In that case the stellar mass function of the clusterat aget is adopted
for both agest1 and t2 and the mass range is shifted to fit the appropriate maximum stel-
lar masses at these ages. After integrating the resulting two mass functions, we obtain two
luminositiesLcl,λ(ti , Mcl,i) for each passband. Interpolation then yieldsLcl,λ(t , Mcl,i). The
described method does not accurately reproduce the luminosity contribution of the lowest
stellar masses because the mass function is shifted to fit toMmax(t1, t2). However, this leaves
the resulting magnitude almost completely unaffected since the high-mass end of the mass
function completely dominates cluster photometry.

Contrary to some existing SSP models likeGALEV, no gas emission is included in our
photometric models. Line emission is only important for clusters that contain massive stars
that emit ionising photons. This implies that our photometry can be considered to be accurate
for agest & 8 Myr for solar metallicity andt & 20 Myr if Z = 0.0004 (Anders & Fritze-
v. Alvensleben 2003).

3.4 Photometric properties of clusters

In this section we apply the models described in Sects. 3.2 to3.3 to investigate the effects
of the preferential loss of low-mass stars, stellar remnants, IMF and metallicity on the mass,
magnitude, colour and mass-to-light ratio evolution of clusters. We computed our models for
cases with and without the preferential loss of low-mass stars, with and without stellar rem-
nants, Salpeter and Kroupa IMFs, and metallicitiesZ = {0.0004, 0.004, 0.008, 0.02, 0.05}.
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Moreover, we considered initial cluster massesMcl,i in the range 102—107 M⊙ and dissolu-
tion timescalest0 of 0.1—100 Myr10. As a result, cluster evolution for total disruption times
t total
dis > 10 Myr has been computed for cluster ages between 10 Myr and 19Gyr (the upper age
limit of the stellar isochrones). Models for a broad range ofparameters are publicly available
in electronic form at the CDS, while predictions for specificmodels can be made by the first
author upon request. The most important results of our models are discussed in this section.

3.4.1 The effects of model components

Accounting for the preferential loss of low-mass stars and including the mass of stellar rem-
nants both have their effects in the framework of our models.In this section these effects are
considered.

The effects of the preferential loss of low-mass stars

The preferential loss of low-mass stars induced by energy equipartition and possibly also
mass segregation (see Sect. 3.1) can be expected to have a significant effect on the magnitude
and colour evolution of clusters (Lamers et al. 2006), but also on their mass and mass-to-
light ratio. Complete energy equipartition (fpref(t) = 1) implies thatonlybodies of the lowest
masses are lost, an implication that does not seem likely to be in accordance with reality for
two reasons. First of all, external perturbations are not strictly confined to the very outer
radius of a cluster due to internal cluster dynamics. Therefore, dynamical mass loss is not
confined to the very outer layer of the cluster, which resultsin the loss of stars or remnants
with masses abovemmin(t). Secondly, complete energy equipartition may not be reached by
a cluster (Baumgardt & Makino 2003), inducing only a partialpreferential loss of low-mass
stars. Therefore, we tuned the evolution ofmmin(t) in our complete models to theN -body
simulations by Baumgardt & Makino (2003) so that their mean stellar mass evolution is
similar. This allows us to determine a step function form forfpref(t) that leads to a mean mass
evolution that corresponds best to its counterpart in theN -body simulations. This analysis
results in

fpref(t) =

{

0.0 for t < tpref,
0.4 for t ≥ tpref,

(3.29)

with tpref = 0.2t total
dis . A more gradual evolution would follow the simulations somewhat better,

but a step function serves as a good approximation (see Lamers et al. (2006) and Sect. 3.6).
The assumption of constanttpref/t total

dis = 0.2 serves as a typical timescale after which the
preferential loss of low-mass stars can become important. It can be justified by considering
the mass-dependences oftpref and t total

dis . The total disruption time scales with cluster mass

10This is the typical dissolution timescale range (e.g. Lamers et al. 2005b), corresponding tot total
dis ≈ 108—

1011 yr for a 105 M⊙ cluster. It can be easily checked by considering that the total disruption time is of the order
of t total

dis ∼ t0(Mcl,i/M⊙)γ . Throughout this sectiont0 = 3 Myr will be used, which is the mean value of this
range and is the typical timescale for clusters in the solar neighbourhood. This value is typical of tidally dissolving
globular clusters on circular orbits at 3 kpc from the Galactic centre, or clusters on eccentric (e = 0.7) orbits with an
apogalactic distance of 8.5 kpc (Baumgardt & Makino 2003).



The photometric evolution of star clusters 59

Figure 3.3: Effect of the preferential loss of low-mass stars on (a) total cluster mass, (b)V -band
magnitude, (c)V − I and (d)M /LV evolution for clusters with initial massMcl,i = 106 M⊙, no
stellar remnants, a dissolution timescalet0 = 3 Myr (t total

dis = 16—16.5 Gyr), metallicityZ = 0.02, and
a Kroupa IMF. Solid curves denote cluster evolution when thepreferential loss of low-mass stars is
included, while clusters without the preferential loss of low-mass stars are represented by dotted lines.
The onset of the preferential modetpref is denoted by a vertical line.

similarly to the dissolution timescale, i.e.t total
dis ∝ M 0.62. On the other hand,tpref can be

expected to scale with the half-mass relaxation timetrh, i.e. tpref ∝ M 0.5r1.5
h . If we adopt a

mean mass-radius relationrh ∝ M 0.10±0.03 (Larsen 2004), this leads totpref ∝ M 0.65, which is
comparable to the mass-dependence of the total disruption time. We also considered models
with tpref = trh, assuming the same mass-radius relation, which indeed yields values fortpref

that are similar to 0.2t total
dis .

Furthermore, we do not consider primordial mass segregation (tpref = 0) for the model
runs that are presented in this section. However, from othermodel runs where we did set
tpref = 0 we know that the effects of the preferential loss of low-mass stars on cluster observ-
ables are about 10% stronger for primordial mass segregation than for the described results.
Of course,tpref can always be adapted to describe different forms of mass segregation.

The formulation in Eq. 3.29 implies that aftertpref dynamical mass loss simultaneously
occurs in both modes. Hereafter, any reference to the ‘preferential loss of low-mass stars’
implies the use of this prescription forfpref in our models. The value offpref(t ≥ tpref) is
different from the one presented by Lamers et al. (2006) because they did not compare its
value toN -body simulations: onlytpref was treated in that study.
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In Fig. 3.3 the effect of the preferential loss of low-mass stars on the total cluster mass
M tot

cl , V -band magnitude,V − I and mass-to-light ratio (M /LV ) evolution is shown for clus-
ters with initial massMcl,i = 106 M⊙, no inclusion of stellar remnants (i.e. all remnants
are immediately removed), a dissolution timescalet0 = 3 Myr, metallicity Z = 0.02, and
a Kroupa IMF. This leads to a total disruption time oft total

dis ≈ 16 Gyr. For cluster evolu-
tion without the preferential loss of low-mass stars, some expected trends are immediately
evident: mass and magnitude decrease with time, whileM /LV increases and the cluster be-
comes redder.

As can be observed when comparing the curves in Fig. 3.3, including the preferential
loss of low-mass stars has several implications for the cluster evolution computed with our
models.

(1) The total disruption time of a cluster including the preferential loss of low-mass stars
hardly changes but is slightly smaller than for a cluster forwhich it is omitted. This is
the result of our model assumptions, as the preferential loss of low-mass bodies causes
a larger number of massive stars to be retained in the cluster. The corresponding shorter
lifetimes induce an increase in the cluster mass loss by stellar evolution. The enhanced
decrease of total cluster mass consequently leads to a smaller total disruption time.
However, this effect does not include the possible decreaseof the total disruption time
due to quicker two-body relaxation in clusters with enhanced mean stellar masses. Note
that the decrease of total disruption time is of order∼ 1%, which is best visible in the
panel displaying colour evolution.

(2) As soon as the preferential loss of low-mass stars starts, i.e. fpref(t) > 0, the cluster
stays much brighter than for mass loss in the canonical mode. Because the luminosity
per unit mass is much higher for massive stars, a cluster thatpreferentially loses low-
mass stars will be more luminous than a cluster of the same mass that does not. The
change in theV -band magnitude induced by the preferential loss of low-mass stars
peaks at about 0.9t total

dis and is at most 1.5 mag.

(3) The colour evolution of clusters is affected by the preferential loss of low-mass stars
in two ways.After the onset of energy equipartition, Fig. 3.3(c) shows that these clus-
ters are bluer than clusters without the preferential loss of low-mass stars, while just
before total disruption reddening can be observed. At first, the bottom end of the main
sequence, which is being lost due to the preferential loss oflow-mass stars, is redder
than the average colour of the cluster. Due to the removal of its red constituents, such a
cluster will appear bluer than a cluster without the preferential loss of low-mass stars.
However, as stars are lost andmmin(t) moves up the main sequence the colours of the
stars that are ejected become increasingly blue. Cluster colour is then dominated by red
giants and the ejected stars are bluer than the average cluster colour. Before total dis-
ruption, this induces a reddening of clusters exhibiting the preferential loss of low-mass
stars. The ages at which these changes occur depend on cluster t total

dis . For model runs
with differentt total

dis (either by varying initial cluster massMcl,i or dissolution timescale
t0), we find that clusters including the preferential loss of low-mass stars always be-
come slightly bluer from about 0.4t total

dis on. However, the reddening is stronger and
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occurs at a smaller fraction oft total
dis for clusters with smaller total disruption times. This

tendency is caused by massive red giants, which are redder and more luminous than
low-mass giants. For smaller total disruption times, the reddening causes clusters in
the preferential mode to become much redder than clusters losing mass in the canoni-
cal mode during the last few percent of their lifetime. This effect is also present for the
initial conditions used here if stellar remnants are included (see Fig. 3.4).

(4) As can be observed in Fig. 3.3(d),the preferential loss of low-mass stars leads to a
much smaller mass-to-light ratio than for clusters losing mass in the canonical mode.
Considering points (1) and (2), this is not suprising. A higher luminosity and slightly
smaller mass together imply a decrease inM /LV . The magnitude of the induced de-
crease is comparable to the change in clusterV -band luminosity, which follows from
the magnitude change to be about a factor six.

In their study, Lamers et al. (2006) obtained magnitude evolution curves that are much more
weakly affected by the preferential loss of low-mass stars than is shown in Fig. 3.3. In
the present chapter, cluster photometries are directly computed from the changing stellar
mass function, which is a more direct method than the one usedin Lamers et al. (2006)11.
Therefore, our computation of cluster evolution provides an update to their results. Further-
more, they found that clusters including the preferential loss of low-mass stars are bluer for
0.4< t/t total

dis < 0.8 and redder fort ≥ 0.8t total
dis . Our extended study of the parameter space

shows that especially the value of 0.8 depends on the total disruption time of the cluster.
The effect of the preferential loss of low-mass stars is clearly visible in magnitude, colour

andM /LV evolutionof clusters. Especially cluster magnitude andM /LV are significantly
affected. This implies that when considering either observable, it is very important to detem-
ine whether the cluster exhibits the preferential loss of low-mass stars or not, for example by
checking whether it is mass-segregated. In order to obtain an appropriate interpretation of
cluster colour, it has to be determined how close to total disruption the cluster is.

The effects of stellar remnants

The inclusion of stellar remnants follows the description presented in Sects. 3.2.2 and 3.2.3.
In our models, it implies that part of the mass is retained upon the death of a star and clusters
thus lose mass due to stellar evolution at a slower rate. It can be expected to affect cluster
mass evolution, because a significant fraction of cluster mass can be constituted by remnants.
Clearly, the mass-to-light ratio will then be altered as well. To assess the effect of stellar
remnants on cluster evolution, our model results are shown in Fig. 3.4 for clusters with initial
massMcl,i = 106 M⊙, with and without the preferential loss of low-mass stars, adissolution
timescalet0 = 3 Myr (t total

dis = 16—18.5 Gyr), metallicityZ = 0.02 and a Kroupa IMF.
We observe the following changes in our models due to the inclusion of stellar remnants.

(1) Because the net mass loss due to stellar evolution is smaller if stellar remnants are re-
tained in the cluster after the death of their progenitors,the total cluster mass is higher

11Lamers et al. (2006) calculated magnitudes by using the photometry of stellar mass-truncatedGALEVmodels.
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Figure 3.4: Effect of stellar remnants on (a) total cluster mass, (b)V -band magnitude, (c)V − I and
(d) M /LV evolution for clusters with initial massMcl,i = 106 M⊙, a dissolution timescalet0 = 3 Myr
(t total

dis = 16—18.5 Gyr), metallicityZ = 0.02, and a Kroupa IMF. Solid curves denote the evolution
for clusters including the preferential loss of low-mass stars with stellar remnants, long-dashed curves
without stellar remnants. For clusters without the preferential loss of low-mass stars, short-dashed
curves represent the case in which remnants are included anddotted curves represent the result without
stellar remnants. The onset of the preferential modetpref is marked by vertical lines in the linestyles of
the corresponding model runs.

than in the non-remnant case at any time. The immediate consequence is that the mod-
els predict a larger total disruption time. For clusters including the preferential mode,
which more easily keep their remnants (see Sect. 3.2.3 and point (3)), this effect is
smaller than for clusters without the preferential loss of low-mass stars, because the
death criterion of clusters in our simulations (M lum

cl < 100 M⊙) only depends on lumi-
nous cluster mass. Retaining remnants implies that mass loss due to dissolution more
strongly affects luminous cluster mass, causing a cluster that exhibits the preferential
loss of low-mass stars to satisfy the death criterion of our models earlier than expected
for its total mass. However, though this weakens the lifetime-increasing effect of keep-
ing stellar remnants, it never dominates.

(2) For clusters without the preferential loss of low-mass stars, where the fraction of mass
lost in the form of remnants is simply equal to the remnant mass fraction, the inclusion
of remnants leads to a higher luminosity. Increasing luminosity by including remnants
might be counter-intuitive. However, when including stellar remnants part of the clus-
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ter mass loss by dissolution is in the form of remnants instead of luminous stars. This
implies that the average luminosity of bodies that are lost by dissolution is smaller than
in the case without remnants, leading to a smaller luminosity decrease. Though less ex-
plicitly, the same effect is present in clusters including the preferential loss of low-mass
stars since low-mass stars hardly contribute to the total cluster luminosity. Moreover,
the lifetime-extending effect of remnants also implies that (luminous) mass is lost at
a slower pace. We conclude thatthe cluster luminosity decrease due to dissolution
becomes smaller if stellar remnants are included.

(3) The mass-to-light ratio evolution shows a very clear effect of stellar remnants asfor
both mass loss modes theM /LV curves are much higher if remnants are included.
This means that the relative increase of cluster mass due to remnants is larger than the
corresponding relative increase of cluster magnitude thatwas discussed at point (2).
The former is a direct consequence of adding remnants, whilethe latter is an induced
effect: the averageM /LV of all bodies in a cluster is higher per definition if dark mass
is added. Furthermore,for clusters with the preferential loss of low-mass stars that
also includes stellar remnants, the mass-to-light ratio shows an increase during the
final part of cluster evolution. This can be attributed to the preservation of remnants
in clusters losing mass in the preferential mode, which is due to the fact that remnants
can only be lost from these clusters ifmsr < mmin(t).

Because remnant production or loss does not directly alter the colour composition of lumi-
nous cluster content, colour evolution is hardly affected by the inclusion of remnants.

We find that the inclusion of stellar remnants strongly affects themass, magnitudeand
M /LV evolutionof clusters. This is because part of the cluster mass loss occurs in the form of
remnants rather than luminous stars. The extent of the differences (up to 30% att = 0.5t total

dis
and increasing afterwards) suggests that a proper treatment of remnants should be included
in any cluster model.

3.4.2 The effects of the stellar IMF

As discussed in Sect. 3.2.3, our models can be calculated forany multi-component power
law IMF. Different IMFs are likely to exhibit a tendency to higher or lower stellar masses
with respect to one another. For the Kroupa and Salpeter IMFs, the consequences of this
effect are investigated here. As mentioned in Sect. 3.2, thelower mass limit is taken to be
mmin,i = 0.08 M⊙ for a Kroupa IMF andmmin,i = 0.1 M⊙ for a Salpeter IMF. Since a Salpeter
IMF has a slightly steeper slope than a Kroupa IMF, and the latter features a bend at 0.5 M⊙,
the Salpeter IMF has a lower mean stellar mass. Figure 3.5 displays our results for both IMFs
in the case of clusters with initial massMcl,i = 106 M⊙, with and without the preferential loss
of low-mass stars, with stellar remnants, a dissolution timescalet0 = 3 Myr (t total

dis = 17.5—
21 Gyr) and metallicityZ = 0.02.

The initial mass function affects the resulting cluster evolution in the following ways.

(1) Total cluster mass stays higher for clusters with a SalpeterIMF. Consequently, their
total disruption times are increased as well. Since it has a slightly steeper slope, the
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Figure 3.5: Effect of initial mass function on (a) total cluster mass, (b) V -band magnitude, (c)V − I
and (d)M /LV evolution for clusters with initial massMcl,i = 106 M⊙, including stellar remnants, a
dissolution timescalet0 = 3 Myr (t total

dis = 17—21 Gyr) and metallicityZ = 0.02. For a Kroupa IMF,
solid curves denote the evolution for clusters including the preferential loss of low-mass stars, short-
dashed lines for clusters with canonical mass loss. Clusters with a Salpeter IMF are represented by
long-dashed lines when the preferential loss of low-mass stars is included and dotted lines describe
the case where it is omitted. The onset of the preferential mode tpref is marked by vertical lines in the
linestyles of the corresponding model runs.

mass loss due to stellar evolution is smaller than for a Kroupa IMF. The resulting higher
cluster mass leads to dissolution acting on a longer timescale, thereby also contributing
to an extended lifetime of the cluster. In this case, the example model clusters with a
Salpeter IMF survive beyond the maximum age spanned by the models.

(2) Because it favours stars of higher masses,a Kroupa IMF leads to clusters that are
initially slightly brighter than for a Salpeter IMF. However, the mass decrease due to
stellar evolution is also stronger for a Kroupa IMF, causingits cluster mass to be lower
than for a Salpeter IMF. As a result,the luminosities of clusters with a Salpeter IMF
overtake those with a Kroupa IMF later on. Though still very weak, the transition is
best visible when comparing the curves corresponding to clusters with mass loss in the
preferential mode in Fig. 3.5(b). For these, the transitionoccurs at about 0.7t total

dis . From
model runs with other total disruption times, we observe that this fraction oft total

dis is not
constant. It significantly increases for smallert total

dis , with MV of a Salpeter IMF always
being fainter than that of a Kroupa IMF fort total

dis . 500 Myr.
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(3) Clusters with a Kroupa IMF are slightly bluer than those witha Salpeter IMF. How-
ever, this effect is too small to be observable in real clusters. It can be understood by
considering the relatively larger contribution of massive(blue) stars in evolved clusters
with a Kroupa IMF. Had the Salpeter examples been disrupted within the model age
range, the characteristic reddening just before total disruption would have been visible
for that IMF as well.

(4) The higher masses of clusters with a Salpeter IMF and their generally lower lumi-
nosities that were described at point (2) together lead tohigher mass-to-light ratios
for clusters evolving from a Salpeter IMF. Again, for clusters including the preferen-
tial loss of low-mass stars, the finalM /LV increase upon total disruption would also
be visible for the Salpeter IMF if it would have been completely disrupted within the
model age range.

Although specifically applied to the Kroupa and Salpeter IMFs, qualitatively the results of
the above analysis hold for any two mass functions of which one has a different mean mass
than the other. Quantitatively, there will still be variations depending on the specific IMF.

Because the underlying stellar IMF in a cluster determines its future mass loss due to
stellar evolution, it strongly affects thetotal disruption timeandmass-to-light ratio. Any
treatment of these two observables requires an accurate description of the IMF.

3.4.3 The effects of metallicity

To investigate the influence of metallicity on our results, we considerZ = {0.0004, 0.004, 0.02}
in Fig. 3.6. Model results are shown for clusters with initial massMcl,i = 106 M⊙, with
and without the preferential loss of low-mass stars, including stellar remnants, a dissolution
timescalet0 = 3 Myr (t total

dis = 17—18.5 Gyr) and a Kroupa IMF.
The effects of metallicity on the results are as follows.

(1) We see thattotal cluster mass is hardly affected by metallicity at any time. It marginally
increases withZ , which is caused by more rapid stellar evolution for low metallicities
(e.g. Hurley et al. 2000, 2004). Consequently, the total disruption time also slightly
increases with metallicity, which is best observed in theMV andV − I panels. Nev-
ertheless, the effect is small, less than 10% of the total lifetime. This is in excellent
agreement with the results from Hurley et al. (2004).

(2) Low-Z clusters are brighter than high-Z clusters. This is due to a general luminosity
decrease of stars with metallicity (e.g. Girardi et al. 2000, Hurley et al. 2004). The
difference is observed for clusters with and without the preferential loss of low-mass
stars, and is typically more than oneV -band magnitude.

(3) The colour evolution shows a uniform trend withZ . Clusters with high metallicity are
much redder than clusters with low metallicity. This is the result of stellar atmospheres
and stellar evolution (e.g. Hurley et al. 2000). For high ages, theV − I value is more or
less constant for each metallicity, underlining its value as metallicity probe for globular
clusters when considering broadband colours (e.g. Maraston 2005). TheV − I shift
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Figure 3.6: Effect of metallicity on (a) total cluster mass, (b)V -band magnitude, (c)V − I and (d)
M /LV evolution for clusters with initial massMcl,i = 106 M⊙, including stellar remnants, a dissolution
timescalet0 = 3 Myr (t total

dis = 17—18.5 Gyr) and a Kroupa IMF. Solid curves denote the evolution for
Z = 0.02, dashed curves forZ = 0.004, and dotted ones forZ = 0.0004. Results with and without the
preferential loss of low-mass stars show effects as presented in Fig. 3.3 and described in Sect. 3.4.1 and
are therefore represented by the same linestyles. The onsetof the preferential modetpref is marked by
vertical lines in the linestyles of the corresponding modelruns.

betweenZ = 0.0004 andZ = 0.02 is about 0.5 mag, but varies for colours at other
wavelengths. This is in accordance with the fact that clusters of different metallici-
ties move on clearly distinguishable paths in colour-colour diagrams (e.g. Bruzual &
Charlot 2003).

(4) The higher luminosity of low-metallicity stars and the consequently slightly enhanced
mass loss by stellar evolution induce a common effect on cluster mass-to-light ratios.
From Fig. 3.6(d) we see thatM /LV strongly increases with metallicity. The effect is
strong enough to move theM /LV evolution of aZ = 0.0004 cluster with canonical
mass loss through theM /LV range of a cluster that does include the preferential loss
of low-mass stars atZ = 0.02. This apparent degeneracy is lifted by taking cluster
colours into account (see point (3)).

Whenever clustermagnitude, colourandmass-to-light ratioevolution are considered, cluster
metallicity plays an important role. They are all strongly affected by the adopted metallicity.
For globular cluster populations this implies that a range of colours and mass-to-light ratios
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can be covered by a metallicity spread of the population or internal cluster processes like
self-enrichment.

In Lamers et al. (2005a), an expression is provided for the total disruption timet total
dis as

a function oft0, Mcl,i andγ. In this study, we find thatt total
dis depends on the inclusion of the

preferential loss of low-mass stars, stellar remnants, IMFand metallicity. Therefore, values
for t total

dis are best obtained by integrating the models presented in this chapter. Regardless, the
expression from Lamers et al. (2005a) can still be used to estimatet total

dis with approximately
20% accuracy.

3.5 Application to globular clusters

The results presented in Sect. 3.4 cover a wide range of masses, magnitudes, colours and
mass-to-light ratios. As a first indication, it is relevant to check whether the properties of
Galactic globular clusters can be reproduced in our models.For this purpose, the results
have to be considered at agest ≈ 12 Gyr. From Harris (1996) theMV range is found to be
MV = −1.60 (Pal 1) toMV = −10.29 (ωCen). For the Solar neighbourhood value of the
dissolution timescale in the case ofe = 0.7 orbitst0 = 3 Myr12, we find that this range can
be covered att = 12 Gyr for any metallicityZ ≤ 0.02 if the maximuminitial cluster mass
equalsM max

cl = 107 M⊙. For longer dissolution timescales (i.e. larger galactocentric radii)
the observed magnitude range can be covered with even smaller maximum initial cluster
masses. Please note that the dissolution timescale dependson the tidal field strength and that
it therefore varies for different globular cluster orbits.This implies that it is not possible
to impose limits on the properties of the complete globular cluster population (like their
maximum initial masses) from an analysis in which this variation is not incorporated.

3.5.1 The mass-to-light ratio

Galactic globular cluster mass-to-light ratios are found to beM /LV = 1.45± 0.1 M⊙ L−1
⊙

(McLaughlin 2000). SSP models, in which only stellar evolution is included and dynamical
effects are neglected, predict aminimumvalue ofM /LV ≈ 2 M⊙ L−1

⊙ att = 12 Gyr, requiring
the minimum metallicity of our modelsZ = 0.0004 (see Fig. 3.6). This further complicates
explaining the observed mass-to-light ratios, since globular cluster metallicities are typically
Z = 0.0004—0.014 (VanDalfsen & Harris 2004). Dynamical effects are thus needed to
explain the even smaller mass-to-light ratio of Galactic globular clusters. If the preferential
loss of low-mass stars is included, cluster mass-to-light ratio curves do span the correct part of
M /LV space, ranging down toM /LV < 1 M⊙ L−1

⊙ (see also Kruijssen 2008). From Fig. 3.4
we see that accounting for stellar remnants yields anincreaseup to 1 M⊙ L−1

⊙ relative to
model clusters without stellar remnants, obviously implying that they should be included for
accurate interpretations of globular cluster observations. If globular clusters are populated
using a Salpeter IMF rather than a Kroupa IMF, this effect is nearly doubled (see Fig. 3.5).
From Fig. 3.6(d) we find that cluster models at high metallicities do not reproduce the low
observedM /LV = 1.45± 0.1 M⊙ L−1

⊙ . Thus, metal-poor clusters including the preferential

12See Sect. 3.4.1.
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Figure 3.7: Effect of the preferential loss of low-mass stars on the relation between mass-to-light ratio
and luminosity at an age oft = 12 Gyr. MetallicitiesZ = {0.0004, 0.004, 0.02} are denoted by dotted,
dashed and solid curves, respectively. Horizontal lines represent clusters without the preferential loss
of low-mass stars, while inclined curves show the relation if it is included. The models are computed
for initial masses between 102 M⊙ and 107 M⊙, a Kroupa IMF, dissolution timescalet0 = 3 Myr and
including stellar remnants. On each curve, clusters with (from left to right) initial masses logMcl,i =
{6, 6.5, 7} are marked with crosses (canonical mode) and dots (preferential mode). The present day
mass can be derived from the luminosity and mass-to-light ratio.

loss of low-mass stars with a Kroupa IMF13 are required to reach the low average mass-to-
light ratio. If these conditions are met, the moderately flatM /LV evolution curves show that
a more or less constant time-average is not surprising.

Some globular clusters have mass-to-light ratios that are much higher than the mean value
of M /LV = 1.45± 0.1 M⊙ L−1

⊙ . An example isωCen (M /LV = 2.5 M⊙ L−1
⊙ , see van de

Ven et al. 2006), which is also the most massive Galactic globular cluster14, with M ωCen
cl =

2.5× 106 M⊙(van de Ven et al. 2006). Since a high mass implies a large relaxation time, this
could agrees with the view thatωCen has not yet reached energy equipartition.

Another important implication of our analysis of mass-to-light ratio evolution is that glob-
ular clusters of comparable ages cannot be assumed to have constantM /LV for different
cluster luminosities at fixed metallicity. For a given age, the mass-to-light ratio can strongly
(∼ 0.6 dex) depend on the dynamical state of the cluster (see Fig. 3.3(d)), and thus on cluster
mass and luminosity. The variation ofM /LV with luminosity when including mass loss in
the preferential mode is illustrated in Fig. 3.7. Models areshown of clusters with and with-
out the preferential loss of low-mass stars, metallicitiesZ = {0.0004, 0.004, 0.02} (dotted,
dashed and solid curves, respectively), aget = 12 Gyr, a maximum cluster mass of 107 M⊙, a
Kroupa IMF, dissolution timescalet0 = 3 Myr and including stellar remnants. The horizontal
lines denote the constant mass-to-light ratios predicted if the preferential loss of low-mass

13Or any other IMF that slightly favours massive stars with respect to a Salpeter IMF.
14In fact,ωCen is not a normal globular cluster since there are strong indications that it could be a stripped dwarf

galaxy (e.g. Ideta & Makino 2004).



The photometric evolution of star clusters 69

stars is ignored, while the inclined curves show the relation betweenM /LV and luminosity
if it is accounted for.

Since more luminous clusters are also more massive, the onset of mass loss in the prefer-
ential mode occurs later on for these clusters, implying that its effects are weaker for massive
clusters at any age. Because the preferential loss of low-mass stars decreases the mass-to-light
ratio, this decrease is thus smaller for clusters of higher masses, leading to a mass-to-light ra-
tio that increases with cluster mass andLV as in Fig. 3.7. Observational evidence of this
effect for the same quantitative range has been found for Galactic and extragalactic globular
clusters (e.g. Mandushev et al. 1991, Rejkuba et al. 2007, Kruijssen 2008). If cluster masses
are determined using a fixedM /LV , thereby not accounting for the effects of the preferential
loss of low-mass stars, these masses can be stronglyoverestimatedby as much as 0.6 dex. Be-
cause the error is larger for lower masses, the slope of the inferred cluster mass function will
beunderestimated(i.e. a negative slope will be steeper) if the preferential loss of low-mass
stars is ignored.

It is straightforward to derive a quantitative estimate forthe effect on the inferred (pow-
erlaw) cluster mass function. Let us consider clusters with‘true’ massM that are exhibiting
the preferential loss of low-mass stars and are thus in the regime that is inconsistent with
canonical cluster models. If we now use a powerlaw with indexA to reasonably approx-
imate the mass-to-light ratio increase with luminosity from Fig. 3.7, i.e. M /L ∝ L A for
logL . 5.5 depending on metallicity, then the ratio of the photometrically inferred mass
MSSP for which constantMSSP/L is assumed to its true massM scales asMSSP/M ∝ L −A .
This is equivalent to using a powerlaw with indexB = A /(1 + A ) to approximate the mass-
to-light ratio increase withtrue mass, i.e. M /L ∝ M B , leading toMSSP/M ∝ M −B . Then,
for a ‘true’ slope of the cluster mass function−α, its photometrically inferredslope−αSSP

using constant mass-to-light ratios is given by

−αSSP= −α− αA + A = (−α + B )/(1− B ). (3.30)

From Fig. 3.7 we find that typicallyA ∼ 0.27 (and thusB ∼ 0.21), implying that forα = 2
we findαSSP ∼ 2.27. The deviation increases with the age of the cluster sample (here we
usedt = 12 Gyr, while for t = 3 Gyr αSSP ∼ 2.23) and the above approach assumes a
constant dissolution timescale for the cluster sample. For(more realistic) varying dissolution
timescales, the deviation will typically be between 50% and100% of the presented value.
This is still significant and should thus be accounted for when studying the cluster mass
function of old cluster samples.

The variation ofM /LV with luminosity is crucial for cluster masses inferred fromlumi-
nosities, which can be incorrectly determined by 0.6 dex. Because of increasing evidence that
more globular clusters are preferentially losing low-massstars and might have evolved to a
mass-segregated state than previously thought (e.g. De Marchi et al. 2007), this effect should
always be considered when studying globular clusters.

3.5.2 Colours of globular clusters

The typical colour range of Galactic globular clusters is 0.75—1.1 inV − I (Smith et al.
2007). From Fig. 3.6(c) we can conclude that this range is covered by varying metallicity in
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our models. Obviously, IMF variations might slightly affect the colour range as well, with
top-heavy IMF showing a tendency to bluer colours (see Fig. 3.5(c)). However, this effect
is only significant for strongly deviating IMFs. Still, fromall figures in Sect. 3.4 we still
see that colours are affected by the preferential loss of low-mass stars and the colour range
is increased. Figure 3.6(c) illustrates that if mass loss inthe preferential mode would be
ignored, uncertainties up to 0.2 mag (0.1 mag up and down) should be included for computed
cluster colours at a any fixed age and metallicity. This happens to be the same colour spread
at fixed metallicity as found by Smith et al. (2007) in their colour-metallicity relation.

3.5.3 Ultra-compact dwarf galaxies

We see that including the preferential loss of low-mass stars and stellar remnants allows for a
more extensive analysis of globular clusters and affects their reproduced property ranges. It
is evident that globular clusters or more massive globular cluster-like objects with very high
mass-to-light ratios (with regard to their metallicities)cannot have experienced significant
mass loss in the preferential mode unless theirM /LV is increased by a strongly differing
IMF or by agents unaccounted for by our models, for instance by intermediate mass black
holes, modified gravity or dark matter. Hence, if indications for the preferential loss of low-
mass stars (such as mass segregation or a bottom-depleted mass function) are found for such
objects, they points to these causes for the high observedM /LV . For objects with masses
M > 107 M⊙ this is unlikely to occur, since their relaxation times are of the order of a
Hubble time or larger.

If there is a present day globular cluster mass above which noclusters have yet reached
energy equipartition, any objects above that mass will havehigh mass-to-light ratios with
respect to clusters below that mass. This is found for UCDs, of which theM /LV -range is
typically 2—10 M⊙ L−1

⊙ (e.g. Mieske & Kroupa 2008). Pending the role of dark matter
these galaxies could be regarded a natural continuation of the mass spectrum beyond glob-
ular clusters. Indications for such a continuation are found by Wehner & Harris (2007) for
UCD candidates in NGC 3311. As is clear from Fig. 3.5(d), our models without the prefer-
ential loss of low-mass stars produce mass-to-light ratiossimilar to UCDs if a Salpeter IMF
is assumed (in agreement with Hilker et al. 2007), while the canonical Kroupa IMF cannot
reproduce the range that is typical to UCDs (as is also found by Mieske et al. 2008). Nonethe-
less, any possible connection between globular clusters and UCDs would be smoothened by
metallicity spreads and the possible influence of dark matter, making it a challenge to be
directly observed.

Contrary to low-mass UCDs, more massive examples have not reached energy equipar-
tition within a Hubble time due to their long relaxation times. However, this would lead to
constant mass-to-light ratios at high masses, while Rejkuba et al. (2007) have shown that the
trend of increasingM /LV with mass is even stronger for UCDs than it is for globular clusters.
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3.6 Discussion

We have described models to calculate the evolution of star clusters including the preferential
loss of low-mass stars and stellar remnants. Furthermore, they have been used to investigate
the influence of these model components, as well as of the IMF and metallicity on cluster
evolution. In this section we discuss the assumptions that were made, their influence on the
results and the applicability of our models. We also indicate how the models can be improved.

3.6.1 Influence of assumptions

The models presented in this study are based on the followingassumptions.

(1) We adopt the Padova 1999 stellar evolution models (Bertelli et al. 1994, AGB treat-
ment as in Girardi et al. 2000) to compute photometry, determine stellar lifetimes and
describe the consequent cluster mass loss due to stellar evolution. For themass evo-
lution of all stars we assume constant stellar masses until their instantaneous deaths.
Only very massive stars experience strong mass loss during asignificant part of their
lives, but these stars hardly contribute to the total cluster mass. Low-mass stars with
ms . 8 M⊙ only suffer significant mass loss during the last 10% of theirlives. There-
fore, instantaneous death is a reasonable assumption when calculating cluster mass.
The photometric properties of stars are not affectedby our assumption of instanta-
neous death, since stellar photometry as described in the Padova models includes the
photometric effects of stellar mass loss. The Padova isochrones include a description
of AGB evolution, which is very important since AGB stars dominate the photometric
evolution of stars after about 100 Myr.

(2) If stellar remnants are included, upon its death a star isreplaced by a body with mass
determined by the initial-remnant mass relation. For whitedwarfs, the relation from
Kalirai et al. (2008) is assumed, while neutron star and black hole masses are based
on studies by Nomoto et al. (1988) and Casares (2007), respectively. Our resulting
initial-remnant mass relation for the full stellar mass range is independent of metallic-
ity. However, generally a metallicity dependence is found for both white dwarf (e.g.
Kalirai et al. 2005, Meng et al. 2008) and neutron star masses(e.g. Hurley et al. 2000).
Remnants formed at high metallicities are generally less massive than those formed at
low metallicities. The difference betweenZ = 0.0004 andZ = 0.02 is typically∼ 10%,
which implies that the speed of the increase of non-luminouscluster massM sr

cl due to
stellar remnant production would be enhanced by 10% at low metallicities. For Fig. 3.6,
which shows the effect of metallicity on our results, this would have some small conse-
quences. Assuming a remnant to total cluster mass fractionM sr

cl /M
tot
cl ≈ 0.5, the slope

of total cluster mass evolution (Fig. 3.6(a)) would be increased (i.e. become less steep)
by a few percent at low metallicities, extending the total disruption time by a compara-
ble but slightly lower percentage due to theM tot

cl
γ mass dependence of the dissolution

timescale. Moreover, curves describingM /LV cluster evolution (Fig. 3.6(d)) would
exhibit metallicity effects that are smaller by a few percent. Overall, these corrections
are not sufficiently large to have a significant effect on our results.
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(3) We assume all remnant bodies to be initially bound to the cluster. In reality, supernovae
may induce kick velocities on their remnant black holes and neutron stars (e.g. Porte-
gies Zwart et al. 1997). A fraction of these remnants will have velocities larger than
the escape velocity. Typical escape velocities of globularclusters are∼ 30 km s−1

(McLaughlin & van der Marel 2005), while in some cases kick velocities of several
hundreds km s−1 are observed (e.g. Lyne & Lorimer 1994). This would imply that it
would not be possible to retain all black holes and neutron stars in globular clusters,
but nonetheless high numbers of neutron stars are observed in real globular clusters
(Camilo et al. 2000). Pfahl et al. (2002) suggest that low kick velocities are obtained
if neutron stars are formed in long-period and low-eccentricity high-mass X-ray binary
(HMXB) systems. In that case, the retained neutron star fraction would be four times
higher than expected for commonly observed ‘fast’ neutron stars. Because of the lack
of any definitive answer to the black hole and neutron star retention problem, and for
the sake of model simplicity, we ignore kick velocities. In Fig. 3.8 we show the effect
of including or excluding all black holes and neutron stars from our models. The panel
is identical to that of Fig. 3.4, however curves representing model runs without stellar
remnants are now replaced by ones which include white dwarfsonlyand for which all
black holes and neutron stars have been removed. The effect is negligibly small (e.g.
. 10% in all observables) because the total remnant mass is generally dominated by
white dwarfs at ages& 100 Myr. In reality, the effect will be even smaller since a num-
ber of black holes and neutron stars have velocities smallerthan the escape velocity
and are thus retained in the cluster.

(4) Binaries are only partially incorporated in our models.Dynamically, they are included
since our models are fitted to the collisionalN -body simulations by Baumgardt &
Makino (2003). However, these do not include a primordial binary population. Pho-
tometrically, binaries are not accounted for, because our model clusters are populated
using single-star isochrones. As a result, we have no mechanism in which white dwarfs
can evolve towards neutron stars due to mass transfer. If we had, it would increase the
total remnant mass by a very small amount proportional to thefraction of white dwarfs
undergoing mass transfer in a binary system.

(5) The preferential loss of low-mass stars is included by monotonously increasing the
minimum stellar massmmin(t) of the bound stars in the cluster. As is discussed in
Sect. 3.4.1, this is an approximation to the true evolution of the stellar mass function.
The N -body simulations by Baumgardt & Makino (2003) show that theslope of the
IMF below a certain pivot-point massmpiv

s increases15, thus exhibiting the preferential
loss of low-mass stars. The maximum stellar massmmax(t) is reduced by stellar evo-
lution. Together, these effects narrow the mass function. In Fig. 3.9, our model mass
and bolometric mass-to-light ratio evolution are comparedto Baumgardt & Makino
(2003). The mass evolution shows good agreement, with a small offset at intermediate
age that can be attributed to the different stellar evolution prescriptions of both models

15Because the slope is negative this means that it becomesless negativeand eventually more and more positive.
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Figure 3.8: Effect of neutron star ejection on (a) total cluster mass, (b) V -band magnitude, (c)V−I and
(d) M /LV evolution for clusters with initial massMcl,i = 106 M⊙, including all other stellar remnants,
a dissolution timescalet0 = 3 Myr (t total

dis = 17—18.5 Gyr), metallicityZ = 0.02 and a Kroupa IMF.
Similar to Fig. 3.4, solid curves denote the evolution for clusters including the preferential loss of low-
mass stars with all neutron stars and black holes retained, long-dashed curves for clusters without these
massive remnants. For clusters without the preferential loss of low-mass stars, short-dashed curves
represent the case in which neutron stars and black holes areincluded and dotted curves represent the
result where these remnants are removed upon their formation. The onset of the preferential modet[pref

is marked by vertical lines in the linestyles of the corresponding model runs.

(Padova 1999 for the present work and Hurley et al. (2000) forBaumgardt & Makino
(2003)). Consequently, both models also differ in metallicity, as the value used by
Baumgardt & Makino (2003) is unavailable in the Padova isochrones. The difference
in mass evolution is fully accounted for by these differences.

The bolometric mass-to-light ratio evolution is very similar to our model including
the preferential loss of low-mass stars for the largest partof cluster lifetime. A strong
difference between our approach and theN -body simulations only arises in cluster pho-
tometry and remnant loss close to total cluster disruption,whenmmin(t) andmmax(t)
nearly meet. In that case, model clusters only retain their giant branch, because in-
creasingmmin(t) first removes the main sequence before giants are lost. Thisleads
to luminosities that are overestimated close to total disruption. Moreover, this could
cause real clusters to retain more remnants close to total disruption than is computed in
our models. Consequently, the true mass-to-light ratio of clusters near total disruption
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Figure 3.9: Comparison of the mass (left) and bolometric mass-to-lightratio evolution (right) from
two of our models with and without the preferential loss of low-mass stars (Mcl,i = 18407.6 M⊙, with
remnants,t0 = 22.5 Myr (t total

dis ∼ 11.5 Gyr),Z = 0.004 and a Kroupa IMF between 0.1 M⊙and 15 M⊙)
to the results from Baumgardt & Makino (2003) (same initial mass,W0 = 5, Rgc = 8.5 kpc, circular
orbit, Z = 0.001 and a Kroupa IMF between 0.1 M⊙and 15 M⊙).

would be larger than shown in this study. This is important inthe last∼ 15% of total
cluster lifetime (see Fig. 3.9), during which the mass-to-light ratio evolution can be
expected to have a positive slope due to the retain of stellarremnants rather than the
computed negative one. Therefore, the slight upturn near total disruption induced by
the inclusion of remnants that was shown in Fig. 3.4(d) can beexpected to be much
stronger in reality. Even a slight upturn does not appear in Fig. 3.9 because the IMF
used by Baumgardt & Makino (2003) is truncated at 15 M⊙, implying that there is no
production of black holes, which are needed for the upturn tooccur in models where
the preferential loss of low-mass bodies is represented by an increasing lower mass
limit.

However, it is important to note thatt = 0.85t total
dis in Fig. 3.9 is also the point from where

on theN -body simulations are strongly affected by statistical noise. As the number of
stars in the cluster decreases and it starts to be dominated by both high- and low-
luminosity objects (giants and massive remnants) the imprint of statistics on especially
the mass-to-light ratio is enhanced. Consequently, it is very difficult to accurately
describe the mass-to-light ratio evolution in the very lastpart of cluster lifetime, as
such predictions are scatter-dominated and are thus not very likely to apply to any
specific real cluster.

The fractional range near total cluster disruption for which our models do not follow
the mass-to-light ratio rise from Baumgardt & Makino (2003)increases with the total
disruption time of a cluster, with 15% being the typical value for a t total

dis of about a
Hubble time. Shorter lived clusters are covered for by our models for a larger part of
their lifetime, while for very long-lived clusters still atleast 70% of their lifetime is
covered. The vast majority of globular clusters is presently in the range where they can
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be treated with our models.

(6) We adopt a step-function form forfpref(t) to describe the fraction of the cluster mass
loss occurring in the form of low-mass stars if the cluster has (partially) reached energy
equipartition. In the increasing minimum stellar mass approximation, a step-function
requires the form of Eq. 3.29 to most accurately reproduce the N -body simulations
by Baumgardt & Makino (2003). However, cluster magnitude evolution will be better
reproduced if a smooth function oft is formulated. Nonetheless, this is not likely
to lead to an exact or better representation of Baumgardt & Makino (2003) due to
the fundamentally different approach of including the preferential loss of low-mass
stars. Instead, in a future study we will incorporate an improved description of the
changing mass function due to the loss of low-mass stars to account for the effect of
the preferential loss of low-mass stars (see Sect. 3.6.2).

(7) Stellar remnants with masses smaller than the minimum stellar mass in the cluster,
i.e. msr < mmin(t) are immediately available for dissolution. If the escape rate of
bodies is not constant with cluster radius, this ignores theoutward transport of remnants
from their birth location (for a mass-segregated cluster this is considered to be in the
cluster centre) to the cluster outskirts on the half-mass relaxation timescaletrh. Because
generallytrh < t total

dis − t except close to total cluster disruption (see the Appendix
Sect. 3.A), this is a reasonable approach. In the exceptional case wheretrh > t total

dis − t ,
remnant loss is halted since the cluster is disrupted on a shorter timescale thantrh.

(8) The speed of cluster dissolution is assumed to be independent of cluster radius. Gieles
& Baumgardt (2008) have shown that this is a reasonable assumption for most tidally
dissolving clusters, especially for large-N systems like globular clusters.

3.6.2 Applicability and future studies

Because this study is based on collisionalN -body simulations that confirm the existence of
the preferential loss of low-mass stars and the retain of stellar remnants, the predicted effects
will be present in real clusters. It is shown that these phenomena, but also IMF and metallic-
ity variations can have unique effects on either the mass, magnitude, colour and mass-to-light
ratio evolution of clusters. Therefore, the effects of the preferential loss of low-mass stars,
stellar remnants, IMF and metallicity can be expected to be observable and interpretable.
Clusters of all ages between 10 Myr and 19 Gyr can be treated with our models. Near total
cluster disruption the results are affected by our formulation of the preferential loss of low-
mass stars, in which red giants are the very last bodies to be lost near total cluster disruption.
As a result, the cluster magnitude is overestimated and the mass-to-light ratio is underesti-
mated during the last∼ 15% of cluster lifetime. Therefore, photometry-related observables
have to be used with caution near total cluster disruption (see Sect. 3.6.1).

The metallicity dependence of stellar remnant mass and an improved description of the
preferential loss of low-mass stars are to be included in future studies. This will provide
more accurate descriptions of non-luminous cluster mass, and cluster photometry and mass-
to-light ratio close to total disruption. A new set of evolutionary synthesis models with a
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time-dependent stellar mass function, based onN -body simulations will soon be available
(Anders et al. 2009). Moreover, we have made a quantitative comparison of our models to
a number of globular cluster systems, and have assessed unexplained features of the mass-
to-light ratio distribution (Kruijssen 2008). A paper in which the individual properties of
Galactic globular clusters, like their orbital parametersand metallicities, are used to explain
their mass-to-light ratios is in preparation (Kruijssen & Mieske 2009).

3.7 Conclusions

We have treated the influence of the preferential loss of low-mass stars, stellar IMF, metallic-
ity and the inclusion of stellar remnants on cluster mass, magnitude, colour and mass-to-light
ratio evolution. We presented analytical models that describe the evolution of cluster content
and photometry, based on stellar evolution from the Padova 1999 isochrones and on simpli-
fied dynamical dissolution models as first presented in Lamers et al. (2005a). The latter, in
turn, is based on theN -body simulations by Baumgardt & Makino (2003).

The models represent the cluster evolution part of our new cluster population synthesis
codeSPACE. We considered Kroupa and Salpeter IMFs and metallicities in the rangeZ =
0.0004—0.05. The obtained data are publicly available in electronic form at the CDS. The
results from our models are as follows.

(1) The preferential loss of low-mass starsslightly decreases the total disruption time of a
cluster by a few percent. However, the most significant changes are effected in cluster
photometry. The effect of fading is decreased as clusters including mass loss in the
preferential mode can stay more than 1.5V -band magnitudes brighter than clusters
losing mass in the canonical mode, because most of the dynamical mass loss occurs in
the form of low-mass stars that contribute little to clusterluminosity. Initially, clusters
exhibiting the preferential loss of low-mass stars are bluer than standard ones, but they
become redder during the last∼ 10% of cluster lifetime. The cluster mass-to-light
ratio is severely decreased due to the preferential loss of low-mass stars. The decrease
typically ranges from 2—4 M⊙ L−1

⊙ (i.e. up to 0.6 dex) near total cluster disruption for
total disruption timest total

dis > 12 Gyr. If the upturn of theM /LV evolution that is much
more prominent in Baumgardt & Makino (2003) than in our models (see Sect. 3.6.1,
point (5)) is accounted for, this range ofM /LV decrease is at most 0.5 M⊙ L−1

⊙ smaller.

(2) Including the mass ofstellar remnantsobviously yields an increase in the total clus-
ter mass and consequently also in total disruption time withrespect to cluster evolu-
tion without remnants. The extended lifespan also implies that cluster luminosity less
rapidly decreases. The mass-to-light ratio is enhanced by almost 2 M⊙ L−1

⊙ at its
maximum, close to total disruption.

(3) We compared the evolution of clusters withSalpeter and Kroupa IMFs, which can
be considered to favour high stellar masses (Kroupa, or a ‘top-oriented’ IMF) or low
masses (Salpeter, or a ‘bottom-oriented’ IMF) alternatives due to the bend in the Kroupa
IMF and a slight slope difference. As can be expected, clusters with a bottom-oriented
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IMF retain more mass due to stellar evolution, which eventually causes these clusters
to become brighter than clusters with a top-oriented IMF. However, they start out being
slightly fainter since a top-oriented IMF favours massive stars and is thus brighter than
a bottom-oriented one. Similarly, clusters with a top-oriented IMF are bluer and have
smaller mass-to-light ratios than clusters with a bottom-oriented IMF. For the Kroupa
and Salpeter IMFs, the latter change can amount up to severalM⊙ L−1

⊙ .

(4) Metallicity variations hardly influence the total mass evolution of clusters. In accor-
dance with stellar studies (Hurley et al. 2004) low-metallicity clusters are brighter and
also much bluer than high-metallicity ones. Consequently,the mass-to-light ratio is a
strongly increasing function of metallicity.

(5) When applying our results toGalactic globular clusters, it is evident that the preferen-
tial loss of low-mass stars is required to explain their low observedmass-to-light ratios,
especially if stellar remnants are accounted for. Low metallicity is insufficient to serve
as an explanation. Another important implication of our study is that the mass-to-light
ratio cannot be assumed to be constant over varying luminosity, as it is strongly af-
fected by the dynamical history of clusters.

(6) The fact that clusters of high masses may not have reachedenergy equipartition yet
suggests that the effects of the preferential loss of low-mass stars disappear with in-
creasing cluster mass. Because clusters exhibiting the preferential loss of low-mass
stars have much lower mass-to-light ratios than clusters that lose their mass in the
canonical mode, clusters with high masses would then have much higher mass-to-light
ratios than ones with lower masses. This effect may have beenfound by Rejkuba et al.
(2007). The above interpretation and its application to theobservations of Rejkuba
et al. (2007) is treated more extensively in Kruijssen (2008).

(7) The typicalcolour range of globular clustersis covered by our models. When con-
sidering the colour-metallicity relation as reported by Smith et al. (2007), from an
order-of-magnitude comparison we suggest that the observed colour scatter at fixed
metallicity could be the effect of the preferential loss of low-mass stars.

(8) Only when adopting a Salpeter IMF down tommin,i = 0.1 M⊙, the mass-to-light ra-
tios of UCDs are reproduced by our models. While UCDs could represent a natural
continuation of the trend of increasing mass-to-light ratio with (globular) cluster mass
(Rejkuba et al. 2007), this is not expected to be of a dynamical nature, since more
massive UCDs are not expected to have reached energy equipartition within a Hubble
time.

The retain of remnants and the existence of the preferentialloss of low-mass stars are
found inN -body simulations of clusters and in observations, while metallicity and IMF vari-
ations are observed among real clusters. Therefore the effects described in this chapter should
be considered when observing clusters, and observed cluster properties have to be interpreted
very carefully16.

16Predictions for specific models can be made by the first authorupon request.
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3.A Appendix: Outward motion of stellar remnants

In this study it is assumed that when stellar remnants are thelowest mass bodies in a cluster
that preferentially loses low-mass stars they are immediately available for dissolution. In
mass-segregated clusters, remnants are created in the cluster centre, where the most massive
stars reside. Because bodies are only lost from the cluster if they cross the tidal radius, this
leads to a delay compared to remnants that would be produced at all radii unless the escape
rate from the cluster is independent of radius as proposed byKing (1966). In this Appendix
we show that the delay can be neglected even if the escape ratevaries throughout the cluster.

If the lowest mass bodies in the cluster are stellar remnants, these will move outwards
on a half-mass relaxation timescaletrh (e.g. Spitzer 1987, Heggie & Hut 2003, Ch. 14). Our
description of remnant loss ignores any delay caused by the motion of remnants from the
cluster centre to its outskirts. Therefore it implicitly assumestrh ≪ t total

dis − t , where the latter
term represents the remaining lifetime of the cluster. To compare the two terms, we define
χ = (t total

dis − t)/trh. If χ > 1, remnants are able to reach the tidal radius before total cluster
disruption; forχ < 1, the cluster is completely disrupted before such equillibrium can be
reached.

In Fig. 3.10, logχ is shown for initial cluster masses between 102 and 107 M⊙, with a
dissolution timescale oft0 = 3 Myr, metallicityZ = 0.02, a Kroupa IMF and complete energy
equipartition (fpref(t) = 1) after t = 0.2t total

dis . When a cluster reaches energy equipartition,
there is a rapid drop intrh because the mean mass in the cluster centre increases. This is
reflected in a sudden increase of logχ with age for any specific initial mass. This can be
observed in Fig. 3.10 at the dashed curve, which represents the onset of the preferential mode
tpref (see Sect. 3.4.1) for the entire initial mass range. From Fig. 3.10 and model runs for other
choices of dissolution timescale, metallicity and IMF, we can conclude that aftertpref, χ & 3
for all parameter sets relevant to globular clusters, and still χ & 1.4 for clusters with initial
massesMcl,i < 103 M⊙ and extremely rapid cluster dissolution (t0 = 0.3 Myr). For massive
clusters, we typically haveχ ∼ 10 for t > tpref, implying that the immediate availability of
remnants is a legitimate approximation.

Only during the very last few Myrs before total cluster disruption a cluster can have
χ < 1 because the numerator (remainingcluster lifetime) approaches zero more rapidly than
the denominator (trh). Remnants that are produced during that brief phase cannotbe lost in the
preferential mode. If just before total disruptionχ < 1, the lower integration limitmmax(t) in
Eq. 3.26, that determines the total remnant mass available for dissolution, should be replaced
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Figure 3.10: Logarithm of the ratio of remaining cluster lifetime and thehalf-mass relaxation
timescale, (t total

dis − t)/trh ≡ χ, as a function of cluster aget and initial cluster massMcl,i . The dashed line
represents the onset of the preferential modetpref for a cluster of corresponding y-axis initial mass, and
the dotted line denotes the time from which on remnants are lost from such a cluster (tsr, see Sec. 3.2.3
for details). For the displayed model run we used a dissolution timescale oft0 = 3 Myr, metallicity
Z = 0.02, a Kroupa IMF and complete energy equipartition fort ≥ 0.2t total

dis .

by mmax(tχ), with tχ the time at whichχ decreases below unity17.
As we have shown, for other parts of cluster evolution the assumption of the immediate

loss of remnants with massesmsr(t) ≤ msr ≤ mmin(t) is reasonable. Note that for clusters
including the preferential loss of low-mass stars witht ≥ tpref, typically trh is not only very
small compared to the remaining cluster lifetime, but also (. 10%) compared to its age.

