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ABSTRACT

We have looked at the hypermultiplet moduli space of the effective su-
pergravity theory obtained from type IIA superstring theory compactified
on a Calabi-Yau manifold. It is possible to give this space hypermultiplet
moduli space a more intrinsic description as a fibre bundle over the mod-
uli space of deformations of the Calabi-Yau manifold used in the compact-
ification procedure. The fibres may can be interpreted as the symplectised
spaces for a compact quotient of the Heisenberg group constructed from
the (Weil) intermediate Jacobian of the Calabi-Yau manifold and viewed
as a contact manifold. We use the complex structure on the Weil inter-
mediate Jacobian to define a Sasakian (contact metric) structure on this
Heisenberg group that can be extended to a metric on the fibres.
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INTRODUCTION

One of the most important problems in modern physics is the apparent incompatibility be-
tween quantum field theory and general relativity. General relativity provides a very elegant
description of gravity that is not only consistent with both Newton’s law of gravitation and
special relativity in the appropriate limits, but also explains numerous observations of the
universe at large scales. Meanwhile, physics at the subatomic level is governed by quan-
tum mechanics. Quantum field theory, and in particular the standard model succeeds at
describing the known elementary particles and fundamental forces except gravity (electro-
magnetism and the weak and strong nuclear forces). While it is not as elegant as general
relativity, the standard model is consistent with nearly all experimental observations in par-
ticle physics and often describes measurements with great accuracy. Although both theories
have been hugely successful in their own domains, attempts to combine the two into a
unified quantum theory of gravity have generally proven unsuccessful.

One of the more promising candidates for such a theory is string theory. The principal
idea behind string is that the fundamental objects in physics are one dimensional objects,
which we call strings, rather than point particles. This simple idea is used to construct an
enormously complicated quantum mechanical string theory in which elementary particles
correspond to the modes of oscillation of a single type of fundamental string. Amazingly
enough, gravity appears naturally in string theory and in a way that is consistent with gen-
eral relativity at low energies.

An interesting property of string theory is that it puts a restriction on the number of
dimensions of space-time, as it can only be formulated consistently for a very specific critical
dimension. Although this property could in itself be considered an advantage over theories
that say nothing about the dimension of space-time, the fact that this critical dimension
equals ten does conflict with the prevailing idea that space-time should in fact be four-
dimensional (three spatial dimensions and one time dimension).

One way to get around this discrepancy is through compactification. Instead of consider-
ing space-times that extend to infinity in all directions, one considers space-times that are
small in six dimensions. This is done by wrapping these unwanted dimensions around a
(compact) internal space that is assumed to be so small that we are unable to observe it
with current techniques. The resulting effective theory in four dimensions is largely depen-
dent on the geometry of the internal space used in the compactification procedure, which
introduces a great amount of freedom to the theory that it did not have before. Calabi-Yau
manifolds are of particular interest as the internal spaces used for the compactification be-
cause in the low-energy limit these produce four dimensional theories that not only contain
gravity, but are also supersymmetric, which is considered desirable. For type IIA, with which
this thesis is concerned, this effective low-energy theory is called type IIA supergavity.

Apart from a sector corresponding to gravity, this effective four-dimensional theory con-
tains a number of other fields that split into vector multiplet and hypermultiplets. Because
vector multiplets and hypermultiplets do not interact with each other except through gravity,
the vector multiplet and hypermultiplet sector may be studied separately. The hypermulti-
plet fields are described by a non-linear sigma model and parametrise a space, called the
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hypermultiplet moduli space, that comes with a metric that is known to define a quaternion-
Kähler structure. Although we have an explicit description of this metric and this quaternion-
Kähler structure, we would like to be able to understand it in terms of the geometry of the
Calabi-Yau manifold used in the compactification procedure.

This thesis is the results of the research I have done under the supervision of dr. S.J.G. Van-
doren and dr. J. Stienstra to conclude my Masters in Theoretical Physics and Mathematical
Sciences. The starting point for the research presented in this document was the point
where T.A.F. van der Aalst [1] left off, which is with a description of the hypermultiplet
moduli space as a fibre bundle over the complex structure moduli space of the Calabi-Yau
manifold with fibres that should be interpreted as the total space of a C∗-bundle over the
Weil intermediate Jacobian of the Calabi-Yau. By making use of isometries of the metric,
these fibres were given an interpretation as a coset space of an extended version of the
Heisenberg group, which was appropriately named the dilated Heisenberg group.

We have taken one one step back from this approach and have used the (unextended)
Heisenberg group instead of the dilated version to describe these fibres. By equipping this
Heisenberg group with a natural contact structure and using the structure of the Weil in-
termediate Jacobian to extend it to a strictly pseudoconvex Cauchy-Riemann structure we
have found a nearly complete description of the fibre metric through a 1-dimensional family
of (Sasakian) contact metric structures. The complete expression is obtained by symplectis-
ing this structure and extending these contact metric structures to a Kähler structure on the
fibres. Finally, we have made a start with a description of the quaternion-Kähler structure
on the total space in terms of this construction.

The first chapter deals with some standard definitions and results from mathematics,
knowledge of which will be required to be able to understand the chapters that follow it.
Chapter 2 discusses the definition of a Calabi-Yau manifolds, the structures on their moduli
space and their intermediate Jacobians. In the third chapter an overview of the physical
context in which the obtained results should be viewed is provided and the hypermultiplet
moduli space is introduced. In chapter 4 contact geometry and CR geometry are discussed
and applied to the Heisenberg group that we have used to construct the hypermultiplet
moduli space in chapter 5. In the final chapter, we try to give a more intrinsic interpretation
to the explicit description of the quaternion-Kähler structure on the hypermultiplet moduli
space that was found by Ferrara and Sabharwal [2].
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1. SOME PRELIMINARY MATHEMATICS

In this chapter we will introduce some of the mathematical concepts that are used through-
out this document. We will discuss some of the most important definitions and results for
complex and Kähler manifolds and introduce cohomology groups for these spaces. Some
important definitions and results for non-degenerate Complex tori will furthermore be dis-
cussed. Everything in this chapter can be found in a variety of standard textbooks, such
as [3,4], [5,6] and [7,8,9]. The reader is assumed to know some of the basics of differen-
tial and Riemannian geometry.

1.1 Summation convention

We will very often make use of Einstein summation convention, or index notation. This
notational convention saves space and is very common in theoretical physics, but not as
common among mathematicians. Einstein summation convention states that any unspec-
ified index that appears twice in an expression should be summed over (contracted). For
instance, if the indices i, j, k, . . . are understood to run from 1 to n, then an equation such
as

dyi + Zijdxj = dyi +
(
Fij − i

NikX̄
kX̄`N`j

X̄mNmnX̄n

)
dxj (1.1)

should be read as

dyi +
n∑
j=1

Zijdxj = yi +
n∑
j=1

(
Fij − i

∑n
k,`=1NikX̄

kX̄`N`j∑n
m,n=1 X̄

mNmnX̄n

)
dxj . (1.2)

Moreover, because the index i was also left unspecified, this equation is understood to hold
for any i ∈ {1, . . . , n}. When there is a distinction between upper indices and lower indices,
an expression with contracted indices will in general only be meaningful if all repeated
indices come in pairs of one upper index and one lower index.

1.2 Homology and cohomology

1.2.1 Singular (co)homology

On any topological space X we can define singular homology and cohomology groups using
formal sums of so-called singular simplices.

The standard k-simplex ∆k is defined as the convex set in Rn+1 generated by the basis vec-
tors e0, e1, . . . , en, where e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0) etc. A singular k-simplex on
X is a continuous map σ : ∆k → X and we call a (finite) formal sum

∑
σ nσ σ of k-simplices

with nσ ∈ Z a singular k-chain. The set of all such k-chains is a free group, generated by
the k-simplices, that we denote by Ck(X,Z). Instead of using integer coefficients, we can
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write down chains with coefficients in any Abelian ring R and write

Ck(X,R) =
{∑

σ rσ σ
∣∣∣σ : ∆k → X, rσ ∈ R

}
' Ck(X,Z)⊗R. (1.3)

On this group we have a boundary map ∂ : Ck(X,R)→ Ck−1(X,R), which sends a singular
k-simplex to the sum of its faces with appropriate signs. More explicitly, for a generator
σ : ∆k → X we get ∂σ =

∑k
i=0(−1)i∂iσ with

∂iσ(t0, . . . , tk−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tk−1) (1.4)

A k-chain σ ∈ Ck(X,R) for which ∂σ = 0 is called a (singular) k-cycle and it is called
a boundary if σ = ∂τ for some chain τ ∈ Ck+1(X,R), ker

(
∂ : Ck(X) → Ck−1(X)

)
and

im
(
∂ : Ck+1(X)→ Ck(X)

)
are the spaces of k-cycles and k-boundaries respectively. Because

the boundary operator ∂ satisfies ∂2 = 0 any boundary is also a cycle, i.e.

im
(
∂ : Ck+1(X)→ Ck(X)

)
< ker

(
∂ : Ck(X)→ Ck−1(X)

)
, (1.5)

which enables us to define singular homology groups.

Definition 1.2.1 (Singular homology). Let X be a topological space, then its k-th singular
homology group with coefficients in the Abelian ring R (e.g. R = Z,R,C) is defined as

Hk(M,R) =
ker
(
∂ : Ck(X,R)→ Ck−1(X,R)

)
im
(
∂ : Ck+1(X,R)→ Ck(X,R)

) (1.6)

The chain groups Ck(X,R) can be dualised to obtain the cochain groups Ck(X,R) =
Hom(Ck(X,Z), R), which come with a coboundary map δ = ∂∗ : Ck(X,R) → Ck+1(X,R)
defined by δα = α◦∂. Since this coboundary map also satisfies δ2 = 0 we obtain a definition
for singular cohomology groups that is analogous to that of the singular homology groups.

Definition 1.2.2 (Singular cohomology). LetX be a topological space, then its k-th singular
cohomology group with coefficients in the Abelian ring R (e.g. R = Z,R,C) is defined as

Hk(M,R) =
ker
(
δ : Ck(X,R)→ Ck+1(X,R)

)
im
(
∂ : Ck−1(X,R)→ Ck(X,R)

) (1.7)

The universal coefficient theorems for homology and cohomology tell us that the homol-
ogy groups and cohomology groups with coefficients in any ring R are completely deter-
mined by the groups Hk(X,Z) and Hk(X,Z). A particular consequence of this theorem is
the following result.

Proposition 1.2.3. Let X be a topological space and let K be either R or C , then we have
natural identifications

Hk(X,K) ' Hk(X,Z)⊗K and Hk(X,K) ' Hk(X,Z)⊗K (1.8)

for any k ∈ N0.

This identification gives us canonical maps i : Hk(X,Z) → Hk(X,K), which has the tor-
sion subgroup Tor = {α ∈ Hk(X,Z) | ∃n : nα = 0} as its kernel. Instead of using the
full integer cohomology groups Hk(X,Z)f we will generally work with the torsion free in-
teger cohomology groups Hk(X,Z)f := Hk(X,Z)/Tor ' i(Hk(X,Z)) < Hk(X,R) (and
analogously for homology groups).

8 A.G. Baarsma



1.2. HOMOLOGY AND COHOMOLOGY

1.2.2 De Rham cohomology

When we talk about the cohomology groups of a smooth manifold, we will mainly be in-
terested in the De Rham cohomology groups. The real and complex De Rham cohomology
groups are defined using the complexes

0→ Ω0
K(M) d−→ Ω1

K(M) d−→ Ω2
K(M) d−→ Ω3

K(M) d−→ . . . (1.9)

for K = R,C, where ΩkK(M) is the set of K-valued k-forms on M and d denotes the exterior
derivative.

Definition 1.2.4 (De Rham cohomology). Let M be a (smooth) manifold and let K be either
R or C, then the k-th De Rham cohomology group is defined as

Hk
DR(M,K) =

ker
(
d: ΩkK(M)→ Ωk+1

K (M)
)

im
(
d: Ωk−1

K (M)→ ΩkK(M)
) . (1.10)

In the setting of (smooth) manifolds, any singular k-simplex σ : ∆k → M is homologous
to a smooth k-simplex. For a smooth k-chain σ =

∑
i aiσi and a k-form α on M we can

define the integral ∫
σ

α :=
∑
i

ai

∫
∆k

σ∗α. (1.11)

Stokes’ theorem can subsequently be used to show that
∫
∂σ
α = 0 and

∫
τ

dβ = 0 if α is
closed and τ is a k-cycle, which means that this defines a pairing∫

: Hk(M,R)×Hk
DR(M,R)→ R, 〈σ, α〉([σ], [α]) 7→

∫
σ

α. (1.12)

De Rham’s theorem gives us an identification between the De Rham cohomology groups
Hk

DR(M,R) and the singular cohomology groups Hk(M,R).

Theorem 1.2.5 (De Rham’s theorem). For an n-dimensional manifold, k ∈ N0 the map

Ψ: Hk
DR(M,R)→ Hk(M,R), α 7→ 〈•, α〉 (1.13)

is an isomorphism of groups.

Proof: See [7], [3] or [6].

Since De Rham’s theorem basically tells us that we may view the De Rham cohomology
groups and the singular cohomology groups as the same spaces, we will from now on no
longer use the label DR to emphasise that we are working with De Rham cohomology groups.
It is important to note that De Rham’s theorem in particular enables us to naturally view the
torsion free integer cohomology groups Hk(M,Z)f as a subgroup of the real cohomology
group H3(M,Z).

Another important result for the cohomology groups of manifolds is Poincaré duality,
which in its most general form gives us an isomorphism between the homology groups
Hk(M,Z) and the cohomology groups Hk(M,Z) for compact oriented manifolds. In terms
of De Rham cohomology, it can be written as follows:

Theorem 1.2.6 (Poincaré duality). Let M be an n-dimensional compact, oriented manifold
and let K = R,C. The intersection pairing

Q : Hk(M,R)×Hn−k(M,R)→ R, (α, β) 7→
∫
M

α ∧ β (1.14)

defines an isomorphism between Hk(M,R) and
(
Hn−k(M,R)

)∗ ' Hn−k(M,R).

The hypermultiplet moduli space 9



CHAPTER 1. SOME PRELIMINARY MATHEMATICS

We end our discussion of the cohomology groups of manifolds by stating a result that
will allow us to choose a symplectic basis for the middle cohomology groups of Calabi-Yau
3-folds (cf. section 2.1.1).

Proposition 1.2.7. LetM be a compact oriented n-dimensional manifold and let α ∈ Hk(M,Z)f
be a cochain that cannot be written as α = nβ for some n > 1 and β ∈ Hk(M,Z)f. There
exists an element β ∈ Hn−k(M,Z)f such that Q(α, β) = 1.

On a manifold of even dimension 2n with n ∈ N odd, the intersection form

Q : Hn(M,R)×Hn(M,R)→ R, (α, β) 7→
∫
M

α ∧ β (1.15)

is a symplectic form on Hn(M,R) and the proposition above can be used to obtain the
following result.

Corollary 1.2.8. Let M be a compact oriented manifold of even dimension 2n with n ∈ N an
odd number. There exists a set α1, . . . , αd, β

1, . . . , βd of generators for Hn(M,Z)f < Hn(M,R)
such that

Q(αi, αj) = Q(βi, βj) = 0 and Q(αi, βj) = δji . (1.16)

These generators are said to form an (integral) symplectic basis for H3(M,R).

By Poincaré duality we can also find set of generators γ1, . . . , γd, η1, . . . , ηd for the integer
homology groups H3(M,Z)f that is dual to the symplectic basis (αi, βi)i in the sense that∫

γi
αj = −

∫
ηi

βj = δji and
∫
ηi

αj =
∫
γi
βj = 0. (1.17)

These cycles form a set of generators for Hn(M,Z)f that satisfy

γi ∩ γj = ηi ∩ ηj = 0 and γi ∩ ηj = −ηj ∩ γi = δij , (1.18)

where ∩ is the intersection product on Hn(M,Z). Conversely, for any set of generators for
Hn(M,Z)f a unique dual symplectic basis for Hn(M,Z)f may be found.

Any element α ∈ Hn(M,R) can now be written as

α =
∑
i

Aiηi −Biβi =
∑
i

(∫
γi
α

)
ηi −

(∫
ηi

α

)
βi (1.19)

where Ai =
∫
γi
α and Bi =

∫
ηi
α are called the periods of α with respect to the basis (γi, ηi)i

1.3 Complex and Kähler geometry

1.3.1 Complex geometry

Many of the spaces we will be working with will be complex manifolds, which may be
viewed as an analogue of real manifolds, but with holomorphic charts. They may also be
viewed as real manifolds that admit an integrable almost complex structure.

Definition 1.3.1 (Almost complex structure). An endomorphism J : TM → TM on the
tangent space of an even dimensional manifold is called an almost complex structure if
J2 = − idTM . A manifold (M,J) equipped with an almost complex structure is called an
almost complex manifold.

10 A.G. Baarsma



1.3. COMPLEX AND KÄHLER GEOMETRY

The fact that almost complex manifolds have an even dimension is not actually part of the
definition, but rather a consequence of the existence of the endomorphism J . Another con-
sequence of this definition is that any almost complex manifold is automatically orientable.
Since an almost complex structure satisfies J2 = − id its complex linear extension to the
complexified tangent space TCM = TM ⊗ C splits into two bundles of eigenspaces for J
that correspond to the eigenvalues +i and −i. We have TCM = T1,0M ⊕ T0,1M , with

T1,0 = {X ∈ TCM | J X = iX} and T0,1 = {X ∈ TCM | J X = −iX}. (1.20)

A section of T1,0M (resp. T0,1M) is said to be a vector field of type (1, 0) (resp. (0, 1)).
Similarly, a complex-valued 1-form α on M is respectively called a (1, 0)-form or a (0, 1)-

form if J∗α := α ◦ J = +iα or J∗α − iα. If we denote the set of complex-valued (1, 0)
and (0, 1)-forms by on M by Ω1,0(M) and Ω0,1(M) respectively, then the set of all complex-
valued 1-forms Ω1

C(M) can be written as the direct sum Ω1(M) = Ω1,0(M)⊕Ω0,1(M). More
generally, we can define the set of (p, q)-forms as

Ωp,q(M) =
∧pΩ1,0(M) ∧

∧qΩ0,1(M) (1.21)

and we have Ωk(M) =
⊕

p+q=k Ωp,q(M)
We may define a complex manifold as a manifold that admits holomorphic charts.

Definition 1.3.2 (Complex manifold). A complex manifold of complex dimension n M is a
real manifold of even dimension 2n that can be covered by charts (Ui, κi)i that embed Ui ⊆M
in Cn in such a way that the transition functions κi ◦κ−1

j : κj(Ui∩Uj)→ Cn are holomorphic.

The complex vector space Cn comes with a natural almost complex structure J : Cn → Cn
defined by J (z1, . . . , zn) = (i z1, . . . , i zn). If (U, κ) is a chart for a complex manifold M of
(complex) dimension n, then this almost complex structure on Cn can be pulled back along
κ : U → Cn to U ⊆ M . For any point x ∈ M the endomorphism Jx : TxM → TxM does
not depend on what chart is chosen to define it exactly because the transition functions are
holomorphic, so we see that any complex manifold comes with a unique induced almost
complex structure. An almost complex structure that is defined in such a way is called a
complex structure and it can be verified to be integrable.

Definition 1.3.3 (Integrability). An almost complex structure J : TM → TM is said to be
integrable if for any two vector fields X and Y of type (1, 0) the commutator [X,Y ] is again a
vector field of type (1, 0).

A very important theorem when dealing with complex and almost complex structures is
the Newlander-Nirenberg theorem, which states that integrability is not only a necessary for
an almost complex structure to be a complex structure, but also a sufficient.

Theorem 1.3.4 (Newlander-Nirenberg). Let M be an even-dimensional manifold and let
J : TM → TM be an almost complex structure on M , then J is a complex structure if and only
if it is integrable.

An equivalent condition for the integrability of the almost complex structure J is the vanishing
of the Nijenhuis tensor,

N(X,Y ) = [X,Y ] + J [J X, Y ] + J [X, J Y ] + [J X, J Y ]. (1.22)

Proof: The proof of the first statement is very complex and a little beyond the scope of this
text. A partial proof can be found in [6]. The second statement can easily be verified.

Proposition/Definition 1.3.5 (Dolbeault operators). Let J be a complex structure on the
manifold M and let πp,q denote the projection Ωp+qC (M) → Ωp,q(M). For any (p, q)-form
ω(p,q) we have dω(p,q) = (πp+1,q ◦ d)ω(p,q) + (πp,q+1 ◦ d)ω(p,q).

The hypermultiplet moduli space 11



CHAPTER 1. SOME PRELIMINARY MATHEMATICS

The operators ∂ = πp+1,q ◦ d and ∂̄ = πp,q+1 ◦ d on Ωp,q(M) are called the Dolbeault
operators and can naturally be extended to ΩkC(M) =

⊕
p+q=k Ωp,q(M). We have ∂2 = ∂̄2 = 0

and ∂∂̄ = −∂̄∂.

The Dolbeault operators ∂ and ∂̄ can be defined for any almost complex manifold, but
only if the almost complex structure is integrable do they satisfy d = ∂+ ∂̄ and ∂̄2 = 0 (both
are in fact equivalent conditions).

A function f : M → C is said to be holomorphic if it is holomorphic on each of the charts
of M . This is the case exactly when df is of type (1, 0), which in turn is true exactly when
∂̄f = 0. The Dolbeault operator ∂̄ can be used to generalise this notion to differential forms
of arbitrary ranks.

Definition 1.3.6 (Holomorphicity). A k-form ω(k) on a complex manifold (M,J) of (com-
plex) dimension n is said to be holomorphic if it is of (pure) type (k, 0) and ∂̄ω(k) = 0.

We denote the set of holomorphic p-forms on M by Ωp(M) = {α ∈ Ωp,0(M) | ∂̄α = 0}.

A chart κ : U ↪→ Cn for a complex manifold M provides local complex coordinates
z1, . . . , zn. The differentials dzi form a local basis of (1, 0)-forms, while their complex con-
jugates dz̄i form a basis of of (0, 1)-forms. In general, The forms

dzi(1) ∧ . . . ∧ dzi(p) ∧ dz̄j(1) ∧ . . . ∧ dz̄j(q) (1.23)

with 0 ≤ i(1) < . . . < i(p) ≤ n and 1 ≤ j(1) < . . . < j(q) ≤ n describe a basis for all
(p, q)-forms on Ui.

We can define Dolbeault-cohomology groups Hq(M,Ωp(M)) for a complex manifold in
a way that is similar to how we had defined the De Rham cohomology groups on a (real)
manifold.

Definition 1.3.7 (Dolbeault cohomology). For p, q ∈ N0 the Dolbeault cohomology group
Hq(M,Ωp(M)) for a complex manifold M may be defined as the quotient

Hq(M,Ωp(M)) =
ker
(
∂̄ : Ωp,q(M)→ Ωp,q+1(M)

)
im
(
∂̄ : Ωp,q−1(M)→ Ωp,q(M)

) . (1.24)

1.3.2 Kähler geometry

A very important notion that we will use at several stages in the next chapters is the notion
of a Kähler structure. A Kähler structure combines the notion of a symplectic structure with
a Hermitian metric.

Definition 1.3.8 (Hermitian metric). Let (M,J) be a complex manifold. A Riemannian
metric g on M is said to be Hermitian if it is compatible with J in the sense that

g(J X, J Y ) = g(X,Y ) (1.25)

for any two vector fields X and Y on M .

Given a Hermitian metric g, the bilinear form ω = g(J •, •) is antisymmetric (g(J X, Y ) =
g(Y, J X) = −g(J Y,X)) and can thus be viewed as a differential form. This form is called
the fundamental form for g and it can furthermore be verified to be of type (1, 1). The
complex-valued sesquilinear form h = g− iω is often called the Hermitian metric instead its
real part g.

Definition 1.3.9 (Kähler structure). A Kähler manifold (M,J, g) is a complex manifold
(M,J), together with a Hermitian metric g whose fundamental form ω = g(J •, •) is closed.

12 A.G. Baarsma



1.3. COMPLEX AND KÄHLER GEOMETRY

The metric g is called the Kähler metric and ω is said to be the Kähler form for the Kähler
structure (J, g).

Any Kähler manifold (M,J, g) locally admits a so-called Kähler potential. A Kähler po-
tential is a real function K on M such that the Kähler form for g is given by ω = i ∂∂̄K. Any
two Kähler potentials are related by a Kähler transformation, which are transformations of
the form K 7→ K + f + f̄ for a (locally defined) holomorphic function f on M .

An equivalent way to characterise Kähler metrics uses the Levi-Civita connection. Al-
though we will not use this characterisation for most of this text, it is useful because it
shows the link with the definition for quaternion-Kähler structures, which is discussed in
section 1.5.

Corollary 1.3.10. Let M be an even dimensional manifold, g a Riemannian metric and J an
almost complex structure on M such that g(J X, J Y ) = g(X,Y ) for all vector fields X and Y
on M . The pair (g, J) defines a Kähler structure on M if and only if ∇J = 0, where ∇ denotes
the Levi-Civita connection for the metric g.

Proof: Suppose that ∇J = 0, then J(∇XY ) = ∇X(J Y ) for all vector fields X and Y .
Flatness of the Levi-Civita connection then tells us that [X,Y ] = ∇XY −∇YX and hence the
Nijenhuis tensor becomes

N(X,Y ) = [X,Y ] + J [J X, Y ] + J [X, J Y ]− [J X, J Y ]
= ∇XY −∇YX + J(∇JXY −∇Y (J X))

+ J(∇X(J Y )−∇JYX)−∇JX(J Y ) +∇JY (J X)
= ∇XY −∇YX +∇JX(J Y ) +∇YX
−∇XY −∇JY (J X)−∇JX(J Y ) +∇JY (J X) = 0.

(1.26)

Theorem 1.3.4 thus tells us that J is integrable.
Since Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ) by definition of the Levi-Civita connection,
∇Z(JX) = J(∇ZX) and ω = g ◦ (J × id) we have that

Z(ω(X,Y )) = g(J ∇ZX,Y ) + g(J X,∇ZY ) = ω(∇ZX,Y ) + ω(X,∇ZY ) (1.27)

for any three vector fields X, Y and Z on M . The exterior derivative of the fundamental
form, dω, can be expressed through

(dω)(X,Y, Z) = X(ω(Y,Z)) + Y (ω(Z,X)) + Z(ω(X,Y ))
− ω([X,Y ], Z)− ω([Z,X], Y )− ω([Y, Z], X)

(1.28)

and we see that this vanishes if we plug in [X,Y ] = ∇XY −∇YX and use equation (1.27).
Kählerity of (M, g, J) follows. The converse statement can also be proven [6].

A property of Kähler manifolds that we will repeatedly make use of is the fact that their
Dolbeault cohomology groups can be used to define a decomposition of its complex coho-
mology groups. We just present this result now without much explanation, but we will say
more about it in section 1.3.3

Theorem 1.3.11 (Hodge decomposition). Let (M,J, g) be a compact Kähler manifold, then
there exists a decomposition of the cohomology group Hk(M,C) as

Hk(M,C) =
⊕
p+q=k

Hp,q(M), (1.29)

where the spaces Hp,q(M) are complex vector spaces that are canonically isomorphic to the
Dolbeault cohomology groupsHq(M,Ωp). This decomposition depends on the complex structure
J on M , but not on its Kähler metric g.

The hypermultiplet moduli space 13
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1.3.3 Harmonic forms

Harmonic forms play a very important role in the compactification process described in
section 3.2, as well as in the proof of theorem 1.3.11. To define what we mean by a harmonic
form on a Riemannian manifold we should first extend the metric on this space to a metric
on k-forms for arbitrary k.

Let (M, g) be an oriented Riemannian manifold and let e1, . . . , en be an oriented local
orthonormal basis of vector fields with respect to g and let e1, . . . , en be the dual basis of
1-forms. We can define a metric on the bundle

∧k T∗M by demanding that the basis{
ei(1) ∧ . . . ∧ ei(k)

∣∣∣ {i(1) < . . . < i(k)} ⊆ {1, . . . , n}
}

(1.30)

is orthonormal with respect to it. This does not depend on the choice made for the original
basis e1, . . . , en. The standard volume form µM on M is given by µM = e1 ∧ . . . ∧ en.

If M is compact, then we can use this to define the L2-metric on the space ΩkR(M) of
k-forms on a Riemannian manifold (M, g) by setting

〈α, β〉L2 =
∫
M

g(α, β)µM (1.31)

for any α, β ∈ ΩkR(M). Directly related to this metric are the notions of the Hodge star
operator and the formal adjoint of the exterior derivative d.

Definition 1.3.12 (Hodge star operator). Let (M, g) be a compact n-dimensional Rieman-
nian manifold. The Hodge star operator is the unique linear map ∗ : ΩkR(M) → Ωn−kR (M)
for which

α ∧ ∗β = g(α, β)µM and thus 〈α, β〉L2 =
∫
M

α ∧ ∗β (1.32)

for any two k-forms α, β ∈ Ωk(M).

On a complex manifold the Hodge star operator can be extended to an operator on
ΩkC(M) ' ΩkR(M) ⊗ C through complex linear extension. This complex Hodge star oper-
ator is characterised by the equation

〈α, β〉L2L =
∫
M

α ∧ ∗β =
∫
M

µMh(α, β) (1.33)

for α, β ∈ ΩkC(M), where h is the sesquilinear extension of g.
The volume form µM on an n-dimensional complex manifold is an (n, n)-form, which

tells us that for two pure forms α(p,q) ∈ Ωp,q(M) and β(p′,q′) ∈ Ωp
′,q′(M) with p + q +

p′ + q′ = 2n, but p + p′ 6= n (and thus q + q′ 6= n), α ∧ β = 0. As a consequence of
this, ∗ω(p,q) will necessarily be a pure (n − p, n − q)-form for ω(p,q) ∈ Ωp,q(M) and thus
∗Ωp,q(M) = Ωn−q,n−p(M).