17To determineχ, the total disruption timet total
dis has to be known before having integrated cluster propertiesover

(and thus having obtained-) the entire cluster lifetime. This is alleviated by estimatingt total
dis using straightforward

integration of Eq. 3.3 at the very start of the computation.
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Explaining the mass-to-light ratios of globular
clusters

J. M. Diederik Kruijssen
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Abstract The majority of observed mass-to-light ratios of globular clusters are too low to be ex-
plained by ‘canonical’ cluster models, in which dynamical effects are not accounted for. Moreover,
these models do not reproduce a recently reported trend of increasingM /L with cluster mass, but in-
stead predict mass-to-light ratios that are independent ofcluster mass for a fixed age and metallicity.
This study aims to explain theM /L of globular clusters in four galaxies by including stellar evolution,
stellar remnants, and the preferential loss of low-mass stars due to energy equipartition. Analytical
cluster models are applied that account for stellar evolution and dynamical cluster dissolution to sam-
ples of globular clusters in Cen A, the Milky Way, M31 and the LMC. The models include stellar
remnants and cover metallicities in the rangeZ = 0.0004—0.05. Both the low observed mass-to-light
ratios and the trend of increasingM /L with cluster mass can be reproduced by including the prefer-
ential loss of low-mass stars, assuming reasonable values for the dissolution timescale. This leads to a
mass-dependentM /L evolution and increases the explained percentage of the observations from 39%
to 92%. This study shows that the hitherto unexplained discrepancy between observations and models
of the mass-to-light ratios of globular clusters can be explained by dynamical effects, provided that the
globular clusters exhibiting lowM /L have dissolution timescales within the ranges assumed in this
chapter. Furthermore, it substantiates thatM /L cannot be assumed to be constant with mass at fixed
age and metallicity.

4.1 Introduction

The mass-to-light ratios of globular clusters (GCs) have been given a lot of attention re-
cently (e.g. McLaughlin & van der Marel 2005, Rejkuba et al. 2007, Mieske & Kroupa 2008,

†Reproduced with permissionc© ESO.
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Dabringhausen et al. 2008). Rejkuba et al. (2007) have observed anM /L trend with clus-
ter mass above a certain cluster mass, as more massive clusters appear to have higherM /L
than low-mass clusters (see also Mandushev et al. 1991). This is an observation contrary to
fundamental plane studies of GCs (e.g. McLaughlin 2000) andalso in strong disagreement
with the constantM /L for fixed age that is commonly assumed in observational and theo-
retical GC studies (e.g. Harris et al. 2006, Mora et al. 2007,Bekki et al. 2007). Moreover,
for Galactic GCs McLaughlin (2000) findM /LV = 1.45 M⊙ L −1

⊙ , whereas Simple Stel-
lar Population models (e.g. Bruzual & Charlot 2003, Anders &Fritze-v. Alvensleben 2003)
predict significantly higher values ofM /LV = 2—4 M⊙ L −1

⊙ for typical GC metallicities.
Given the important role of GCs in galactic astronomy, it is essential to explain these apparent
contradictions.

In numerical and analytical studies of dynamical effects inclusters (e.g. Baumgardt &
Makino 2003, Lamers et al. 2006, Kruijssen & Lamers 2008) it has become clear that the
dynamical evolution of clusters strongly affects cluster luminosity, colour and mass-to-light
ratio. In Kruijssen & Lamers (2008, hereafter KL08) it is shown how the evolution of these
observables changes due to dynamical effects such as the preferential loss of low-mass stars
and the retain of stellar remnants, but also due to the stellar initial mass function and metal-
licity. It is shown thatM /L cannot be assumed to be constant for a fixed age and metallicity,
but instead depends on cluster mass when dynamical effects are accounted for.

In this chapter, the analytical cluster models from KL08 areapplied to explain the obser-
vations of GCs in several galaxies from Rejkuba et al. (2007)and Mieske et al. (2008). In
Sect. 4.2 I first summarise the models presented in KL08, which is applied to the observations
in Sect. 4.3. In Sect. 4.3.1 the effect of metallicity and thecluster dissolution timescale on
cluster evolution in the{M , M /LV}-plane is investigated. The observations are discussed in
Sect. 4.3.2 and are compared to the models in Sect. 4.3.3. A discussion of the results and the
conclusions are presented in Sect. 4.4.

4.2 Modeling method

In this study, analytic cluster models are used that incorporate the effects of stellar evolution,
stellar remnant production, cluster dissolution and energy equipartition. They are summarised
here and are treated in more detail in KL08.

In the models, clusters gradually lose mass due to stellar evolution and dissolution. The
total cluster mass evolution is described by dMcl/dt = (dMcl/dt)ev+(dMcl/dt)dis, with the first
term denoting stellar evolution and the second representing dissolution. Taking into account
the formation of stellar remnants and the mass-dependent loss of stars by dissolution, this
provides a description of the changing mass function and cluster mass in remnants.

Stellar evolution is included by using the Padova 1999 isochrones1. It removes the most
massive stars from the cluster and increases the dark cluster mass by turning stars into rem-
nants, which is included by assuming an initial-remnant mass relation. A Kroupa (2001) IMF
is assumed.

1These isochrones are based on Bertelli et al. (1994), but usethe AGB treatment as in Girardi et al. (2000).
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Cluster dissolution represents the dynamical cluster massloss due to stars passing the
tidal radius. This mass loss acts on a dissolution timescaleτdis:

(

dMcl(t)
dt

)

dis

= −Mcl(t)
τdis

= −Mcl(t)
1−γ

t0
, (4.1)

whereτdis is related to the present day cluster massMcl(t) asτdis = t0Mcl(t)
γ (Lamers et al.

2005a), leading to the second equality in Eq. 4.1. The characteristic timescalet0 depends on
the environment and determines the strength of dissolution. For example, in the case of tidal
dissolutiont0 depends on tidal field strength and thus on galactocentric radius and galaxy
mass. Typical values aret0 = 105—108 yr (e.g. Lamers et al. 2005b), translating into a total
disruption timet total

dis ≈ 108—1011 yr for a 105 M⊙ cluster. FromN -body simulations of tidal
dissolution (Lamers et al. 2005b) and observations (Boutloukos & Lamers 2003, Gieles et al.
2005), the exponentγ is found to beγ ≈ 0.62.

The effect of dissolution on the mass function depends on thedynamical state of the
cluster. If it has reached energy equipartition, i.e. aftercore collapse, the cluster becomes
mass-segregated and low-mass stars are preferentially lost. This occurs at about 20% of the
total cluster lifetime (Baumgardt & Makino 2003). For clusters without equipartition, bodies
of all masses are lost with similar probabilities.

Cluster photometry is computed by integrating the stellar mass function over the stellar
isochrones, yielding cluster magnitude evolutionMλ(t , Mcl,i) for a passbandλ and a cluster
with initial massMcl,i.

4.3 Applying the cluster models to observed clusters

In this section I present the evolution of clusters in the{M , M /LV}-plane, and apply this to
explain the{M , M /LV} distribution observed in real clusters.

4.3.1 Cluster evolution in the mass-M /LV plane

In ‘canonical’ Simple Stellar Population (SSP) models, clusters only evolve due to stellar
evolution, and therefore their mass-to-light ratios do notchange due to dynamical effects.
As the most massive stars (with lowM /LV ) gradually disappear, in these modelsM /LV is a
monotonously increasing function of time that is constant for any set of clusters at a single age
and metallicity. However, this is only correct if cluster dissolution occurs independently of
stellar mass and the shape of the stellar mass function is preserved, i.e. there isnopreferential
loss of low-mass stars.

Contrary to clusters from SSP models, in reality clusters dopreferentially lose low-mass
stars (e.g. Hillenbrand & Hartmann 1998, Albrow et al. 2002,Baumgardt & Makino 2003).
KL08 have shown that this strongly affects theM /L evolution of clusters due to the pref-
erential loss of low-mass stars (having highM /L ), and that consequentlyM /L cannot be
assumed to be constant for clusters of a given age.
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Figure 4.1: Cluster evolution in the{M , M /LV }-plane for metallicitiesZ = {0.0004, 0.004}
([Fe/H] = {−1.7,−0.7}) and dissolution timescalest0 = {0.3, 1, 3, 10, 30} Myr. Solid lines repre-
sent evolutionary tracks for initial masses in the rangeMcl,i = 105—108 M⊙ with 0.5-dex intervals,
while the dotted curves denote cluster isochrones at agest = {4, 8, 12, 19} Gyr. Dots denote the onset
of the preferential loss of low-mass stars for each evolutionary track.

In order to explain the appearance of clusters in the{M , M /LV}-plane, I first compute
the model cluster evolutionary tracks for different metallicities and dissolution timescales.
The results are shown in Fig. 4.1.

Initially, model clusters are not in equipartition and theyevolve to lower masses and
increasingM /LV (due to the death of massive stars), moving up and to the left in Fig. 4.1.
From the moment they reach mass segregation, happening earlier for low-mass clusters due
to quicker relaxation (Baumgardt & Makino 2003), they preferentially lose low-mass stars,
which have highM /L . This decreasesthe clusterM /L and explains the maximum in the
cluster evolution curves for lower initial masses. Along the cluster isochrones of constant age
(dotted lines in Fig. 4.1),M /LV increases with mass, since at any age low-mass clusters have
spent more time in energy equipartition and thus have retained more massive (i.e. low-M /L )
stars compared to massive clusters. The cluster isochronesflatten at the highest masses, since
these clusters have yet to reach equipartition, leaving them at constantM /L .

Within a galaxy, its GCs generally have similar ages (e.g. Vandenberg et al. 1990). Obser-
vations of GC systems should thus approximately follow cluster isochrones in the{M , M /LV}-
plane. Therefore, the isochrones are used in Fig. 4.1 to probe the influence of metallicity
and dissolution timescale on the expected GC distribution.Increasing metallicity leads to
a higher maximumM /L , and thus also to steeper isochrones. Increasing the dissolution
timescale shifts the entire isochrone to the left: for long dissolution timescales, it takes more
time to reach equipartition and therefore only clusters of the lowest masses have preferen-
tially lost low-mass stars. The dissolution timescale thussets the location of the ‘knee’ in the
isochrones, which is the cluster mass at which they flatten due to the absence of equipartition.
This can be used to determine the dissolution timescale range of an observed GC system.
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Figure 4.2: Mass-to-light ratio versus mass for globular clusters in different galaxies. The Cen A data
is from Mieske et al. (2008), all other data is taken from Rejkuba et al. (2007). The canonical (mass-
independent) models are overplotted as solid, dashed and dotted lines forZ = {0.0004, 0.004, 0.008},
respectively.

4.3.2 Observations of globular cluster mass-to-light ratios

In Rejkuba et al. (2007, Fig. 9) the (dynamical-){M , M /LV}-plane is presented for GCs
in several host galaxies. In Fig. 4.2, I show their{M , M /LV}-plane for GCs from Cen A,
the Milky Way, M31, and the Large Magellanic Cloud (LMC). Forthe Cen A data, aperture
corrections as in Hilker et al. (2007) have been computed forthe cluster masses andM /LV

(Mieske et al. 2008). TheM /LV values for mass-independent cluster models (the ‘canonical’
models from KL08) are overplotted, and fail to reproduce a large part of the data. When
considering the metallicities and errors of the data (not shown in Fig. 4.2), only 39% of the
observed GCs can be covered within their 1-σ errors if the canonical models are used2.

Although the data show quite some scatter, there are indications for a trend of increasing
M /LV with mass, such as the lack of low-M /L clusters for logM > 6.3. I argue that this
is the same behaviour as can be observed in the cluster isochrones including the preferential
loss of low-mass stars in Fig. 4.1, implying that the increase ofM /LV with mass corresponds
to a decreasing effect of energy equipartition.

4.3.3 Explaining the mass-to-light ratios of globular clusters

Figure 4.3 compares the model cluster isochrones (t = 12 Gyr) to the GC data for Cen A,
the Milky Way, M31 and the LMC. The different colours represent three metallicities, and
coloured model lines belong to data points of the same colour.

2SSP models (e.g. Bruzual & Charlot 2003, Anders & Fritze-v. Alvensleben 2003) all predictM /L = 2—
4 M⊙ L −1

⊙ for GC metallicities, a Kroupa IMF andt = 12 Gyr, comparable to the ‘canonical’ models used here.
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t0 range (Myr)

Galaxy Z = 0.0004 Z = 0.004 Z = 0.008
Cen A ≤ 5—5 ≤ 1—2 0.2—2
M31 ≤ 1—10 ≤ 0.5—2
MW 1—20 0.7—8 0.6—0.6
LMC ≤ 3—20

Table 4.1: Required dissolution timescale ranges for globular clusters of three metallicities in four
studied galaxies, as derived from the cluster samples. Due to possible incompleteness at low masses
and highM /L (see Fig. 4.3), all upper limits represent minimum values and lower limits often represent
maxima. Limits that do not suffer from incompleteness are shown in boldface.

For any galaxy and metallicity, the data cover an area in the{M , M /LV}-plane that can
be spanned by two model curves of different dissolution timescales. Left curves denote upper
limits, while right curves represent lower limits for the dissolution timescale ranges in which
clusters are observed. These limits are chosen as such that they encompass the data points.
Contrary to the sparse coverage of the data by the canonical models (see Fig. 4.2), it is shown
in Fig. 4.3 that 92% of the data can be explained within their 1-σ errors by using the new
models (KL08) that account for dynamical effects. The remaining 8% has too highM /L
to be explained by stellar population models, unless their observed ages or metallicities are
underestimated.

The minimum and maximum dissolution timescales that are required to explain the obser-
vations are summarised in Table 4.1. All values fall within the physically reasonable range of
105—108 yr (Lamers et al. 2005b). For each galaxy, a broad range of dissolution timescales
is required to explain the observed range ofM /L . This is not surprising, since the observed
clusters are located at various galactocentric radii and thus experience different tidal dis-
solution strengths. Regardless of this spread, there is a clear trend of decreasing required
dissolution timescale with metallicity. This is likely to be related to the radial metallicity
gradient observed in galaxies (first established by Searle 1971), with metal-rich clusters at
small galactocentric radii and thus at short dissolution timescales. Another trend is that of
decreasing required dissolution timescale with galaxy mass. Again, this is not surprising, as
more massive galaxies can have stronger tidal fields and thusgive rise to more rapid cluster
dissolution.

4.4 Discussion

In this chapter, I have shown that the hitherto unexplained discrepancy between observations
and models of the mass-to-light ratios of globular clusterscan be explained by dynamical
effects. The preferential loss of low-mass stars due to energy equipartition gives rise toM /L
evolution that depends on cluster mass, contrary to what is assumed in canonical cluster
models. This is confirmed by the application of models that include dynamical effects to the
GC populations of Cen A, the Milky Way, M31 and the LMC.
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Figure 4.3: Comparison oft = 12 Gyr model cluster isochrones in the{M , M /LV }-plane to globular
clusters in four different galaxies. Clusters with metallicitiesZ = {0.0004, 0.004, 0.008} are denoted
with blue diamonds, green triangles, and red squares, respectively. Model curves for these metallicities
are shown in the same colours, with dotted, dashed and solid lines, respectively. In all cases an age of
t = 12 Gyr is assumed. For each galaxy, a dash-dotted line of constant luminosity represents the faintest
cluster that is covered by the models, illustrating that thesamples are magnitude-limited. Metallicities
are from Beasley et al. (2008, Cen A), Harris (1996, Milky Way), Dubath & Grillmair (1997, M31) and
Mackey & Gilmore (2004, LMC). To prevent crowding, error bars are only shown for clusters that fall
outside the range covered by the models.

Without the preferential loss of low-mass stars, current stellar population models can-
not explain mass-to-light ratios below 2 M⊙ L−1

⊙ for metallicity Z = 0.0004 and below
2.8 M⊙ L−1

⊙ for Z = 0.004. As becomes clear from Fig. 4.3, this would leave halfof the
cluster sample in Cen A and most of the Milky Way sample unexplained. Accounting for the
effects of energy equipartition increases the explained percentage of the observations from
39% to 92%.

The dissolution timescales required to explain the observed GC samples lie within the
physically reasonable range oft0 = 105—108 yr. Observed trends of decreasing dissolution
timescale with galaxy mass and metallicity are as expected when considering the strength of
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tidal dissolution and the radial metallicity gradient in galaxies.
The dependence ofM /L on cluster mass (and thus on luminosity) implies that photomet-

rically derived masses using canonical models may be strongly overestimated (KL08). The
results presented here underline the importance of accounting for dynamical effects when
modeling clusters or interpreting observations of (globular) clusters.
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Dissolution is the solution: on the reduced
mass-to-light ratios of Galactic globular clusters
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Abstract The observed dynamical mass-to-light (M /L ) ratios of globular clusters (GCs) are system-
atically lower than the value expected from ‘canonical’ simple stellar population models, which do not
account for dynamical effects such as the preferential lossof low-mass stars due to energy equipartition.
It has recently been shown that low-mass star depletion can qualitatively explain this discrepancy for
globular clusters in several galaxies. To verify whether low-mass star depletion is indeed the driving
mechanism behind theM /L decrease, we aim to predict theM /LV ratios of individual GCs for which
orbital parameters and dynamicalV -band mass-to-light ratiosM /LV are known. There is a sample of
24 Galactic GCs for which this is possible. We used theSPACE cluster models, which include dynam-
ical dissolution, low-mass star depletion, stellar evolution, stellar remnants, and various metallicities.
We derived the dissolution timescales due to two-body relaxation and disc shocking from the orbital
parameters of our GC sample and used these to predict theM /LV ratios of the individual GCs. To
verify our findings, we also predicted the slopes of their low-mass stellar mass functions. The com-
puted dissolution timescales agree well with earlier empirical studies. The predictedM /LV are in 1σ
agreement with the observations for 12 out of 24 GCs. The discrepancy for the other GCs probably
arises because our predictions give globalM /L ratios, while the observations represent extrapolated
central values that are different from global ones in the case of mass segregation and a long dissolution
timescale. The GCs in our sample that likely have dissimilarglobal and centralM /L ratios can be
excluded by imposing limits on the dissolution timescale and King parameter. For the remaining GCs,
the observed and predicted averageM /LV are 78+9

−11% and 78±2% of the canonically expected values,
while the values are 74+6

−7% and 85± 1% for the entire sample. The predicted correlation betweenthe
slope of the low-mass stellar mass function andM /LV drop is found to be qualitatively consistent with
observed mass function slopes. The dissolution timescalesof Galactic GCs are such that the∼ 20% gap
between canonically expected and observedM /LV ratios is bridged by accounting for the preferential

†Reproduced with permissionc© ESO.
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loss of low-mass stars, also when considering individual clusters. It is concluded that the variation in
M /L ratio due to dissolution and low-mass star depletion is a plausible explanation for the discrepancy
between the observed and canonically expectedM /L ratios of GCs.

5.1 Introduction

The topic of dynamical mass-to-light (M /L ) ratios of old compact stellar systems has at-
tracted increasing attention during recent years (McLaughlin & van der Marel 2005, Haşegan
et al. 2005, Rejkuba et al. 2007, Hilker et al. 2007, Evstigneeva et al. 2007, Dabringhausen
et al. 2008, Mieske et al. 2008, Kruijssen 2008, Baumgardt & Mieske 2008, Chilingarian
et al. 2008, Forbes et al. 2008). The outcome of these studiescan be summarised as follows.

• For the mass regime of ultra-compact dwarf galaxies (UCDs,M ≥ 2 × 106 M⊙),
dynamicalM /L ratios tend to be some 50% above predictions from stellar population
models (Dabringhausen et al. 2008, Mieske et al. 2008, Forbes et al. 2008).

• For the mass regime of globular clusters (GCs,M ≤ 2 × 106 M⊙), dynamicalM /L
ratios tend to be some 25% below predictions from simple stellar population (SSP)
models that assume a canonical IMF (Rejkuba et al. 2007, Kruijssen 2008, Kruijssen
& Lamers 2008, Mieske et al. 2008).

• As a consequence, the dynamicalM /L ratios of UCDs are on average about twice as
high as those of GCs, at comparable metallicities.

Regarding GCs, a viable solution for obtaininglowerM /L ratios is a deficit in low-mass
stars with respect to a canonical initial mass function (IMF) (Kroupa 2001). This is known
to arise naturally from two-body relaxation in star clusters, which causes a depletion of low-
mass stars (Vesperini & Heggie 1997, Baumgardt & Makino 2003). In Kruijssen (2008)
we studied how the preferential loss of low-mass stars due todynamical evolution of a star
cluster in a tidal field reduces theM /L ratios of star clusters. There, we constrained the
ranges of dissolution timescales necessary for this loss oflow-mass stars to quantitatively
account for the drop inM /L observed for GCs. For the Galactic GC system, it was found
that dissolution timescales in the ranget0 = 0.6—≥20 Myr (corresponding to total disruption
times oft total

dis ≈ 3—100 Gyr for a 106 M⊙ cluster) are required to explain the observedM /L
ratio decline. It was also shown that theM /L ratio decrease is strongest for low-mass GCs,
which explains the observed correlation of increasingM /L ratio with mass discovered by
Mandushev et al. (1991). We concluded that the scatter around this relation is caused by
spreads in metallicity and dissolution timescale.

As noted already in Kruijssen & Lamers (2008, hereafter KL08), the next step is to apply
these analytical cluster models including preferential loss of low-mass stars toindividual
clusters. This would then account for variations in metallicity and dissolution timescale.
Such a study will naturally be restricted to GCs with measured M /L ratios for which realistic
estimates of their individual dissolution timescale are available from information on their
actual orbit within the Milky Way potential. With the database of individual dissolution time
scales at hand, the loss of low-mass stars can be quantified according to the prescriptions
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of Kruijssen (2008) and KL08, leading to predictions for thedrop of M /L for individual
GCs. Those predictions are to be contrasted with the actual observedM /L ratios of these
GCs. This will allow us to quantitatively test the hypothesis that the loss of low-mass stars is
responsible for the too lowM /L ratios of GCs, and hence also partially for the discrepancy
of M /L between GCs and UCDs.

Previous studies assessing the preferential loss of low-mass stars in Galactic GCs focus
both on observations (e.g. De Marchi et al. 2007) and theory (e.g. Baumgardt et al. 2008).
In De Marchi et al. (2007), the slopes of the stellar mass functions in GCs are measured for
stars between 0.3 and 0.8 M⊙, thereby directly reflecting possible low-mass star depletion.
The study by Baumgardt et al. (2008) predicts the same slopesusingN -body models and
different degrees of mass segregation, assuming dissolution by two-body relaxation. The
aforementioned papers both do not consider theM /L ratios of the GCs in question.

In this study, the reference sample for dynamicalM /L ratios of Galactic GCs is that of
McLaughlin & van der Marel (2005), obtained by the fitting of single-mass King profiles.
It contains data for 38 GCs. Only a subsample can be used for our analysis, namely those
clusters for which accurate proper motions and radial velocities are measured and can be
translated to orbital parameters. Next to the destruction rates due to two-body relaxation,
also the influence of disc shocking on the cluster dissolution needs to be taken into account.
Both have to be derived from the orbital parameters. Severalstudies in which orbital informa-
tion is derived and used to compute destruction rates are available in the literature (Gnedin &
Ostriker 1997, Dinescu et al. 1999, Allen et al. 2006, 2008),all with certain benefits and trade-
offs. Specifically, Gnedin & Ostriker (1997) assign statistically sampled orbits conforming to
the bulk motion of the GC system in an axisymmetric potentialto derive destruction rates of
119 globular clusters. Dinescu et al. (1999) use proper motions and radial velocities to com-
pute the orbits and destruction rates of 38 clusters in two axisymmetric potentials (Paczynski
1990, Johnston et al. 1995). Allen et al. (2006, 2008) followthe same procedure, but con-
sider both axisymmetric and barred potentials (Allen & Santillan 1991, Pichardo et al. 2004,
respectively) for 54 globular clusters. They do not find a significant deviation between the
results for both potentials. However, they do note that their calculated destruction rates are
multiple orders of magnitude lower than others in literature and recommend combining their
orbital information with the more rigorous Fokker-Planck approach used by Gnedin & Os-
triker (1997) to derive the destruction rates.

We choose to adopt the orbital data and destruction rate due to disc shocking from Dinescu
et al. (1999). Our study cannot be based on statistically assigned orbits but requires the actual
orbits of individual clusters, thus excluding the estimated orbits from Gnedin & Ostriker
(1997). In addition, the Dinescu et al. (1999) destruction rates seem to be in better agreement
with the observations than those from Allen et al. (2006, 2008).

In Table 5.1 the observed properties are listed of the 24 Galactic globular clusters for
which theV -band mass-to-light ratios (M /LV ) and orbital parameters are available, i.e. the
sample that is covered both by Dinescu et al. (1999) and McLaughlin & van der Marel (2005).
The masses and observedM /LV ratios represent dynamical values. For all clusters, the
standard error in [Fe/H] is assumed to be 0.15 when computingthe error propagation (see
Sect. 5.3), which represents a conservative accuracy estimate (see, e.g. Carretta & Gratton
1997). These errors determine the uncertainty on (M /LV )can in the last column, since the
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Table 5.1: Observed properties for the cluster sample, together with their 1σ standard errors. Con-
secutive columns list the cluster NGC number, logarithm of the present-day cluster massM (M⊙),
observedV -band mass-to-light ratio (M /LV )obs (in M⊙ L−1

⊙ ), metallicity [Fe/H], galactocentric radius
Rgc (in kpc), King parameterW0 and canonically expectedV -band mass-to-light ratio (M /LV )can (in
M⊙ L−1

⊙ ).

Cluster properties

NGC logM ⋆ (M /LV )⋆obs [Fe/H]†,⋄ R†
gc W⋆

0 (M /LV )can

104 5.804+0.157
−0.193 1.33+0.48

−0.59 -0.76 7.4 8.6+0.1
−0.1 2.68± 0.25

288 4.892+0.162
−0.198 2.15+0.80

−0.98 -1.24 12.0 4.8+0.2
−0.2 2.20± 0.08

1851 5.407+0.156
−0.192 1.61+0.58

−0.71 -1.22 16.7 8.1+0.1
−0.2 2.21± 0.09

1904 4.984+0.157
−0.195 1.16+0.42

−0.52 -1.57 18.8 7.5+0.1
−0.1 2.08± 0.04

4147 4.394+0.159
−0.202 1.01+0.37

−0.47 -1.83 21.3 8.0+0.2
−0.1 2.03± 0.02

4590 4.644+0.156
−0.194 0.92+0.33

−0.41 -2.06 10.1 6.6+0.1
−0.1 2.00± 0.01

5139 6.503+0.200
−0.159 2.54+1.17

−0.93 -1.29 6.4 6.2+0.1
−0.2 2.18± 0.07

5272 5.443+0.156
−0.197 1.39+0.50

−0.63 -1.57 12.2 8.2+0.1
−0.1 2.08± 0.04

5466 4.687+0.162
−0.200 1.61+0.60

−0.74 -2.22 16.2 4.2+0.2
−0.2 1.99± 0.01

5904 5.252+0.156
−0.195 0.78+0.28

−0.35 -1.27 6.2 7.6+0.1
−0.1 2.19± 0.08

6093 5.597+0.161
−0.205 2.67+0.99

−1.26 -1.75 3.8 7.5+0.1
−0.1 2.04± 0.03

6121 4.864+0.178
−0.243 1.27+0.52

−0.71 -1.20 5.9 7.4+0.1
−0.1 2.22± 0.09

6171 4.922+0.172
−0.241 2.20+0.87

−1.22 -1.04 3.3 7.0+0.1
−0.2 2.34± 0.13

6205 5.469+0.158
−0.201 1.51+0.55

−0.70 -1.54 8.7 7.0+0.1
−0.1 2.08± 0.04

6218 4.918+0.157
−0.206 1.77+0.64

−0.84 -1.48 4.5 6.1+0.1
−0.2 2.10± 0.05

6254 5.234+0.169
−0.223 2.16+0.84

−1.11 -1.52 4.6 6.5+0.1
−0.1 2.09± 0.04

6341 5.084+0.163
−0.202 0.88+0.33

−0.41 -2.28 9.6 7.5+0.1
−0.1 1.99± 0.01

6362 4.764+0.161
−0.191 1.16+0.43

−0.51 -0.95 5.1 5.3+0.3
−0.2 2.42± 0.16

6656 5.606+0.172
−0.241 2.07+0.82

−1.15 -1.64 4.9 6.5+0.1
−0.2 2.06± 0.03

6712 4.906+0.175
−0.241 0.99+0.40

−0.55 -1.01 3.5 5.1+0.4
−0.4 2.37± 0.14

6779 4.911+0.207
−0.165 1.05+0.50

−0.40 -1.94 9.7 6.5+0.3
−0.2 2.01± 0.02

6809 5.219+0.054
−0.067 3.23+0.40

−0.50 -1.81 3.9 4.5+0.2
−0.1 2.03± 0.02

6934 5.099+0.155
−0.193 1.51+0.54

−0.67 -1.54 12.8 7.0+0.1
−0.2 2.08± 0.04

7089 5.561+0.160
−0.195 0.98+0.36

−0.44 -1.62 10.4 7.2+0.1
−0.1 2.06± 0.03

⋆ From McLaughlin & van der Marel (2005).
† From Harris (1996).
⋄ The value for NGC 5139 (ωCen) is derived from Bedin et al. (2004).

canonicalM /L ratio only depends on metallicity. The galactocentric radii used to compute
the orbits in Dinescu et al. (1999) are from Zinn, private communication. In extreme cases
this may cause a small disagreement between the galactocentric radius quoted here and the
apogalactic distance predicted by Dinescu et al. (1999) (see Table 5.2).

A first inspection of the observedM /LV ratios in Table 5.1 can be made by comparing
them to the (‘canonical’)M /LV ratios from SSP models, which only depend on metallicity
due to the invariance of the shape of the stellar mass function in these models. In Fig. 5.1
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Figure 5.1: Left: Observed mass-to-light ratio (M /LV )obs versus the canonically expected mass-to-
light ratio (M /LV )can, together with their 1σ standard errors (see Table 5.1). The dotted line follows
the 1:1 relation. Clusters for which the disagreement is larger than 1σ are plotted as dots.Right:
Number histogram of (M /LV )can (diamonds, shaded area) and (M /LV )obs (triangles, hashed area). For
comparison, canonically expectedM /LV ratios from Bruzual & Charlot (2003) for a Chabrier (2003)
IMF are overplotted (squares, dotted line). Again, the error bars denote 1σ deviations, which were
determined from 30k random realisations of the underlying data.

(left), the observedM /LV ratios of our sample are plotted versus the canonically expected
values that were computed by interpolating SSP models. These were emulated with the mod-
els from KL08 neglecting the preferential loss of low-mass stars. The discrepancy between
observed and expectedM /LV ratio is evident, as the canonicalM /LV are constrained to a
much narrower and generally higher range than the observed ones. The number histogram of
the twoM /LV (Fig. 5.1, right) further substantiates this dissimilarity. The observedM /LV

ratios are on average 74+6
−7% of the canonically expected values.

With the present chapter we aim to quantify the contributionof dynamical effects such as
the preferential loss of low-mass stars and the selective loss of stellar remnants (see KL08)
to the discrepancy between the observed and canonically expectedM /L ratios. In Sect. 5.2,
we summarise the cluster models from KL08 and highlight the aspects that are particularly
relevant to this study. The dissolution timescales for the cluster sample are computed in
Sect. 5.3, whereas the predicted mass andM /LV evolution are considered and compared to
the observations in Sect. 5.4. We predict slopes of the low-mass stellar mass function and
discuss observational tests to verify the preferential loss hypothesis for appropriate clusters
in Sect. 5.5. In the final Sect. 5.6, we discuss the results andpresent our conclusions.



94 Chapter 5

5.2 Cluster evolution models andM /LV evolution

In order to study the evolution of clusters on specific orbits, we use analytical cluster models
(SPACE, see KL08) that incorporate the effects of stellar evolution, stellar remnant production,
cluster dissolution and energy equipartition. They are summarised here and are treated in
more detail in KL08. In the second part of this section, the dependence of mass-to-light
ratio evolution on initial mass, metallicity and dissolution timescale is assessed (for a more
detailed description, see Kruijssen 2008).

5.2.1 Summary of the models

In theSPACE cluster models, clusters gradually lose mass due to stellarevolution and disso-
lution. The total cluster mass evolution is determined by

dMcl

dt
=

(

dMcl

dt

)

ev

+

(

dMcl

dt

)

dis

, (5.1)

where the first term denotes mass loss due to stellar evolution and the second represents mass
loss by dissolution. Additionally, the formation of stellar remnants and the mass-dependent
loss of stars by dissolution are taken into account, thus providing a description of the changing
mass function and cluster mass in remnants.

Stellar evolution is included by using the Padova 1999 isochrones1. These are available
for metallicitiesZ = {0.0004, 0.004, 0.008, 0.02, 0.05} (with corresponding iron-to-hydrogen
ratios of [Fe/H]={−1.7,−0.7,−0.4, 0.0, 0.4}), which thus restricts our model computations
to these values. Stellar evolution removes the most massivestars from the cluster and in-
creases the non-luminous cluster mass by turning stars intoremnants, which is included by
adopting an initial-remnant mass relation2. A Kroupa (2001) IMF is assumed.

Cluster dissolution represents the dynamical cluster massloss due to stars passing the
tidal radius, which acts on the timescaleτdis:

(

dMcl(t)
dt

)

dis

= −Mcl(t)
τdis

= −Mcl(t)
1−γ

t0
, (5.2)

whereMcl(t) represents the present day cluster mass and the second equality follows from
the relation derived by Lamers et al. (2005a):

τdis = t0[Mcl(t)/M⊙]γ . (5.3)

The characteristic timescalet0 depends on the environment and determines the strength of
dissolution. For example, in the case of dissolution by two-body relaxationt0 depends on tidal
field strength and therefore on the angular velocity of the cluster orbit. Typical values aret0 =

1These isochrones are based on Bertelli et al. (1994), but usethe AGB treatment as in Girardi et al. (2000).
2For white dwarfs, this relation is taken from Kalirai et al. (2008), while for neutron stars the relation from

Nomoto et al. (1988) is used. Black hole masses are assumed tobe constant at 8 M⊙, in agreement with observations
(Casares 2007). For more details, see KL08.
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105—108 yr (e.g. Lamers et al. 2005b), translating into a total disruption timet total
dis ≈ 108—

1011 yr for a 105 M⊙ cluster. The exponentγ is found to beγ ≈ 0.62, both from observations
(Boutloukos & Lamers 2003, Gieles et al. 2005) and from the Baumgardt & Makino (2003)
N -body simulations of tidal dissolution for clusters with King parameterW0 = 5 (Lamers
et al. 2005b). However, it is recently derived by Lamers et al. (2010) thatγ = 0.70 for King
parameterW0 = 7. Since this concentration more closely resembles the mean King parameter
for Galactic GCs (see Table 5.1), we adoptγ = 0.70 throughout this study.

The effect of dissolution on the mass function depends on thedynamical state of the clus-
ter. As it evolves towards energy equipartition, low-mass stars are preferentially lost from the
cluster. This mass loss (in the ‘preferential mode’, KL08) is approximated by increasing the
minimum stellar mass (Lamers et al. 2006), while evaporation that is independent of stellar
mass (mass loss in the ‘canonical mode’, KL08) is accounted for by decreasing the normal-
isation of the mass function. In our models, both modes coexist to allow for intermediate
modes of mass loss. Their relative contributions are fitted such that theM /LV ratio evolution
matches theN -body simulations by Baumgardt & Makino (2003).

Cluster photometry is computed by integrating the stellar mass function over the stellar
isochrones, yielding cluster magnitude evolutionMλ(t , Mcl,i) for a passbandλ and a cluster
with initial massMcl,i.

5.2.2 Dependence of mass-to-light ratio on model parameters

The models described in Sect. 5.2.1 yield a mass-to-light ratio evolution that depends on the
dissolution timescale, metallicity and initial cluster mass. In canonical models, i.e. with-
out the preferential loss of low-mass stars,M /L monotonously increases with time. For a
given age and metallicity, these models provideM /L ratios that are independent of cluster
mass. On the other hand, our models including dynamical effects predict a mass-dependent
drop in mass-to-light ratio due to the ejection of low-mass,high-M /L stars (Kruijssen 2008,
KL08). In Fig. 5.2, theV -band mass-to-light ratio evolutionM /LV is shown for two metal-
licities and several initial cluster masses. In both panels, the upper curve marks the canonical
mass-to-light ratio evolution, while the others correspond to cluster evolution including the
preferential loss of low-mass stars for different initial masses. Since low-mass clusters evolve
on shorter timescales than massive ones, the deviation of their mass-to-light ratio evolution
with respect to canonical models arises at earlier times than for massive clusters.

The mass-to-light ratio decrease can be quantified by considering the ratio of the observed
or predictedM /L to its canonical value to divide out their metallicity dependence:

Qobs/pred≡
(M /LV )obs/pred

(M /LV )can
. (5.4)

Figure 5.3 shows the predicted fraction of the canonicalM /L ratio Qpred as a function of
t/t total

dis for clusters with initial masses in the rangeMcl,i = 2 × 104—108 M⊙, dissolution
timescalest0 = {1, 10} Myr and metallicitiesZ = {0.0004, 0.004}. It shows thatQpred is
independent of metallicity, initial cluster mass and dissolution timescale when considered as
a function of the elapsed fraction of the total disruption time t/t total

dis . The three-component
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Figure 5.2: Left: V -band mass-to-light ratio evolutionM /LV for t0 = 1 Myr, Z = 0.0004 and initial
masses in the range logMcl,i = 5—8 with 0.25-dex intervals.Right: same graph, but forZ = 0.004.
From top to bottom, different curves represent theM /LV evolution for decreasing initial cluster masses.

linear approximation illustrates the well-defined uniformcorrelation and is given by

Qpred =







1 for t/t total
dis < 0.2,

1.142− 0.71t/t total
dis for 0.2≤ t/t total

dis < 0.7,
1.471− 1.18t/t total

dis for t/t total
dis ≥ 0.7,

(5.5)

which applies for all initial conditions, i.e. is independent of the cluster properties or envi-
ronment3. Equation 5.5 does not include possible effects of primordial mass segregation on
the change of the mass function. From model runs where we did assume the preferential de-
pletion of low-mass stars fromt = 0 on we know that its effects become about 10% stronger
with respect to purely dynamically induced low-mass star depletion (KL08). This number
should be treated with some care, because our models are based onN -body simulations of
clusters that did not start out in a mass-segregated state (Baumgardt & Makino 2003).

The relation between the predicted fraction of the canonical mass-to-light ratioQpred

and the elapsed fraction of the total disruption time is expected, since in our models the
decrease ofM /L is the result of dynamical evolution. It is in agreement withstudies by
Richer et al. (1991) and Baumgardt & Makino (2003), who find that the depletion of the
low-mass stellar mass function in globular clusters is closely related to the elapsed fraction
of the total disruption time. Considering the physical processes driving dissolution, the result
is not surprising either. Two-body relaxation is known to preferentially eject low-mass stars

3Please note that a Kroupa IMF was assumed here. For substantially different IMFs the relation will vary.
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Figure 5.3: The ratio of predicted to canonical mass-to-light ratioQpred as a function of the elapsed
fraction of the total disruption timet/t total

dis . Dotted curves denote model predictions for a broad range of
initial conditions (varying initial masses, dissolution timescales and metallicities), while the solid line
describes a three-component linear approximation to the models.

(Hénon 1969) and tidal shocks remove the outer parts of the cluster, which in the case of mass
segregation are constituted by low-mass stars.

The evolution of cluster mass andM /LV can both be considered in the{M , M /LV}-
plane. The resulting ‘evolutionary tracks’ are shown in Fig. 5.4 for two different dissolution
timescales and again for two metallicities and a range of initial cluster masses as in Fig. 5.2.
Clusters start with their initial masses and withM /LV ratios close to zero, corresponding to
an initial position on thex-axis of Fig. 5.4. As time progresses, clusters initially evolve to
lower masses and increasingM /LV due to the death of massive stars, translating into up-
and leftward motion in the{M , M /LV}-plane. When the preferential loss of low-mass stars
becomes an important mechanism (the onset of which is markedby dots for each evolutionary
track), theM /LV increase is turned into a decrease instead, as also illustrated in Fig. 5.2. In
Fig. 5.4, the thus attained maximum in theM /LV evolution is best visible for low cluster
masses andt0 = 1 Myr.

Since Galactic globular clusters generally share the same ages (e.g. Vandenberg et al.
1990), the observed distribution of GCs in the{M , M /LV}-plane would follow curves of
equal age in Fig. 5.4 if there were no spreads in metallicity and dissolution timescale. These
curves, or cluster isochrones, are shown for agest = {10, 12, 14} Gyr. Along the isochrones,
M /LV increases with cluster mass since massive clusters have spent a smaller fraction of their
total disruption time than low-mass clusters and will therefore have experienced a smaller
M /LV decrease due to low-mass star depletion. The curves flatten at the highest masses,
since these clusters have not yet exhibited significant preferential low-mass star ejection.

From Fig. 5.4 we infer the influences of dissolution timescale and metallicity on the mass-
to-light ratio evolution. The dissolution timescale sets the cluster mass for which the down-
bend of the cluster evolutionary tracks can occur and therefore also determines the location
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Figure 5.4: Cluster evolution in the{M , M /LV }-plane fort0 = {1, 10} Myr andZ = {0.0004, 0.004}.
Solid curves represent cluster evolutionary tracks for initial cluster masses in the rangeMcl,i = 105—
108 M⊙with 0.5-dex intervals. Cluster isochrones att = 12 Gyr are described by dashed lines, while
these att = 10 andt = 14 Gyr are denoted by dotted lines (bottom and top, respectively). Dots denote
the onset of the preferential loss of low-mass stars for eachevolutionary track.

of the ‘knee’ in the cluster isochrones. The metallicity determines the vertical extent of
the cluster evolutionary tracks and thus theM /LV -normalisation of the cluster isochrones.
As set forth in Kruijssen (2008), the natural spread in dissolution timescale and metallicity
thus explains the scatter around the relation betweenM /L and cluster mass observed by
Mandushev et al. (1991).

5.3 Determining the dissolution timescale

To assess the influence of the preferential loss of low-mass stars on the low observed mass-
to-light ratios, the orbital parameters of individual clusters are to be translated into the appro-
priate dissolution timescalest0 for use in our cluster models. The computation is treated in
this section.
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Table 5.2: Orbital parameters for the cluster sample, together with their 1σ standard errors. Consec-
utive columns list the cluster NGC number, apogalactic radius Ra (in kpc), perigalactic radiusRp (in
kpc), eccentricitye, orbital periodP (in Myr), and circular velocity of the gravitational potential at the
distance of apogalacticonVc,a (in km s−1).

Orbital parameters

NGC R⋆
a R⋆

p e⋆ P⋆ V †
c,a

104 7.3± 0.1 5.3± 0.3 0.16± 0.04 193± 4 221.4± 0.2
288 11.1± 0.4 1.8± 0.5 0.72± 0.06 237± 12 213.5± 0.8
1851 34.7± 5.9 5.7± 1.2 0.72± 0.02 685± 114 195.9± 1.4
1904 20.4± 1.3 4.4± 1.7 0.64± 0.10 422± 32 201.9± 1.0
4147 26.8± 3.4 4.0± 1.9 0.74± 0.08 551± 74 198.4± 1.4
4590 30.0± 3.7 8.7± 0.4 0.55± 0.03 650± 78 197.2± 1.2
5139 6.4± 0.1 1.2± 0.1 0.69± 0.02 123± 1 222.8± 0.1
5272 14.0± 0.8 5.4± 0.8 0.44± 0.06 321± 18 208.6± 1.2
5466 69.8± 29.6 6.7± 1.4 0.83± 0.03 1340± 595 192.1± 1.4
5904 46.1± 12.8 2.5± 0.2 0.90± 0.02 995± 286 193.9± 1.6
6093 3.2± 0.2 1.0± 0.6 0.54± 0.21 65± 6 213.3± 1.8
6121 5.8± 0.3 0.7± 0.1 0.79± 0.03 114± 3 223.2± 0.1
6171 3.3± 0.2 2.8± 0.3 0.08± 0.07 99± 7 214.2± 1.7
6205 25.3± 6.9 5.7± 0.5 0.63± 0.07 526± 132 199.0± 3.3
6218 5.3± 0.1 2.8± 0.3 0.30± 0.04 130± 4 223.0± 0.1
6254 5.0± 0.2 3.4± 0.4 0.18± 0.05 132± 7 222.7± 0.3
6341 9.9± 0.4 1.3± 0.1 0.78± 0.03 208± 12 216.0± 0.8
6362 5.3± 0.1 2.6± 0.2 0.35± 0.04 124± 2 223.0± 0.1
6656 9.6± 0.7 2.8± 0.2 0.55± 0.01 197± 14 216.6± 1.5
6712 5.9± 0.3 0.9± 0.1 0.74± 0.04 126± 11 223.2± 0.1
6779 13.0± 1.9 0.8± 0.3 0.88± 0.03 249± 30 210.2± 3.1
6809 6.0± 0.3 1.7± 0.2 0.56± 0.04 136± 5 223.1± 0.2
6934 46.8± 19.8 6.7± 1.6 0.75± 0.06 990± 434 193.8± 2.4
7089 42.2± 17.9 6.3± 1.2 0.74± 0.06 860± 379 194.5± 2.7
⋆ From Dinescu et al. (1999).
† Computed using the galactic potential from Paczynski (1990).

5.3.1 Cluster dissolution timescales from orbital parameters

For globular clusters, dissolution due to two-body relaxation in the Galactic tidal field4 and
disc shocking are the main dissolution mechanisms (e.g. Chernoff et al. 1986). The total
dissolution timescalet0,tot can be written as

1
t0,tot

=
1

t0,evap
+

1
t0,sh

, (5.6)

4This includes the effect of bulge shocks, which occur in clusters on eccentric orbits.
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wheret0,evapdenotes the dissolution timescale due to two-body relaxation or evaporation (car-
rying the subscript ‘evap’) andt0,sh the dissolution timescale due to disc shocking.

For the dissolution timescale due to two-body relaxation, we use the expression for the
total disruption time from Baumgardt & Makino (2003, Eq. 10)as approximated by Lamers
et al. (2005b) to write

t0,evap= t⊙0,evap

(

Rgc,a

8.5 kpc

) (

Vc,a

220 km s−1

)−1

(1− e), (5.7)

with t⊙0,evap the dissolution timescale due to two-body relaxation for a circular orbit at the
solar galactocentric radius,Rgc,a the apogalactic radius of the cluster orbit,Vc,a the circular
velocity of the gravitational potential at the distance of apogalacticon ande the orbital ec-
centricity. Values forRgc,a are taken from Dinescu et al. (1999), while the circular velocities
are computed for the galactic potential from Paczynski (1990). This potential, as well as the
one from Johnston et al. (1995), is used by Dinescu et al. (1999) in the determination of the
cluster orbits. By comparing our models to theN -body simulations by Baumgardt & Makino
(2003) we find t⊙0,evap= 21.3 Myr for clusters withW0 = 5 King profiles, in very close agree-
ment with earlier reported values of 20.9 Myr (Lamers et al. 2005a) and 22.8 Myr (Lamers
& Gieles 2006). Using the same method forγ = 0.7, corresponding toW0 = 7 King profiles
(see Sect. 5.2.1), we obtain t⊙

0,evap= 10.7 Myr. This is the adopted value in this chapter.
The dissolution timescale due to disc shocking can be obtained from the globular cluster

destruction rates due to disc shockingνsh from Dinescu et al. (1999). Following from Eq. 5.3,
a present destruction rateν(t) is related to a dissolution timescalet0 by

ν(t) =
1010

t0(Mcl(t)/M⊙)γ
, (5.8)

with ν in units of (10 Gyr)−1, t0 in years, andMcl(t) denoting the cluster mass at aget .
The denominator represents an estimate for the total cluster lifetime. This expression can
be inverted to obtaint0,sh from νsh. However, in Dinescu et al. (1999) constantM /LV =
3 M⊙ L−1

⊙ is assumed to compute the cluster masses. Since their destruction rates are derived
from a relationνsh ∝ M −1, these should be corrected for the actual mass-to-light ratios. We
define the correction factor

xcorr =
(M /LV )cst

(M /LV )obs
, (5.9)

with the numerator the constant mass-to-light ratio (M /LV )cst = 3 M⊙ L−1
⊙ and the denomi-

nator the observed dynamical mass-to-light ratio from McLaughlin & van der Marel (2005)
(see Table 5.1). This allows us to express the dissolution timescale due to disc shocking as

t0,sh =
1010

xcorrνsh(Mcl(t)/M⊙)γ
. (5.10)

Substitution of Eqs. 5.7 and 5.10 into Eq. 5.6 then yields thetotal dissolution timescalet0,tot.
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Table 5.3: Computed dissolution timescales (forγ = 0.70) due to two-body relaxation (t0,evap), disc
shocking (t0,sh) and both mechanisms (t0,tot), together with their 1σ standard errors. The table also
includes the destruction rate due to disc shockingνsh (in (10 Gyr)−1) from Dinescu et al. (1999). All
dissolution timescales are in Myr and are rounded to one decimal.

Dissolution timescales (γ = 0.70)

NGC t0,evap νsh t0,sh t0,tot

104 7.7± 0.4 (0.501± 0.134)× 10−2 76.6+33.9
−35.1 7.0+0.4

−0.4
288 4.0± 0.9 (0.739± 0.186)× 100 3.6+5.0

−2.6 1.9+1.4
−0.7

1851 13.7± 2.6 (0.804± 0.286)× 10−3 1095.3+553.9
−545.0 13.6+2.6

−2.6
1904 10.1± 2.9 (0.592± 0.540)× 10−2 211.9+204.8

−136.4 9.6+2.7
−2.6

4147 9.7± 3.3 (0.208± 0.098)× 10−1 135.9+79.7
−73.8 9.1+2.9

−2.9
4590 19.0± 2.8 (0.208± 0.050)× 10−2 827.6+356.2

−375.1 18.5+2.6
−2.6

5139 2.5± 0.2 (0.373± 0.082)× 100 0.6+0.3
−0.2 0.5+0.2

−0.2
5272 10.4± 1.3 (0.209± 0.108)× 10−2 343.3+208.5

−187.7 10.1+1.2
−1.2

5466 17.1± 8.0 (0.110± 0.074)× 100 25.6+19.6
−15.3 10.2+4.3

−3.8
5904 6.6± 2.3 (0.117± 0.048)× 10−1 46.8+24.8

−24.0 5.8+1.8
−1.8

6093 1.9± 0.9 (0.121± 0.085)× 10−1 88.9+12440.4
−88.4 1.9+0.9

−0.8
6121 1.5± 0.2 (0.280± 0.072)× 100 6.0+5.1

−3.8 1.2+0.3
−0.2

6171 3.9± 0.4 (0.125± 0.037)× 100 21.0+10.6
−10.9 3.3+0.4

−0.4
6205 13.0± 4.5 (0.154± 0.068)× 10−2 485.3+272.4

−257.4 12.7+4.3
−4.3

6218 4.6± 0.3 (0.235± 0.075)× 10−1 90.6+42.5
−44.3 4.4+0.3

−0.3
6254 5.1± 0.4 (0.261± 0.074)× 10−1 59.8+28.0

−29.1 4.7+0.4
−0.4

6341 2.8± 0.4 (0.167± 0.060)× 10−1 48.5+25.9
−25.1 2.6+0.4

−0.4
6362 4.3± 0.3 (0.491± 0.125)× 100 3.6+1.6

−1.6 2.0+0.5
−0.5

6656 5.5± 0.5 (0.441± 0.114)× 10−1 18.6+8.7
−9.2 4.3+0.5

−0.6
6712 1.9± 0.3 (0.114± 0.041)× 100 10.7+52.9

−9.5 1.6+0.6
−0.3

6779 2.1± 0.6 (0.407± 0.142)× 100 3.1+6.4
−2.4 1.2+1.0

−0.4
6809 3.3± 0.3 (0.177± 0.048)× 100 13.5+3.2

−3.9 2.6+0.3
−0.3

6934 16.7± 8.3 (0.149± 0.112)× 10−2 910.7+750.3
−556.0 16.4+8.0

−8.0
7089 15.6± 7.7 (0.818± 1.220)× 10−3 511.3+773.0

−371.0 15.2+7.3
−7.3

In Table 5.2, our cluster sample is listed with the orbital parameters from Dinescu et al.
(1999) for the Paczynski (1990) potential and our computed circular velocities of the grav-
itational potential at the distance of apogalacticon. The circular velocities are computed in
the galactic plane (z = 0). Because the gravitational potentials of the disc and bulge decrease
with |z|, this implies that for clusters withRa < 10 kpc the actualVc,a can be 5—15% lower.

The corresponding dissolution timescales can be found in Table 5.3. The values for the
dissolution timescale range fromt0,tot = 0.5—20 Myr, corresponding to total disruption times
for a 106 M⊙ cluster in the ranget total

dis = 8—300 Gyr. This is in good agreement with the
range that is required for low-mass star depletion to explain the observed mass-to-light ratio
drop (Kruijssen 2008). By comparing the dissolution timescales for two-body relaxation
t0,evapand disc shockingt0,sh, we can see that the latter destruction mechanism is important
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(i.e. lowers the total dissolution timescalet0,tot by more than 40% with respect tot0,evap) for
the clusters NGC 288, 5139 (ωCen), 6362, and 6779. These clusters all have perigalactic
radii smaller than 3 kpc (see Table 5.2). For the error analysis of Tables 5.2 and 5.3 and of
the rest of this chapter we refer to the Appendix Sect. 5.A.

5.4 Predicted and observed mass-to-light ratios

In this section we combine our cluster models and the deriveddissolution timescales to study
the mass-to-light ratio evolution for our sample of 24 Galactic globular clusters. Present-day
M /LV ratios are predicted for the cluster sample and are comparedto the observations. We
also discuss the possible causes for the individual clusters that still lack convincing agree-
ment.

5.4.1 Predicted mass-to-light ratios for the cluster sample

We employ the cluster models treated in Sects. 5.2 and 5.3 to predict M /LV ratios for the
cluster sample. The input parameters for the models are the dissolution timescalet0 and
metallicityZ . The latter is derived from the iron abundance [Fe/H] (see Table 5.1) according
to

Z = Z⊙ × 10[Fe/H], (5.11)

with Z⊙ = 0.02, while the dissolution timescale is taken from Table 5.3 (t0,tot). Since all
clusters in the sample have metallicitiesZ < 0.004, for each cluster the models are com-
puted with metallicitiesZ = {0.0004, 0.004} and the appropriate dissolution timescales. The
evolution is computed for a grid of initial cluster masses, yielding cluster evolution tracks for
the mass andV -band mass-to-light ratioM /LV . For both metallicities, att = 12 Gyr the
tracks are interpolated over the mass grid to match the observed cluster mass. This provides
predictions forM /LV , the initial cluster massMcl,i and the total disruption timet total

dis for two
metallicities. These are then interpolated over metallicity to obtain the model predictions for
the appropriate metallicity.

Examples of theM /LV evolution with time and mass are shown in Fig. 5.5 for NGC 5466
and 6779. The predictedM /LV are slightly offset with respect to the model curves because
the models here are computed atZ = 0.0004 while the predictions are interpolated over
metallicity. However, the variation with metallicity is small for the displayed clusters, since
their metallicities are close toZ = 0.0004. It is evident that low-mass star depletion has
a much stronger effect in the case of NGC 6779 than for NGC 5466. Considering their
dissolution timescales (t0 = 1.2 Myr versust0 = 10.2 Myr, respectively) and the resulting
mass evolution, this is not surprising since NGC 6779 has suffered much stronger mass loss
than NGC 5466.

The predicted mass-to-light ratiosM /LV , initial massesMcl,i and remaining lifetimes
t total
dis − t are listed for our entire GC sample in Table 5.4. In addition,the observed and
predicted fractions of the canonicalM /LV ratiosQobs andQpred are shown, as well as the
agreement between our predictedM /LV and the observed values. Combining Tables 5.3
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Figure 5.5: Top left: Time-evolution ofM /LV for NGC 5466. The solid line represents theZ = 0.0004
model with the dissolution timescale of the cluster (t0 = 10.2 Myr), while the dotted curve indicates
the canonicalM /LV evolution, i.e. if the preferential loss of low-mass stars were omitted. The dashed
line denotes constant age oft = 12 Gyr. The predictedM /LV of NGC 5466 is marked by a cross and
the onset of the preferential loss of low-mass stars is specified with a dot.Top right: Evolution in the
{M , M /LV }-plane for NGC 5466. Curves and symbols have the same meaningas in the top-left panel.
Bottom left: same as top left, but for NGC 6779 (t0 = 1.2 Myr). Bottom right: same as top right, but for
NGC 6779.

and 5.4, we see that GCs with short dissolution timescales indeed have low predictedM /L
ratios.

5.4.2 Comparison of predictions to observations

The fifth column in Table 5.4 indicates the ratio between observed and predicted mass-to-light
ratioQobs ≡ (M /LV )obs/(M /LV )can. Analogously, the sixth column gives the ratio between
predicted and canonical mass-to-light ratioQpred ≡ (M /LV )pred/(M /LV )can. On average,
the former ratio is 0.74+0.06

−0.07, while the latter ratio is 0.85±0.01 for the 24 GCs investigated.
There are factors that introduce biases when comparing the predictions to the observations.
Specifically, the observations are likely biased to centralM /L ratios for some GCs, while we
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Table 5.4: Our model predictions with their 1σ standard errors. The first four columns list the cluster
NGC number, the predictedV -band mass-to-light ratio (M /LV )pred (in M⊙ L−1

⊙ ), the logarithm of
the initial cluster massMcl,i (in M⊙) and the remaining lifetimet total

dis − t (in Gyr) . In the fifth and
sixth column, respectively the ratios of observed to canonical mass-to-light ratioQobs and predicted to
canonical mass-to-light ratioQpred are listed. The seventh column gives the level of agreement between
the observed mass-to-light ratio (M /LV )obs and predicted mass-to-light ratio (M /LV )pred (see text).

Model predictions

NGC (M /LV )pred logMcl,i t total
dis − t Qobs Qpred Agreement

104 2.68+0.25
−0.25 6.10+0.14

−0.18 102.1+26.6
−32.4 0.50+0.19

−0.23 1.00+0.00
−0.00 3

288 1.42+0.37
−0.29 5.73+0.15

−0.26 6.3+3.6
−2.7 0.98+0.37

−0.45 0.64+0.16
−0.13 1

1851 2.21+0.09
−0.09 5.71+0.14

−0.17 105.4+33.5
−38.5 0.73+0.26

−0.32 1.00+0.00
−0.00 2

1904 2.02+0.07
−0.13 5.38+0.13

−0.16 37.7+14.9
−16.8 0.56+0.20

−0.25 0.97+0.03
−0.06 2

4147 1.64+0.16
−0.20 4.99+0.12

−0.14 13.2+6.1
−6.9 0.50+0.18

−0.23 0.81+0.08
−0.10 2

4590 1.97+0.03
−0.09 5.03+0.13

−0.16 41.9+13.3
−15.9 0.46+0.16

−0.20 0.99+0.02
−0.05 4

5139 1.96+0.19
−0.19 6.98+0.15

−0.13 22.9+11.9
−9.4 1.17+0.54

−0.43 0.90+0.08
−0.08 1

5272 2.08+0.04
−0.04 5.76+0.14

−0.18 83.5+23.9
−29.1 0.67+0.24

−0.30 1.00+0.00
−0.00 2

5466 1.82+0.13
−0.18 5.15+0.13

−0.16 24.7+12.3
−12.4 0.81+0.30

−0.37 0.91+0.07
−0.09 1

5904 2.10+0.11
−0.16 5.66+0.13

−0.16 34.9+14.2
−15.7 0.36+0.13

−0.16 0.96+0.04
−0.07 5

6093 1.79+0.19
−0.27 6.10+0.14

−0.16 19.5+11.3
−11.3 1.31+0.49

−0.62 0.88+0.09
−0.13 1

6121 1.18+0.18
−0.22 5.91+0.09

−0.11 3.7+1.5
−1.8 0.57+0.23

−0.32 0.53+0.07
−0.09 1

6171 1.81+0.17
−0.21 5.56+0.10

−0.13 11.3+3.2
−4.2 0.94+0.38

−0.52 0.78+0.05
−0.07 1

6205 2.08+0.04
−0.04 5.77+0.15

−0.18 109.1+45.2
−49.9 0.72+0.26

−0.34 1.00+0.00
−0.00 2

6218 1.74+0.12
−0.15 5.48+0.10

−0.12 15.0+4.7
−6.1 0.84+0.31

−0.40 0.83+0.05
−0.07 1

6254 1.94+0.09
−0.12 5.68+0.12

−0.16 27.5+9.2
−12.0 1.03+0.40

−0.53 0.93+0.04
−0.05 1

6341 1.56+0.12
−0.14 5.71+0.10

−0.12 11.8+4.2
−5.1 0.44+0.17

−0.21 0.78+0.06
−0.07 2

6362 1.47+0.21
−0.24 5.67+0.10

−0.11 5.3+2.0
−2.2 0.48+0.18

−0.21 0.60+0.05
−0.07 1

6656 2.05+0.03
−0.09 5.98+0.14

−0.20 45.9+14.0
−18.8 1.01+0.40

−0.56 0.99+0.01
−0.04 1

6712 1.45+0.25
−0.25 5.80+0.09

−0.16 5.5+2.6
−2.4 0.42+0.17

−0.23 0.61+0.09
−0.09 1

6779 1.12+0.38
−0.22 5.91+0.15

−0.33 4.1+4.2
−2.3 0.52+0.25

−0.20 0.56+0.19
−0.11 1

6809 1.68+0.06
−0.07 5.79+0.04

−0.05 14.8+2.0
−2.3 1.59+0.20

−0.25 0.83+0.03
−0.03 4

6934 2.08+0.04
−0.06 5.42+0.14

−0.17 77.7+42.5
−44.8 0.72+0.26

−0.32 1.00+0.00
−0.02 2

7089 2.06+0.03
−0.03 5.85+0.15

−0.18 151.0+81.4
−85.3 0.47+0.17

−0.21 1.00+0.00
−0.00 3

predict global values. In Sect. 5.4.3 a more detailed consideration is provided in which the
comparison of the predictions to the observations is refined.

The seventh column in Table 5.4 gives the level of agreement between the observed and
predicted mass-to-light ratios, which is defined asn if (n − 1)σ < |∆M /LV | ≤ nσ for
∆M /LV ≡ (M /LV )pred− (M /LV )obs andσ2 ≡ σ2

(M /L )obs
+ σ2

(M /L )pred
. Within the 1σ uncer-

tainty, the predictedM /LV agree with the observed values for 12 clusters out of the 24-cluster
sample. A Gaussian distribution of errors would yield an expected 16 out of 24 clusters to be
found within 1σ.

As a first comparison and analogously to the presentation in Mandushev et al. (1991) and
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Figure 5.6: Observed (crosses) and predicted (triangles) distribution of GCs in the{M , M /LV }-
plane. The solid line represents our linear fit to the observations, while the dotted line denotes the
relation found by Mandushev et al. (1991).The error bars in the top left corner denote the average 1σ
uncertainty on the observations, while the error bars in thebottom right corner represent the average 1σ
uncertainty on the predictions.

Rejkuba et al. (2007), in Fig. 5.6 the distribution of GCs in the{M , M /LV}-plane is shown
for the observed and predicted mass-to-light ratios. Both populations fall within the same
range and follow comparable trends of increasingM /LV with cluster mass. Mandushev et al.
(1991) already provided an expression for the observed logarithm of the mass as a function
of magnitude, which allows for a derivation of the expected trend in Fig. 5.6. They fit

log (M /M⊙) = (−0.456± 0.024)MV + (1.64± 0.21), (5.12)

whereMV represents theV -band absolute magnitude of the cluster. Adopting a solar value
of MV ,⊙ = 4.83, the relation betweenM /LV and mass from Mandushev et al. (1991) can
then be expressed as

log (M /LV ) = (−0.12± 0.05) log (M /M⊙) − (0.49± 0.21). (5.13)

A first-order Taylor expansion ofM /LV around log (M /M⊙) = 5.2 then gives

M /LV ≈ 0.38 log (M /M⊙) − 0.55, (5.14)

which has a linear slope of 0.38. The best fitting slope for oursample is 0.41± 0.28, thus
agreeing with the value from Mandushev et al. (1991). The large uncertainty arises from the
scatter in Fig. 5.6.
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Figure 5.7: Left: Observed mass-to-light ratio (M /LV )obs versus the predicted mass-to-light ratio
(M /LV )pred, together with their 1σ standard errors. The dotted line follows the 1:1 relation. Clusters for
which the disagreement is larger than 1σ are plotted as dots.Right: Number histogram of (M /LV )pred

(diamonds, shaded area) and (M /LV )obs (triangles, hashed area). Again, the error bars denote 1σ
deviations, which were determined from 30k random realisations of the underlying data.

The trend of increasing mass-to-light ratio with mass is expected from the models shown
in Fig. 5.4 and the discussion in Sec. 5.2.2. However, there the slope is∼ 0.6—1.0 for
metallicitiesZ = 0.0004—0.004 and increases withZ . For some metallicities, the model
slope is thus more than 1σ steeper than the fitted slope. This is not surprising, because
the models each have a single dissolution timescale and metallicity, while in reality both
quantities have a spread that causes horizontal and vertical scatter, respectively. It turns out
that the spread in dissolution timescale has a stronger effect on M /L than the spread in
metallicity (Kruijssen 2008), implying that the scatter inthe horizontal direction is largest
and that the slope fitted to the entire sample is shallower than that of a single model.

In Fig. 5.7, a more specific comparison is made between the observations and model
predictions using the same framework as for the canonical expectations in Fig. 5.1. Again, the
left-hand panel plots the observed versus the predicted mass-to-light ratios, while the right-
hand panel shows the number histograms of the two. In the left-hand panel it is shown that the
predictions for half of the clusters are such that they reachdown to the appropriate mass-to-
light ratios. When comparing this panel to its analog in Fig.5.1, the improved agreement with
the observations is evident. Nonetheless, there is an aggregate of deviating GCsbelowthe 1:1
relation at (M /LV )pred ≈ 2 M⊙ L−1

⊙ , representing the clusters for which no strong low-mass
star depletion is expected from the models due to their long disruption times. Consequently,
the predictedM /LV for these clusters are similar or equal to the canonical values. Except
for NGC 6809, there are no clusters above the 1:1 relation that are inconsistent with the
observations. The number histogram of the observed and predicted mass-to-light ratios in
the right-hand panel of Fig. 5.7 confirms both the improved agreement between observed and
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Figure 5.8: Left: The ratio of the observed mass-to-light ratio (M /LV )obs to the canonically expected
(M /LV )can versus the ratio of the predicted mass-to-light ratio (M /LV )pred to (M /LV )can, together with
their 1σ standard errors. The dotted line follows the 1:1 relation. Clusters for which the disagreement is
larger than 1σ are plotted as dots.Right: Number histogram of the ratioQpred (diamonds, shaded area)
andQobs (triangles, hashed area). Again, the error bars denote 1σ deviations, which were determined
from 30k random realisations of the underlying data.

predictedM /LV with respect to Fig. 5.1 and the accumulation of a number of clusters near
the canonicalM /LV in the model predictions.

5.4.3 Discussion of discrepant clusters

In total, there are twelve clusters with a worse than 1σ agreement between the model predic-
tions and observations. Five of these have worse than 2σ agreement, while we would expect
only one. Here, we discuss possible reasons behind the discrepancy.

The deviant clusters below the 1:1 relation in the left-handpanel of Fig. 5.7, being
NGC 104, 1851, 1904, 4147, 4590, 5272, 5904, 6205, 6341, 6934and 7089, generally share
properties such as relatively wide orbits and long dissolution timescales. Due to their long
dissolution timescales, they are all predicted to have near-canonicalM /LV . This is illustrated
in Fig. 5.8, where the fraction of (M /LV )obs and (M /LV )pred with respect to the canonical
(M /LV )can is shown in panels similar to Fig. 5.7. In both the left- and right-hand panels
of Fig. 5.8, the accumulation of too high predicted mass-to-light ratios occurs near or at
Qpred = 1. Since per definition (M /LV )pred ≤ (M /LV )can, no valuesQpred > 1 are found.
In that range, the apparent disagreement between the observed and predicted histograms is
disputable since all but one cluster (NGC 6809) are in 1σ agreement with their canonical
mass-to-light ratios.

While our predicted mass-to-light ratios are global (i.e. cluster-wide) values, the observa-
tions from McLaughlin & van der Marel (2005) are derived fromcentral velocity dispersion
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measurements from Pryor & Meylan (1993) and are extrapolated to global values using sur-
face brightness profiles (McLaughlin & van der Marel 2005, and references therein). They
fit isotropic single-mass King models and thus neglect any radial gradients ofM /L ratio or
mass function slope. Consequently, the values of (M /LV )obs do not contain any informa-
tion about such gradients and for some clusters only accurately reflect theM /LV ratio in
their central parts. The globalM /LV ratios of clusters with strong radialM /L gradients
are at bestapproximated(McLaughlin, private communication). For instance, the centre of a
mass-segregated cluster may be populated with massive, i.e. luminous stars, yielding a lower
M /LV ratio than its global value.

The disagreement between the global and centralM /L is expected to be largest for clus-
ters that have suffered relatively weak mass loss but are internally evolved. In that case, the
low-mass stars are outside the core but still bound to the cluster and are included in the global
M /L , while they do not play a role in the value derived by McLaughlin & van der Marel
(2005). This indeed applies for the discrepant GCs in our sample, which not only have long
dissolution timescales but also higher King parametersW0, implying that mass segregation
can be reached on relatively shorter timescales. For the GCswith worse than 1σ agreement
below the 1:1 line in Figs. 5.7 and 5.8 we have average King parameterW0 = 7.6, while for
the 1σ-consistent GCs we findW0 = 6.1, both with standard errors< 0.1. This further vali-
dates our explanation for the difference between the central and globalM /L ratios of these
GCs.

In a recent study, De Marchi et al. (2007) find that extended (low-concentration and low-
W0) GCs are depleted in low-mass stars, which they confirm to be in accordance with pre-
dictions by theoretical studies (Chernoff & Weinberg 1990,Takahashi & Portegies Zwart
2000), while GCs with high values ofW0 have close to canonical mass functions. This is in
agreement with our predictedM /LV for these clusters and suggests that the observedM /LV

are indeed underestimated. A more precise check can be made by comparing the low-mass
star depletion from De Marchi et al. (2007) with the observedand predicted fractions of the
canonicalM /LV ratiosQobs/pred. This can be done for four GCs with worse than 1σ agree-
ment, being NGC 104, 5272, 6341 and 6809. For NGC 104 and 5272 the observed depletion
is not strong enough to draw any definitive conclusions, while for NGC 6341 and 6809 the
results from De Marchi et al. (2007) are clearly more consistent with our predictions than
with the observedM /LV (see also Sect. 5.5 and Fig. 5.9). This substantiates the claim that
some GCs have observedM /L ratios that are biased to lower numbers. To test this assertion,
global observational measurements of the velocity dispersion would be needed to enhance
the accuracy of the present observedM /L ratios.

We now revisit the meanM /LV fractions of the canonical value presented in Sect. 5.4.2
by leaving out the GCs that may have strongly different central and globalM /L ratios. It
was shown by Baumgardt & Makino (2003) that for a 105 M⊙ cluster core collapse is reached
within a Hubble time ifW0 ≥ 7. This timescale is increased by a factor three for a GC with
typical initial mass of 106 M⊙, but mass segregation manifests itself on a shorter timescale
than the core collapse time. The relative mass loss due to dissolution of a 106 M⊙ GC
is smaller than 10% after 12 Gyr for dissolution timescalest0,tot ≥ 5 Myr. These limits
could separate GCs with similar global and centralM /L ratios from those with pronounced
differences between the two. We exclude GCs with botht0,tot ≥ 5 Myr andW0 ≥ 7, as well
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as NGC 6809 (which has aM /LV ratio that cannot be explained by any model as it is 1.6
times the canonical value). This yields an average observedfraction of the canonicalM /LV

of Qobs = 0.78+0.09
−0.11 and a predicted value ofQpred = 0.78± 0.02. For the excluded GCs,

we haveQexcl
obs = 0.68+0.05

−0.06 andQexcl
pred = 0.96± 0.01, reflecting the fundamental difference

between both values. Although the cuts we made represent only ‘educated guesses’, it is
evident that the agreement between theory and observationsis much better for those GCs for
which we can be more certain that the centralM /LV reflects the global value. For these GCs,
our models confirm an averageM /L ratio drop of about 20% due to low-mass star depletion,
corresponding to about 1/4 of the observed difference inM /LV between GCs and UCDs.

Another option could be that the dissolution timescales of GCs on wide orbits are over-
estimated (as suggested for different reasons by Kruijssen& Portegies Zwart 2009), possi-
bly due to a dissolution mechanism that is not included in ouranalysis. White dwarf kicks
(Fregeau et al. 2009) could be a candidate for such a mechanism. This would imply that
some of our predicted dissolution timescales andM /L ratios are overestimated. Also, we do
not assume clusters to be initially mass-segregated. Some of the clusters under consideration
here are likely not to have reached energy equipartition within a Hubble time, but still exhibit
evidence of mass segregation (e.g. Anderson & King 1996). This points to primordial mass
segregation in these cases, which is shown by Baumgardt et al. (2008) to effect additional
low-mass star depletion that we did not account for (see alsoSect. 5.2.2). The additional
modeledM /L ratio decrease would be∼ 10% (KL08). However, this is not sufficient to lift
the discrepancy for any of the deviating GCs.

5.5 Observational verification

If the decrease ofM /L ratio with respect to the canonical value is indeed due to low-mass
star depletion, one would expect a correlation between the observed slope of the low-mass
MF αobs and the ratio of the predicted and canonicalM /LV ratiosQpred. Specifically, for a
powerlaw MF withn ∝ m−α, a low value ofQpred would be signified by a reduced value of
αobs.

In a study by De Marchi et al. (2007), MF slopes are determinedin the stellar mass range
m = 0.3—0.8 M⊙ for several Galactic globular clusters, based on a compilation of results
from HST imaging of different sources. By reanalysing the Baumgardt & Makino (2003)
N -body data, Baumgardt et al. (2008) conclude that for a Kroupa (2001) IMF the canonical
slope in that mass range isα0 = 1.74, which is thus expected to be measured for clusters with
canonicalM /L ratios orQpred = 1. In addition, they provide a fourth-order powerlaw fit
to theN -body simulations from Baumgardt & Makino (2003) forα as a function oft/t total

dis ,
the elapsed fraction of the total disruption time. By inverting our relation betweenQpred

andt/t total
dis (Eq. 5.5) and inserting the outcome intoα(t/t total

dis ) from Baumgardt et al. (2008,
Eq. 4), we obtain an expression for the predicted MF slopeαpred between 0.3 and 0.8 M⊙ as
a function of the fraction of the canonicalM /LV ratioQpred. Inversion of Eq. 5.5 yields

t/t total
dis =







1.25− 0.85Qpred for Qpred ≤ 0.645,
1.61− 1.41Qpred for 0.645< Qpred< 1,

0...0.2 for Qpred = 1,
(5.15)
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Table 5.5: Coefficients for the fourth-order powerlaw approximation of αpred as a function ofQpred

(see Eq. 5.16).

αpred coefficients

n 0 1 2 3 4
an -4.31 17.76 -22.10 13.17 -3.02
bn -17.04 74.41 -116.76 84.13 -23.06

where the uncertaintyt/t total
dis = 0...0.2 forQpred = 1 arises due to the range oft/t total

dis over
which it is constant in our models. Combination of this expression and Eq. 4 from Baumgardt
et al. (2008) then provides the relation betweenαpred andQpred:

αpred =































4
∑

n=0

anQn
pred for Qpred≤ 0.645,

4
∑

n=0

bnQn
pred for 0.645< Qpred< 1,

1.68...1.74 for Qpred = 1,

(5.16)

with the coefficients{a, b}n listed in Table 5.5 and again the uncertaintyαpred = 1.68...1.74
emerging from the degeneracy ofQpred = 1 that was mentioned earlier5.

In Fig. 5.9, the correlation betweenQobs/pred and the observed low-mass MF slopeαobs

is assessed for the subsample of clusters from the present study that is also considered in De
Marchi et al. (2007). For comparison, the relation for the predicted low-mass MF slopeαpred

as a function ofQobs/pred is included as well. Most of the observed data match the predicted
relation betweenα andQ within their error bars, albeit with substantial scatter. This is due
to the large uncertainties of the observations and possiblyalso related to biases introduced by
comparing central and global mass-to-light ratios (see Sect. 5.4.3). The poor quality of the
observations is illustrated by this spread and by the large error bars. For the predicted mass-
to-light ratios the trend is more well-defined, but for low values ofαobs it does not extend
down to the mass-to-light ratios that are predicted by theory. This could imply that either
αobs orQpred are biased. If the latter is true, it suggests that some GCs perhaps dissolve more
rapidly than presently included in the models.

As shown in Sect. 5.4.3, comparison ofαobs with the observed and predicted fractions
of the canonicalM /LV ratiosQobs/pred for the GCs with agreement parameter≥ 2 (see
Table 5.4) provides an independent check of our predictedM /LV ratios. While for NGC 104
and 5272 this does not allow for any definitive conclusions, for NGC 6341 and 6809 the
observed mass functions are clearly more consistent with our predictedM /LV ratios than
with the observed values.

5Consequently, it represents the same uncertainty ast/t total
dis = 0...0.2, withαpred = 1.68 corresponding to

t/t total
dis = 0.2 andαpred = 1.74 tot/t total

dis = 0. Since for most GCs under consideration the elapsed fractions of
the total disruption time are closer tot/t total

dis = 0.2 than tot/t total
dis = 0 (see Table 5.4), we adoptαpred = 1.68 if

Qpred = 1.
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Figure 5.9: Correlation between the observed slope of the low-mass stellar mass functionαobs and the
relative mass-to-light ratio with respect to the canonicalvalueQ. The dotted curves indicate the theo-
retically predicted relation betweenα andQ (not a fit), with the dot at the right-hand tip representing
the canonical values ofα0 = 1.74 andQ = 1. Values ofα representing theglobal MF are marked with
triangles, while those for clusters with worse than 1σ agreement betweenQobs andQpred are denoted by
squares.Left: For the observed mass-to-light ratio fractionQobs. Right: For the predicted mass-to-light
ratio fractionQpred.

With Eq. 5.16, we can alsopredict the slope of the low-mass MF for clusters that where
not considered by De Marchi et al. (2007). The predicted slopes are listed in Table 5.6. For
most clusters with observed values ofα, the agreement between observed and predictedα is
reasonable. Only for NGC 6218 and 6712 there is a strong discrepancy. For NGC 6218, we
expect the deviation to arise from the observed value ofαobs, since the predicted and observed
M /LV are in excellent agreement (see Table 5.4). On the other hand, for NGC 6712 the
incompatibility may be due to a slight overestimation of (M /LV )pred and thus ofQpred and
αpred.

In this context it must be noted that the compilation ofα values from De Marchi et al.
(2007) is drawn from a sample of literature estimates, most based on HST data, observed in
somewhat different radial regions of each cluster. Four of the eleven GCs that coincide with
our sample of 24 GCs do have a direct estimate for their globalmass function (see Table 5.6).
For the remaining seven other GCs from De Marchi et al. (2007), that estimate is taken from
measurements restricted to the region around the half-massradiusrh, of which it is known
that the shape of the MF is comparable to the global (i.e. cluster-wide) MF (Richer et al.
1991, Baumgardt & Makino 2003, De Marchi & Pulone 2007). However, the uncertainty of
these slopes is larger, and they do not provide a self-consistent way to derive the global MF.
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Table 5.6: Observed and predicted stellar mass function (MF) slopesα in the rangem = 0.3—0.8 M⊙.
Listed are the cluster NGC numbers (first column), observed MF slopes from De Marchi et al. (2007)
(second column), and predicted MF slopes (third column). The observed low-mass MF slope of clusters
representingglobalMFs from multi-mass Michie-King models are denoted in boldface, while the other
values designate local values close to the half-mass radius(see text). The standard errors onαobs is are
σα = 0.2 for the global MFs andσα = 0.3 for the other values (De Marchi, private communication).

MF slopes

NGC αobs αpred

104 1.2± 0.3 1.68+0.00
−0.00

288 0.0± 0.3 0.96+0.40
−0.31

1851 1.68+0.00
−0.00

1904 1.65+0.03
−0.07

4147 1.40+0.14
−0.18

4590 1.66+0.02
−0.05

5139 1.2± 0.3 1.55+0.12
−0.11

5272 1.3± 0.3 1.68+0.00
−0.00

5466 1.57+0.09
−0.12

5904 1.64+0.04
−0.08

6093 1.52+0.14
−0.20

6121 1.0± 0.2 0.62+0.25
−0.32

6171 1.34+0.10
−0.15

6205 1.68+0.00
−0.00

6218 −0.1± 0.2 1.44+0.09
−0.11

6254 1.1± 0.3 1.59+0.05
−0.07

6341 1.5± 0.3 1.35+0.12
−0.15

6362 0.85+0.15
−0.21

6656 1.4± 0.2 1.67+0.01
−0.04

6712 −0.9± 0.2 0.87+0.24
−0.24

6779 0.70+0.63
−0.37

6809 1.3± 0.3 1.44+0.04
−0.06

6934 1.68+0.00
−0.02

7089 1.68+0.00
−0.00

It is clear that a direct determination of the global stellarmass function for most of the 24
GCs investigated in this study would allow one to verify the predictions of the present study
with much higher confidence.

In Fig. 5.10 we investigate how feasible it is to observationally verify the predicted drop
of α for our full sample of 24 GCs. We plot the apparentV -band magnitude of stars with 0.3
solar massesV0.3 for each cluster versus the predicted slopeαpred of the stellar mass function
for 0.3< m/M⊙ < 0.8.V0.3 is obtained from the distance modulus of each GC and from the
assumption thatMV0.3 = 9.8 mag (Baraffe et al. 1997). We also plot the angular size of each
cluster versusαpred. As a consequence of their generally higher galactocentricdistance, those
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Figure 5.10: Feasibility of observational tests of low-mass star depletion. Left: For the 24 GCs in-
vestigated in this chapter, the apparentV -band magnitude of stars with 0.3 solar massesV0.3 is plotted
versus the predicted slopeαpred of the stellar mass function for 0.3< m/M⊙ < 0.8. Data points with
large circles are those with available observational data from HST imaging (compiled by de Marchi et
al. 2007).Right: The half-mass radius in arcminutes (Harris 1996) is plotted versusαpred. Data points
with crosses indicate GCs withV0.3 > 25 mag. Data points with large squares indicate GCs whose
predictedM /LV deviates by more than 1σ from the observed value. These are all GCs with agreement
parameter≥ 2 in Table 5.4.

GCs with the faintestV0.3 > 25 mag would not be expected to exhibit a strong low-mass
star depletion. The angular half-mass diameters of the GCs with V0.3 < 25 range between 2
and 8 arcminutes. To obtain a representative estimate of theglobal mass function, it is clear
that wide-field ground-based imaging is required for most GCs. For this wide-field imaging,
a completeness magnitude ofV ∼ 26 mag is desirable, which will allow moderately precise
photometry already forV ∼ 25 mag. For 8m class telescopes and with optical seeing in
the range 0.8 to 1.0′′, this requires 1-2 hours integration time per filter, or 2-4 hours for a
two-band exposure. With wide-field imagers such as VIMOS@VLT, IMACS@Magellan, or
SuprimeCam@SUBARU, single-shot images will be sufficient to cover at least 2-3 half-light
radii for most clusters. From Fig. 5.10 we conclude that the best candidate that also comple-
ments the compilation by De Marchi et al. (2007) is NGC 6779, followed by NGC 6362 and
possibly NGC 6171.

5.6 Discussion and conclusions

In this section, we provide a summary and a discussion of our results. We consider the effects
of the assumptions that were made and reflect on the implications of the results.
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5.6.1 Summary

In this study, we have investigated the dynamical mass-to-light ratios of 24 Galactic globular
clusters. We have tested the hypothesis of the preferentialloss of low-mass stars as the main
explanation for the fact that the average observed mass-to-light ratios of the Galactic GCs
in our entire sample are only 74+6

−7% of the expectations from stellar population models.
Accounting for the orbital parameters we derived dissolution timescales due to two-body
relaxation and disc shocking for our globular cluster sample and calculated the evolution of
their masses and photometry using theSPACE analytical cluster models from Kruijssen &
Lamers (2008, throughout this chapter KL08). These models account for the preferential loss
of low-mass stars which is fitted to theN -body simulations by Baumgardt & Makino (2003)
and therefore provide non-canonicalM /LV predictions. We find the derived dissolution
timescales to be in good agreement with the range required for low-mass star depletion to
explain the observedM /L ratio decrease from Kruijssen (2008).

The present-day (t = 12 Gyr)M /LV ratios have been compared to the observed values
from McLaughlin & van der Marel (2005), yielding 1σ agreement for 12 out of 24 GCs.
We considered possible causes for the remaining> 1σ discrepancies that occur for the other
GCs. It is found that 11 of these clusters have predictedM /LV very close to the canonically
expectedM /LV ratios due to their long dissolution timescales and the correspondingly mod-
est low-mass star depletion, while their observedM /LV are lower. This is probably due to
the method by which the observedM /LV are derived, which is biased towards the central
M /LV while our models predict globalM /LV . For mass-segregated GCs with long dissolu-
tion timescales, both values can be substantially different. The discrepant GCs have higher
than average King parametersW0, which should indeed reach mass segregation on shorter
timescales (see e.g. Baumgardt & Makino 2003). This explanation for the discrepancy be-
tween some of the observed and predictedM /L ratios is confirmed by a study of low-mass
star depletion in GCs by De Marchi et al. (2007), whose observed mass functions are in
good agreement with our predictions. The average observedM /LV ratio of 74+6

−7% of the
canonical expectations would therefore be underestimated. Excluding GCs which likely have
dissimilar global and centralM /L ratios by making cuts in dissolution timescale and King
parameter, we find that the observed and predictedM /LV ratios are consistent at 78+9

−11% and
78± 2% of the canonical values, respectively. For the entire sample, the average predicted
fraction of the canonicalM /LV ratio is 85± 1%.

To assess the imprint of low-mass star depletion on the slopeof the low-mass stellar mass
function, we compared the observed mass function slopesαobs from De Marchi et al. (2007)
for 11 GCs contained in our study to the values predicted by our models as well as to the
observed and predicted mass-to-light ratio fractions of the canonical valuesQobs andQpred.
Most of the measured slopes agree with the predictions, but exhibit considerable scatter.
Since most of them are values derived at around the half-massradius and are extrapolated
to global values, we also discuss the feasibility of observations fordirectly measuring global
mass functions of most of the GCs investigated. We show that deep (ground-based) wide-
field imaging would be necessary, with point source detection limits V ∼ 26 mag. The most
suitable candidate for such a campaign would be NGC 6779.
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5.6.2 Propagation of assumptions

In the course of the study presented in this chapter, severalassumptions were made that affect
the results to different extents. Their implications are asfollows.

(1) We have adopted theSPACE cluster models (KL08), of which the stellar evolution and
photometry are based on the Padova 1999 isochrones (see Sect. 5.2). Consequently, the
predicted cluster photometry and corresponding mass-to-light ratios are affected by that
choice. To indicate the level of the deviation with the cluster models from Bruzual &
Charlot (2003), in Fig. 5.1 we compared the canonically expectedM /LV from SPACE

to the Bruzual & Charlot (2003) values for our cluster sample. The difference between
both is inadequate to explain any systematic tendency of lowmass-to-light ratio with
respect to theSPACE models. Therefore, we conclude that the adopted cluster models
do not effect substantial implications for the predictedM /L ratios6.

(2) Due to the treatment of the preferential loss of low-massstars in theSPACE cluster
models, there are indications that the predicted mass-to-light ratios could be underes-
timated during the final∼ 15% of the total cluster lifetime (KL08). Table 5.4 shows
that none of the GCs in our sample reside in this regime. On theother hand, we did not
include primordial mass segregation, which could decreasethe predictedM /L ratios
by∼ 10% (KL08).

(3) By adopting the average cluster orbits from Dinescu et al. (1999), we assume constant
orbital parameters over the total cluster lifetimes. Considering the ballistic nature of
the orbits, such an assumption is legitimate as long as the external conditions do not
strongly differ. The Galactic potential was only substantially different from its present
state during the formation of the Milky Way. A more extended distribution of mass
during these early epoch would obviously increase the dissolution timescale due to
disc shocking, and would affect the dissolution timescale due to two-body relaxation
in a similar way because of the reduced tidal field. Consequently, this would imply
that the mass loss during the first∼ 1 Gyr of our models is overestimated, causing our
initial masses to be overestimated as well. However, the extended nature of the Milky
Way would cause dissolution due to giant molecular cloud encounters to become an
important mechanism (e.g. Gieles et al. 2006b), thereby counteracting the previous
effect. Although we cannot rule out any consequences, a residual influence would only
be relevant for a small fraction (the first∼ 10%) of the total cluster lifetime, where
mass loss by dissolution is much less effective than later onduring cluster evolution.
Therefore, this likely only affects our analysis within theerror margins.

(4) We have compared our predictions to the observed mass-to-light ratios from McLaugh-
lin & van der Marel (2005), which are biased towards centralM /L values. As treated
more extensively in Sect. 5.4.3, this yields underestimated observedM /L ratios for
mass-segregated clusters with long dissolution timescales. Therefore, based on the

6Of course, if the preferential loss of low-mass stars is accounted for, i.e. non-canonical models are considered,
theSPACE cluster models predict very different photometric evolution than canonical cluster models such as Bruzual
& Charlot (2003).
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earlier discussion and the parameter range in which discrepancies arise, we consider
the dynamical (M /LV )obs from McLaughlin & van der Marel (2005) to be subject to
improvement for GCs with both dissolution timescalest0,tot ≥ 5 Myr andKing param-
etersW0 ≥ 7.

5.6.3 Consequences and conclusions

The consequences of our findings are not only relevant to studies of theM /L ratios of com-
pact stellar systems, but also to other properties of these structures. Here we list them together
with the conclusions of this work.

(1) When constraining our sample to the subset for which the observedM /LV likely reflect
the global values, we find that the preferential loss of low-mass stars can account for the
∼20% discrepancy between observed dynamical mass-to-lightratios of Galactic GCs
and those expected from stellar population models that assume a canonical present day
mass function (Kroupa 2001). This alleviates the factor of two offset inM /L between
GCs and UCDs by about 25%. Still, some additional dark mass with respect to a
canonical IMF is required to explain theM /L of most UCDs.

(2) Accounting for the orbital parameters, present-day masses and chemical compositions
of individual clusters, we find that there is good agreement between our model pre-
dictions and observations of theM /LV ratios of these clusters. For the GCs with
worse than 1σ agreement there are strong indications that the discrepancy is due to
an underestimation of the observedM /L ratio. In mass-segregated clusters with long
dissolution timescales, the observedM /LV ratios represent central values that do not
reflect the globalM /LV ratio.

(3) The ideal way to confirm the validity of our explanation for the reducedM /L ratios
of GCs forindividualclusters will be to obtain a homegeneous set of deep wide-field
imaging for most GCs. This would expand and complement the currently available
heterogeneous data sets of space based GC imaging, which is restricted to small fields
in each GC, at different radial ranges. By this, the global mass and luminosity func-
tions could be measured directly for individual GCs and be compared quantitatively to
the predictions of this chapter regarding the low-mass stardepletion due to dynamical
evolution. In addition, velocity dispersion measurementswould allow for the determi-
nation of globalM /L ratios, thus providing an update to those from McLaughlin &
van der Marel (2005).

(4) The topic of globular cluster self-enrichment and multiple stellar populations can also
be considered within the framework of this chapter. In a recent study by Marino et al.
(2008) it is shown that NGC 6121 contains two stellar populations that are probably due
to primordial variations in their respective chemical compositions. It is mentioned that
the present-day mass of NGC 6121 is an order of magnitude smaller than that of known
multiple-population GCs such as NGC 1851, 2808 and 5139. Consequently, Marino
et al. (2008) pose the question how the enriched material could have remained in such a
shallow potential and argue that multiple populations are unlikely to be strictly internal
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to GCs, unless they are the remnant of much larger structures. In the case of NGC 6121,
our calculations seem to explain the issue, as it is theinitially fifth most massive GCof
our sample (Mcl,i ∼ 106 M⊙). As a result, mass could have been retained much more
easily, implying that the multiple populations of NGC 6121 are no reason to invoke
external processes for enrichment and to abandon the self-enrichment scenario.

We conclude that the variation ofM /L ratio due to cluster dissolution and low-mass star
depletion is statistically significant and serves as a plausible explanation for the difference
between observed and canonicalM /L ratios. Moreover, it has several implications that
should be accounted for in GC studies, since its effects can be accurately quantified. We
also suggest that theM /L decrease is considered in independent observational verifications
to further constrain the evolution of the stellar mass function in dissolving globular clusters.
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5.A Appendix: Error analysis

In this Appendix, the error propagation through our computations is discussed. The errors
in Tables 5.2 and 5.3 are standard errors, most of them determined by computing the formal
error propagation. For a functionf (x1, x2, ...,xi ) this implies

σ2
f =

(

∂f
∂x1

)2

σ2
x1

+

(

∂f
∂x2

)2

σ2
x2

+ ... +

(

∂f
∂xi

)2

σ2
xi

, (5.17)

with σi the error in the parameteri . Asymmetric errors on each parameter are both separately
propagated by employing the same recipe, while inverse relations are accounted for by swap-
ping the positive and negative errors. However, Eq. 5.17 assumes an approximately constant
derivative over the standard error interval. For very largeerrors on non-linear relations this
assumption does not hold. The first of two parameters where wehave to correct for this effect
is t0,sh. It is inversely related to the destruction rateνsh from Dinescu et al. (1999), which is
a parameter with very large relative errors, even to the extend that after computing the error
propagation one can havet0,sh− σ−

t0,sh
< 0. Because dissolution timescales below zero are not

physical, instead the negative error ont0,sh is determined by computing

σ−
t0,sh

= t0,sh(νsh, Mcl, xcorr) − t0,sh(νsh− σ−
νsh

, Mcl − σ−
Mcl

, xcorr − σ−
xcorr

), (5.18)
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whereσ−
i indicates the negative error in a parameteri . In the context of Eq. 5.17, this

approach is equivalent to assuming the derivative equals the mean slope off (x) over the
interval [x − σx , x]. On two occasions (NGC 6093 and 6712), a strongly asymmetric error
in t0,shpropagates intot0,tot such thatt0,tot + σ+

t0,tot
≫ min(t0,evap+ σ+

t0,evap
, t0,sh+ σ+

t0,sh
). However,

since a very large positive error int0,sh or t0,evapwould make the term vanish in the inverse
addition of Eq. 5.6, it should not propagate into a similarlylarge error int0,tot. This brings
up the second parameter we have to correct for the propagation of large errors through non-
linear relations. We define the error int0,tot for NGC 6093 and 6712 such thatt0,tot + σ+

t0,tot
=

t0,evap+ σ+
t0,evap

.
The error margins on our predictions in Table 5.4 are determined by numerically evaluat-

ing Eq. 5.17 for the desired quantities. Our predictions depend on the observed mass, metal-
licity and dissolution timescale. The derivatives ofM /LV with respect to the former two are
trivial sinceM /LV is determined by interpolating over these parameters. For the dissolution
timescale, we compute additional models att0,tot − σ−

t0,tot
to obtain the numerical derivative

of M /LV with respect tot0,tot. In fact, this is the differential rather than the derivative, be-
cause for long dissolution timescalesM /LV can be locally constant, while it varies over a
larger range. The only case were a non-linearity forces us toderive alternative errors is for
the positive standard error onM /LV . Although the uncertainty in metallicity could increase
the predicted mass-to-light above its canonical value, theuncertainty in mass and dissolution
timescale cannot due to the flattening of the cluster isochrones in the{M , M /LV}-plane (see
Fig. 5.4). Therefore, the combined positive standard errorof the mass-to-light ratio due to
the uncertainty in mass and dissolution timescaleσ+,M ,t0

M /LV
is defined as

σ+,M ,t0
M /LV

= min
[

σ̄+,M ,t0
M /LV

, (M /LV )can− (M /LV )pred

]

, (5.19)

with σ̄+,M ,t0
M /LV

the standard error according to Eq. 5.17, (M /LV )can the canonically expected
mass-to-light ratio and (M /LV )pred the predicted value. This definition ensures that the pos-
itive standard error is never larger than the difference between the canonical and predicted
mass-to-light ratios.

Except for the alternative error in Eq. 5.19 that is specific to M /LV , the standard errors
on the predicted initial masses are determined analogouslyto the above. For the remaining
lifetimes, numerical derivatives with respect to mass, metallicity and dissolution timescale
are simply obtained by reintegrating Eq. 5.1 for slightly different initial conditions.

Finally, for the predicted slopes in Table 5.6, the errors are computed using Eq. 5.17 and
restricted such thatα + σα ≤ α0 (analogous to Eq. 5.19).
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Abstract The conversion of the globular cluster luminosity function(GCLF; dN/d logL ) to the
globular cluster mass function (GCMF; dN/d logM ) is addressed. Dissolving globular clusters (GCs)
become preferentially depleted in low-mass stars, which have a high mass-to-light ratio (M /L ). This
has been shown to result in anM /L that increases with GC luminosity or mass, because more mas-
sive GCs have lost a smaller fraction of their stars than low-mass GCs. Using GC models, we study
the influence of the luminosity dependency ofM /L on the inferred GCMF. The observed GCLF is
consistent with a powerlaw or Schechter type GC initial massfunction in combination with a cluster
mass-dependent mass loss rate. Below the peak, the logarithmic slope of the GCMF is shallower than
that of the GCLF (0.7 versus 1.0), whereas the peak mass is 0.1—0.3 dex lower when accounting for
the variability ofM /L than in the case where a constantM /L is adopted.

6.1 Introduction

The present-day globular cluster mass function (GCMF; dN/d logM ) is derived from the
globular cluster luminosity function (GCLF; dN/d logL ) by assuming a constant mass-to-
light ratio (M /L ) for all globular clusters (GCs; e.g. Fall & Zhang 2001, Vesperini et al. 2003,
Jordán et al. 2007, McLaughlin & Fall 2008). The resulting GCMF is strongly depleted in
low-mass GCs with respect to the mass distribution of young star clusters, which is well
described by a power law with index−2 in various environments down to a few 100 M⊙.
This has led to a number of pioneering studies explaining itsshape by cluster evaporation
at a cluster mass-independent mass-loss rate (equivalent to a disruption timet total

dis ∝ M , e.g.
Fall & Zhang 2001, Vesperini 2001) acting on a power law or Schechter (1976) cluster initial

†Reproduced with permissionc© AAS.
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mass function (CIMF, e.g. Harris & Pudritz 1994, McLaughlin& Pudritz 1996, Elmegreen
& Efremov 1997, Burkert & Smith 2000, Gieles et al. 2006a).

Although the observed peaked shape of the GCMF is reproducedin the above studies, the
underlying assumptions are not entirely satisfactory because a cluster mass-dependent mass-
loss rate (equivalent tot total

dis ∝ M γ with γ ∼ 0.7, see Equation 6.1) is found in theory (e.g.
Baumgardt 2001, Baumgardt & Makino 2003, Gieles & Baumgardt2008) and observations
(e.g. Lamers et al. 2005a, Gieles & Bastian 2008, Larsen 2009, Gieles 2009). This arises from
the nonlinear scaling of the disruption time with the half-mass relaxation time (t total

dis ∝ t0.75
rh ),

which is caused by the non-zero escape time of stars with velocities above the escape velocity
from a tidally limited cluster (Fukushige & Heggie 2000). The physical effect of a lowerγ is
that the dissolution rate of low-mass clusters is slowed down relative to higher cluster masses
and higherγ.

The low-mass slope of a dissolution-dominated mass function like the GCMF is always
equal to the exponentγ (Fall & Zhang 2001, Lamers et al. 2005a). A mass-dependent mass-
loss rate conflicts with the observations, as it yields a higher number of low-mass GCs com-
pared to cluster mass-independent mass loss (γ = 1). The disagreement between cluster
mass-dependent mass loss and the observed sparse population of low-mass GCs is illustrated
in Figure 6.1(a). The slope of the modeled low-mass GCMF is∼ 0.7 for mass-dependent
mass loss (γ = 0.7), whereas for cluster mass-independent mass loss (γ = 1) the slope is
∼ 1.0, in agreement with the observations. The peak (or ‘turnover’) masses also differ by
∼ 0.3 dex. These differences show that a lower mass-loss rate for low-mass GCs (γ = 0.7)
yields a higher number of these relative to massive GCs than in the case of a constant mass-
loss rate (γ = 1).

Recent studies show that theM /L ratios of GCs are not constant with luminosity or
mass (Rejkuba et al. 2007, Kruijssen 2008), contrary to the assumption of a constantM /L
ratio in previous studies. This agrees with an earlier analysis by Mandushev et al. (1991),
who determined dynamical masses of Galactic GCs. These studies show thatM /L increases
with mass and luminosity because low-mass GCs are more strongly depleted in low-mass
stars. This variation ofM /L will affect the conversion of the GCLF to a mass function.
Specifically, the smallerM /L ratios of low-mass GCs imply that the masses of low-mass
clusters are overestimated and consequently, that the low-mass end of the GCMF would be
shallower than presently expected. The variability ofM /L could therefore strongly affect
the interpretation of the GCLF.

We show that the relation between the GCLF and the GCMF is affected by low-mass
star depletion, which arises from two-body relaxation (e.g. Meylan & Heggie 1997). In Sec-
tion 6.2, we discuss the influence of a luminosity-dependentM /L on the inferred GCMF,
and we model the GCLF in Section 6.3, alleviating the observationally expensive need for
accurateM /L ratios to derive the GCMF to allow for a comparison with theory. By in-
cluding a mass-dependent mass-loss rate and a variableM /L ratio, our model provides an
improvement to the Fall & Zhang (2001) model.
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Figure 6.1: The inferred GCMF of Galactic GCs (Harris 1996, histogram).Panel (a): GCMF derived
usingM /LV = 3 (as in Fall & Zhang 2001). Overplotted is our model MF with amass-dependent
mass-loss rate (solid line, see Section 6.2) adopting a dissolution timescalet0 = 1.3 Myr. Usingt total

dis =
t0M γ (Lamers et al. 2005a), for a 106 M⊙ GC andγ = 0.7 this corresponds to a disruption time of
t total
dis = 21 Gyr. The dashed line shows the model for a cluster mass-independent mass-loss rate (as in

Fall & Zhang 2001). Panel (b): GMCF derived from the GCLF using the luminosity-dependentM /LV

(see Figure 6.4). The solid curve is the same as above while the dotted curves represent models for
(from bottom to top) log (t0/Myr) = log 1.3 +{−0.5,−0.25, 0.25}, corresponding tot total

dis = 7—37 Gyr.
Error bars are 1σ Poissonian.

6.2 Implications of a luminosity-dependentM /L

We model the evolution of star clusters in order to quantify the influence of the luminosity
dependence ofM /L on the relation between the GCLF and the GCMF. Our model, called
SPACE (Kruijssen & Lamers 2008), includes mass loss by stellar evolution and by evapora-
tion. The mass loss by evaporation is parameterized with thesimple relation (Lamers et al.
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2005a):
(

dM
dt

)

dis

= −M
tdis

= −M 1−γ

t0
. (6.1)

Here,γ = 0.7 for clusters with a King parameter typical to GCs ofW0 = 7 (Lamers et al.
2010) andt0 is the dissolution timescale which depends on the environment. We illustrate the
effect of a variableM /L ratio by adopting a unique value fort0, which we assume to be the
same for all clusters (a realistic spread int0 is considered in Section 6.3). We subsequently
convert the observed LF of the sample of GCs to a MF by adoptingthe corresponding relation
betweenLV andM /LV that is computed withSPACE (see Figure 6.4). In Figure 6.1(b), we
show the resulting MF for the 146 GCs from the Harris (1996) catalog1. Overplotted are the
model MFs with different values fort0, adopting a metallicityZ = 0.0004, a Kroupa (2001)
stellar IMF, and a Schechter CIMF with power-law index−2 and exponential truncation mass
M∗ = 2.5× 106 M⊙. As expected from Equation 6.1, the slope of the MF is independent of
the dissolution timescale.

By comparing panels (a) and (b) in Figure 6.1, we see that the luminosity dependency
of M /L gives rise to two effects: (1) the slope at the low-mass end ofthe inferred GCMF
drops to∼ 0.7, which is the expected value for models with cluster a mass-dependent cluster
mass-loss rate (Lamers et al. 2005a) and (2) the peak in the MF(the so-called turnover mass)
shifts to a lower mass with∼ 0.3 dex. About half this shift is due to the already high value
of M /L = 3 adopted by Fall & Zhang (2001). The slope of the GCMF at the low-mass end
is different from the slope of the GCLF, and therefore also different from the GCMF slope
(∼ 1) that would be inferred from the GCLF when using a constantM /L ratio.

6.3 Models of the Galactic GC system

In our above analysis, we have assumed a single dissolution timescale for the entire GC
system. In reality, there is a range of timescales on which the GCs dissolve. We now consider
a more detailed Monte Carlo model of the Galactic GC system inwhich the dependency of
the dynamical evolution of GCs on their orbits is included. Our aim is to directly model the
GCLF, rather than to obtain it by converting the GCMF.

The initial positions of the GCs with respect to the Milky Wayare taken from the power-
law-like density profile (see, e.g. Fall & Zhang 2001, Equation 26) that arises from the isother-
mal sphere, with an outward increase of the velocity anisotropy (Eddington 1915). Our choice
of parameters for the kinematic model are (1) an initial anisotropy radiusRA = 1 kpc, (2) a
circular velocity of the gravitational potentialVc = 220 km s−1, and (3) (Vc/v)2 = 3.5, which
determines the slope of the density profile (Fall & Zhang 2001), with v denoting the radial
velocity dispersion. The initial velocities of the GCs are assigned according to the corre-
sponding velocity ellipsoid (Aguilar et al. 1988, Equation4), including a systemic rotation of
Vrot = 60 km s−1. We do not claim that this is the correct kinematic model for the Milky Way,
but we consider it an appropriate ansatz. The resulting dissolution timescales agree with the

1We adopt the 2003 edition of the data, which is available online at
http://www.physics.mcmaster.ca/~harris/mwgc.dat
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Figure 6.2: Histograms of the initial (dashed) and present-day (solid)distributions of dissolution
timescalest0,tot.

range that is expected from observations. For less anisotropy, the mean dissolution timescale
of surviving clusters would be longer. The initial cluster masses are drawn from a Schechter
(1976) function with index−2 and exponential truncation massM∗ = 3 × 106 M⊙ (also
see Jordán et al. 2007, Harris et al. 2009)2. We sample the metallicities from their observed
distribution in the Harris (1996) catalog.

The GC orbits are integrated in the Galactic potential from Johnston et al. (1995), consist-
ing of a bulge, disc, and halo. We adopt a fourth-order Runge–Kutta integration scheme with
a variable time step, in which the angular momentum and energy are conserved within 10−5

during each time step. To compute the evolution of a GC with a given initial mass and metal-
licity, we derive its instantaneous dissolution timescalefrom the orbital parameters. Tidal
evaporation due to two-body relaxation and disc shocks are the main dissolution mechanisms
(Chernoff et al. 1986). Following Baumgardt & Makino (2003)for the dissolution timescale
due to two-body relaxation we write

t0,evap= 10.7 Myr

(

Ra

8.5 kpc

) (

Vc,a

220 km s−1

)−1

(1− e), (6.2)

whereRa is the apogalactic radius of the cluster orbit,Vc,a is the circular velocity of the
gravitational potential atRa, ande is the orbital eccentricity. The dissolution timescale due
to disc shocks is expressed as (Gnedin & Ostriker 1997, Kruijssen et al., in preparation)

t0,disc = 7.35 Myr

(

Vz,5

gm,−10

)2

P2A −1
w (x), (6.3)

2This number is slightly larger than in Section 6.2, because the spread in dissolution timescales implies that
surviving massive GCs on average have a smaller dissolutiontimescale than surviving low-mass GCs. We correct
for the resulting deficiency of massive GCs by increasingM⋆.
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Figure 6.3: Histograms of the observed (filled) and modeled (dotted) GCLFs.

whereVz,5 is the velocity in thez-direction during disc crossing atz = 0 in units of 105 m s−1,
P2 is the (radial) orbital period in units of 102 Myr, gm,−10 is the orbital maximum of the ac-
celeration due to the disc−∂Φdisc/∂z in units of 10−10 m s−2, andAw(x) is the Weinberg
(1994a,b,c) adiabatic correction3 (see also Gnedin & Ostriker 1997). For mathematical sim-
plicity, we assume a very weak mass–radius relation4 of rh ∝ M 0.1 (Larsen 2004) in the
derivation of Equation 6.3.

Over a timespan of 12 Gyr, the dissolution timescales due to tidal evaporation and disc
shocks are computed for every orbital revolution, measuredbetween subsequent passages
of the apogalacticon. The dissolution timescale that describes the mass-loss rate (see Equa-
tion 6.1) due to both effects is determined by adding the averaged inverses of both timescales

1
t0,tot

=
1

t0,evap
+

1
t0,disc

. (6.4)

The resulting initial and present-day distributions oft0,tot are shown in Figure 6.2. GCs with
short dissolution timescales are easily destroyed, leading to the depletion of the quickly dis-
solving end of the distribution (at low values oft0). The surviving GCs have dissolution
timescales that are in excellent agreement with other studies (Kruijssen 2008, Kruijssen &
Mieske 2009). Although their mean galactocentric radius isa factor 2 smaller than that of the
observed Galactic GC system, the slopes of both density profiles are comparable.

The evolution of GC mass and photometry is computed withSPACE, using the setup
discussed in Section 6.2. In total 507,079 GCs are generatedwith initial massesM ≥ 5 ×
103 M⊙, of which 2,000 survive untilt = 12 Gyr. The present-day mass and luminosity
functions are scaled to match the observed numbers, of whichthe scale factor can be used to

3The parameterx implicitly depends on the GC mass (e.g. Gnedin & Ostriker 1997). We adopt 0.6 times the
initial GC mass, in agreement with the average mass loss per Hubble time from Kruijssen & Mieske (2009).

4Compared to adopting a constant GC radius, this assumption effects a∼ 0.45 dex scatter oft0,disc. Because
log (t0,disc/t0,tot) > 0.75 for all surviving GCs, this does not affect our results.
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derive properties of the initial Galactic GC system (see below). The computedV -band GCLF
is compared to the observed distribution in Figure 6.3. The distributions are in satisfactory
agreement, with a KS-testp-value of 0.02. At low luminosities, there is a slight discrepancy,
which could be caused by incompleteness due to obscuration by the Galactic bulge (Gieles et
al., in preparation).

TheM /LV ratios of our modeled GCs are compared to observations from McLaughlin
& van der Marel (2005) in Figure 6.4. If low-mass star depletion is neglected (panel (a)), the
M /LV ratios of the models are completely set by their metallicities and they agree poorly with
the observations. When including low-mass star depletion (panel (b)), the modeledM /LV

ratios are affected by dynamical evolution and are in good agreement with the observations.
The same approach can be used to explain the observations of Cen A, M31 and the LMC
compiled by Rejkuba et al. (2007), which gives results that are consistent with our analysis
in Figure 6.4.

The McLaughlin & van der Marel (2005) sample is not representative of the entire Galac-
tic GC population, as it lacks GCs that are much fainter than the turnover and represents cen-
tral rather than globalM /LV ratios for certain GCs, only allowing for a first-order comparison
(for a discussion, see Kruijssen & Mieske 2009). The observed slopes of the low-mass stellar
mass functions of 20 GCs from De Marchi et al. (2007) provide an independent check. Their
compilation exhibits a clear trend of mass function slope with GC luminosity. Splitting their
sample at about the turnover luminosity (log(LV /L⊙) = 5.1), for a mass functionn ∝ m−α

the mean slopes in the stellar mass rangem = 0.3—0.8 M⊙ areαbright = 1.42± 0.10 and
αfaint = 0.56± 0.07 for the bright and faint GCs, respectively. Faint GCs are indeed more
depleted in low-mass stars than bright GCs, substantiatingour model results.