Definition 1.3.13 (Formal adjoint of d). The formal adjoint d† of the exterior derivative d
on a Riemannian manifold (M, g) is the operator d† : ΩkR(M) → Ωk−1

R (M) that is determined
by the relation

〈dα, β〉L2 = 〈α,d†β〉L2 (1.34)

for any α ∈ Ωk−1
R (M) and any β ∈ ΩkR(M). If M is a complex manifold we can similarly define

adjoint operators ∂† and ∂̄† for its Dolbeault operators.

It can be shown that the Hodge star operator satisfies ∗2 = (−1)k(n−k) and that moreover
d† = (−1)k ∗−1 d∗, ∂† = −∗ ∂̄∗ and ∂̄† = −∗∂∗. We can now define the Laplace operator, or
Laplacian, on a Riemannian manifold as a generalisation of the standard Laplace operator∑
i ∂

2
i on Rn (equipped with the standard inner product).
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1.3. COMPLEX AND KÄHLER GEOMETRY

Definition 1.3.14 (Laplace operator). The Laplace operator on a Riemannian manifold
(M, g) is defined as the operator ∆d = d d†+d†d. A k-form α on (M, g) is said to be harmonic
if ∆α = 0 and we denote the (linear) space of real Harmonic k-forms by Hk(M,R).

It can be shown that a form ω ∈ ΩkR(M,R) is harmonic if and only if dω = d†ω = 0, which
means first of all that any harmonic form ω ∈ Hk(M,R) represents a class [ω] ∈ Hk(M,R)
and secondly that also the Hodge dual ∗ω ∈ ΩdimM−k

R (M) is harmonic. One of the main
reasons why we are interested in harmonic forms is the following result.

Proposition 1.3.15. Let Hk(M,R) be the space of harmonic k-forms on the compact Rieman-
nian manifold (M, g), then the map Hk(M,R) → Hk(M,R), ω 7→ [ω] is an isomorphism of
vector spaces.

If M has real dimension n, then the Hodge star operator ∗ : Hk(M,R) → Hn−k(M,R)
induces an isomorphism Hk(M,R) →̃Hn−k(M,R).

For a complex manifold with a Hermitian metric g one can also define Laplacians ∆∂ =
∂∂† + ∂†∂ and ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄. Similar to the situation for general Riemannian mani-
folds, any (p, q)-form that is harmonic with respect to ∆∂̄ represents a cohomology class in
Hq(M,Ωp(M)) and we have the following result.

Proposition 1.3.16. LetHp,q(M) be the space of harmonic (p, q)-forms on the compact Hermi-
tian manifold (M,J, g), then the map Hp,q(M)→ Hq(M,Ωp(M)), ω 7→ [ω] is an isomorphism
of complex vector spaces.

A special (highly non-trivial) property of Kähler manifolds is that ∆ = 2 ∆∂ = 2 ∆∂̄ . This
can be used to show that the (p, q)-component of any harmonic k-form (with k = p + q) is
itself harmonic and thus gives us a decomposition

Hk(M,C) ' Hk(M,R)⊗ C =
⊕
p+q=k

Hp,q(M). (1.35)

The isomorphism from proposition 1.3.15 induces a corresponding decomposition

Hk(M,C) ' Hk(M,R)⊗ C =
⊕

Hp,q(M), (1.36)

where the spaces Hp,q(M) are canonically isomorphic to the Dolbeault cohomology groups
Hq(M,Ωp(M)) by proposition 1.3.16. This makes the decomposition from theorem 1.3.11
explicit.

Definition 1.3.17 (Hodge diamond). The Hodge numbers hp,q of a Kähler manifold (M,J, g)
are the (complex) dimensions hp,q = dimC

(
Hp,q(M)

)
of the Dolbeault cohomology groups of

M . These numbers are often presented in the form of a Hodge diamond, as the in equa-
tion (1.37) (which is for a 3-dimensional complex manifold).

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

(1.37)

These diagram are symmetric under both horizontal and vertical reflections because of
the isometries between the spaces Hp,q(M) induced by complex conjugation and the Hodge
star operator, which tell us that hp,q = hq,p = hn−p,n−q = hn−q,n−p.

The hypermultiplet moduli space 15



CHAPTER 1. SOME PRELIMINARY MATHEMATICS

If (M,J, g) is a Kähler manifold with Kähler form ω, then an element α ∈ Hp,q(M,C) is
said to be primitive if it cannot be written as α = ω ∧ β for some β ∈ Hp−1,q−1. On the
space Hp,q

prim(M) of primitive (p, q)-forms modulo exact forms the complex-linear extension
of the Hodge star operator takes a particularly simple form.

Lemma 1.3.18. Let (M,J, g) be a Kähler manifold with Kähler form ω. If α ∈ Hp,q(M,C) is
primitive, then ∗α = (−1)k(k+1)/2ip−qα for k = p+ q.

Another reasons why the Laplace operator is interesting is the fact that it allows us to find
a discrete basis of forms on a compact Riemannian manifold with a number of very nice
properties.

Theorem 1.3.19. Let (M, g) be a compact Riemannian manifold, let ∆ = dd† + d†d be its
Laplace operator and let k ≥ 0, then the spectrum

Λ =
{
λ | ∃α ∈ Ωk(M) : ∆α = λω

}
⊆ R (1.38)

is discrete and consists of only non-negative numbers. Moreover, each of the eigenspace ker(∆−
λ) is finite dimensional and orthogonal with respect to 〈•, •〉L2 and any form α ∈ Ωk(M) can
be written as a uniformly convergent sum α =

∑
λ∈Λ αλ [10].

By uniform convergence we mean convergence with respect to the L∞-norm ‖•‖∞ on
Ωk(M), which is defined by ‖α‖∞ = supx∈M

√
g(α, α). This in particular implies conver-

gence with respect to the L2-norm.

1.3.4 Holomorphic line bundles

We will briefly discuss some general properties of the first Chern class of a line bundle, which
we will later apply to line bundles on complex tori.

Definition 1.3.20 (Holomorphic line bundle). A holomorphic vector bundle of rank n
on a complex manifold M is a real 2n-dimensional vector bundle π : V → M that admits
trivialisations τi : π−1(U)→ U×Cn such that the transition functions τi◦τ−1

j are holomorphic.
A holomorphic line bundle is a holomorphic vector bundle of rank 1.

The tensor product L ⊗ L′ → M of two holomorphic line bundles L → M and L′ → M
on the compact complex manifold M is again a holomorphic line bundle and for any line
bundle L → M we have L0 ⊗ L ' L and L ⊗ L∗ ' L0, where L0 denotes the trivial line
bundle and L∗ is the dual bundle for L. The set of isomorphism classes of holomorphic
line bundles, equipped with the tensor product, defines an Abelian group that is called the
Picard group and isdenoted by Pic(M).

Using Čech cohomology it can be shown that this group is naturally isomorphic to the
cohomology group H1(M,O∗M ), where O∗M is the sheaf of nowhere vanishing holomorphic
functions on M [7, 6]. If we furthermore let OM denote the sheaf of all holomorphic func-
tions onM and ZM the constant sheaf of integers onM , then we have a short exact sequence

0 −→ ZM
2πi−−→ OM

exp−−→ O∗M −→ 0, (1.39)

that induces a long exact sequence on the cohomology groups,

. . .→ H1(M,OM )→ H1(M,O∗M ) c1−→ H2(M,Z)→ H2(M,OM )→ . . . (1.40)

Definition 1.3.21 (First Chern class). Let L ∈ H1(M,O∗M ) be a line bundle on a compact
complex manifold M , then the first Chern class of L is the image c1(L) ∈ H2(M,Z), where
c1 is the connecting homomorphism from equation (1.40).
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Instead of considering the (first) Chern class c1(L) of a line bundle L as an element of
H2(M,Z), we will often view c1(L) as an element of the real (De Rham) cohomology group
H2

DR(M,R). Although the (first) Chern class c1(L) does not completely fix the isometry class
of L, it does completely determine L as a smooth vector bundle [7]. There is another, more
practical, definition for the first Chern class of a line bundle that can in fact be applied to
any smooth vector bundle.

Lemma 1.3.22. Let L → M be a holomorphic line bundle on the compact complex manifold
M and let Θ be the curvature 2-form for some connection on L, then

c1(L) =
[−1

2πi Θ
]
∈ H2(M,R). (1.41)

Proof: The equivalence of these definitions is discussed in [7].

Note that this lemma in particular states that the cohomology class of the curvature form
Θ is independent of the connection chosen. A convenient choice is the Chern connection for
a Hermitian metric since the lemma below provides us with a simple way to determine its
curvature.

Lemma/Definition 1.3.23 (Chern connection). Let E →M be a holomorphic vector bundle
on the complex manifold M and let h be a Hermitian metric on E. There exists a unique
complex connection ∇ on E such that for any two smooth sections σ and τ of L,

1. ∇(iσ) = i (∇σ) (∇ is a complex connection)

2. d
(
h(σ, τ)

)
= h(∇σ, τ) + h(σ,∇τ) (∇ is Hermitian)

3. ∇σ − ∂̄Lσ ∈ Ω1,0(M,L).
This connection is called the Chern connection for h.

Proof: A proof for this statement may be found in [6] or [11].

Lemma 1.3.24. Let L → M be a holomorphic line bundle, let h be a Hermitian metric on L
and let ∇ be its Chern connection. If we choose a local holomorphic section Φ of L that does
not vanish anywhere on its domain then the connection and curvature forms of ∇ are given by

θ = ∂ log h and Θ = −∂∂̄ log h, (1.42)

respectively on the domain of Φ, where h = h(Φ,Φ).

Proof: The reader is referred to [11] for a proof of this claim.

1.3.5 Special Kähler geometry

An interesting class of Kähler manifolds are the so-called special Kähler manifolds, which
were first observed to appear in N = 2 supergravity theories, such as the one we will
introduce in section 3.2 [12]. There are two types of special Kähler manifolds: rigid special
Kähler manifolds and local special Kähler manifolds, which appear in (rigid) supersymmetry
theories [13] and N = 2 supergravity theories [12] respectively.

In the mathematics literature rigid and local special Kähler manifolds are generally re-
ferred to as affine special Kähler manifolds and projective special Kähler manifolds respec-
tively. As we will see in section 2.2, the moduli space of Calabi-Yau 3-folds comes with a
projective special Kähler structure [14, 15, 16]. A very elegant intrinsic definition for affine
special Kähler structures is exists [17].

Definition 1.3.25 (Affine special Kähler structure). An affine special Kähler manifold is
a Kähler manifold (M,J, g) that admits a flat torsion-free connection ∇ such that d∇J = 0.

The hypermultiplet moduli space 17
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It is however the projective special Kähler manifolds that we are mostly interested in.
These manifolds can be defined as the orbit spaces for local C∗-action that is defined on
affine special Kähler manifold of a specific type [18], but this is not the definition we will
use. One of the most explicit of these uses local projective coordinates and a homogeneous
prepotential for the Kähler potential [14,12].

Definition 1.3.26 (Projective special Kähler structure). A projective special Kähler man-
ifold is an n-dimensional Kähler manifold (M,J, g) that can be covered by open patches Ua that
come with a set of complex projective coordinates X0

a , . . . , X
n
a and a prepotential F , which is

a holomorphic function Fa : Cn+1 → C such that
a. F is homogeneous of degree 2: Fa(λX0

a , . . . , λX
n
a ) = λ2Fa(X0

a , . . . , X
n
m).

b. The function

Ka(Xa, X̄a) = − log

(
i
∑
i

(
X̄i
aFa,i −Xi

aF̄a,i
))

(1.43)

is a Kähler potential for (M,J, g), where Fa,i(X) := ∂Fa(X)
∂Xia

.

c. On the intersection Ua ∩Ub of two patches, the vectors (X, ∂F )a = (Xi
a, Fa,i(X))ni=0 and

(X, ∂F )b = (Xi
b, Fb,i(X))ni=0 are related by a transformation(

∂F
X

)
a

= fabMab

(
∂F
X

)
b

(1.44)

for some nowhere-vanishing holomorphic function fab and a constant matrix Mab ∈
Sp(2n+ 2,R). On the overlap Ua ∩ Ub ∩ Uc of three charts these should satisfy

fab fbc fca = 1 and MabMbcMca = 12n+2. (1.45)

The homogeneity of a prepotential Fa could alternatively have been expressed through
the equation Fa(X) =

∑
i

1
2 X

i
aFa,i(X), with Fa,i(X) = ∂Fa(X)

∂Xia
. As a consequence of the

homogeneity of Fa(X), the derivatives Fa,i(X) are homogeneous of degree 1, while the
Hessian Fij = ∂2F (X)

∂Xi∂Xj is homogeneous of degree 0.
Equation (1.44) and (1.44) may not appear to make sense because the coordinates Xi

a on
the chart Ua are projective, which is why they should really be interpreted as conditions that
hold for any holomorphic functions X0

a , . . . , X
n
a : Ua → C such that [X0

a(x), . . . , Xn
a (x)] = x

for x ∈ Ua and the corresponding functions functions Fa,i : Ua → C, x 7→ Fa,i(Xa(x)). It can
be shown that if condition (b) and condition (c) hold for one section, they are automatically
satisfied by any other section on the same domain.

A closely related definition that does not make use of local coordinates can be found
in [14,19]. We will finish with yet another definition for projective special Kähler manifolds
that may be found in [17] and is modelled after variations of the Hodge structure of Calabi-
Yau 3-folds as described by [15]. We will encounter special Kähler geometry in this form in
section 2.2, where deformations of Calabi-Yau manifolds are discussed.

Definition 1.3.27 (Projective special Kähler structure). Let (M,J, g) be a Kälher manifold
of (complex) dimension n. A projective special Kähler structure consists of

1. A holomorphic vector bundle V ' (VR, J) of rank n + 1. We identify V with the +i
eigenspace in VC = VR ⊗ C of J ,

2. A line sub-bundle L < V whose first Chern class c1(L) = [ω] is represented by the Kähler
form ω of (M,J, g).

3. A flat complex linear connection ∇ on the complexification VC = VR⊗C of the real vector
bundle underlying V such that ∇(L) < V ,

18 A.G. Baarsma



1.4. COMPLEX TORI

4. A symplectic form Q on VR of type (1, 1) that is flat with respect to ∇ such that iQ(•, •)
defines a Hermitian metric on L < V < VC.

On any contractible neighbourhood U ⊆ M , we can use the flat connection ∇ to identify
the fibres of VC with a single the fibre VC,x = VR,x ⊗ C for x ∈ M . We require that for any
such neighbourhood U the map U → P (VC,x), x 7→ Lx is an immersion, where P (VC,x) is the
complex projective space

(
VC,x \ {0}

)
/C∗.

1.4 Complex tori

We will use the following definition for a complex torus [8].

Definition 1.4.1 (Complex torus). Let V be a complex linear space of dimension n, then by a
discrete lattice in V we mean a discrete subgroup of V (equipped with the additive structure)
that is of maximal rank, so it is a free abelian subgroup of V of rank 2n.

A complex torus of dimension n is a quotient X = V/Λ, of a complex linear space V of
dimension n by a lattice Λ of maximal rank. The complex torus X is topologically simply an
2n-dimensional torus and it inherits the structure of a complex Lie group from V , so it is in
particular an n-dimensional connected compact complex manifold.

The translations on the vector space V induce diffeomorphisms on the torus X which we
also call translation. These coincide with the group translations on X as an Abelian group.

Definition 1.4.2 (Translation). A translation on a complex torus X = V/Λ by y ∈ X is a
map τx : X → X,x 7→ x + y. The translation of a tensor T on X by y ∈ X is the tensor τy∗T
and T is called translation-invariant when τy∗T = T for all y ∈ X.

It can be shown that any compact connected complex Lie group G is a complex torus. The
description of such a group as a torus as we have defined it is obtained by taking for v the
Lie algebra V = T0G = g and for Λ ⊆ V the kernel of the exponential map exp: g→ G [9].

An effective way to describe a complex torus is through a so-called period matrix. Through-
out this section the indices i, j, k, . . . run from 1 to n = dimC V and the indices s, t, u, . . . run
from 1 to 2n = rank Λ.

Definition 1.4.3 (Period matrix). Let X = V/Λ be a complex torus of dimension n, let
e1, . . . , en be a (complex) basis for V be and let λ1, . . . , λ2n be an integral basis for the lattice
Λ. The period matrix associated with these bases is the (complex) n×2n-matrix Ω = Ωis such
that

λs =
∑
i

Ωisei. (1.46)

The basis λ1, . . . , λ2n is also a real basis for V , so we can define dual coordinates x1, . . . , x2n

and complex coordinates z1, . . . , zn dual to e1, . . . , en. Since dzi(λs) = dzi(
∑
j Ωjsej) = Ωis,

the corresponding differentials on X = V/Λ satisfy

dzi =
∑
s

Ωisdxs and dz̄i =
∑
s

Ω̄isdxs, (1.47)

so we see that the matrix Ω̃ =
(

Ω
Ω

)
defines a change of basis on the complexified cotangent

bundle T∗CX from (dxs)s to (dzi,dz̄i)i [7].

Remark 1.4.4. Let Π = Πsi be the 2n×n-matrix for which

dxs =
∑
i

Πsidzi + Πsid̄zi, (1.48)
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then (Π,Π) describes the change of basis in the opposite direction, from (dzi,dz̄i)i to (dxs)s,
so Ω̃ · Π̃ = I2n. This matrix is determined by the equations Ω · Π = In and Ω · Π = 0. By
combining this with equations (1.46) it follows that Π is characterised by the equations∑

s

Πsiλs =
∑
s,j

ΩjsΠsiej = ei and
∑
s

Πsiλs =
∑
s,j

ΩjsΠsiej = 0. (1.49)

The matrix Π is also often referred to as the period matrix.

If we fix a complex basis (ei)i for V and an integral basis (λs)s for the lattice Λ, then
the associated period matrix Ω can be seen as an embedding of the lattice Λ ' Z2n into
the complex linear space V ' Cn. Thus X = V/Λ ' Cn/(Ω Z2n) and the complex torus
is completely determined by its period matrix. Conversely, any period matrix Ω for which
Ω̃ =

(
Ω
Ω

)
is invertible describes such an embedding and is hence the period matrix of a

complex torus [8].

1.4.1 Non-degenerate complex tori

In section 2.3 we will introduce the Griffiths and Weil intermediate Jacobian of a Calabi-Yau
3-fold. These spaces are complex tori, but they have additional structure in the form of a
polarisation, which makes them non-degenerate complex tori. In this section these notions
will be introduced and explained.

Remark 1.4.5 (Polarised manifold). A polarised manifold is a pair (M, [ω]), where M is
a compact complex manifold and [ω] ∈ H2(M,Z)f ⊆ H2(M,R) is an integral Kähler class [6].
By this we mean that [ω] ∈ H2(M,Z)f ⊆ H2(M,R) that can be represented by a Kähler form
ω and is thus in particular also an element of H1,1(M). To allow a little more generality we
will drop the positivity condition on the Kähler form ω and call any cohomology class [ω] ∈
H1,1(M) ∩H2(M,Z)f a (general) polarisation [8].

Any inner product on the linear space V naturally induces a translation-invariant metric on
the torus X = V/Λ and it can be shown that with respect to such a metric the harmonic forms
on X are exactly the translation invariant forms. More explicitly, in terms of the coordinates
from definition 1.4.3, the space of harmonic (p, q)-forms is given by

Hp,q(X) =
∑
|I|=p

∑
|J|=q

C dzI ∧ dz̄J , (1.50)

and the space of harmonic k-forms representing integral cohomology classes is given by [7]

Hk(X,Z) =
∑
|I|=k

Z dxK . (1.51)

Since these forms are translation invariant they define an anti-symmetric bilinear form Q on
V ' TyX (the same one for every y ∈ X) that can be shown to take integer values on the lattice
Λ < V and are compatible with the complex structure on V in the sense that Q(i •, i •) = Q.
Conversely, any such bilinear form Q uniquely determines a translation invariant form (which
we also denote by Q) on X = V/Λ and thus a polarisation [Q] ∈ H1,1(X) ∩H2(X,Z)f.

With this in mind, we give the following definition of a polarisation on a complex torus.

Definition 1.4.6 (Polarisation). Let X ' V/Λ be a complex torus and identify V ' T0X.
A symplectic form Q : V × V → R is said to define a polarisation on X if it takes integer
values on the lattice Λ and is compatible with the complex structure on X in the sense that
Q(i •, i •) = Q.

20 A.G. Baarsma



1.4. COMPLEX TORI

It is easily checked that a symplectic form Q on a complex linear space V is compatible
with the complex structure if and only if it is the (negative) imaginary part of a Hermitian
form h on V , which is completely determined by equation (1.52) below. This allows us to
give an alternative definition for a polarisation as a Hermitian form and gives us a canonical
way of defining a metric on a non-degenerate torus (cf. 1.4.8).

h = g + iQ, g = Re(h) = Q(i •, •), Q = Im(h) = g(•, i •). (1.52)

There is an alternative approach to polarisations on complex tori using the first Chern
classes of holomorphic line bundles on these tori. A polarisation is then defined as the first
Chern class of a holomorphic line bundle on this torus. The following proposition shows
that this approach is equivalent

Proposition 1.4.7. Let X = V/Λ be a complex torus and let c1(L) be the first Chern class
of a line bundle L → X, then there exists a polarisation Q : V × V → R on X such that
c1(L) = [Q]. Conversely, given a polarisation Q on X, there exists a line bundle L → X such
that c1(L) = [Q]. Any two such line bundles L and L′ are related by a translation on X, i.e.
L′ = τy∗L for some y ∈ X.

Proof: The first Chern class c1(L) is by definition an integral cohomology class and it is
of type (1, 1) by lemma 1.3.24. This tells us that it defines a (general) polarisation in the
sense of lemma 1.4.5. Conversely, we can construct a line bundle Lω for any element [ω] ∈
H1,1(M) ∩H2(M,Z)f such that c1(L) = [ω]. A method of constructing such line bundles, as
well as a proof of their uniqueness up to translations can be found in [7].

Since the complex structure and the polarisation on a complex torus are both transla-
tion invariant, applying a translation τy to X = V/Λ does not essentially change anything
about the torus. In this sense the notion of a polarisation and that of a line bundle are
interchangeable, which is why the line bundle itself is sometimes called a polarisation.

Definition 1.4.8 (Canonical metric). A polarisation on a complex torus X = V/Λ is a Her-
mitian form h : V × V → C whose imaginary part Q = Im(h) is a polarisation in the sense of
definition 1.4.6. The real part g = Re(h) of h is called the canonical metric associated with
the polarisation h. Given a complex structure, each of the three forms h and g and Q determine
the other two completely since they are linked by the equations

g = Re(h) = Q(i •, •), Q = Im(h) = −g(i •, •), and h = g + iQ. (1.53)

The symmetric form g is non-degenerate, but not necessarily positive definite. We say that
a polarisation h has index k if the Hermitian form h has index k, i.e. if it has exactly k
negative eigenvalues. A complex torus admitting a polarisation of index 0 is called an Abelian
variety [8,9,7].

Lemma 1.4.9. Let Q : V × V → R be an anti-symmetric bilinear real form on a complex
linear space V taking integer values on some lattice Λ < V (of maximal rank). There exists an
integral basis α1, . . . , αn, β

1, . . . , βn for Λ and integers d1, . . . , dn such that for all 1 ≤ i, j ≤ n

Q(αi, αj) = Q(βi, βj) = 0 and Q(αi, βj) = diδ
j
i . (1.54)

We can moreover arrange it such that each of the integers di is non-negative and that di is a
divisor of the next, i.e. di | di+1 for i = 1, . . . , n − 1. With this extra condition, the integers
d1, . . . , dn are uniquely determined by Q and are independent of the choice of special basis
(αi, βi)i.

Proof: See [7], section 2.6.
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Definition 1.4.10 (Principal polarisation). Let Q : V × V → R define a polarisation on
a complex torus X = V/Λ. By lemma 1.4.10 we can find a basis (αi, βi)i for Λ such that
equation (1.54) holds for some uniquely determined integers d1 | d2 | . . . | dn.

These integers d1, . . . , dn are called the elementary divisors of the polarisation. If di = 1 for
all i we say thatQ defines a principal polarisation and we call the basis (αi, βi)i a symplectic
basis since Q is represented by the standard symplectic matrix Σ =

(
0 1n
−1n 0

)
when expressed

in such a basis.

Remark 1.4.11. Let Q : V × V → R define a principal polarisation on a complex torus
X = V/Λ and let α1, . . . , αn, β

1, . . . , βn be a symplectic basis. We can choose real coordi-
nates x1, . . . , xn, y1, . . . , yn on V with respect to this basis such that dxi(αj) = dyj(βi) = δij
and dxi(βj) = dyi(αj) = 0. The form Q may then be wrtten in terms of these differentials as

Q =
∑
i,j dxi ∧ dyi, (1.55)

since we can easily check that this 2-form satisfies equation (1.54).

Since the tori we will encounter all carry a canonical principal polarisation, we will from
now on assume that every polarisation is of principal type. In the remainder of this section,
X = V/Λ will therefore denote a complex torus with a principal polarisation of index k
defined by the symplectic form Q : V × V → R. Moreover, we will fix a symplectic basis
α1, . . . , αn, β

1, . . . , βn and corresponding coordinates x1, . . . , xn, y1, . . . , yn for which Q is
given by equation (1.55).

Definition 1.4.12 (Normalised period matrix). If the vectors ei = βi ∈ V for i = 1, . . . , n
form a complex basis for V , then the period matrix Ω associated with this basis will take the
special form Ω = (Z,1n), where Z = Zij is a (complex) n×n-matrix. A period matrix of this
form is called a normalised period matrix.

The matrix Z from definition 1.4.12 will often be referred to as the period matrix as it
describes the relevant part of Ω. It is characterised by the equation αi =

∑
j Zjiβj .

Once we have found an expression for the normalised period matrix, we can use it to give
standard expressions for the symplectic form, the Hermitian form and the canonical metric
that are associated with polarisation through the following proposition.

Proposition 1.4.13. Let the Ω = (Z,1n) be the normalised period matrix for the symplectised
basis (αi, βi)i and let (ei = βi)i be as in definition 1.4.12. The matrix Z is symmetric and
if we write Z = X + i Y for two real n×n-matrices X = Xij and Y = Yij , then Y = Im(Z)
is non-degenerate and has the same index k as the polarisation. Additionally, we have that
X Y −1X + Y = 0.

Furthermore, the differentials corresponding to the coordinates zi associated to the basis
e1, . . . , en are given by dzi = dyi + Zijdxi and in terms of these differentials, the Hermitian
form h, the symplectic form Q and the canonical metric g describing the polarisation are given
by

Q = −
∑
i,j

i
2 Y ijdzi ∧ dz̄j , g =

∑
i,j Y ijdzidz̄j and h =

∑
i,j Y ijdzi ⊗ dz̄j . (1.56)

where Y ij = Y −1 = Im(Z)−1 denotes inverse matrix of Y .

Proof: The period matrix Ω = (Z,1n) of course still satisfies equation (1.47) by definition,
even though we have renamed the coordinates x1, . . . , x2n to x1, . . . , xn, y1, . . . , yn. This
means that the differentials on the torus corresponding to the complex coordinates z1, . . . , zn
are given by dzi =

∑
j Zijdxj + dyi.
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SinceQ is compatible with the complex structure on V it is a (1, 1)-form and can be written
as Q =

∑
i,j Q

ijdzi ∧ dz̄j for some (complex) invertible matrix Qij By expanding this using
the expression for dzi we just obtained and comparing the result with equation (1.55), we
see that

Q = Qijdzi ∧ dz̄j = Qij(dyi + Zikdxk) ∧ (dyj + Zj`dx`)

= Qijdyi ∧ dyj︸ ︷︷ ︸
=0

+QijZikdxk ∧ Zj`dx`︸ ︷︷ ︸
=0

+Qij(dyi ∧ Z̄j`dx` + Zikdxk ∧ dyj)︸ ︷︷ ︸
=dxi∧dyi

. (1.57)

The fact that the first term should vanish tells us that Qij is symmetric. We can use this to
write the third term as

Qij(dyi ∧ Z̄j`dx` + Zikdxk ∧ dyj) = Qij(−Z̄jkdxk ∧ dyi + Zjkdxk ∧ dyi)

= Qij(Zjk − Z̄jk)(dxi ∧ dyk) = 2 iQijYjkdxi ∧ dyk = dxi ∧ dyi,
(1.58)

which furthermore tells us that 2 iQij = Y ij . We see that Y is symmetric and that the form
Q is given by equation (1.56). The corresponding expressions for the hermitian form and
canonical metric follow immediately from equation (1.53).

If we now work out the remaining expression in equation (1.57) we find

2 iQijZ̄ikZj` = Y ij(Xik − i Yik)(Xj` + i Yk`)

= (XikY ijXj` + Yk`) + i (X`k − Xk`),
(1.59)

which should be symmetric. This can only happen if Xij = Xji is symmetric, so we conclude
that the entire matrix Z = X + i Y is necessarily symmetric.

Finally, we can also express the complex structure on the torus in terms of the real basis
(αi, βi)i and the real and imaginary part of the normalised period matrix.

Proposition 1.4.14. Let the period matrix Ω = (Z,1n) with Z = X + i Y be as in proposi-
tion 1.4.13. The complex structure on V is described by the equations

iαi = XijY jkαk − (XijY jkXk` + Yi`)β` and iβi = Y ij(αj − Xjkβk). (1.60)

Proof: We have αi = Zijej = Zijβj = Xijβj + i Yijβj by definition of the normalised period
matrix Ω. Since Y is invertible, it immediately follows that

iβi = Y ij (i Yjkβk) = Y ij (αj − Xjkβk). (1.61)

If we use this to expand i Xijβj , we furthermore see that

iαi = i Xijβj − Yijβj = XijY jk (αk − Xk`β`)− Yjkβk

= XijY jkαk − (XijY jkXk` + Yi`)β`,
(1.62)

which completes the proof

Remark 1.4.15. Let V/Λ be a real torus of dimension 2n, Q a symplectic form that takes
integer values on the lattice and (αi, βi)i a symplectic basis for this for V with respect to this
form. For any symmetric n×n matrix Z such that Y = Im(Z) is invertible, equation (1.60)
defines a complex structure on V that is compatible with Q. The complex structure, the pseudo-
Riemannian metric g = Q(i•, •) and the normalised period matrix (Z,1) satisfying the above
two properties are therefore all equivalent parameters.
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1.4.2 Intermediate Jacobians

A very important class of non-degenerate complex tori are the intermediate Jacobians of
compact Kähler manifolds. These tori are defined in terms of just the odd cohomology
groups of the Kähler manifold and can be given a complex structure through the Hodge
decomposition [8].