The initial properties of the Galactic GC system are obtained by scaling the present-
day number of modeled GCs to the observed number and applyingthe same scale factor to
the CIMF. In Figure 6.5, we show the CIMF, the modeled GCMF, the GCMF that would
be obtained from Figure 6.3 if a constantM /L ratio were adopted, and the initial mass
distribution of the surviving GCs. The modeled GCMF for a single dissolution timescale from
Figure 6.1(b) is overplotted for comparison, illustratingits acceptable agreement with our
detailed model. The disagreement for GC masses< 103 M⊙ is due to the use of logarithmic
time steps in our models, causing some GCs to lose their last few 100 M⊙ within a single
time step at large ages. For a lower mass limit of the CIMF of 5× 103 (102) M⊙, we find
a surviving GC number fraction of 3.9 (0.1)× 10−3, with an initial total mass of about 1.1
(1.8)×109 M⊙ and a present-day mass of 2.8× 107 M⊙. If the stellar halo (∼ 109 M⊙; Bell
et al. 2008) is constituted by disrupted GCs and coeval stars(in spite of chemical analyses;
e.g. Gratton et al. 2000), our comparable initial total GC mass implies that either nearly all
star formation occurred in clusters at the epoch of GC formation, or that most of these stars
now constitute the Galactic bulge.

6.4 Discussion

We have shown that the interpretation of the GCLF as a one-to-one representation of the
GCMF is incorrect. This follows from theM /L ratio decrease due to the low-mass star
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Figure 6.4: Comparison of observedM /LV ratios of Galactic GCs (thick dots; McLaughlin & van
der Marel 2005) with our modeledM /LV ratios (thin dots). Error bars are 1σ. Dotted horizontal lines
denote the constantM /LV ratios that are expected if low-mass star depletion is neglected (from bottom
to topZ = {0.0004, 0.004, 0.008, 0.02}). Panel (a): thin dots represent modeledM /LV ratios without
low-mass star depletion. Panel (b): thin dots denote modeled M /LV ratios including low-mass star
depletion. The solid line represents the relation betweenM /LV andLV that was adopted in the simple
model of Figure 6.1(b).

depletion that arises from two-body relaxation. There is noequivalence of the luminosity
function and the mass function as both have intrinsically different low-mass slopes (∼ 1 and
∼ 0.7, respectively). In addition, the turnover mass is overestimated by 0.1—0.3 dex if a one-
to-one conversion from GCLF to GCMF is applied, depending onthe adoptedM /L ratio. We
have shown that the present-day GCLF and GCMF arise from a cluster mass-dependent mass-
loss rate (t total

dis ∝ M 0.7 and t total
dis ∝ t0.75

rh ), starting from a Schechter-type CIMF. Therefore,
neither is consistent with a cluster mass-independent mass-loss rate (e.g. Fall & Zhang 2001).
The GCMF that is computed using a spread in dissolution timescalet0 only marginally differs
from that for a single, mean value oft0.
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Figure 6.5: Histograms of the mass distributions of the modeled GCs. Represented are the CIMF
(upper solid) and the present-day GCMF (dotted, with 1σ Poissonian error bars). The GCMF for a
single dissolution timescale (Figure 6.1(b)) is represented by the continuous solid curve. The dashed
line gives the GCMF that would be obtained from Figure 6.3 if aconstantM /L ratio were adopted.
The initial mass distribution of the surviving GCs is given by the lower solid line.

The low-mass slope of a dissolution-dominated mass function like the GCMF is equal to
γ (see Equation 6.1), independent of the CIMF (Fall & Zhang 2001, Lamers et al. 2005a).
For cluster mass-dependent mass loss (γ = 0.7), the GCMF that is inferred from the GCLF is
accurately matched by the models (see Figure 6.1(b)). To verify whether this perhaps holds
for all values ofγ, we have also considered cluster mass-independent mass loss (γ = 1; Fall &
Zhang 2001) and found that the luminosity dependency ofM /L (see Figure 6.4) is steepened
compared to cluster mass-dependent mass loss. The conversion of the observed GCLF to
a GCMF then gives an inferred GCMF slope that is even lower (∼ 0.6), in bad agreement
with the expected (∼ 1) value. We conclude that the match between the models and the
observations only exists for values ofγ ≈ 0.7. Of course, the precise description of mass
loss does not affect the fundamental principle of low-mass star depletion due to two-body
relaxation. The luminosity dependence ofM /L flattens the inferred low-mass GCMF in any
scenario.

We have not yet considered the radial variation of the turnover luminosityLTO, which has
been shown to be independent of galactocentric radius in M87(Vesperini et al. 2003). Our
prescription for dynamical evolution in Section 6.3 yieldsa higher turnover luminosity near
the galactic center than at large distances. However, our method is aimed at investigating
the influence of a representative spread in dissolution timescales on our results, rather than
making an exact model of the Galactic GC system. It should be emphasized that the dif-
ference between the GCLF and the GCMF persists, even though it remains to be explained
why LTO appears to be constant. It could be that the outer GCs dissolve more rapidly than
expected. Potential explanations could be that GCs on wide orbits originate from accreted
dwarf galaxies (Prieto & Gnedin 2008), or a dissolution mechanism that has not yet been
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included (see also Kruijssen & Mieske 2009), like the dynamical implications of white dwarf
kicks (Fregeau et al. 2009), stellar evolution (Vesperini &Zepf 2003, Vesperini et al. 2009),
or gas expulsion (Baumgardt & Kroupa 2007).

The results of this chapter do not only apply to the Milky Way,but also to other galaxies.
We see that the properties of the inferred GCMF are affected by the mass and luminosity
dependence ofM /L that ensues from low-mass star depletion. It is advised for observational
and theoretical studies to be cautious when comparing GCLFsand GCMFs. At present an
observed GCMF cannot be accurately obtained, because for most observed GCs only pho-
tometric masses are determined (for which by definition a constantM /L ratio is assumed)
instead of dynamical masses. Considering the intrinsically different shapes of the GCLF and
GCMF, the presently most feasible way of comparing theory and observations would be if
models of GC systems are aimed at explaining the GCLF rather than the mass distribution.

Acknowledgements We thank the anonymous referee for constructive comments that improved the
manuscript. We acknowledge Dana Casetti-Dinescu, Mike Fall and Dean McLaughlin for stimulating
discussions, and Mark Gieles for comments on the manuscript. JMDK is grateful to Sophie Goldha-
gen and Henny Lamers for support, advice and comments on the manuscript. The Kavli Institute for
Theoretical Physics in Santa Barbara is acknowledged for their hospitality and hosting an excellent
globular cluster workshop and conference. This research issupported by the Netherlands Advanced
School for Astronomy (NOVA), the Leids Kerkhoven-Bosscha Fonds and the Netherlands Organisation
for Scientic Research (NWO), grant numbers 021.001.038 and643.200.503.



Chapter 7
The evolution of the stellar mass function in star
clusters∗

J. M. Diederik Kruijssen
Astronomy & Astrophysics, v. 507, p. 1409–1423 (2009)†

Abstract The dynamical escape of stars from star clusters affects theshape of the stellar mass func-
tion (MF) in these clusters, because the escape probabilityof a star depends on its mass. This is found
in N -body simulations and has been approximated in analytical cluster models by fitting the evolution
of the MF. Both approaches are naturally restricted to the set of boundary conditions for which the
simulations were performed. The objective of this chapter is to provide and to apply a simple physical
model for the evolution of the MF in star clusters for a large range of the parameter space. It should also
offer a new perspective on the results fromN -body simulations. A simple, physically self-contained
model for the evolution of the stellar MF in star clusters is derived from the basic principles of two-
body encounters and energy considerations. It is independent of the adopted mass loss rate or initial
mass function (IMF), and contains stellar evolution, stellar remnant retention, dynamical dissolution in
a tidal field, and mass segregation. The MF evolution in star clusters depends on the disruption time,
remnant retention fraction, initial-final stellar mass relation, and IMF. Low-mass stars are preferentially
ejected aftert ∼ 400 Myr. Before that time, masses around 15—20% of the maximum stellar mass
are lost due to their rapid two-body relaxation with the massive stars that still exist at young ages. The
degree of low-mass star depletion grows for increasing disruption times, but can be quenched when the
retained fraction of massive remnants is large. The highly depleted MFs of certain Galactic globular
clusters are explained by the enhanced low-mass star depletion that occurs for low remnant retention
fractions. Unless the retention fraction is exceptionallylarge, dynamical evolution always decreases the
mass-to-light ratio. The retention of black holes reduces the fraction of the cluster mass in remnants
because white dwarfs and neutron stars have masses that are efficiently ejected by black holes. The
modeled evolution of the MF is consistent withN -body simulations when adopting identical boundary
conditions. However, it is found that the results fromN -body simulations only hold for their specific

∗The models presented in this chapter are publicly availablein electronic form at
the CDS via anonymous ftp to http://cdsweb.u-strasbg.fr/ (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/.

†Reproduced with permissionc© ESO.
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boundary conditions and should not be generalised to all clusters. It is concluded that the model pro-
vides an efficient method to understand the evolution of the stellar MF in star clusters under widely
varying conditions.

7.1 Introduction

The evaporation of star clusters is known to change the shapeof the underlying stellar mass
function1 (Hénon 1969, Chernoff & Weinberg 1990, Vesperini & Heggie 1997, Takahashi
& Portegies Zwart 2000, Portegies Zwart et al. 2001, Baumgardt & Makino 2003). This
phenomenon has been used to explain the observed MFs in globular clusters (Richer et al.
1991, De Marchi et al. 2007, De Marchi & Pulone 2007), which are flatter than typical initial
mass functions (IMFs, e.g. Salpeter 1955, Kroupa 2001). In addition, the effect of a changing
MF on cluster photometry has been investigated (Lamers et al. 2006, Kruijssen & Lamers
2008, Anders et al. 2009). This has been shown to explain the low mass-to-light ratios of
globular clusters (Kruijssen 2008, Kruijssen & Mieske 2009) and to have a pronounced effect
on the inferred globular cluster mass function (Kruijssen &Portegies Zwart 2009).

The existing parameterised cluster models that incorporate a description of low-mass star
depletion are restricted by the physically self-containedmodels on which they are based.
Some studies (Lamers et al. 2006, Kruijssen & Lamers 2008) assume an increasing lower
stellar mass limit to account for the evolving MF, others (Anders et al. 2009) fit a chang-
ing MF slope toN -body simulations. In both cases, the models are accurate for a certain
range of boundary conditions, but they do not include a physical model and are therefore
lacking flexibility. While N -body simulations do include the appropriate physics, theyare
very time-consuming. As a result, only a limited number of clusters can be simulated and the
applicability of the simulations is thus restricted to the specific set of boundary conditions for
which they have been run.

It would be desirable to obtain a simple physical model for the evolution of the MF, which
would have a short runtime and could be used independently ofN -body simulations. Forty
years ago, a pioneering first approach to such a model was madeby Hénon (1969), who
considered the stellar mass-dependent escape rate of starsfrom star clusters. However, the
applicability of his model was limited due to a number of assumptions that influenced the
results. First of all, Hénon (1969) assumed that the clusters exist in isolation and neglected
the tidal field. As a consequence, the escape of a star could only occur by a single, close
encounter and the repeated effect of two-body relaxation was not included. Secondly, the
distribution of stars was independent of stellar mass, i.e.mass segregation was not included.
Both mass segregation and the influence of a tidal field are observed in real clusters, and can
be expected to affect the evolution of the MF.

The aim of this chapter is to derive a physical description ofthe evolution of the stel-
lar MF in star clusters, alleviating the assumptions that were made by Hénon (1969). This
should explain the results found inN -body simulations and observations, while providing
the required flexibility to explore the properties of star clusters with simple, physically self-
contained models. The outline of this chapter is as follows.In Sect. 7.2, total mass evolution

1Hereafter, ‘mass function’ is referred to as ‘MF’.
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of star clusters is discussed. A recipe for the evolution of the MF is derived in Sect. 7.3,
covering stellar evolution, the retain of stellar remnants, dynamical dissolution and mass seg-
regation. The model is compared toN -body simulations in Sect. 7.4. In Sect. 7.5, the model
is applied to assess the evolution of the MF for different disruption times and remnant re-
tention fractions. The consequences for other cluster properties are also considered. This
chapter is concluded with a discussion of the results and their implications.

7.2 The mass evolution of star clusters

The mass of star clusters decreases due to stellar evolutionand dynamical dissolution. This
is expressed mathematically as

dM
dt

=

(

dM
dt

)

ev

+

(

dM
dt

)

dis

, (7.1)

with M the cluster mass, and the subscripts ‘ev’ and ‘dis’ denotingstellar evolution and dy-
namical dissolution. The contribution of stellar evolution to the mass loss is derived from the
decrease of the maximum stellar mass with time and depends onthe adopted stellar evolution
model.

The dynamical evaporation of star clusters is increasinglywell understood. Over the
past years it has become clear that clusters lose mass on a disruption timescaletdis that is
proportional to a combination of the half-mass relaxation time trh and the crossing timetcr

as tdis ∝ tx
rht1−x

cr (e.g. Baumgardt 2001, Baumgardt & Makino 2003, Gieles & Baumgardt
2008). It is found thatx = 0.75—0.80, depending on the concentration (c = log (rt/rc)) or
King parameter (W0) of the cluster (Baumgardt & Makino 2003). This proportionality leads
to a disruption timescale that scales with the present day mass as (Lamers et al. 2005a):

tdis = t0M γ , (7.2)

with M the cluster mass,t0 the dissolution timescale parameter which sets the rapidity of
dissolution and depends on the cluster environment, andγ a constant related tox. Lamers et
al. (2009, in prep.) findγ = 0.62 forW0 = 5 andγ = 0.70 forW0 = 7. This timescale implies
a mass loss rate due to dissolution that can be described withthe simple relation

(

dM
dt

)

dis

= −M
tdis

= −M 1−γ

t0
, (7.3)

which can be integrated for the mass evolution of the clusterdue to dynamical dissolution.
The above formulation of the cluster mass evolution was extended to include stellar rem-

nants, photometric cluster evolution, and a simple description of the MF in theSPACE cluster
models (Kruijssen & Lamers 2008). Stellar remnants were accounted for by assuming initial-
final mass relations (similar to Sect. 7.3.1 of the present work), while the photometric evo-
lution was computed by integrating stellar isochrones fromthe Padova group (Bertelli et al.
1994, Girardi et al. 2000). The description of low-mass stardepletion followed the simple
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model from Lamers et al. (2006) in which the minimum stellar mass of the MF increases with
time.

The present study provides a new description of the evolution of the MF which is based
on fundamental principles, and does not depend on the above prescription for the total mass
evolution. In addition, the latest Padova models (Marigo etal. 2008) are incorporated to
calculate the photometric cluster evolution. These improvements update theSPACE cluster
models.

7.3 The evolution of the stellar mass function

To describe the evolution of the MF, the effects of stellar evolution, stellar remnant produc-
tion, and dynamical dissolution need to be included. While the focus of this chapter lies with
the effects of dissolution, a proper treatment of stellar evolution is essential. This is described
first, before presenting a model for cluster dissolution.2

7.3.1 Stellar evolution

The influence of stellar evolution on the MF is twofold. Firstof all, the maximum stellar
mass decreases, because at any time during cluster evolution the most massive stars reach
the end of their lives. Secondly, the stellar remnants that are created upon the death of these
massive stars constitute a part of the MF that can only be lostfrom the cluster by dynamical
mechanisms.

The maximum stellar mass in the cluster as a function of its age is taken from the Padova
2008 isochrones (Marigo et al. 2008) for metallicities in the rangeZ = 0.0001—0.03. The
stellar remnant massesmsr are computed from their progenitor stellar massm using initial-
final mass relations. Following Kruijssen & Lamers (2008), for white dwarfs (m < 8 M⊙)
the relation from Kalirai et al. (2008) is adopted:

mwd = 0.109m + 0.394 M⊙, (7.4)

which holds for all ages that are covered by the Padova isochrones. For neutron stars (8 M⊙ ≤
m < 30 M⊙) the relation from Nomoto et al. (1988) is used:

mns = 0.03636(m − 8 M⊙) + 1.02 M⊙, (7.5)

while for black holes (m ≥ 30 M⊙) a simple relation is assumed that is in acceptable agree-
ment with theoretically predicted masses of stellar mass black holes (Fryer & Kalogera 2001):

mbh = 0.06(m − 30 M⊙) + 8.3 M⊙. (7.6)

With these relations, the remnant MF is computed from conservation of numbers as

Nsr(msr) = fret,sr(M )N (m(msr))
dm
dmsr

, (7.7)

2The model presented in this chapter is independent of the mass loss rate and of the form of the IMFNi (m), but
for explanatory purposes a Kroupa (2001) IMF is adopted later on.
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with sr = {wd, ns, bh} denoting the appropriate remnant type,Nsr(msr) representing its MF,
fret,sr(M ) denoting the cluster mass-dependent fraction of these remnants that is retained after
applying kick velocities, andN (m(msr)) representing the progenitor MF.

For a given velocity dispersion of remnants, the retention fraction of each remnant type
depends on the local escape velocityvesc, which is related to the potentialψ asvesc =

√
2ψ.

Stellar remnants are predominantly produced in the clustercentre in the case of mass segrega-
tion, which is reached most rapidly for massive stars (see Sect. 7.3.2). For a Plummer (1911,
also see Eq. 7.9) potential this implies that upon remnant productionvesc =

√

2GM/r0, with
G the gravitational constant andr0 the Plummer radius. Adopting a Maxwellian distribution
of velocities that is truncated atvesc, it is straightforward to show that

fret,sr(x) = A

[

erf

(

x√
2

)

−
√

2
π

xe−x2/2

]

, (7.8)

whereA is a normalisation constant to account for the truncation ofthe velocity distribution
andx2 ≡ 2GM/r0σ

2
sr, with σ2

sr = σ2
0 + σ2

kick,sr denoting the total velocity dispersion of the
produced remnant type, which arises from the central velocity dispersion in the clusterσ2

0 =
GM/3r0 (e.g. Heggie & Hut 2003) and the velocity dispersion of the exerted kickσkick. The
normalisation constant then follows asA −1 = erf

√
3− 2

√

3/π exp (−3).
Typical values of the kick velocity dispersionσkick,sr are given in literature. White dwarf

kicks have recently been proposed to be of orderσkick,wd = 4 km s−1 (Davis et al. 2008,
Fregeau et al. 2009). For neutron starsσkick,ns = 100 km s−1 is adopted, which is a somewhat
conservative estimate with respect to theory, but it agreesreasonably well with observed
neutron star numbers in globular clusters and represents a compromise between single star
and binary channels (for estimates of the retention fraction and discussions of the ‘neutron
star retention problem’ see Lyne & Lorimer 1994, Drukier 1996, Arzoumanian et al. 2002,
Pfahl et al. 2002). Gravitational wave recoils are thought to exert black hole kicks of order
σkick,bh = 80 km s−1 (Moody & Sigurdsson 2009). This value depends on metallicity, but for
simplicity I assume a single, typical value here.

The retention fractions following from Eq. 7.8 are shown as afunction of cluster mass
per unit Plummer radius in Fig. 7.1. This quantity best reflects the retention fraction be-
causex2 ∝ M /r0 in Eq. 7.8. Open clusters (with initial massesM i such that typically
M i/r0 < 3 × 104 M⊙ pc−1, Larsen 2004) do not retain any neutron stars or black holes,
while globular clusters (M i/r0 ∼ 3× 104—3× 105 M⊙ pc−1, Harris 1996) retain 0.1—4%
of the neutron stars and 0.3—7% of the black holes. These values are in excellent agreement
with other studies (e.g. Pfahl et al. 2002, Moody & Sigurdsson 2009), but are still lower than
the large observed number of neutron stars in a number of globular clusters (the aforemen-
tioned ‘retention problem’).

7.3.2 Dissolution and the evolution of the mass function

Dissolution alters the shape of the stellar MF in star clusters due to the effects of two-body
relaxation and energy equipartition. In a pioneering paper, Hénon (1969) derived the escape
rate of stars of different masses from an isolated cluster. The cluster was represented by a
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Figure 7.1: Retention fraction of stellar remnants as a function of cluster mass per unit Plummer radius
M /r0, for black holes (solid), neutron stars (dashed) and white dwarfs (dotted).

Plummer (1911) gravitational potential:

ψ(r) = ψ0

(

1 +
r2

r2
0

)−1/2

, (7.9)

wherer0 denotes the Plummer radius setting the concentration of thecluster andψ0 ≡ GM/r0

represents the central potential, withG the gravitational constant andM the cluster mass. It
was argued by Hénon (1960) that the only way for stars to escape such an isolated cluster
is by a single, close encounter. The corresponding stellar mass-dependent escape rate was
found to be (Hénon 1969):

dN (m)
dt

= −|E|3/2N (m)
GM9/2

∫ ∞

0
N (m′)F

( m
m′

)

m′2dm′, (7.10)

with N (m) the MF,m the stellar mass,E the total energy of the cluster, andF(µ) a function
related to the escape probability for a star of massm in a close encounter with a star of mass
m′ and a corresponding mass ratioµ ≡ m/m′. The expression in Eq. 7.10 is independent of
the adopted IMF. The functionF will be referred to as the ‘Hénon function’ and is shown in
Fig. 7.2. The original expression consists of several integrals that have to be solved numer-
ically. In Hénon (1969), a table is given for the Hénon function, but it can also be fitted by:

F(µ) =
(

0.32 + 0.55µ0.35+ 13.26µ2.5
)−1

. (7.11)

This approaches the power lawF(µ) = 0.075398µ−5/2 for µ > 1, as was derived explicitly
by Hénon (1969).

The total mass loss rate corresponding to Eq. 7.10 conflicts with N -body simulations (as
was already noted by Wielen 1971) because only ejections by single, close encounters are
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Figure 7.2: Hénon functionF(µ), which is a measure for the escape probability of a star of massm in
a two-body interaction with mass ratioµ ≡ m/m′. The dotted line shows the fit from Eq. 7.11.

included. This restriction implies that the disruption timescaletdis is proportional to the half-
mass relaxation timetrh times the Coulomb logarithm lnΛ (tdis,Hénon∝ trh ln Λ), whileN -body
simulations show that it scales with a combination of the half-mass relaxation time and the
crossing time (tdis ∝ t0.75

rh t0.25
cr ) due to two-body relaxation, i.e. the repeated effect of soft

encounters (e.g. Fukushige & Heggie 2000, Baumgardt & Makino 2003). Nonetheless, the
escape rate from Hénon (1969) does accurately describe what happens if two stars interact
and can therefore be used as a starting point for a more complete description of the evolution
of the MF. For that purpose, it is convenient to scale Eq. 7.10to the mass loss rate found in
N -body simulations and only use the relative or ‘differential’ stellar mass dependence from
Hénon (1969). This is allowed if the ratiotdis,Hénon/tdis = ln Λ(trh/tcr)0.25 only depends on
global cluster properties. It is straightforward to show (e.g. Spitzer 1987, Heggie & Hut
2003) that indeed this is the case astrh/tcr ∝ N/ ln Λ. As such, one can write

dN (m)
dt

=

(

dM
dt

)

dis

χ(m), (7.12)

with (dM /dt)dis the mass loss rate from Eq. 7.3 (Lamers et al. 2005a) andχ(m) the stellar
mass-dependent escape rate per unit mass loss rate. The quantity χ(m) is completely inde-
pendent of the prescription for the total mass evolution. Inorder to deriveχ(m), I start from
Eq. 7.10 and expressχ(m) as

χ(m) =
N (m)

∫ ∞

0 N (m′)F(m/m′)λ(m, m′)m′2dm′

∫ ∞

0 m′′N (m′′)
∫ ∞

0 N (m′)F(m′′/m′)λ(m′′, m′)m′2dm′dm′′
, (7.13)

whereλ(m, m′) represents a correction factor to account for additional physics (see below).
The numerator reflects the escape rate, while the denominator is proportional to the mass loss
rate.
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For mathematical simplicity3 Hénon (1969) made the following assumptions in the deriva-
tion of Eq. 7.10.

(1) The cluster exists in isolation and the tidal field is neglected. Therefore, escape can
only occur by a single, close encounter and the repeated effect of soft encounters (two-
body relaxation) is not accounted for. This underestimatesthe escape rate of massive
stars.

(2) The distribution of stars is independent of stellar mass, i.e. mass segregation is not
included. Depending on the balance between their encounterrate and their proximity
to the escape energy, this over- or underestimates the escape rate of low-mass stars
from Hénon (1969). Considering the results from Baumgardt& Makino (2003), the
latter seems to be the case.

The remainder of this section concerns the derivation of thefactorλ(m, m′) in Eq. 7.13 that
corrects for the above assumptions.

Let us assume that the distribution of stars over radius and velocity space is initially in-
dependent of their mass. This implies that mass segregationis dynamically created and not
primordial, which is discussed in Sect. 7.6. For such an initial distribution, the separation
from the escape energy∆E is independent of mass. As the cluster evolves, energy equiparti-
tion is reached between the stars and the radius, velocity and proximity to the escape energy
become a function of stellar mass. I first consider this effect on the escape rate before includ-
ing the timescale on which two-body relaxation occurs for different stellar masses. Please
note that the formulation of Eq. 7.13 withλ(m, m′) appearing in the numerator and the de-
nominator implies that only the proportionality ofλ(m, m′) is important. Its exact value is
determined by constants that drop out when substituting in Eq. 7.13.

It is intuitive to express the dependence of the escape rate on the energy needed for escape
as dN (m)/dt ∝ [∆E(m)]−1. The energy that is required for escape∆E is related to the
position and velocity of the star.4 For the potential in Eq. 7.9 it is given by

∆E(r, v) = ψ(r) − v2

2
= ψ0

(

1 +
r2

r2
0

)−1/2

− v2

2
, (7.14)

with r andv the radial position and velocity of the star, andvesc ≡
√

2ψ(r) its escape ve-
locity. If the cluster is in ‘perfect’ energy equipartitionand correspondingly perfect mass
segregation, the radius and velocity become a monotonous function of stellar mass (Heggie
& Hut 2003, Ch. 16). Mass segregation is strongest in the cluster centre, which for a Plum-
mer (1911) potential can be approximated with a harmonic potentialψ ∝ r2. For a cluster
in a tidal field the potential is truncated, and the harmonic approximation serves as a crude
but reasonable approximation for the entire cluster (Heggie & Hut 2003, Ch. 16). Energy

3And because this is the only way to obtain an analytical solution as in Eq. 7.10.
4The energy difference∆E that is discussed here concerns the energy that needs to be added to reach the es-

cape energy. As such, it differs from the separation from theescape energy in Fukushige & Heggie (2000) and
Baumgardt (2001), who are considering theexcessenergy of stars and its relation to the escape time, resulting in the
aformentioned relationtdis ∝ t0.75

rh t0.25
cr .
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equipartition yields

v2(m) = 〈v〉2 〈m〉
m

, (7.15)

with 〈v〉2 ∝ ψ0 the mean speed of all stars squared and〈m〉 the mean stellar mass. For the
harmonic potential, this translates to a similar relation for the radial position:

r(m) = r0

√

〈m〉
m

, (7.16)

wherer0 represents the typical radius of the system, in this case thePlummer radius. This
relation assumes that there is no particular stellar mass which dominates the mass spectrum.
The decrease of radial position with stellar mass implied byEq. 7.16 is a direct consequence
of the energy loss endured by massive stars5 as the system evolves towards energy equipar-
tition. Substituting Eqs. 7.15 and 7.16 into Eq. 7.14 and dividing out the proportionality
〈v〉2 ∝ ψ0 gives an expression for∆E(m):

∆E(m) =

(

1 +
〈m〉
m

)−1/2

− c1
〈m〉
m

, (7.17)

with c1 = 〈v〉2/2ψ0 denoting the ratio of the mean speed squared to the central escape velocity
squared. This constant mainly depends on the degree of mass segregation. Consequently, it
will depend on the IMF. By comparing the models to theN -body simulations with a mass
spectrum by Baumgardt & Makino (2003) the value is constrained toc1 = 0.020 for a Kroupa
IMF, using King (1966) potentials with King parameterW0 = 5—7 (see Sect. 7.4). For
reference, an unevolved Plummer (1911) potential has〈v〉2/2ψ0 = 3π/64 = 0.147.

By comparing the models toN -body simulations (provided by M. Gieles, private commu-
nication) with different IMF power law slopesα and a ratio between the maximum and min-
imum mass of 10, the approximate relation logc1 ≈ α− 3.76 is found6 for a MFns ∝ m−α.
Fitting the Kroupa IMF with a single power law in the mass range 0.08—15 M⊙ (as used by
Baumgardt & Makino 2003) yieldsα = 2.06, resulting inc1 = 0.020 as mentioned earlier.7

The comparison withN -body simulations also showed that a single value ofc1 suffices to
determine the MF evolution, even though it does not remain constant over the full cluster
lifetime.

Because dN (m)/dt ∝ [∆E(m)]−1, Eq. 7.17 indicates that the escape rate of low-mass
stars is increased if a cluster is in complete energy equipartition. However, the timescale on
which two-body relaxation occurs between different stellar masses has not yet been consid-
ered. For a cluster starting with a stellar mass-independent distribution of radial positions and
velocities, the equipartition timescalete scales as

te(m, m′) ∝ m−1m′−1, (7.18)

5And the energygain experienced by low-mass stars.
6This prescription forc1 implies that the condition for the stars in the cluster to be physically bound∆E(m) > 0

is satisfied for allα < 3.63.
7Nonetheless, the relation forc1 should be expected to exhibit some variation for different mass ranges.
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for equipartition between stars of massesm andm′ (Heggie & Hut 2003). This is a modified
version of the relaxation timescale, which shows a very similar proportionality (tr ∝ m−2).
It illustrates that two-body relaxation occurs on a shortertimescale for massive stars than for
low-mass stars, increasing their escape rate dN (m)/dt ∝ t−1

e .
The correction factor for the escape rateλ(m, m′) that appears in the integrals of Eq. 7.13

now follows from Eqs. 7.17 and 7.18 as

λ(m, m′) = t−1
e (m, m′)[∆E(m)]−1 = mm′

[

(

1 +
〈m〉
m

)−1/2

− c1
〈m〉
m

]−1

. (7.19)

It was mentioned before that the proportionalities of∆E(m) andte(m, m′) rather than their
exact values suffice for the computation ofλ(m, m′) due to the renormalisation of the total
mass loss rate that appears in Eq. 7.13:only the stellar mass-dependence is important.

The influence of the tidal field is now included in two ways. First of all, the escape of
stars no longer occurs by a single, close encounter but arises due to two-body relaxation on
the equipartition timescale, representing the repeated effect of soft encounters. Secondly,
the above derivation of the separation from the escape energy assumes a potential which
approximates tidally limited clusters. As a result, the escape rate of massive stars is increased
with respect to clusters in the model of Hénon (1969), whichwas derived for an isolated
cluster. On the other hand, the effect of mass segregation isincluded by introducing a stellar
mass-dependence for the energy needed by stars to reach the escape velocity. Low-mass stars
are closer to the tidal radius than massive stars, leading toa lower energy that is needed for
escape and an increased escape rate. It depends on the shape of the MF which mechanism
dominates.

The evolution of the MF of various cluster components is obtained from Eqs. 7.12, 7.13
and 7.19 by writing

d logNcomp(m)
dt

=
d logN (m)

dt
, (7.20)

where the MFs of stars, white dwarfs, neutron stars and blackholes are represented by
Ncomp(m), with comp ={s, wd, ns, bh}. The overall cluster evolution is computed by com-
bining the results of this section with the prescription forstellar evolution from Sect. 7.3.1.

If stellar evolution is included, the resulting mass loss causes an expansion of the cluster,
during which stars are lost independently of their masses. This delays the onset of mass
segregation and the stellar mass-dependent mass loss that is described above. The moment
of transition to stellar mass-dependent mass loss can be characterised by a certain fraction of
the initial cluster mass that has been lost by dissolutionfdiss ≡ Mdiss/M i . It is assumed that
the fractionfsmd of the mass loss for which the escape rate depends on the stellar mass grows
exponentially8 between 0 and 1 as

fsmd = C
(

efdiss/fdiss,seg− 1
)

, (7.21)

8This form assumes that the increase of the fraction of the mass loss that is stellar mass-dependent scales with
the total dynamical mass loss, which is a compromise betweena step function and a linear increase.
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Figure 7.3: MF slope change∆α in the rangem = 0.1—0.5 M⊙ versus the remaining mass fraction
for a Kroupa IMF (solid), Salpeter IMF (dotted), and a power law IMF with α = 1.35 (dashed). In all
cases, the IMF mass range ism = 0.1—1 M⊙. The displayed relation is valid if stellar evolution is
excluded.

where the subscript ‘smd’ denotes ‘stellar mass-dependent’, fdiss,seg≡ Mdiss,seg/M i is the frac-
tion of the initial mass that has been lost by dissolution at which mass segregation is reached,
andC = (e−1)−1 is a constant to normalisefsmd = 1 at the reference valuefdiss = fdiss,seg. For
fdiss> fdiss,seg, per definitionfsmd = 1, indicating that all mass loss is stellar mass-dependent.
The timescaletseg on which mass segregation is reached and the transition to stellar mass-
dependent mass loss is completed is proportional to the initial half-mass relaxation time
(tseg ∝ trh,i). It has been shown in several studies that for Roche lobe-filling clusters the
disruption timescaletdis ∝ t0.75

rh,i t0.25
cr (Vesperini & Heggie 1997, Baumgardt & Makino 2003,

Gieles & Baumgardt 2008), implying thattseg/tdis ∝ t0.33
dis . The expression fortdis in Eq. 7.2

then leads totseg/tdis ∝ t0.33
0 M 0.33γ

i . Assuming that the cluster mass evolution is close to
linear, the first-order relationfdiss,seg∝ tseg/tdis is obtained, implying

fdiss,seg= c2

(

t0
t⊙0

)0.33(

M i

104 M⊙

)0.21

, (7.22)

for a King parameter ofW0 = 5, with the dissolution timescale parameter at the solar galac-
tocentric radiust⊙0 = 21.3 Myr. For a King parameter ofW0 = 7, the exponent of the initial
cluster massM i becomes 0.23 andt⊙0 = 10.7 Myr (Kruijssen & Mieske 2009). In this rela-
tion, c2 represents a constant that is fixed by comparing the model to the results ofN -body
simulations from Baumgardt & Makino (2003), givingc2 = 0.25 forW0 = 5 andc2 = 0.15
for W0 = 7 (see Sect. 7.4). The variation with King parameter arisesbecause two-body relax-
ation is faster for more concentrated clusters. If stellar evolution were neglected, at all ages
c2 = 0 andfsmd = 1.
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Figure 7.4: Relative escape rateχ(m)/N (m) as a function of stellar mass, shown for a Kroupa MF
with different maximum masses. The end point of each curve (dot) marks its maximum mass. The
quantityχ(m)/N (m) ≡ (d logN (m)/dt)/(dM /dt) represents the escape rate per unit mass loss rate
normalised to the number of stars at each mass (also see Eq. 7.13).

The modeled MF slope change∆α in the mass rangem = 0.1—0.5 M⊙ is shown in
Fig. 7.3 for different IMFs coveringm = 0.1—1 M⊙. Evidently,∆α is a function of the
remaining mass fraction and is insensitive to the slope of the IMF, as long as that the ratio
between the maximum and minimum mass is kept fixed and stellarevolution is excluded.
This is an interesting observation in view of the MF evolution of globular clusters, in which
m ≈ 0.1—1 M⊙ and stellar evolution only plays a minor role. Figure 7.3 shows that the
slope of the MF in globular clusters could be a possible indicator for the mass fraction that has
been lost due to dissolution, provided that the IMF does not vary and the remnant retention
fractions were not substantially dissimilar during the early evolution of different globular
clusters (see Sect. 7.5.2 and Fig. 7.19).

For the particular example of a Kroupa MF that is truncated atdifferent maximum masses
mmax, the relative escape rate per unit mass loss rateχ(m)/N (m) (see Eqs. 7.12 and 7.13) is
shown in Fig. 7.4. This quantity is proportional to d logN (m)/dt and reflects the probability
that a star of a certain mass is ejected. Figure 7.4 illustrates that the mass of the highest rel-
ative escape rate is related to the maximum mass of the MF. Thepeak occurs at intermediate
masses if the MF is truncated at a high mass. This implies thatthere is a typical mass where
the stars are not too far from the escape energyandhave an equipartition timescale with the
massive stars that is short enough to eject them efficiently.This ‘sweet spot’ depends on the
maximum mass of the MF. If the MF is truncated at an intermediate mass, the combination
of quick two-body relaxation and proximity to the escape energy favours the escape rate of
stars at the lowest masses.

The maximum stellar mass at which the transition from ‘sweetspot’-depletion to low-
mass star depletion happens, is determined by the proximityof the low-mass stars to the
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Figure 7.5: Mass of the highest relative escape ratempeak as a function of the maximum stellar mass
of the MFmmax (solid line). The dashed line represents the relationmpeak = 0.2mmax, while the dotted
line describes an eyeball fit for massesmmax > 3 M⊙ and includes an exponential truncation at the
low-mass end (see Eq. 7.23).

escape energy. In Fig. 7.5, the mass of the peak relative escape rate is shown as a function of
the maximum stellar mass. At low truncation masses, the peakoccurs at the minimum mass,
indicating strong low-mass star depletion. Aroundmmax ∼ 3 M⊙, the relative escape rate at
mpeak ∼ 0.4 M⊙ becomes larger than its value at the lowest masses, which causes a jump
in Fig. 7.5. For even higher values ofmmax, the peak relative escape rate typically occurs at
15—20% of the maximum mass, approximately following the relation

mpeak = 0.2mmaxe−2M⊙/mmax. (7.23)

Even though its quantitative properties only hold for a Kroupa MF, the variation of the
relative escape rate with the maximum mass of the MF has several implications for star cluster
evolution. The change ofmmax in Figs. 7.4 and 7.5 can be interpreted as an example of what
happens when stellar evolution removes the most massive stars in the cluster, provided that
the remnants are all ejected by their kick velocities. If dynamical evolution does not affect
the shape of the MF too much beforemmax(t) ∼ 3 M⊙, or t ∼ 400 Myr, the subsequent
evolution of the MF will be dominated by low-mass star depletion. If substantial dissolution
occurs earlier on, it is dominated by the ‘sweet spot’ depletion of intermediate masses. Only
the retention of massive stellar remnants will make the evolution of the MF deviate from these
basic estimates, because remnant retention can provide a fixed maximum (remnant) mass of
the MF. This is treated in more detail in Sect. 7.5.
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Figure 7.6: Comparison of the evolution of the stellar MF from the models(dashed) to theN -body runs
from Baumgardt & Makino (2003, solid) for the exact same boundary conditions. The initial number of
particles and the galactocentric radius are indicated in the bottom-left corner of each panel. From top to
bottom, the subsequent MFs in each panel are shown for the times at which the remaining cluster mass
fraction equalsM /M i = {1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}.

7.4 Comparison toN -body simulations

The model described in Sect. 7.3 can be easily verified by running it for the exact same
boundary conditions as theN -body simulations9 by Baumgardt & Makino (2003) and com-
paring the results. They conducted simulations of Roche lobe-filling clusters between 8k
and 128k particles, which were evolved in the Galactic tidalfield at galactocentric radii in the
range 2.833—15 kpc. The boundary conditions for theN -body runs of Baumgardt & Makino
(2003) differ from those described in Sect. 7.3 by neglecting kick velocities and defining the

9These were performed usingNBODY4 (Aarseth 1999).
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Figure 7.7: Comparison of the evolution of the stellar MF from the models(dashed) to theN -body run
from Baumgardt & Makino (2003, solid) withW0 = 7 for the exact same boundary conditions. From
top to bottom, the subsequent MFs are shown for the times at which the remaining cluster mass fraction
equalsM /M i = {1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}.

Kroupa stellar IMF between 0.1 and 15 M⊙, thereby excluding black holes. For this partic-
ular comparison, the same IMF, stellar evolution prescription, and initial-final mass relation
for stellar remnants are used in the model that is presented in this chapter.

In Fig. 7.6, the modeled evolution of the (luminous) stellarMF is compared to theN -
body runs with King parameterW0 = 5 for a range of cluster masses and total disruption
times. As time progresses, the maximum stellar mass decreases due to stellar evolution and
the MF is lowered due to the dynamical dissolution of the starcluster. The slope of the
MF changes due to the preferential escape of low-mass stars,which have energies closer to
their escape energies, even to the extent that it dominates over their relatively slow two-body
relaxation. For both the models and theN -body simulations, the MF develops a slight bend
at m ∼ 0.3 M⊙ when approaching total disruption. The bend arises as an optimum between
on the one hand high energies but slow relaxation for the lowest stellar masses, and on the
other hand quick relaxation but low energies for the higheststellar masses (see the discussion
at the end of Sect. 7.3).

In all cases, the resemblance of the models and theN -body simulations is striking. The
models reproduce all key aspects of theN -body runs, such as the amount of low-mass star
depletion, the changing slope atm ∼ 0.3 M⊙ for clusters close to dissolution, the survival
of the Kroupa bend atm = 0.5 M⊙, and the dependence of the low-mass depletion on the
total lifetime of the cluster (compare the three 32k runs). The only difference occurs at the
high-mass end of the MF, where the maximum stellar masses do not match at young ages.
This is due to a minor dissimilarity of the total mass evolution (also see Lamers et al. 2005a,
Kruijssen & Lamers 2008). Because the maximum stellar mass only depends on the age
of the cluster, this causes a difference in maximum stellar mass when showing the MFs at
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Figure 7.8: Influence of the constantsc1 and c2 on the evolution of the stellar MF. From top to
bottom, the subsequent MFs in each panel are shown for the times at which the remaining clus-
ter mass fraction equalsM /M i = {1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}. Top panel: the valuesc1 =
{0.010,0.020, 0.030} are represented by dashed, solid and dotted lines, respectively. Bottom panel: the
valuesc2 = {0,0.25, 0.40} are represented by dashed, solid and dotted lines, respectively. For bothc1

andc2, the second (boldfaced) value is the one obtained from the comparison to theN -body simulations
with W0 = 5 in Fig. 7.6.

fixed remaining cluster mass fractions. The contrast is clearest at young ages, since there the
maximum stellar mass most rapidly decreases.

In the description of the model in Sect. 7.3, two constants have been determined from
the N -body simulations by Baumgardt & Makino (2003). These constants are the ratio of
the mean speed squared to the central escape velocity squared (c1, see Eq. 7.17) and the
proportionality constant for the relation marking the transition to stellar mass-dependent mass
loss (c2, see Eq. 7.22). As mentioned in Sect. 7.3, for a Kroupa IMF andKing parameter
W0 = 5 one obtainsc1 = 0.020 andc2 = 0.25. To illustrate the robustness of the models,
in Fig. 7.7 they are compared to a 64kN -body run withW0 = 7. For such a cluster with a
higher concentration, the early mass segregation impliesc2 = 0.15. Again, the model and the
simulation are in excellent agreement.

The dependence of the MF evolution on both constants is considered in Fig. 7.8. Forc1,
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the dependence of the evolution of the MF on its value is shownin the upper panel of Fig. 7.8,
while for c2 it is shown in the bottom panel of Fig. 7.8. Both panels show the evolution of the
MF for the 64k cluster in Fig. 7.6 for different values ofc1 andc2.

The ratio of the mean speed squared to the central escape velocity squaredc1 affects the
escape probability of the stars with the lowest masses. Because these stars are closest to
their escape energies in a mass-segregated cluster, they are most strongly influenced by the
value ofc1. For higherc1, the MF gets more depleted in low-mass stars due to their closer
proximity to the escape energy, while for lowerc1 more low-mass stars are retained as the
balance between close proximity to the escape energy and slow relaxation shifts to the latter.

The proportionality constant for the transition to stellarmass-dependent dissolutionc2

in Eq. 7.22 affects the MF as a whole. For lowerc2, the transition occurs earlier and more
low-mass stars are lost, while for higherc2 the onset of the depletion is delayed and the slope
of the MF remains closer to its initial value. If one were to assume a constantfdiss,seg, which
is contrary to the adopted relation with cluster mass in Eq. 7.22, this would therefore yield a
stellar MF in massive clusters that is underpopulated in low-mass stars, and a MF in low-mass
clusters that is overabundant in low-mass stars.

7.5 Star cluster evolution

In this section, the described model is applied to compute the evolution of clusters for a
variety of boundary conditions. The stellar content as wellas integrated photometry are
addressed, using the boundary conditions from Sect. 7.3 instead of those that were adopted
to compare the model toN -body simulations in Sect. 7.4. The most important differences are
the mass range of the IMF, the inclusion of remnant kick velocities, and the initial-final mass
relation.

The model that will be referred to as the ‘standard model’ uses a metallicityZ = 0.004
(which is typical of globular clusters), a King parameter10 of W0 = 7 (corresponding to
γ = 0.7 in Eq. 7.2), a dissolution timescale parametert0 = 1 Myr, and a Kroupa IMF between
m = 0.08 M⊙ and the maximum stellar mass given by the Padova isochrones at log t = 6.6,
which is typicallym ∼ 70 M⊙. For the computation of the retained remnant fraction (see
Eq. 7.8), the Plummer radiusr0 is related to the half-mass radiusrh asrh = 1.3r0. The half-
mass radius is assumed to remain constant during the clusterlifetime (e.g. Aarseth & Heggie
1998). For the relation betweenrh and initial cluster massM i the expression from Larsen
(2004) is adopted:

rh = 3.75 pc

(

M i

104 M⊙

)0.1

. (7.24)

The models that are used in this section are computed from 107 yr to 1.65× 1010 yr (the
maximum age of the Padova isochrones) for initial masses between 102 M⊙ and 107 M⊙,
spaced by 0.25 dex intervals.

10For W0 = 5, orγ = 0.62, the results vary only marginally.
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Figure 7.9: Influence of the disruption time on the evolution of the stellar MF for a cluster with
a low remnant retention fraction (log (M i/M⊙) = 4.5). From top to bottom, the subsequent MFs
in each panel are shown for the times at which the remaining cluster mass fraction equalsM /M i =
{1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}.

7.5.1 The influence of the disruption time

The disruption time of a cluster affects the evolution of theMF and of the integrated photo-
metric properties. To assess the influence of the disruptiontime on cluster evolution, clusters
with low and high remnant retention fractions should be treated separately, because the pres-
ence of massive remnants also has a pronounced effect on the results (see Sect. 7.5.2). As
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Figure 7.10: Influence of the disruption time on the stellar MF slopeα in the range 0.1<
m/M⊙ < 0.5 (solid) and 0.3< m/M⊙ < 0.8 (dashed) for a cluster with a low remnant reten-
tion fraction (log (M i/M⊙) = 4.5). Shown isα versus the remaining cluster mass fraction. From
top to bottom, for each mass range the lines representt0 = {0.1, 1, 10} Myr, corresponding to
t total
dis = {0.16, 1.42, 12.26} Gyr.

shown in Fig. 7.1, for a given kick velocity dispersion the remnant retention fraction is set
by the cluster mass. This means that the division between lowand high remnant retention
fractions can be made by making a cut in initial cluster mass.

In Fig. 7.9, the impact of the disruption time on the evolution of the MF is shown for
a cluster with initial mass log (M i/M⊙) = 4.5, representing the evolution for low remnant
retention fractions.11 The range of the dissolution timescale parametert0 and resulting to-
tal disruption times that are considered in Fig. 7.9 cover two orders of magnitude. As the
total lifetime increases, the depletion of the low-mass stellar MF close to total disruption
becomes more prominent. Conversely, the MF of short-lived clusters is depleted around
m ∼ 1 M⊙. As introduced in the last paragraphs of Sect. 7.3, this difference is caused by the
fixed timescale on which stellar evolution decreases the maximum stellar mass, implying that
the masses of the most massive stars are larger in quickly dissolving clusters than in slowly
dissolving ones. Because in short-lived clusters the massive stars are still present when the
bulk of the dissolution occurs, their rapid two-body relaxation with intermediate-mass stars
dominates over the relatively close proximity to the escapeenergy of low-mass stars, yield-
ing a depletion at intermediate masses. In long-lived clusters, this cannot occur because the
very massive stars have disappeared before the mass loss by dissolution becomes important,
thus resulting in the depletion of the very low-mass end of the MF. As a rule of thumb, for
t < 400 Myr (which is the lifetime of a 3 M⊙ star) the depletion typically occurs around
15—20% of the mass of the most massive star (see Sect. 7.3). Interms of the total disruption

11High remnant retention fractions will be treated in the discussion of the influence of the retention fraction in
Sect. 7.5.2.
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Figure 7.11: Influence of the disruption time on theM /LV ratio evolution for a cluster with a low
remnant retention fraction (log (M i/M⊙) = 4.5). Shown is the relativeM /LV ratio decrease with
respect to the value expected for stellar evolution (M /LV )stevversus the remaining cluster mass fraction.
The solid, dashed and dotted lines representt0 = {0.1, 1, 10} Myr, respectively, corresponding tot total

dis =
{0.16, 1.42, 12.26} Gyr.

time, the transition from intermediate-mass star depletion to low-mass star depletion occurs
aroundt total

dis ∼ 1 Gyr.
A quantifiable way to look at the evolution of the stellar MF instar clusters is to consider

the slope of the MFns ∝ m−α in certain mass intervals (Richer et al. 1991, De Marchi
et al. 2007, De Marchi & Pulone 2007, Vesperini et al. 2009). For the commonly used mass
intervals 0.1< m/M⊙ < 0.5 (α1) and 0.3< m/M⊙ < 0.8 (α2), Fig. 7.10 shows the
evolution of the slopeα for the same clusters as before. Like Fig. 7.9, this illustrates that for
short disruption times the slope steepens as the cluster dissolves, while for long disruption
times the slope flattens with time. The presented models and other model runs indicate that
α1 increases with time fort total

dis < 1 Gyr and decreases fort total
dis > 2 Gyr. For total disruption

times in between these values, the slope first increases and then decreases. The slope in the
second mass intervalα2 shows the same behaviour. It increases fort total

dis < 0.5 Gyr and
decreases fort total

dis > 1 Gyr.
The mass-to-light (M /L ) ratio evolution of star clusters is affected by the evolution of

the MF due to the large variations inM /L ratio between stars of different masses. Massive
stars have lowerM /L ratios than low-mass stars, implying that a cluster with a MFthat
is depleted in low-mass stars will have a reducedM /L ratio (Baumgardt & Makino 2003,
Kruijssen 2008, Kruijssen & Lamers 2008). As such, one wouldalso expect a correlation
between the slope of the MF andM /L ratio.

In Fig. 7.11, the evolution of the ratio of theV -bandM /LV to the mass-to-light ratio
due to stellar evolution (M /LV )stev is shown for the same clusters as in Figs. 7.9 and 7.10.
This quantity reflects the relativeM /LV ratio change induced by dynamical evolution with
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Figure 7.12: Influence of the disruption time on the combined evolution ofthe MF slopeα and the
M /LV ratio for a cluster with a low remnant retention fraction (log (M i/M⊙) = 4.5). Shown isα
versus the relativeM /LV ratio decrease due to dynamical evolution. All clusters start at the vertical
line (M /LV )/(M /LV )stev = 1. Solid lines denote the slope in the mass range 0.1< m/M⊙ < 0.5,
dashed lines designate the mass range 0.3< m/M⊙ < 0.8, and dotted lines represent the mass range
0.3mmax(t) < m/M⊙ < 0.8mmax(t), with from top to bottomt0 = {0.1, 1, 10} Myr, corresponding to
t total
dis = {0.16, 1.42, 12.26} Gyr.

respect to evolutionary fading only. If the escape rate would be independent of stellar mass,
the evolution would follow a horizontal line at (M /LV )/(M /LV )stev = 1. However, when
accounting for dynamical evolution, theM /L ratio is always smaller than that for stellar
evolution only. Somewhat surprisingly, this is also the case for clusters for which the slope of
the MF increases (see Fig. 7.10). This is explained by looking at the evolution of the entire
MF in Fig. 7.9. Even though the slope at low masses increases for short disruption times
due to the escape of intermediate-mass stars, the most massive stars that dominate the cluster
light are still retained. Because stars of intermediate masses are lost instead, theM /L ratio
decreases.

Because the slope of the stellar MF either increases or decreases at massesm < 1 M⊙,
the decrease of theM /L ratio implies a large range of MF slopes that can occur at lowM /L
ratios. This is shown in Fig. 7.12, where the relation between α and theM /L ratio drop is
presented. The slope of the stellar MF in a certain mass rangedoes not necessarily reflect the
M /L ratio of the entire cluster. Considering the aforementioned rule of thumb stating that
for total disruption timest total

dis < 1 Gyr the depletion of the MF occurs around 15—20% of
the mass of the most massive starmmax(t), it is useful to define the slope in a mass range that
is related tommax(t). In Fig. 7.12, the relation between slope andM /L ratio is also shown
for the slope in the stellar mass range 0.3mmax(t) < m/M⊙ < 0.8mmax(t). In such a relative
mass range, the slope follows a much narrower relation withM /L ratio. The range between
30% and 80% ofmmax(t) was chosen to maximise this effect.
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Figure 7.13: Influence of the disruption time on theV − I colour for a cluster with a low remnant
retention fraction (log (M i/M⊙) = 4.5). Shown is the colour offset due to dynamical evolution∆(V −I )
versus the remaining mass fraction. The solid, dashed and dotted lines representt0 = {0.1, 1, 10} Myr,
respectively, corresponding tot total

dis = {0.16, 1.42, 12.26} Gyr.

For the slopes in the fixed stellar mass ranges (α1 andα2, see above), the relation with the
M /L ratio becomes better defined for long-lived clusters. It is shown in Figs. 7.10—7.12 that
both the slope and theM /L ratio decrease for clusters with long disruption times, indicating
that both quantities are more clearly related for globular cluster-like lifetimes.

The colour of star clusters is also influenced by the evolution of the MF, due to the colour
differences between stars of different masses. TheV − I magnitude difference∆(V − I ) with
respect to theV − I value that a cluster would have if dynamical evolution were neglected is
shown in Fig. 7.13. As the clusters dissolve, their colours become redder due to the escape
of main sequence stars. The magnitude difference inV − I exceeds∆(V − I ) = 0.1 mag
for total disruption times≤ 1.5 Gyr. In redder passbands (e.g. theV − K colour), the
difference grows to several tenths of magnitudes. For longer total disruption times only stars
of the lowest masses are ejected (see Fig. 7.9), which hardlycontribute to the cluster light
and colour, implying that the colours are only marginally affected.

7.5.2 The influence of the remnant retention fraction

The formation of stellar remnants introduces massive bodies in the MF that do not end their
lives due to stellar evolution like massive stars do. Depending on their kick velocities, stellar
remnants can be retained in (massive) clusters. If they are retained, they keep affecting the
evolution of the stellar MF until the cluster is disrupted. Especially black holes can have a
pronounced effect on cluster evolution.

The remnant retention fraction arises from the cluster mass, radius and the kick velocity
dispersion (see Eq. 7.8). In this section, the mass-radius relation from Eq. 7.24 is used.
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Figure 7.14: Influence of the black hole kick velocity dispersion and disruption time on the evolution
of the stellar MF for an initial cluster massM i = 106 M⊙. From top to bottom, the subsequent MFs
in each panel are shown for the times at which the remaining cluster mass fraction equalsM /M i =
{1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}. Solid lines denotet0 = 1 Myr (t total

dis = 15.13 Gyr), while dotted
lines representt0 = 0.1 Myr (t total

dis = 1.66 Gyr).

Although the results will differ for other relations, it hasbeen verified that for commonly used
alternatives,12 the change is only marginal and does not affect the nature of the conclusions.
To separate the effect of remnant retention from that of the disruption time, a fixed initial

12Such as a constant radius or density.
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Figure 7.15: Influence of the black hole retention fraction on the stellarMF slopeα in the range
0.1< m/M⊙ < 0.5 (solid) and 0.3< m/M⊙ < 0.8 (dashed) for an initial cluster massM i = 106 M⊙.
Shown isα versus the remaining cluster mass fraction. From top to bottom, for each mass range the
lines representσkick,bh = {40, 80, 200} km s−1, corresponding tofret,bh = {0.219, 0.041, 0.003} for a
106 M⊙ cluster.

cluster mass of 106 M⊙ is assumed while independently varying the velocity dispersion of the
remnant kick velocities and the disruption time. The corresponding evolution of the stellar
MF is shown in Fig. 7.14, for the standard model (see the beginning of this section) with
black hole kick velocity dispersionsσkick,bh = {40, 80, 200} km s−1, equivalent tofret,bh =
{0.219, 0.041, 0.003} for a 106 M⊙ cluster, and for dissolution timescale parameterst0 =
{0.1, 1} Myr, which for a 106 M⊙ cluster impliest total

dis = {1.66, 15.13} Gyr. Assuming an
age of 12 Gyr, the present-day mass in the case oft0 = 1 Myr is aboutM ∼ 6 × 104 M⊙,
comparable to globular clusters. The remaining fraction ofthe initial mass isM /M i ∼ 0.06.

If the velocity dispersion of black hole kicks is low and a relatively large fraction of black
holes is retained, then the escape rate of massive stars is increased with respect to high kick
velocity dispersions. This arises due to the quick two-bodyrelaxation between the massive
stars and the black holes, which will have masses larger thanthe most massive stars after
a few Myr of stellar evolution. As a result, the escape rate oflow-mass stars is largest in
clusters containing only few black holes. This happens for clusters with either long or short
disruption times, but the effect is largest for long-lived clusters (the solid lines in Fig. 7.14). In
these clusters the maximum stellar mass is more strongly decreased by stellar evolution than
in short-lived clusters, implying that the black hole masses are larger compared to the most
massive stars in these clusters. For long disruption times,the presence of massive remnants
therefore has a more pronounced effect on the escape rate of massive stars than for short
disruption times. If these long-lived clusters retain a sufficiently large fraction of the stellar
remnants, their stellar MF may even become depleted in massive stars.

The top panel of Fig. 7.14 also shows that for a cluster with a high remnant retention
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Figure 7.16: Influence of the black hole retention fraction on theM /LV ratio evolution for an initial
cluster massM i = 106 M⊙. Shown is the relativeM /LV ratio decrease with respect to the value ex-
pected for stellar evolution (M /LV )stevversus the remaining cluster mass fraction. The solid, dashed and
dotted lines representσkick,bh = {40, 80, 200} km s−1, corresponding tofret,bh = {0.219, 0.041, 0.003}
for a 106 M⊙ cluster.

fraction, the impact of the disruption time on the MF evolution is similar to that of clusters
with low retention fractions (see Fig. 7.9). However, the influence of the disruption time
becomes smaller when more remnants are retained. This explains why Baumgardt & Makino
(2003) only found a very weak dependence of the evolution of the MF on the disruption time
(also see Fig. 7.6), since they neglected remnant kick velocities and retained all remnants in
their simulations.

Analogous to Fig. 7.10 in Sect. 7.5.1, the evolution of the MFslope in different mass
ranges is shown in Fig. 7.15 for the clusters witht0 = 1 Myr from Fig. 7.14.13 The kick
velocity dispersion has an effect on the MF that is more uniform than the consequences of
variations in the disruption time, leading to very similar slope evolutions in the two different
stellar mass ranges. Independent of the mass range, an increase in remnant retention fraction
is reflected by an increase ofα. The model that is displayed forσkick,bh = 40 km s−1, t0 =
1 Myr, andM i = 106 M⊙ (the upper dashed and solid lines in Fig. 7.15) marks the transition
between an increase or decrease of the MF slope by dynamical evolution. For an initial
fret,bh < 0.25, low-mass stars are preferentially ejected during most of the cluster lifetime,
while for fret,bh > 0.25 mainly the massive stars escape. For shorter disruption times, the
transition is located at a smaller black hole retention fraction.

Because the black hole retention fraction affects the overall slope of the stellar MF, the

13For the clusters with relatively long disruption times thatare considered in this section, the variable stellar mass
range that was introduced in Sect. 7.5.1 to trace the relation between MF slope andM /L ratio gives an evolution of
the slope that is comparable that for the fixed mass ranges. Itis omitted from the figures in this section to improve
their clarity.
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Figure 7.17: Influence of the black hole retention fraction on the combined evolution of the MF slope
α and theM /LV ratio for an initial cluster massM i = 106 M⊙. Shown isα versus the relativeM /LV

ratio decrease due to dynamical evolution. All clusters start at the vertical line (M /LV )/(M /LV )stev = 1.
Solid lines denote the slope in the mass range 0.1< m/M⊙ < 0.5 and the dashed lines designate the
mass range 0.3< m/M⊙ < 0.8, with from right to leftσkick,bh = {40, 80, 200} km s−1, corresponding
to fret,bh = {0.219, 0.041, 0.003} for a 106 M⊙ cluster.

changes inα are matched by corresponding changes in theM /L ratio. In Fig. 7.16, the rela-
tive M /LV ratio change due to dynamical evolution is shown for same clusters as in Fig. 7.15.
Contrary to the clusters with low remnant retention fractions in Sect. 7.5.1, theM /L ratio of
the clusters in Fig. 7.16 does not monotonously decrease. Close to total disruption, the mas-
sive remnants are the last bodies to be ejected. During that short phase of cluster evolution,
theM /L ratio is increased by dynamical evolution and exceeds the value it would have due
to stellar evolution alone.

The behaviour ofM /L ratio for different black hole kick velocity dispersions has inter-
esting implications for the relation between stellar MF slope andM /L ratio, which is shown
in Fig. 7.17. In combination with Fig. 7.12 (note the different axes), it shows possible evo-
lutionary tracks of star clusters in this plane, indicatingthat nearly every location may be
reached. However, when limiting ourselves to long-lived clusters, Fig. 7.17 illustrates that
these clusters will follow a trend of decreasing slope with decreasingM /L ratio, albeit with
excursions to highM /L ratios and slightly higherα close to their total disruption. This ex-
plains the trend that was found by Kruijssen & Mieske (2009),who considered the relation
between the observed MF slopes andM /L ratios of Galactic globular clusters.

The colour change due to dynamical evolution is only very small for clusters witht total
dis >

1.5 Gyr (see Sect. 7.5.1). Because clusters in which remnants are retained are massive, their
lifetimes are correspondingly long. As a result, the colourevolution is largely unaffected for
the clusters in which the remnant retention fraction could play a role (∆(V − I ) < 0.03 mag).
The colour change is even smaller if more massive remnants are retained, because then the
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Figure 7.18: Influence of the black hole retention fraction on the total remnant mass fraction. Shown is
the ratio of the total mass in stellar remnantsMsr to the cluster massM versus the remaining cluster mass
fraction. The solid, dashed and dotted lines representσkick,bh = {40, 80, 200} km s−1, corresponding to
fret,bh = {0.219, 0.041, 0.003} for a 106 M⊙ cluster.

stellar MF more closely resembles its initial form (see the upper panel of Fig. 7.14). Long-
lived clusters generally appear∼ 0.005 mag bluer inV − I due to dynamical evolution during
the last∼ 3—20% of their lifetimes and reach a similar reddening upon their total disruption,
which is well within observational errors. The colours of old clusters are thus only marginally
affected by dynamical evolution.

The evolution of the total remnant mass fraction is shown in Fig. 7.18 for different black
hole kick velocity dispersions. The seemingly counterintuitive result is that the fraction of the
cluster mass that is constituted by remnants is smaller whenmore black holes are retained.
As shown in Fig. 7.14, the retention of black holes suppresses the depletion of the low-mass
end of the MF due to the ‘sweet spot’ escape (see Sect. 7.3) of massive (∼ 1 M⊙) stars by
the black holes. After∼ 1 Gyr, white dwarfs and neutron stars have masses that are similar
to those of the massive stars, implying that their escape rate is also increased when more
black holes are retained. Because the total mass constituted by white dwarfs and neutron
stars is larger than the combined mass of all black holes, thefraction of the total cluster mass
that is constituted by remnants decreases if these low-massremnants are ejected by the more
massive black holes.

7.6 Discussion and applications

The results of this chapter show that the stellar MFs in star clusters differ strongly from
their initial forms due to dynamical cluster evolution. Thespecific kinds of these differences
depend on the properties of the star clusters and their tidalenvironment, most importantly on
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the disruption time, remnant retention fraction, and IMF.14

A physical model for the evolution of the stellar MF is presented in which two-body re-
laxation leads to a stellar mass dependence of the escape rate. For any particular stellar mass,
the escape rate is determined by the typical proximity of that mass to the escape energy and by
the timescale on which the two-body relaxation with the other stars takes place. Combined
with a prescription for stellar evolution, stellar remnantproduction, and remnant retention
using kick velocity dispersions, this provides a description for the total evolution of the MF.
This description is independent of the adopted total mass evolution. The model shows that
the slope of the mass function is a possible indicator for themass fraction that has been lost
due to dissolution, provided that the IMF does not vary and the remnant retention fraction has
been fairly similar for young globular clusters.15

For the exact same initial conditions, the model shows excellent agreement withN -body
simulations of the evolving MF by Baumgardt & Makino (2003).However, an important
advantage of the presented model compared to the (more accurate)N -body simulations is its
short runtime and corresponding flexibility. It can be easily applied to compute the evolution
of clusters for a large range of initial conditions. The results can then be used to identify
interesting cases for more detailed and less simplified calculations withN -body or Monte
Carlo models.

The most important simplification of the model is neglectingthe effect of binary encoun-
ters on the stellar mass dependence of the escape rate. To incorporate binaries, a conclusive
census of the binary population in star clusters would be required, which is not yet available.
Nonetheless, it is possible to make a qualitative estimate for the effect of binaries. The en-
counter rate of binaries would typically be higher than thatof individual stars, because the
cross section of binaries is larger. This would increase therelative escape rate at the stellar
mass for which the binary fraction16 peaks. This binary fraction is found to increase with pri-
mary mass (see e.g. Kouwenhoven et al. 2009). Because massive stars are removed by stellar
evolution, this implies that the binary fraction decreaseswith age, which is in agreement with
the low binary fraction observed in globular clusters (∼ 2%, e.g. Richer et al. 2004). The
effect of binaries on the evolution of the mass function would thus be most notable if the ma-
jority of the dynamical mass loss occurs at ages< 50 Myr (the typical lifetime of an 8 M⊙
star), in which case it would somewhat enhance the relative escape rate of the most massive
stars. The influence is expected to be small, since the presence of binaries mainly affects ejec-
tions by hard encounters and leaves the overall evaporationrate largely unchanged (Küpper
et al. 2008). On the other hand, neglecting binary encounters of massive remnants such as
black holes could underestimate their escape rate for timesbeyond 50 Myr. This would imply
that the model overestimates the impact of the black hole retention fraction on the evolution
of the MF.

The model is applied to investigate the influence of the disruption time and remnant re-
tention on the evolution of the MF and integrated photometric properties of star clusters. For
total disruption timest total

dis < 1 Gyr, the modeled relative escape rate is highest at a certain

14Although not specifically shown in this chapter (but not surprisingly), the differences also depend on the initial-
final stellar mass relation.

15Any variability of the retention fraction would induce substantial scatter, see Sect. 7.5.2 and Fig. 7.19.
16The fraction of stars residing in binary or multiple systems.
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‘sweet spot’ mass that is typically 15—20% of the mass of the most massive objects in the
cluster. For longer lifetimes, the evolution of the MF is dominated by low-mass star deple-
tion, unless the retention fraction of massive stellar remnants is larger than 0.25. Only in the
particular case of such a high retention fraction, theM /L ratio is increased by dynamical
evolution when the cluster approaches total disruption. Inall other scenarios, theM /L ratio
decreases because the most massive (luminous) stars are kept.17 When defining the slope of
the MF in the range 30—80% of the maximum stellar mass, this gives a clear relation between
the MF slope and theM /L ratio. For slopes that are defined in fixed mass ranges, there is
not necessarily a correlation between slope andM /L ratio if t total

dis < 1 Gyr. In clusters with a
longer total disruption time, both quantities are related.Dynamical cluster evolution is found
to induce some reddening of the integrated cluster colours,amounting up to 0.1—0.2 mag
in V − I for total disruption timest total

dis < 1.5 Gyr. The fraction of the cluster mass that is
constituted by remnants surprisingly decreases if more black holes are retained, because the
black holes preferentially eject bodies around the masses of white dwarfs and neutron stars,
which contain most of the total remnant mass.

Contrary to what is suggested by other studies (e.g. Baumgardt & Makino 2003, Anders
et al. 2009), the evolution of the MF is not homologous. The reason that these studies con-
cluded that its evolution is very similar for all clusters (also see Figs. 7.6 and 7.7), is that
they assumed that all remnants were retained. It is illustrated in Fig. 7.14 that the differ-
ences between clusters with dissimilar disruption times disappear when the retention fraction
increases. For realistic retention fractions, differences do arise. If two clusters with differ-
ent initial masses have the same total disruption time, their MF evolution will be dissimilar
due to their different remnant retention fractions and the impact of the retained remnants on
the dynamical cluster evolution. Alternatively, if two clusters have equal initial masses but
different total disruption times, for instance due to differences in their galactic location or en-
vironment, their MF evolution will be dissimilar due to the dynamical impact of the evolution
of the maximum stellar mass.

The larger variation of MF evolution that is found with presented model may also be able
to explain observations of globular clusters in which the MFcannot be characterised by a
single power law (De Marchi et al. 2000). If the evolution of the MF were homologous, these
features would likely be primordial (Baumgardt & Makino 2003), but this is not necessarily
the case when using realistic retention fractions. Most other differences between the results
presented in Sect. 7.5 and those from Baumgardt & Makino (2003) are also due to their
assumption of full remnant retention. For example, theirM /L ratio evolution shows a smaller
decrease than in Fig. 7.11. This is explained in Fig. 7.16, where it is shown that dynamical
evolution reduces theM /L ratio by a smaller amount if the retention fraction is larger.

Studies on the fractal nature of cluster formation show thatstar clusters are initially sub-
structured (Elmegreen 2000, Bonnell et al. 2003). Even though this substructure is typically
erased on a crossing time, it can induce primordial mass segregation in star clusters (McMil-
lan et al. 2007, Allison et al. 2009a). The influence of primordial mass segregation on the
evolution of the MF has recently been investigated by Baumgardt et al. (2008) and Vesperini
et al. (2009). While Baumgardt et al. (2008) do not include stellar evolution and concentrate

17This process differs from a possible variability of the proportionality between the velocity dispersion and the
cluster mass, which concerns a much shorter timescale (e.g.Boily et al. 2009).
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on two-body relaxation, Vesperini et al. (2009) do include stellar evolution. They show that
for some degrees of primordial mass segregation, the mass loss by stellar evolution can induce
additional dynamical mass loss that strongly decreases thetotal disruption time. For clusters
that survive for a Hubble time, the MF evolution in the case ofprimordial mass segregation
is very similar to an initially unsegregated cluster. Vesperini et al. (2009) conclude that the
evolution of the MF is only affected by primordial mass segregation for clusters in which the
total disruption time is sufficiently decreased by the induced mass loss. In that case, the slope
of the MF remains much closer to its initial value than it would in clusters without primordial
mass segregation. Their conclusion is consistent with the model presented in this chapter,
because the evolution of the MF is determined by the most massive stars at the time when the
largest mass loss occurs (see Figs. 7.4 and 7.9). This induced mass loss enters the model in
terms of the absolute mass loss rate in Eq. 7.3, not in the stellar mass-dependent escape rate
per unit mass loss rate of Eq. 7.13.

A change in total mass loss rate is not the only consequence ofprimordial mass segre-
gation. Baumgardt et al. (2008) have shown that low-mass star depletion is enhanced for
clusters without stellar evolution that are primordially mass-segregated. This occurs because
energy equipartition is reached on a shorter timescale and because of their use of a fixed
(mmax = 1.2 M⊙) maximum stellar mass. As a result, there are no massive bodies to increase
the escape rate of intermediate mass stars (see Fig. 7.5), implying that only the low-mass
stars are preferentially lost. In the present chapter, masssegregation is assumed to arise dy-
namically, but the model could in principle be adapted to cover primordial mass segregation
by settingc2 = 0 and adjustingc1 to the initial velocity distribution until it is erased by dy-
namical evolution (see Eq. 7.22), after which the values from Sect. 7.3 can be used.18 This
does not necessarily yield enhanced low-mass star depletion for clusters with a complete IMF
(including massesm > 1.2 M⊙) because of the presence of massive stars or remnants.

The presented model can be applied to the MFs of Galactic globular clusters that are
observed by De Marchi et al. (2007). These MFs are more strongly depleted than is found
in the N -body simulations by Baumgardt & Makino (2003), which has been attributed to
primordial mass segregation (Baumgardt et al. 2008). However, the observations can also
very accurately be explained with the realistic remnant retention fractions that are used in
the present chapter. This is shown in Fig. 7.19, where the observed MF slopes and remaining
lifetimes of the globular clusters from De Marchi et al. (2007) are compared with the globular
cluster-like models from Sect. 7.5.2 (t0 = 1 Myr). The models are in much better agreement
with the data than theN -body runs with complete remnant retention from Baumgardt &
Makino (2003). Deviations to other values ofα can occur due to variations in disruption
time and remnant retention fractions, as is also shown in Fig. 7.19. For example, a variation
of the remnant kick velocity with metallicity in combination with the known variation of
the disruption time (see e.g. Kruijssen & Mieske 2009, Kruijssen & Portegies Zwart 2009)
should be sufficient to cover the observed scatter.

The above line of reasoning provides an explanation for the depleted MFs in Fig. 7.19 that

18As explained in Sect 7.3,c1 represents the ratio of the mean speed squared to the centralescape velocity squared
that depends on the degree of mass segregation (and thus on the IMF). On the other hand,c2 is a proportionality con-
stant in the expression for the onset of the stellar mass-dependent escape of stars, which depends on the concentration
or King parameter.
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Figure 7.19: MF slope versus remaining lifetime (assuming a globular cluster age of 12 Gyr). Di-
amonds represent the observed values from De Marchi et al. (2007), with typical errors as shown
by the error bar in the lower right corner. The remaining lifetimes are taken from Baumgardt et al.
(2008). Dotted curves represent the model evolutionary tracks of clusters with log (M i/M⊙) =
{6, 6.25, 6.5, 6.75, 7} from Sect. 7.5.2 with{σkick,wd,σkick,ns,σkick,bh} = {4, 100, 200} km s−1, corre-
sponding to{fret,wd, fret,ns, fret,bh} = {0.983, 0.022, 0.003} for a 106 M⊙ cluster. The solid line connects
the present-day locations of the modeled clusters in the diagram (crosses), while the dashed line repre-
sents the same relation forσkick,bh = 40 km s−1 (fret,bh = 0.219 for a 106 M⊙ cluster). The dash-dotted
line shows the homologous cluster evolution from Baumgardt& Makino (2003).

is consistent with the simulations by Vesperini et al. (2009), who showed that the effects of
primordial mass segregation are in fact suppressed in long-lived clusters due to the expansion
caused by stellar evolution. This increases the relaxationtime and yields an evolution of
the MF that is very similar to the initially unsegregated scenario, indicating that primordial
mass segregation is not a likely explanation for strongly depleted MFs. Observations of the
remnant composition of these globular clusters could reveal a definitive answer as to whether
the depleted MFs are explained by primordial mass segregation or by dynamical evolution
with a realistic remnant retention fraction.

Dynamical cluster evolution does not appear to have a large effect on the colours of old
(globular) clusters. The only way in which the colours couldbe affected beyond typical
observational errors, is if globular clusters have lost substantial fractions of their masses
during the first∼ Gyr after their formation. In that case, the dynamical evolution of the
stellar MF in globular clusters may have implications for studies of colour bimodality (e.g.
Larsen et al. 2001) or the blue tilt (e.g. Harris et al. 2006).It could then also possibly explain
the trend of increasingV − K colour with decreasingM /LV ratio found by Strader et al.
(2009) for globular clusters in M31, because quickly dissolving clusters generally become
redder and have reducedM /L ratios. More research is needed to determine the role of the
changing MF in the above properties of globular cluster systems.
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It can be concluded that the evolution of the stellar MF in star clusters is not as similar for
all clusters as previously thought. Its precise evolution is determined by cluster characteristics
like the disruption time, the remnant retention fraction, initial-final stellar mass relation, and
the IMF. In order to decipher the evolution of observed star clusters, it is essential to record
these characteristics and to relate them to possible scenarios for the internal evolution of
clusters. That way, observables like the slope of the MF, theM /L ratio, the broadband
colours, and the mass fraction in remnants can be better understood.
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Chapter 8
Modelling the formation and evolution of star
cluster populations in galaxy simulations
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Simon F. Portegies Zwart and Vincent Icke

Monthly Notices of the Royal Astronomical Society, in press (2011)†

Abstract The formation and evolution of star cluster populations arerelated to the galactic environ-
ment. Cluster formation is governed by processes acting on galactic scales, and star cluster disruption
is driven by the tidal field. In this chapter, we present a self-consistent model for the formation and evo-
lution of star cluster populations, for which we combine anN -body/SPH galaxy evolution code with
semi-analytic models for star cluster evolution. The modelincludes star formation, feedback, stellar
evolution, and star cluster disruption by two-body relaxation and tidal shocks. The model is validated
by a comparison toN -body simulations of dissolving star clusters. We apply themodel by simulating a
suite of 9 isolated disc galaxies and 24 galaxy mergers. The evolutionary histories of individual clusters
in these simulations are discussed to illustrate how the environment of clusters changes in time and
space. It is found that the variability of the disruption rate with time and space affects the properties of
star cluster populations. In isolated disc galaxies, the mean age of the clusters increases with galacto-
centric radius. The combined effect of clusters escaping their dense formation sites (‘cluster migration’)
and the preferential disruption of clusters residing in dense environments (‘natural selection’) implies
that the mean disruption rate of the population decreases with cluster age. This affects the slope of the
cluster age distribution, which becomes a function of the star formation rate density (star formation rate
per unit volume). The evolutionary histories of clusters ina galaxy merger vary widely and determine
which clusters survive the merger. Clusters that escape into the stellar halo experience low disruption
rates, while clusters orbiting near the starburst region ofa merger are disrupted on short timescales due
to the high gas density. This impacts the age distributions and the locations of the surviving clusters at
all times during a merger. The chapter includes a discussionof potential improvements for the model
and a brief exploration of possible applications. We conclude that accounting for the interplay between
the formation, disruption, and orbital histories of clusters enables a more sophisticated interpretation of

†Reproduced with permissionc© RAS.
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observed properties of cluster populations, thereby extending the role of cluster populations as tracers
of galaxy evolution.

8.1 Introduction

It is one of the central aims in current astrophysics to constrain the formation and evolu-
tion of galaxies, and their assembly through hierarchical merging (e.g. Sanders & Mirabel
1996, Kennicutt 1998a, Cole et al. 2000, Conselice et al. 2003, Kauffmann et al. 2003, van
Dokkum 2005, McConnachie et al. 2009, Hopkins et al. 2010). Galaxy mergers play a fun-
damental role in hierarchical cosmology (White & Rees 1978), introducing the evolution of
the galaxy population as a prime tool to verify cosmologicalmodels (e.g. Kauffmann et al.
1993, Somerville & Primack 1999, Bell et al. 2005). Since thelate 1980s, observational stud-
ies have uncovered a wealth of stellar clusters in galaxy interactions. Because star clusters
are easily observed up to distances of several tens of megaparsecs, it is often said that star
clusters can be used to probe the formation and evolution of galaxies. This would enable the
reconstruction of the merger histories of their parent galaxies (Schweizer 1987, Ashman &
Zepf 1992, Schweizer & Seitzer 1998, Larsen et al. 2001, Bastian et al. 2005).

The differences between populations of young (massive) star clusters and globular cluster
systems show the impact of nearly a Hubble time of evolution (e.g. Elmegreen & Efremov
1997, Vesperini 1998, 2001, Fall & Zhang 2001, Kruijssen & Portegies Zwart 2009), under
the assumption that globular clusters initially shared most of the properties of current young
star clusters (e.g. Elmegreen & Efremov 1997). These differences suggest that cluster popu-
lations can indeed be used to trace galaxy evolution, especially because their formation and
evolution are known to be governed by their galactic environment (Spitzer 1987, Ashman
& Zepf 1992, Baumgardt & Makino 2003, Lamers et al. 2005b, Gieles et al. 2006b). It is
therefore crucial to assesshowa cluster population is affected by environmental effects.

There have been substantial efforts in theoretical studiesto describe the formation and
evolution of star cluster systems. Possible formation sites of star clusters in general and
globular clusters in particular have been addressed in theoretical studies (e.g. Harris & Pudritz
1994, Elmegreen & Efremov 1997, Shapiro et al. 2010) and numerical simulations (Bekki
et al. 2002, Li et al. 2004, Bournaud et al. 2008, Renaud et al.2008). These studies all
point to gas-rich environments with high pressures and densities as the possible formation
sites of rich star cluster systems. However, they do not reproduce populations of star clusters
and globular clusters that are presently observed, becausethey focus on cluster formation
and either contain only a very simplified description for star cluster evolution or none at all.
As they age, star clusters leave their primordial regions and dynamically decouple from the
gas of their formation sites. More importantly, star clusters experience extensive dynamical
evolution after their formation, which shapes the characteristics of the star cluster populations
that are observed today.

Theoretical and numerical studies on the evolution of star clusters have shown that clus-
ters dissolve due to two-body relaxation in a steady tidal field (e.g. Spitzer 1987, Fukushige
& Heggie 2000, Portegies Zwart et al. 2001, Baumgardt & Makino 2003) and due to heating
by tidal shocks (e.g. Spitzer 1958, Ostriker et al. 1972, Chernoff et al. 1986, Spitzer 1987,
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Aguilar et al. 1988, Chernoff & Weinberg 1990, Kundic & Ostriker 1995, Gnedin & Ostriker
1997, Gieles et al. 2006b). This dynamical evolution leavesa pronounced imprint on the
population that survives disruption. In particular, the age and mass distributions of star clus-
ter populations have emerged as excellent tools to trace thedisruption histories of clusters
(e.g. Vesperini 2001, Fall & Zhang 2001, Lamers et al. 2005a,Prieto & Gnedin 2008). This
implies that the strength of the disruption processes will determine how and to what extent
the characteristics of evolved cluster populations still trace the conditions of their formation.

The census of the formation and evolution of star clusters has been applied to popula-
tions of star clusters in several studies that focus on the modeling of the observed cluster
age and mass (or luminosity) distributions (e.g. Elmegreen& Efremov 1997, Boutloukos &
Lamers 2003, Hunter et al. 2003, Gieles et al. 2005, Lamers etal. 2005a, Smith et al. 2007,
Larsen 2009). These studies show that the disruption rate ofstar clusters varies among dif-
ferent galaxies, and also that peaks in the age distributions of star clusters can be used to
trace interaction-induced starbursts. Interestingly, the galaxy sample for which the typical
disruption rates have been derived shows higher disruptionrate for galaxies with high star
formation rates.

The above analyses of the formation and disruption of cluster populations are based on
two key assumptions:

(1) The formation rate of stars and clusters is assumed to be constant throughout a galaxy
and often also in time. If not assumed constant in time, it is parameterised with a simple
function, often a sequence of step functions.

(2) The disruption rate of star clusters is assumed to be constant throughout a galaxy and
in time.

While these assumptions can be made for a first-order approach to the formation and evolu-
tion of star cluster populations, it is known from theoretical principles of star formation and
cluster disruption that they do not hold in actual galaxies.Particularly the observation that the
disruption rate of star clusters varies among different galaxies shows that it should also vary
within a galaxy: for individual clusters as they pass through different galactic regions, but
also for the entire cluster population as a galaxy evolves. The variation with time and space
of the cluster formation and disruption rates may or may not affect the observable properties
of star cluster populations.

Galaxy interactions provide a clear example of the formation and destruction of cluster
populations and the dependence thereof on the local galactic environment. Large numbers of
star clusters are formed in the nuclear starbursts occurring during galaxy interactions (Holtz-
man et al. 1992, Whitmore & Schweizer 1995, Schweizer et al. 1996, Whitmore et al. 1999).
These starbursts are triggered by the angular momentum lossof the gas in the progenitor
galaxy discs and the subsequent inflow of the gas (Hernquist 1989, Mihos & Hernquist 1996,
Hopkins et al. 2006). As a result, the gas density in certain locations within galaxy mergers
is very high. It was shown by Gieles et al. (2006b) that star clusters are efficiently disrupted
by the tidal shocks that arise when they gravitationally interact with passing giant molecu-
lar clouds (GMCs). Because the GMC density in central regions of galaxy mergers is high,
we should expect tidal disruption to be important. This leaves us with the possible, intrigu-
ing combination of the enhanced formation and destruction of star clusters during certain
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episodes in the hierarchical buildup of galaxies (see Kruijssen et al. 2011b). The violent cir-
cumstances in the nuclear region contrast with the outer regions of a galaxy merger, where
cluster formation and destruction proceed more temperately.

In general, the galactic conditions under which star cluster populations have been formed
and have evolved over the history of the universe may have varied widely (e.g. Reddy &
Steidel 2009). The use of star cluster populations to trace galactic histories would therefore
benefit from a thorough understanding of the co-formation and co-evolution of galaxies and
star clusters. Such a census can only be achieved by simultaneously assessing all relevant
physical mechanisms, i.e. combining the formation and evolution of star clusters in a single
model and allowing for variations with environment.

A thorough way of modeling cluster evolution would be to perform collisionalN -body
simulations of the evolving cluster population in a changing galactic tidal field. This has been
done in several studies, for a limited range of cluster masses, orbits and tidal histories (e.g.
Vesperini & Heggie 1997, Baumgardt & Makino 2003, Praagman et al. 2010). However,
these papers only consider the effects of smooth potentialsand ignore the disruptive effect
of GMCs and other substructure in the gas distribution, thereby limiting the application of
such models to globular cluster systems and extremely gas-poor galaxies. Moreover,N -body
modeling is computationally so expensive that it is not possible to calculate the evolution
of the millions of clusters that are formed during the lifetime of a galaxy. In order to self-
consistently compute the formation and evolution of an entire cluster population, the best
approach would be to implement semi-analytic cluster models in numerical simulations of
galaxies.N -body simulations of dissolving clusters in time-dependent tidal fields can then
be used to provide benchmarks for the semi-analytic clusterevolution models.

In this chapter, we aim to self-consistently model the formation and evolution of cluster
populations in numerical simulations of (interacting) galaxies. For that purpose, we have
combined semi-analytic star cluster models (SPACE, Kruijssen & Lamers 2008, Kruijssen
2009) with anN -body/Smoothed Particle Hydrodynamics (SPH) code for modeling galaxies
(Stars, Pelupessy et al. 2004, Pelupessy 2005). As discussed above, the physical mecha-
nisms that play a role in the formation and evolution of star clusters have all been studied
separately in detail. Combining them should allow us to obtain a better picture of how differ-
ent galactic environments affect their star cluster populations.

Prieto & Gnedin (2008) combined cosmological simulations with a semi-analytic descrip-
tion for the dynamical evolution of globular clusters. Their aim was to model the population
of globular clusters from high redshift to the present day, and not the self-consistent mod-
eling of the entire star cluster population including a range of destruction and formation
mechanisms in different galactic environments. Particular examples of differences with our
approach are the following:

(1) We include clusters with masses down to a fiducial lower mass limit of 100 M⊙. In Pri-
eto & Gnedin (2008), only clusters with initial massesM i > 105 M⊙ are considered.
While this does not influence the present day globular cluster system due to the destruc-
tion of lower mass clusters over nearly a Hubble time of evolution, it does obstruct the
modeling of young (globular) cluster populations, in whichthe cluster masses do go
down to a physical lower mass limit of around 100 M⊙(see e.g. Portegies Zwart et al.
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2010).

(2) In our simulations, the clusters are continuously formed at the sites of star formation
that are calculated in theN -body/SPH simulation. This is one of the main aspects
of our model that enables a self-consistent modeling of the formation and evolution
of the cluster population. Conversely, Prieto & Gnedin (2008) assume that the initial
distribution of clusters follows the distribution of the baryonic surface density, which
does not necessarily match sites of star and cluster formation.

(3) In our cluster evolution model, the dynamical mass loss rate of clusters due to two-
body relaxation depends on environmental effects, becauseit is known that the tidal
field strength determines the mass loss rate (see e.g. Baumgardt & Makino 2003). This
aspect of cluster disruption was not included by Prieto & Gnedin (2008).

Smaller differences include the exact prescription for mass loss from clusters due to tidal
shocks and the evolution of the cluster half-mass radius.

The chapter is structured as follows. In Sect. 8.2, we first discuss the simulation code,
divided in a section on the galaxy (N -body/SPH) model, and a section on the derivation,
construction and testing of the star cluster evolution model. The model runs are summarised
in Sect. 8.3, while some key results are presented in Sects. 8.4 (isolated disc galaxies) and 8.5
(galaxy mergers). The chapter is concluded with a summary and a discussion of possible
improvements and potential applications of the model.

Throughout the chapter, we adopt a standardΛCDM cosmology and follow the consensus
values after the WMAP results (e.g. Spergel et al. 2007), with vacuum energy and matter
densitiesΩΛ = 0.7 andΩM = 0.3, and present-day Hubble constantH0 = 70 km s−1 Mpc−1.

8.2 Simulation code

Our simulations are performed using a collisionlessN -body/SPH code in which the formation
and evolution of star clusters are included as a sub-grid model. The simulated galaxies contain
particles for the stellar, gaseous and dark matter components.

8.2.1 Galaxy model

The evolution of the stellar and dark matter components are governed by pure collisionless
Newtonian dynamics, calculated using the Barnes-Hut tree method (Barnes & Hut 1986).
The particles sample the underlying phase space distribution of positions and velocities and
are smoothed on length scales of approximately 0.2 kpc to maintain the collisionless dynam-
ics and to reduce the noise in the tidal field (which is used forthe cluster evolution, see 8.2.2).
The Euler equations for the gas dynamics are solved using smoothed particle hydrodynamics,
a Galilean invariant Langrangian method for hydrodynamicsbased on a particle representa-
tion of the fluid (Monaghan 1992), in the conservative formulation of Springel & Hernquist
(2002). This is supplemented with a model for the thermodynamic evolution of the gas in
order to represent the physics of the interstellar medium (ISM). Photo-electric heating of UV
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radiation from young stars is included (assuming opticallythin transport of non-ionizing pho-
tons). The UV field is calculated from stellar UV luminosities derived from stellar population
synthesis models (Bruzual & Charlot 2003). Line cooling from eight elements (the main con-
stituents of the ISM H and He as well as the elements C, N, O, Ne,Si and Fe) is included. We
calculate ionization equilibrium including cosmic ray ionization. Further details of the ISM
model can be found in Pelupessy et al. (2004) and Pelupessy (2005).

Star formation is implemented by using a gravitational instability criterion based on the
local Jeans massMJ:

MJ ≡
πρ

6

(

πs2

Gρ

)3/2

< Mref, (8.1)

whereρ is the local density,s the local sound speed,G the gravitational constant andMref a
reference mass scale (chosen to correspond to observed giant molecular clouds). This selects
cold, dense regions for star formation, which then form stars on a timescaleτsf that is set to
scale with the local free fall timetff :

τsf = fsftff =
fsf√

4πGρ
, (8.2)

where the delay factorfsf ≈ 10. Numerically, the code stochastically spawns stellar particles
from gas particles that are unstable according to Eq. 8.1 with a probability 1− exp (−dt/τsf).
The code also assigns a formation time for use by the stellar evolution library, and sets the
initial stellar and cluster population mass distributions(see below). Mechanical heating of
the interstellar medium by stellar winds from young stars and supernovae is implemented
by means of pressure particles (Pelupessy et al. 2004, Pelupessy 2005), which ensures the
strength of feedback is insensitive to numerical resolution effects. In this way, the global
efficiency of star formation is determined by the number of young stars needed to quench star
formation by UV and supernova heating, which is set by the cooling properties of the gas and
the energy input from the stars.

8.2.2 Star cluster model

Cluster formation

Star clusters are formed in the simulations when a Jeans-unstable gas particle produces a
star particle as described above. It is presently not possible to simulate clusters as individual
particles for the full cluster mass range, because even withmodern computational facilities
it would require following too many particles to allow reasonable computation times. There-
fore, we choose to spawn the star clusters as the “sub-grid” content of a new-born star particle.
Their masses are generated from a power law distribution with an exponential truncation at
high masses (Schechter 1976):

NdM ∝ M −2 exp (−M /M⋆)dM , (8.3)

whereN is the number of clusters,M is the cluster mass, andM⋆ = 2.5× 106 M⊙ is the
adopted exponential truncation mass, which is needed to explain the present day mass func-
tion of Galactic globular clusters (see e.g. Kruijssen & Portegies Zwart 2009). We allocate
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90% of the new-born particle mass for the star clusters (the “cluster formation efficiency”
or CFE). Because we adopt a single value of the CFE for all particles, its precise value is
not important and merely acts as a normalisation of the number of clusters. The remaining
10% of the mass is considered to be born in unbound associations of stars that immediately
disperse into the field after they are formed1. This dispersion does not occur physically in the
simulation, because the star particle contains both the field stars and the star clusters. All stars
have masses distributed according to a Kroupa (2001) IMF in the mass range 0.08 M⊙–mmax,
wheremmax is the maximum stellar mass at log (t/yr) = 6.6 (which is the minimum age of
the adopted stellar evolution models, see Sect. 8.2.2).

Owing to the sub-grid nature of the cluster implementation,the maximum mass of the
formed star clusters is determined by the gas particle mass,star formation efficiency2 and
CFE, as the mass of a single cluster can not exceed the mass of the star particle it is part
of. As a result, the typical maximum cluster mass is log (M /M⊙) ≈ 5.8. We have chosen
the number of particles in the simulation such as to optimally cover the cluster mass range of
interest and to have sufficient numerical resolution. An algorithm that allows for simultaneous
star formation in groups of gas particles is being included in a future study.

Cluster evolution

After their formation, star clusters evolve by losing mass by stellar evolution and dynami-
cal evolution. The star cluster evolution is computed with theSPACE models (Kruijssen &
Lamers 2008, Kruijssen 2009), which include a semi-analytic description of the evolution
of cluster mass and its stellar content. They include stellar evolution from the Padova mod-
els (Marigo et al. 2008), stellar remnant production, remnant kick velocities (e.g. Lyne &
Lorimer 1994), dynamical disruption (Lamers et al. 2005a) and the evolution of the stellar
mass function owing to the stellar mass dependence of the ejection rate of stars from the clus-
ter (Kruijssen 2009). The total mass loss rate is constituted by the contribution from stellar
evolution, (dM /dt)ev, and the contribution from tidal disruption, (dM /dt)dis:

(

dM
dt

)

=

(

dM
dt

)

ev

+

(

dM
dt

)

dis

. (8.4)

The mass loss due to stellar evolution is computed using the Padova isochrones by follow-
ing the decrease of the maximum stellar mass over one timestep, and integrating the mass
function within the cluster over the corresponding mass interval. This method assumes the
instantaneous removal of stars and ignores the gradual nature of stellar winds. Stars typically
only lose mass during the last∼ 10% of their lifetime, during which the maximum stellar
mass decreases by merely a few percent, and the total clustermass by even less. The mass
loss rates of the most massive stars are also comparable during the enclosed time interval,
which implies that the instantaneous removal of the most massive stars is balanced by the
delay of mass loss from slightly less massive stars. This ensures that the obtained mass loss
rate is very similar to the actual rate due to stellar winds and supernovae at any time (see e.g.

1We do not distinguish between the formation of unbound field stars and the early disruption of star clusters
during gas expulsion, which is known as “infant mortality” (Lada & Lada 2003, Goodwin & Bastian 2006).

2This is the fraction of the gas mass that is used to form the star particle.
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Kruijssen & Lamers 2008). We include the production and retention of stellar remnants as
discussed in Kruijssen (2009).

The mass loss rate due to disruption is driven by two-body relaxation and tidal shocks:
(

dM
dt

)

dis

=

(

dM
dt

)

rlx

+

(

dM
dt

)

sh

, (8.5)

where the subscripts ‘dis’, ‘rlx’, and ‘sh’ denote disruption, two-body relaxation and tidal
shocks, respectively. We now describe the contributions from both mass loss mechanisms3.

The mass loss rate due to two-body relaxation is determined by the strength of the tidal
field and the cluster mass (Baumgardt & Makino 2003, Gieles & Baumgardt 2008). To de-
scribe the mass loss, we adopt the semi-analytic approach ofLamers et al. (2005a) that has
been extensively tested againstN -body simulations of dissolving star clusters and observa-
tions (e.g. Lamers et al. 2005b, Gieles et al. 2005, Bastian et al. 2005, Lamers & Gieles 2006).
The mass decreases exponentially on a disruption timescalethat decreases as the cluster mass
decreasestdis ≡ (d lnM /dt)−1:

(

dM
dt

)

rlx

= − M
tdis

= −M 1−γ

t0
, (8.6)

where the disruption timescale is given bytdis = t0M γ . Here, the exponentγ = 0.6—0.8
is the mass dependence of the disruption timescale, and increases with the King parameter
W0 of the cluster density profile (Baumgardt & Makino 2003, Lamers et al. 2010). The
normalisation constantt0 is the dissolution timescale parameter, which sets the rapidity of the
disruption and is determined by the tidal field4. For clusters on circular orbits in a logarithmic
potential,t0 has been related to the angular frequency of the orbit, and subsequently to the
ambient densityρamb ast0 ∝ ρ

−1/2
amb (Baumgardt & Makino 2003, Lamers et al. 2005b). The

physical driving force behind cluster disruption is the tidal field. According to Poisson’s law,
the tidal field strengthT is proportional to the ambient density, implying a more fundamental
relation:

t0 = t0,⊙(T/T⊙)−1/2, (8.7)

where t0,⊙ is the dissolution timescale in a logarithmic potential at the galactocentric radius
of the sun Rgc,⊙ and T⊙ ≈ 7.01× 102 Gyr−2 is the tidal field strength at that location for
a circular velocity of 220 km s−1. For γ = 0.62 one obtains t0,⊙ = 21.3 Myr, while for
γ = 0.70 we have t0,⊙ = 10.7 Myr (Kruijssen & Mieske 2009). We adopt a density profile
with King parameterW0 = 5 for the clusters and consequentlyγ = 0.62. This ‘typical’ King

3We neglect a third mass loss mechanism, namely the dynamicalmass loss that is induced by the shrinking of the
Jacobi radius resulting from the mass loss due to stellar evolution (Lamers et al. 2010). This is allowed if clusters
initially do not fill their Roche lobes. In the irregular tidal fields that we are considering, the Jacobi radius constantly
changes. This implies that the equilibrium situation of a cluster filling its Roche lobe is unlikely to occur.

4Throughout the chapter, we do not only use the term ‘disruption time(scale)’, but also the more intuitive ‘disrup-
tion rate’, which is related to the inverse of the timescale.While the disruption timescale is specific to the properties
of a cluster and depends on its mass and (for tidal shocks) half-mass radius, the term ‘disruption rate’ is used to refer
to the general ‘disruptiveness’ of the environment.
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parameter is consistent with observations of open clusters(Portegies Zwart et al. 2010) and
rapidly dissolving globular clusters (McLaughlin & van derMarel 2005, Kruijssen & Mieske
2009). Clusters with lower King parameters (W0 ∼ 3) are susceptible to rapid disruption
due to stellar evolution-induced mass loss (Fukushige & Heggie 1995, Baumgardt & Makino
2003, Lamers et al. 2010), while high King parameters ofW0 & 7 are typically achieved
after core collapse of the most massive systems such as old globular clusters. To illustrate the
influence of the concentration on cluster disruption, we also consider the case ofW0 = 7 in
the rest of the derivation of the model.

To determine the tidal field strength, we first evaluate the tidal field tensor

Tij = − ∂2
Φ

∂xi∂xj
, (8.8)

whereΦ is the gravitational potential andxi is thei -th component of the position vector. In
the simulations, the tidal tensor is computed by numerical differentiation of the force field,
which is smoothed on scales of 200 pc, thereby minimising thesensitivity of the evolution
of the star clusters to discreteness noise. We use 1% of the smoothing length for the differ-
entiation interval. The tidal tensor has three eigenvectors, which denote the principal axes of
the action of the tidal field. The corresponding eigenvaluesrepresent the magnitude of the
force gradient along these axes, with negative eigenvaluesdenoting compressive components
of the tidal field, and positive eigenvalues indicating extensive components (e.g. Renaud et al.
2008). The tidal field strengthT , i.e. the quantity that sets the tidal boundary of the cluster,
is thus equal to the largest eigenvalue of the tidal tensor. If the tidal field is fully compres-
sive, i.e. all eigenvalues of the tidal tensor are negative,we assume (dM /dt)rlx = 0. The
eigenvalues are computed with the routines by Kopp (2008).

Tidal shocks disrupt star clusters by increasing the energyof the stars that are bound
to the cluster. It was shown by Kundic & Ostriker (1995) that the first- and second-order
energy inputs induced by tidal shocks contribute more or less equally to the disruption of star
clusters, while higher-order terms can be neglected. For the mass loss rate due to tidal shocks
we write

(

dM
dt

)

sh

= −M
tsh

, (8.9)

wheretsh denotes the disruption time for tidal shocks. It can be separated in the disruption
times due to the first- and second-order energy input,tsh,1andtsh,2:

tsh =
(

t−1
sh,1+ t−1

sh,2

)−1
. (8.10)

Both components of the disruption time depend on several properties of the cluster and its
environment, and will change over time.

The derivation oftsh has been treated extensively in literature (e.g. Spitzer 1958, 1987,
Ostriker et al. 1972, Kundic & Ostriker 1995, Gnedin & Ostriker 1997, Gieles et al. 2007a,
Prieto & Gnedin 2008), though the details of these approaches differ. For example, some
studies correctly observe that not all of the energy input bythe tidal shock is converted into
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mass loss (Gieles et al. 2007a), while others add the second-order disruption componenttsh,2

(Kundic & Ostriker 1995). Also, most studies consider the tidal perturbation of clusters on
closed orbits, for which the frequency of disc and bulge shocks is predictable. However, for
more erratic tidal shocks,tsh should be linked to the tidal field (Prieto & Gnedin 2008). Es-
pecially when modeling the evolution of star clusters in galaxy mergers this is an important
improvement. We follow the lines of most of the above studies, and combine their refine-
ments.

We first compute the first-order disruption timescale due to tidal shocks, which can be
expressed as (e.g. Gieles et al. 2007a):

tsh,1 =
∆t
f

∣

∣

∣

∣

E
∆E

∣

∣

∣

∣

, (8.11)

whereE denotes the cluster energy5 per unit mass and∆t is the time since the previous
shock. The parameterf is the fraction of the relative energy change that is converted to a
change in cluster mass. This number is smaller than unity, because stars escape the cluster
with velocities above the escape velocity. It is defined asf ≡ d lnM /d lnE, and has been
found to bef ≃ 0.25 for two-dimensional (2D) shocks6 (Gieles et al. 2006b). The internal
energy per unit cluster massE is given by

E = −ηGM
2rh

, (8.12)

with η ≃ 0.4 a proportionality constant (e.g. Spitzer 1987),G the gravitational constant, and
rh the half-mass radius of the cluster.

We combine the approaches of Gieles et al. (2007a) and Prieto& Gnedin (2008) to ex-
press the average energy change∆E of the ensemble of stars in the cluster as a function of
their average radial positionr and the tidal heating parameterI tid:

∆E =
1
2

(∆v)2 =
1
6

I tidr2. (8.13)

The tidal heating parameter is written as a function of the tidal tensor (Gnedin et al. 1999,
Prieto & Gnedin 2008):

I tid =
∑

i ,j

(
∫

Tij dt
)2

Aw,ij (x), (8.14)

in which the integration is performed over the duration of the tidal shock for the particular
component of the tidal tensor. The factorAw,ij (x) represents a parameterised version of the
Weinberg adiabatic correction (Weinberg 1994a,b,c). It isdefined for each component of the
tidal tensor and describes the absorption of the energy injection by the adiabatic expansion of

5This is the sum of the internal kinetic energy and the internal potential.
6Most tidal shocks occur in the orbital plane of the interaction between the cluster and the perturbing object, e.g.

a GMC. This corresponds to a 2D shock. A 1D shock resembles a head-on encounter with the perturbing object,
which is relatively rare compared to a more distant passage.
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the cluster. The adiabatic correction depends on the product of the average angular frequency
of the stars within the clusterω and the timescaleτij of the shock for the corresponding
component of the tidal tensor (Gnedin & Ostriker 1997, 1999):

Aw,ij =
(

1 +ω2τ2
ij

)−3/2
. (8.15)

The value ofω is constant when expressed inN -body units (Heggie & Mathieu 1986, Gieles
et al. 2007a), but when converted back to physical units it becomes:

ω = Cω

√

8η3GM
r3
h

, (8.16)

whereCω denotes a proportionality constant, which for King parametersW0 = {5, 7} is
Cω = {0.68, 0.82} (Gieles et al. 2007a). The timescale of the shockτij is the time interval
in which the corresponding component of the tidal tensor drops by 39%, coinciding with the
definition of one standard deviation in a Gaussian distribution.

Substitution of Eqs. 8.12—8.14 in Eq. 8.11 now gives the disruption timescale due to the
first-order effects of tidal shocks:

tsh,1 =
3η
f

GM
r3
h

r2
h

r̄2
I −1
tid ∆t , (8.17)

with the ratior2/r2
h = {2, 3.5} for King profile parametersW0 = {5, 7} (Gieles et al. 2006b).

This equation should be complemented with the disruption timescale due the second-order
energy input, or “shock-induced relaxation” (Kundic & Ostriker 1995), which is expressed
as

tsh,2 =
∆t
f

∣

∣

∣

∣

E2

(∆E)2

∣

∣

∣

∣

, (8.18)

where (∆E)2 denotes the stellar ensemble-averaged mean square energy change. Following
Kundic & Ostriker (1995), we write

(∆E)2 = (v∆v)2 =
1
5

I tidω2r4. (8.19)

The stellar ensemble-averageω2r4 then follows:

ω2r4 = GM (r)r ≡ ζGMrh, (8.20)

whereM (r) represents the mass within radiusr, and the constantζ is defined as

ζ ≡ M (r)r
Mrh

. (8.21)

For King profile parametersW0 = {5, 7} the values areζ = {0.81, 1.03} (M. Gieles, private
communication).
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Substitution of Eqs. 8.12 and 8.19 in Eq. 8.18 now gives the disruption timescale due to
the second-order effects of tidal shocks:

tsh,2 =
5η2

4f ζ
GM
r3
h

I −1
tid ∆t =

5η
12ζ

r2

r2
h

tsh,1. (8.22)

Using Eq. 8.10, the disruption time due to the combined first-and second order effects of
tidal shocks then becomes:

tsh =
(

t−1
sh,1+ t−1

sh,2

)−1
=

(

1 +
12ζ
5η

r2
h

r̄2

)−1

tsh,1≡ Cshtsh,1, (8.23)

where forW0 = {5, 7} we haveCsh = {0.29, 0.36}, indicating that the contribution of the
second-order energy input is most important for low-concentration clusters. The mass loss
due to shocks is applied upon the completion of a shock in any of the components of the
tidal tensor. Numerically, this means thatI tid = 0 unless a shock is completed, i.e. one of the
components of|Tij | reaches a minimum that is at most 88% of the preceding maximum7.

We have thus far not defined any prescription for the half-mass radiusrh. In semi-analytic
models that do not contain any information regarding the structural evolution of star clusters,
this is often related to the (initial) mass according to a power law relation:

rh = rh,4

(

M(i)

104 M⊙

)δ

, (8.24)

whererh,4 is the half-mass radius of a 104 M⊙ cluster,M(i) represents the (initial) cluster
mass, andδ is the power law index. The disruption timescale due to tidalshockstsh and the
adiabatic correctionAw both depend on the half-mass radius of the cluster (see Eqs. 8.15
and 8.17), implying that the value ofδ influences the mass dependence oftsh. It is therefore
important to include a reliable prescription for the half-mass radius. We have tested several
dependences ofrh on the initial and present cluster mass when comparing the models to
the N -body simulations by Baumgardt & Makino (2003). The best agreement is found for
δ = 0.225 andrh,4 = 4.35 pc, and when using the present-day mass (see Sect. 8.2.2). These
parameters are within an acceptable range of the ‘mass loss-dominated mode’ of the radius
evolution reported in Gieles et al. (2011).

It should be emphasised that the mass-radius relation quoted in Eq. 8.24 does not have the
same meaning as the mass-radius relation that can be observed for real star cluster populations
(e.g. Larsen 2004). Instead, it approximates the evolutionof the half-mass radius for a single
cluster, given a certain initial radius. In a population of star clusters, which is constituted by
clusters of a range of ages, initial masses, initial radii, and mass loss histories, the resulting
mass-radius relation of the entire population may be very different, as it is set by the collection
of states in which these different clusters happen to exist at the time of the observation. When
using a power law formulation, both types of mass-radius relation will only be similar if the
initial half-mass radius of the clusters is also set by the cluster mass as in Eq. 8.24. For
mathematical simplicity, we do choose to set the initial half-mass radius according to Eq. 8.24

7In a Gaussian distribution, this contrast coincides with the location of 1σ.
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(see Sect. 8.2.2), but it is not a requirement. This approximation is supported by clusters
in N -body simulations, which tend towards a well-defined evolutionary sequence (Küpper
et al. 2008), suggesting that the initial radius may be erased after a couple of relaxation
times. It is currently not known how the half-mass radius evolves in the erratic tidal fields
of real galaxies, which contain GMCs and spiral arms. We therefore choose to adopt the
‘conservative’ formulation of Eq. 8.24. In a future work, wewill include a more sophisticated
evolution of the half-mass radius.

The mass loss rates due to two-body relaxation and tidal shocks are combined with a
model to compute the evolution of the stellar mass function of the dissolving clusters (Kruijs-
sen 2009). In most cases, two-body relaxation gives a depletion of the mass function at
low masses, because low-mass stars have a higher probability to escape than massive stars
(Hénon 1969, Vesperini 1997, Takahashi & Portegies Zwart 2000, Baumgardt & Makino
2003, Kruijssen 2009). As a result, the integrated photometric properties of star clusters
evolve due to dynamical disruption (e.g. Baumgardt & Makino2003, Kruijssen 2008). By
including this, we can use the presented models to trace dynamical information of the simu-
lated galaxies down to the stellar level. The stars that are lost from clusters are added to the
field star population of the star particle in which the cluster resides.

The star cluster model is implemented in the galaxy evolution code to operate ‘on the fly’,
simultaneously with the galactic evolution, rather than having the cluster evolution calculated
a posteriorias in Prieto & Gnedin (2008). While this approach is already beneficial because
it potentially allows for a two-way interaction between a galaxy and its cluster population, it
also implies that the tidal history of each cluster is only saved for the most recent time steps,
which improves the memory efficiency of the simulation and allows us to model the full star
cluster population all the way down to our adopted minimum mass of 100 M⊙.

Star cluster model testing: method

We have compared the prescription for star cluster evolution from Sect. 8.2.2 to theN -body
models of dissolving star clusters by Baumgardt & Makino (2003). These simulations follow
the dynamical evolution of initially Roche-lobe filling star clusters in a logarithmic potential
with a circular velocity of 220 km s−1. The runs contain clusters on circular and eccentric
orbits between galactocentric radii in the range 2.833–15 kpc. The stars in the clusters follow
King (1966) density profiles withW0 = 5 or W0 = 7, and the stellar masses are distributed
according to a Kroupa (2001) initial mass function between 0.1 and 15 M⊙.

In this section, we exclusively consider clusters on eccentric orbits, because these clusters
experience shocks during each pericentre passage. This allows us to test both disruption
mechanisms rather than only two-body relaxation in a steadytidal field, for which the semi-
analytic model has been tested extensively in previous studies (e.g. Lamers et al. 2005a).
While the mass loss rate due to two-body relaxation containsno free parameters (see Eqs. 8.6
and 8.7), the description for tidal shocks depends on the adopted relation between the half-
mass radius and the cluster mass (see Eq. 8.24), which is governed by the parametersδ and
rh,4. Their values are obtained from the comparison.

To compare our models to the simulations from Baumgardt & Makino (2003), in Fig. 8.1
we show the time after which 95% of the initial cluster mass islost (t95%) for our models and
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Figure 8.1: Comparison of our analytically estimated cluster lifetimes with the lifetimes found in
N -body simulations of clusters on eccentric orbits (eccentricity e = 0.5) from Baumgardt & Makino
(2003). Connected symbols represent different initial cluster masses, characterised by different numbers
of stars (8k, 16k, 32k, 64k, and 128k), while the solid line shows the 1:1 correspondence between our
t95% and that from theN -body models.Left: without tidal shocks.Middle: Including tidal shocks,
for δ = {0.15,0.225, 0.35} (triangles, diamonds, squares) andrh,4 = 4.35 pc. Right: Including tidal
shocks, forδ = 0.225 andrh,4 = {3,4.35, 5} pc (triangles, diamonds, squares). The values at which the
agreement between both approaches is best are written in boldface and are denoted by diamonds in the
figure.

for their N -body runs. The figure shows poor agreement if only two-body relaxation is in-
cluded, but good agreement when tidal shocks are accounted for. Additionally, the influence
of δ and rh,4 on t95% is shown. As can be expected from Eq. 8.24,δ affects the mass de-
pendence of the disruption time due to shocks (increasingδ reduces the contrast between the
disruption times of different masses), whilerh,4 impacts the normalisation of the disruption
time (compact clusters live longer).