For any Kähler manifold M and any integer k ∈ {1, 2, . . . ,dimC M}, the torsion-free part
of the (2k− 1)-th integral cohomology group, H2k−1(M,Z)f, defines a lattice inside the real
cohomology group H2k−1(M,R) of maximal rank. The space

Jk(M) = coker
(
H2k−1(M,Z) ↪→ H2k−1(M,R)

)
= H2k−1(M,R)

/
H2k−1(M,Z)f

(1.63)

is therefore a (real) torus of (real) dimension h2k−1 = dim(H2k−1(M,R)). There are in gen-
eral several complex structures we can put on H2k−1(M,R), which define different complex
tori.

A complex structure on the (real) linear space H2k−1(M,R) is described by an endomor-
phism J : H2k−1(M,R) → H2k−1(M,R) for which J2 = − id. The extension of such an
endomorphism J to the complexified space, H2k−1(M,R) ⊗ C ' H2k−1(M,C) is of course
diagonalisable and it has eigenvalues ±i, which means that J is completely determined by
the eigenspaces V± = ker(J ∓ i) < H2k−1(M,C) corresponding to these eigenvalues. There
is only one restriction, which comes from the fact that J restricts to an endomorphism on
H2k−1(M,R), and that is that V− = V+.

We know that the complex cohomology groups H2k−1(M,C) of the Kähler manifold M
can be decomposed into a direct sum of Dolbeault cohomology groups Hp,q(M),

H2k−1(M,C) =
⊕

p+q=2k−1

Hp,q(M) (1.64)

and that moreover Hp,q(M) = Hq,p(M), which we can use the Hodge decomposition to
define a complex structure on the odd cohomology groups of the Kähler manifold M and
turn the tori Jk(M) into complex tori by defining the eigenspaces V+ and V− as sums of
such spaces Hp,q(M).

There are two important classes of intermediate Jacobians, the Weil intermediate Jaco-
bians and the Griffiths intermediate Jacobians.

Definition 1.4.16 (Griffiths intermediate Jacobian). The k-th Griffiths intermediate Ja-
cobian of a Kähler manifold M is the complex torus

J G
k (M) = (H2k−1(M,R)/H2k−1(M,Z)f, J

G) (1.65)

where the complex structure JG is defined by the eigenspaces V G =
⊕

q>pH
p,q(M) and V G

corresponding to the eigenvalues +i and −i respectively.

and

Definition 1.4.17 (Weil intermediate Jacobian). The k-th Weil intermediate Jacobian of
a Kähler manifold M is the complex torus

J W
k (M) = (H2k−1(M,R)/H2k−1(M,Z)f, J

W) (1.66)

where the complex structure JW is defined by the eigenspaces

V w =
⊕

1+p−q∈4Z
Hp,q(M) (1.67)

and V W corresponding to the eigenvalues +i and −i respectively.
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It is easily verified that the extension of JG and JW to H2k−1(M,C) ' H2k−1(M,R) ⊗ C
can also be defined through the equation

JGω(p,q) = −isgn(p−q)ω(p,q) and JWω(p,q) = −ip−qω(p,q) (1.68)

for ω(p,q) ∈ H(p,q)(M) ⊆ H2k−1(M,C).
Using the following rather trivial lemma, we can also give a description of these interme-

diate Jacobians as quotient spaces of a direct su‘m of Dolbeault cohomology groups.

Lemma 1.4.18. Let H be a real linear space with complexification HC = H ⊗ C and let
V < HC be a linear subspace such that HC = V ⊕ V . The composition

ϕ = πV ◦ i : H → HC = V ⊕ V → V (1.69)

of the inclusion map i : H ↪→ HC and the projection π : HC = V ⊕ V → V is a isomorphism
between real linear spaces.

Proof: It is easily shown that the map

ϕ−1 : V → H2k−1(M,R), α 7→ α+ + α+. (1.70)

is the inverse of ϕ = πV ◦ i.

By applying this lemma to the spaces H2k−1(M,R), H2k−1(M,R)C ' H2k−1(M,C) and
the eigenspaces V± of a complex structure on H2k−1(M,R), we obtain a real linear isom-
prhism ϕ : H2k−1(M,R)→ V .

Corollary 1.4.19 (Alternative description). Let (Jk(M), J) either be the k-th Weil or Grif-
fiths intermediate Jacobian and let V < H2k−1(M,C) ' TCJk(M) be the eigenspace corre-
sponding to the eigenvalue +i. If we write ϕ : H2k−1(M,R) → V for the composition of the
inclusion H2k−1(M,R) ↪→ H2k−1(M,C) and the projection H3(M,C) = V ⊕ V → V , then it
induces an isomorphism (of complex Lie groups)

Jk(M) =
H2k−1(M,R)
H2k−1(M,Z)f

' V

ϕ(H2k−1(M,Z)f)
. (1.71)

Proof: We can write any α ∈ H2k−1(M,R) as α = α+ + ᾱ+ with α+ ∈ V and α− = ᾱ+ ∈ V
and we have ϕ(α) = α+ by definition of the isomorophism ϕ. It follows that

ϕ(J α) = ϕ(iα+ − iα−) = iα+ = iϕ(α), (1.72)

so we can view the real linear map ϕ : H2k−1(M,R)→ V as a complex linear isomorphism.
This tells us that ϕ(H2k−1(M,R))/ϕ(H2k−1(M,Z)f) and (H2k−1(M,R), J)/H2k−1(M,Z)f
define the same complex torus.

Both the Griffiths intermediate Jacobian and the Weil intermediate Jacobian come with
a polarisation, but we will postpone their description until section 2.3, where we will be
looking at the intermediate Jacobians on the middle cohomology group of a Calabi-Yau 3-
fold. For general k, the the Griffiths intermediate Jacobian J G

k and the Weil intermediate
Jacobian J W

k will not be isomorphic, but for k = 1 and k = dimC M , the two tori coincide.
The special cases J1 and J2n−1 are referred to as the Picard variety of M and the Albanese
variety respectively. In general, the Weil intermediate Jacobian are very different spaces.

The Griffiths intermediate is often simply referred to as the intermediate Jacobian [7].
Unlike the Weil intermediate Jacobian it varies holomorphically when the Kähler structure
used to define it is varied, which is often a great advantage. The Weil intermediate Jacobian
on the other hand is an Abelian variety, something that is not generally true for the Griffiths
intermediate Jacobian [8].
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1.5 Quaternion-Kähler structures

A definition that is commonly used for quaternion-Kähler manifolds is that they are 4n-
dimensional Riemannian manifold (M, g) whose holonomy group is contained in the group
Sp(1).Sp(n) =

(
Sp(1)×Sp(n)

)/
{±I} [20,5]. With this definition any orientable 4-dimensional

manifold would be quaternion-Kähler since Sp(1).Sp(1) ' SO(4). Many results that do
hold for quaternion-Kähler manifolds of dimension greater than 4 do not hold for general
orientable 4-dimensional manifolds, which is why a more restrictive definition is sometimes
used in this case [5]. It will be assumed that n > 1.

A different, but equivalent way of defining quaternion-Kähler manifolds is through a par-
allel bundle of endomorphisms [5,21]. It is this definition that we will focus on.

Definition 1.5.1 (Quaternion-Kähler manifold). A quaternion-Kähler manifold (M, g,H)
is a Riemannian manifold (M, g) with a 3-dimensional subbundle H of End(TM) such that

a. The vector bundle H locally admits a basis I, J,K that satisfy the quaternionic algebra,

I2 = J2 = K2 = − idTM , (1.73a)

I J = −J I = K, J K = −K J = I, K I = −I K = J, (1.73b)

where the first equation just says that I, J and K are almost complex structures.

b. The metric g is Hermitian for any section L of H for which L2 = − idTM , i.e.

g(LX,LY ) = g(X,Y ) (1.74)

for any such section L and any two vector fields X and Y on M .

c. H is parallel with respect to the Levi-Civita connection ∇ on (M, g).
In other words: ∇XI, ∇XJ and ∇XK are linear combinations of I, J and K for any
local basis I, J,K for H.

Even though it is not part of this definition, the (real) dimension of a quaternion-Kähler
manifold is always divisible by 4. We will briefly mention a few other important properties
of quaternion-Kähler manifolds.

Let (g,H) be a quaternion-Kähler structure and let I, J,K be a local basis of almost com-
plex structures in H < End(TM) satisfying equation (1.73). For a set of real numbers
x, y, z ∈ R, the endomorphism L = x I + y J + z K is also an almost complex structure
exactly when x2 + y2 + z2 = 1. This tells us that inside H there is an S2-bundle of (local) al-
most complex structures, which one can show is also parallel with respect to the Levi-Civita
connection for g and which complete describes the quaternion-Kähler structure.

Remark 1.5.2. Quaternion-Kähler manifolds are also sometimes called quaternionic Kähler
manifolds. Although quaternion-Kähler manifolds are always quaternionic, they will in general
not be Kähler. In the definition of the quaternion-Kähler structure We do not require the exis-
tence of a global basis of almost complex structures, so a quaternion-Kähler manifold need not
even be an almost complex manifold.

One particularly interesting property of quaternion-Kähler manifolds (of dimension greater
than 4) is expressed by the following theorem [22,23].

Theorem 1.5.3 (Einstein property). A quaternion-Kähler manifold (M, g,H) of dimension
greater than 4 is Einstein, i.e. its Ricci tensor is given by Ricg = λ g for some constant λ ∈ R.

The scalar curvature of a quaternion-Kähler manifold (M, g,H) of dimension 4n with
Ric = λ g is given by 4nλ. A special class of quaternion-Kähler manifolds are the hy-
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perkähler manifolds, for which the almost complex structures I, J and K are globally de-
fined and integrable, which means that they define three Kähler structures (I, g), (J, g)
and (K, g) such that I J = −J I = K. These manifolds can alternatively be defined as
quaternion-Kähler manifolds with vanishing scalar curvature or as Riemannian manifolds
with holonomy contained in Sp(n).

Quaternion-Kähler manifolds are often studied by looking at their twistor spaces, which
are complex manifolds, unlike the quaternion-Kähler manifolds themselves [20,5,24].

Definition 1.5.4 (Twistor space). The twistor space Z of a 4n-dimensional quaternion-
Kähler manifoxld (M, g,H) is defined as the total space of the S2-bundle of almost complex
structures inside H, i.e.

Z =
{
L ∈ Hx | x ∈M,L2 = − idTxM

}
. (1.75)

This is a manifold of (real) dimension 4n+2 and it comes with a canonical (integrable) complex
structure.

The twistor space Z of a quaternion-Kähler manifold (M, g,H) is in fact a complex contact
manifold, with a contact bundle defined by the horizontal directions in Z ⊆ H < End(TM)
with respect to the Levi-Civita connection. If the scalar curvature of g is positive, then Z is in
fact a Kähler(-Einstein) manifold. A lot can already be said about quaternion-Kähler man-
ifolds with positive scalar curvature through their twistor spaces, but not much is known
about those with negative curvature, such as the quaternion-Kähler structure on the hyper-
multiplet moduli space, which is described in chapter 6.

The hypermultiplet moduli space 27



CHAPTER 1. SOME PRELIMINARY MATHEMATICS

28 A.G. Baarsma



2. CALABI-YAU 3-FOLDS AND THEIR

INTERMEDIATE JACOBIANS

In this chapter we will introduce the notion of a Calabi-Yau manifold and Calabi-Yau 3-folds
in particular and present a number of important properties of these spaces. We will give a
description of the moduli space of geometric deformations of Calabi-Yau 3-folds, which we
will need in section 3.2. Finally, the Griffiths and Weil intermediate Jacobians of Calabi-Yau
3-folds and their canonical metrics will be discussed.

2.1 Calabi-Yau manifolds

There are many different definitions for Calabi-Yau manifolds in use in both the physics
and mathematics literature [5, 25, 26, 27, 28, 29, 30], not all of which are equivalent. The
definition on which we will focus is the following [25].

Definition 2.1.1 (Calabi-Yau manifold). A Calabi-Yau manifold (Y, J, g) is a compact Kähler
manifold whose canonical bundle, KY , is trivial. We will only consider connected Calabi-Yau
manifolds whose fundamental groups is finite, |π1(Y)| <∞.

The canonical bundle of a complex manifold of dimension n is defined to be the holomor-
phic vector bundle of (n, 0)-forms. Triviality of the canonical bundle of an n-dimensional
Calabi-Yau manifold Y is equivalent to the existence of a (globally defined) nowhere vanish-
ing holomorphic n-form Ω ∈ Ωn(Y). This n-form Ω is closed since dΩ = ∂̄Ω = 0, so it can
be used to represents a class [Ω] ∈ H3,0(Y). This class is non-trivial since the requirement
that Ω (and hence also Ω̄) is nowhere-vanishing implies that

∫
Y Ω ∧ Ω̄ 6= 0 .

It can easily be shown that any Calabi-Yau manifold Y has a vanishing (real) first Chern
class, but if definition 2.1.1 is used the converse is not generally true. Calabi-Yau manifolds
owe their name to Yau’s theorem, which was originally conjectured by Calabi [31] and
finally proven by Yau [32,33]. The theorem can in particular be used to find Ricci-flat Kähler
metrics on any Kähler manifold with vanishing first Chern class and thus in particular on
Calabi-Yau manifolds [32,33,5,25,26].

Theorem 2.1.2 (Yau). Let (M,J, g) be a Kähler manifold with vanishing first Chern class and
let [ω] be the cohomology class of its Kähler form g(J•, •). The (complex) manifold (M,J)
admits a unique Ricci-flat Kähler metric whose Kähler form is contained in [ω].

Calabi-Yau manifolds are often defined as Kähler manifolds whose first Chern class van-
ishes and Ricci-flat Kähler metrics on such manifolds are called Calabi-Yau metrics [5]. Any
Ricci-flat Kähler metric on a compact manifold M has a vanishing first (real) Chern class, so
the existence of such metrics is equivalent to this definition. Alternatively, this condition can
be described using holonomy since a given Riemannian metric is both Ricci-flat and Kähler
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(for some complex structure) exactly when its restricted holonomy group group is contained
in SU(n) [27], where n is the complex dimension of the manifold M . The proposition below
allows us to compare this with definition 2.1.1 and in particular tells us that every definition
given thus far is equivalent when Y is simply connected.

Proposition 2.1.3. Let (M,J, g) be a compact Ricci-flat Kähler manifold of (complex) dimen-
sion n, then (M,J) is Calabi-Yau according to definition 2.1.1 if and only if the (global) holon-
omy group of g is contained in SU(n).

We will only be concerned with Calabi-Yau manifolds of (complex) dimension 3, which
we will refer to as Calabi-Yau 3-folds. By using the Calabi-Yau property, a lot can already
be said about the Hodge structure of such manifolds and with an extra condition on the
fundamental group, the entire Hodge diamond is determined by two numbers, h1,1 and
h1,2.

Theorem 2.1.4 (Hodge diamond). The Hodge diamond of a connected Calabi-Yau 3-fold Y
with finite fundamental group is of the form

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1
0 0

0 h1,1 0
1 h1,2 h1,2 1

0 h1,1 0
0 0

1

(2.1)

and is thus in particular determined completely by the two Hodge numbers h1,1 and h1,2.

We had already seen in section 1.3.3 that the Hodge numbers hp,q satisfy hp,q = hq,p =
hn−p,n−q = hn−q,n−p, but for Calabi-Yau manifolds there is another symmetry. For any q the
holomorphic 3-form Ω ∈ Ω3(Y) induces an isomorphism H0,q(Y) →̃Hn,q(Y), α 7→ α ∧ Ω,
which tells us that h0,q = hn,q.

The assumptions that Y is connected and has a finite fundamental group finally tell us
that H0(Y,C) ' C and H1(Y,C) = 0 and hence that h0,0 = 1 and h1,0 = h0,1 = 0. Together
with the symmetries described above this leaves only Hodge diamonds of the form (2.1).
This result will prove to be very important because the hypermultiplet moduli space will be
described nearly entirely in terms of these cohomology groups.

2.1.1 The middle cohomology group

The cohomology groups of a Calabi-Yau manifold play a very important role for the struc-
ture of their moduli spaces and for the fields that are present in the string theory models
compactified on such manifolds. If we look at the Hodge diamond in equation (2.1), we
see that the interesting real cohomology groups of a Calabi-Yau 3-fold Y are H3(Y,R) and
H2(Y,R) ' H4(Y,R) and that these have dimension 2 (1 + h1,2) and h1,1 respectively. In
this thesis, we will mostly be interested in the middle cohomology group, H3(Y,R), of the
Calabi-Yau 3-fold Y.

Definition 2.1.5 (Intersection form). Let Y be an oriented Calabi-Yau 3-fold. For R =
Z,R,C we define the intersection form on H3(Y, R) as the anti-symmetric bilinear form

Q : H3(X,R)×H3(X,R)→ R, (α, β) 7→
∫
Y
α ∧ β (2.2)

30 A.G. Baarsma



2.2. THE MODULI SPACE OF DEFORMATIONS

Proposition 2.1.6 (Symplectic basis). The free part of the integral cohomology groupH3(Y,Z)f

admits a a basis (αi, βi)h
1,2

i=0 such that for all i, j ∈ {0, . . . , h1,2}

Q(αi, αj) = Q(βi, βj) = 0 and Q(αi, βj) = δji . (2.3)

We call such a basis a symplectic basis.

The intersection form will play a very important role, as will become apparent later, as
will the existence of a symplectic basis for H3(Y,Z)f with respect to this form. It follows
that we can write any α ∈ H3(Y, R) as α = Aiαi−Biβi for Ai, Bi ∈ R, where R is either Z,
R or C.

We can use the intersection form to construct a Hermitian form h on H3(Y,C) that re-
spects the Hodge decomposition.

Corollary 2.1.7 (Hermitian form). The sesquilinear form h on H3(Y,C), defined by

h : H3(Y,C)×H3(Y,C)→ C, (α, β) 7→ 2 iQ(α, β̄) = 2 i
∫
Y
α ∧ β̄ (2.4)

is Hermitian and the Hodge decomposition

H3(Y,C) = H3,0(Y)⊕H2,1(Y)⊕H1,2(Y)⊕H0,3(Y) (2.5)

is orthogonal with respect to it. h is positive definite onH3,0(Y)⊕H1,2(Y) and negative definite
on H2,1(Y)⊕H0,3(Y).

Proof: That h is sesquilinear follows from its definition and that it is Hermitian is easily
verified using the anti-symmetry Q. For any α ∈ Hp,q and β ∈ Hp′,q′ with p+q = p′+q′ = 3,
we have that β̄ ∈ Hq′,p′ and therefore that

∫
α ∧ β̄ = 0 unless p+ q′ = p′ + q = 3, i.e. p = p′

and q = q′. Orthogonality of the Hodge decomposition with respect to h follows.
Since H1(Y,C) = 0 we know that the entire third cohomology group of Y is primitive,

which can be used to show that α = iq−p ∗ α = i3−2p ∗ α = −i (−1)p ∗ α for any α ∈ Hp,q

with p+ q = 3 [6]. Thus

h(α, α) = 2 i
∫
Y
α ∧ ᾱ = 2 i

∫
Y
α ∧ −i(−1)p ∗ α

= −2 (−1)p
∫
Y
α ∧ ∗α = −2(−1)p‖α‖2L2 .

(2.6)

Since the L2-norm is positive definite, we can immediately read off that h is positive definite
on the spaces Hp,q(Y) for p odd and negative definite for p even.

We can use this Hermitian form to define a projection map P that we will need a few
times in the sections that follow.

Lemma 2.1.8. Let Ω be a holomorphic 3-form on Y, then the complex linear map

P : H3(Y,C)→ H3(Y,C), α 7→ h(α,Ω) Ω− h(α, Ω̄) Ω̄
h(Ω,Ω)

(2.7)

projects H3(Y,C) onto H3,0(Y)⊕H0,3(Y) along H2,1(Y)⊕H1,2(Y).

Proof: Note that h(Ω̄, Ω̄) = 2 iQ(Ω̄,Ω) = −2 iQ(Ω, Ω̄) = −h(Ω,Ω). Since we know from
corollary 2.1.7 that the Hodge decomposition is orthogonal with respect to h, it follows from
a simple calculation that P (α) = α for α = aΩ+b Ω̄ ∈ H3,0(Y)⊕H0,3(Y) and that P (β) = 0
for β ∈ H1,2(Y)⊕H2,1(Y).
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2.2 The moduli space of deformations

Yau’s theorem tells us that any Calabi-Yau manifold admits a Ricci-flat Kähler metric and
that such metrics are completely determined by a complex structure and the cohomology
class of its Kähler form. Since this Ricci flat Kähler metric will to correspond to dynamical
variables in the effective supergravity theories we will consider, we are very much interested
in the possible variations of this Calabi-Yau structure. If we are given a complex structure,
then the family of Kähler metrics can be identified with the so-called Kähler cone.

Lemma/Definition 2.2.1 (Kähler cone). The Kähler cone of a complex manifold (M,J) is
the space

KJ =
{

[ω] ∈ H2(Y,R) | ω is a Kähler form
}
. (2.8)

This space KJ is a convex cone and an open subset of H1,1(M) ∩H2(M,R).

The statement that KJ is a convex cone, which means that λ [ω] + [ω′] =∈ KJ for any
λ > 0 and any [ω], [ω′] ∈ KJ , can easily be verified since λω+ω′ is a Kähler form if ω and ω′

are. The same is true for ω + λ η for any Kähler form ω, η ∈ H1,1(M) ∩H2(M,R) a closed
form and λ > 0 sufficiently small, which tells us that KJ ⊆ H1,1(M) ∩H2(M,R) is open.

Yau’s theorem gives us the following corollary, which tells us about the space of Kähler
structures on a Calabi-Yau manifolds [27].

Corollary 2.2.2. Let (Y, J) be a complex manifold admitting Kähler structures with vanishing
first Chern class, then the space of Ricci-flat Kähler metrics on (Y, J) is a smooth manifold of
dimension h1,1(Y) and can be identified with the Kähler cone KJ .

The other type of deformations of the Calabi-Yau structure on Y are the deformations of
the complex structure. The word deformation has a well-defined meaning in this context.

Definition 2.2.3 (Universal family). A family of complex manifolds is a proper holomor-
phic submersion φ : X → B for two complex manifolds X and B [6, 34]. If B is connected
and we fix a point 0 ∈ B, then we say that π : X → B is a family of deformations of the
complex manifold X0 = π−1(0) and we call any other fibre π−1(b) a deformation of X0.

This family of deformations for a complex manifold X0 is said to be complete if for any
other family of complex manifolds ρ : Y → S such that there exists a holomorphic isomorphism
f0 : ρ−1(s) → X0 for some s ∈ S, there exists a holomorphic map g : U → B defined on some
neighbourhood U ⊆ S of s with g(s) = 0 for which there exists another holomorphic function
f : ρ−1(U)→X such that f |ρ−1(s) = f0 and π ◦ f = g ◦ ρ. We call the family universal if the
map g is unique for any such family.

A general complex manifolds will not have a universal family of deformations, but fortu-
nately for us Calabi-Yau manifolds do. The Hodge numbers, the triviality of the canonical
bundle and the existence of Kähler structures are all invariant under small deformations,
which means that we can easily restrict ourselves to those deformations that are themselves
Calabi-Yau manifolds.

The (complex structure) moduli space of the Calabi-Yau manifold Y is the quotient of
the space of all (integrable) complex structures on Y that come from a Calabi-Yau structure
by the group of diffeomorphisms [26]. It can locally be identified with the base space of a
universal family of deformations of Y [27], for which we have the following result.

Theorem/Definition 2.2.4. Let (Y, J) be a Calabi-Yau manifold of dimension n, then the base
space of a universal family of deformations of (Y, J) is a complex manifold of dimension hn−1,1.

This result, which is due to Tian [35] and Todorov [36], is far from trivial. By combining
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corollary 2.2.2 and theorem 2.2.4 a moduli space of general deformations of the Calabi-Yau
structure (J, g) on Y is obtained, which is a real (h1,1 + 2h1,2)-dimensional manifold.

2.2.1 Deformations of the metric

One of the ways to look at the space of deformations of Calabi-Yau structures is by con-
sidering deformations of Ricci-flat Kähler metrics instead of looking at Kähler classes and
complex structures. This approach is particularly interesting for us because it connects with
the way these deformations appear through the compactification procedure in supergravity
theory.

Let Y be a Calabi-Yau 3-fold with complex structure J and let g be a compactible Ricci flat
Kähler metric on Y. If we choose a set of local complex coordinates zi on Y for i = 1, 2, 3, we
can write the metric g as gi̄dzidz̄j for some real coefficients gi̄. A general metric g′ = g+h
can then (locally) be written as

g′ = (gi̄ + 2hi̄)dzidz̄j + (hijdzidzj + hı̄̄dz̄idz̄j), (2.9)

with hı̄̄ = hij symmetric and hi̄ = hı̄j . We would like the deformed metric to satisfy the
Calabi-Yau condition and therefore in particular be Ricci flat. This will put strong restrictions
on the coefficients hi̄ and hij .

It is simpler to consider infinitesimal deformation of the metric instead of finite ones, so
we write down g′ = g + δg, where the infinitesimal deformation δg is given by

δg = 2 δgi̄dzidz̄j + (δgijdzidzj + δgijdz̄idz̄j), (2.10)

for some infinitesimal parameters δgi̄ = δgi̄ and gij = gji. It may be shown that also the
deformed metric g′ = g + δg is Ricci flat, up to first order in the deformation, if and only
if the real (1, 1)-form k = i δgi̄dzi ∧ dz̄j = δg(J •, •) and the T 1,0Y-valued (0, 1)-form ` =
gi̄δg̄k̄dz̄k⊗ ∂

∂zi are harmonic [37,16]. The holomorphic 3-form Ω can subsequently be used
to show that the latter of these is harmonic exactly when the (2, 1)-form ı`Ω = Ω(`(•), •, •)
is [36]. This gives us respective identifications between the infinitesimal deformations of
the type δgi̄ and δgij of the Calabi-Yau metric g that preserve the Ricci-flatness of the metric
and the spaces H1,1(Y) ∩H2(Y,R) and H2,1(Y).

It can be shown that all such infinitesimal deformations can be extended to finite de-
formations to different Ricci-flat metrics. The deformations of the type δg = δgi̄dzidz̄j

with δg(J, •) ∈ H1,1(Y) ∩ H2(Y,R) correspond exactly to the deformations of the met-
ric parametrised by the Kähler cone. The other type of deformations, for which δg =
δgijdzidzj + δgijdz̄idz̄j corresponds to an element of H2,1(Y), transform the metric g into a
metric that is no longer Hermitian with respect to the complex structure J . The metric will
however be Hermitian and even Kähler with respect to a different complex structure [30].
This gives us a complex h1,2-dimensional family of complex structure deformations that
locally corresponds exactly to the complex structure moduli.

2.2.2 Complex structure moduli

We consider the complex structure moduli space MC of a Calabi-Yau manifold Y, which is
locally the base space for a universal family of deformations (Yt)t and describe the projective
special Kähler structure on it.

For a universal family of deformations Y → U of the Calabi-Yau manifold Y, the co-
homology groups H3(Xb,C) for b ∈ U define a vector bundle over the base space U and
these can be combined to obtain a vector space H3 over MC called the Hodge bundle.1

Since the cohomology groups H3(Yt,C) ' H3(Yt,Z) ⊗ C can be defined in terms of just

1This can actually be done for any family of complex manifolds [6].
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the topology of Yt and without any reference to the complex structure, nearby fibres of H3

can be identified, making H3 flat. This flatness is expressed through the (flat) Gauss-Manin
connection ∇, which can be defined by requiring that (local) sections that take values in
H3(Y,Z)f < H3(Y,C) are flat with respect to it.

The Hodge decomposition H3(Yt,C) =
⊕

p+q=3H
p,q(Yt) does depend on the complex

structure on Yt, which in particular means that the position of H3,0(Yt) inside H3(Y,C)
changes as t ∈ MC is varied. The following theorem tells us that the complex structure
moduli space MC can locally be viewed as a submanifold of the complex projective space
P
(
H3(Y,C)

)
=
{
Cα | α ∈ H3(Y,C) \ {0}

}
[6,25,27].

Theorem/Definition 2.2.5 (Period map). Let (Y, J) be a Calabi-Yau manifold, let U ⊆ MC
be a contractible open subset in the complex structure moduli space for Y and let 0 ∈ U . If
we use the Gauss-Manin connection to identify the fibres H3

t = H3(Yt,C) of the Hodge bundle
with H3(Y0,C) for t ∈ U , then any element t ∈ MC uniquely determines a line H3,0(Yt) <
H3(Y,C) and the map

Φ: U → P (H3(Y,C), t 7→
[
H3,0(Yt)

]
, (2.11)

is a holomorphic immersion. This map is called a period map for the Calabi-Yau manifold Y.

This tells us that the cohomology groups H3,0(Yt) < H3(Yt,C define a holomorphic line
bundle H3,0 inside H3. Another very important property of the period map is Griffiths
transversality, which basically says that under infinitesimal deformations of the complex
structure on Y, H3,0(Yt) can mix with H2,1(Yt), but not with H0,3(Yt) or H1,2(Yt).

Proposition 2.2.6 (Griffiths transversality). Let Φ be a period map from definition 2.2.5
and let t ∈ MC be in the domain of Φ, then the image of dΦ: TM → TΦ(t)P (H3(Y,C)) is
P∗(H3,0(Yt)⊕H2,1(Yt)).

The projection map P : H3(Y,C) \ {0} → P
(
H3(Y,C)

)
gives H3(Y,C) the interpretation

of a holomorphic line bundle. Because the period map Φ: MC → P
(
H3(Y,C)

)
is an im-

mersion this line bundle can be pulled back to a holomorphic line bundle on the complex
structure moduli space MC whose fibre at t ∈ MC can be identified with the Dolbeault
cohomology group H3,0(Yt).