As was mentioned in Sect. 8.2.2 and is visible in Fig. 8.1, thebest match between our
models and theN -body runs is found forδ = 0.225 andrh,4 = 4.35 pc. These values should
therefore approximate the actual evolution of the half-mass radii in theN -body models of the
clusters. This is verified in Fig. 8.2, where our adopted mass-radius relation is compared to
the actual evolution of the half-mass radii of the clusters in Fig. 8.1, showing good agreement.
The clusters follow evolutionary tracks in the mass-radiusplane that are very similar to each
other, indicating that the clusters tend to evolve to a common cooling track, analogous to a
‘main sequence of star clusters’ as discussed by Küpper et al. (2008). The obtained mass-
radius relation implies that upon losing stars due to disruption, clusters will always slowly
evolve towards filling their Roche lobes, because the Jacobiradius depends on mass asrJ ∝
M 1/3, implying rh/rJ ∝ M −0.1. The slope of the mass-radius relation is also consistent with
the ‘mass loss-dominated mode’ from the work by Gieles et al.(2011).

In principle, the mass-radius evolution of the clusters could be a relic of the initial condi-
tions of theN -body simulations, in which the clusters initially fill their Roche lobes. How-
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Figure 8.2: Evolution of the half-mass radius as a function of the remaining mass for theN -body
simulations shown in Fig. 8.1, with from left to right the initial numbers of stars being 128k, 64k, 32k,
16k, and 8k (coloured irregular lines). The solid line showsour adopted relation between half-mass
radius and mass, withrh,4 = 4.35 pc andδ = 0.225. The dashed and dotted lines show the variations
of rh,4 andδ from Fig. 8.1, with dashed denotingrh,4 = {3, 5} pc (bottom, top) and dotted denoting
δ = {0.15, 0.35} (shallow, steep).

ever, we are considering clusters on eccentric orbits, for which the tidal radius continuously
changes, suggesting that whether or not a cluster initiallyfills its Roche lobe may be irrel-
evant after a couple of orbits. This would be even more important in more realistic, erratic
tidal fields. Most importantly though, the evolution of the half-mass radius shown in Fig. 8.2
also includes the time after core collapse, when any possible imprint of the initial conditions
will have been erased. Therefore, we do not expect that the details of the initial conditions of
theN -body simulations would affect the slope or normalisation of the mass-radius relation,
especially given its simplicity. Nonetheless, the mass-radius relation of clusters in erratic
tidal fields could deviate from our adopted one. We discuss possible improvements of our
approach in Sect. 8.6.2.

Star cluster model testing: numerical resolution

For any numerical model, it is necessary to check at which numerical resolutions the results
are reliable. Within a realistic galactic environment, thetidal field experienced by star clusters
is very erratic, contrary to the well-defined tidal shocks occurring during each pericentre
passage in the Baumgardt & Makino (2003) simulations. Testing the resolution requirements
of the models (both in time and space) should therefore be done for tidal histories that are
taken from our simulations.

To explore how the time resolution of the tidal field affects our modeled star cluster dis-
ruption, we computed the mass evolution of a 2× 104 M⊙ cluster for 200 tidal histories
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Figure 8.3: The mean total disruption time of a 2× 104 M⊙ cluster for different time steps, scaled to
that for the smallest time step (diamonds/solid line). The horizontal dashed line indicates unity, which
coincides with the leftmost diamond per definition. The darkgrey tinted area spans the space covered by
one standard deviation of the distribution at each time step, while the light grey represents two standard
deviations. The dotted line represents the relation for when ttot/ttot,hires were proportional to the time
step. The maximum time step used in our simulations is indicated by the vertical dashed line.

that were randomly drawn from the particles in one of our galaxy disc simulations. For
each of these histories, the evolution was computed seven times, using fixed time steps of
{1, 2, 4, 8, 16, 32, 64} × 0.932 Myr. For each time step, we then scaled the total disruption
time of the clusterttot to the total disruption time found for that cluster when using the smallest
time step (ttot,hires). This ratio can be used to trace the relative change of the total lifetime due
to resolution effects. Because tidal shocks are events witha certain duration, some of them
could be skipped when increasing the time step, suggesting that in that regimettot/ttot,hires

becomes proportional to the time step.
The meanttot/ttot,hiresof the 200 tidal histories is shown as a function of the time step in

Fig. 8.3. The relation that would be expected ifttot/ttot,hireswere proportional to the time step
is also included. The figure shows that for large time steps (& 10 Myr), the total disruption
time indeed becomes proportional to the time step, as the durations of some shocks are then
short enough to be skipped, while for smaller time steps the total disruption time converges.
The maximum time step of the particles in our simulations (3.73 Myr) is such that time reso-
lution effects should not play an important role, particularly because the maximum time step
is only used for very weakly accelerated particles in dynamically quiet regions. In the sim-
ulations, we do not use fixed time steps, but adaptive ones instead, increasing the resolution
as the force on a particle increases (Pelupessy et al. 2004, Pelupessy 2005), up to a maxi-
mum resolution increase of a factor 4096 (potentially yielding a time step of∼ 1000 yr).
This ensures that tidal shocks, which typically occur when the force on a particle is non-
negligible, are always well-resolved. In this way, we minimise the effect of the time step on
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our computed cluster lifetimes.
Whether or not the evolution of star clusters is affected by the spatial resolution of the

simulations depends on the smoothing length and the number of particles used. The distribu-
tion of mass needs to be resolved in sufficient detail to ensure that encounters with individual
particles do not disrupt the clusters. Such disruption would be artificial, because individual
particles are discrete representations of a continuous mass distribution. Whether the resolu-
tion requirements are satisfied can be easily checked with anorder-of-magnitude estimate.

Most of the disruption due to an encounter with an individualparticle would be caused
by the corresponding tidal shock. The presented simulations use a smoothing length ofh =
200 pc and typical particle masses ofMpart = 8 × 105 M⊙ (see Sect. 8.3). The typical
duration of an encounter with a single particle is then approximatelyh/σ, with σ the velocity
dispersion in a galaxy disc, which is of the order 20 km s−1. This gives a typical shock
duration of about 10 Myr. Since we are interested in an upper limit to the disruptive effect of
individual particles, we ignore the adiabatic correction (Eq. 8.15) and assume that throughout
the shock the heating is equal to the tidal heating encountered when the cluster is located at
the centre of the particle. For a spline kernel smoothing, the central density of a particle is
ρcentre= Mpart/(πh3). Due to the symmetry of a head-on encounter, the tidal tensor is diagonal
with valuesTij = −4GMpartδij /(3h3), which for the quoted shock characteristics gives a tidal
heating parameter ofI tid ≈ 102 Gyr−2. If this type of shock would be continuously repeated
over the entire lifetime of a cluster, it would take well over120 Gyr to destroy a 104 M⊙

cluster. As is evident from Fig. 8.1 and later sections of this chapter, such a disruption time is
1–3 orders of magnitude larger than typical disruption times. We conclude that for our choice
of particle numbers and smoothing length, encounters with individual particles do not play
an important role. Instead, the shocks that lead to the disruption of clusters are produced by
groups of particles, such as spiral arms or complexes of molecular clouds, which do have a
physical meaning. Consequently, the spatial resolution requirements are satisfied. Note that
this strongly depends on the smoothing lengthh, because for the maximum tidal heating we
haveI tid ∝ T2

ij ∝ M 2
parth

−6. This implies that it is not possible to adopt a much smaller
smoothing length, which would require require vastly larger numbers of particles to reduce
the particle mass and minimise the effect of encounters withindividual particles.

The stability against resolution effects is illustrated inFig. 8.4, which shows the depen-
dence of the star formation rate and the number of clusters per unit star formation rate on the
spatial resolution. The figure shows that the formation rates of stars and clusters converge
with increasing resolution. The bottom panel gives a measure for star cluster disruption, and
shows that the variation of the disruption rate with spatialresolution is of the order of the
inherent scatter on the number of clusters. The number of clusters very slightly decreases for
lower resolutions, because encounters with individual particles then become more important
due to their higher masses. Simulations at higher resolutions also exhibit a slight decrease
of the number of clusters, because in these the structure in the spatial distribution of the gas
is resolved in more detail. While this may induce a small increase of the disruption rate, we
do not expect that this continues at even higher resolutions, because the amount of tidal heat-
ing scales with the square of the mass of the structure causing the tidal shock, implying that
resolving increasingly smaller structures results in a correspondingly smaller addition to the
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Figure 8.4: Dependence of the simulations on the spatial resolution.Top: star formation history as a
function of time.Bottom: number of clusters per unit star formation rate as a function of time. Different
lines denote simulation 1dB (see Sect. 8.3) run at differentspatial resolutions. Particle numbers of
{1/4, 1/2, 1, 2} times those used in simulation 1dB are represented by{dash-dotted red, dashed green,
solid cyan, dotted blue} lines. The bumps in the bottom panel for simulations 1dB1/2 (at t = 3.2 Gyr),
1dB (att = 3.5 Gyr) and 1dB2 (at t = 4.1 Gyr) occur shortly after the (random) formation of holes in
the gas due to feedback effects (see text).

tidal heating8. Figure 8.4 also illustrates that the mean disruption rate of star clusters is more
sensitive to random fluctuations than the overall star formation rate. At certain times, the
number of clusters briefly increases due to a decrease of the disruption rate. This is caused by
the random, transient excavation of the gas due to feedback in certain star-forming regions,
which causes large numbers of clusters to experience less disruption. The mean disruption
rate, which depends on the distribution of the gas, then shows larger scatter than the star
formation rate, which to good approximation is set by the mean surface density of the gas.

8Even for a population of GMCs that follows a power law mass distribution with index−2, the total tidal heating
would (linearly) increase with GMC mass, despite the many more low-mass GMCs than massive ones.
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8.3 Summary of the model runs

We construct model disc galaxies with parameters that can berelated to the outcomes of
cosmologicalΛCDM galaxy formation models (Mo et al. 1998, Springel et al. 2005). They
consist of a dark halo with a Hernquist (1990) profile9, an exponential stellar disc, a stellar
bulge (except for one model) and a thin gaseous disc, constructed to be in self gravitating
equilibrium if evolved autonomously (Springel et al. 2005). The disc galaxies are initially
set up with 105–106 particles for the dark matter halo, 22,938–51,250 particles for the stellar
component, and 7,688–25,625 particles for the gas. The darkmatter haloes have concentra-
tion parameters related to their total masses and condensation redshifts according to Bullock
et al. (2001), implying that for a fixed mass the halo concentration increases with redshift.
The total mass is related to the virial velocityVvir and the Hubble constantH (z) at redshift
z asMvir = V 3

vir/[10GH(z)]. For all galaxies, the baryonic disc is constituted by a gaseous
and stellar component, having a mass fractionmd = 0.041 of the total mass, while the bulge
(when included) consists of a stellar component only, having a mass fractionmb = 0.008
of the total mass. These mass fractions are chosen to be consistent with the fiducial values
from recent literature (e.g. Springel et al. 2005) and are based on the original constraint of
0.03< md < 0.05 by Mo et al. (1998). The fraction of total angular momentum that is con-
stituted by the disc (jd) is taken identical tomd . The scale-length of the bulge and the vertical
scale-length of the disc are 0.2 times the radial scale-length of the disc, which is determined
by the degree of rotation (Mo et al. 1998) through the spin parameterλ ≡ J|E|/GM5/2

vir ,
in which J is the angular momentum of the halo andE its total energy. Table 8.1 lists the
remaining properties for the various model runs, i.e. the gas fraction of the baryonic disc
fgas, the total massMvir, the spin parameterλ, the number of particles in the different compo-
nents of the model galaxies, and the particle masses of the halo particlesM halo

part and baryonic

particlesM bary
part .

The gas fractions of the galaxy models are chosen to cover therange from typical star
forming galaxies. Most of the total masses represent Milky Way type galaxies, with the two
exceptions being one half and one tenth of that mass, enabling simulations of unequal-mass
major and minor mergers. The parameterλ represents the degree of rotational support, and
is set in accordance with typical spiral galaxies in cosmological simulations (〈λ〉 = 0.045,
Vitvitska et al. 2002), except in one case, where we evaluatethe influence of the radial scale-
length of the disc on the cluster population. The number of halo particles is chosen to ensure
sufficient smoothing of the dark matter halo, and the number of stellar disc, stellar bulge and
gas particles are chosen to minimise the mass difference between the particles and alleviate
two-body effects.

The model runs for galaxy mergers are initialised by positioning two disc galaxy models
on Keplerian parabolic orbital trajectories10 with initial separations of approximately 200 kpc.

9This density profile is very similar to profiles found in cosmological simulations (Navarro et al. 1996, 1997).
The difference only occurs at radii much larger than the scale radius, where the density profile of the Hernquist
(1990) profile falls of as∝ r−4 rather thanr−3. This does not affect the results in this chapter, because our galaxy
merger simulations do not include galaxies on very wide orbits.

10About 50% of the mergers in cosmological simulations are on (near-)parabolic orbits (Khochfar & Burkert
2006).
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Table 8.1: Details of the initial conditions for the disc galaxy models.

ID fgas Mvir
a z λ Nhalo Ngas N star

disc N star
bulge M halo

part
a

M bary
part

a
Comments

1dAb 0.20 1012 2 0.05 106 10250 41000 10000 106 8× 105 low gas fraction
1dBb,c,d 0.30 1012 2 0.05 106 15375 35875 10000 106 8× 105 standard model

1dC 0.50 1012 2 0.05 106 25625 25625 10000 106 8× 105 high gas fraction
1dD 0.30 5×1011 2 0.05 5× 105 7688 17938 5000 106 8× 105 half mass
1dE 0.30 1012 2 0.05 106 15375 35875 0 106 8× 105 no bulge
1dF 0.30 1011 2 0.05 106 15375 35875 10000 105 8× 104 low mass
1dG 0.30 1012 2 0.10 106 15375 35875 10000 106 8× 105 high spin
1dH 0.30 1012 0 0.05 106 15375 35875 10000 106 8× 105 low concentration
1dI 0.30 1012 5 0.05 106 15375 35875 10000 106 8× 105 high concentration

aIn solar masses (M⊙).
bTo investigate the relative importance of the two disruption mechanisms, these models are also computed for disruptionexcluding
tidal shocks (i.e. only two-body relaxation, ‘1dA/Brlx ’) and for disruption excluding two-body relaxation (i.e. only tidal shocks,
‘1dA/Bsh’).
cThis model is also computed fori = {1/4, 1/2, 2} times the number of baryonic particles (i.e. ‘1dBi ’.)
dThis model is also computed for a constant disruption parameter t0 = 2 Myr (see Eq. 8.6) and no tidal shocks (‘1dBfix ’).
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Table 8.2: Details of the initial conditions for the galaxy merger models.

ID Progenitors Mass ratio θ1 φ1 θ2 φ2 Rperi
a Comments

1m1 1dA/1dA 1:1 0 0 0 0 6 PP
1m2 1dB/1dB 1:1 0 0 0 0 6 PP
1m3 1dC/1dC 1:1 0 0 0 0 6 PP
1m4 1dB/1dD 1:2 0 0 0 0 6 PP
1m5 1dE/1dE 1:1 0 0 0 0 6 PP
1m6 1dF/1dF 1:1 0 0 0 0 6 PP
1m7 1dG/1dG 1:1 0 0 0 0 6 PP
1m8 1dH/1dH 1:1 0 0 0 0 6 PP
1m9 1dI/1dI 1:1 0 0 0 0 6 PP
1m10 1dB/1dB 1:1 60 45 -45 -30 6 PPi
1m11 1dB/1dB 1:1 180 0 0 0 6 PR
1m12 1dB/1dB 1:1 -120 45 -45 -30 6 PRi
1m13 1dB/1dB 1:1 180 0 180 0 6 RR
1m14 1dB/1dB 1:1 -120 45 135 -30 6 RRi
1m15 1dB/1dB 1:1 0 0 0 0 12 wide PP
1m16 1dC/1dG 1:1 -120 45 -45 -30 10 PRi
1m17 1dB/1dB 1:1 0 0 71 30 6 ‘Barnes’
1m18 1dB/1dB 1:1 -109 90 71 90 6 ‘Barnes’
1m19 1dB/1dB 1:1 -109 -30 71 -30 6 ‘Barnes’
1m20 1dB/1dB 1:1 -109 30 180 0 6 ‘Barnes’
1m21 1dB/1dB 1:1 0 0 71 90 6 ‘Barnes’
1m22 1dB/1dB 1:1 -109 -30 71 30 6 ‘Barnes’
1m23 1dB/1dB 1:1 -109 30 71 -30 6 ‘Barnes’
1m24 1dB/1dB 1:1 -109 90 180 0 6 ‘Barnes’
aIn kpc. All angles are in degrees. In the comments, ‘PP’, ‘PR’and ‘RR’ indicate prograde-
prograde,prograde-retrograde and retrograde-retrograde orbits, respectively. The added ‘i’
indicates an inclined/near-polar orbit.

The actual orbit will decay due to dynamical friction, whichleads to the merging of the galax-
ies. The orbital geometry of an interaction is characterised by the directions of the angular
momentum vectors of the two galaxy discs and the pericentre distance of the parabolic orbit
Rperi. The angular momentum vectors of the galaxies are determined in spherical coordinates
by anglesθ (rotation perpendicular to the orbital plane) andφ (rotation in the orbital plane).
These and other relevant parameters are listed in Table 8.2,where the different model runs
are summarised.

The initial conditions in Table 8.2 are divided in three categories. The first set of eight
runs follow a common configuration, in which the discs rotatein the orbital plane. They
are used to test the influence of the gas fraction and mass ratio of the progenitor discs, and
of additional progenitor disc properties such as the presence of a bulge, total galaxy mass,
and spin parameter (or the radial scale-length of the disc).The initial conditions for the six
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subsequent runs are constructed to assess the impact of orbital parameters on the star cluster
population. We rotate the progenitor discs to include retrograde rotation and near-polar or-
bits, which represent the opposite extreme with respect to the co-planar configurations of the
first eight runs. The effect of a wider orbit (a larger pericentre distance) is also considered,
and a ‘random’ major merger is also included, in which two progenitors with different spin
parameters are placed on a near-polar, prograde-retrograde orbit. The third group contains
the eight ‘random’ configurations from Hopkins et al. (2009)(see Barnes 1988), which all
have equal probabilities of occurring in nature.

All galaxies are generated without any star clusters, and weset t = 0 after 300 Myr
of evolution to initialise the cluster population. As described in Sects. 8.2.2 and 8.2.2, the
clusters have masses between 102 and∼ 105.8 M⊙, following a Schechter (1976) type initial
mass function. The chemical composition of the clusters is set to solar metallicity, and we
assume a King parameter ofW0 = 5.

The properties of the simulated disc galaxies and galaxy mergers are not intended to
cover all of parameter space, but instead should provide a first indication of how the modeled
star cluster populations are affected by their galactic environment. This set of simulations
represent a basic library that can be used to predict certaincharacteristics of star cluster
populations and to see how well the simulated cluster populations compare to observations.

8.4 Isolated disc galaxies

As a first application of the model, we consider the simulations of the isolated disc galaxies
from Table 8.1. As discussed in Sect. 8.2.2, the cluster populations are simulated down to a
lower mass limit of 100 M⊙, which for our assumed cluster formation efficiency and for the
typical cluster formation and disruption rates of disc galaxies yields about 1—3×105 clusters
per galaxy (also see Kruijssen et al. 2011b). Below, we discuss the mechanisms driving the
evolution of individual clusters, and show a number of key properties of the entire cluster
population.

8.4.1 The evolution of individual star clusters in disc galaxies

To illustrate the effects of disruption due to two-body relaxation and tidal shocks, in Fig. 8.5
we show the orbits and the mass evolution of three star clusters with similar initial masses
(M i ∼ 1.8× 104 M⊙) and times of formation (t ∼ 2.20 Gyr) from simulation 1dB. They
are on different orbits and therefore experience differingtidal evolution. Clusters orbiting at
small galactocentric radii evolve in a stronger tidal field (and generally have smaller Jacobi
radii) than clusters orbiting at large galactocentric radii. Also, the number and intensity of
tidal shocks is typically larger for clusters orbiting close to the galactic centre, due to the
higher gas density in their environment. These differencesresult in contrasting mass loss
histories and total disruption times, as the innermost cluster survives for about 100 Myr, the
middle cluster persists for about 300 Myr, and the outer cluster is disrupted after 400 Myr,
even though it has the lowest initial mass of the three clusters. The jumps in the mass loss
history indicate the effect of tidal shocks, which are generally stronger (and potentially more
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Figure 8.5: Evolution of the orbits and masses of three clusters orbiting at different galactocentric
radii in isolated disc galaxy simulation 1dB. From top to bottom, the consecutive panels show the
situation at different timest , while from left to right the orbital evolution in the x-y plane (face-on), the
orbital evolution in the x-z plane (edge-on), and the mass evolution are shown. The innermost cluster is
represented by the dark red solid lines, the middle cluster by red dotted lines, and the outermost cluster
by blue dashed lines. If at any particular snapshot a clusteris still undisrupted, its position and mass
are marked with thick dots. The orbital trajectories remainvisible after the clusters are disrupted. The
small grey dots in the x-y and x-z plane views map the distribution of the gas particles in the simulation.
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frequent) for clusters on narrow orbits. Despite these trends, Fig. 8.5 also shows that a cluster
can be disrupted by a single tidal shock almost anywhere in the galaxy, even at radii well
beyond the solar galactocentric radius. This was also discussed by Gieles et al. (2006b), who
showed that clusters with masses. 2× 104 M⊙ can be disrupted during a single encounter
with a spatially extended GMC of 106 M⊙. Relative to disruption due to subsequent, small
encounters, disruption by a single, violent GMC encounter is most prominent for cluster
masses of about 104 M⊙ (Gieles et al. 2006b). The clusters in Fig. 8.5 are characteristic
examples of this. In general, the strongest tidal shocks occur at times when the clusters cross
regions of high gas density, for instance during spiral arm passages. This is best seen in the
snapshots att = 2.33 Gyr andt = 2.43 Gyr, because between those snapshots the outer cluster
is overtaken by a dense region11, causing it to lose almost 75% of its mass due to the rapid
change of the tidal field.

Figure 8.6 illustrates the relation between the mass loss and the tidal field for the two
long-lived clusters from Fig. 8.5. It shows the evolution ofthe cluster mass, together with the
tidal field strength as defined in Sect. 8.2.2, and the runningintegral that is used to compute
the tidal heating parameterI tid in Eq. 8.14, which is defined as:

Htid(t) =
∑

i ,j

(
∫ t

tlast

Tij dt
)2

, (8.25)

wheretlast is the time of the last shock andt is the current time. This quantity represents
the accumulated tidal heating since the last shock, and resets after each shock is completed.
Contrary toI tid, it does not include the adiabatic correction. Therefore, it is only a measure
for the tidal shock heating imposed by the tidal field and doesnot contain any information on
the response of the cluster experiencing the shock.

The evolution of the tidal field strength for both clusters inFig. 8.6 shows that it is indeed
larger for the cluster orbiting at the smaller galactocentric radius. A comparison of the tidal
field strengths experienced by the clusters just after theirformation explains why the outer
cluster loses its mass more slowly initially. The moments atwhich both clusters suffer their
first violent mass decrease can be associated with jumps in the amount of shock heating,
indicating the effect of tidal shocks. In the case of the inner cluster, this gives rise to its total
disruption. The second moment of violent mass loss of the outer cluster cannot be coupled
with an increase of the shock heating, because the shock tookplace in between two snapshots
and is therefore skipped by the output of the simulation.

The evolution of the clusters in Figs. 8.5 and 8.6 illustrates that the disruption rate varies
with time for individual clusters and varies with space whenconsidering the cluster popula-
tion as a whole. This is very important when interpreting observed star cluster populations.
The time-variation of the disruption rate for individual clusters can mask the effect of a dif-
ferent mass dependence of star cluster disruption. For instance, if the disruption parameter
t0 in Eq. 8.6 were to increase with time because a cluster is leaving a region with a high gas
density (also see Elmegreen & Hunter 2010), for that time interval one would derive a lower
value ofγ, which is the mass-dependence of the disruption timescale.

11The outer cluster is situated beyond the co-rotation radiusof the galaxy.
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Figure 8.6: Evolution of the cluster mass and the tidal field for the two outer clusters from Fig. 8.5,
indicated by the same colours and line styles. The diamonds in the middle and bottom panel indicate
the times of each snapshot.Top: The mass evolution.Middle: Evolution of the tidal field strength
experienced by each cluster, defined as the largest eigenvalue of Eq. 8.8 (see Sect. 8.2.2).Bottom:
Running integral of the total amount of shock heating experienced by the cluster (see text and Eq. 8.25).

When considering the space-variation of the disruption rate throughout a population of
clusters, it is inevitable that the mean disruption rate decreases with age12, because clusters in

12Provided that the galaxy and formation sites of the clustersdo not change much on timescales of∼ 1 Gyr.
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disruptive environments have the shortest lifetimes and never reach old ages, while clusters
in less violent settings become older. This process can be regarded as a form of ‘natural
selection’ acting on the star cluster population, and tendsto flatten the age distributions of
star clusters (see Sect. 8.4.4).

The time-variation of the disruption rate is particularly interesting in view of recent dis-
cussions in literature, in which it is debated whether or notstar cluster disruption depends on
the cluster mass (e.g. Fall et al. 2005, Whitmore et al. 2007,Gieles & Bastian 2008, Larsen
2009, Bastian et al. 2009). It is crucial that environmentaldependences are taken into account
before inferring any conclusions about the mechanisms driving cluster disruption from obser-
vations, because the age and mass distributions of clustersare susceptible to variations in the
environment. This holds particular relevance in non-equillibrium settings such as interacting
galaxies (see Sect. 8.5).

8.4.2 The variation of the disruption rate with galactocentric radius

A second consequence of the variability of the disruption rate is related to its variation with
space. It implies that the properties of the star cluster population, such as the slope of the age
and mass distribution will depend on the local environment within a galaxy. Galaxy-wide
distributions may indicate the average properties of the cluster population, but interpreting
them can yield systematic errors when assuming the disruption rate is the same everywhere
in the galaxy. For instance, the effects of cluster disruption are stronger towards the galactic
centre than in the outskirts of a galaxy, implying that the properties of the cluster populations
in both regions will differ.

The environmental dependences on the star cluster population can be qualitatively illus-
trated by considering two variations of simulation 1dB. Figure 8.7 shows the mean cluster
age as a function of galactocentric radius for two galaxy disc simulations: one in which the
disruption rate is calculated as described in Sect. 8.2.2 (model 1dB), and one with a disruption
rate that is constant in time and space (usingt0 = 2 Myr, see Eq. 8.6) and does not include
tidal shocks (model 1dBfix). For the galaxy with the physically motivated disruption rate, the
spatial distribution of the mean cluster age is as expected.The youngest clusters are found
in the galactic centre, where the star formation rate density is highest. Due to the high gas
density, clusters in the galactic centre disrupt on shortertimescales than in the outskirts of the
galaxy, resulting in a mean cluster age that increases with galactocentric radius. This con-
trasts with the age profile of the cluster population in the galaxy with a fixed disruption rate,
where the mean cluster age is approximately constant throughout the galaxy and the scatter is
strictly due to local variations in the star formation history and stochastical effects13. Obser-
vations of cluster populations in real galaxies (e.g. van den Bergh & McClure 1980, Gieles

Galaxy mergers are a clear exception to this.
13The spatial variation of the star formation rate (SFR) cannot produce the behaviour of the mean cluster age that

is shown in Fig. 8.7. Without a time-variation, the cluster age distributions at different galactocentric radii would
still yield the same mean age, irrespective of the relative formation rates. Within a stable disc galaxy, the relative
time variations at different galactocentric radii are not sufficiently large nor persistent enough to cause a spatial trend
of the mean cluster age, as is also shown by the line denoting the galaxy with a fixed disruption rate. Indeed, Fig. 8.7
could have been made at any time in our simulation other than the time shown, and the mean age would have shown
the same spatial variation.
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Figure 8.7: Mean age of star clusters〈τ 〉 as a function of galactocentric radiusRgc for two galaxy
simulations att = 2.5 Gyr. The red solid line shows the relation for the physically computed disruption
rate from Sect. 8.2.2, while the blue dotted line representsthe result for a simulation with a fixed
disruption rate.

et al. 2005, Froebrich et al. 2010) show that the mean age increases with galactocentric ra-
dius, contrary to the result for a fixed disruption rate. For the inner disc of M51, Gieles et al.
(2005) find that the disruption rate varies by a factor 1.8 between radial intervals of 1–3 kpc
and 3–5 kpc. Assuming that the mean age is directly proportional to the disruption timescale,
this is of the same order of magnitude as for the model shown inFig. 8.7, for which we find
that the ratio between the mean ages of the clusters in these intervals is 1.4.

These results substantiate that star cluster disruption isindeed driven by environmental
effects. Additionally, they show that the suggestion of a disruption rate that increases with the
star formation rate, which is found when considering variations between different galaxies
(e.g. Boutloukos & Lamers 2003, Lamers et al. 2005b), also holds within a single galaxy.
This is easily understood by noting that both the formation and disruption of clusters peak in
dense environments.

8.4.3 The relative importance of tidal shocks and two-body relaxation

The relative contributions to star cluster disruption of two-body relaxation and tidal shocks
can be quantified by considering the number of clusters in simulations for which either mech-
anism is neglected. The fraction of the total disruption contributed by tidal shocksfsh is then
given by

fsh ≡ 1− Nboth

Nrlx
, (8.26)

whereNboth is the number of clusters in a simulation including both disruption mechanisms
(e.g. 1dA and 1dB), andNrlx is the number of clusters in a simulation for which only dis-
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Figure 8.8: Fraction of disruption due to tidal shocks as a function of time. The red solid line shows the
evolution for all clusters, while the light grey dotted lineonly includes clusters within a galactocentric
radius of 10 kpc, and the dark grey dashed line represents theevolution for the clusters beyond 10 kpc.
Top: disc galaxy with a gas fractionfgas = 0.20 (simulation 1dA).Bottom: disc galaxy with a gas
fractionfgas = 0.30 (simulation 1dB).

ruption by two-body relaxation is included and tidal shocksare not considered (e.g. 1dArlx

and 1dBrlx). Per definitionNboth < Nrlx . For different radial bins,fsh is shown as a function
of time in the top panel of Fig. 8.8 for two galaxies with different gas fractions (1dA and
1dB). The contribution by tidal shocks is typically 80–85% of all disruption, which is very
similar to the analytic estimate by Lamers & Gieles (2006) for the solar neighbourhood. The
value increases with the gas fraction of the disc, because GMCs and spiral arms are the most
important sources of tidal shocks. For relatively gas-richdiscs such as in simulation 1dB
(fgas = 0.30), the contribution from shocks does not vary much withgalactocentric radius, but
for gas-poorer discs, shocks are more important in the innerregions of the disc. This occurs
because beyond a certain galactocentric radius the gas density becomes too low to sustain
star formation (e.g Kennicutt 1989, Schaye 2004, Pelupessyet al. 2004), yielding less or no
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energy injection by feedback and a less filamentary gas distribution, which in turn implies
that tidal shocks are less important. The characteristic radius for this transition is smaller in
gas-poor galaxies, which is illustrated by the contrast between the inner and outer parts of the
disc in the upper panel Fig. 8.8. Because discs also become more gas-poor as they age, the
relative contribution by shocks slightly decreases with time.

For the adopted mass-radius relation, the ratio between thedisruption timescales due to
two-body relaxation and tidal shocks istrlx/tsh ∝ M 0.3I tid. If this ratio is larger than unity,
tidal shocks dominate cluster disruption, while a ratio below unity implies that disruption is
mainly driven by two-body relaxation. The relative importance of tidal shocks increases with
cluster mass until a few times 104 M⊙, when the adiabatic correction in the tidal heating pa-
rameterI tid (see Eq. 8.14) becomes non-negligible and inhibits disruption due to tidal shocks.
This means that the relative importance of tidal shocks peaks at a certain cluster mass. For
the parameters in this chapter, this isfsh ≈ 0.9 atM ∼ 104 M⊙, but the precise value depends
on the mass-radius relation.

8.4.4 The age distributions of star clusters in disc galaxies

The balance between cluster formation and destruction gives rise to a cluster population with
a certain age distribution. The age distribution of star clusters is often used as a probe to study
star cluster disruption (e.g. Gieles et al. 2005, Chandar etal. 2006), or to assess the formation
history of a galaxy (Hunter et al. 2003, Gieles et al. 2005, Smith et al. 2007). In order to
obtain a reliable interpretation of the cluster age distribution, it is important to understand its
evolution in different galaxies.

To investigate possible correlations between the cluster age distribution and galaxy prop-
erties, we have fitted the logarithmic slopeα of the age distribution (dN /dτ ∝ τα) in the age
range log (τ/yr) = 7.7–9 for all snapshots of our galaxy disc simulations.When constructing
the age distribution, we consider all available clusters, implying that the samples are mass-
limited with M ≥ 100 M⊙. We have also fitted the logarithmic slopeβ of the SFR-corrected
age distributions in that range ([dN /dτ ]/SFR∝ τβ). The age range has been chosen such
that the effects of gas expulsion due to supernovae are no longer relevant and a sufficiently
large part of the age distribution is covered to obtain a reliable slope. The fits have been made
with 13 bins in the specified age range, using a variable bin width to accommodate equal
numbers of clusters in each bin. The clusters outside the fitted age range are binned using
the same number of clusters per bin. We have adopted Poissonian errors for dN /dτ , scaling
the square root of the number of parent star particles instead of using the number of clusters
in each bin, because the ages of the clusters within a single star particle are identical (see
Sect. 8.2.2). In practice, this means that the relative error decreases with age, because the
mean number of clusters per particle decreases. To ensure a reliable fit, the slopes have only
been measured at times when a galaxy contains clusters olderthan 1 Gyr.

Given the time interval between subsequent output snapshots, the above procedure results
in 1175 fitted age distribution slopes, covering eight different disc galaxy models. These
slopes should be considered ‘mean’ slopes for the specified age range, because the age dis-
tribution does not always follow a single logarithmic slopeover the fitted age range. This
is illustrated in Fig. 8.9, which shows (SFR-(un)corrected) age distributions for two differ-
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Figure 8.9: Top: Age distributions of clusters in simulations 1dB (red solid line) and 1dG (blue dashed
line, vertically offset by 1.5 dex) att = 3 Gyr for ages in the range log (τ/yr) = 7.7–9. The dotted lines
represent power law fits to the data in the age range indicatedby the shaded area.Bottom: Same as
above, but with the age distributions divided by the star formation rate (SFR-corrected). The error bars
are computed as described in the text. In both panels the fitted slopes are indicated.

ent galaxies, of which the upper one (1dB) is indeed ill-fitted by a single power law. For
the SFR-corrected age distributions, the negative slope issolely the result of disruption, with
small variations due to stochastical effects. The SFR does not vary much in isolated galaxies,
and therefore only affects the fitted slopes by a few hundredths.

In models with the same disruption rate for all clusters and aconstant SFR, the ‘classical’
age distribution is characterised by two components (e.g. Boutloukos & Lamers 2003, Lamers
et al. 2005a). At young ages, the age distribution is flat, because no clusters are disrupted
within such a short time interval. Beyond the lifetime of thelowest mass cluster, the age
distribution steepens. This is the disruptive (old) end of the age distribution, which has a slope
of β = −1/γ, whereγ is the mass dependence of the disruption timescale (see Eq. 8.6)14.

14It is assumed that the logarithmic slope of the cluster initial mass function (dN /dM ) is −2.
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The models presented in this chapter assume a more realisticformulation, in which the
disruption rate is affected by the variation of the tidal field strength and by tidal shocks.
Nonetheless, for the sake of illustration it is important toindicate what the disruption-dominated
slope of the age distribution would be if the tidal field strength would be the same throughout
a galaxy, and all clusters would experience the same tidal shocks. In such a scenario, the
adopted value ofγ = 0.62 for disruption due to two-body relaxation givesβ = −1.61. For
rapid shocks (i.e. a negligible adiabatic expansion duringthe shock), our adopted mass-radius
relation yieldsβ = −3.08, while for slow shocks (i.e. a dominant adiabatic expansion during
the shock) we haveβ = −1.23. Fast disruption (i.e. rapid shocks) thus yields a steeper age
distribution than slow disruption.

Evidently, the bulk properties of the cluster population are determined by a combination
of the above mechanisms, covering a range of tidal field and shock strengths. As such, the
fitted slope of the age distribution is not only determined bythe mass dependence of the
disruption timescale, but also by possible trends of the disruption rate with cluster age and by
the rapidity of disruption in general.

The difference between the age distributions shown in Fig. 8.9 should be the result of
the differences between the initial conditions of both simulations. Galaxy 1dG only differs
from 1dB by its (larger) spin parameter (see Table 8.1), implying a correspondingly larger
scale radius and lower (gas) density, which yields a lower disruption rate (see Sects. 8.4.1
and 8.4.2). Because of the more rapid disruption in simulation 1dB only very few clusters
survive for∼ 1 Gyr, causing the depletion in the oldest bin, which in turn steepens the fitted
slope. Again, faster disruption implies less survivors anda potentially steeper fitted slope
than for slow disruption.

Another effect is that the disruption rate due to tidal shocks will typically decrease as
clusters age. This happens for two reasons (also see Fig. 8.10):

(1) ‘Cluster migration’: because clusters move out of theirprimordial environment, the
ambient gas density typically decreases as they age, givingrise to fewer tidal shocks
and a lower disruption rate at older ages (see Elmegreen & Hunter 2010). This evolu-
tion of the mean disruption rate is more pronounced if the density contrast between the
star forming region and its surroundings is large.

(2) ‘Natural selection’: at any given time, clusters in regions with a high disruption rate are
less likely to survive than clusters in low disruption rate regions. Such selection implies
that at older ages only the clusters in low disruption rate regions are left, causing the
disruption rate to decrease with age (also see Sect. 8.4.1 and Fig. 8.5). This evolution
of the mean disruption rate is more pronounced if there is a large spread in disruption
rates, like in galaxies with large density contrasts between different regions.

These two effects make the disruptive end of the age distribution shallower and steepen the
young end of the age distribution. In the extreme case, this can lead to an age distribution fol-
lowing a single power law with a slope of−1 over the majority of the age range. The effects
of cluster migration and natural selection are strongest for galaxies with low gas densities,
because in those galaxies the density contrast between starforming regions and their sur-
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Figure 8.10: Schematic representation of the two processes leading to a cluster disruption rate that
decreases with age.Top: Cluster migration. Bottom: Natural selection. The large dots mark star
clusters, the small dots represent debris from disrupted clusters, and the clouds denote gas clouds. Time
increases from left to right in both sequences.

roundings is larger than in high gas density galaxies per definition15. While already present
in simulation 1dG, it could thus be even more important in dwarf galaxies, which have very
low gas densities. For out-of-equillibrium systems such asgalaxy mergers, the dependence
of the age distribution on the mean gas density is different (see Sect. 8.5).

Above, we discussed: (1) the different disruption processes shaping the age distribution,
(2) the effect of the largest possible cluster lifetime on the fitted slope, (3) the effect of cluster
migration, and (4) the effect of natural selection. For all four of those, galactic environments
with high gas densities steepen the slope. As discussed at length before, cluster disruption
is governed by the gas density (ρgas), implying that in isolated disc galaxies, the fitted slope
of the age distribution can be used as a measure for the rapidity of cluster disruption. The
gas density also sets the star formation rate density (ρSFR) of a galaxy through the Schmidt-
Kennicutt law (Schmidt 1959, Kennicutt 1998b). One would therefore expect a correlation
between the fitted slopes of the age distributions in different galaxies and their star formation
rate density. To obtain a measure for the star formation ratedensity that can be determined and
compared for disc galaxies as well as for galaxy mergers at any time during their interaction,

15This holds for isolated galaxies.
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Figure 8.11: Relation between the fitted logarithmic slope of the clusterage distribution in the age
range log (τ/yr) = 7.7–9 and the mean star formation rate densityρh,SFR, which is defined for a sphere
with a radius equal to the half-mass radius of the gas. Each point represents one galaxy snapshot. The
snapshots from the different galaxy simulations are colour-coded as indicated in the legend. The best fit
to the data is shown as a dotted line, while the typical error on each data point is indicated in the bottom
left corner. Top: showing the measured (unaltered) slopes of the cluster agedistributions. Bottom:
showing slopes that are corrected for the variation of the star formation rate (SFR).

we define the mean star formation rate density within a spherewith a radius equal to the
half-mass radius of the gasRh,gas:

ρh,SFR≡
SFRh

Vh,gas
=

3
4π

SFRh

R3
h,gas

, (8.27)

with Vh,gas the volume of the sphere, and SFRh the star formation rate withinVh,gas. For
isolated disc galaxies, most if not all of the star formationoccurs withinRh,gas.

We show the relations betweenρh,SFR and the fitted slope of the cluster age distribution
α and fitted slope of the SFR-corrected age distributionβ in Fig. 8.11 for all 1175 fits. As
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expected, it shows an inverse correlation between the slopeof the cluster age distribution and
the star formation rate density. For the uncorrected slopeα, the fitted relation is given by

α = C − 0.60 logρh,SFR, (8.28)

whereC = −4.66 is a fitting constant that has no particular physical meaning because we
determineρh,SFRfor a sphere of which a non-negligible fraction is constituted by empty space.
If the slopes of the age distributions are corrected for the variation of the SFR instead of using
the raw age distributions, we obtain the relation

β = C − 0.68 logρh,SFR, (8.29)

with C = −5.04. The errors on the fitted slopes in Eqs. 8.28 and 8.29 are smaller than the
listed accuracy. The fitted slopes vary by less than 0.03 if the galaxy in the top-left corner of
both panels in Fig. 8.11 (1dG) is excluded, which underlinesthe reliability of the fits.

The physical correlation between the slope of the age distribution and the star formation
rate density is best described by Eq. 8.29, because in isolated discsβ is independent of the
variation of the SFR. Conversely, the relation betweenα andρh,SFR (Eq. 8.28) would be
relevant for comparison with observations. Either way, theimplication of both relations is
that the rate of cluster disruption increases with the star formation rate density. In Kruijssen
et al. (2011b), we present a similar result for galaxy mergers, in which the number of clusters
decreases during a merger despite the large starbursts and corresponding cluster production.
The net destruction of clusters is attributed to enhanced cluster disruption that is driven by
the high gas density. The analysis of Kruijssen et al. (2011b) does not rely on the cluster age
distributions, but instead considers the number of clusters as a function of time. The number
of surviving clusters is found to decrease with increasing starburst intensity, which is similar
to the relation presented here.

The scatter around the relation between the slope of the age distribution and the star for-
mation rate density is substantial. Within a single galaxy,α andβ vary by 0.5 at a given
star formation rate density, depending on the moment at which the galaxy is observed. Be-
cause it is relatively isolated in the displayed plane, galaxy 1dG in Fig. 8.11 provides a clear
illustration of the spread. Recent debates in literature about the mass-dependence of cluster
disruption involve differences of a similar magnitude, quoting slopes of−1 (Whitmore et al.
2007, Chandar et al. 2010) to−1.5 (Boutloukos & Lamers 2003). As is shown by Fig. 8.11,
such variations may occur even within a single galaxy. Figure 8.11 also illustrates that a slope
of −1 is more likely to occur in galaxies with low star formation rate densities. As such, both
sides of the debate show cases that can arise in the frameworkfor star cluster disruption that
is presented in this chapter16.

8.5 Galaxy mergers

We now consider the galaxy merger simulations from Table 8.2. We discuss the evolution of
individual clusters, as well as the evolution of the clusterpopulation as a whole. The section

16The starbursts in galaxy mergers are characterised by high star formation rate densities, yet the slope of the
cluster age distribution is reported to be−1 (Whitmore et al. 2007), seemingly contradicting Fig. 8.11and Eq. 8.28.
We discuss the inclusion of galaxy mergers in Sect. 8.5.
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is concluded with a discussion of the cluster population in amerger remnant.

8.5.1 The evolution of individual clusters in galaxy mergers

Similar to Fig. 8.5 for disc galaxies, the evolution of the orbits and masses of three ‘repre-
sentative’ clusters from simulation 1m2 are shown in Fig. 8.12. As in Sect. 8.4.1, the clusters
have comparable initial masses (M i ∼ 1.5×104 M⊙) and times of formation (t ∼ 0.12 Gyr),
and the differences in their evolution are the result of their contrasting orbits in different
environments.

The snapshots in Fig. 8.12 follow the merger during the first pericentre passage, when the
orbital differences between the clusters are partially conserved. This is not the case during the
final coalescence of the two galaxies, when violent relaxation randomises the cluster orbits.
Just like in isolated disc galaxies (Fig. 8.5), the cluster closest to the centre of the galaxy has
a low survival chance and is disrupted within∼ 200 Myr. The two other clusters survive the
first passage of the galaxies and experience different evolutionary scenarios. One is ejected
from the disc of its parent galaxy (the red dotted cluster in Fig. 8.12), together with all the
surrounding gas and stars, and ends up in the trailing tidal tail of the galaxy. It has a low
velocity with respect to the tidal tail, but it does experience an intermediate tidal shock when
entering the tidal arm att = 0.32 Gyr, and a strong tidal shock when it hits the densest part
at t = 0.45 Gyr, leading to the disruption of the cluster. The other cluster (blue dashed in
Fig. 8.12) is ejected from the disc as well, but it decouples from the surrounding gas. This
occurs because the gas collides with the other galaxy and is shocked, which slows it down to
form the bridge between both galaxies. By contrast, the cluster retains a ballistic orbit and
becomes part of the stellar halo surrounding the galaxies. As a result, the tidal field strength
decreases and the frequency of tidal shocks becomes low, since the cluster is only shocked
twice per orbit. The tidal shocks occur when the cluster crosses the bridge or the tidal arm and
cause it to lose only a few percent of its mass. Under these conditions, the expected disruption
time of the cluster is several gigayears. Even though the cluster mass is only 104 M⊙, this
could increase to 10 Gyr or more when the tidal arms disperse and the merger consumes
the remaining gas, provided that the cluster does not fall back into the central region of the
merger. This shows that long-lived constituents of the stellar halo surrounding giant elliptical
galaxies are already produced during the first pericentre passage of the progenitor galaxies
(see Sect. 8.5.3).

The cluster evolution depicted in Fig. 8.12 illustrates themechanisms of cluster migra-
tion and natural selection that were explained in Sect. 8.4.4 and Fig. 8.10. The cluster that
decouples from the gas and is ejected into the stellar halo experiences a disruption rate that
decreases as the cluster ages, showing how migration influences the evolution of the cluster
population. On the other hand, the cluster that initially resides close to the galactic centre
is quickly disrupted by the tidal shock of the first pericentre passage, while the two surviv-
ing clusters were situated in less dense environments and therefore survive. This shows how
natural selection governs which clusters survive, and thatthe mean disruption rate of the
population decreases with age as clusters in disruptive environments are destroyed.

The mass loss histories of the clusters in Fig. 8.12 can be understood by considering
the evolution of the tidal field strength and the heating by tidal shocks. Similar to Fig. 8.6
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Figure 8.12: Evolution of the orbits and masses of three clusters in galaxy merger simulation 1m2
during the first pericentre passage of the galaxies. From topto bottom, the consecutive panels show the
situation at different timest , while from left to right the orbital evolution in the x-y plane (face-on), the
orbital evolution in the x-z plane (edge-on), and the mass evolution are shown. The respective clusters
are represented by dark red solid lines, red dotted lines, and blue dashed lines. If at any particular
snapshot a cluster is still undisrupted, its position and mass are marked with thick dots. The orbital
trajectories remain visible after the clusters are disrupted. The small grey dots in the x-y and x-z plane
views map the distribution of the gas particles in the simulation.
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Figure 8.13: Evolution of the cluster mass and the tidal field for the threeclusters from Fig. 8.12,
indicated by the same colours and line styles. The diamonds in the middle and bottom panel indicate
the times of each snapshot.Top: The mass evolution.Middle: Evolution of the tidal field strength
experienced by each cluster, defined as the largest eigenvalue of Eq. 8.8 (see Sect. 8.2.2).Bottom:
Running integral of the total amount of shock heating experienced by the cluster (see Sect. 8.4.1 and
Eq. 8.25).

in Sect. 8.4.1, this is shown in Fig. 8.13 for the clusters in the merger. It confirms that the
short-lived cluster indeed experiences a tidal field strength and tidal shock heating that is only
rivaled by the cluster that ends up in the halo. The reason that the halo cluster is not disrupted
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on the same timescale as the short-lived cluster is that its migration to the halo occurs be-
fore disruption would have led to its complete dispersion, thereby decreasing the tidal field
strength it experiences. The halo cluster therefore only sustains enhanced disruption when
it passes through the bridge between the two galaxies (att = 0.5 Gyr), while the short-lived
cluster stays in a dense environment and is completely disrupted by two subsequent tidal
shocks. By contrast, the cluster in the tidal tail continuously experiences tidal shocks and a
stronger tidal field than the halo cluster, because it is moving with the tidal tail and its envi-
ronment does not change. This leads to an almost constant mass loss rate, which is enhanced
by the tidal shocks occurring when the cluster first enters the tidal tail and also when it hits
the dense centre of the tail. This second tidal shock occurs in between two snapshots and
the corresponding shock heating is therefore not visible inFig. 8.13. The decrease of the
mean tidal field strength and tidal shock heating with age illustrate the mechanism of natural
selection, i.e. the higher survival chances of clusters in quiescent tidal environments. The ef-
fects of cluster migration and natural selection are stronger in galaxy mergers than in isolated
disc galaxies, because both mechanisms are driven by the variation of the environment with
time and space. Such variations are evidently more common ingalaxy mergers than in disc
galaxies.

8.5.2 The age distributions of star clusters in galaxy mergers

The variation of the environment in galaxy mergers leads to acorresponding evolution of
the cluster age distribution. Similar to Sect. 8.4.4, we have fitted the slope of the cluster
age distributions in the range log (τ/yr) = 7.7–9 for all galaxy merger simulations, up to the
moment of their largest starburst, which typically occurs early on during the final coalescence
of both galaxies. The slope is not fitted for later times, because the gas is rapidly consumed
during the starburst. At first, this makes the variation of the cluster formation rate dominate
the shape of the cluster age distribution, implying that a power law fit is very inaccurate, while
later on the age distribution becomes discontinuous due to episodes without any surviving
clusters (see Sect. 8.5.3 and Fig. 8.17). Similar to Sect. 8.4.4, we consider all clusters when
constructing the age distribution, i.e. the samples are mass-limited withM ≥ 100 M⊙.

In Fig. 8.14, the star formation history and evolution of thefitted slope of the age distri-
bution are shown for merger simulation 1m14 (see Table 8.2).The slope widely changes over
the course of the merger, and is shallowest at the times when the star formation rate and star
formation rate density are highest, with typical slopes between−0.5 and−1. This behaviour
is opposite to what is found in Sect. 8.4.4 for isolated disc galaxies, in which the age distribu-
tion becomes steeper for higher star formation rate densities. As was discussed in Sect. 8.4.4,
a shallow slope indicates that cluster migration and natural selection are important, i.e. that
there are large density contrasts in a galaxy, particularlybetween star forming regions and
their surroundings. In isolated disc galaxies, such a largecontrast exists for galaxies with an
overall low gas density, which then contrasts with the densestar forming regions. This low
gas density translates to a low star formation rate density,and gives the relation of Eqs. 8.28
and 8.29. In galaxy mergers, the effects of cluster migration and natural selection are largest
at the height of the interaction. At that point, the star formation rate (density) peaks, because
all gas is funneled to the central regions, leading to a pronounced density contrast between
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Figure 8.14: Time evolution of (top) the star formation rate and (bottom)the fitted slope of the age
distribution in the range log (τ/yr) = 7.7–9 for merger simulation 1m14, with the red solid line denoting
the fit to the actual age distributionα, and the blue dotted line denoting the fit to the SFR-corrected age
distributionβ. The dashed vertical lines indicate the moments of first and second pericentre passage,
and the shaded area marks the period over which the final coalescence occurs.

the concentrated star forming volume and the surrounding regions, which hardly contain any
gas. In the meanwhile, the ongoing interaction ejects the clusters into the gas-poor stellar
halo. The result is visible in Fig. 8.14, in which the slope ofthe age distribution evolves
to shallower slopes during the starbursts. The extreme slopes in between the starbursts are
typically −2.5 to−3, which is steeper than found in isolated discs. The reason is illustrated
below, in the discussion of Fig. 8.15.

Another interesting feature of Fig. 8.14 is the difference between the actual slopeα and
the SFR-corrected slopeβ. Because forβ the variation of the SFR is divided out, one would
expect it to have a more stable evolution thanα. However, this is not the case in Fig. 8.14,
where the variation of the SFR-corrected slope is larger than that of the actual slope. This
is the result of the mechanism identified in Kruijssen et al. (2011b), who find that the gas
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density in starbursts is so high that the young clusters formed in the starburst are disrupted
on much shorter timescales than in isolated galaxies, even to the extent that the total number
of star clusters decreases during a starburst. This counterintuitive result is mainly due to the
lowest mass clusters, which are the most numerous for a powerlaw initial mass function with
a negative slope17. This large number of low mass clusters is susceptible to disruption by the
strong tidal shocks in a starburst region. The surprising consequence is that after a certain
time interval, the age distribution of all clusters lacks clusters in the age range corresponding
to the starburst. After the starburst, the peak in the cluster age distribution shifts to ages just
beforethe maximum of the starburst (also see Sect. 8.5.3 and Fig. 8.18), when the clusters
are still formed in a less violent setting than at the height of the burst, and can be ejected
from their primordial regions before the starburst reachesits maximum (like the halo cluster
of Fig. 8.12).

The evolution of the age distribution is compared to the starformation history in Fig. 8.15,
which shows the evolution of the age distribution at severaltimes after the major starburst in
simulation 1m14. It illustrates several of the points from the previous paragraphs. The first
age distribution (att = 2.02 Gyr) shows the cause of the steep slope of about−3 just before
the second starburst. The fitted slope is steepened relativeto isolated galaxies (compare
Fig. 8.11) due to a deficit of clusters at ages close toτ = 1 Gyr, which corresponds to
the first starburst, when the high densities triggered enhanced cluster disruption. The same
mechanism causes an age-offset between the moment of the second starburst and the peak in
the age distribution, which first emerges when the clusters formed in the starburst have had the
time to be disrupted by their environment. This disruption is evident from the minimum in the
age distribution at ages slightly younger than the starburst. The exact moment when the offset
between the peaks becomes visible depends on the duration and strength of the starburst, but
it typically appears 100 Myr after the starburst. The offsetgrows from∆τ = 14.5 Myr at
t = 2.07 Gyr to∆τ = 132 Myr att = 2.41 Gyr. As shown in Fig. 8.15, it is best seen about
150 Myr after the burst. When considering only the massive clusters (M & 104 M⊙), which
are much less numerous than the low-mass clusters, the deficit of clusters is less prominent.
In the extreme case, the offset of the peak in the cluster age distribution with respect to the
moment of maximum star formation corresponds to the time interval between the onset and
the peak of the starburst.

The age-offset between the starburst and the peak in the cluster age distribution has an
interesting consequence in relation to Fig. 8.14. When dividing the cluster age distribution
by the star formation history for a galaxy merger with a recent starburst, the age range corre-
sponding to the starburst will contain even fewer clusters than without the correction for the
SFR. As a result, the variation of the age distribution is enhanced with respect to the actual
age distribution. This causes the larger variation ofβ than that ofα in Fig. 8.14. The offset be-
tween the peaks in the age distributions of the clusters and stars is also seen when considering
the formation history of the clusters that survive the merger (see Sect. 8.5.3 and Fig. 8.18),
which shows that these clusters are typically formed beforeinstead of during the starburst
maximum. It depends on the accuracy of the age determinations of real clusters whether the
offset can be distinguished observationally, especially because it is less pronounced for the

17The index−2 of the cluster initial mass function adopted in this study implies that every decade in cluster mass
initially has ten times more clusters than the next decade.
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Figure 8.15: Time-evolution of the cluster age distribution (solid lines) and star formation history
(dotted lines) shortly after the second passage of merger simulation 1m14 (att ≈ 2 Gyr). From top to
bottom, the distributions are shown at timest = {2.02, 2.07, 2.18, 2.41} Gyr, corresponding to about
{0,50,150,400} Myr after the starburst. For each line, the moment of the starburst is marked with a
diamond, while the peak in the cluster age distribution is indicated with a triangle. Each age distribution
is shifted down by 5 dex with respect to the distribution above it. The star formation histories are
normalised to match the corresponding age distribution at the left end of the lines. For each pair of
distributions, the age-offset between the peaks∆τ is indicated.

high cluster masses to which observations are naturally limited.
In order to consider the relation between the slope of the agedistribution and the star

formation rate density, we have used the same approach as in Sect. 8.4.4 to determine a mea-
sure of the star formation rate density in galaxy mergers. For both galaxies, we determine the
half-mass radius of the gas distribution and add the enclosed volumes, leaving out any overlap
between both spheres. To avoid artificially low star formation rate densities, the tidal arms
are omitted when calculating the half-mass radius by neglecting all material beyond 100 kpc
from the centre of mass of the simulation. The plane of the fitted age distribution slope ver-
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Figure 8.16: Relation between the fitted logarithmic slope of the clusterage distribution in the age
range log (τ/yr) = 7.7–9 and the mean star formation rate densityρh,SFR. Each point represents one
galaxy snapshot. The isolated disc galaxies are shown as light grey points, and the galaxy mergers are
shown as red points. As in Fig. 8.11, the fit to the isolated disc galaxies is represented by a dotted
line, while the typical error on each data point is indicatedin the bottom left corner.Top: the measured
(unaltered) slopes of the cluster age distributions.Bottom: slopes that are corrected for the variation of
the star formation rate (SFR). The solid line in both panels indicates the evolutionary track of simulation
1m14, of which the evolution of the slope is shown in Fig. 8.14. The mean slope andρh,SFR of the
progenitor galaxies (1dB) is indicated with a cross.

sus star formation rate density is shown in Fig. 8.16 for all galaxy merger simulations, also
including the data from the galaxy disc simulations (see Fig. 8.11). As explained above in the
discussion of Fig. 8.14, the galaxy mergers do not follow therelation between slope and star
formation rate density that holds for isolated disc galaxies. Instead, during starbursts they
typically move to shallower slopes and higher star formation rate densities, i.e. up and to the
right in Fig. 8.16. The large scatter on the points of the galaxy merger simulations arises be-
cause of the wide range of possible age distribution slopes over the course of a single merger,
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Figure 8.17: Logarithmic age distribution dN/d log (τ/yr) of the clusters with agesτ ≥ 1 Gyr in the
merger remnant of simulation 1m14, shown for the snapshot att = 4.9 Gyr. The vertical dashed lines
indicate the moments of first (right) and second (left) pericentre passage, while the shaded area marks
the period over which the final coalescence occurs.

which is also present in Fig. 8.14. The scatter is also increased by our method of estimating
a measure for the star formation rate density, which only allows for an order-of-magnitude
analysis because it is sensitive to the global dynamical changes during the merger.

The typical evolution of a galaxy merger in the diagram of Fig. 8.16 is illustrated by
the evolutionary track of simulation 1m14, which goes through three phases. Initially, both
galaxies reside on the relation for isolated disc galaxies (dotted line and cross). For simulation
1m14, this is not shown in Fig. 8.16, because it occurs too early on in the simulation and
insufficient clusters exist in the fitted age range. The evolutionary track starts at the top
middle of the diagram, during the first pericentre passage, when the star formation rate density
is still intermediate (ρh,SFR ∼ 10−4 M⊙ kpc−3) and cluster migration and natural selection
are important, resulting in a shallow age distribution. In between both pericentre passages,
it returns to the relation for isolated discs because the discs evolve back to a quasi-isolated
state as in Fig. 8.11, but with a slightly higher star formation rate density. This changes just
before the final coalescence, when the density contrast between the starburst region and the
surroundings becomes important again, moving the galaxy tothe top right of Fig. 8.16.

8.5.3 The cluster population of merger remnants

After a galaxy merger is completed and both galaxies have transformed into a single el-
liptical or S0 galaxy, the formation of stars and clusters ceases or proceeds at a low rate
(SFR< 0.5 M⊙ yr−1). As a result, the vast majority of clusters in a merger remnant is old,
with ages dating back to the first and second pericentre passages of the interaction. A first
indication of when and where these clusters (the ‘survivors’) were formed is obtained from
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Figure 8.18: (Cumulative) formation history and radial evolution of theclusters that will survive the
galaxy merger of simulation 1m14, i.e. those that are still present att = 4.9 Gyr.Top: For each timet ,
the figure shows the fraction of the surviving cluster population that has been formed since the start of
the simulation (red solid line) and the fraction that was formed during the 200 Myr precedingt (blue
dotted line). The dark red dashed line shows the cumulative fraction of star particles that have been
formed since the start of the simulation.Bottom: Half-number radius of all present survivors (red solid
line), of the survivors that were formed during the 200 Myr interval before timet (blue dotted line), and
of the star particles that have been formed since the start ofthe simulation (dark red dashed line). Stars
and clusters formed in the ranget = 4–5 Gyr are ignored.

their age distribution, which is shown in Fig. 8.17 for the cluster population older than 1 Gyr
of simulation 1m14. The age distribution shows that most of the survivors are formed approx-
imately at the times of the first and second pericentre passages, just before the corresponding
starbursts. During the last part of the coalescence, some more clusters are formed that survive
the merger. Interestingly, no clusters with ages corresponding to the onset of the coalescence
exist in the merger remnant, because the violent gas influx and the resulting high gas density
shortens the lifetimes of the clusters that are formed underthese conditions.
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A more precise picture of the origin of the cluster population in the merger remnant is
obtained by considering their cumulative formation history and the radial evolution of their
population. This is shown in Fig. 8.18, which follows the time evolution of the (cumulative)
relative formation history and the half-number radius for three groups of objects: all survivors
formed since the start of the simulation (giving a cumulative fraction), the survivors formed
during the last 200 Myr, and all star particles formed since the start of the simulation (also
giving a cumulative fraction). Contrary to the half-mass radius of the gas in Sects. 8.4.4
and 8.5.2, the half-number radius considered here is not defined with respect to the centre of
the appropriate galaxy, but with respect to the centre of mass of the entire simulation.

The cumulative formation history of the survivors shows that each of both pericentre
passages contributes about 30–60% of the old cluster population in the merger remnant. The
precise distribution of percentages depends on the orbitalgeometry of the merger and on
the properties of the progenitor galaxies. In the case of simulation 1m14, which is shown
in Fig. 8.18, the galaxies pass each other on near-polar orbits, yielding a weaker starburst
than a head-on or co-planar encounter and leaving some gas for post-merger star formation.
For more violent starbursts, all gas is consumed and no youngclusters exist in the merger
remnant.

The assembly history of the stellar mass is distributed overboth pericentre passages in
a way that is similar to that of the clusters, even though the first passage gives rise to a
much smaller starburst than the second passage. The stellarmass formed in both passages is
comparable because the duration of the first starburst exceeds that of the second. The most
remarkable difference between the formation history of thestar particles and the surviving
clusters is that they are offset with respect to each other. The surviving clusters are typically
formed at earlier times than the star particles, which was also mentioned in Sect. 8.5.2 and
the discussion of Fig. 8.17. Most of these survivors were ejected into the stellar halo during
the pericentre passages and survived because halo clustersexperience a lower disruption rate
than clusters residing in the discs of both galaxies. These ejected clusters were formed before
the starburst, because the onset of ejection into the halo precedes the moment of peak star-
burst intensity by∼ 200 Myr. The combination of an already enhanced star formation rate
before the ejection and the increased survival chances of halo clusters implies that the ejected
clusters constitute a large part of the post-merger population of survivors.

The ejection of clusters can also be seen by considering the half-number radii of the
system of (recently formed) surviving clusters and of the stars in Fig. 8.18. The pericentre
passages of the two galaxies are visible as minima in the evolution of the half-number radius
of the star particles. Already during the first passage, the half-number radius of the clusters
exceeds that of the star particles, because the clusters that are ejected from the discs of both
galaxies have higher survival chances than the clusters that stay confined to the discs. This
effect becomes even more important during the second passage and final coalescence of the
galaxies, during which the half-number radius of the clusters hardly changes, but the star
particles end up in a much smaller volume. While this could suggest that almost no survivors
are formed at small radii, the half-number radius of the recently formed surviving clusters
proves the contrary. During and shortly (∼ 50 Myr) after the second pericentre passage,
the spatial distribution of the recently formed survivors (blue dotted line in Fig. 8.18) is as
confined as the spatial distribution of star particles. Thisillustrates that the clusters may be
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formed in the galactic discs, but are subsequently ejected due to the dynamical interaction
of the galaxies, increasing their chances for survival. At later times (> 50 Myr after the
pericentre passage), the survivors are formed at differentlocations than the stars, because the
clusters that are formed in the centre of the starburst are disrupted. These two examples of
natural selection imply that the spatial distribution of the star cluster population in merger
remnants does not follow the distribution of the stars, but is spatially more extended.

8.6 Discussion

In this section, we provide a summary and a discussion of the possible improvements and
potential applications of our method.

8.6.1 Summary

We have presented numerical simulations of isolated and merging disc galaxies, in which
a sub-grid model for the formation and evolution of the entire star cluster population is in-
cluded. The description for the star clusters is semi-analytic and includes a model for their
internal dynamical evolution and the resulting changes of the stellar mass function within the
clusters. The prescription for cluster disruption has beenvalidated by comparing toN -body
simulations of dissolving star clusters, giving good agreement. When considering individual
clusters within our simulations, the tidal field strength and tidal shocks are found to have
a clear effect on the mass loss histories of the clusters. This provides a verification of the
presented method.

One of the key advantages of the model is that it shows how the disruption rate of clusters
varies in time and space. We have used our disc galaxy simulations to assess the implications
of this for characteristic properties of the cluster populations. We find that the mean age of
the cluster population increases with galactocentric radius, because the disruption rate and the
cluster formation rate are highest near the galactic centre. This is also found in observations
of the clusters in M51 (Gieles et al. 2005) and the Milky Way (van den Bergh & McClure
1980, Froebrich et al. 2010). The relative contribution of tidal shocks to the disruption of
star clusters is found to be∼ 80%, which weakly increases with increasing gas fraction of
the galactic disc. A similar value was found by Lamers & Gieles (2006) from an analysis of
clusters in the solar neighbourhood.

The combination of disruption due to two-body relaxation, tidal shocks, and their vari-
ation in time and space affects the slope of the cluster age distribution through two main
mechanisms that lead to the same result. ‘Cluster migration’, i.e. the motion of clusters
away from their formation sites, and ‘natural selection’, i.e. the higher survival probability of
clusters in quiescent environments, both imply that the mean disruption rate decreases with
age. In the extreme case, this can cause an age distribution with a single logarithmic slope of
−1 over the majority of the age range, instead of the classicalflat distribution at young ages
combined with a steep decline at old ages. For isolated disc galaxies, the effects of cluster
migration and natural selection are largest in low gas density galaxies, because these have
higher gas density contrasts between star forming regions and their surroundings. Combin-
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ing this with the relation between gas density and star formation rate density (Schmidt 1959,
Kennicutt 1998b), we obtain a clear correlation between thestar formation rate density and
the slope of the disruptive (old) end of the age distribution, which is steeper for higher star
formation rate densities.

Our simulations of galaxy mergers show that the disruption rates of clusters vary widely
and depend on their orbital histories during the merger. Theclusters that reside in the central
regions of the galaxies are disrupted on short timescales, while clusters that are ejected into
the stellar halo can survive for several gigayears. The mechanisms of cluster migration and
natural selection are prevalent in galaxy mergers, becausethe environment of clusters strongly
varies in time and space. As a result, the fitted slope of the cluster age distribution (in the
range log (τ/yr) = 7.7–9) evolves from−0.5 or−1 during the starbursts, when the contrast
between the concentrated star forming volume and its surroundings is largest, to−2.5 or
−3 in between the pericentre passages, when the discs evolve back to a quasi-isolated state.
This is a fundamental physical difference compared to isolated galaxies, in which the density
contrast between star forming regions and their surroundings is largest for galaxies with low
star formation rate densities.

The star clusters that survive the merger and populate the merger remnant are typically
formed at the moments of the pericentre passages, i.e. slightly before the starbursts that occur
during a galaxy merger. These clusters constitute a large fraction (30–60% per pericentre
passage) of the survivors for two reasons. Firstly, they areformed in large numbers, because
the star formation rate already increases before the peak ofthe starburst. Secondly, during the
pericentre passage, the formed clusters are ejected into the stellar halo, where the disruption
rate is low and the survival chance is high. The clusters thatare produced in the central region
during the peak of the starburst are short-lived and disruptbefore they can migrate to the halo.
As a result, a peak in the star formation rate does not necessarily correspond to a peak in the
cluster age distribution. Depending on the properties of the starburst and the time that elapsed
since it occurred, both peaks will be offset with respect to each other.

This chapter shows that the variability of the disruption rate in time and space has a pro-
nounced impact on the properties of cluster populations in arange of galactic environments.
It affects the spatial distribution of clusters, their age distribution, and the evolutionary his-
tories of the clusters that survive until the present day. Asdiscussed in Sect. 8.1, it has been
common practice in literature to adopt a single, “mean” disruption rate for the entire cluster
population of a galaxy. While this approach holds many advantages due to its simplicity, we
now see that the resulting cluster populations have very different properties than those ensu-
ing from a more realistic setting, in which the effects of theformation, disruption, and orbital
histories of the clusters are intertwined.

8.6.2 Improvements

While the presented model gives a more detailed descriptionof the formation and evolution
of star cluster populations than before, there are several points at which it could be improved.
We discuss five key improvements.

(1) The current treatment for star formation uses one gas particle per spawned star particle.
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This implies that the particle mass limits the maximum cluster mass, because it is not
possible to form clusters that are more massive than the starparticle which they are
part of (see Sect. 8.2.2). As a result, it is not beneficial to increase the resolution of the
simulation, because it will decrease the maximum cluster mass below the current value
of ∼ 105.8 M⊙. Especially when considering galaxy mergers, in which clusters with
masses around 107 M⊙ should be produced, improving this would be very relevant.
We intend to include a group-finding algorithm in the near future, which will evaluate
the Jeans criterion for groups of gas particles. This would enable the formation of
a single star particle out of multiple gas particles, and will also allow us to increase
the resolution of the simulations without compromising themass range of the cluster
population. In addition to giving a more realistic description of the star formation
process, this would also enable us to resolve the ISM down to smaller scales, and
improve the description of cluster disruption due to tidal shocks.

(2) Supermassive black holes (SMBHs) and the possible feedback from SMBHs are presently
not included. The vast majority of star clusters resides in the range where the tidal field
due to the SMBH can be neglected, so the disruption rate of star clusters is not directly
affected by the omission of SMBHs. An indirect effect of the presence of SMBHs
could be important in galaxy mergers, during which feedbackfrom SMBHs may be
responsible for the expulsion of all gas from the galaxy (Di Matteo et al. 2005). This
would disrupt any gas discs that may reform in the merger remnant and would halt
further formation of star and clusters. Because it is a second order effect for the prob-
lem we are addressing, and because there are currently no definitive models for SMBH
feedback (Pelupessy 2007, Sijacki et al. 2010), we have chosen to omit SMBHs in
the present model. Whenever a more conclusive model for SMBHfeedback becomes
available, it will be included in our model.

(3) We have approximated the evolution of the half-mass radius of star clusters with a sim-
ple power law dependence on the cluster mass, fixing the normalisation and power law
index by means of a comparison toN -body simulations of dissolving clusters on ec-
centric orbits. This is important, because the disruption timescale due to tidal shocks
depends on the half-mass density. Using the adopted relation, we reproduce the disrup-
tion times found in theN -body simulations. Even though the relation is consistent with
the theoretically expected relation in the ‘mass loss-dominated’ regime from Gieles
et al. (2011), a better approach would be to adopt a prescription for the half-mass ra-
dius that has a more extensive physical foundation. Unfortunately, current mass-radius
relations in literature are based on the evolution of clusters in a smooth galactic poten-
tial, and depend on the galactocentric radius (Gieles et al.2011). While this is accurate
for globular clusters on orbits with a low eccentricity, it does not work for clusters or-
biting within a galactic disc or in galaxy mergers, where thetidal field is erratic due to
the non-uniform distribution of the gas. An appropriate model for the evolution of the
half-mass radius in such an environment could be obtained byfeeding an erratic tidal
field intoN -body simulations of star clusters and monitoring their structural evolution.
Such an analysis is well beyond the scope of the present work,and we will update the
mass-radius relation whenever a better description becomes available.
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(4) At present, the model does not include a description for chemical enrichment, and
consequently all clusters have the same metallicity. Whilethis has a negligible effect
on the mass evolution of the clusters, their photometry is affected (see Kruijssen &
Lamers 2008 for a quantitative analysis). Moreover, including a prescription for the
chemical evolution of the star cluster population would enable a better comparison
with (spectroscopic) observations, in which chemical abundances can be established
with a generally higher accuracy than other properties suchas cluster ages. It would
also allow us to investigate the relation between metallicity and other characteristics
of the cluster population, and to improve the model for star formation, which depends
on the chemical composition of the gas. We aim to include a model for chemical
enrichment in a future work.

(5) The cluster formation efficiency (CFE), i.e. the fraction of stars that is formed in a
clustered form, is assumed to be constant. This implies thatthe exact value acts as a
normalisation of the total number of clusters, leaving it asa free parameter. It is set
to 90% to obtain better statistics for the simulated clusterpopulations (see Sect. 8.2.2).
However, there have been suggestions that the CFE depends onthe local environment,
particularly on quantities like the star formation rate density (Goddard et al. 2010). The
exact dependence of the CFE is still far from certain, but if there exists an environmen-
tal dependence, this would affect the cluster population byfavouring the formation of
clusters in certain parts of a galaxy. This could also have a secondary effect on the clus-
ter population, because cluster disruption may also proceed differently in parts with an
enhanced CFE. Again, an environmental dependence of the CFEwill be included when
it is better constrained, either from models or observations.

Apart from these main areas for improvement, we will keep updating the models asN -
body simulations and observations of clusters in a broader range of environments become
available.

8.6.3 Applications

In order to trace the formation and evolution of galaxies using star cluster populations, it
is necessary to investigate how different galactic environments affect the cluster population.
Our model is a very suitable tool to gain more insight into this question, because it relates
the evolution of each cluster to its (time-dependent) localenvironment. This implies a certain
flexibility that allows us to apply the model to a broad range of galaxies. While a first analysis
of the interplay between galaxies and their star cluster populations is already given in this
chapter, there are many more observables of the cluster population that should be investigated
under different galactic conditions.

It would be particularly useful to understand the impact of galaxy mergers on cluster
populations, because such an understanding enables the useof cluster populations to probe
merger histories and the hierarchical assembly of galaxies. Mergers are recognized as im-
portant drivers of starbursts and corresponding cluster formation, which are fuelled by high
gas densities. However, as is shown in this chapter, a high gas density also implies a large
disruption rate. It is not trivial to determine whether formation or destruction dominates. We
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have considered this question in Kruijssen et al. (2011b) asa first application of the model,
and find that the total number of clusters decreases during a merger, because the large gas
densities result in more destruction than formation. Destruction is most prominent for the
numerous clusters with low masses, whereas for the fewer massive clusters formation does
dominate during certain episodes of the galaxy interaction. The corresponding change of the
cluster mass function could be used as a tracer of the merger type.

By modeling specific, real galaxies, it is possible to explain observed properties of the
cluster population and to predict its features that presently fall below the detection limit.
Such case studies will also verify the model, and possibly provide constraints on aspects
of the model that are currently uncertain (see Sect. 8.6.2).For instance, by comparing the
observed and modeled star formation rates and the number of clusters within a certain mass
and age range, it will be possible to infer the cluster formation efficiency in a particular
galaxy18.

As is indicated in Sect. 8.1, the disruption rate of star clusters is commonly assumed to be
constant when deriving the star formation history (SFH) of agalaxy from its star cluster pop-
ulation. Although this approximation is convenient, the thus obtained SFH will differ from
the actual one. The impact of the disruption time on the inferred SFH was recently illustrated
by Maschberger & Kroupa (2011, Fig. 4), who show that it depends on the adopted disruption
rate to what extent the gap in the age distribution of clusters in the Large Magellanic Cloud
is reflected in the inferred SFH. For their choice of disruption rates, the SFR in the age range
corresponding to the age gap varies by about 1.5 dex, resulting in cases in which the SFR
does and does not contain the age gap of the cluster age distribution. Because the conditions
within an evolving galaxy vary widely, the impact of the time- and space-variation of the
disruption rate are likely of the same order of magnitude. Itis therefore essential to resolve
how this variation may affect SFHs that are inferred from thestar cluster population.

The formation and evolution of star cluster populations arethe result of several mecha-
nisms that act simultaneously, such as starbursts, feedback, tidal shocks, two-body relaxation,
cluster migration, natural selection, and many other processes. While certain parts may still
be uncertain, the current understanding of these mechanisms enables the modeling of the
cluster population in a way that reflects the variability andcomplex nature of real galactic
environments. Future applications of the model should therefore provide new clues to the
(co-)evolution of galaxies and their star cluster populations.
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Chapter 9
Formation versus destruction: the evolution of the
star cluster population in galaxy mergers

J. M. Diederik Kruijssen, F. Inti Pelupessy, Henny J. G. L. M.Lamers,
Simon F. Portegies Zwart, Nate Bastian and Vincent Icke

in preparation (2011)

Abstract We address the evolution of the star cluster population in galaxy mergers. While inter-
acting galaxies are well-known for their high star formation rate and rich star cluster populations, it is
also recognized that the rapidly changing tidal field can efficiently destroy clusters. We use numeri-
cal simulations of merging disc galaxies to investigate which mechanism dominates. Our study shows
that the tidal forces during the merger are strong enough to destroy the majority of stellar clusters on
short timescales. This implies that the wealth of star clusters observed in nearby merging galaxies is
in fact extremely short-lived. While the merger can cause the formation of clusters with masses much
higher than in normal non-interacting galaxies due to the increased star formation rate, it destroys an
additional 95% of all stellar clusters compared to isolatedgalaxies, preferentially annihilating the low-
est mass clusters. The mass distribution of the surviving star clusters in the merger remnant develops
a peak at a mass of about 102.5 M⊙, which subsequentially evolves to higher masses. These results
imply that globular cluster systems are the natural consequence of hierarchical cosmology and the large
starbursts occurring in the early universe.

9.1 Introduction

Merging and interacting galaxies host huge starbursts and large populations of young massive
stellar clusters (Holtzman et al. 1992, Schweizer et al. 1996, Whitmore et al. 1999). A galaxy
interaction triggers inflows of interstellar gas towards the galaxy centres, where it fuels a burst
of star formation (Hernquist 1989, Mihos & Hernquist 1996).The starbursts that are triggered
in mergers of massive spiral galaxies play a central role in the assembly of the stellar mass
in the universe, as galaxies are thought to have formed through hierarchical merging (White
& Rees 1978), indicating that a large fraction of all stars were formed in starbursts (e.g.
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Reddy & Steidel 2009). Some fraction of this star formation takes place in compact stellar
clusters (Elmegreen 1983, Whitmore et al. 1999, Bastian 2008) with masses in the range
102–107 M⊙ (Portegies Zwart et al. 2010). The clusters that remain after the merger are often
used as fossils to trace the formation history of the galaxy (Larsen et al. 2001).

Over the past two decades, observations with the Hubble Space Telescope have revealed
that many nearby ongoing galaxy mergers host exceptionallyrich star cluster populations
with cluster masses exceeding 107 M⊙ (Schweizer 1982, Holtzman et al. 1992, Bastian et al.
2006), which are formed due to the perturbation of the interstellar medium (ISM) (Schweizer
1987, Ashman & Zepf 1992). The multitude of star clusters suggests that they are useful
tracers of past galaxy mergers, especially because they areeasily observed up to distances
of several tens of megaparsecs. The observed massive clusters (> 104 M⊙) are distributed
according to a power law with index−2 down to the detection limit (Zhang & Fall 1999).
These clusters are just the ‘tip of the iceberg’, since the mass distribution appears to continue
beyond the detection limit and down to the physical lower mass limit (see e.g. Portegies Zwart
et al. 2010).

However, high gas densities and tidal shocks, both of which are prevalent in coalesc-
ing galaxies, are known to have a disruptive effect on star clusters (Spitzer 1958, Weinberg
1994b, Gieles et al. 2006b). The destruction rate of star clusters decreases with increas-
ing cluster mass and density (Spitzer 1987, Lamers et al. 2005a). This indicates that star
cluster disruption could be masked by observational selection effects and go unnoticed in
observations, i.e. the brightest and therefore most massive clusters are easiest to detect and
least affected by disruption. The important role of star cluster disruption is supported by
the old (‘globular’) star cluster systems that are observedin nearby spiral and giant elliptical
galaxies, which are strongly lacking low-mass clusters with respect to the young populations
in presently merging galaxies (Vesperini 2001, Fall & Zhang2001, Kruijssen & Portegies
Zwart 2009, Elmegreen 2010). Whether or not the disruption of star clusters dominates over
their formation is not easily determined on analytical grounds. Either way, a galaxy collision
will affect the star cluster population.

To resolve whether cluster formation or destruction dominates in interacting galaxies, we
have conducted numerical simulations of merging galaxies,which include a model for the
formation and evolution of star clusters. This allows us to quantify the net effect of a galaxy
merger on its star cluster population. In Sect. 9.2 we brieflysummarize our model, while the
evolution of the star cluster population is assessed in Sect. 9.3. We conclude this chapter by
discussing the implications of the results.

9.2 Summary of the model

We model the formation and evolution of star clusters coupled to a numerical simulation code
for galaxy evolution (Pelupessy 2005). Here we provide a summary of the model, which was
presented and validated by Kruijssen et al. (2011c).

We use the code to calculate self gravity of gas, stars, and dark matter as well as the
hydrodynamics of the gas. It includes a model for the ISM geared towards a faithful rep-
resentation of the warm neutral medium and cold neutral medium phases, including metal
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cooling, cosmic ray ionization, and UV heating. Stellar wind and supernova feedback are
taken into account by using pressure particles (Pelupessy et al. 2004, Pelupessy 2005). Star
cluster formation and evolution is included as a sub-grid model component of the star par-
ticles (Kruijssen & Lamers 2008, Kruijssen 2009). Sites of star and cluster formation are
selected based on a Jeans mass criterion and the initial masses of the star clusters are drawn
from a power law distribution with index−2 in the range 102–107 M⊙, with an exponen-
tial truncation at high masses (Schechter 1976). This reflects the observed mass distribution
of young star clusters (Zhang & Fall 1999, Lada & Lada 2003, Larsen 2009). The cluster
formation rate is proportional to the star formation rate (SFR), because we adopt a constant
cluster formation efficiency (Bastian 2008). We do not include clusters more massive than
about 105.9 M⊙ because they would exceed the particle mass.

The mass evolution of individual clusters is governed by mass loss due to stellar evolution
and dynamical disruption:
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with M the cluster mass and the subscripts ‘se’ and ‘dis’ denoting stellar evolution and dis-
ruption, respectively. The mass loss due to stellar evolution is taken from the Padova models
(Marigo et al. 2008). The dynamical mass loss is caused by twosimultaneous mechanisms.
Firstly, the stars in the cluster are driven over the tidal boundary due to two-body relaxation
(Spitzer 1987). Secondly, stars can gain energy from tidal shocks, i.e. fluctuations of the tidal
field caused by passages through dense regions such as giant molecular clouds (GMCs) or
spiral arms (Gieles et al. 2006b, 2007a). We parametrize themass loss due to disruption as
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wheret rlx
dis represents the timescale for disruption by two-body relaxation andtsh

dis the timescale
for disruption by tidal shocks. Both timescales are relatedto the tidal field. The derivation is
given in Kruijssen et al. (2011c), but here we give the final expressions. Fort rlx

dis the expression
is:
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whereM4 is the cluster mass in units of 104 M⊙, γ = 0.62 is the mass dependence of the
disruption timescale (Lamers et al. 2005a), andT is the tidal field strength.

For the disruption timescale due to tidal shocks, the approaches of Gieles et al. (2007a)
and Prieto & Gnedin (2008) can be combined to obtain (Kruijssen et al. 2011c):
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where rh is the half-mass radius,I tid is the tidal heating parameter (see Prieto & Gnedin
2008), and∆t the time since the last shock, reflecting the timescale on which the cluster is
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Figure 9.1: Evolution of the star cluster population during a galaxy merger. Sequence of snapshots
from one of our galaxy merger simulations at four different times. The surface density of the gas
is displayed in greyscale, while the particles that containstar clusters are shown in colours denoting
the ages of the clusters as indicated by the legend. The subsequent images show the collision at four
characteristic moments:t = 0.1 Gyr, just before the first passage;t = 0.8 Gyr, in between the first and
second passage;t = 1.6 Gyr, which is just after the second passage, but just before the final merger;
t = 3.4 Gyr, when only the merger remnant is left.

heated. We assumerh = 4.35 pc (M /104 M⊙)0.225, consistent with theN -body simulations by
Baumgardt & Makino (2003) (see Kruijssen et al. 2011c). BothEq. 9.3 and 9.4 are calibrated
for clusters with King parameterW0 = 5. For other density profiles, the constants in the
equations change, but the lifetimes of the clusters are similar.

The above relations between the mass loss rate and the tidal field have been compared
and calibrated to theN -body simulations of star cluster disruption by Baumgardt &Makino
(2003) to ensure their accuracy. In isolated disc galaxies with 15–30% of their baryonic
mass in gas, typically 85% of the cluster disruption is accounted for by tidal shocks (Eq. 9.4)
(Kruijssen et al. 2011c), while the remainder is covered by two-body relaxation (Eq. 9.3), in
excellent agreement with a study of the solar neighbourhoodby Lamers & Gieles (2006). For
a given amount of mass loss, we also compute the corresponding change of the stellar mass
function within the cluster (Kruijssen 2009). The described model enables us to follow the
formation and evolution of the entire star cluster population for different galactic histories.

9.3 Evolution of the star cluster population

We apply our model to the evolution of the star cluster population in galaxy mergers. For clar-
ity, we first discuss one representative example here. Figure 9.1 shows a classical sequence of
the evolution of a galaxy merger simulation together with the results from our cluster evolu-
tion model. Both galaxies are Milky Way-like, each having a total mass ofMgal = 1012 M⊙.
The gas fraction is 30%, and the galaxies contain a stellar bulge and dark matter halo (see
Springel & Hernquist 2005 for details). The concentration index of the dark matter density
profile corresponds to a formation epoch ofz = 2 (Bullock et al. 2001), such that the model
is representative of precursors to current galaxies. Each galaxy is initially constituted by
45,875 star particles, 15,375 gas particles and 1,000,000 dark matter particles, giving parti-
cles masses of 8× 105 M⊙ for the baryons and 106 M⊙ for the dark matter. This is sufficient
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to model cluster disruption, which occurs due to more massive structures (Kruijssen et al.
2011c). The galaxies follow a prograde-retrograde parabolic orbit (see the arrows and lines
in Fig. 9.1), with a projected apocentre of 6 kpc and rotationaxes perpendicular to the orbital
plane. The panels in Fig. 9.1 show the distributions of gas and star clusters at different times
during the interaction. The first image displays the galaxies as they approach each other for
their first passage (att = 0.1 Gyr), when the tidal interaction between the galaxies is still rel-
atively weak and the SFR is at an intermediate level (∼ 6 M⊙ yr−1). The spatial distribution
of star clusters is restricted to both galaxy discs, where the gas resides from which they are
formed, and their destruction rate is low since it is dominated by the internal galactic tidal
field and encounters between clusters and GMCs.

In the second image of Fig. 9.1 (t = 0.8 Gyr), the galaxies are shown between their first
and second passage. By this time, the gravitational interaction has produced long tidal tails.
Most star clusters still follow the morphology of the gas because they have just been formed
in a large starburst (about 50 M⊙ yr−1) that was triggered by the angular momentum loss
and consequent inflow of the gas during the first pericentre passage. Some intermediate age
clusters have been ejected from the discs by the interaction. They represent the first star
cluster constituents of a stellar halo forming around the two galaxies. The total number of
clusters has decreased since the previous snapshot, despite the large starburst (see below).
This is due to the tidal perturbation of the star clusters by the large central gas density (that
also drove the starburst), prompting a stronger increase ofthe cluster destruction rate than of
the cluster formation rate.

As the galaxies proceed to merge, the effects of the interaction intensify. The third panel
of Fig. 9.1 displays the galaxies during the short interval between the second passage and
their final coalescence (t = 1.6 Gyr), in a configuration that is similar to the “Antennae”
galaxies (NGC 4038/4039, see Karl et al. 2010). During this phase, the remaining gas is
strongly shocked and rapidly loses angular momentum, beingfunneled towards the centres
of the galaxies where it cools to form large numbers of stars and star clusters (Mihos &
Hernquist 1996). This second starburst is accompanied by aneven stronger increase of the
cluster destruction rate, this time decimating the clusterpopulation. Many of the surviving
clusters are ejected from the central region into the stellar halo that surrounds the galaxies.
The population of surviving clusters develops a characteristic mass due to the destruction of
low-mass clusters, which are more easily disrupted by tidalshocks. As a result, the number
of clusters decreases more strongly than the total mass in clusters.

When the merger is completed, as is shown in the last image of Fig. 9.1 (t = 3.4 Gyr),
the system has transformed into a giant elliptical galaxy, in which the star cluster system
has dispersed into the stellar halo. The SFR drops to a minimum after the merger, due to
the depletion of the gas during the starbursts. The surviving population of clusters that were
formed before and during the merger is reminiscent of currently observed globular cluster
systems in many respects. First of all, the spatial configuration of these clusters is comparable
to that of the globular cluster population of the Milky Way (Harris 1996), giant elliptical
galaxies (Harris 2009) and young merger remnants (Schweizer et al. 1996), following a power
law density profile with index−3.2 in the outer parts, which is the approximate behaviour
of a de Vaucouleurs profile (de Vaucouleurs 1948). Secondly,the mass distribution of the
surviving clusters is developing a peak at a mass of 102.5 M⊙, caused by the tidal disruption of
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Figure 9.2: Evolution of the star formation rate (SFR, top), mean tidal heating (〈I tid〉, middle) and the
number of star clusters (N , bottom) for two different galaxy merger simulations. The left-hand panels
show the results for the prograde-retrograde encounter from Fig. 9.1, while the right-hand panels repre-
sent a similar encounter with both galaxies rotating in the prograde direction (anticlockwise in the con-
figuration of Fig. 9.1). The thick dots mark the moments that are displayed in Fig. 9.1. The number of
star clusters in the bottom panels is shown for different cuts in initial mass (log (M i/M⊙) > {2, 3, 4, 5})
and/or age (τ < 10 Myr, bottom lines only). The dotted curves denote the results for the two disc
galaxies evolving in isolation. The vertical dashed lines indicate the times of first and second pericentre
passage and the shaded areas specify the time interval over which the final coalescence occurs.

the low-mass clusters, which is also observed in recent merger remnants (e.g. Goudfrooij et al.
2007). This peak mass is still smaller than the characteristic mass of globular cluster systems
(105 M⊙, Harris 1996), which can be attained after the several billions of years of star cluster
disruption following the merger until the present day (Vesperini 2001, Fall & Zhang 2001,
Kruijssen & Portegies Zwart 2009), possibly also due to subsequent collisions with other
galaxies. Lastly, due to the high peak SFR, the merger produces a population of clusters that
extends to higher masses than for isolated galaxies, in agreement with observations (Bastian
2008).

In order to test the generality of these results, we have carried out a set of 24 major
merger simulations, which are described in detail in Kruijssen et al. (2011c). We adjusted
the galaxy mass ratio (1:1–1:2), virial mass (1011–1012 M⊙), halo formation redshift (z = 0–
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Figure 9.3: Evolution of the mass distribution of star clusters during the merger. Shown are the
distributions at different timest . As time progresses, the distribution shifts downwards dueto the net
destruction of clusters. The dots in the legend mark the moments of Fig. 9.1. The slope of the initial
mass distribution is shown as a dashed line, which would haveclosely resembled the mass distribution
at all times had the two galaxies evolved in isolation.

5) , disc scale length (via the spin parameterλ = 0.05–0.10), gas fraction (0.2–0.5), bulge
presence, and the orbital geometry of the collision. The results of two simulations are shown
in Fig. 9.2, where the star formation history as well as the time-evolution of the tidal shock
heating and the number of star clusters for different initial mass cuts are shown. The figure
also includes a comparison with the two disc galaxies evolving in isolation. Just after the
pericentre passages, the galaxies exhibit a pronounced increase of the SFR (0.5–1 dex), but
an even stronger increase of the mean tidal shock heating (1–1.5 dex), implying that the
total number of clusters decreases. Both effects are drivenby the strong tidal interaction
between the galaxies and the subsequent growth of the central (gas) density. If tidal disruption
were neglected, the number of clusters would have doubled during the merger compared to
the two discs evolving in isolation. For both galaxy mergers, disruption is most prominent
after the pericentre passage that triggers the strongest starburst. The resulting decrease of
the number of clusters is largest for the lowest cluster masses, which is clearly seen in the
number evolution for different initial mass cuts in Fig. 9.2. During the starbursts, the number
of clusters temporarily increases only for the subset of young and massive clusters that are
easily detected in observations. The preferential destruction of the low-mass clusters causes
the initially scale-free (except for the Schechter-type truncation) cluster mass distribution to
develop a characteristic mass, which is shown in Fig. 9.3. This would not occur for mass-
radius relationsrh ∝ M δ with δ ≥ 1/3, but such a strong correlation is not supported by any
observational evidence. After the merger is completed, most of the gas has been exhausted
and the SFR becomes much lower than would have been the case had the galaxies evolved in
isolation.



222 Chapter 9

For all simulations, the results are in accordance with those shown in Fig. 9.2, as they
exhibit a very similar decrease of the number of clusters during the merger. The number
of clusters after the merger is always 2–20% of the amount that the two discs would have
contained in isolation. Much of the variation is caused by the different orbital geometries.
Retrograde, co-planar encounters lead to enhanced angularmomentum loss of the gas and
correspondingly stronger starbursts and greater destruction of clusters, decreasing their num-
ber by a factor 20–50. Galaxies on inclined orbits such that they follow near-polar trajectories
prompt a weaker effect due to a less pronounced gas inflow, yielding a decrease of about a
factor 5. We find that the total number of surviving clusters strongly decreases with increasing
peak SFR.

9.4 Discussion

We show that galaxy mergers efficiently disrupt star clusters, in apparent contradiction with
the large star cluster populations that are observed in colliding galaxies. However, these two
notions are in fact compatible. The observations are naturally constrained to massive (& 104–
105 M⊙) and young (. 10 Myr) clusters (Zhang & Fall 1999, e.g.), for which Fig. 9.2shows
that their number typically increases by more than a factor 3during starbursts. Nonetheless,
in terms of numbers, a star cluster population is dominated by the unseen low-mass star
clusters that are effectively destroyed during the merger before they reach ages much older
than a few tens of Myr. We predict that young to intermediate-age (∼ 2 Gyr old) merger
remnants should display a peak in the star cluster mass distribution at about 103 M⊙ due to
the destruction of low-mass clusters (see Fig. 9.3). Futureobservations will be able to detect
this peak and thereby further constrain the assembly history of individual galaxies.

It is tempting to interpret the existence of a peak in the massdistribution of the surviving
star clusters as the early formation of a globular cluster system (Ashman & Zepf 1992). If this
were the case, the orbits of the clusters should be randomized during the galaxy interaction,
such that there exists no radial trend of the characteristicmass (Vesperini et al. 2003). The
violent relaxation occurring during galaxy mergers is efficient at ejecting clusters from their
original environment (Prieto & Gnedin 2008, Bastian et al. 2009, Kruijssen et al. 2011c),
which is also shown by the assembly of the stellar halo in the second and third images of
Fig. 9.1. As a result, the mass distribution of the survivingclusters in our simulations is
not correlated with galactocentric radius. Shortly after the completion of the merger, secular
cluster disruption increases the characteristic mass by 0.2—0.3 dex per Gyr for the next two
gigayears. If the merger took place in the early universe (& 9 Gyr ago), the characteristic
mass would thus have the time to evolve to that of observed globular cluster systems. This
would not be accomplished without the gas depletion, the migration of clusters into the halo,
and the enhanced disruption occurring during the merger.

The increased cluster disruption rate in galaxy mergers is driven by the high gas densities
that also cause the burst of star formation. This indicates that the mechanism of enhanced
disruption is not necessarily constrained to major mergers, and can be generalized to any
environment with a high gas density and a correspondingly high SFR. While major mergers
provide a very efficient formation channel for globular cluster populations, they are not a
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prerequisite. A generalisation to all dense environments is supported by dwarf galaxies like
Fornax, which has not undergone a major merger and yet holds ahandful of globular clusters
(Shapley 1939, Hodge 1961). This generalization suggests that globular cluster populations
may be the inevitable outcomes of the large starbursts occurring in the early universe.
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Epilogue: Probing the co-evolution of star clusters
and galaxies in the Antennae system – why the
grand total is more than just the sum of its parts
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J. M. Diederik Kruijssen and Nate Bastian
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Abstract The Antennae galaxies (NGC 4038/9) are a prime example of a system with a well-studied
star cluster population, of which the galactic environmenthas changed fundamentally over the past hun-
dreds of Myrs. We model the Antennae system by using numerical simulations of interacting galaxies
that include a description for the formation and evolution of the star cluster population. The age and
mass distributions of star clusters, as well as the correlation with the spatial distribution of clusters is
assessed. The modelled and observed distributions are found to be in good agreement. The slope of the
cluster age distribution suggests that the time-evolutionof the disruption rate due to cluster migration
and natural selection (see Chapter 8) is important for ages below τ ∼ 150 Myr. This hypothesis is con-
firmed by the age dependence of the mean ambient gas density ofthe clusters, which steeply decreases
with age untilτ ∼ 150 Myr. The variability of the environment leads to the preferential disruption
of young clusters, which illustrates that the implicationsof the cruel cradle effect (see Chapter 2) is
observable on galactic scales. We conclude by pointing out that the properties of the cluster population
are not a simple result of the adopted cluster disruption law, but instead arise due to the complex prop-
erties of the galactic environment, which underlines the necessity of accounting for the evolution of the
environment when interpreting observed cluster populations.

10.1 Introduction

The populations of young star clusters in interacting galaxies have received increasing at-
tention over the past two decades (Holtzman et al. 1992, Whitmore & Schweizer 1995,
Schweizer et al. 1996, Whitmore et al. 1999, Bastian et al. 2005), which has been primarily
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driven by the launch of the Hubble Space Telescope and the potential of the latest generations
of large-scale ground based facilities. The Antennae galaxies (NGC 4038/9) have emerged as
the hallmark of cluster-forming systems (e.g. Whitmore et al. 1999), due their relatively close
proximity of less than 22.5 Mpc (Schweizer et al. 2008) and the interaction-induced starburst
of 10–20 M⊙ yr−1 (Zhang et al. 2001, Karl et al. 2010), which produces a large population of
young star clusters. It is the nearest approximately equal-mass major merger of two gas-rich
galaxies, which has enabled a detailed study of the system across all wavelengths, in X-ray
(Fabbiano et al. 2004), UV (Hibbard et al. 2005), optical (Whitmore et al. 1999), IR (Gilbert
& Graham 2007), and radio (Hibbard et al. 2001). With the large amounts of data on the An-
tennae system, it also raises a large number of questions. A property of the cluster population
in the Antennae system that pushes known limits is the maximum cluster mass. Masses well
over 106 M⊙ (Zhang & Fall 1999) or even over 107 M⊙ have been reported. Whether or not
there is a fundamental upper mass limit for star clusters could thus potentially be tested in
this particular merger.

Galaxy mergers are famous for their large nuclear starbursts, which are driven by the in-
flow of the gas due to the tidal torques that are exerted on the gas discs by the interaction
(Hernquist 1989, Mihos & Hernquist 1996). In the Antennae, the region in which both galax-
ies touch (the ‘overlap region’) contains a plethora of young star clusters, indicating a recent
starburst outside the galaxy centres (Whitmore et al. 1999). Explaining this extra-nuclear
starburst has been one of the main challenges for numerical work on the Antennae (e.g. Mi-
hos et al. 1993). In a recent paper, Karl et al. (2010) have presented the first numerical model
that reproduces the spatial distribution of star formation, including the starburst in the overlap
region. Out of a larger parameter search, they have isolatedthe orbital history that best fits
the current properties of the system, thus enabling new studies that assess the properties of
the Antennae in more detail.

Perhaps the most puzzling aspect of the cluster population of the Antennae galaxies is
the suggestion that the cluster age distribution (dN/dt) follows a power law with index−1
up to ages of a few 100 Myr, independent of cluster mass (Fall et al. 2005, Whitmore et al.
2007). This would imply that 90% of all clusters is disruptedevery age dex, a process which
has been interpreted by these studies as being due to (long-duration) infant mortality – the
disruptive effect of the expulsion of the primordial gas, which is traditionally thought to
take place on much shorter time scales, of about 10 Myr (Lada &Lada 2003, Goodwin &
Bastian 2006). However, our recent analysis of simulationsof star formation (Kruijssen et al.
2011a) suggests that infant mortality may not be as ubiquitous as previously thought, due to
the gas-poor state of stellar subclusters in star-forming regions. This would imply that other
cluster disruption mechanisms are responsible for the long-duration infant mortality that is
potentially observed in the Antennae, such as tidal shock heating and two-body relaxation.
However, these mechanisms depend on the cluster mass and typically take place on longer
time scales than gas expulsion itself. Either way, the observed age distribution requires a
particularly high disruption rate for young clusters.

Classically, cluster age distributions have been modelledfor constant disruption rates due
to tidal shocks and two-body relaxation (e.g. Lamers et al. 2005a, Lamers & Gieles 2006),
giving rise to a disruption time that increases with clustermass. At young ages, the resulting
age distribution is flat, because it takes a finite time for theclusters of the lowest masses to
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be disrupted. At an age related to the disruption time scale of the lowest cluster mass, the
age distribution bends down, to a slope that is determined bythe slope of the cluster initial
mass function and the mass dependence of the disruption timescale. This part of the age
distribution is steeper than the slope of−1 that is found in the Antennae.

The time dependence of the disruption rate has recently beenaddressed by Elmegreen &
Hunter (2010) and Kruijssen et al. (2011c), who have shown that it decreases with cluster
age. In Kruijssen et al. (2011c), we have attributed this to two processes.

(1) Cluster migration, i.e. the motion of young star clusters away from star-forming re-
gions, where the number density of giant molecular clouds (GMCs) and the disruption
rate are high. Because older clusters are spatially less associated with star-forming
regions than young clusters, this leads to a disruption ratethat decreases with age.

(2) Natural selection, i.e. the preferential destruction of clusters that reside in ‘disruptive’
environments. As a cluster population ages, the mean disruption rate is lower for those
clusters that have survived longer, leading to a disruptionrate that decreases with age.

These two mechanisms are important in environments with large changes in the environment
of clusters during their lifetimes. A galaxy merger like theAntennae galaxies is therefore a
prime location where cluster migration and natural selection could play a role. The imprint
of a spectrum of disruption rates on the cluster age distribution is twofold. At young ages, the
flat distribution steepens up to a slope of about−1 due to the disruption of clusters with high
disruption rates. At older ages, the classically disruptive slope becomes shallower, because
not all clusters are being disrupted (yet). The end result could well be an age distribution
with a slope close to−1 over a long age range. If the disruptiveness of star-forming regions
would be so high that clusters of all masses could be disrupted in a single encounter with a
GMC, this age distribution would also be independent of mass.

In this chapter, we apply the numerical models of Kruijssen et al. (2011c) to simulate
the Antennae system and its star cluster population. These models self-consistently combine
N -body/SPH simulations of galaxies and galaxy mergers with adescription for the formation
and evolution of star clusters, allowing us to track the properties of the cluster population
throughout the evolutionary history the Antennae. Next to being a suitable test for the models,
the present chapter will also allow us to test the hypothesisthat the recent evolution of the
galactic environment shapes the cluster population of the Antennae galaxies, and that the
processes of cluster migration and natural selection are important.

We begin with a summary of the modelling method and an overview of the adopted initial
conditions in Sect. 10.2. The cluster population is discussed in Sect. 10.3, where the age-,
mass- and spatial distributions are presented and explained. The chapter is concluded with a
discussion of the results, and it is illustrated how the other chapters of this work have been
combined in our effort to understand the Antennae galaxies.

10.2 A model for the Antennae system

In this section, we describe the way in which we model the Antennae system and which
parameters we use for the simulation.



228 Chapter 10

10.2.1 Summary of the model

We follow the formation and evolution of star clusters usinga semi-analytic model that is
coupled to a numerical simulation code for galaxy evolution(Pelupessy 2005). Here we
provide a summary of the model, which has been described in more detail by Kruijssen et al.
(2011c).

We use the numerical galaxy evolution code to calculate selfgravity of gas, stars, and
dark matter as well as the hydrodynamics of the gas. The modelfor the interstellar medium
(ISM) is aimed at a reliably describing the warm neutral medium and cold neutral medium
phases, and includes metal cooling, cosmic ray ionization,and UV heating. Stellar wind
and supernova feedback are taken into account by using pressure particles (Pelupessy et al.
2004, Pelupessy 2005). Star cluster formation and evolution is included as a sub-grid model
component of the star particles (expanding on the methods ofLamers et al. 2005a, Kruijssen
& Lamers 2008, Kruijssen 2009). Sites of star and cluster formation are selected based on
a Jeans mass criterion and the initial masses of the star clusters are drawn from a power
law distribution with index−2 in the range 102–107 M⊙, with an exponential truncation at
high masses (Schechter 1976). This is in accordance with theobserved mass distribution of
young star clusters (Zhang & Fall 1999, Lada & Lada 2003, Larsen 2009, Portegies Zwart
et al. 2010). We adopt a constant cluster formation efficiency (Bastian 2008), implying that
the cluster formation rate is proportional to the star formation rate (SFR). Clusters that are
initially more massive than about 105.9 M⊙ are excluded because they would exceed the
particle mass.

After their formation, the individual clusters lose mass due to stellar evolution and dy-
namical disruption:

(

dM
dt

)
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(

dM
dt

)
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+
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, (10.1)

with M the cluster mass and the subscripts ‘se’ and ‘dis’ denoting stellar evolution and dis-
ruption, respectively. The mass loss due to stellar evolution is taken from the Padova models
(Marigo et al. 2008). The dynamical mass loss arises from twomechanisms. The stars in a
cluster are driven over the tidal boundary due to two-body relaxation (Spitzer 1987), but they
can also gain energy from tidal shocks, i.e. fluctuations of the tidal field caused by passages
through dense regions such as GMCs or spiral arms (Gieles et al. 2006b, 2007a). The mass
loss due to disruption written as
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wheret rlx
dis represents the timescale for disruption by two-body relaxation andtsh

dis the timescale
for disruption by tidal shocks. Both timescales are relatedto the tidal field, and their deriva-
tion is given in Kruijssen et al. (2011c). Fort rlx

dis the expression is:

t rlx
dis = 1.7 GyrM γ

4

(

T

104 Gyr−2

)−1/2

, (10.3)
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whereM4 is the cluster mass in units of 104 M⊙, γ = 0.62 is the mass dependence of the
disruption timescale (Lamers et al. 2005a), andT is the tidal field strength, which is equal to
the largest eigenvalue of the tidal tensor.

For the disruption timescale due to tidal shocks, the approaches of Gieles et al. (2007a)
and Prieto & Gnedin (2008) can be combined to obtain (Kruijssen et al. 2011c):

tsh
dis = 3.1 GyrM4

(

rh

pc

)−3 (

I tid

104 Gyr−2

)−1 (

∆t
Myr

)

, (10.4)

where rh is the half-mass radius,I tid is the tidal heating parameter (see Prieto & Gnedin
2008), and∆t the time since the last shock, reflecting the timescale on which the cluster is
heated. We assumerh = 4.35 pc (M /104 M⊙)0.225, consistent with theN -body simulations
by Baumgardt & Makino (2003) (see Kruijssen et al. 2011c). Both Eq. 10.3 and 10.4 are
calibrated for clusters with King parameterW0 = 5. For other density profiles, the constants
in the equations change, but the lifetimes of the clusters are similar.

The above relations between the mass loss rate and the tidal field give results that accu-
rately reproduce theN -body simulations of star cluster disruption by Baumgardt &Makino
(2003). In isolated disc galaxies with 15–30% of their baryonic mass in gas, typically 85%
of the cluster disruption is accounted for by tidal shocks (Eq. 10.4) (Kruijssen et al. 2011c),
while the remainder is covered by two-body relaxation (Eq. 10.3), in excellent agreement
with a study of the solar neighbourhood by Lamers & Gieles (2006). In the changing envi-
ronments of galaxy mergers, the disruption due to tidal shocks is enhanced by more than an
order of magnitude (1–1.5 dex) due to the high gas densities (see Kruijssen et al. 2011b). For
a given amount of mass loss, we also compute the corresponding change of the stellar mass
function within the cluster (Kruijssen 2009). The described model enables us to follow the
formation and evolution of the entire star cluster population in the Antennae galaxies.

10.2.2 Simulation parameters and orbital history

A solution for the orbital history of the Antennae has recently been provided by Karl et al.
(2010), who matched the observed spatial distributions of stars and star formation with a
numerical galaxy merger model. The input snapshot used in our simulations was generated
by S. Karl (priv. comm.) from the exact same initial conditions except for the numbers of
particles, which were chosen to suit the modelling of the star cluster population with the
method of Kruijssen et al. (2011c). Here, we briefly summarise the key parameters of the
input model, most of which can also be found in Karl et al. (2010).

The progenitor discs of the two galaxies have been generatedsuch that they can be related
to the outcomes ofΛCDM cosmology (Mo et al. 1998, Springel & Hernquist 2005). Each
galaxy contains a Hernquist (1990) dark matter halo, an exponential disc, and a stellar bulge.
The total virial mass of each galaxy is 5.52×1011 M⊙, with a disc mass fraction ofmd = 0.075
and a bulge mass fraction ofmb = 0.025, yielding a bulge-to-disc ratio of 1:3. The gas
fraction of the discs isfg = 0.2, with the remainder of the disc as well as the bulge being
constituted by stars. The halo spin parameterλ1 = 0.10 for NGC 4038, andλ2 = 0.07 for
NGC 4039, implying discs with radial scale lengths ofrd,1 = 6.28 kpc andrd,1 = 4.12 kpc,
respectively (Mo et al. 1998). The bulge scale lengths and vertical scale lengths of the discs
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Figure 10.1: Morphology of the Antennae system and its star cluster population. Left: Com-
posite optical image taken with the 20-inch telescope at Kitt Peak National Observatory (credit:
Twardy & Twardy/Block/NOAO/AURA/NSF).Right: Best matching snapshot from our simulation,
at t = 1.22 Gyr. The surface density of the gas is displayed in greyscale, while the particles that contain
star clusters are shown in colours denoting the ages of the clusters as indicated by the legend.

are rb,1 = zd,1 = 1.26 kpc andrb,2 = zd,2 = 0.82 kpc. The adopted particle numbers for
each progenitor galaxy are 400,000 dark matter halo particles, 20,000 bulge particles, 48,000
stellar disc particles, and 12,000 gas disc particles, resulting in baryonic particle masses of
6.9× 105 M⊙ and dark matter halo particle masses of 1.2× 106 M⊙.

The evolution of the system is computed using a gravitational softening length of 0.14 kpc,
which ensures that the disruption of star clusters is not notably artificially enhanced by
single-particle encounters (see Kruijssen et al. 2011c). The adopted orbit is prograde and
near-parabolic, with a projected pericentre distance of 10.4 kpc and an initial separation of
168 kpc. The initial orientation of both discs can be characterised by rotation around the
x-axis by an angleθ, around the y-axis by an angleψ and around the z-axis by an angleφ.
For NGC 4038, Karl et al. (2010) findθ1 = 60◦ andφ1 = 60o, while for NGC 4039 they
obtainθ2 = 60◦ andφ2 = 30◦. In order to consider the system from the same point of view as
the Antennae, the entire simulation needs to be rotated. Forsubsequent rotations around the
x-, y-, and z-axes, the required rotation angles are{θ,ψ,φ} = {93◦, 69◦, 253.5◦}. This setup
produces a spatial configuration for the Antennae galaxies which best matches the observed
system att = 1.22 Gyr, some∼ 20 Myr after the second pericentre passage. This exact
moment is slightly earlier than the best match att = 1.24 Gyr that was reported in Karl et al.
(2010), which is due to the different particle numbers and smoothing length. Nonetheless,
the∼ 20 Myr time difference between the best match and the second pericentre passage is
consistent with their analysis.