If we choose a contractible open subset U ⊆MC, fix a point 0 ∈ U and write Y = Y0, then
a symplectic basis (αi, βi)i for the intersection form on Q on H3(Y,Z) defines a flat basis of
sections of H3 on U . If we subsequently let Ω: t 7→ Ωt ∈ H3,0(Yt) be a local holomorphic
section of the holomorphic line bundle H3,0 < H, then we can write Ωt = Xi(t)αi−Fi(t)βi,
where Xi and Fi are the periods

Xi(t) =
∫
γi

Ωt and Fi(t) =
∫
ηi

Ωt (2.12)

of Ω with respect to the basis (γi, ηi)i forH3(Y,Z)f dual to (αi, βi)i. These periods are (local)
holomorphic functions onMC and locally determine the point t ∈ MC, but there is a large
redundancy because H3(Y,C) has (complex) dimension 2 + 2h1,2 and dimCMC = h1,2.

Theorem 2.2.7. For some choice of symplectic basis (αi, βi)i the periods Xi =
∫
γi

Ω locally
define a set of complex projective coordinates on MC. There exists a holomorphic function
F : C1+h1,2 → C that depends on the coordinates Xi and is homogeneous of degree 2 such that
the periods Fi =

∫
ηi

Ωt are are given by Fi = ∂F (X)
∂Xi .

Proof: Let Ω be a local holomorphic section of H3,0 on a contractible open subset U ⊆MC
as before. It is always possible to choose an integral symplectic basis (αi, βi)i for H3(Y,Z)f
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such that (locally) the complex structure on Y is determined entirely by the coordinates Xi

and we can thus write Fi(t) = Fi(X(t)) [15]. This leaves only a redundancy of one complex
coordinate, which corresponds to the rescaling of the holomorphic form Ω and hence of the
coordinates Xi. Since the section Ω is only determined up to multiplication by a nowhere-
vanishing holomorphic function by the complex structure on the Calabi-Yau manifold, we
see that the coordinates Xi define a set of complex projective local coordinates forMC.

It is not hard to show that the derivatives of the holomorphic (3, 0)-form Ω,

Ωi(X) :=
∂Ω(X)
∂Xi

= αi −
∂Fj(X)
∂Xi

βj and
∂Ω(X)
∂X̄i

= −∂Fj(X)
∂X̄i

βj (2.13)

are contained in H3,0(Y)⊕H2,1(Y) as a consequence of Griffiths transversality.
Because Q

(
H3,0(Y)⊕H2,1(Y), H3,0(Y)⊕H2,1(Y)

)
= 0 we see that

0 = Q
(
Ωk, ∂Ω

∂X̄i

)
=
∫
Y

(
αk − ∂Fj

∂Xk
βj
)
∧
(
− ∂Fj
∂X̄i

βj
)

= − ∂Fk
∂X̄i

, (2.14)

from which we can conclude that Fi(X) are holomorphic functions. A similar calculation
furthermore shows that

0 = Q(Ω,Ωi) =
∫
Y

(
Xjαj − Fjβj

)
∧
(
αi − ∂Fj

∂Xi β
j
)

= −Xj ∂Fj
∂Xi + Fi = −Xj ∂Fj

∂Xi −
∂Xj

∂Xi Fj + 2Fi = −∂(XjFj)
∂Xi + 2Fi.

(2.15)

In other words: The periods Fi can be expressed as the derivatives ∂F (X)
∂Xi , where F (X)

is defined as the holomorphic function F (X) = 1
2X

iFi(X), which is now homogenous of
degree 2 by definition.

An almost direct consequence of this is that the complex structure moduli space can be
given the structure of a projective special Kähler manifold [12,14,15].

Corollary 2.2.8. The complex structure moduli space MC is projective special Kähler. For a
local holomorphic section Ω of the bundle H3,0(Y) and the projective coordinates Xi =

∫
γi

Ω
from theorem 2.2.7, the function F = 1

2X
iFi defines a prepotential for MC and the Kähler

potential onMC is given by

KC = − log
(

i
∫
Y Ωt ∧ Ω̄t

)
= − log

(
1
2h(Ω,Ω)

)
= − log

(
−iXiF̄i + i X̄iFi

)
= − log

(
−XiNijX̄

j
)
,

(2.16)

where Nij = 2 Im(Fij) = 2 Im
(

∂2F
∂Xi∂Xj

)
and h = 2 iQ(•, •) is the Hermitian form from

corollary 2.1.7.

Proof: We can use the homogeneity of F to show that that −iXiF̄i + i X̄iFi = −XiNijX
j

and an explicit calculation furthermore shows that∫
Y

Ωt ∧ Ω̄t =
∫
Y

(Xiαi − Fiβi) ∧ (X̄iαi − F̄iβi) = −XiF̄i + X̄iFi, (2.17)

which tells us that equation (2.16) is consistent. We will compare the situation we have
with the situation in definition 1.3.26.

We have seen in theorem 2.2.7 that the periods Xi =
∫
ηi

Ω locally define complex pro-
jective coordinates on MC and that there exists a prepotential F that is homogeneous of
degree 2 and satisfies Fi =

∫
γi

Ω = ∂F
∂Xi . On a different chart for MC two things can be
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different: The symplectic basis2 (αi, βi)i for Q and the choice for the holomorphic section Ω
for H3,0. Any two symplectic bases (αi, βi)i and (α̃i, β̃i)i are related by a symplectic matrix
M ∈ Sp(2h1,2 + 2,R) and any other holomorphic section is given by Ω̃ = f Ω for some
nowhere-vanishing holomorphic function f . This tells us that the corresponding functions
X̃ = (X̃i)i and ∂F̃ = (F̃i)i such that Ω̃ = X̃iα̃i− F̃iβ̃i are related to the original coordinates
X and ∂F by (

∂F̃

X̃

)
= f M

(
∂F
X

)
. (2.18)

Here we have used that Ω = (α, β)·Σ·
(
∂F
X

)
, where Σ =

(
0 1n
−1n 0

)
is the standard 2(1+h1,2)×

2(1 +h1,2) symplectic matrix and that for any symplectic matrix M ∈ Sp(2h1,2 + 2,R) this is
equal to (α, β)M t · Σ ·M

(
∂F
X

)
. The additional consistency condition from equation (1.45)

is automatically satisfied by such functions f and matrices M because of the nature of their
definition in terms of holomorphic sections and bases.

The only thing that we should still check is that the function KC is a Kähler potential. By
working out the derivatives explicitly, we can show that the matrix Ki̄ is given by

gC = i ∂∂̄K(•, J •) =
∂2K(X, X̄)
∂Xi ∂X̄j

dXidX̄j

=
−1

h(Ω,Ω)

(
h(Ωi,Ωj)−

h(Ωi,Ω)h(Ω,Ωj)
h(Ω,Ω)

)
dXidX̄j

=
−1

XNX̄

(
Nij −

NikX̄
kX`N`j

XNX̄

)
dXidX̄j ,

(2.19)

where we have written Ωi = ∂Ω
∂Xi = αi − Fijβj .

By writing h(Ωi,Ωj) = h(P Ωi,Ωj) + h((1 − P )Ωi,Ωj) for the projection map P from
lemma 2.1.8 and out the resulting expression we can rewrite the second line from equa-
tion (2.19) as

gC =
−1

h(Ω,Ω)
h
(
(1− P )Ωi,Ωj

)
dXidX̄j (2.20)

Corollary 2.1.7 tells us that for any i, −h
(
(1 − P )Ωi,Ωi

)
is non-negative and only vanishes

if Ωi = λΩ = λXiΩi (the last step follows from the homogeneity of F ) for some λ ∈ C. By
the same corollary, h(Ω,Ω) > 0.

The tangent space to MC at t corresponds to P∗
(
H3,0(Yt) ⊕ H2,1(Yt)

)
, where it the di-

rection H3,0(Yt) that is projected out. We have dXi(Ωj) = ∂
∂ϕ |ϕ=0

∫
ηi

(Ω + ϕΩj) = δij and
dXi(Ω) = Xi, so we see that the direction for which−h

(
(1−P )Ωi,Ωi

)
vanishes corresponds

exactly to the direction that is projected out. We find that gC is positive definite as a metric
onMC and because it was obtained from a potential it is automatically Kähler.

This Kähler metric gC on the complex structure moduli space is often referred to as the
Weil-Petersson metric [36].

2.3 The intermediate Jacobians

For the remainder of this chapter, Y will denote a Calabi-Yau 3-fold with a fixed Ricci-flat
Kähler structure and we will fix an integral basis (αi, βi)i for H3(Y,Z)f ↪→ H3(Y,C) that is
symplectic with respect to the intersection form Q =

∫
Y
• ∧ •. Since the Calabi-Yau 3-fold Y

2N.B. The intersection form Q is defined on the Hodge bundle H3 because its definition is topological in nature.
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has trivial first and fifth cohomology groups, its only non-trivial intermediate Jacobians use
the middle cohomology group, H3(Y,R). These Jacobians use the space

J2(Y) = H3(Y,R)/H3(Y,Z)f, (2.21)

which has (real) dimension b3 = h3,0 + h2,1 + h1,2 + h0,3 = 2(1 + h1,2). As we have seen in
section 1.4.2, there are different ways to define the complex structure on this space using
its Hodge decomposition. This gives us the Griffiths intermediate Jacobian JG

2 (Y) and
the Weil intermediate Jacobian JW

2 (Y), which we will simply write as JG = JG
2 (Y) and

JW = JW
2 (Y).

Especially the Weil intermediate Jacobian will become important for the description of the
hypermultiplet moduli space, as we will see in chapter 5. By using a number of properties
for the intersection form Q : H3(Y,R) × H3(Y,R) → R, we can show that it defines a
polarisation on both tori.

Proposition 2.3.1 (Polarisation). For any Calabi-Yau 3-fold Y, the intersection form

Q : H3(Y,R)×H3(Y,R)→ R, (α, β) 7→
∫
Y
α ∧ β (2.22)

defines a principal polarisation on both the Weil and the Griffiths intermediate Jacobian.

Proof: We already know that the intersection form is anti-symmetric annd non-degenerate
and that it takes integer values on the lattice H3(Y,Z)f, so the only thing that remains to be
checked is compatibility with the complex structure.

We can write any α ∈ H3(Y,R) as α =
∑
p+q=3 α

p,q with αp,q ∈ Hp,q(Y). If we de-
note (the complex extension of) the complex structure on intermediate Jacobian (either
Weil or Griffiths) by J , then J αp,q = λp,qαp,q for λp,q ∈ {i,−i}. The fact that J is a
real endomorphism implies that λp,q = λ̄q,p and we know that Q(Hp,q, Hp′,q′) = 0 unless
p+ p′ = q + q′ = 3, so

Q(J α, J β) =
∑
p+q=3

∑
p′+q′=3

Q(J αp,q, J βp
′,q′) =

∑
p+q=3

Q(λp,q αp,q, λq,p βq,p)

=
∑
p+q=3

λp,qλ̄p,qQ(αp,q, βq,p) =
∑
p+q=3

∑
p′+q′=3

Q(αp,q, βp
′,q′) = Q(α, β),

(2.23)

from which we conclude that Q defines a polarisation on both J W and J G. This polarisation
is furthermore principal because we had already seen that there exists a symplectic basis for
the lattics H3(Y,Z)f with respect to Q.

2.3.1 The Griffiths intermediate Jacobian

The complex structure on the Griffiths intermediate Jacobian for a Calabi-Yau 3-fold Y is
defined by the complex structure J on H3(Y,R) with eigenspaces V and V corresponding
to the eigenvalues +i and −i, where V and V come from the decomposition

H3(Y,C) = H3,0(Y)⊕H2,1(Y)︸ ︷︷ ︸
V

⊕H1,2(Y)⊕H0,3(Y)︸ ︷︷ ︸
V

. (2.24)

We can also use the alternative description from corollary 1.4.19 for the intermediate
Jacobian as a quotient of the complex linear space V = H1,2(Y)⊕H0,3(Y). This description
makes it easy to calculate the normalised period matrix of J G(Y).

Proposition 2.3.2 (Period matrix). Let (αi, βi)i be a symplectic basis for H3(Y,Z) with
respect to the intersection form Q and let Ω = Xiαi−Fiβi ∈ H3,0(Y) be a holomorphic 3-form
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with periods Xi and Fi. The normalised period matrix for the Griffiths intermediate Jacobian
of Y is given by the matrix ΩG = (ZG,1) with

ZG
ij = Fij , (2.25)

where Fij = ∂Fi
∂Zj = ∂2F

∂Xi ∂Xj is the Hessian of the prepotential F = 1
2X

iFi.

Proof: Let ϕ denote the canonical complex linear map ϕ : H3(Y,R) → H0,3(Y) ⊕H1,2(Y)
from corollary 1.4.19 and let π be the projection map π : H3(Y,C) → H0,3(Y) ⊕ H1,2(Y),
then ϕ is simply the restriction of π to H3(Y,R). The derivative Ωi = ∂Ω

∂Xi = αi−Fijβj is an
element of V

G
= H3,0(Y)⊕H2,1(Y) = kerπ by Griffiths transversality, which tells us that

ϕ(αi)− Fijϕ(βj) = πG(αi)− FijπG(βj) = πG(αi − Fijβj) = πG(Ωi) = 0, (2.26)

so ϕ(αi) = Fijϕ(βj). This tells us that Fij is the normalised period matrix for V G/ϕ(H3(Y,Z))
with respect to the symplectic basis (ϕ(αi), ϕ(βi))i. This torus can be identified with the
Griffiths intermediate Jacobian by corollary 1.4.19.

Let (xi, yi)i be the real coordinates on H3(Y,R) that correspond to the symplectic basis
(αi, βi)i and write the normalised period matrix from proposition 2.3.2 as ZG

ij = Fij =
X G
ij + i Y G

ij , with X G = Re ZG and Y G = Im ZG.

Lemma 2.3.3. Let hG = gG +iQ be the Hermitian form associated withQ, with gG = Q(JG•, •),
and let ϕ : H3(Y,R)→ V = H1,2(Y)⊕H0,3(Y) be the complex linear isomorphism introduced
in corollary 1.4.19. We have for any α, β ∈ H3(Y,R) that

hG(α, β) = h(ϕα,ϕβ), (2.27)

where h = 2 iQ(•, •) is the Hermitian form from corollary 2.1.7.
The polarisation on the Griffiths intermediate Jacobian defined by Q has index 1.

Proof: A simple calculation shows that

Im[h(ϕ(α), ϕ(β))] = Im[2 iQ(ϕ(α), ϕ(β))] = Q(ϕ(α), ϕ(β)) +Q(ϕ(α), ϕ(β))

= Q(ϕ(α) + ϕ(α), ϕ(β) + ϕ(β)) = Q(α, β)
(2.28)

since Q(V, V ) = Q(V , V ) = 0 for V = H1,2(Y) ⊕H0,3(Y) and α = ϕ(α) + ϕ(α) for α real.
Because h is Hermitian it immediately follows that

Re[h(ϕ(α), ϕ(β))] = Im[h(iϕ(α), ϕ(β))] = Im[h(ϕ(JGα), ϕ(β))] = Q(JGα, β). (2.29)

The signature of h and hence of hG follows from corollary 2.1.7.

Corollary 2.3.4 (Canonical metric). The canonical metric gG = Q(JG•, •) on the Griffiths
intermediate Jacobian is given by

gG = Y ij
G dzi dz̄j = 2N ij(dxi + Fikdyk)(dxj + F̄j`dy`), (2.30)

where zi = xi+ZG
ijy

j are the standard complex coordinates on J G(Y) and Y ij
G = 2N ij denotes

the inverse matrix for Y G
ij = Im ZG

ij = 1
2Nij .

This metric is positive definite on
(
H2,1(Y)⊕H1,2(Y)

)
∩H3(Y,R) and negative definite on(

H3,0(Y)⊕H0,3(Y)
)
∩H3(Y,R) and these two subspaces are perpendicular for gG.

Proof: Equation (2.30) follows directly from proposition 1.4.13 and the second result fol-
lows lemma 2.3.3 and corollary 2.1.7
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2.3.2 The Weil intermediate Jacobian

As the complex structure on the Griffiths intermediate Jacobian, the complex structure on
the Weil intermediate Jacobian is defined in terms of the Hodge decomposition forH3(Y,C).
The complex structure JW is defined by the eigenspaces V and V corresponding to the
eigenvalues +i and −i,

H3(Y,C) = H0,3(Y)⊕H2,1(Y)︸ ︷︷ ︸
V

⊕H1,2(Y)⊕H3,0(Y)︸ ︷︷ ︸
V

. (2.31)

This choice enables us to give a very simple characterisation for the canonical metric on the
Weil intermediate Jacobian.

Lemma 2.3.5. The canonical metric gW for the Weil intermediate Jacobian JW coincides with
the L2-metric, so it is in particular positive definite.

Additionally, the spaces (H1,2(Y)⊕H2,1(Y))∩H3(Y,R) and (H3,0(Y)⊕H0,3(Y))∩H3(Y,R)
are mutually orthogonal with respect to gW.

Proof: The extension of the J to the complex cohomology group H3(Y,C) is characterised
by JWω(p,q) = −ip−qω(p,q) for ω(p,q) ∈ Hp,q(Y) and we know from lemma 1.3.18 that
∗ω(p,q) = ip−qωp,q for this a form. This tells us that JWω = − ∗ ω for all ω ∈ H3(Y,C)
and hence that

gW(α, β) = −Q(α, JWβ) = Q(α, ∗β) =
∫
Y
α ∧ ∗β =: 〈α, β〉L2 (2.32)

for all α, β ∈ H3(Y,R). Because gW = 〈•, •〉L2 , the Dolbeault cohomology groups are orthog-
onal with respect to it [6]. .

Computations with the Griffiths intermediate Jacobian in terms of the Hessian Fij were
relatively simple because the derivatives of the holomorphic 3-form Ω were contained in a
single eigenspace of JG. We can use these expressions for the Griffiths intermediate to find
similar expressions for the Weil intermediate Jacobian, but things become significantly more
messy.

H3,0(Y) H2,1(Y) H1,2(Y) H0,3(Y)
JW +i −i +i −i
JG −i −i +i +i
JWJG +1 −1 −1 +1
P +1 0 0 +1

Table 2.1: The eigenspaces and eigenvalues of JW, J G, JWJ G and P = 1
2
(1 + JWJ G).

Lemma 2.3.6. The complex structures JW and JG for the Weil and the Griffiths intermedi-
ate Jacobian commute. The map P = 1

2 (1 + JWJG) projects H3(Y,R) onto
(
H3,0(Y) ⊕

H0,3(Y)
)
∩ H3(Y,R) along

(
H2,1(Y) ⊕ H1,2(Y)

)
∩ H3(Y,R) and coincides the projection

P from lemma 2.1.8.

Proof: Both complex structures were defined using the Hodge decomposition and their
eigenvalues and eigenspaces have been illustrated in table 2.1. We immediately see that
JW and JG commute and that their product equals the identity on

(
H3,0(Y) ⊕ H0,3(Y)

)
∩

H3(Y,R) and minus the identity on
(
H2,1(Y) ⊕ H1,2(Y)

)
∩ H3(Y,R). It follows that P

is the desired projection map and thus corresponds with the projection P we had defined
before.
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We can give an alternative description for the projection map P by using the Hermitian
form h = 2 iQ(•, •) from corollary 2.1.7.

We can use the projection map P to relate the metrics on the Weil and the Griffiths inter-
mediate Jacobian.

Proposition 2.3.7 (Canonical metric). The spaces kerP =
(
H2,1(Y)⊕H1,2(Y)

)
∩H3(Y,R)

and imP =
(
H3,0(Y) ⊕H0,3(Y)

)
∩H3(Y,R) are orthogonal with respect to both gW and gG.

We have gW|kerP = gG|kerP and gW|imP = −gG|imP and we can write

gW = gG − 2 gG(P •, •) and gG = gW − 2 gW(P •, •), (2.33)

where P is the projection map from lemma 2.3.6 and lemma 2.1.8.

Proof: These properties can be derived directly from the behaviour of the intersection form
Q with respect to the Hodge decomposition and table 2.1, but we can also take a different
approach. Since we can define P as P = 1

2 (1 + JWJG), we have 2 JGP = JG − JW and thus

gG − 2 gG(P •, •) = Q(JG(1− 2P )•, •) = Q(JW•, •) = gW. (2.34)

This derivation can be repeated with the labels W and G interchanged to obtain the second
relation and the equality gW(P •, •) = −gG(P •, •).

We already know from lemma 2.3.5 that the decomposition H3(Y,R) = imP ⊕ kerP is
orthogonal with respect gW and because P 2 = P we have that P α′ = α′ for α′ ∈ imP .
Equation (2.33) now tells us that for α = α′ + α′′ and β = β′ + β′′ with α′, β′ ∈ imP and
α′′, β′′ ∈ kerP ,

gG(α, β) = gW(α, β)− 2 gW(P α, β)
= gW(α′, β′) + gW(α′′, β′′)− 2 gW(α′′, β′ + β′′)
= gW(α′, β′)− gW(α′′, β′′),

(2.35)

which tells us that gW = gG on kerP and gW = −gG on imP .

Lemma 2.3.8. The restriction gW|imP = −gG|imP of the canonical metrics gW and gG to imP
is given by the equation

gW(α, β) =
1

2h(Ω,Ω)

(
h(α,Ω)h(β,Ω) + h(β,Ω)h(α,Ω)

)
(2.36)

for α, β ∈ imP = (H3,0(Y)⊕H0,3(Y))∩H3(Y,R). Here Ω ∈ H3,0(Y) denotes a holomorphic
3-form on Y and h = 2 iQ(•, •).

Proof: Since for α, β ∈ H3(Y,R) we obviously have β = β, lemma 2.1.8 tells us that

2 i gW(α, β) = 2 i gW(P α, β) = 2 iQ(JW(P α), β)

= h
(

1
h(Ω,Ω)J

W
(
h(α,Ω)Ω− h(α, Ω̄)Ω̄

)
, β
)

= 1
h(Ω,Ω)

(
h(α,Ω)h(i Ω, β)− h(α, Ω̄)h(−i Ω̄, β)

)
= i

h(Ω,Ω)

(
h(α,Ω)h(β,Ω) + h(α,Ω)h(β,Ω)

)
,

(2.37)

where we have used that h is a Hermitian form and that h(α, Ω̄) = 2 iQ(α,Ω) = −h(Ω, α)
for α ∈ H3(Y,R) and similarly for h(Ω̄, β).

The normalised period matrix for the Weil intermediate Jacobian is significantly more
complicated than that for the Griffiths intermediate Jacobian.
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Proposition 2.3.9. Let (αi, βi)i be a symplectic basis for H3(Y,Z) with respect to the inter-
section form Q and let Ω = Xiαi − Fiβi ∈ H3,0(Y) be a holomorphic 3-form with periods Xi

and Fi. The normalised period matrix for the Weil intermediate Jacobian corresponding to the
basis (αi, βi)i is given by ΩW = (ZW,1) with

ZW
ij = Fij − i

NikX̄
kX̄`N`j

X̄NX̄
, (2.38)

where Fij = ∂Fi
∂Xj and Nij = 2 Im(Fij) = −iFij + i F̄ij .

Proof: Let ρi denote the complex-valued 1-form ρi = dyi + ZW
ijdx

j on J W
2 (Y), where ZW is

the matrix from equation (2.38). If we apply the 1-form ρi to Ω̄ ∈ H0,3(Y) <
(
TJ W

2 (Y)
)
⊗C

we obtain

ρi(Ω̄) =
(

dyi +
(
Fij − iNikX̄

kX̄`N`j

X̄NX̄

)
dxj
)

(X̄mαm − F̄mβm)

= −F̄i + FijX̄
j − i X̄NX̄

X̄NX̄
NikX̄

k = −F̄ijX̄j + FijX̄
j − iNikX̄k

= 2 i Im(Fij)X̄j − 2 i Im(Fij)X̄j = 0

(2.39)

For Ωk = ∂Ω
∂Xj = αj − Fjkβk ∈ H2,1(Y)⊕H3,0(Y) we also have that

ρi
(
(1− P )Ωj

)
= ρi

(
Ωj −

h(Ωj ,Ω)Ω− h(Ωj , Ω̄)Ω̄
h(Ω,Ω)

)
= 0, (2.40)

as can be shown by explicitly working out this expression using the formula for ρi and that
h(Ωi,Ω) = 2NijX̄j and h(Ωi, Ω̄) = 0.

The fact that ρi(Ω̄) = 0 tells us that ρi vanishes on H0,3(Y) and because ρi((1−P )Ωj) = 0
we can also conclude that ρi|H2,1(Y) = 0. This leaves H3,0(Y) ⊕ H1,2(Y), which is the +i
eigenspace of JW, from which we learn that JW∗ρi = i ρi.

Because moreover ρi(βj) = δji , we can conclude that ρ0, . . . , ρh1,2 is the basis of complex
linear 1-forms dual to e0, . . . , eh

1,2
(defined by ei = βi). We already know from proposi-

tion 1.4.13 that these forms are given by dzi = dyi + Zijdxi, where Zij is the normalised
period matrix for the torus with respect to the symplectic basis (αi, βi)i, so it necessarily
follows that the matrix ZW

ij is the period matrix for the Weil intermediate Jacobian.

Corollary 2.3.10. The canonical metric on the Weil intermediate Jacobian is positive definite
and it is given by

gW = Q ◦ (JW × id) = Y ij
W dzidz̄j = Y ij

W (dyi + ZW
ikdxk)(dyj + Z̄W

j`dx
`) (2.41)

where zi = yi + ZW
ijx

i (for ZW the period matrix from equation (2.38)) and Y ij
W denotes the

inverse matrix for Y W = Im(ZW).

Proof: Equation (2.41) follows immediately from proposition 2.3.9 and proposition 1.4.13,
but it can also be obtained by using equation (2.30) and proposition 2.3.7.
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3. STRING THEORY

The context in which the results presented in this thesis is provided by the effective su-
pergravity theory that describes compactified type IIA superstring theory in the low-energy
limit. In this chapter we will give a short overview of what string theory is and in particular
what this low-energy effective theory looks like, without going into too many details. We
will explain the ideas behind Calabi-Yau compactification a bit more thoroughly and will
finally introduce the hypermultiplet moduli space of the four-dimensional theory that is ob-
tained. For a more complete review a standard textbooks, such as [38], [39] or [40], may
be consulted.

3.1 (Super)string theory

The principal idea behind string theory is that nature should not be described in terms of
point particles, but instead in terms of extended 1-dimensional objects called strings. These
can either be open (lines with two endpoints) or closed (loops). Fundamental strings come
with a discrete set of oscillatory modes, each of which will correspond to a different type of
elementary particle in the quantised version of string theory.

One of the reason why string theory is popular is the fact that gravity appears naturally
from it, making it a candidate theory for reconciling the standard model and Einstein’s
theory of general relativity. If string theory does describe gravity, the string scale should be
related to the Planck scale, which corresponds to energies of roughly 1019 GeV. This is well
beyond the reach of modern particle accelerators and explains why strings, if they exist,
have not yet been observed.

In the classical situation, we can say that a fundamental (bosonic) string moving through
d-dimensional space-time spans a 2-dimensional surface called the worldsheet of the string.
This is described by an embedding of a 2-dimensional surface Σ into the d-dimensional
target space X. An interaction between two particles (strings) is then simply represented
by a worldsheet with splitting strings (cf. figure 3.1).

Figure 3.1: The worldsheet of a single string and a splitting string.
This figure originally appeared in [38].
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By choosing local coordinates τ and σ on Σ one can parametrise this embedding of the
worldsheet by as xµ(τ, σ) (for µ = 0, . . . , d−1). The dynamics of these strings is described by
extremisation of the surface area of the worldsheet and can therefore described by Nambu-
Goto action,

SNG =
1

2π α′
Area(Σ) = − 1

2π α′

∫
d2σ

√
−det

(
∂xµ

∂σ(α)
∂xν

∂σ(β) ηµν
)
. (3.1)

The only free parameter in string theory is the so-called Regge slope, or the string scale.
Contraction of indices is done using (background) metric ηµν on the target space, which we
have for now assumed is just the d-dimensional Minkowski metric.

A point particle is characterised by its position and its momentum, but this no longer
suffices for these extended objects. To describe a fundamental string we require, in addition
to its centre of mass and its centre of momentum, the amplitudes of its modes of oscillation.

A quantum theory of strings is obtained from the classical theory by not only introducing
operators to describe the position and the momentum of the string, but also for these modes
of oscillation, which will act as creation operators for oscillations on the string. This quan-
tisation procedure can only be carried out consistently if the target space is 26-dimensional,
so we say that 26 is the critical dimension of (bosonic) string theory. An interesting prop-
erty of this quantised string theory is that its spectrum includes a massless spin 2 particle
that takes the role of the graviton. The spectrum of the theory however does not include
any fermions, but does include a tachyon, which is a particle with a negative squared mass,
which is undesirable because it leads to instabilities.

These problems can be solved by complementing every bosonic degree of freedom with
an additional fermionic degree of freedom and extending the original action (or in fact a
different, but equivalent action called the Polyakov action) to a supersymmetric action. The
words bosonic and fermionic refer to the way fields behave under Lorentz transformations
(on the worldsheet in this case), which can either be through a representation of the Lorentz
group itself (bosonic) or of its spin group (fermionic). The resulting theory is called a
superstring theory. Supersymmetry is a very important concept and a number of results
that we will use depend on it. We will not discuss this in detail here and just state that it is
a continuous symmetry of the action that transforms bosonic fields into fermionic fields and
vice versa. Similar to bosonic string theory, such a superstring theory can only be formulated
consistently on a target space of some critical dimension, which is d = 10 in this case.

There are a couple of different superstring theories that can all be related to each other
through a number of dualities. We will only be considering one of these, namely type IIA
superstring theory. The II tells us that we are only considering closed strings and the A tells
us which physical states are allowed to appear, as some had to be projected out to get rid of
the tachyon.

Quantised string theory can be described in the path integral formalism, where basically
every possible worldsheet gets a weight e−SP determined by the (supersymmetric) action
SP. The scattering amplitude of a process, which is basically the probability of this process
occurring, is then determined by adding up the weights of all worldsheets that describe this
process. This “sum” is in fact a functional integral. For instance for an interaction with
two incoming strings and two outgoing strings corresponding to certain real particles all
worldsheets with four external lines (cylinders) corresponding to these particle should be
considered, even those with loops (cf. figure 3.2).

String theory could have been formulated using any Ricci-flat (i.e. satisfying Einstein’s
field equations in vacuum) metric instead of the standard 10-dimensional Minkowski metric.
What is amazing is that in the path integral formulation the theory does not change by
changing this background metric, because the new situation corresponds to the original
situation with an added background of gravitons. Similarly, background fields can be added
for each of the other massless states in the spectrum.

44 A.G. Baarsma



3.1. (SUPER)STRING THEORY

Figure 3.2: Quantum corrections correspond to worldsheets with loops.
This figure originally appeared in [38].

3.1.1 The low-energy limit

The string scale α′ was the only free parameter and determines all energy scales, so taking
the limit for α′ → 0, corresponds to the low energy limit [40, 41]. In this limit it makes
sense to consider just the massless states of the theory, which can to good approximation
be described by a classical effective theory consisting of fluctuations of the background
fields corresponding to particles from the massless spectrum and an effective action that
reproduces field equations and scattering amplitudes. The effective low-energy theory for
type IIA superstring theory is called type IIA supergravity. It is a classical supersymmetric
theory that contains the Einstein-Hilbert action from general relativity.

Table 3.1: Type IIA bosonic massless spectrum
φ scalar dilaton }

NS-NSB(2) 2-form Kalb-Ramond field
δg traceless symmetric (0, 2)-tensor graviton
A(1) 1-form

}
R-R

A(3) 3-form

The massless spectrum of type IIA string theory consists of four sectors: the Ramond-
Ramond, the R-NS, the NS-R and the NS-NS sectors, where R stands for Ramond and NS
for Neveu-Schwarz and these refer to the type of boundary conditions that are put on the
left-moving and the right-moving modes of the string. The NS-R and the R-NS sectors of the
massless spectrum only contain fermionic fields and the NS-NS and the R-R sector make up
the bosonic part of the spectrum, which is the part we will be interested in in this thesis.
Apart from the graviton, all of the fields that make up the bosonic part of the massless
spectrum are completely anti-symmetric (0, k) tensors for some k ∈ N0 and can thus be
interpreted as differential forms on the 10-dimensional target space. The particles in the
bosonic massless spectrum have been presented in table 3.1 and all come with a fermionic
superpartner.

By only considering the original string theory at the tree level, i.e. by only considering
worldsheet diagrams without loops, an action Seff can be obtained for the fields from ta-
ble 3.1. This action can be written as Seff = SNS + SR + SCS, where SNS, SR and SCS are given
by equation (3.2). The first two contain the fields from the NS-NS-sector and the R-R-sector
respectively and the third is called the Chern-Simons term.

SNS = − 1
(2π)7α′4

∫
µXe

−2φ
(
−Rg + 4|dφ|2 + 1

2 |H
(3)|2

)
, (3.2a)

SR = − 1
2(2π)7α′4

∫
µX

(
|F (2)|2 + |F (4)|2

)
(3.2b)
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and

SCS = − 1
2(2π)7α′4

∫
B(2) ∧ F (4) ∧ F (4). (3.2c)

Here µX =
√
|g|d10x denotes the standard volume form on X and Rg is the scalar curvature

for the metric g. The 3-form H(3) = dB(2) is the field strength for the Kalb-Ramond field
and F (2) = dA(1) and F (4) = dA(3) are the field strengths for A(1) and A(3) respectively. The
squared norm |α|2 of a differential form α is taken with respect to the metric induced by g,
which means that α ∧ ∗α = µX |α|2 by definition of the Hodge star operator.

The complete effective action is obtained by adding quantum corrections, which come in
two flavours: (perturbative) loop corrections and (non-perturbative) instanton corrections
that correspond to non-trivial embeddings of higher dimensional objects called branes into
the target space. The exact nature of branes and their appearance in string theory is not
important for understanding this text and the interested reader is referred to [42].

The contribution of a constant background field φ0 for the dilaton gives a contribution to
the original (Polyakov) action for the worldsheet, which is proportional to −φ0 times the
Euler characteristic χΣ = 2− 2 g of the worldsheet considered. This means that in the limit
for φ0 → ∞, the contribution from loop diagrams will be small and the approach taken, by
viewing contributions from loop diagrams as perturbations, is justified. For smaller values
of φ the action (3.2) will not be valid and both perturbative and non-perturbative correction
should really be considered as well.

3.2 Compactified string theory

The world we live in is manifestly 4-dimensional, but as we have noted above, superstring
theory can only be consistently formulated for a 10-dimensional target space. This serious
discrepancy between string theory and the physics it hopes to describe can be resolved by
compactification of six of the ten dimensions of the target space [39,40,43].

By the compactification of string theory on a compact internal manifold K we basically
mean that instead of using 10-dimensional Minkowski as the target space for the theory, a
manifold of the form M ×K is used instead, where M ∼= R4 is the standard uncompactified
4-dimensional space-time. The background metrics that are considered are of the form
g = η + gK , where η is the standard 4-dimensional Minkowski metric on R4 and gK is some
(Ricci-flat) metric on K with respect to which the size of the internal manifold (VolgK (K))
is small. The idea is that while we can see the 4-dimensional external space-time M , the
internal manifold K will be so small that we do not observe it.

An additional assumption that is made is that there should be an unbroken supersymmetry
in four dimensions. Preservation of supersymmetry may seem like an odd condition since we
know that supersymmetry should eventually be broken at some energy scale, but there are
strong arguments that suggest that some supersymmetry should survive in the 4-dimensional
theory at high energies [39, 40, 43]. This extra condition for the background requires that
the background metric on the internal manifold is not only Ricci flat, but also K”ahler.

Since one of the definitions for Calabi-Yau manifolds that is in use is that a Calabi-Yau
manifold is a compact, Ricci-flat Kähler manifold, we refer to this type of compactification
as Calabi-Yau compactification. We will put a slightly stronger restriction on the internal
manifold K, namely that it is a Calabi-Yau 3-fold in the sense of definition 2.1.1, i.e. that it
has a trivial canonical bundle, and that its fundamental group is finite. One may recall that
triviality of the fundamental group of a Ricci-flat Kähler manifold is equivalent to the condi-
tion that its global holonomy group is contained in SU(3). To emphasise that we are dealing
with Calabi-Yau compactifications, the internal manifold will from now on be denoted by
the letter Y instead of K.
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3.2.1 Switching to four dimensions

From now on the coordinate x will be used to denote points in M and y for points in Y,
which means that (x, y) is a general point on the product X ∼= M × Y. The first thing we
should do to express the original 10-dimensional theory in terms of 4-dimensional fields is
split each of the forms B(2), A(1) and A(3), as well as the graviton δg, into the parts that
live on M and parts that live on Y. For a k-form ω(k) this means that we should write
ω(k)(x̂) =

∑
p+q=k ω

(p,q)(x̂), where ω(p)(q) is a p-form on M and a q-form on Y.

As an operator acting on differential forms, the Laplace operator ∆ = ∆gY = dd† + d†d
on the internal manifold (Y, gY) acting on q-forms is known to have some very nice prop-
erties. Because Y is compact ∆Y has a discrete spectrum Λ containing only non-negative
eigenvalues, its eigenspaces are finite-dimensional and mutually orthogonal and any q-form
can be written as a sum of eigenforms (cf. theorem 1.3.19). This allows us to fix a dis-
crete basis

(
α

(q)
Y,λ,s

)
λ,s

(with λ ∈ Λ and s = 1, . . . ,dim ker(∆− λ)) of eigenforms for ∆ with
eigenvalues λ ≥ 0 for anyq ≥ 0.

Consequently, we can write the any k-form ω(k) on R4 × Y as

ω(k)(x, y) =
∑
p+q=k

ω(p)(q)(x, y) =
∑
p+q=k

∑
λ,s

ω
(p)
M,λ,s(x) ∧ α(q)

Y,λ,s(y), (3.3)

where α(q)
Y,λ,s on Y form the aforementioned discrete basis of q-forms on Y and the coeffi-

cients ω(p)
M,λ,s are p-forms on the 4-dimensional external space M [39]. These 4-dimensional

fields, of which there are infinitely many, now carry all the information that the original 10-
dimensional field ω(k) did. Something similar can be done for the graviton field δg. As we
will see, all but a finite number of these will come with a mass term from the 4-dimensional
point of view.

The original 10-dimensional theory was described by the action Seff = SNS + SR + SCS

equation (3.2) and it is of the form Seff =
∫
M

d4x
∫
Y d6yLeff for some Lagrangian density

Leff that depends on the fields φ, δg, B(2), A(1) and A(3) and their derivatives. An action
for the 4-dimensional fields is obtained by “simply” integrating out the internal Calabi-Yau
manifold. Performing this integral yields the action S4D =

∫
d4xL4D, with a 4-dimensional

Lagrangian density given by [39]

L4D =
∫
Y

d6yLeff. (3.4)

The dynamics of the 4-dimensional fields can be described completely in terms of this action.
For small variations of the fields, the equations of motion imposed by the action (3.2) for

the fields ω(0) = φ, ω(2) = B(2), ω(1) = A(1) and ω(3) = A(3) read ∆Xω
(k) = 0 (plus small

higher order terms). Here ∆X = �M + ∆Y is the Laplace operator on M ×Y, which in our
case can be written as the sum of the D’Alembert (wave) operator �M = ∆M = ∂µ∂µ on
4-dimensional space-time and the Laplacian on the internal Calabi-Yau manifold Y. For the
field ω(p)

M,λ,s ∧ α
(q)
Y,λ,s this becomes

∆X

(
ω

(p)
M,λ,s ∧ α

(q)
Y,λ,s

)
=
(
�Mω

(p)
M,λ,s

)
∧ α(q)
Y,λ,s + ω

(p)
M,λ,s ∧

(
∆Yα

(q)
Y,λ,s

)
=
(
(�M + λ)ω(p)

M,λ,s

)
∧ α(q)
Y,λ,s = 0,

(3.5)

i.e. (∆M +λ)ω(p)
M,λ,s = 0 for each of the 4-dimensional (coefficient) fields ω(p)

M,λ,s. and all λ, s

that contribute to the sum in equation (3.3). We see that the field ω
(p)
M,λ,s gets an effective

mass
√
λ when viewed as a 4-dimensional field.

The Laplace operator on Y and its eigenvalues are inversely proportional to the metric on
Y and thus proportional to Vol(Y)−1/3, so the assumption that the internal manifold is small
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tell us that the fields ω(p)
M,λ,s for λ > 0 will be very massive. Because we are working in the

low-energy limit we choose to only consider the massless fields (the zero modes), which are
exactly those four-dimensional fields that correspond to harmonic forms on Y, i.e. those
for which λ = 0.

Although these harmonic forms α(q)
Y,0,s depend on the (Kähler) metric that is put on Y in

a particular point x ∈ M , the (De Rham) cohomology classes in Hq(Y,R) they represent
do not. This enables us to naturally view the combined fields ω(p)

Y,0,s for s = 1, . . . , bq into a

single Hq(Y,R)-valued p-form
∑
s ω

(p)
Y,0,s ⊗

[
α

(q)
Y,0,s

]
.

Because of the assumption we had made back in section 2.1 that the Calabi-Yau 3-fold Y is
connected and has a finite fundamental group, its Hodge diamond is given by equation (2.1)
for some integers h1,1 and h1,2. This tells us exactly what 4-dimensional fields we can expect
to obtain. An overview of these fields has been given in table 3.2, though we will say a little
bit about each of them. For more details on this, see for instance [44].

The dilaton φ is just a scalar on X, and the only harmonic 0-forms on Y are constant
functions, so φ becomes a scalar on M and similarly A(1) only contributes a 1-form on M .
The 3-form A(3) from table 3.1 gives us three contributions to the massless spectrum of the
4-dimensional theory, namely the fields A(3), A(1)(2) and a(3) from table 3.2, which are 0-
forms, 2-forms and 3-forms on Y respectively (and a 3-form, a 1-form and a scalar on M).
Of these only the last, which we call the Ramond-Ramond 3-form (to remind us that it
originally came from the Ramond-Ramond sector), will be important for us.

The Kalb-Ramond 2-form provides two fields, namely the field b, which is a harmonic
2-form on Y and a scalar on M , and another field B(2) that is constant on Y and a 2-
form on M . By either using the field equations for B(2) or by introducing a Lagrangian
multiplier, B(2) may be dualised to a scalar field σ called the Kalb-Ramond axion [44, 2],
which satisfies H(3) := dB(2) = ∗dσ, where ∗ now denotes the 4-dimensional Hodge star
operator.

Table 3.2: Massless bosonic spectrum in 4 dimensions
φ ∈ C∞(M) dilaton

9>>=>>; hyper-
multiplets

σ ∈ C∞(M) (Kalb-Ramond) axion
a(3) ∈ C∞(M,H3(Y,R)) (Ramond-Ramond) 3-form
t ∈ C∞(M,MC) complex structure moduli
ω ∈ C∞(M,KY) Kähler moduli }

vector
multiplets

b ∈ C∞(M,H2(Y,R))
A(1)(2) ∈ Ω1(M,H2(Y,R))
δg traceless symmetric (0, 2)-tensor graviton }

Gravity
multipletA(1) ∈ Ω1(M)

A(3) ∈ Ω3(M)

For the graviton δg the situation is similar, is different but nevertheless similar. Once again,
only zero-modes are considered. The part of δg that is a (0, 2)-tensor on M and a scalar on
Y only has one zero-mode, which is constant on Y, and thus contributes a 4-dimensional
graviton field. The part that is a 1-form on both M and on Y does not have any zero-modes
as a consequence of the fact that b1 = h1,0 + h0,1 = 0 [44, 39], which still leaves us with a
scalar field on M that corresponds to a deformation of the metric on Y [39,43].

Of all possible deformations of the metric on the internal Calabi-Yau manifold, only those
that preserve Ricci-flatness will contribute. These deformations have already been discussed
in section 2.2.1, where we had seen that they split up into two types: deformations of the
complex structure on Y and deformations of the Kähler class. Since these together determine
a deformed metric on Y, we see that we should view the complex structure moduli t ∈ MC
and the Kähler moduli d ∈ KY as fields in the 4-dimensional theory, so these have been
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included in table 3.2.
The fields in table 3.2 have been split into a gravity multiplet, vector multiplets and

hypermultiplets, which are sets of bosonic fields (and their fermionic superpartners) that
transform into each other under supersymmetry transformations. A hypermultiplet for in-
stance is a set of four scalar fields (and their fermionic superpartners) that may together be
viewed as a quaternion and transform accordingly [45]. We will see that the vector multi-
plets fields and the hypermultiplets decouple in the effective action (3.7) and therefore only
interact via gravity, which is in fact a general result and does not only apply to the present
situation.

3.2.2 The four-dimensional action

As we have seen, the effective 4-dimensional theory comes with an action S4D =
∫
M

d6yLeff
that is obtained by integrating out the internal Calabi-Yau manifold from the original 10-
dimensional action. Although computing this action is not a simple task, the Lagrangian
density L4D has already been found [44, 40]. This effective action can be written as the
sum S4D = Sg + Shm + Svm of three separate contributions corresponding to gravity, the
hypermultiplet fields and the vector multiplet fields.

To be able to present this action we should first discuss how to introduce coordinates
for the fields in table 3.2. Recall from proposition 2.1.6 that H3(Y,R)f admits a basis
α0, . . . , αh1,2 , β1, . . . , βh

1,2
of generators for H3(Y,Z)f that is symplectic with respect to the

intersection form Q. This basis can be used to write the field a(3) as

a(3)(x) =
h1,2∑
i=0

Ai(x)αi −Bi(x)βi, (3.6)

for the (real) scalar fields A0, . . . , Ah, B0, . . . , Bh on M . Unless stated otherwise, the indices
i, j, k, . . . will from now on always run from 0 to h1,2.

We have also seen that the complex structure on the Calabi-Yau manifold Y is completely
determined by a holomorphic 3-form Ω = Xiαi−Fiβi and that for the right symplectic basis
the periods Xi (locally) form a set of complex projective coordinates for the complex struc-
ture moduli space. This made it possible to view the complex structure moduli moreover
as a projective special Kähler manifold with a prepotential F = 1

2X
iFi and Kähler potential

KC = − log
(
i
∫
Y Ω ∧ Ω

)
.

The space of Kähler moduli, which is the Kähler cone KY , could be viewed as an open
subset of H2(Y,R), which enables us to combine the Kähler moduli ω and the field b ∈
H2(Y,R) into a single complex fieldW = b+iω that takes values in the complexified Kähler
moduli space Mk = H2(Y,R) + iKY . By subsequently choosing a basis v1, . . . , vh1,1 for
H2(Y,Z) it is possible to expand this field as W =

∑
γW

γvγ . Also the complexified Kähler
is projective special Kähler with Kähler potential KK = − log

(∫
Y ω ∧ ω ∧ ω

)
= − log Vol(Y).

Since A(1)(2) is Harmonic it is in particular closed and F = dA(1)(2) is a 2-form on both M
and on Y, which enables us to write F =

∑
γ Fγvγ .

We can now write down the effective 4-dimensional action Seff = Sg + Svm + Shm. In its
first contribution we recognise the Einstein-Hilbert action from general relativity

Sg =
∫
M

µgRg =
∫
M

d4x
√
|g|Rg, (3.7a)

where µ = d4x
√
|g| is the volume form on M ∼= R4 for the metric g and Rg is its scalar

curvature. The vector multiplet contribution is

Svm = −
∫ [

µM
∂2KK(W,W )
∂Wλ ∂W γ

∂µW
λ∂µW γ − 1

2 Im(NλγF+λ ∧ ∗F+γ)

]
, (3.7b)
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where KK is a Kähler potential on the complexified Kähler moduli space, N is some (com-
plex) invertible matrix that only depends on W and Fγ,± = Fγ ∓ i ∗ Fγ . Finally, there is a
contribution for the fields in the hypermultiplet sector, which is given by

Shm = −
∫
µM

[
∂2KC(X,X)
∂Xi ∂Xj

∂µX
i∂µXj +

1
(2ψ)2

(∂µψ)(∂µψ)

+
1

(2ψ)2
(∂µσ −Ai

↔
∂µBi)(∂µσ −Ai

↔
∂µBi) (3.7c)

− 1
2ψ

Im(N )ij(∂µBi −Nik∂µAk)(∂µBi −N ik∂
µAk)

]
.

Here ψ = eφ describes the dilaton field, the matrix N is given by

Nij = F̄ij + i
NikX

kX`N`j
X N X

, (3.8)

with Nij = 2 Im(Fij), and Im(N )ij is the inverse of its imaginary part. The Kähler potential
KC(X,X) can be shown to correspond to the canonical Kähler structure on the complex
structure moduli space and is given by [43,40]

KC(X, X̄) = − log
(

i
∫
Y

Ω ∧ Ω
)

= − log(iX
i
Fi − iXiF i). (3.9)

We should not forget that the action S4D = Sg + Svm + Shm described above was obtained
in the limit for φ → ∞ and is an approximation of a quantum corrected expression. We
can observe that this effective action has no contributions containing both vector multiplet
and hypermultiplets, which is no coincidence [46] and will therefore still hold once these
correction terms have been added.

3.3 The scalar moduli space

At the moment we are only be interested in the fields from the 4-dimensional theory from the
previous section that are scalars on the external manifold M ∼= R4 (but not necessarily on
Y). This includes most of the fields from the vector multiplet and hypermultiplet sectors, but
it excludes A(1,2), and the entire gravity multiplet. Although the appearance of the graviton
δg is quite essential, we will also ignore it for now and fix the standard 4-dimensional
Minkowski metric on M .

The moduli spaceM of the classical 4-dimensional theory described by these scalar fields
in these sectors of table 3.2 and the scalar part of the action Svm + Shm from equation (3.7)
is the space of all vacuum states, by which we mean all states that minimise the energy. This
action only contains kinetic terms as consequence of the fact that we had put all massive
fields to zero, which means that the vacuum states are exactly those states for which all
fields are constant. The moduli space can thus be identified with the space of all values the
fields can take at any single given point. On this space, the symbols φ, σ, a(3) etc. will denote
coordinates rather than fields and we will denote the (moduli) space they parametrise by
M.

For a mathematician, the notion of a moduli space has a slighty different meaning that
also happens to apply in this case. Choosing a field configuration consists of choosing a
specific Calabi-Yau 3-fold, which comes with a Ricci-flat metric, and a number of harmonic
forms on this Calabi-Yau manifold at every point x ∈ M . We can view the combination of
a Calabi-Yau manifold and these forms as a Calabi-Yau manifold with some extra structure
and these objects are exactly parametrised by the scalar fields in the hypermultiplet and
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vector multiplet sectors from table 3.2. The moduli spaceM can therefore be viewed as an
extension of the geometric moduli space described in section 2.2 to include this additional
structure.

The scalar part of the action Svm +Shm describes a non-linear sigma model, by which we
mean that it is of the form

S[ψ] = −
∫
M

µM

N∑
σ,τ=1

Gστ (ψ) (∂µψσ)(∂µψτ ) (3.10)

for some field ψ ∈ C∞(M,M) that we can be expressed in terms of local coordinates onM
as ψ = (ψ1, . . . , ψN ). The matrix Gστ (ψ) is symmetric and is allowed to depend on the point
ψ on the moduli spaceM (otherwise we say the sigma model is linear). In such situations
the action naturally induces a (pseudo-)metric on the (moduli) spaceM, namely

G =
N∑

σ,τ=1

Gστdψσdψτ (3.11)

where the symbols ψ1, . . . , ψN have now been used as coordinates onM rather than fields
on M .

In our case we obtain the metric gM = gvm + ghm on the scalar part of the moduli space
with respect to which the vector multiplet fields and the hypermultiplet fields correspond to
orthogonal directions. More explicitly, we have

gvm =
∂2KK(W,W )
∂Wλ ∂W

γ dWλdW
γ (3.12)

and

ghm =
∂2KC(X, X̄)
∂Xi ∂X̄j

dXidX̄j +
1

(2ψ)2
dψ2 +

1
(2ψ)2

(dσ −Ai
↔
dBi)2

− 1
2ψ

Im(N )ij(dBi −NikdAk)(dBi − N̄ikdAk).
(3.13)

We can view the scalar moduli space as the productM =Mvm×Mhm of two Riemannian
manifolds, the vector multiplet moduli spaceMvm and the hypermultiplet moduli space
Mhm, which are parametrised by the fields in the vector multiplet sector and the hypermul-
tiplet sector respectively. Since these two spaces are orthogonal with respect to the induced
metric described above and the vector multiplet part of this metric does not depend on the
hypermultiplet fields and vice versa, we can study the metrics on both spaces separately.
Since the vector multiplet moduli spaceMvm is just the complexified Kähler cone KY for the
Calabi-Yau manifold Y, it is a projective special Kähler manifold and as such it is understood
quite well [47,39].

The geometry of the hypermultiplet moduli has also been studied intensively and it has
been found to be a quaternion-Kähler manifold [48, 49] with negative scalar curvature.
This is quite a general statement that follows from supersymmetry, so it is even true when
quantum corrections are taken into account. By using the local c-map, S. Ferrara and S. Sab-
harwal were able to give an explicit description of the metric on the hypermultiplet mod-
uli space and its quaternion-Kähler structure [2] and these results have later been verified
through a more direct method [44,50]. Nevertheless, the precise nature of the quaternion-
Kähler structure onMhm is not yet fully understood and requires further study. By finding a
more intrinsic description for the quaternion-Kähler structure on the hypermultiplet moduli
space without quantum corrections we may also gain a better understanding of this space
and it may even help us to find the corrected action.
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3.3.1 Peccei-Quinn symmetries

The hypermultiplet action Shm has a number of continuous symmetries that are parametrised
by 2h1,2 + 3 continuous parameters and are known collectively as the (continuous) Peccei-
Quinn symmetries [51,52] and correspond to the transformations

Ai 7→ Ai + ai, σ 7→ σ + s+ aiBi − biAi,
Bi 7→ Bi + bi, ψ 7→ ψ

(3.14)

for ai, bi, s ∈ R. Additionally, there is also a continuous scaling symmetry,

Ai 7→ λAi, σ 7→ λ2σ
Bi 7→ λBi, ψ 7→ λ2ψ,

(3.15)

parametrised by λ > 0. These symmetries correspond to isometries for the induced metric
ghm from equation (3.13) on the hypermultiplet moduli space Mhm. Together the Peccei-
Quinn symmetries from equation (3.14) describe the group action of a (2h1,2+3)-dimensional
Heisenberg group [53,2], as we will see in section 5.1.

While the scaling symmetry (3.15) is broken when perturbative corrections are taken
into account, the Peccei-Quinn symmetries will be preserved to any orders in perturbation
theory [54, 55]. Explicit descriptions for this quantum-corrected quaternion-Kähler metric,
which does not yet include non-perturbative corrections, can be found in [56] or [55].

Once also instanton contributions are added, the continuous Peccei-Quinn symmetries do
break. These leave only a discrete subgroup of the group of isometries unbroken [54, 57].
There are two important types of instanton contributions to the hypermultiplet action that
correspond to so-called D2-brane and NS5-branes and these can be considered separately.
The first break the Peccei-Quinn isometries by restricting (ai, bi) ∈ R2+2h1,2

from equa-
tion (3.14) to a lattice, Z2+2h1,2

, while contributions from the latter break the shift isometry
in σ, which is parametrised by s in equation (3.14), to a discrete subgroup [54]. Although
this cannot be said with absolute certainty, it seems most likely that when the two are com-
bined, the remaining symmetries correspond to the transformations (3.14) for ai, bi ∈ Z and
s ∈ Z (or possibly s ∈ n−1Z for some n ∈ N).

States that are related through these unbroken symmetries are completely indistinguish-
able in the full effective theory and should therefore be identified. This makes each of the
fields Ai, Bi and thus means that a(3) = Aiαi − Biβi becomes an element of the interme-
diate Jacobian H3(Y,R)/H3(Y,Z), while σ should now be viewed as element of the circle
R/Z. No identifications are made for the dilaton field φ.
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GEOMETRY

In this chapter contact metric manifold and Cauchy-Riemann (CR) manifolds are introduced,
some important properties of these spaces will be presented and it will be explained how
Sasakian structures are related to both of these concepts. We will finally apply all this to
the Heisenberg group and explain how a the specific Kähler structure we will encounter in
section 5.2 can be described in terms of contact and CR geometry.

4.1 Hyperplane fields

The central object in contact geometry is a hyperplane field [58, 59, 60], so the first thing
we should do is define what we mean by that and discuss a few other general notions.

Definition 4.1.1 (Hyperplane field). A hyperplane field F on a manifold M is a codimen-
sion 1 subbundle of the tangent bundle TM . A (locally) defining form for F is a (locally
defined) 1-form on M for which F = ker η.

For any hyperplane field F < TM we can also consider the (real) line bundle TM/F .
From now on the manifold M will be assumed to be connected and co-orientable, as defined
below.

Definition 4.1.2 (Co-orientability). The hyperplane field F is said to be co-orientable when
TM/F is orientable (and hence trivial) and a co-orientation of F is a choice of one of the two
connected components of TM/F \ (M × {0}), which is denoted by (TM/F )+.

A section X of TM/F is said to be positive if X(x) ∈ (TM/F )+ for all x ∈ M and
negative if X(x) ∈ (TM/F )− = −(TM/F )+ and we call a defining form η for F positive
(resp. negative) if η(X) > 0 for all positive (resp. negative) sections of TM/F .

On any co-orientable hyperplane field we can define the Frobenius form by using the
commutator [•, •] for vector fields.

Definition 4.1.3 (Frobenius form). The Frobenius form of a distribution F < TM is the
anti-symmetric bilinear map ω : F × F → TM/F given by

ω(X,Y ) = πTM/F ([X,Y ]) (4.1)

for any two sections X and Y of F . Here πTM/F is the canonical projection map from TM
onto TM/F .

That ω is linear over C∞(M) is easily verified since for any function f on M and any two

53



CHAPTER 4. CONTACT AND CAUCHY-RIEMANN GEOMETRY

sections X and Y of F we have

ω(X, f Y ) = πTM/F ([X, f Y ]) = πTM/F (f [X,Y ] +X(f)Y ) = f πTM/F ([X,Y ]) (4.2)

because πTM/F is C∞(M)-linear and kerπTM/F = F . This means that the value of ω(X,Y )
in the point x ∈ M only depends on the value of X and Y in x ∈ M and hence that, unlike
the commutator bracket, the Frobenius form can be defined on the fibres of F rather than
on sections.

Any defining form for the (co-orientable) hyperplane field F < TM vanishes on F by
definition and thus defines a nowhere-vanishing homomorphism η : TM/F → M × R, i.e.
a trivialisation for TM/F . Conversely, any trivialisation ϕ : TM/F → R for TM/F comes
from a unique defining form ηϕ = ϕ ◦ πTM/F for F < TM . This not only gives us a one-
one correspondence between trivialisations of TM/F and defining forms for F , but also
enables us to relate the Frobenius form of a hyperplane field to the external derivative of
some defining form [61].

Proposition 4.1.4. Let F < TM be a (co-orientable) hyperplane field and let η = ϕ ◦ πTM/F

be a defining form for F , then dη|F = −ϕ ◦ ω, where ω is the Frobenius form for F .

Proof: By using the intrinsic formula for the exterior derivative, we see that for any two
sections X and Y of the bundle F = ker η < TM we have that

dη(X,Y ) := X(η(Y ))− Y (η(X))− η([X,Y ]) = −η([X,Y ])

= −ϕ
(
πTM/F ([X,Y ])

)
= −ϕ(ω(X,Y ))

(4.3)

by definition of η and ω.

For the remainder of this chapter, the manifold M will be assumed to be of dimension
2n+ 1 for some integer n.

4.2 Contact geometry

Contact geometry is often considered to be the odd-dimensional counterpart of symplectic
geometry, which can only be defined for even-dimensional manifolds. Contact structures are
often defined in terms of a contact form, which is a special type of defining form [24,60,58].