10.3 Properties of the cluster population

The observed and simulated spatial characteristics of the Antennae galaxies and their star
cluster population are compared in Fig. 10.1. Both images are consistent in terms of the
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Figure 10.2: Age distributions of star clusters in the Antennae system.Left: Solid lines rep-
resent the mass-limited, simulated age distributions for (from top to bottom) lower mass limits of
{102, 103, 104, 105} M⊙. The dashed line gives the star formation history in the simulation, while the
thick points and dotted lines denote the observed age distribution of clusters with masses above 105 M⊙

from Whitmore et al. (2007).Right: Star formation rate-corrected, mass-limited, simulatedage distri-
butions for (from top to bottom) lower mass limits of{102, 103, 104, 105} M⊙. For agesτ < 150 Myr,
they are well-approximated with a power law with index−1.

global morphology, since the tidal arms and configuration ofboth galaxy discs are well-
reproduced. The largest difference is the gas plume to the left of the main galaxies in the
simulated image, which does not appear in the optical observations and is not visible in radio
images either. The observed and simulated spatial distributions of star and cluster formation
are well-matched, with several starburst regions – two in the central discs of both galaxies,
one in the ‘western loop’ (top of the left-hand galaxy) and one in the ‘overlap’ region quoted
by Whitmore et al. (1999, also see Sect. 10.1). The top sides of both galaxies in the simulated
image host several intermediate-age clusters (τ ∼ 100 Myr) which are currently escaping the
discs. Similar examples have been observed in the actual Antennae by Bastian et al. (2009).
They also identified a cluster projected onto southern tidalarm with an age of∼ 200 Myr,
which coincides with the ages of the clusters residing in thetidal tails of our simulation.

To address the ages of the clusters in some more detail, Fig. 10.2 shows the mass-limited
age distributions of the observed and simulated cluster populations, as well as the star forma-
tion history (SFH) and the SFH-corrected age distributions. For the same lower mass limit
M > 105 M⊙, the observed and simulated age distributions are in good agreement, with mean
slopes that differ by less than 5%. Regardless of the lower mass limit, the simulated age distri-
butions have a logarithmic slope of about−1 up to an age of aboutτ ∼ 150 Myr, after which
their slope becomes mass-dependent. This is particularly well visible in the SFH-corrected
panel of Fig. 10.2, which shows that clusters more massive than 105 M⊙ are less efficiently
destroyed than those with masses 102 M⊙. This behaviour at old ages (τ > 150 Myr) is
the ‘classical’ result that is expected from predictions that do not account for variations of
the disruption rate (e.g. Lamers et al. 2005a). It is clear that while the interaction-induced
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Figure 10.3: Simulated age-evolution of the ambient gas densities of star clusters in the Antennae
system.Left: Mean ambient gas density as a function of cluster age.Right: Distribution of ambient gas
densities for different cluster age ranges.

starburst influences the simulated age distribution at agesτ < 50 Myr, the fluctuation of the
SFH is much smaller than the overall decline of the number of clusters with age.

It was shown by Elmegreen & Hunter (2010) and Kruijssen et al.(2011c) that an age dis-
tribution with a logarithmic slope of−1 indicates an age-decrease of the mean disruption rate,
which is caused by ‘cluster migration’ and ‘natural selection’ (see Sect. 10.1 and Kruijssen
et al. 2011c). The disruption of clusters in a galaxy merger is mainly caused by tidal shocks
due to encounters with GMCs and other high-density regions (Kruijssen et al. 2011b,c). Pro-
vided that these tidal shocks are initially strong enough todisrupt massive clusters in a single
encounter, the imprint of disruption on the cluster age distribution will be independent of
cluster mass.

We test whether the slope of the age distribution is indeed due to the age-evolution of
the disruption rate by considering the mean ambient gas density of clusters as a function of
their age. The ambient gas density is estimated by summing the gas particle masses within
one smoothing length of the parent star particle of each cluster and dividing by the enclosed
smoothing volume. The age-evolution of the mean ambient gasdensity and of the distribu-
tion of ambient gas densities is shown in Fig. 10.3. As expected from the slope of the age
distribution, the mean ambient gas density decreases by more than three orders of magnitude
beforeτ ∼ 150 Myr. At older ages, it flattens to a constant value at whichtidal shocks are
unable to disrupt clusters in a single encounter. As a result, for agesτ > 150 Myr the imprint
of cluster disruption on the age distribution returns to the‘classical’, mass-dependent form
(Lamers et al. 2005a). Not surprisingly, the age scale at which this occurs corresponds to the
ages of the clusters escaping the main discs of the Antennae in Fig. 10.1 and Bastian et al.
(2009).

The mass-independence of cluster disruption and the transition to a more mass-dependent
form at agesτ > 150 Myr are also visible in the cluster mass function, which is shown for
different age intervals in Fig. 10.4. The logarithmic slopeof the mass distribution is close to
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Figure 10.4: Simulated mass distribution of star clusters in the Antennae system. The solid line
represents the total cluster mass function, while the dashed lines denote the mass function for different
age intervals (see legend).

−2 for all age intervals, but it does become flatter for the oldest age interval (see the squares
in Fig. 10.4, i.e. 8< log (τ/yr) < 9). This is illustrated by the best fitting logarithmic slopes
for the subsequent age intervals, which (from young to old) are−1.92,−1.84 and−1.74 for
the mass function below1 log (M /M⊙) < 5.5. However, this flattening typically occurs in
the part of the mass function atM < 104 M⊙, which (especially at these old ages) is below
the detection limit. Current observations of the cluster mass function in the Antennae should
therefore yield the same slope for all age intervals, which is indeed the case (Zhang & Fall
1999). The mass functions for different age intervals in Fig. 10.4 are also nearly identical in
terms of their absolute value, which is a result of the fact that the logarithmic slope of the age
distribution is close to−1. This yields equal numbers of clusters in logarithmicallyspaced
age intervals.

10.4 Emergent effects in galactic environments

It should be emphasised that the apparent cluster mass-independence of disruption that we
find for the cluster population of the Antennae system does not apply to the mass evolution of
individual clusters. The cluster disruption model that we used is based on a mass-dependent
disruption time (Lamers et al. 2005a, Kruijssen et al. 2011c), which for a fixed disruption
rate would produce a two-component age distribution that isflat at young ages, and has a
logarithmic slope steeper of about−1.5 at old ages (Lamers et al. 2005a, Lamers & Gieles

1At higher masses, the steepening of the mass functions is artificial due to the maximum cluster mass in our
simulations.



234 Chapter 10

2006). However, the variation of the galactic environment in time (or age) and space gives
rise to a cluster population in which the disruption rate decreases with age, and specifically
so that young clusters of all masses can be disrupted by a single, strong tidal shock due to
the disruptive nature of their galactic environment. As a result, the observed and simulated
age distributions of the cluster population in the Antennaesystem reflect the mechanisms
of cluster migration and natural selection. Older clustershave migrated to less disruptive
environments and are the remaining survivors after those clusters in disruptive environments
were destroyed at younger ages. The combination of these effects yields an age distribution
that is well-approximated by a single power law with a logarithmic slope of−1 for ages
τ < 150 Myr, independently of the cluster mass. At older ages, the disruption rate has
decreased to a constant, low value, for which the imprint of disruption on the cluster age and
mass distributions resembles the ‘classical’ model by Lamers et al. (2005a).

The properties of the star cluster population in the Antennae galaxies are consistent with
the picture of mass-dependent disruption (Lamers et al. 2005a), in which more massive clus-
ters are less easily disrupted, and also with the concept of ‘emergent’ mass-independent dis-
ruption (Elmegreen & Hunter 2010, Kruijssen et al. 2011c), in which the variation of the
galactic environment influence the properties of the cluster population. However, our results
are not consistent with the fundamentally mass-independent parameterisation of Whitmore
et al. (2007), which is independent of the environment.

In summary, the Antennae system is an excellent example of how the properties of the star
cluster population are the result of the interplay between the fundamental aspects of cluster
evolution and the galactic environment. The dramatic metamorphosis of the two galaxies
is leaving a clear imprint on the properties of the star cluster population, even to the extent
that it mimics other known mechanisms – the rapid decline of the age distribution at young
ages, in which 90% of all clusters are disrupted during each factor of ten in age, is similar to
‘infant mortality’ (Lada & Lada 2003, Bastian et al. 2006, Goodwin & Bastian 2006), which
refers to the early disruption of clusters due to gas expulsion. This parallel was also drawn by
Whitmore et al. (2007), who referred to the destruction of clusters in the Antennae as infant
mortality. However, gas expulsion should be expected to occur on a time scale of∼ 10 Myr,
rather than the∼ 150 Myr that spans the rapid, mass-independent disruption of clusters in
the Antennae. It is now clear that it is not infant mortality which efficiently disrupts the
clusters independently of their mass, but the tidal interaction of the young clusters with their
primordial environment. We named this mechanism the ‘cruelcradle effect’ in Kruijssen
et al. (2011a, Chapter 2 of this work), where we analysed hydrodynamical simulations of
star formation and found that the stellar substructure can evolve to a gas-poor state before
the onset of feedback, potentially implying that disruptive effect of gas expulsion could be
much weaker than anticipated. Whether or not the cruel cradle effect plays an observable
role compared to infant mortality (and on which time scale itacts) will depend on the global
dynamics of a galactic system and on its gas content.

In order to understand the star cluster population of the Antennae galaxies, it is required
to follow the formation and evolution of the individual clusters within their galactic context.
We have connected the dynamics of stellar (sub)clusters in star-forming regions (Chapter 2)
with the dynamical evolution of star clusters (Chapters 3–7), and with the dynamical evolu-
tion of galaxies and galaxy mergers (Chapters 8 & 9). While itis clear that these steps have
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led to new insights, and have improved our understanding of the co-evolution of star clus-
ters and galaxies, it is also evident that some questions have been left unanswered, and new
questions have arised. How do the chemical properties of thestar cluster population evolve
in a dynamically changing galactic environment? How does the dark matter halo of a galaxy
influence its star cluster population? And given the relation between star clusters and their
host galaxies, is it possible to use globular cluster systems to trace the hierarchical assembly
of galaxies back to the early universe?

The field of astrophysics is not progressing in a linear way, but it is continuously develop-
ing into a plethora of directions, which cannot be covered bythe mere three dimensions we
have at hand. Some of them will prove to be fruitful, others will turn out to be dead ends. In
this work we set out to understand the dynamics of the star clusters in a seemingly immobile
sky. Setting these systems in motion revealed more than justtheir histories – it opened up a
direction through which we can grasp the influence that a complex cosmic environment has
on their characteristics. This interplay of the different physical processes gives rise to certain
emergent properties, and illustrates that an evolving starcluster population is more than just
the sum of its parts.

We have not only made the stranger move. He has also spoken.
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Hénon, M. 1960, Annales d’Astrophysique, 23, 668 (cited onpage 134)
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Nederlandse samenvatting

Het heelal is oud. Heel oud. Volgens de huidige schattingen is het universum waarin wij ons
bevinden ongeveer 13,7 miljard jaar geleden ontstaan. Dat is gelijk aan tweehonderd miljoen
mensenlevens, zeven miljoen keer de tijd die verstreken is sinds Caesar de Rubicon overstak,
zeventigduizend keer de leeftijd van de diersoortHomo Sapiens, of zestig keer de ouderdom
van de oudste dinosauriërfossielen. De aarde zelf bestaateveneens al erg lang: het heelal is
slechts drie keer ouder.

Eén blik op een heldere sterrenhemel is genoeg om de aarde omons heen te zien vervagen,
en roept talloze vragen op over onze plek in de kosmos. De vele1 sterren en nevels lijken
misschien stil te staan, maar in werkelijkheid is het heelaleen en al dynamiek. Door de
gigantische afstanden waarover kosmische processen zich afspelen, duren ze vaak te lang om
met het blote oog te onderscheiden tijdens een mensenleven.Niet alleen is het zo dat het
heelal onvoorstelbaar groot is, het heeft ook een substantiële ontwikkeling doorgemaakt. Het
is een van de belangrijkste doelstellingen van de moderne astrofysica om te achterhalen hoe
deze ontwikkeling zich precies heeft afgespeeld.

Sterrenhopen en sterrenstelsels in het heelal

In dit proefschrift wordt de vorming en ontwikkeling van sterrenhopen en sterrenstelsels be-
handeld. Hoe deze vorming en ontwikkeling precies verlopenhangt af van de ontwikkeling
van het heelal als geheel. Het is daarom belangrijk kort de structuur van heelal te bespreken.

In figuur A.1 wordt de hiërarchische opbouw van het heelal getoond. Op de grootst
zichtbare afstand van de aarde is er een gloed zichtbaar, dieeen beeld geeft van de meest
omvangrijke bekende structuur – de verdeling van licht in het vroege heelal. Dezekosmische
achtergrondstralingkan worden gezien als het nagloeien van de oerknal en is min ofmeer
homogeen. De afwijkingen van het gemiddelde zijn van de ordevan een duizendste procent.
Naarmate deze minieme fluctuaties van de materieverdeling in het vroege heelal groeiden on-
der invloed van de zwaartekracht, ontstonden er grotere dichtheidscontrasten, wat het heelal
op grote schaal een sponsachtige structuur heeft gegeven. In de knooppunten en filamenten

1Zoals wel vaker in de astrofysica is dit begrip relatief. Op een heldere nacht kan het menselijk oog enkele
duizenden sterren onderscheiden, maar alleen al in de Melkweg bevinden zich honderden miljoenen exemplaren.
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Figuur A.1: Versimpelde weergave van de hiërarchische opbouw van het heelal. Paneel (a) toont de
verdeling van licht in het (gehele) vroege heelal, kort na deoerknal (afkomstig van de WMAP satel-
liet/NASA). Het helderheidsverschil tussen rood en blauw is van de orde van slechts een duizendste
procent. Paneel (b) toont een computersimulatie van de sponsachtige materieverdeling in het heelal
(uit deMillennium Simulatie, V. Springel), die zichtbaar wordt na enkele miljarden jaren ontwikkeling
en enige vergroting. Paneel (c) toont een cluster van sterrenstelsels (van de Hubble Space Telesco-
pe/NASA), die zich in de knooppunten van het kosmisch web bevinden. Paneel (d) bevat een enkel
(spiraal)sterrenstelsel (van de Hubble Space Telescope/NASA). Paneel (e) geeft een voorbeeld van een
(bolvormige) sterrenhoop (47 Tucanae, opname van 2MASS/Caltech). De ster Sirius (na de zon de
helderste ster aan de hemel, opname van Yuuji Katahira) is afgebeeld in paneel (f).
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van ditkosmisch webbevinden zich clusters van sterrenstelsels, de grootste structuren in het
heelal die gebonden zijn door de zwaartekracht. Een enkel sterrenstelsel herbergt tientallen
miljoenen tot honderd biljoen sterren, en een cluster van sterrenstelsels bevat typisch vijftig
tot duizend sterrenstelsels. Wij bevinden ons in een buitenwijk van het Virgo cluster van ster-
renstelsels, in een spiraalsterrenstelsel dat de Melkweg genoemd wordt en een paar honderd
miljoen sterren bevat. Deze sterren zijn meestal geı̈soleerd, maar soms bevinden ze zich in
sterrenhopen, groepen van honderd tot een miljoen sterren die door hun onderlinge aantrek-
king bij elkaar blijven. Een enkel sterrenstelsel zoals de Melkweg kan vele tienduizenden
sterrenhopen bevatten.

De eigenschappen van de verschillende structuren in het heelal zijn verre van onverander-
lijk. Gedurende de afgelopen 13,7 miljard jaar hebben sterren, sterrenhopen, sterrenstelsels
en clusters van sterrenstelsels een enorme ontwikkeling doorgemaakt. Onder invloed van
de zwaartekracht hebben de meeste sterrenstelsels interacties, botsingen en samensmeltingen
met andere sterrenstelsels ondergaan. De gebeurtenissen op deze schaal zijn het gevolg van
de eigenschappen van het heelal als geheel, en laten op hun beurt het gas, de sterren en de
sterrenhopen in de sterrenstelsels ook niet ongemoeid. In botsende sterrenstelsels blijven in-
dividuele sterren weliswaar ongeschonden2, maar de gigantische moleculaire gaswolken in
de sterrenstelsels komen vaak wel met elkaar in botsing. Hierdoor trekken de gaswolken sa-
men en worden nieuwe sterren en sterrenhopen gevormd. Het aangezicht van sterrenstelsels
wordt getransformeerd tijdens een botsing, maar in de vorm van oude en nieuwgevormde
sterrenhopen dragen ze nog steeds de overblijfselen van hunhistorie met zich mee. Som-
mige sterrenhopen in een sterrenstelsel zijn bijna net zo oud als het heelal zelf, en mits juist
geı̈nterpreteerd kunnen deze structuren inzicht verschaffen in de ontwikkeling van het sterren-
stelsel waarin ze zich bevinden. Daarvoor is het noodzakelijk om de vorming en ontwikkeling
van sterrenhopen en hun moederstelsels van begin tot einde te begrijpen.

Stervorming

Het bestaan van sterrenhopen is te danken aan de manier waarop de vorming van sterren
verloopt. De gaswolken in een sterrenstelsel bevinden zichin een zekere mate van evenwicht
tussen de naar buiten gerichte gasdruk en de naar binnen gerichte zwaartekracht. Wanneer een
gaswolk verstoord wordt, zij het door een passerende spiraalarm of door een gravitationele
interactie met een andere gaswolk, dan kan het zijn dat de zwaartekracht het wint van de druk
– de gaswolk krimpt ineen onder zijn eigen massa. Het ineenkrimpen verloopt lokaal sneller
dan op grote schaal, waardoor de gaswolk fragmenteert. De fragmenten veranderen in sterren
wanneer hun dichtheid zo hoog wordt dat er in hun binnenste kernfusie optreedt. Deze sterren
zijn op dat moment nog aan het zicht onttrokken door de omringende gaswolk.

De fragmentatie van een ineenstortende gaswolk zorgt ervoor dat sterren nooit alleen wor-
den geboren. In de nabije omgeving van jonge sterren bevinden zich altijd andere exempla-
ren. Het hangt vervolgens af van de onderlinge afstanden of deze sterren ook gravitationeel
gebonden blijven. Wanneer de dichtheid hoog genoeg is en de sterren op voldoende korte af-

2Dit komt doordat binnen een sterrenstelsel de onderlinge afstanden tussen sterren veel groter zijn dan hun
omvang. Een botsing tussen twee sterren is daardoor zeer onwaarschijnlijk, terwijl botsingen tussen sterrenstelsels
haast onafwendbaar zijn doordat de verhouding tussen hun onderlinge afstand en omvang veel kleiner is.
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stand van elkaar staan, is de onderlinge aantrekkingskracht sterk genoeg om de groep sterren
bij elkaar te houden. Al deze sterren draaien dan hun banen binnen de groep. De groep jonge
sterren is een sterrenhoop geworden.

Het gas dat zich in en rond een jonge sterrenhoop bevindt, wordt uitgedreven door de
energie die de sterren leveren in de vorm van sterwinden en supernova-explosies. De uit-
drijving van het gas veroorzaakt een afname van de totale zwaartekrachtspotentiaal in de
sterrenhoop, waardoor (een deel van) de sterrenhoop ongebonden kan worden en uiteendrijft.
Omdat dit proces plaatsvindt in sterrenhopen met een zeer jonge leeftijd, wordt ditinfant mor-
tality genoemd. Het is echter de vraag in hoeverre infant mortalityin staat is sterrenhopen
te vernietigen. Ooit werd gedacht dat alle sterren in sterrenhopen werden geboren, waardoor
de ratio van het aantal sterren in sterrenhopen en het aantallosse sterren (decluster formati-
on efficiency, CFE) kon worden gebruikt om de sterkte van infant mortalityte bepalen. Dit
gaf aan dat ongeveer 90% van alle sterrenhopen door infant mortality vernietigd zou moeten
worden. Tegenwoordig weten we echter dat niet alle jonge groepen sterren gravitationeel
gebonden zijn, ondanks de fragmentatie in stervormingsgebieden. Daardoor is de CFE niet
voldoende om inzicht te krijgen in de rol die gasuitdrijvingspeelt in de vernietiging van jonge
sterrenhopen. Naast infant mortality en de vorming van ongebonden groepen sterren, wordt
er in Hoofdstuk 2 nog een ander mechanisme besproken dat leidt tot een lagere efficiëntie
van de vorming van gebonden sterrenhopen (zie onder).

Ongeacht de precieze fractie van de stervorming die resulteert in gebonden sterrenhopen,
is het zo dat de sterrenhopen die gevormd worden bepaalde eigenschappen hebben door de
manier waarop het stervormingsproces verloopt. De fragmentatie van een ineenstortende
gaswolk leidt tot een groep sterren die niet alleen bij benadering dezelfde leeftijd hebben,
maar ook min of meer dezelfde chemische samenstelling. Daarnaast verloopt de fragmentatie
en accretie van gas zodanig dat de massaverdeling van jonge sterren altijd dezelfde vorm
volgt. Zware sterren zijn veel zeldzamer dan lichte sterren: de initi ële massafunctie(IMF)
van sterren kan goed worden beschreven met een stuksgewijzemachtswet, die voor sterren
met massa’s groter dan een halve zonsmassa geschreven wordtals dn/dm ∝ m−2.3. De
universaliteit van de IMF wordt alleen geschonden door de verdere dynamische ontwikkeling
van sterrenhopen (zie onder), waarbij sterren met lage massa’s over het algemeen een grotere
ontsnappingskans hebben dan zware sterren. Door al deze eigenschappen van de sterren in
een jonge sterrenhoop is de helderheid en het spectrum van een sterrenhoop op ieder moment
van zijn bestaan goed te voorspellen, op voorwaarde dat de verdere ontwikkeling eveneens
bekend is.

De ontwikkeling van sterrenhopen

Nadat een sterrenhoop gevormd is, neemt het aantal sterren in de sterrenhoop (en dus ook zijn
massa) alleen maar af. Dit wordt veroorzaakt door een aantalinterne en externe processen.
Het eerste interne proces dat tot een afname van de massa leidt, is de beperkte levensduur van
sterren. Hoe zwaarder een ster is, des te korter deze leeft, en al blijft er van een gestorven ster
bijna altijd een witte dwerg, neutronenster of zwart gat achter, het merendeel van de massa
gaat verloren in de vorm van uitgestoten gas. Daarnaast resulteren de onderlinge zwaarte-
krachtsinteracties tussen de sterren in een afname van het aantal sterren in een sterrenhoop,
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doordat de banen van de sterren worden gewijzigd. Tijdens desterkste interacties worden
sterren uit de sterrenhoop geslingerd. Het resulterende massaverlies van een sterrenhoop
wordt bepaald door zijn interne eigenschappen en door de omgeving. Zware sterrenhopen
verliezen per tijdseenheid een lagere fractie van hun massadan lichte sterrenhopen, en in een
sterk getijdeveld verloopt het massaverlies sneller dan ineen zwak getijdeveld. Het laatste
proces dat bijdraagt aan het massaverlies van sterrenhopenis extern – getijdeschokken ver-
snellen de sterren in een sterrenhoop wanneer deze een zwarestructuur passeert. Zo zijn
niet alleen een spiraalarm in een sterrenstelsel of een zware gaswolk in staat om een sterren-
hoop behoorlijk te verstoren, maar ook wanneer de baan van een sterrenhoop de schijf van
een sterrenstelsel of het centrum ervan doorkruist, kan dittot een verlies van sterren leiden.
Van de genoemde processen dragen getijdeschokken het sterkst bij aan het massaverlies van
sterrenhopen.

De interacties tussen de sterren in een sterrenhoop beı̈nvloeden tevens de interne structuur
van een sterrenhoop. De zware sterren verplaatsen zich richting het centrum van de sterren-
hoop, terwijl de lichte sterren zich naar de buitenste regionen bewegen. Dezemassasegregatie
zorgt ervoor dat lichte sterren gemakkelijker ontsnappen uit een sterrenhoop dan zware ster-
ren. De massafunctie van sterren in een sterrenhoop mag dan in eerste instantie universeel
zijn, op de langere termijn zorgt de dynamische ontwikkeling van een sterrenhoop voor af-
wijkingen. Het verlies van sterren met lage massa’s uit een sterrenhoop betekent ook dat
de verhouding tussen massa en helderheid van een sterrenhoop verandert. Dit mechanisme
wordt besproken in Hoofdstukken 3–7.

Doordat het massaverlies van sterrenhopen in hoge mate bepaald wordt door omgevings-
factoren, bevat een populatie sterrenhopen een schat aan informatie over zijn omgeving. Net
als bij de sterren in een sterrenhoop is de initiële massaverdeling van sterrenhopen min of
meer universeel. Deze volgt een machtswet met index−2, wat inhoudt dat zware sterrenho-
pen veel minder vaak voorkomen dan lichte sterrenhopen. Sterrenhopen hebben aanvankelijk
massa’s tussen de vijftig en tien miljoen zonsmassa’s, maarna verloop van tijd wordt de
massaverdeling beı̈nvloed door het uiteenvallen van de sterrenhopen. Ook de leeftijdsver-
delingen van de sterrenhopen veranderen door disruptie. Als sterrenhopen nooit vernietigd
zouden worden, dan zou de leeftijdsverdeling van sterrenhopen een directe weerspiegeling
zijn van de stervormingsgeschiedenis – een periode van veelstervorming zou leiden tot een
groot aantal sterrenhopen met een corresponderende leeftijd. Het uiteenvallen van sterren-
hopen zorgt er echter voor dat er bijna altijd minder oude danjonge sterrenhopen zijn. De
leeftijdsverdeling van sterrenhopen wordt dus zowel bepaald door hun vormingsgeschiedenis
als door hun disruptiegeschiedenis, die beide het directe gevolg zijn van de (ontwikkeling van
de) eigenschappen van het sterrenstelsel waarin de sterrenhooppopulatie zich bevindt.

Onze eigen Melkweg geeft een schoolvoorbeeld van hoe de omgeving bepaalt wat de
eigenschappen van een sterrenhooppopulatie zijn, en hoe deze benadering kan worden om-
gekeerd om uit de sterrenhopen af te leiden wat de geschiedenis van een sterrenstelsel is. In
de Melkweg bevinden zich op het eerste gezicht twee soorten sterrenhopen: open en bol-
vormige (zie figuur A.2). Open sterrenhopen bevinden zich inde schijf van de Melkweg,
zijn minder dan een miljard jaar oud, hebben massa’s lager dan tienduizend zonsmassa’s, en
zijn metaalrijk. Bolvormige sterrenhopen bevinden zich ineen soort halo rond de Melkweg,
zijn met twaalf miljard jaar bijna net zo oud als het heelal zelf, hebben massa’s van rond
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Figuur A.2: Links: de Pleiaden, een open sterrenhoop met een leeftijd van ongeveer honderd miljoen
jaar (afkomstig van de Palomar 48-inch Schmidt telescoop, NASA/ESA/AURA/Caltech).Rechts: M80,
een bolvormige sterrenhoop met een leeftijd van ongeveer twaalf miljard jaar (afkomstig van de Hubble
Space Telescope/WFPC2, Hubble Heritage Team/AURA/STScI/NASA).

de honderdduizend zonsmassa’s, en zijn metaalarm. De massaverdeling van open sterren-
hopen komt overeen met de eerder genoemde archetypische machtswet met index−2, maar
de massaverdeling van bolvormige sterrenhopen heeft een tekort aan lichte sterrenhopen. De
verschillen tussen open en bolvormige sterrenhopen tonen onder meer aan dat de lokale om-
geving in de schijf van de Melkweg sterk disruptief is in vergelijking met de halo, waardoor
er nauwelijks open sterrenhopen zijn met leeftijden ouder dan een miljard jaar, en dat bol-
vormige sterrenhopen desondanks een sterk massaverlies hebben ondergaan, aangezien de
massaverdeling zo sterk verschilt van die van jonge sterrenhopen. Dit is weinig verrassend –
aangezien bolvormige sterrenhopen bijna net zo oud zijn alshet heelal, valt het te verwach-
ten dat hun omgeving sterke veranderingen heeft ondergaan.In Hoofdstukken 8–10 wordt
gepoogd te achterhalen hoe dergelijke veranderingen de eigenschappen van de sterrenhoop-
populatie beı̈nvloeden.

De ontwikkeling van sterrenstelsels

De galactische omgeving van sterrenhooppopulaties is sinds de vorming van de eerste sterren-
stelsels sterk veranderd. Dwergsterrenstelsels bevolkten het vroege heelal, terwijl de zwaarste
sterrenstelsels later ontstonden door het samensmelten van kleinere stelsels. Dit model van
hiërarchische kosmologiestaat centraal in ons huidige begrip van de ontwikkeling vanster-
renstelsels, en botsingen tussen sterrenstelsels zijn daarin het belangrijkste proces. In het
vroege heelal waren botsingen weliswaar frequenter, maar ook tegenwoordig komen ze nog
voor. In onze nabije omgeving zijn de Antennestelsels en de Draaikolknevel (zie figuur A.3)
goede voorbeelden, en het Andromedastelsel nadert onze eigen Melkweg met een snelheid
van meer dan honderd kilometer per seconde. Ook het Sagittarius dwergsterrenstelsel wordt
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Figuur A.3: De Draaikolknevel (M51), een interactie tussen een spiraalsterrenstelsel en een stelsel dat
ongeveer drie keer minder zwaar is (afkomstig van de Hubble Space Telescope/ACS, Hubble Heritage
Team/Beckwith/NASA/ESA/STScI). Uiteindelijk zullen de beide sterrenstelsels samensmelten tot een
enkel elliptisch reuzenstelsel.

momenteel door de Melkweg opgeslokt.
Een botsing tussen twee sterrenstelsels leidt tot een sterke stijging van de stervormingsac-

tiviteit. Gaswolken botsen op elkaar, worden door de getijde-interactie ineengedrukt, of wor-
den naar het centrum van de sterrenstelsels gedreven. Deze piek in de stervorming betekent
dat in botsingen tussen sterrenstelsels grote aantallen sterren en sterrenhopen geproduceerd
worden. Als de sterrenstelsels in een botsing een vergelijkbare massa hebben, ondergaan ze
een metamorfose. Wanneer spiraalsterrenstelsels zoals deMelkweg of het Andromedastel-
sel botsen, vervormen ze tot een enkel elliptisch reuzenstelsel, dat de vorm heeft van een
uitgerekte bol en (bijna) geen gas meer bevat, zo efficiënt is de stervorming tijdens de voor-
afgaande botsing geweest. Wanneer een dwergsterrenstelsel wordt opgeslokt door een groter
spiraal- of elliptisch sterrenstelsel3 is de morfologische verandering minder sterk. Hoogstens
wordt de schijf van een spiraalstelsel dikker, of wordt de halo van het sterrenstelsel bevolkt
met sterren die uit het dwergsterrenstelsel getrokken zijn.

De interacties tussen sterrenstelsels hebben een sterke invloed op hun sterrenhooppopu-

3In populaire literatuur wordt dit vaakkannibalismegenoemd.
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laties. In geı̈soleerde sterrenstelsels bepalen interne eigenschappen zoals de structuur van
de spiraalarmen en de gasdichtheid de vormings- en disruptiegeschiedenis van sterrenhoop-
populaties. In botsende sterrenstelsels zorgen de globaleprocessen die ook het aangezicht
van de sterrenstelsels beı̈nvloeden voor een continu veranderende galactische omgeving. Tij-
dens de piek in de stervorming worden grote aantallen sterrenhopen geboren, waarvan de
zwaarste exemplaren statistisch veel zwaarder kunnen worden dan gewoonlijk is voor de jon-
ge sterrenhopen in een statischer galactische omgeving zoals de Melkweg. Er wordt in de
literatuur vaak geopperd dat deze zware, jonge sterrenhopen de voorlopers van bolvormige
sterrenhopen zouden kunnen zijn. Naast de verhoogde vormingsactiviteit is het echter ook zo
dat de hoge gas dichtheid en de sterke veranderingen in het getijdeveld voor een efficiëntere
vernietiging van sterrenhopen kan zorgen. In Hoofdstukken8–10 wordt bekeken welk van
beide effecten domineert in botsende sterrenstelsels, welke sterrenhopen botsingen tussen
sterrenstelsels kunnen overleven, en wat de invloed van botsingen is op de eigenschappen
van sterrenhooppopulaties.

Dit proefschrift

In dit proefschrift worden theoretische berekeningen en numerieke simulaties gecombineerd
en vergeleken met waarnemingen uit de literatuur, met als doel inzicht te krijgen in de vor-
ming en ontwikkeling van (populaties van) sterrenhopen in de context van hun galactische
omgeving. Het is daarvoor essentieel om de interne dynamicavan sterrenhopen te begrijpen
en om hun vorming en ontwikkeling te koppelen aan de gebeurtenissen die hun moederstelsel
ondergaat. Alleen met een dergelijk begrip is het mogelijk om de grootschalige ontwikkeling
van het heelal af te kunnen leiden uit sterrenhooppopulaties.

Hoofdstuk 2 Sterrenhopen worden gevormd in fragmenterende gaswolken,waarvan de res-
tanten op een zeker moment worden weggeblazen door sterwinden en supernova-explosies.
In dit hoofdstuk wordt de dynamica van proto-sterrenhopen onderzocht, met als doel te ach-
terhalen in hoeverre de uitdrijving van het gas kan zorgen voor het uiteendrijven van proto-
sterrenhopen. Uit een analyse van numerieke simulaties vanstervormingsgebieden blijkt
dat de proto-sterrenhopen zich in een hoge mate van dynamisch evenwicht bevinden, zelfs
wanneer de zwaartekrachtsaantrekking van het gas wordt genegeerd. Dit komt doordat de
proto-sterrenhopen gasarm zijn – de inval van gas op de sterren verloopt minstens even snel
als de globale instroom van het gas. Het gevolg is dat de uitdrijving van het gas slechts een
kleine invloed heeft op de overlevingskansen van een proto-sterrenhoop. Op basis van de
resultaten uit Hoofdstuk 8 en 10 wordt voorgesteld dat in plaats van een intern effect (infant
mortality) een extern proces verantwoordelijk is voor de vroege ontbinding van sterrenhopen.
De hoge gasdichtheid in stervormingsgebieden kan getijdeschokken veroorzaken die moge-
lijk in staat zijn jonge sterrenhopen te ontbinden. Ditcruel cradle effectmoet het belangrijkst
zijn in gebieden met een hoge concentratie van stervorming.

Hoofdstuk 3 De massa’s van sterren in een sterrenhoop zijn in eerste instantie verdeeld
volgens de IMF (zie boven). Naarmate een sterrenhoop ouder wordt, verdwijnen de zware
sterren doordat ze aan het eind van hun leven komen en een compacte, dode ster achterlaten
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in de vorm van een witte dwerg, neutronenster of zwart gat. Daarnaast verliest een ster-
renhoop sterren door hun onderlinge zwaartekrachtsinteracties en door getijdeschokken. Bij
deze processen ontsnappen vooral lichte sterren. In dit hoofdstuk wordt een simpel model
voor de ontwikkeling van sterrenhopen gepresenteerd en wordt onderzocht hoe de helder-
heid en kleur van sterrenhopen worden beı̈nvloed door de verandering van de massaverdeling
van sterren in een sterrenhoop, het behoud van compacte objecten, de vorm van IMF en de
chemische samenstelling van de sterren. Deze afhankelijkheden kunnen worden gebruikt
om de eigenschappen van sterrenhopen af te leiden uit hun kleur en helderheid. De kleur
van de sterrenhopen blijkt het meest stabiel te zijn, en wordt overwegend bepaald door de
leeftijd en chemische samenstelling van de sterrenhoop. Dehelderheid is veel gevoeliger
voor wijzigingen in de getoetste parameters en mechanismen. Doordat lichte sterren relatief
lichtzwak zijn in vergelijking met hun massa, en zware sterren relatief helder, zorgt de ont-
snapping van lichte sterren voor een verandering van de hoeveelheid licht die een sterrenhoop
uitzendt per massa-eenheid. Dezemassa-lichtkracht verhoudingdaalt naarmate een sterren-
hoop meer sterren verliest: met de ontsnapping van de lichtesterren verliest de sterrenhoop
meer massa dan helderheid. Daardoor lijken oude sterrenhopen op basis van hun helderheid
vaak zwaarder dan ze zijn. Aangezien zware sterrenhopen over het algemeen minder sterren
verloren hebben dan lichte sterrenhopen, is deze daling vande massa-lichtkracht verhouding
het sterkst voor lichte sterrenhopen, wat leidt tot de voorspelling dat de massa-lichtkracht
verhouding toeneemt met de massa en helderheid van een sterrenhoop. Daarnaast zorgt het
behoud van compacte objecten voor een toename van de massa-lichtkracht verhouding, en
deze grootheid is eveneens sterk afhankelijk van de IMF en dechemische samenstelling van
een sterrenhoop. De voorspelde massa-lichtkracht verhoudingen komen goed overeen met de
waargenomen waarden voor bolvormige sterrenhopen in de Melkweg.

Hoofdstuk 4 De massa-lichtkracht verhoudingen van bolvormige sterrenhopen in de Melk-
weg zijn systematisch lager dan verwacht mag worden op basisvan modellen waarin geen
rekening wordt gehouden dynamische effecten. Daarnaast iser een trend van lagere massa-
lichtkracht verhoudingen voor sterrenhopen met lagere massa’s. In dit hoofdstuk wordt het
model uit Hoofdstuk 3 gebruikt om na te gaan of deze karakteristieken te wijten zijn aan het
verlies van lichte sterren uit de sterrenhopen. Daarbij wordt rekening gehouden met de ver-
schillen in chemische samenstelling tussen de sterrenhopen. De modellen worden toegepast
op de bolvormige sterrenhopen in de Melkweg, het elliptische reuzenstelsel Centaurus A,
het Andromedastelsel en het dwergsterrenstelsel de Grote Magelhaense Wolk. De typische
efficiëntie van het verlies van sterren die nodig is om de waargenomen massa-lichtkracht ver-
houdingen te verklaren door het ontsnappen van lichte sterren komt goed overeen met de
verwachte waarden. Het percentage bolvormige sterrenhopen waarvan de massa-lichtkracht
verhouding verklaard kan worden stijgt van 39% tot 92% wanneer de modellen uit Hoofd-
stuk 3 worden gebruikt.

Hoofdstuk 5 Van 24 bolvormige sterrenhopen in de Melkweg zijn de baan en massa-
lichtkracht verhouding bekend. In dit hoofdstuk wordt die informatie gebruikt om te be-
rekenen hoeveel sterren deze sterrenhopen sinds hun vorming hebben verloren, en wat op



260 Nederlandse samenvatting

basis daarvan volgens het model uit Hoofdstuk 3 de verwachtemassa-lichtkracht verhouding
van deze individuele sterrenhopen is. Voor de helft van de sterrenhopen komen waarneming
en theorie overeen. De discrepantie voor de overige sterrenhopen komt vermoedelijk doordat
de waargenomen massa-lichtkracht verhoudingen bepaald zijn in het centrum van de sterren-
hoop, terwijl de modellen globale massa-lichtkracht verhoudingen voorspellen. Dat is rele-
vant voor deze sterrenhopen, omdat ze eigenschappen hebbendie leiden tot verschillen tussen
de massa-lichtkracht verhoudingen in hun centra en hun buitenste regionen. Wanneer slechts
de sterrenhopen worden bekeken waarbij geen ruimtelijke variatie van de massa-lichtkracht
verhouding wordt verwacht, zijn de waarnemingen en theoriein overeenstemming. Beide
geven een massa-lichtkracht verhouding die gemiddeld 20% lager is dan in modellen zonder
dynamische effecten. Het belang van het verlies van lichte sterren wordt bevestigd door een
verband tussen de helling van de waargenomen massaverdeling van sterren in de sterrenhopen
en hun waargenomen en voorspelde afname in massa-lichtkracht verhouding. Aan het eind
van het hoofdstuk wordt een inschatting gemaakt van de haalbaarheid van waarnemingen die
erop gericht zijn het verlies van lichte sterren af te leidenuit de massaverdeling van sterren
in bolvormige sterrenhopen, en zo de bevindingen uit dit hoofdstuk te verifiëren.

Hoofdstuk 6 De massaverdeling van bolvormige sterrenhopen kan gebruikt worden om te
bepalen hoe het verlies van sterren afhangt van de sterrenhoop-massa. Hiervoor moeten de
helderheden van bolvormige sterrenhopen echter eerst worden omgezet in massa’s. Voorheen
gebeurde dit altijd door een constante massa-lichtkracht verhouding aan te nemen, waarmee
werd geconcludeerd dat het aantal sterren dat per tijdseenheid ontsnapt uit sterrenhopen niet
afhangt van de sterrenhoop-massa. In dit hoofdstuk wordt het model uit Hoofdstuk 3 gebruikt
waarin de massa-lichtkracht verhouding toeneemt met massaen helderheid. Het gebruik van
deze modellen leidt tot een massaverdeling van bolvormige sterrenhopen in de Melkweg met
een andere helling dan voorheen - er zijn relatief meer lichte bolvormige sterrenhopen, waar-
van de massa wordt overschat wanneer een constante massa-lichtkracht verhouding wordt ge-
bruikt. Hieruit kan worden afgeleid dat de snelheid waarmeesterrenhopen sterren verliezen
niet onafhankelijk is van de sterrenhoop-massa, maar iets hoger is voor zware sterrenhopen.
De fractie van de totale sterrenhoop-massa die verloren wordt per tijdseenheid blijft echter
het grootst voor lichte sterrenhopen, die zodoende ook in deze nieuwe analyse korter leven
dan zware sterrenhopen.

Hoofdstuk 7 De ontwikkeling van de massaverdeling van sterren in een sterrenhoop wordt
over het algemeen onderzocht middels computersimulaties,waarin de beweging en zwaarte-
kracht van alle individuele sterren wordt gevolgd. Deze simulaties kosten erg veel rekentijd
en daardoor is het niet mogelijk om alle mogelijke omstandigheden waaronder sterrenhopen
zich ontwikkelen te simuleren. In dit hoofdstuk wordt een simpel fysisch model afgeleid voor
de ontwikkeling van de massaverdeling van sterren in sterrenhopen, waarmee het mogelijk
wordt om de stellaire massaverdelingen van hele populatiesvan sterrenhopen te modelle-
ren. Daarnaast biedt een dergelijk model inzicht in de processen die verantwoordelijk zijn
voor het verlies van sterren uit sterrenhopen. De basis wordt gevormd door een model van



Nederlandse samenvatting 261

Hénon uit 1969, waarin wordt aangenomen dat de sterrenhoopzich in isolatie ontwikkelt4

en de invloed van massasegregatie (zie boven) wordt verwaarloosd. Omdat echte sterren-
hopen zich in een extern getijdeveld bevinden en massasegregatie ondergaan, worden deze
aannames niet gemaakt in dit hoofdstuk. Het model van Hénonwordt aangevuld met cor-
recties voor de (massa-afhankelijke) tijdschalen waarop massasegregatie wordt bereikt en de
massa-afhankelijkheid van de ontsnappingsenergie in een massa-gesegregeerde sterrenhoop.
De resulterende ontwikkeling van de stellaire massaverdeling verandert sterk door deze toe-
voegingen, en komt uitstekend overeen met de resultaten vancomputersimulaties van ster-
renhopen. Tijdens de eerste 400 miljoen jaar is de ontsnapping van sterren het meest efficiënt
voor sterren met massa’s van ongeveer 20% van de zwaarste ster in de sterrenhoop. Op latere
momenten hebben sterren met de laagste massa’s de grootste kans op ontsnapping. Door dit
verschil hangt de ontwikkeling van de stellaire massaverdeling af van het moment waarop
de sterren ontsnappen uit de sterrenhoop. Het model bevestigt dat de massa-lichtkracht ver-
houding van sterrenhopen afneemt door het verlies van lichte sterren. De mate waarin dit
gebeurt wordt bepaald door de fractie van compacte objectendie behouden wordt wanneer
sterren aan het eind van hun leven komen. Tot slot wordt het model gebruikt om de helling
van de massaverdeling bij lage stermassa’s te voorspellen voor bolvormige sterrenhopen in
de Melkweg. De resultaten hiervan zijn in overeenstemming met de waargenomen hellingen,
in tegenstelling tot de computersimulaties, die slechts een deel beslaan van het vereiste scala
aan omstandigheden waaronder de sterrenhopen zich hebben ontwikkeld.

Hoofdstuk 8 De vorming en ontwikkeling van sterrenhopen wordt bepaald door de galacti-
sche omgeving waarin ze zich bevinden. Niet alleen variëren de omstandigheden binnen een
enkel sterrenstelsel sterk tussen het centrum en de buitenste regionen, maar in het huidige
kosmologische model vormen en groeien sterrenstelsels door samen te smelten met andere
stelsels. Dit betekent dat de invloed van de galactische omgeving op sterrenhopen afhangt
van de plaats waar ze zich bevinden en het moment waarop ze bestaan, en dat deze tevens
verandert gedurende hun baan en naarmate ze ouder worden. Omde gezamenlijke invloed
van al deze processen op de vorming en ontwikkeling van sterrenhooppopulaties te kunnen
begrijpen, wordt in dit hoofdstuk een nieuw soort model gepresenteerd, gevalideerd en toe-
gepast. In dit model wordt de ontwikkeling van (botsende en geı̈soleerde) sterrenstelsels
gesimuleerd en aangevuld met het sterrenhoopmodel uit Hoofdstukken 3 en 7. De berekende
ontwikkeling van individuele sterrenhopen op geı̈dealiseerde banen komt goed overeen met
de resultaten uit computersimulaties van sterrenhopen op dezelfde banen. De eigenschap-
pen van de sterrenhooppopulatie worden onderzocht met behulp van negen simulaties van
geı̈soleerde spiraalsterrenstelsels en 24 simulaties vanbotsingen. In geı̈soleerde sterrenstel-
sels neemt de gemiddelde leeftijd van de sterrenhopen toe naarmate ze zich verder uit het
galactisch centrum bevinden, doordat de vernietiging van sterrenhopen het meest efficiënt is
in het centrum. Deze vernietiging wordt voor 80–90% veroorzaakt door getijdeschokken.
Wanneer de hele sterrenhooppopulatie wordt beschouwd, neemt de vernietiging van sterren-
hopen af met de leeftijd. Dit wordt veroorzaakt door twee mechanismen. Ten eerste worden

4Hierdoor kunnen sterren slechts ontsnappen door een enkelesterke zwaartekrachtsinteractie met een andere ster,
in plaats van meerdere zwakke interacties gedurende een langere tijdsspanne.
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sterrenhopen geboren in gebieden met een hoge gasdichtheid, die daardoor erg disruptief zijn.
Naarmate ze ouder worden, ontsnappen de sterrenhopen uit deze gebieden – dit proces van
sterrenhoop-migratievermindert de efficiëntie van sterrenhoop-vernietigingvoor oudere ster-
renhopen. Daarnaast bevinden de sterrenhopen in een populatie zich in een breed scala aan
omgevingen die in verschillende mate disruptief zijn. Vooreen dergelijke spreiding worden
de sterrenhopen in de meest disruptieve omgevingen het eerst vernietigd – dezenatuurlijke
selectiezorgt eveneens voor een afname van de gemiddelde sterrenhoop-vernietiging met de
leeftijd. De combinatie van beide effecten beı̈nvloedt de vorm van de leeftijdsverdeling van
sterrenhopen. In botsende sterrenstelsels is het contrasttussen de omgevingen waar bepaalde
sterrenhopen zich in bevinden groter dan in geı̈soleerde stelsels, wat ervoor zorgt dat de leef-
tijdsverdeling van sterrenhopen op bepaalde momenten tijdens de botsing volledig bepaald
wordt door sterrenhoop-migratie en natuurlijke selectie.De vernietiging van sterrenhopen is
door de verhoogde dichtheid het sterkst in de gebieden waar veel sterren geboren worden,
waardoor na de botsing de piek in de leeftijdsverdelingen van sterren en sterrenhopen ver-
schilt. Met name in de centrale gebieden is de vernietiging efficiënt, wat er voor zorgt dat
de ruimtelijke verdelingen van sterrenhopen en sterren na een botsing eveneens van elkaar
afwijken.

Hoofdstuk 9 De hoge (gas)dichtheden die bereikt worden in botsende sterrenstelsels heb-
ben een tweevoudige invloed op de sterrenhooppopulatie. Enerzijds worden er veel meer
sterren en sterrenhopen geboren dan in geı̈soleerde stelsels, maar anderzijds neemt ook de
vernietiging door getijdeschokken toe. In dit hoofdstuk worden de simulaties uit Hoofd-
stuk 8 gebruikt om te kijken welk van beide effecten domineert. Uit de simulaties blijkt
dat de toename van de vernietiging groter is dan de toename van de vorming van sterren-
hopen, wat leidt tot een afname van het totale aantal sterrenhopen tijdens een botsing. Dit
lijkt in tegenspraak te zijn met de waarnemingen van grote aantallen sterrenhopen in nabije
botsingen. Deze waarnemingen worden echter beperkt door een magnitudelimiet, waardoor
voornamelijk jonge, zware sterrenhopen worden gedetecteerd, die relatief ongevoelig zijn
voor de getijdeschokken. Wanneer eenzelfde limiet wordt toegepast op de simulaties,lijkt
het aantal sterrenhopen inderdaad toe te nemen, net zoals inde waarnemingen. Doordat lich-
te sterrenhopen het makkelijkst worden vernietigd, blijven na een botsing met name de zware
sterrenhopen over. Hun ruimtelijke verdeling lijkt sterk op die van bolvormige sterrenho-
pen, en er wordt dan ook voorgesteld dat bolvormige sterrenhopen gevormd zijn in botsingen
tussen sterrenstelsels (of andere dichte stervormingsgebieden) in het vroege heelal.

Hoofdstuk 10 De Antennestelsels zijn een klassiek voorbeeld van een nabije botsing tussen
twee spiraalsterrenstelsels, waarin grote aantallen sterrenhopen worden gevormd (en vernie-
tigd). Daarnaast is het een systeem waarin de leeftijdsverdeling van sterrenhopen afwijkt van
de theoretisch voorspelde vorm. Naar aanleiding hiervan iser in de literatuur voorgesteld
dat de theorie van sterrenhoopdisruptie gewijzigd dient teworden. In dit hoofdstuk wordt
het model uit Hoofdstuk 8 gebruikt om de Antennestelsels te simuleren, teneinde het mo-
del te verifiëren en mogelijk de waarnemingen te verklaren.De gesimuleerde leeftijds- en
massaverdelingen van de sterrenhopen in de Antennestelsels blijken in uitstekende overeen-
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stemming te zijn met het waargenomen systeem, en ook de correlatie van de leeftijden van
de sterrenhopen met hun ruimtelijke verdeling is consistent met de waarnemingen. Dit komt
op het eerste gezicht niet overeen met de verwachting op basis van de gebruikte theorie voor
sterrenhoopdisruptie. De variatie van de omgeving zorgt erechter voor dat de vernietiging
van sterrenhopen zwakker wordt naarmate de populatie ouderwordt, waardoor de leeftijds-
verdeling een gedaanteverwisseling ondergaat – de combinatie van hetcruel cradle effect
(zie Hoofdstuk 2), sterrenhoop-migratie en natuurlijke selectie verandert de leeftijdsverde-
ling zodanig dat de simpele theoretische verwachting niet overeenkomt met het uiteindelijke
resultaat. Dit betekent echter niet dat de theorie onjuist is. De complexiteit van de galac-
tische omgeving bepaalt wat de eigenschappen van de sterrenhopen in de Antennestelsels
zijn, en biedt een specifiek raamwerk waarbinnen de theorie toegepast moet worden. Deze
invloed van de omgeving toont aan dat sterrenhopen inderdaad gebruikt kunnen worden om
de vormingsgeschiedenis af te leiden van de sterrenstelsels waarin ze zich bevinden.
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Disks, ed. José G. Funes, S. J., & Enrico Maria Corsini, pp. 149The Age Distributions
of Clusters and Field Stars in the Small Magellanic Cloud – Implications for Star
Formation Histories



Dankwoord

Dit proefschrift is het resultaat van vier jaar steun, wijsheid en vriendschap die velen mij
geboden hebben. Mijn familie, vrienden en collega’s hebbenallen een onmisbare rol gespeeld
in de totstandkoming van dit werk. Hoewel ik niet in staat zalzijn om allen voldoende eer te
geven, laat staan iedereen te noemen, wil ik toch mijn dank betuigen aan een aantal mensen.

Ik heb de eer en het genoegen gehad om van mijn drie promotorenalles te mogen leren
wat ik had kunnen hopen – en nog veel meer. Henny, je bent de afgelopen negen jaar zoveel
meer geweest dan docent, afstudeerbegeleider en promotor.Als mentor en wetenschappelijke
vader heb je me niet alleen laten zien hoe wetenschap werkt, maar ik begrijp nu ook hoe je
wetenschap kunt beleven op een manier waardoor het vak over decennia nog steeds uitda-
gingen zal bieden – jouw nieuwsgierigheid en vastberadenheid zijn bijzonder aanstekelijk,
en je brede kennis en interesse zijn bewonderenswaardig. Daarnaast waren de conferenties
waar we samen naartoe zijn gegaan en de uitstapjes met de onderzoeksgroep altijd heel ont-
spannend. Je bent het grote voorbeeld voor ieder die ooit in staat wil zijn om zijn studenten
te stimuleren en zich op hun gemak te laten voelen. De vrijheid en mogelijkheden die je
me de afgelopen jaren hebt geboden waren fantastisch, en ik ben er heel erg trots op dat ik
jouw promovendus heb mogen zijn. Simon, je hebt me geleerd hoe ieder woord van een
artikel telt, hoe je daar rekening mee moet houden, en hoe je een wetenschappelijk betoog
objectief houdt. Hoe diplomatie in de wetenschap werkt, waarom het belangrijk is, en wat
de (on)geschreven regels van de wetenschap zijn. Maar bovenal wil ik je bedanken voor de
openheid waarmee je mij geadopteerd hebt in de Castle-groep, en hoe je altijd tijd maakte
om me van advies te voorzien, soms zelfs vanaf de andere kant van de wereld. Vincent, ik
ben heel dankbaar voor je tijd en raad. De deur was altijd open, en menigmaal heb je me
eraan herinnerd dat tijd, ruimte en een gezonde mate van individualisme tot de mooiste resul-
taten kunnen leiden. Je kritische positiviteit heeft me vaak het gevoel gegeven dat deskyook
daadwerkelijk delimit is.

Natuurlijk waren jullie het niet altijd eens in de raad die jullie mij gaven (over details zelfs
zelden), maar ik heb dat altijd enorm waardevol gevonden, omdat de resulterende discussies
bijzonder stimulerend waren. Temidden van zulke wetenschappelijke reuzen krijgt zelfs de
kleinste kabouter moed, en jullie steun heeft mij de afgelopen jaren een onontbeerlijke zeker-
heid geboden. Dat zal ik nooit vergeten.

Apart from my formal promotors, I have learned a lot from others as well. My time in
Cambridge was an unrivalled experience in many ways. I am very grateful to Cathie Clarke
for the many interesting discussions we had, for the hospitality, and for always making me

267



268 Dankwoord

wonderwhy I didn’t think of that before. Nate, you have been an amazing colleague and
friend. Thank you for all the exciting projects we have worked and will work on, and for the
fun that makes everything easy (I should especially mentionthescientific peer review from
1945, but also karting, footie, and the famous quote ‘such is life’). I would like to thank
Gerry Gilmore and Rob Kennicutt for many interesting and stimulating discussions and for
adopting me into their research groups during my stay. Thomas, next to being a very kind
and helpful office mate, you have taught me a new perspective on Bach, antique musical
instruments, statistics, and much more. Thanks also to Barbara, Jorge (your booze pulled
us through the Peak District), Matt, and the football squad –Dom and Alex (Wembley was
fantastic), Becky, James M., James O. and all the others.

Inti, vier jaar geleden begonnen we samen aan een bijzonder spannend project, waarvan
het duidelijk was dat het zonder goede samenwerking onbegonnen werk zou worden. Terug-
kijkend is het niet alleen zo dat we onze doelstellingen hebben gehaald, maar ook dat deze
samenwerking heel erg plezierig is geweest. Jouw hulp bij deel C van dit proefschrift was
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