Definition 4.2.1 (Contact form). A contact form η on M is a nowhere-vanishing 1-form for
which one of the following equivalent conditions holds:

1. The (2n+ 1)-form η ∧ (dη)n is nowhere-vanishing (it is a volume form),

2. The 2-form dη is non-degenerate on F = ker η (it is a symplectic form on F ).

Equivalence of these definitions is easily verified, as is the existence of a nowhere vanish-
ing vector field ξ on M for which dη(ξ, •) = 0, which gives rise to the following definition.

Definition 4.2.2 (Reeb vector field). The Reeb vector field associated with a contact form
η is the unique vector field ξ on M for which η(ξ) = 1 and ıξdη = dη(ξ, •) = 0.

Although some authors [24] call the contact form itself the contact structure, it is more
common to call the hyperplane field defined by such a form the contact structure [58, 60]
and the contact condition can alternatively also be formulated in terms of the Frobenius
tensor [61]
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Proposition/Definition 4.2.3 (Contact structure). A contact structure on M is a (co-
orientable) hyperplane field F < TM for which one of the following equivalent conditions
holds:

1. The Frobenius form ω of F is non-degenerate,

2. There exists a contact form η on M such that F = ker η,

3. Any defining form for F is a contact form.

A hyperplane field F satisfying these conditions is also called a contact bundle and a mani-
fold (M,F ) equipped with a contact structure is called a contact manifold.

Proof: Let η be some defining form for the hyperplane field F < TM , then η : TM/F →
M × R defines a trivialisation and dη|F×F = −η ◦ ω, as we had seen in proposition 4.1.4.
This tells us that dη is non-degenerate on F exactly when ω is non-degenerate and since
the defining form η was arbitrary it proves that each of the three conditions above are
equivalent.

It is not hard to show that for any contact form η one can locally choose coordinates
x1, . . . , xn, y1, . . . , yn, z with respect to which η is given by

η = dz −
∑
i

yi dxi. (4.4)

Such a coordinate system is called a Darboux coordinate system [24]. By instead choosing
the coordinates z′ = z − 1

2x
iyi, x′i = xi/

√
2 and y′i = yi/

√
2 we obtain

η = dz′ −
∑
i

y′i
↔
dx′i, (4.5)

where yi
↔
dxi is short for yidxi − xidyi.

Remark 4.2.4. A subbundle F ⊆ TM of rank k on an n-dimensional manifold is said to be in-
tegrable ifM locally admits a folation into k-dimensional integral submanifolds (submanifolds
that are tangent to F ). By the Frobenius theorem, a hyperplane field F < TM is integrable
exactly when its Frobenius form vanishes, which means that a contact bundle will never be in-
tegrable. The contact condition is in fact a much a stronger condition than non-integrability,
as it guarantees that no submanifold of M of dimension greater than bnc will be an integral
submanifold with respect to a contact bundle F < TM , which is why a contact distribution is
sometimes said to be maximally non-integrable [60].

4.2.1 Symplectisation

Let (M,F ) be a co-orientable contact manifold. The vector bundle (TM/F )∗ dual to TM/F
can be naturally identified with the bundle

D = {α ∈ T∗xM | x ∈M,Fx ⊆ ker(α)} ⊆ T∗M, (4.6)

which is generated by the defining forms for F ⊆ TM . Co-orientability of (M,F ) tells us
that a globally defined nowhere-vanishing section η of D exists and hence that D is trivial.
This bundle comes with a canonical 1-form θ defined as the restriction of the Liouville form
on T∗M to the submanifold D.

Definition 4.2.5 (Liouville form). The cotangent bundle T∗M carries a canonical 1-form,
called the Liouville form, which is given by

θηx = π∗η (4.7)

at the point ηx ∈ T∗M , where π : T∗M →M is the standard projection of T∗M onto M .

The hypermultiplet moduli space 55



CHAPTER 4. CONTACT AND CAUCHY-RIEMANN GEOMETRY

It is a well-known result that the exterior derivative dθ of the Liouville form is non-
degenerate as a 2-form on T∗M and thus defines a canonical symplectic structure on T∗M \
(M × {0}). Because of the fact that F < TM is a contact bundle, it turns out that the
restricion of this symplectic structure to one of the connected components of D \ (M × {0})
is still non-degenerate.

Theorem/Definition 4.2.6 (Symplectisation). Let η be a positive contact form on the contact
manifold (M,F ) and let ξ be the associated Reeb vector field and M̃ the bundle of positive
defining forms,

M̃ = {α ∈ D | α(ξ) > 0} = {λ ηx | x ∈M,λ > 0} ⊆ T∗M. (4.8)

The restriction of the canonical symplectic form dθ on T∗M , where θ is the Liouvile form from
4.2.5, to M̃ defines a symplectic structure ω̃ on M̃ . The symplectic manifold (M̃, ω̃) we thus
obtain is called the symplectisation [62,60] of the contact manifold (M,F ).

We will postpone the proof of the statement that the 2-form ω̃ defines a symplectic struc-
ture for now and first discuss an alternative description of the symplectisation M̃ .

Remark 4.2.7. The canonical projection map π : M̃ → M allows us to transfer any exterior
k-form σ on M to a k-form π∗σ on M̃ , which we will usually also denote by σ This in particular
means that we can extend a preferred defining form η = π∗η to a 1-form on M̃ . At any point
ηx ∈ M̃ , the Liouville form is given by θηx = π∗ηx = ηx.

Although intrinsic, the definition above is not very practical to work with. We will there-
fore mainly work with a more explicit description of the symplectisation, which can be in-
troduced by fixing a defining form and defining a coordinate on the fibres of M̃ [62,60,59].

Proposition 4.2.8 (Explicit description). Let (M,F ) be a co-oriented contact manifold and
let η be a positive defining form for F . The map ψη : M × R>0 → M̃ ⊆ T∗M, (x, r) 7→ r ηx is
a diffeomorphism such that ψ∗ηθ = r η and

ψ∗ηω̃ = d(r η) = dr ∧ η + r dη. (4.9)

This 2-form on M×R is non-degenerate and closed, so it defines a symplectic form on M×R>0.
For this reason we will often identify (M̃, ω̃) with (M × R>0,dr ∧ η + r dη) or just refer to

this space as the symplectisation of M .

Proof: The defining form η defines a trivialisation τ : D → M × R, rηx 7→ (x, r), so its
restriction to the symplectisation M̃ is a diffeomorphism M̃ ∼= M × R>0. Since θrηx = rηx
for all x ∈M and all r > 0, we immediately see that for (x, r) ∈M × R>0,

(ψ∗ηθ)(x,r) = ψ∗η(θr η) = ψ∗η(π∗r η) = (π ◦ ψη)∗(r η) = r η (4.10)

since π ◦ ψη = idM . It subsequently follows that

ψ∗ηω̃ = ψ∗ηdθ = dψ∗ηθ = d(r η) = dr ∧ η + r dη. (4.11)

Since η is a defining form for the contact bundle F , dη is non-degenerate on F , but dη(ξ) = 0
by definition of ξ, so π∗dη is non-degenerate on Fx×{0} ⊆ Tx(M ×R) and vanishes on the
subspace of Tx(M × R) spanned by (ξ, 0) and ∂r. Meanwhile, dr ∧ η is non-degenrate on
exactly this subspace and vanishes on Fx. The form ω̃ = d(r η) = dr ∧ η + r dη is therefore
non-degenrate on the whole of TxM̃ for all x ∈ M . It is exact and therefore closed, which
means that it defines a symplectic structure on M × R

Proof of theorem 4.2.6: This is a direct consequence of proposition 4.2.8 since we can use
the diffeomorphism ψη to transform the symplectic form ψ∗ηω̃ on M × R back to M̃ .
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It is possible to define the space M̃ using any hyperplane field F ⊆ TM , but the 2-form
ω̃ = dθ will only be non-degenerate if (M,F ) is a contact manifold. A contact structure can
therefore equivalently be defined as a hyperplane field F < TM for which the symplectic
structure on T∗M induces a symplectic structure on the space (TM/F )∗ [60]. From now
on we will mostly work with the explicit description of the symplectisation as M × R>0

introduced in proposition 4.2.8 for some fixed defining form η and write ω̃ for the induced
symplectic form ψ∗ηω̃ = dr ∧ η + r dη.

4.2.2 Contact metric structures

There exists a special class of metrics on contact manifolds, namely those that are part of a
contact metric structure. The definition of a contact metric structure makes use of an almost
contact structure, which is strongly related to the notion of a contact structure and that of
an almost complex structure.

Definition 4.2.9 (Almost contact structure). An almost contact structure (φ, ξ, η) on M
is an endomorphism φ on TM such that

φ2 = − idTM +ξ ⊗ η, (4.12)

for the vector field ξ and the 1-form η on M such that η(ξ) = 1. A manifold admitting such a
structure is called an almost contact manifold.

As will be made more explicit in proposition 4.2.13, any contact manifold (M,F ) with
F = ker η and corresponding Reeb vector field ξ admits an almost contact stucture (φ, ξ, η),
but the converse is generally not true [24, 58]. It is however possible to prove that any
non-compact connected manifold with an almost contact structure also admits a contact
structure and that the two can be related through homotopy [60], but this is not what we
are interested in.

Lemma 4.2.10. Let (φ, ξ, η) be an almost contact structure on M , then kerφ is a (real) line
bundle spanned by ξ and imφ = ker η.

Proof: Since η(ξ) = 1 we see that φ2(ξ) = −ξ + η(ξ) ξ = 0 and hence

0 = φ3(ξ) = φ2(φ(ξ)) = −φ(ξ) + η(φ(ξ)) ξ, (4.13)

so φ(ξ) = η(φ(ξ)) ξ. It subsequently follows that φ(ξ) = 0 since

0 = φ2(ξ) = φ(η(φ(ξ) ξ)) = η(φ(ξ))φ(ξ) = η(φ(ξ))2 ξ, (4.14)

which is only possibly if η(φ(ξ)) = 0 and thus φ(ξ) = η(φ(ξ)) ξ = 0.
This means that for any vector field X on M ,

φ(X) = −φ(−X + η(X) ξ) = −φ(φ2(X))

= −φ2(φ(X)) = φ(X)− η(φ(X)) ξ,
(4.15)

which tells us that η(φ(X)) = 0 and hence that η ◦ φ = 0, i.e. imφ < ker η.
If φ(X) = 0 for some X ∈ TxM then we have φ2(X) = −X + η(X) ξx = 0, so we

necessarily have X ∈ R ξx. Since we had already seen that φ(ξ) = 0 it follows that for any
x ∈ M , kerφ = R ξx, which in particular means that rankφ = dimM − 1 = 2n. We had
also shown that imφ < ker η, but for x ∈ M both imφx and ker ηx are subspaces of TxM
dimension 2n, so they are in fact equal.

By using the definition of an almost contact structure we can now subsequently introduce
the notion of an almost contact metric structure and a contact metric structure.
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Definition 4.2.11 (Almost contact metric structure). A metric g on a almost contact man-
ifold (M,φ, ξ, η) is said to be be compatible with the almost contact structure if

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (4.16)

for any two vector fields X and Y on M . Together with the almost contact structure, g forms
an almost contact metric structure or almost contact Riemannian structure (φ, ξ, η, g).

Definition 4.2.12 (Contact metric structure). An almost contact metric structure (φ, ξ, η, g)
on M is said to be a contact metric structure if

g(X,φY ) = 1
2dη(X,Y ) (4.17)

for any two vector fieldsX and Y onM and the manifold (M,φ, ξ, η, g) is then called a contact
metric manifold or a contact Riemannian manifold.

Note that this definition in particular implies that dη|F is non-degenerate and hence that
F = ker η defines a contact structure on M . If a metric g exists such that (φ, ξ, η, g) is a
contact metric structure for a given almost contact structure (φ, ξ, η), this metric is in fact
completely fixed by equation (4.16) and (4.17), since the first tells us that g(ξ, •) = η and
the latter fixes g on F = imφ. The metric g is given by

g = 1
2dη(φ•, •) + η ⊗ η (4.18)

Proposition 4.2.13. Let (M,F ) be a contact structure such that F = ker η for the contact
form η whose Reeb vector field is ξ. There exist an endomorphism φ : TM → TM and a metric
g on M such that (φ, ξ, η, g) is a contact metric structure.

Proof: See [24] for a proof of this proposition using the polar decomposition of matrices.

Definition 4.2.14. A contact metric structure (φ, ξ, η, g) is said to be K-contact if ξ is a Killing
vector field for g, i.e. Lξg = 0, or equivalently if Lξφ = 0.

If (φ, ξ, η, g) is a contact metric structure, then g is given by equation (4.18) and thus

Lξg = 1
2d(Lξη)(φ •, •) + 1

2dη((Lξφ) •, •) + (Lξη)⊗ η + η ⊗ (Lξη) (4.19)

A direct consequence of the definition of the Reeb vector field ξ is that Lξη = 0, which
also means that Lξdη = 0. When we plug this into equation (4.19) we are left with Lξg =
1
2dη((Lξφ)•, •), which vanishes exactly when Lξφ = 0 (N.B. (Lξφ)(ξ) = 0 always holds).

4.3 Cauchy-Riemann structures

Another interesting type of structure that we can define on a hyperplane field are the so-
called CR structures.

Definition 4.3.1 (CR structure). A CR structure (Cauchy-Riemann structure) on a manifold
M is an involutive subbundle H < TCM of the complexified tangent bundle for which H∩H =
0. Involutivity of H means that [X,Y ] ∈ H for any two sections of H. If H < TC is a CR
structure then the pair (M,H) is said to be a CR manifold.

A complex structure is the same thing as a CR structure of maximal rank on an even-
dimensional manifold M and satisfies TCM = H ⊕ H. Although the definition of a CR
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structure given above makes no reference to the rank of H or the dimension of M , we will
from now on always assume that the dimension of M is an odd number 2n+ 1 and that the
rank of H is maximal (dimC H = n). This assumption is usually made when dealing with CR
manifolds in relation to contact geometry since then HR = (H ⊕H) ∩ TM is a hyperplane
field. In analogy to the corresponding definition on a complex manifold, we have a notion
of holomorphicity for functions between CR manifolds.

Definition 4.3.2 (CR-holomorphicity). A complex function f : M → C on the CR manifold
(M,H) is said to be CR-holomorphic if df(X) = X(f) = 0 for all X ∈ H. A map ϕ from one
CR manifold (M,H) to a CR manifold (M ′, H ′) is called CR-holomorphic if ϕ∗(H) ⊆ H ′.

A CR structure induces an endomorphism JH on HR = (H ⊕ H) ∩ TM satisfying J2
H =

− idHR whose complex eigenspace areH andH and correspond to the eigenvalues +i and−i
respectively. Since the hyperplane fieldHR and the endomorphism JH completely determine
the CR structure, we will generally denote the CR structure H < TCM by the pair (HR, JH).

Definition 4.3.3 (Levi form). The Frobenius form ωH : HR ×HR → TM/HR for the hyper-
plane field associated with a CR structure H on M is called the Levi form of the CR structure.

It can easily be verified that (the complex extension of) the Levi form ωH vanishes on
H ×H and H̄ × H̄ because [H,H] ⊆ H by the CR condition. This tells us that the bilinear
form ωH(JH•, •) : HR ×HR → TM/HR is symmetric.

Definition 4.3.4 (Strictly pseudoconvex CR structure). Let (HR, JH) define a CR structure
and fix a co-orientation for HR, then we say that a 2-form ω is positive if ω(JHX,X) ∈
(TM/HR)+ for any X ∈ HR \ (M × {0}). A CR structure is called Levi non-degenerate if
the Levi form ωH is non-degenerate and strictly pseudoconvex if ω(JH•, •) is positive for a
co-orientation of HR.

Since the Levi-form is just the Frobenius form of the hyperplane field HR, the hyperplane
fieldHR will define a contact structure exactly when the CR structure is Levi non-degenerate.
A strictly pseudoconvex CR manifold can furthermore be equipped with a contact metric
structure, but this structure is not unique since a defining form for HR should first be speci-
fied.

Definition 4.3.5 (Underlying CR structure). Let (φ, ξ, η, g) be a contact metric structure on
M such that (HR, JH) = (ker η, φ|HR) be a CR structure, then this CR structure is said to be the
underlying CR structure for the contact metric structure.

Proposition 4.3.6. If (HR, JH) is a strictly pseudoconvex CR structure (with corresponding
orientation) and η is a positive defining form for HR, then (φ, η, ξ, g) is a contact metric struc-
ture if ξ is the corresponding Reeb vector field, φ is given by φ(ξ) = 0 and φHR = JH and
g = 1

2dη(φ•, •) + η ⊗ η.
A CR structure (HR, JH) on M is the underlying CR structure for a contact metric structure

if and only if it is strictly pseudoconvex.

Definition 4.3.7 (CR automorphism). a CR automorphism on a CR manifold (M,HR, JH)
is a diffeomorphism ϕ from M to itself such that ϕ∗(HR) ⊆ HR and ϕ∗ ◦ JH = JH ◦ ϕ∗.

Proposition 4.3.8. The group CR(M,HR, JH) of CR automorphisms for the CR manifold
(M,HR, JH) is a Lie group. Its Lie algebra can be describes through the infinitesimal CR auto-
morphisms and is given by

cr(M,HR, JH) = {ξ ∈ X(M) | [ξ,HR] ⊆ HR and LξJ = 0}. (4.20)
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4.3.1 Sasakian structure

A Sasakian structure is a special kind of contact metric structure that is of particular interest
to us.

Definition 4.3.9 (Sasakian structure). A Sasakian structure onM is a contact metric struc-
ture (φ, ξ, η, g) on M that is K-contact and for which (F, J) = (ker η, φ|F ) is a CR structure. A
CR structure that underlies a Sasakian structure is said to be of Sasaki type.

Note that all elements of the Sasakian structure (φ, ξ, η, g) are completely determined by
the CR structure (F, J) = (ker η, φ|F ) and the Reeb (Killing) vector field ξ. The complete
tuple (φ, ξ, η, g) is determined by the equations η(ξ) = 1, η|F = 0, φ(ξ) = 0, φ|F = J and
g = 1

2dη(φ•, •) + η ⊗ η.

Definition 4.3.10 (Normal almost contact structure). Let (φ, ξ, η) describe an almost con-
tact structure on M . We can define an almost complex structure J̃ on the space M̃ = M × R
by

J̃(X + κ ∂r) = φX − κ ξ + η(X) ∂r, (4.21)

were r is the standard coordinate on R and ξ ∼ (ξ, 0) is the Reeb vector field associated with
preferred defining form η. The almost contact structure (φ, ξ, η) is said to be normal when J̃ is
integrable.

We know that an almost complex structure is integrable if and only if its Nijenhuis tensor
vanishes, which we can use to obtain a similar result for for almost contact structures.

Theorem 4.3.11. An almost contact structure (φ, ξ, η) is normal if and only if the (1, 2)-tensor
defined by

N (1)(X,Y ) = −φ2[X,Y ] + φ[φX, Y ] + φ[X,φY ]− [φ(X), φ(Y )]− dη(X,Y ) ξ, (4.22)

vanishes.

Sketch of the proof: The tangent space of M̃ is spanned by T(M × {0}) ' TM together
with the vector ∂t. Since the Nijenhuis tensor is anti-symmetric, N(∂t, ∂t) = 0 and we only
need to check whether N(X,Y ) and N(X, ∂t) vanish for vector fields X and Y on M . A
lengthy calculation shows that

NJ̃(X,Y ) = N (1)(X,Y ) +N (2)(X,Y ) ∂t and N(X, ∂t) = N (3)(X), (4.23)

where N (1) is the object described in equation (4.22), N (2)(X,Y ) = η(N (1)(φX, Y )) and
N (3)(X) = −φ(N (1)(X, ξ)). We immediately see that the vanishing of N (1) is a necessary
and sufficient condition for the J̃ to be integrable and thus for (φ, ξ, η) to be normal.

The tensorial nature of N (1) can be explicitly verified.

Instead of using the characterisation for Sasakian structure given in definition 4.3.9, a
Sasakian structure is often defined as a normal contact metric structure or as a contact
metric structure whose (real) cone admits a particular kind of Kähler metric. All of these
definitions are equivalent. There are also other characterisations for Sasakian structures
that we will not go into here [63,64]

Theorem/Definition 4.3.12 (Alternative definitions). Let g be a Riemannian metric on M ,
let ξ and η be a vector field and a 1-form on M respectively and let φ : TM → TM be an
endomorphism on the tangent bundle TM . The following statements are all equivalent

1. (φ, ξ, η, g) is a Sasakian structure.
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2. (φ, ξ, η, g) is a normal contact metric structure on M .

3. The vector ξ is a Killing vector field on (M, g) of unit length, the endomorphism φ on M
is given by φ(X) = −∇Xξ satisfying

(∇Xφ)(Y ) = g(X,Y ) ξ − η(Y )X, (4.24)

4. There exists a dilation invariant complex structure J̃ (i.e. Lr∂r J̃ = 0) on the cone M ×
R>0 with respect to which the metric dr2 + r2 g on M × R>0 is Kähler.
If we denote the canonical projection from M × R>0 to M by π̃, then ξ = −π̃∗J̃(r∂r),
η = g(ξ, •) and φ is determined by φ(ξ) = 0 and g(•, φ•) = 1

2dη.

Definition 4.3.13 (Sasakian η-Einstein structure). A Sasaki-Einstein structure is a Sasakian
structure (φ, ξ, η, g) which is also Einstein, i.e. one for which the Ricci Ricg is proportional to
g. A Sasakian structure is said to be Sasakian η-Einstein if the Ricci tensor for g is given by

Ricg = λ g + ν η ⊗ η (4.25)

for some constants λ, ν ∈ R.

Definition 4.3.14 (Sasakian cone). Let (M,HR, JH) be a strictly pseudoconvex CR manifold
and let η be a positive defining form for HR, then the (unrestricted) Sasakian cone is defined
as the subset

cr+(M,HR, JH) = {ξ ∈ cr(M,HR, JH) | η(ξ) > 0}. (4.26)

The Sasakian cone is a convex cone since we can easily check that λ ξ+ξ′ ∈ cr+(M,HR, JH)
for all ξ, ξ′ ∈ cr+(M,HR, JH) and all λ > 0.

Theorem 4.3.15. Let (HR, JH) be a strictly pseudoconvex CR structure on M , then ξ ∈
cr+(M,HR, JH) for any Sasakian structure (φ, ξ, η, g) on M with (HR, JH) as its underly-
ing CR structure (HR, JH). Moreover, if we let S(M,HR, JH) denote the set of all Sasakian
structures on M which have (HR, JH) as their underlying CR structure, then the map

S(M,HR, JH)→ cr+(M,HR, JH) (φ, ξ, η, g) 7→ ξ (4.27)

is a bijection.

4.4 The Heisenberg group

The most simple example of a contact structure is the one defined on the odd-dimensional
Euclidean space R2n+1 by using equation (4.4) to define a contact structure on the entire
space. A more interesting way to construct a contact structure on odd-dimensional vector
spaces is by using a symplectic vector space to construct a Heisenberg group.

Definition 4.4.1 (Heisenberg (Lie) group). Let (V, ω) be a symplectic vector space, then we
define the Heisenberg group associated with this space to be H(V, ω) = (V × R, ·). Group
multiplication on H(V, ω) is defined by

(v, s) · (w, t) = (v + w, s+ t− ω(v, w)), (4.28)

for v, w ∈ V and s, t ∈ R.

It can easily be verified that the product defined in equation (4.28) defines a group struc-
ture on V ×R with neutral element (0, 0) such that the inverse of an element (v, s) ∈ H(V, ω)
is simply (−v,−s). Since V × R is a linear space, it carries a natural smooth structure with

The hypermultiplet moduli space 61



CHAPTER 4. CONTACT AND CAUCHY-RIEMANN GEOMETRY

respect to which both group multiplication and inversion are smooth The Heisenberg group
therefore carries the structure of a (connected) Lie group. For the remainder of this section,
(V, ω) will denote a 2n-dimensional real symplectic vector space andH = H(V, ω) will be its
associated Heisenberg group.

Remark 4.4.2. It is always possible to choose a basis on V with respect to which ω looks
like the standard symplectic form. If we then write v = (x1, . . . , xn, y1, . . . , yn) and w =
(x′1, . . . , x′n, y′1, . . . , y

′
n) in terms of the corresponding coordinates we have ω(v, w) = xiy′i −

yix
′i. If we add an additional coordinate s on R, then group multiplication on H(V, ω) will be

described by

(v, s) · (w, t) = (x, y, s) · (x′, y′, t) = (x+ x′, y + y′, s+ t− xiy′i + yix
′i). (4.29)

For this reason, the 2n + 1-dimensional Heisenberg group is sometimes defined as the space
R2n+1 with the multiplication described by equation (4.29) [65].

Because we will require the commutator of left-invariant vector fields on H on a number
of occasions it will be useful to know the Lie algebra of H.

Lemma 4.4.3 (Heisenberg algebra). The Lie algebra, H(V, ω), ofH(V,W ) is the linear space
V × R, equipped with the Lie bracket defined by

[(v, s), (w, t)] = (0,−2ω(v, w)) (4.30)

Proof: A simple calculation shows that the commutator of two group elements (v, s) and
(w, t) is given by

[(v, s), (w, t)] = (v, s) · (w, t) · (v, s)−1 · (w, t)−1

= (v + w, s+ t− ω(v, w) · (−v − w,−s− t− ω(v, w))
= (0,−2ω(v, w)).

(4.31)

Since (0, 0) is the unit element, this proves the lemma.

Recall that a vector field X on H is called left-invariant if `(v,s)∗X = X for all (v, s) ∈ H
and that such a vector field is completely determined by its value at the unit element through
X(v, s) = `(v,s)∗X(0, 0). Here `(v,s) : H → H, (w, t) 7→ (v, s) · (w, t) denotes left translation
by (v, s) ∈ H [66].

Lemma 4.4.4 (Invariant vector fields). The left-invariant vector field X(w,t) on H for which
X(w,t)(0, 0) = (w, t) are given by

X(w,t)(v, s) = (w, t− ω(v, w)). (4.32)

Proof: The value of the left-invariant vector field X(w,t) for which X(w,t)(0, 0) = (w, t) at
(v, s) ∈ H(V, ω) follows by taking the derivative of `(v,s)

X(w,t)(v, s) = `(v,s)∗(w, t) = d
dϕ

∣∣
ϕ=0

`(v,s)(ϕw,ϕ t)

= d
dϕ

∣∣
ϕ=0

(v + ϕw, s+ ϕ t− ω(v, ϕw))

= (w, t− ω(v, w)).

(4.33)

This corresponds exactly with equation (4.32).

Note that this in particular means that the vector field ξ = X(0,1) = (0, 1) = ∂s is invariant.
The fact that we already know the Lie algebra of H enables us to write the commutator of
two invariant vector fields in terms of symplectic structure and this vector field ξ.
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Corollary 4.4.5 (Commutator bracket). The vector field commutator of two left-invariant
vector fields X(v,s) and X(w,t) is given by

[X(v,s), X(w,t)] = X([(v,s),(w,t)]) = −2ω(v, w) ξ, (4.34)

where ξ = X(0,1) = ∂s.

Proof: This is a direct consequence of lemma 4.4.3 and a general result for Lie groups
relating the commutator bracket of invariant vector fields to the Lie algebra.

4.4.1 Contact and CR structures on the Heisenberg group

The left-invariant differential 1-forms onH are exactly those forms that evaluate to constant
functions when applied to an invariant vector field. This means that a 1-form α is invariant
if and only if for any (v, s) ∈ T(0,0)H ' V × R the function α(X(v,s)) : H → R is constant .
We will be particularly interested in the one 1-form η defined by

η(X(v,s)) = s (4.35)

for (v, s) ∈ TH ' V × R.

Lemma 4.4.6. Let η be the left-invariant 1-form on H(V, ω) defined above, then for any two
left-invariant vector fields X(v,s) and X(w,t)

dη(X(v,s), X(w,t)) = 2ω(v, w) (4.36)

Proof: This can easily be verified through an explicit computation, as this shows that

dη(X(v,s), X(w,t)) = X(v,s)η(X(w,t))−X(w,t)η(X(v,s))− η([X(v,s), X(w,t)])

= X(v,s)(t)−X(w,t)(s)− η(−2ω(v, w) ξ) = 2ω(v, w),
(4.37)

where ξ = X(0,1) as before.

There is a natural way to define a hyperplane field on the Heisenberg group that is in-
variant with respect to the group structure [67] by taking the subspace V < T(0,0)H and
extending it to other points in the group through left-translations. Using the lemma above,
it becomes straightforward to show that this hyperplane field defines a contact structure on
H(V, ω).

Corollary 4.4.7 (Contact structure on H). The hyperplane field F < TH generated by the
vector fields X(w,0) for w ∈ T(0,0)V ' V defines a contact structure. The invariant form η from
equation (4.35) is a defining form for F and ξ = ∂s is the corresponding Reeb vector field.

Proof: The 1-form η was defined to satisfy η(X(v,s)) = s, so η(ξ) = 1 and η(X(v,0)) = 0.
This shows that η is nowhere vanishing and that moreover ker η = F . We know that ω is
non-degenerate on V , which tells us that dη is non-degenerate on F since we had seen that
dη(X(v,0), X(w,0)) = ω(v, w). Lemma 4.4.6 furthermore tells us that dη(ξ, •) = 0 and we had
already seen that η(ξ) = 1, so ξ is the Reeb vector field corresponding to η.

The imaginary part of the Hermitian form on this space is a symplectic form, so instead of
constructing the Heisenberg group from a (real) symplectic vector space, it is also possible
to start with a Hermitian vector space. If we construct the Heisenberg group in this way we
can use the complex structure to obtain a CR structure.
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Proposition 4.4.8. Let (V, h) be a Hermitian vector space of (complex) dimension n with Her-
mitian form h and let H = H(V, ω) be the Heisenberg group for the symplectic vector space
(V, ω), with ω = Im(h). The bundle F from corollary 4.4.7, generated by the fields X(v,0) for
v ∈ V , together with the endomorphism J : F → F defined through

J(X(v,0)) = X(i v,0), (4.38)

defines a Levi-nondegenerate CR structure (HR, JH) = (F, J) on H. If the Hermitian form h is
a Hermitian metric on V , then (F, J) is strictly pseudoconvex.

Proof: It is easily verified that equation (4.38) completely defines J as a linear endomor-
phism and that moreover J2 = − idF . This tells us that J has eigenvalues +i and −i with
eigenspaces H and H̄ respectively, such that FC = F ⊗ C = H ⊕ H̄ and H ∩ H̄ = 0.

Compatibility of the Hermitian form h and the complex structure on V tells us that
ω(i v, iw) = ω(v, w) for all v, w ∈ V and thus, by corollary 4.4.5,

[X(v,0), X(w,0)] = −2ω(v, w) = −2ω(i v, iw) = [J X(v,0), J X(w,0)]. (4.39)

A basis for the sections of H is given by the left-invariant sections (1− i J)X(v,0) for v ∈ V .
The commutator of two such sections is given by

[(1− i J)X(v,0), (1− i J)X(w,0)] = [X(v,0), X(w,0)] + i2[J X(v,0), J X(w,0)]

− i[J X(v,0), X(w,0)]− i[X(v,0), J X(w,0)]

= [X(v,0), X(w,0)]− [X(v,0), X(w,0)]

− i[J2X(v,0), J X(w,0)]− i[X(v,0), J X(w,0)] = 0
(4.40)

which tells us that the commutator of any two sections X and Y of H is again a section of
H, i.e. that H is involutive.

Non-degeneracy of the Levi-form means exactly that F is a contact bundle, which we had
already shown in corollary 4.4.7. If moreover, the form h is positive definite then, since
h = ω(i•, •) + iω,

dη(J X(v,0), X(v,0)) = 2ω(i v, v) = 2h(v, v) > 0. (4.41)

From this we learn that the CR structure (F, J) is strictly pseudoconvex.

4.4.2 Sasakian structure on the Heisenberg group

Let h be a Hermitian metric on the complex vector space V and let ω = Im(h), let H =
H(V, ω) be the associated Heisenberg group and let (F, J) be the strictly pseudoconvex CR
structure defined in proposition 4.4.8. By proposition 4.3.6 this means that any positive
defining form η for F gives us a contact metric structure on H with (F, J) as its underlying
CR structure.

We would like to equip the Heisenberg group with a metric, but while proposition 4.3.6
gives us a prescription to find one by fixing a positive defining form for F < TM , it does
not tell us which contact form to use. Both the contact structure and the CR structure have
been defined in such a way that they are invariant under group translations, we would also
like to require left-invariance for the contact metric structure.

The positive left-invariant defining forms for F < TM are the forms ηλ = λ η for some
λ > 0, which correspond to the Reeb vector fields ξλ = λ−1ξ, where η is still the contact
form from equation (4.35) and ξ = ∂s. This gives us a 1-dimensional family of left-invariant
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contact metric structures (φλ, ξλ, ηλ, gλ) for which φ|F = J . The endomorphism φ = φλ
does not depend on λ and is given by

φ(X(v,s)) = J(X(v,0)) = X(i v,0), (4.42)

as we can easily verify. The almost contact structure (φ, ξλ, ηλ) fixes the metric gλ, which is
given by

gλ = 1
2dηλ(φ •, •) + ηλ ⊗ ηλ = 1

2λ dη(φ •, •) + λ2η ⊗ η. (4.43)

Apart from being invariant these contact metric structures have another interesting property,
namely that they are in fact Sasakian structures.

Proposition 4.4.9. The contact metric structure (φ, ξλ, ηλ, gλ) on H is a Sasakian structure
for all λ > 0.

Proof: Since (φ, ξλ, ηλ, gλ) comes with an underlying CR structure by construction, the only
thing we need to verify is that this contact metric structure is K-contact, i.e. that Lξλφ = 0.
That this holds is a simple consequence of the fact that the field ξλ is central in the algebra
of left-invariant vector fields and the fact that φ has been defined to be left-invariant. These
tell us that for any left-invariant vector field X(v,s) on H

(Lξλφ)(X(v,s)) = λ−1[ξ, φX(v,s)]− λ−1φ [ξ,X(v,s)]

= λ−1[ξ,X(iv,s)]− λ−1φ(0) = 0
(4.44)

and that therefore Lξφ = 0.

Remark 4.4.10. Although not every compatible contact metric structure is Sasakian, there
are many Sasakian structures on the Heisenberg group [68] with this same underlying (left-
invariant) CR structure. By also requiring left-invariance of the Sasakian structure we have
reduced the freedom we have to choose the Sasakian structure on the Heisenberg group to a
single parameter λ > 0.

4.5 Kähler structures

Let (φ, ξλ, ηλ, gλ)λ>0 be a family of Sasakian structures on a manifold M , with ξλ = λ−1ξ,
ηλ = λ η and gλ = η2

λ + 1
2dηλ(φ •, •), and let (F, J) be their underlying CR structure. Since

we will not make any other assumptions about these Sasakian structures or the manifold M ,
eveything in this section will in particular apply to the Sasakian structures on the Heisenberg
groups defined in the previous section.

We can apply definition 4.2.6 and proposition 4.2.8 to this space to equip M̃ ⊆ T∗M
with a canonical symplectic structure ω̃. The symplectised space could be described more
explicitly as the space M × R through the diffeomorphism

ψηλ : M × R>0 → M̃, (x, t) 7→ t ηλ,x = ηλt,x. (4.45)

for λ > 0. On this manifold the canonical symplectic structure becomes d(t ηλ) = dt ∧ ηλ +
tdηλ. Even though it is not directly manifest in this description, the symplectic structure ω̃
is completely independent of the value of λ, as it is completely determined by the contact
bundle F = ker ηλ = ker η.

Because (φ, ξ, η, g) is Sasakian, the almost contact structure (φ, ξ, η) is normal, which
means that the complex structure J̃ on M̃ ∼= M × R>0 defined by

J̃(X + κ ∂r) = φX − κ ξλ + ηλ(X) ∂r, (4.21)
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is integrable, where r : R>0 → R, t 7→ r(t) is some coordinate on the positive real line R>0.
Equation (4.21) completely determines the complex structure J̃ up to a reparametrisation
for R>0, but such a reparametrisation changes the form of the canonical symplectic structure
ω̃ = d(t η). For any choice for the coordinate r(t) with r′(t) > 0 we have the following result.

Theorem 4.5.1. The almost complex structure J̃ on M̃ defined by equation (4.21) for the
coordinate r(t), is compatible with the symplectic structure ω̃. If r′(t) > 0 then J̃ and ω̃
together define a Kähler structure with Kähler metric g̃ = ω̃(J̃ •, •).

Proof: Since dt(X+κ ∂r) = κdt(∂r) for all X ∈ TM and κ ∈ R, we have for any two vector
fields X and Y on M and for κ, χ ∈ R that

ω̃(J̃(X + κ ∂r), J̃(Y + χ∂r))

=
(
dt ∧ ηλ + tdηλ

)(
φX − κ ξλ + ηλ(X) ∂r, φ Y − χ ξλ + ηλ(Y ) ∂r

)
=
(
dt(ηλ(X) ∂r) ηλ(−χ ξλ)− dt(ηλ(Y ) ∂r) ηλ(−κ ξλ) + tdηλ(φX, φY )

)
= −dt(χ∂r) ηλ(X) + dt(κ ∂r) ηλ(Y ) + tdηλ(X,Y )

=
(
dt ∧ ηλ + tdηλ

)(
X + κ ∂r, Y + χ∂r

)
= ω̃(X + κ ∂r, Y + χ∂r).

(4.46)

This tells us that the almost complex structure J̃ and the symplectic structure ω̃ are compat-
ible.

By definition of the Sasakian structure on M , the almost complex structure J̃ from equa-
tion (4.21) is integrable. Since it is moreover compatible with the symplectic structure ω̃ we
can conclude that g = ω̃(J̃ •, •) is a pseudo-Kähler metric.

If we write t = t(r), then the symmetric form g̃ is given by

g̃ = ω̃ ◦ (J̃ × id) = d(t(r) ηλ) ◦ (J̃ × id)

= t′(r)(J̃∗dr ⊗ ηλ − J̃∗ηλ ⊗ dr) + t(r)dηλ ◦ (φ× id)
= t′(r) (ηλ ⊗ ηλ + dr ⊗ dr) + t(r) dηλ ◦ (φ× id).

(4.47)

We see that the pseudo-Kähler metric g̃ is positive definite (and hence Kähler) if and only if
the derivative t′(r) = r′(t)−1 only takes positive values (and t > 0).

If r(t) = 1
2 log(2 t), and thus t(r) = 1

2 exp(2 r), then the metric g̃ = ω̃(J̃ •, •) from equa-
tion (4.47) becomes the cone metric from definition 4.3.12,

g̃ = e2r(ηλ ⊗ ηλ + dr ⊗ dr) + 1
2e

2rdηλ(φ •, •)

= dρ2 + ρ2
(
η2
λ + 1

2dηλ(φ •, •)
)

= dρ2 + ρ2gλ
(4.48)

with ρ = er =
√

2 t. This is however not the Kähler structure we are looking for, so we will
instead make a different choice for the relation between the coordinates t and r that relate
the symplectic and the complex structure.

Corollary 4.5.2. For all λ > 0 the canonical symplectic structure ω̃ = d(t ηλ) on M̃ ∼= M ×
R>0, together with the metric

g̃λ = 1
4d(log t)2 + g2λt = 1

4d(log t)2 + η2
2λt + 1

2dη2λt(φ •, •) (4.49)

describes a Kähler structure. The corresponding complex structure is given by

J̃ |F×{0} = φF , J̃(∂log t) = 1
4 ξλt and J̃(ξλt) = −4∂log t (4.50)

and the Kähler potential for gλ is K = 1
2 log t.
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Proof: We obtain this Kähler structure through theorem 4.5.1 by taking r(t) = −(4 t)−1 < 0
and thus t(r) = −(4 r)−1. The complex structure is obtained by rewriting equation (4.21)
in terms of the coordinates t and equation (4.47) gives us the metric

g̃λ = 1
4r2 (η2

λ + dr2)− 1
4rdηλ ◦ (φ× id), (4.51)

which we can rewrite in terms of the coordinate t, using that ηκ = κ η, to obtain equa-
tion (4.49)

Equation (4.50) tells us that J∗d log t = −4 ηλt = −4 t ηλ, which enables us to verify that

i∂∂̄K = i
2d(1 + i J∗)d( 1

2 log t) = − 1
4d(J∗d log t) = d(t ηλ) = ω̃ (4.52)

where we have used that the integrability of J̃ tells us that ∂∂̄K = d∂̄K and that ∂̄K =
(1 + i J∗)dK.

Although the metric gλ in equation (4.49) does explicitly depend on the parameter λ
any scaling of λ can be compensated by rescaling the coordinate t ∈ R>0. This is possible
because λ only appears as λ t and d(log t) = d(log(λt)). We had originally introduced the
symplectised space M̃ in theorem 4.2.6 as a subspace of the cotangent bundle consisting
exactly of the elements ηλ,x for λ > 0 and x ∈ M and the coordinate t was introduced
through the diffeomorphism ψηλ from equation (4.45).

Because λ and t again only appear in the combination λ t, the metric ψηλ∗g̃λ on M̃ ⊆
T∗M does not depend on λ. We can make this a little more explicit through the following
proposition.

Proposition 4.5.3. The metric ψηλ∗g̃λ on M̃ ⊆ T∗M does not depend on λ

Proof: For any (x, t) ∈M × R>0 and κ, λ > 0 we have

ψ−1
ηκ (ψηλ(x, t)) = ψ−1

ηκ (t ηλ,x) = ψ−1
ηκ (t λ κ−1ηκ,x) = (x, λ κ−1t), (4.53)

which we can use to show that

(ψ−1
ηκ ◦ ψηλ)∗g̃λ = (ψ−1

ηκ ◦ ψηλ)∗
(

1
4d(log t)2 + η2

2λt + 1
2dη2λt(φ •, •)

)
= 1

4d(log(κλ−1t))2 + η2
2λ(κλ−1t) + 1

2dη2λ(κλ−1t)(φ •, •)

= 1
4d(log t)2 + η2

2κt + 1
2dη2κt(φ •, •) = g̃κ.

(4.54)

We see that ψηλ∗g̃λ = ψηκ∗g̃κ for all κ, λ > 0, so ψηλ∗g̃λ does not depend on λ.

Note that instead of taking r(t) = −(4 t)−1 we could have used r(t) = −(4α t)−1 for any
constant α > 0. This would result in the metric 1

4α (d log t)2 + 4
αg2αλt, which is related to the

metric g̃λ from equations (4.49) by a constant factor and a rescaling of the coordinate t.
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5. FIBRATION OF THE

HYPERMULTIPLET MODULI SPACE

In section 3.3 we had introduced the hypermultiplet moduli space,Mhm, of type IIA string
theory compactified on a family of Calabi-Yau manifolds (Yt)t∈MC . We had seen that the
effective action (3.7c) could be used to equip this space with a canonical metric.

Because this metric is induced by the hypermultiplet part of the action of a supergravity
theory, we know that it is a quaternion-Kähler structure [48], something which has later
been explicitly verified [2]. We will describe a construction for the hypermultiplet moduli
space that includes the quaternion-Kähler metric ghm in terms of the complex structure mod-
uli space and the Weil intermediate Jacobian of the internal Calabi-Yau manifold. By trying
to understand this construction we hope to gain a better understanding of the quaternion-
Kähler structure it produces.

5.1 Fibrations

The hypermultiplet sector of the effective type IIA compactified theory consists of the com-
plex structure moduli, a harmonic 3-form a(3) ∈ H3(Y,R) and two scalars φ and σ that
describe the dilaton and the Kalb-Ramond axion respectively. We can view the hypermul-
tiplet moduli space Mhm as a fibre bundle over the complex moduli space MC with fibres
Mt parametrised by a(3) ∈ H3(Y,R), and φ, σ ∈ R for t ∈ MC [1]. With respect to such
a fibration, the hypermultiplet metric in equation (3.13) becomes an orthogonal sum of the
canonical metric on the base manifoldMC and a metric on each of the fibres. As we have
seen in section 2.2 the complex structure moduli space can (locally) be described through
the periods Xi =

∫
γi

Ω of the holomorphic 3-form Ω with respect to some symplectic basis

of cycles γ0, . . . , γh
1,2
, η1, . . . , ηh1,2 ∈ H3(Y,Z)f. These locally form a set of complex projec-

tive coordinates onMC. The base space admits a projective special Kähler structure with a
metric given by

gbase =
∂2K(X, X̄)
∂Xi ∂X̄j

dXidX̄j , (5.1)

for the Kähler potential K expressed in terms of the periods Fi =
∫
ηi

Ω as

K = − log
(

i
∫
Yt

Ω ∧ Ω̄
)

= − log
(
i X̄iFi − iXiF̄i

)
. (5.2)

The periods Fi could alternatively be written as the derivatives Fi = ∂F (X)
∂Xi for the prepo-

tential F (X) = 1
2FiX

i, which was holomorphic and homogenous of degree 2. We will often
encounter the second derivative, or Hessian, Fij = ∂2F

∂XiXj = ∂Fi
∂Xj .

The fields Ai =
∫
γi
a(3) and Bi =

∫
ηi
a(3) are the periods of a(3) ∈ H3(Y,R) with respect

to the same basis for H3(Y,Z)f. In terms of these periods and the coordinates σ ∈ R and
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ψ = eφ > 0 the (quaternion-Kähler) metric on the total hypermultiplet moduli space is given
by ghm = gbase + gt over the point t ∈ MC in the base space, where gbase is the metric from
equation (5.1). The metric on the fibreMt is

gt =
1

(2ψ)2
dψ2 +

1
(2ψ)2

(dσ −Ai
↔
dBi)2

− 1
2ψ

Im(N )ij(dBi −NikdAk)(dBi − N̄ikdAk),
(5.3)

with Im(N )ij the inverse of the imaginary part of the (1 + h1,2)× (1 + h1,2)-matrix

Nij = F̄ij + i
NikX

kX`N`j
XNX

, (5.4)

where Nij = 2 Im(Fij). The matrix Nij will be referred to as the period matrix for reasons
that will become clear in section 5.2.

5.1.1 Further fibration

The fibres Mt themselves can also be interpreted as a fibre bundle, but before we can do
this we should recall the Peccei-Quinn symmetries

Ai 7→ Ai + ai, σ 7→ σ + s+ aiBi − biAi,
Bi 7→ Bi + bi, ψ 7→ ψ.

(3.14)

Since these symmetries do not affect the base space they are symmetries of the metric gt on
the fibres Mt for t ∈ MC. For Ai, Bi and s integers these symmetries are expected to be
preserved in the full non-perturbative theory, as described in section 3.3. These unbroken
symmetries require us to make some identifications on the fibresMt, namely

(Ai, Bi, σ, ψ) ∼ (Ai + ai, Bi, σ + aiBi, ψ), (5.5a)

(Ai, Bi, σ, ψ) ∼ (Ai, Bi + bi, σ − biAi, ψ) (5.5b)

(Ai, Bi, σ, ψ) ∼ (Ai, Bi, σ + s, ψ). (5.5c)

for a0, . . . , ah
1,2
, b0, . . . , bh1,2 , s ∈ Z. Equation (5.5) can be concisely summarised by

(a(3), σ, ψ) ∼ (a(3) + α, σ −Q(α, a(3)), ψ), (5.6)

for a(3) = Aiαi −Biβi ∈ H3(Y,R) and α = aiαi − biβi ∈ H3(Y,Z)f.
The dilaton ψ = eφ is unaffected by these symmetries, so the fibreMt can be written as
Mt = M′t × R>0, with ψ > 0 as the standard coordinate on R>0 and M′t ∼=

(
H3(Y,R) ×

R
)/
∼ the space parametrised by just the a(3) and σ and . The identification (5.5c) tells us

that σ ∈ R/Z lives on a circle, rather than on the real line. Although we cannot do the same
for the Ramond-Ramond 3-form a(3) = Aiαi − Biβi, equations (5.5a) and (5.5b) do tell us
that the projection map

πS1 : M′t ∼=
(
H3(Y,R)× R

)/
∼ → H3(Y,R)/H3(Y,Z)f (a(3), σ) 7→ a(3) (5.7)

is well-defined. It is easily verified that this defines a circle bundle over the (real) torus
H3(Y,R)/H3(Y,Z)f.

Proposition 5.1.1. The spaceM′t ∼=
(
H3(Y,R)×R

)/
∼ is the total space of a principal U(1)-

bundle (circle bundle) over the torus H3(Y,R)/H3(Y,Z) with the projection map πS1 from
equation (5.7).
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Proof: The fibre of this bundle at a(3) ∈ H3(Y,R)/H3(Y,Z)f is parametrised by σ ∈ R/Z or,
alternatatively, by z = e2πiσ ∈ S1 ' U(1) ⊆ C. The only thing that could spoil our attempt
to interpret M′t as a principal U(1) bundle is the possibility that this group action on its
fibres depends on the element a(3) ∈ H3(Y,R) chosen to represent an element of the torus
H3(Y,R)/H3(Y,Z)f. The point (a(3), σ) is identified with (a(3) +α, σ−Q(α, a(3))) for a(3) ∈
H3(Y,Z)f, so (a(3), z) ∼ (a(3) + α, e2πiQ(α,a(3))z). Because this identification corresponds to
multiplication by a constant element of U(1) ⊆ C on the fibre we can conclude thatM′t is
indeed a principal U(1) bundle.

Real line

Circle
bundle

Torus

Base space
(MC)

Figure 5.1: A diagrammatic representation of the structure
of the hypermultiplet moduli space.

All in all, we have seen that the hypermultiplet moduli space is a fibre bundle over the
complex moduli space MC with fibres Mt = M′t × R that are the product of the real line
parametrised by the dilaton, and a circle bundle over the torus H3(Y,R)/H3(Y,Z)f.

This structure is concisely summarised by figure 5.1, where we note that it is not at all
obvious where the real line should be put. It can be argued thatMt = M′t × R should be
viewed as a bundle over R [1], which would require us to place the line between the base
space and the torus, while it is on the other hand tempting to combine the dilaton and the
axion to form a C∗-bundle on the torus. We will see that it is in fact possible to combine the
dilaton and the axion to obtain part of a holomorphic line bundle.

5.1.2 The Heisenberg group

We may recall that the intersection form Q, which we had originally introduced in defini-
tion 2.1.5 as the bilinear form

Q : H3(Y,R)×H3(Y,R), (α, β) 7→
∫
Y
α ∧ β, (5.8)

defines a symplectic structure on the third cohomology group H3(Y,R) of the Calabi-Yau
manifold Y. With respect to this form the basis (αi, βi)h

1,2

i=0 we have used before to write
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a(3) = Aiαi − Biβ
i is a symplectic basis. We can use the intersection form to define a

Heisenberg group (cf. definition 4.4.1).

Definition 5.1.2 (Heisenberg group). The Heisenberg group HY = H(H3(Y,R), Q) is the
space H3(Y,R)× R, with a multiplicative structure defined by

(α, s) · (β, t) = (α+ β, s+ t+Q(α, β)). (5.9)

for all α, β ∈ H3(Y,R) and s, t ∈ R.

Since the Heisenberg group HY is essentially the space H3(Y,R) × R it defines a group
action on this space through group multiplication. The reason why we are interested in
the group structure on HY is that this group action turns out to describe the Peccei-Quinn
isometries by defining a group action on the fibresMt.

Proposition 5.1.3 (Group action). The mapHY×(H3(Y,R)×R)→ (H3(Y,R)×R), defined
by (

(α, s), (a(3), σ)
)
7→ (α, s) · (a(3), σ) = (a(3) + α, σ + s−Q(α, a(3))) (5.10)

defines a group action of the Heisenberg group H(H3(Y,R), Q) onMt.
For α = aiαi − biβi ∈ H3(Y,R) and s ∈ R, this group action corresponds to one of the

Peccei-Quinn isometries from equation (3.14).

Proof: Equation (5.10) obviously describes a group action since it is defined through group
multiplication onHY = (H3(Y,R)×R, ·). If we write α = aiαi−biβi and a(3) = Aiαi−Biβi,
then a(3) + α = (Ai + ai)αi − (Bi + bi)βi and −Q(α, a(3)) = aiBi − biAi, so in terms of the
coordinates Ai, Bi, σ, ψ onMt, equation (5.10) reads

(ai, bi, s) · (Ai, Bi, σ, ψ) = (Ai + ai, Bi + bi, σ + s+ aiBi − biAi), (5.11)

which coincides with the transformation (3.14).

Through the discrete cohomology group H3(Y,Z)f < H3(Y,R) we can define a discrete
subgroup of the Heisenberg group by virtue of the fact Q

(
H3(Y,Z), H3(Y,Z)

)
⊆ Z.

Definition 5.1.4 (Discrete Heisenberg group). The discrete Heisenberg group for the
Calabi-Yau manifold Y is the group HY,Z = (H3(Y,Z)f × Z, ·), where group multiplication is
defined by equation (5.9).

SinceHY,Z is a subgroup ofHY it also inherits the group action from proposition 5.1.3. We
can use this to identify the total spaceM′t of the circle bundle πS1 : M′t → H3(Y,R)/H3(Y,Z)f
with the coset space HY,Z

∖
HY .

Theorem 5.1.5. The spaceM′t is diffeomorphic to the coset space HY,Z
∖
HY .

Proof: A general element of HY,Z can be written as (a, s) for a = aiαi − biβi with ai, bi ∈
Z and for s ∈ Z. When we compare the identifications (5.5) with the group action in
equation (5.11) we see that two points (a(3), σ) and (b(3), τ) are identified exactly when
(b(3), τ) = (a, s) · (a(3), σ) for some a, s ∈ HY,Z. Because the group action of HY,Z on
H3(Y,R)× R ∼= HY corresponds to multiplication within HY , we conclude that

M′t =
(
H3(Y,R)× R

)/
HY,Z ∼= HY,Z

∖
HY . (5.12)

Remark 5.1.6. It is possible to extend the Heisenberg group to include the scaling symmetry
from equation (3.15). The resulting group is the semidirect product HY o R of the original
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Heisenberg group with the real line and the appropriate name “dilated Heisenberg group”
has been suggested for it [1]. This Lie group can be identified with the space

(
H3(Y,R)×R

)
×R

through its transitive group action, which tells us that

Mt =M′t × R ∼= HY,Z
∖(
HY o R

)
(5.13)

sinceMt is obtained from
(
H3(Y,R)×R

)
×R by identifying points related through the discrete

Peccei-Quinn symmetries.
Although the advantage of the dilated Heisenberg group is that it describes the entire fibre
M instead of just part of it, the fact that it includes the scaling symmetry means that it will
probably be less useful when perturbative corrections are added (cf. section 3.3.1). Instead of
looking at the extended group we will therefore focus on the original Heisenberg group HY ,
which we know from section 4.4.1 comes with a contact structure, and use the symplectisation
process to extend this space to include the dilaton.

5.2 The fibre metric

For the moment we will fix the complex structure on the Calabi-Yau manifold Y = Yt by
fixing a point t ∈ MC. We have argued that this fibre consists of the product of the real
line parametrised by the dilaton and a circle bundle on a 2(1 + h1,2)-dimensional torus. The
metric gt on this space from equation (5.3) consists of multiple parts, we will start by first
discussing the contribution to this metric from the torus and then showing how the rest of
the metric corresponds to expressions from chapter 4.

5.2.1 The Weil intermediate Jacobian

We have seen the intermediate Jacobian J2(Y) := H3(Y,R)/H3(Y,Z)f appear in the hy-
permultiplet moduli space as the base space for the circle bundle πS1 : M′t → J2. For fixed
ψ > 0, the contribution to the metric gt from equation (5.3) that comes from this torus is
the bilinear form

1
2ψ

gtorus = − 1
2ψ

Im(N )ij(dBi −NikdAk)(dBi − N̄ikdAk), (5.14)

which restricts to a metric on J2(Y).
Up to the factor 2ψ in front, the metric from (5.14) has the form of a canonical metric on

a non-degenerate complex torus with normalised period matrix N̄ (cf. equation (1.56)). It
turns out that the torus this period matrix belongs to is the Weil intermediate Jacobian of
the Calabi-Yau manifold Yt [1].

Proposition 5.2.1. The metric gtorus from equation (5.14) is the canonical metric gW for the
Weil intermediate Jacobian of Yt.

Proof: The normalised period matrix for the Weil intermediate Jacobian with respect to
the symplectic basis (αi, βi)i has been described in proposition 2.3.9. It was given by the
n×2n-matrix Ω = (ZW,1) with

ZW
ij = Fij − i

NikX̄
kX̄`N`j

X̄NX̄
= N̄ij . (5.15)

We can write a(3) = xiαi + yiβ
i, with xi = Ai and yi = −Bi and combine these in a new

(complex) coordinate zi = yi + Zijxj = −(Bi − N̄ijAj). The metric in equation (5.14) then
becomes

Y ij
W (Bi − ZikAk)(Bj − Z̄j`A`) = Y ij

W dzidz̄j , (5.16)
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where Y ij
W = (Y W)−1 is the inverse of Im(ZW) = − Im(N ). This is exactly the canonical

metric gW for the Weil intermediate Jacobian from corollary 2.3.10.

This tells us that the tori that are fibred over each point t ∈ MC should be interpreted
as the Weil intermediate Jacobians of the Calabi-Yau manifold Yt. Note that the complex
structure on the Weil intermediate Jacobian is given by JW = −∗ and that the intersection
form Q and the canonical metric gW = gtorus are related through gW = Q(JW•, •).

5.2.2 Contact metric structure

On top of these intermediate Jacobians J W
2 (Y) = H3(Y,R)/H3(Y,Z)f, we had a circle

bundle parametrised by the axion field σ ∈ R/Z. Because this circle is the result of a partial
breaking of the Peccei-Quinn symmetries to a discrete symmetry group corresponding to the
discrete Heisenberg group we could view the total as the coset space

M′t ∼= HY,Z
∖
HY . (5.17)

By fixing the coordinate ψ ∈ R>0 we can viewM′t as a submanifold of the fibreMt =M′t×
R>0 and consider the restriction of the metric gt from equation (5.3) to this submanifold.
The resulting metric is the expression

g′t,ψ =
1

2ψ
Im(N̄ )ij(dBi −NikdAk)(dBi − N̄ikdAk)︸ ︷︷ ︸

π∗
S1g

W

+
1

(2ψ)2
(dσ −Ai

↔
dBi)2︸ ︷︷ ︸

η2

,
(5.18)

which is a combination of the pullback of the canonical metric gW on the Weil intermediate
Jacobian along πS1 : M′t → J2 and η2 with η = dσ − Ai

↔
dBi. The dilaton, parametrised by

ψ > 0, introduces a grading on the tangent spaces ofM′t.
Although it is the compact quotientM′t ∼= HY,Z

∖
HY we are most interested in, it is more

practical to work with the Heisenberg group HY ∼= R2h1,2+3 instead. We will therefore con-
sider the metric g′t,ψ from equation (5.18), which is left-invariant because we had introduced
this group to describe its isometries, as a metric on HY . In general, any left-invariant object
on HY can be transferred to the quotient HY,Z

∖
HY . In the form dσ −Ai

↔
dBi = d(σ +AiBi)

we recognise the standard contact form on R2h1,2+3 from equation (4.5).

Lemma 5.2.2. The 1-form η = dσ − Ai
↔
dBi on H3(Y,R) × R coincides with the invariant

contact form η from section 4.4.1, which is characterised by

η(ξ) = 1 and η|F = 0 (5.19)

where ξ = ∂σ is the (Reeb) vector field pointing along the circle bundle directions and F < THY
is the left-invariant hyperplane field for which F(0,0) = H3(Y,R)× {0} < T(0,0)HY .

Proof: Left-invariance of the form dσ−Ai
↔
dBi onHY is a direct consequence of its invariance

under the Peccei-Quinn isometries, but it can also easily be verified explicitly by performing
a translation by a = aiαi − biβi,

`(a,s)∗(dσ −A
i
↔
dBi) = d(σ −Q(a, a(3)))− (Ai + ai)

↔
d(Bi + bi)

= d(σ + aiBi − biAi)− (Ai + ai)
↔
d(Bi + bi)

= (dσ −Ai
↔
dBi)

(5.20)

and using that the basis (αi, βi)i in which a(3) = Aiαi−Biβi has been expressed is symplectic
with respect to Q.
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Since η = dσ−Ai
↔
dBi equals dσ at (0, 0) ∈ HY it vanishes on H3(Y,R)×{0} < THY,(0,0)

and thus on the whole of F < THY and η moreover obviously satisfies

η(ξ) = (dσ −Ai
↔
dBi)(∂σ) = 1. (5.21)

If we letX(v,s) denote the left-invariant vector field onHY for whichX(v,s)(0, 0) = (v, s) ∈
T(0,0)HY ' H3(Y,R)× R, then the contact form η can alternatively be defined by setting

η(X(v,s)) = s (5.22)

for all v ∈ H3(Y,R) and s ∈ R, which is how we defined it in section 4.4.1. The contact
bundle F = ker η < THY is therefore generated by the invariant vector fields X(v,0) for
v ∈ H3(Y,R).

We had argued that the torus J2
∼= H3(Y,R)/H3(Y,Z)f used to construct the circle bun-

dle πS1 : M′t → J2 should be interpreted as a Weil intermediate Jacobian, which means that
the cohomology group H3(Y,R) comes with the complex structure JW = −∗. Because the
intersection form Q defines a polarisation on the Weil intermediate Jacobian (see propo-
sition 2.3.1) it is the imaginary part of a Hermitian structure hW = gW + iQ and we can
use proposition 4.4.8 to define a Levi non-degenerate CR structure on the Heisenberg group
HY ∼= H3(Y,R)× R.

Proposition 5.2.3. Let F = ker η be the contact bundle defined by the contact form η from
lemma 5.2.2 and let J be the left-invariant endomorphism J : F → F on F defined by

J
(
X(v,0)

)
= X(JWv,0), (5.23)

for v ∈ H3(Y,R) ' F(0,0) and X(v,0) the left-invariant vector field for which (X(v,0))(0, 0) =
(v, 0). This endomorphism defines a strictly pseudoconvex CR structure (F, J) on HY .

Proof: It follows from a simple application of proposition 4.4.8 that (F, J) is a CR structure.
We already know that the metric gW = Q(JW•, •) is positive definite, which tells us that
hW = gW + iQ is a Hermitian inner product, so we can conclude that this CR structure is
strictly pseudoconvex.

Note that the group structure on HY was defined in terms of only the intersection form
Q, which only depends on the topology of Yt. This means that the contact structure on HY
is independent of the complex structure on Yt and is thus the same for every point t ∈MC.
The same is not true for the CR structure (F, J) as it uses the complex structure JW and thus
depends on the Hodge structure of H3(Y,R).

Since the CR structure defined in proposition 5.2.3 is strictly pseudoconvex it is the under-
lying CR structure of a contact metric structure by proposition 4.3.6. By following the steps
described in section 4.4.2 we can obtain a 1-dimensional family of left-invariant contact
metric structures that turned out to be Sasakian.

Corollary 5.2.4. Let φ : THY → THY be the endomorphism on the tangent bundle of the
Heisenberg group defined by φ(X(v,s)) = J(X(v,0)) = X(JWv,0), let ηλ = λ η = λ(dσ−Ai

↔
dBi),

let ξλ = λ−1∂σ and let gλ denote the metric

gλ = 1
2dηλ(φ•, •) + ηλ ⊗ ηλ = 1

2λ dη(φ•, •) + λ2η ⊗ η (5.24)

for λ > 0. Together these make up a left-invariant Sasakian structure (φ, ξλ, ηλ, gλ) with (F, J)
as its underlying CR structure and every such Sasakian structure is of this form.

Proof: This follows directly from proposition 5.2.3 and proposition 4.4.9.
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The relevance of these Sasakian structures becomes clear if we compare it with the metrics
g′t,ψ we already had on the Heisenberg group HY . Not only do we see the expression η2 =

(dσ −Ai
↔
dBi)2 appear, but in addition to this we have a contribution of the form 1

2dη(φ•, •),
which corresponds to the pullback of the metric on the Weil intermediate Jacobian since
1
2dη = d(Ai

↔
dBi) = dAi ∧ dBi, which restricts to the intersection form Q on H3(Y,R) <

THY , and φ restricts to the complex structure JW.

Proposition 5.2.5. The metric gλ from equation (5.24) coincides with the metric g′t,ψ from
equation (5.18) for λ = 1

2ψ , i.e.

g′t,ψ = g(2ψ)−1 =
1

4ψ
dη(φ•, •) +

1
(2ψ)2

η ⊗ η. (5.25)

Proof: We know that both metrics, g′t,ψ and gλ, are left-invariant with respect to the group
structure on HY , which means that we only need to compare the two at the unit element
(0, 0) ∈ HY . For the invariant vector fields X(v,s) and X(w,t) we have

gλ(X(v,s), X(w,t)) = 1
2λ dη(φX(v,s), X(w,t)) + λ2η(X(v,s))η(X(w,t))

= λQ(JWv, w) + λ2s t = λ gW(v, w) + λ2s t
(5.26)

since φX(v,s) = X(JWv,0) by definition of φ and dη(X(v,s), X(w,t)) = 2Q(v, w) by lemma 4.4.6.
For these vector fields we moreover have

g′t,ψ(X(v,s), X(w,t)) = 1
2ψ g

W(πS1(v, s), πS1(w, t)) + 1
(2ψ)2 η(X(v,s))η(X(w,t))

= 1
2ψ g

W(v, w) + 1
(2ψ)2 s t = g(2ψ)−1(X(v,s), X(w,t)),

(5.27)

which completes the proof.

Because all of these structures are left-invariant they can be transferred to the quotient
M′t ∼= HY,Z

∖
HY . Now that we have found a description for the metric on the submani-

folds M′t × {ψ} of Mt = M′t × R>0 as the left-invariant Sasakian metric g(2ψ)−1 on the
Heisenberg group, we are just one step away from a description of the entire metric gt from
equation (5.3).

5.2.3 Kähler structure

We can use what we already know about the invariant Sasakian structures on M′t to say
something about the metric gt on the entire fibreMt =M′t × R>0. By using what we have
learnt in section 5.2.2 we can express the metric onMt from equation (5.3) as

gt = 1
(2ψ)2 dψ2 + 1

(2ψ)2 η ⊗ η + 1
2ψπ

∗
S1gW = 1

(2ψ)2 dψ2 + g′(2ψ)−1 , (5.28)

where gt,ψ is the Sasakian metric onM′t from equation (5.25).

Proposition 5.2.6 (Symplectisation). Let η be the defining form from lemma 5.2.2 for the
contact structure F < TM′t on M′t and let ψ be the standard coordinate on R>0, then the
2-form

ω̃ = 1
4d
(
ψ−1η

)
= 1

4ψdη − 1
(2ψ)2 dψ ∧ η (5.29)

defines a symplectic structure onMt =M′t × R>0.

Proof: By defining t = (4ψ)−1 > 0 we can write ω̃ = d(t η), which we recognise from
proposition 4.2.8 as the canonical symplectic structure on the symplectised manifold M̃′t ∼=
M′t × R.
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Proposition 5.2.6 gives us an identification between the fibre Mt = M′t × R and the
symplectisation M̃′t ⊆ T∗M of the contact manifold (M′t, F ). Since the symplectic form ω̃
can be defined in terms of just the contact structure F < TM′t it is in particular independent
of the complex structure and therefore does not depend on t ∈MC. The reason for choosing
this particular identification between the coordinates t and ψ becomes clear when we use
corollary 4.5.2 to equipM′t with a Kähler structure.

Theorem 5.2.7. Let (F, J) be the (strictly pseudoconvex) CR structure on M′t = HY,Z
∖
HY

defined in proposition 5.2.3, let ξ = ∂σ and let η be the invariant defining form for F for which
η(ξ) = 1. The almost complex structure J̃ on TMt defined by

J̃ |F×{0} = J, J̃(∂ψ) = ξ and J̃(ξ) = −∂ψ (5.30)

is integrable. The metric g̃ = gt from equation (5.28) on Mt is Kähler, its Kähler form is
ω̃ = 1

4d
(
ψ−1η

)
and the function K : Mt → R>0, (a(3), σ, ψ) 7→ − 1

2 logψ is a Kähler potential
for it.

Proof: In proposition 5.2.6 we had identified Mt with the symplectised space M̃′t as de-
scribed in proposition 4.2.8 by setting t = (4ψ)−1. By subsequently applying corollary 4.5.2
we obtain the integrable complex structure J̃ and the Kähler metric

g̃λ = 1
4d(log t)2 + g2λt = 1

4d(logψ)2 + g(2ψ)−1λ, (5.31)

which equals gt for λ = 1. We have − 1
2 logψ = 1

2 log t+ log 2, which differs from the Kähler
potential from corollary 4.5.2 by the constant log 2 and is therefore a Kähler potential as
well.

5.2.4 Complex coordinates

We have just seen that J̃ defines a complex structure and we have managed to show that
K = − 1

2 logψ is a Kähler potential onMt with respect to it. We would however also like to
have a set of complex coordinates to be able to describe this structure more explicitly. Such
coordinates are not hard to find, but before we do this we should show that the projection
Mt → J W

2 is a holomorphic map and introduce some notation for forms onMt.

Lemma 5.2.8. Let π denote the projection map fromMt
∼= HY,Z

∖(
H3(Y,R) × R × R>0

)
to

the torus J2
∼= H3(Y,R)/H3(Y,Z)f. The projection map π is holomorphic and J̃∗(π∗α) =

π∗(JW∗α) for any 1-form α on J2.

Proof: This is a consequence of that fact that the invariant vector field X(v,s) is given by
X(v,s)(a(3), σ) = (v, s−Q(a(3), v)) and thus satisfies π∗X(v,s) = v. A general tangent vector
at (a(3), σ, ψ) ∈ Mt =M′t × R>0 can be written as X = X(v,s) + κ ∂ψ = X(v,0) + s ξ + κ∂ψ
for some v ∈ H3(Y,R), s ∈ R, κ ∈ R and ξ = X(0,1) = ∂σ and we can use (5.30) to show
that

J̃∗(π∗α)(X) = J̃∗(π∗α)(κ ∂ψ + s ξ +X(v,0))

= (π∗α)(κ ξ − s ∂ψ +X(JWv,0))

= α(π∗(κ ξ − s ∂ψ +X(JWv,0)))
= α(JWv) = JW∗α(π∗X) = π∗(JW∗α)(X).

(5.32)

This confirms the second claim. The first claim is a direct consequence of this since the fact
that J̃∗π∗ = π∗JW∗ can be rephrased as π∗ ◦ J̃ = JW ◦ π∗ for π∗ = dπ.
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The Weil intermediate Jacobian had been discussed in some detail in section 2.3 in terms
of the symplectic basis (αi, βi)i and the normalised period matrix

ZW
ij = N̄ij = Fij − i

NikX̄
kX̄`N`j

X̄NX̄
. (5.33)

The complex structure on J W
2 (Y) could be expressed by specifying the complex coordintes

zi = yi+Zijxj = −Bi+ZijAj , which tells us that dzi are holomorphic (1, 0)-forms on J W
2 (Y).

Since not only dzi, but also gW(a(3), •) andQ(a(3), •) = gW(a(3), JW•) define differential forms
on the torus, we can consider the 1-forms π∗dzi, π∗gW(a(3), •) and π∗Q(a(3), •) on Mt. We
will from now on simply denote these forms on Mt by dzi, gW(a(3), •) and Q(a(3), •) and
leave out the pullback π∗ to keep things clean. Because X(v,s)(a(3), σ, ψ) = (v, s−Q(a(3), v))
and π∗X(v,s) = v we have that(

dσ + π∗Q(a(3), •)
)
(X(v,s)) = s−Q(a(3), v) +Q(a(3), π∗X

(v,s)) = s. (5.34)

This property completely characterised the invariant contact form η, so we can conclude
that η = dσ+Q(a(3), •). It is now not hard to find the complex coordinates we were looking
for.

Proposition 5.2.9. The complex coordinates zi = −Bi+ZW
ijA

j on (H3(Y,R), JW) on the torus
(cf. corollary 2.3.10) and the additional coordinate

τ = −σ + iψ + i
2g

W(a(3), a(3)) = −σ + iψ + i
2ziY

ij
W z̄j (5.35)

together (locally) describe a set of complex coordinates onMt
∼= HY,Z

∖(
H3(Y,R)×R×R>0

)
with respect to the complex structure J̃ described in theorem 5.2.7.

Proof: Since dzi = π∗dzi is the pullback of a 1-form on J2 and JW∗dzi = +i dzi, lemma 5.2.8
tells us that

J̃∗dzi = J̃W∗dzi = +i dzi, (5.36)

so the coordinates zi locally define a set of holomorphic functions onMt.
The differential of τ is given by

dτ = −dσ + i dψ + d
( i

2g
W(a(3), a(3))

)
= −dσ + i dψ + i gW(a(3), •), (5.37)

since we can check that dg(a(3), a(3))(X) = ∂
∂ϕ

∣∣
ϕ=0

gW(a(3)+ϕX, a(3)+ϕX) = 2 gW(a(3), X).

We can use this to work out that

(J̃∗ − i)dτ = i J̃∗(i dσ + dψ + gW(a(3), •)) + i dσ + dψ + gW(a(3), •)

= dψ − J̃∗dσ + gW(a(3), •) + i
(
dσ + gW(a(3), JW•) + J̃∗dψ

)
= dψ − J̃∗

(
dσ +Q(a(3), •)︸ ︷︷ ︸

η

)
+ i
(
dσ +Q(a(3), •)︸ ︷︷ ︸

η

+J̃dψ
)
,

(5.38)

where we have used that gW(a(3), •) = −Q(a(3), JW•) = −J̃∗Q(a(3), •). We can derive from
equation (5.30) that J̃∗η = dψ and hence also that J̃∗dψ = −η, which tells us that the
right-hand side of equation (5.38) vanishes. This can only happen when J̃∗dτ = +idτ , so τ
is a holomorphic function onMt.

Because each of the coordinates zi and τ is holomorphic and their differentials are linearly
independent they locally describe a set of complex coordinates onMt.

Although it may seem unimportant, the appearance of the metric gW in the coordinate τ
turns out to be very significant.

We note that the form of the coordinate τ corresponds to the coordinate S that is often in-
troduced on the hypermultiplet moduli space of rigid Calabi-Yau manifolds (those for which
h1,2 = 0) [57,69,70], but we have chosen to denote it by a different letter to stress the fact
that it does not correspond to the coordinate S from [2].

78 A.G. Baarsma



5.2. THE FIBRE METRIC

5.2.5 Interpretation in terms of a line bundle

The fibres of the bundle Mt → J2(Yt) are parametrised by the dilaton ψ ∈ R>0 and the
Kalb-Ramond axion σ ∈ R/Z, which can also be viewed as an element e2πiσ of the unit circle
in C. Since this axion defines a U(1)-bundle and the coordinate ψ is globally defined, they
can be combined into a C∗-bundle. We can do slightly better than this however.

The total space (Mt, J̃) is a complex manifold and the projection map : Mt → J W
2 (Yt)

onto the Weil intermediate Jacobian is holomorphic by lemma 5.2.8. The complex structure
on the fibres is induced by the complex structure J̃ from theorem 5.2.7 and is thus given
by J̃(∂ψ) = ∂σ and J̃(∂σ) = −∂ψ, which means that −σ + iψ is a complex coordinate on
a given fibre. This coordinate lives on the upper half plane, on which some identifications
need to be made due to the fact that σ ∈ R/Z is periodic. These identifications are neatly
captured by switching to a new coordinate z = e2πi(−σ+iψ) = e−2πiσe−2πψ, which lies in a
punctured disk D1 \ {0} = {z ∈ C ∈ 0 < |z| < 1} ⊆ C.

This gives the spaceMt, which we may recall was itself a fibre over t ∈MC, an interpre-
tation as the total space of a bundle of complex disks (see figure 5.2). The extension of this
bundle to a bundle of complex planes, which is achieved by allowing z = 0 (ψ = +∞) and
z ≥ 1 (ψ ≤ 0), can naturally be viewed as a smooth complex line bundle, but interpretating
it as a holomorphic line bundle takes another step. The first problem is that the coordi-
nate z = e−2πi(σ−iψ) on the fibres is not a complex coordinate on the total spaceMt, but a
more important (related) issue is the fact that transition functions for the trivialisations they
define are not holomorphic.

Figure 5.2: The hypermultiplet moduli with the circle and
line bundles combined into a bundle of disks.

We had already seen that the fibres ofMt → J2(Yt) can alternatively be parametrised by
τ = −σ+ iψ+ i

2g
W(a(3), a(3)), which lies in the half plane defined by Im τ > 1

2g
W(a(3), a(3)).

Unlike z however, it can be combined with the canonical coordinates on J2(Yt) to form a
set of complex coordinates on the total space. As z, τ covers each fibre multiple times due to
the periodicity of σ = Re τ , which we can again remedy by exponentiating it and switching
to the coordinate

q = e2πiτ = z e−πg
W(a(3),a(3)) = e−2πiσe−2πψ−πgW(a(3),a(3))) (5.39)

With respect to this coordinate the radius of the disks varies as ψ > 0 restricts q to the punc-
tured disk with 0 < |q| < exp(−π gW(a(3), a(3))). Anticipating what lies ahead, we will de-
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note the bundle of complex planes obtained by allowing q = 0 and |q| ≥ exp(−π gW(a(3), a(3)))
by L→ J2. The proposition below shows that this bundle can be interpreted as a holomor-
phic line bundle and hence that Mt can be interpreted as a (smooth) bundle of complex
disks inside L.

Proposition 5.2.10. The bundle : L→ J2(Yt) of complex planes is a holomorphic line bundle.
It can locally be trivialised on a contractible open subset U ⊆ J2(Yt) by

ϕU : LU → U × C, (a(3), σ, ψ) 7→ (a(3), q) (5.40)

where q = e−2πiσ−2πψ−πgW(a(3),a(3)) as in equation (5.39) and we have identified U with a
subset of H3(Y,R).

Proof: We already know that the coordinate q and the projectionMt → J W
2 (Yt) are holo-

morphic, so it is easily verified that their extension to L by allowing q = 0 and q >
exp(−πgW(a(3), a(3))) are holomorphic as well. As a consequence, each of the trivialisa-
tions ϕU are holomorphic as well and we only need to check that the transition functions
for L are linear in the fibres.

Let a(3) and a(3)′ = a(3) + α, with α ∈ H3(Y,Z) represent the same point in J2(Yt), then
(a(3), σ, ψ) ∼ (a(3)′, σ −Q(α, a(3)), ψ) (cf. equation (5.6)). If we fix a point p = [a(3), σ, ψ] =
[a(3) + α, σ − Q(α, a(3)), ψ] ∈ L and two trivialisations ϕ and ϕ′ that identify the basepoint
for p with a(3) and a(3) + α respectively, then

ϕ′x(p) = e−2πi(σ−Q(α,a(3)))−2πψ−πgW(a(3)+α,a(3)+α)

= e2πiQ(α,a(3))−2πgW(α,a(3))−πgW(α,α)e−2πiσ−2πψ−2πgW(a(3),a(3))

= e2πiQ(α,a(3))−2πgW(α,a(3))−πgW(α,α)ϕx(p).

(5.41)

Since the factor e2πiQ(α,a(3))−2πgW(α,a(3))−πgW(α,α) only depends on the base point and not on
any coordinates on the fibre, it is constant on the fibres and the transition function from the
trivialisation ϕ to ϕ′ is a linear isomorphism. That this transition function is holomorphic
can be read off explicitly from this factor since gW = Q(JW•, •). We conclude that L is a
holomorphic line bundle.

Proposition 5.2.11. The Chern class c1(L) equals the polarisation Q on the Weil intermediate
Jacobian and this completely fixes the line bundle L up to translations on the torus.

Proof: We can locally define a Hermitian inner product h on the line bundle L by setting

h(q, q) = e2πgW(a(3),a(3))|q|2 = e2πgW(a(3),a(3))|e−2πiσ−2πψ−πgW(a(3),a(3))|2 = e−4πψ. (5.42)

This in fact globally defines an inner product on L since the coordinate ψ is globally defined.
Locally, we can specify a holomorphic section s of L → J2(Yt) by fixing q = 1 and for this
section we have h = h(s, s) = e2πgW(a(3),a(3)). Lemma 1.3.24 tells us that the curvature form
for this connection is given by

Θ = −∂∂̄ log h = − i
2dJW∗d log h = −π i dJW∗dgW(a(3), a(3))

= −2π i dgW(a(3), JW•) = −2π i dQ(a(3), •) = −2π iQ
(5.43)

and by lemma 1.3.22 the first Chern class of L is given by

c1(L) =
[−1

2πi Θ
]

=
[
Q]. (5.44)

Proposition 1.4.7 finally tells us that this property fixes L up to a translation on the torus,
which finishes the proof.
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6. THE QUATERNION-KÄHLER

STRUCTURE

The fact that the hypermultiplet moduli space comes with a quaternion-Kähler structure
can be derived from just its behaviour under supersymmetry transformations [48] and we
already have an explicit description of this structure by Ferrara and Sabharwal [2]. In this
chapter we will express this structure in terms of the construction described in chapter 5
and try to give it an interpretation in terms of the complex structure moduli space and the
disk bundle on the Weil intermediate Jacobian.

6.1 Local frames

By considering different parts from the fibre bundle described in section 5.1 separately we
had found a construction for the metric on the entire hypermultiplet moduli space. This
metric was given by

ghm = Ki̄dXidX̄j +
1

(2ψ)2
dψ2 +

1
(2ψ)2

(dσ −Ai
↔
dBi)2

+
1

2ψ
Y ij

W (dBi − ZW
ikdAk)(dBi − ZW

ikdAk)
(6.1)

for ZW
ij = Fij − iNikX̄

kX̄`N`j
X̄NX̄

and Y ij
W the inverse of Y W = Im(ZW).

Here K(X, X̄) = − log(−XiNijX̄
j) is a Kähler potential described in section 2.2 and Ki̄

is its second derivative,

Ki̄ =
∂2K(X, X̄)
∂Xi ∂X̄j

=
−1

XNX̄

(
Nij −

NikX̄
kX`N`j

XNX̄

)
. (6.2)

Note that Ki̄X̄
j = Kı̄jX

i = 0.
The description Ferrara and Sabharwal have given for the quaternion-Kähler structure on

the hypermultiplet moduli space was expressed in terms of local orthonormal frames [2].
We will write these frames in terms of the coordinates we have been working with and use
the construction for the hypermultiplet moduli space from the previous chapter to give it a
more intrinsic interpretation.

Although working with homogenous coordinates X0, . . . , Xh1,2
have their advantages,

it will now be convenient to use the inhomogeneous coordinates Z1, . . . , Zh
1,2

, given by
Za = Xa/X0, instead and to write Z0 = X0/X0 = 1. We can always locally do this because
at least one of the projective coordinates Xi is always non-zero and we can just rearrange
the indices in the symplectic basis (αi, βi)i. For the remainder of this chapter the letters
a, b, . . . will denote inhomogenous indices and will run from 1 to n, while the indices i, j, . . .
are still homogenous and run from 0 to n.
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The inhomogeneous expression for the metric on the complex structure moduli space is
given by

gC = K
[0]

ab̄
dZadZ̄b :=

∂2K [0](Z, Z̄)
∂Za ∂Z̄b

dZadZ̄b, (6.3)

where K [0] denotes the inhomogeneous Kähler potential K [0] = − log(−ZaNabZ̄b).

Lemma 6.1.1. We can locally find a basis e(1), . . . , e(h1,2) of (1, 0)-forms such that the metric
gC from equation (6.3) can be written as

gC = e(a)ē(a) = P
(a)
b P̄ (a)

c dZbdZ̄c = K
[0]
bc̄ dZbdZ̄c. (6.4)

By using the n×n-matrix P (a)
b for which e(a) = P

(a)
b dZb we can write K [0]

bc̄ = P
(a)
b P̄

(a)
c .

Proof: The tangent spaces TtMC ' T1,0MC can be viewed as complex linear spaces on
which the metric gC extends to a Hermitian metric hC = gC − i g(JC •, •). Through Gram-
Schmidt orthonormalisation it is possible to locally find an orthonormal (complex) basis
e(1), . . . , e(h1,2) for this Hermitian metric. Now, let e(1), . . . , e(h1,2) denote the dual basis of

(1, 0)-forms defined by e(a)(e(b)) = δ
(a)
(b) (and e(a)(JC e(b)) = i δ(a)

(b) ). It can now easily be

verified that hC = e(a) ⊗ ē(a) and hence that the real metric gC = RehC = 1
2

(
hC + hC

)
is

given by gC = e(a)ē(b).

We will often refer to this orthonormal basis of (1, 0)-forms e(a) = P
(a)
b dZb as the vielbein

for the complex structure moduli space.

If we extend P to a (n + 1)×n matrix by writing P
(a)
0 := −P (a)

b Zb, then we have for
i, j = 0, . . . , h1,2 that [2]

P
(a)
i P̄

(a)
j =

−1
ZNZ̄

(
Nij −

NikZ̄
kZ`N`j

ZNZ̄

)
= (X0)2Ki̄. (6.5)

This is clearly true for i, j > 0, but if either i = 0 or j = 0 then we need to use that

ZaK
[0]

ab̄
= (X0)2ZiKib̄ − (X0)2Z0K0b̄ = −(X0)2K0b̄. (6.6)

Using the (n+ 1)×n matrix P (a)
i , Ferrara and Sabharwal managed to find a set of vielbein

1-forms that also include the fibres of the hypermultiplet moduli space [2]. Expressed in the
by now familiar coordinates σ, ψ, Ai and Bi, in addition to the inhomogeneous coordinates
Xa = Za/Z0, these are given by

e(a) = P
(a)
b dZb = e

(a)
b dZb, (6.7a)

E(a) = i
√

2 e( eK−K[0])/2P
(a)
i N ij(dBj − ZW

jkdAk), (6.7b)

u = i
√

2 e( eK+K[0])/2Zi(dBi − ZW
ijdA

j), (6.7c)

v = 1
2ψ (dψ − i (dσ −Ai

↔
dBi)), (6.7d)

where ZW
ij = Fij − iNikZ̄

kZ̄`N`j
Z̄NZ̄

= N̄ is the period matrix for the Weil intermediate Jacobian
and Y ij

W and N ij denote the inverse of Y W = Im(ZW) and Nij = 2 Im(Fij). Furthermore,
K = − log(−ZiNijZ̄j) and K̃ = − log(2ψ) are still the Kähler potentials on the base space
and the fibres respectively.

Proposition 6.1.2. Together, the forms E(a) and u form a vielbein for the torus part of the
metric ghm in the sense that the metric 1

2ψ gtorus from equation (5.14) can be written as

1
2ψ gtorus = Ē(a)E(a) + ū u. (6.8)
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This sum above is orthogonal and ū u and Ē(a)E(a) vanish on (H3,0(Y)⊕H0,3(Y))∩H3(Y,R)
and on (H2,1(Y)⊕H1,2(Y)) ∩H3(Y,R) respectively.

Proof: The first statement can be directly verified through an explicit computation,

Ē(a)E(a) + ū u = 2 e eK+K
(
e−2KN ikP

(a)
i P̄

(a)
j N j` + ZkZ̄`

)
×

× (dB − ZWdA)k(dB − ZWdA)`

=
−1

ψ ZNZ̄

(
−Z̄NZ N ik

(
Nij −

NimZ̄
mZnNjn
Z̄NZ

)
N j` + ZkZ̄`

)
×

× (dB − ZWdA)k(dB − ZWdA)`

=
−1
ψ

(
−Nk` +

Z̄kZ` + ZkZ̄`

Z̄NZ

)
(dB − ZWdA)k(dB − ZWdA)`

=
−1
ψ

(
−Nk` +

Z̄kZ` + ZkZ̄`

Z̄NZ

)
(dB − ZW

A)k(dB − ZW A)`

=
−1
2ψ

Y ij
W (dBi − ZW

ikdAk)k(dBj − ZW
j`dA

`)`.

(6.9)

Here we have used that the Y W
ij = Im(ZW

ij) and its inverse Y ij
W are given by

2 Y W
ij = Nk` − NikZ̄

kZ̄`Nj`

Z̄NZ̄
− NikZ

kZ`Nj`

ZNZ
, Y ij

W = −N ij + Z̄iZj+ZiZ̄j

Z̄NZ
, (6.10)

which can be explicitly verified to be the case.
In addition to this, we have that (N.B. Nij = 2 Im(Fij)),

ZiZW
ij = Zi

(
F̄ij + i

NikZ
kZ`Nj`

Z N Z

)
= ZiF̄ij + i

(ZiNikZk)Z`Nj`
Z N Z

= ZiF̄ij + Zi(Fij − F̄ij) = ZiFij = (X0)−1Fj ,

(6.11)

from which it follows that for a(3) = Aiαi −Biβi ∈ H3(Y,R),

u(a(3)) = i
√

2 e( eK+K[0])/2Zi(dBi − ZW
ijdA

j)(a(3))

=
i
√

2 e( eK+K[0])/2

X0
(XidBi − F̄idAi)(Ajαj −Bjβj)

=
i
√

2 e( eK+K[0])/2

X0
(XiBi − FiAi)

= − i
√

2 e( eK+K[0])/2

X0
Q(Ω, a(3)) = −e

( eK+K[0])/2

√
2X0

h(Ω, a(3))

(6.12)

where Ω = Xiαi − Fiβi ∈ H3,0(Y) and h = 2 iQ(•, •) is the Hermitian form from corol-
lary 2.1.7. This not only tells us that that u and ū vanish on (H1,2(Y)⊕H2,1(Y))∩H3(Y,R),
but also that for any a(3) ∈

(
H3,0(Y)⊕H0,3(Y)

)
∩H3(Y,R),

ū(a(3))u(a(3)) = 1
2 |X

0|−2eK
[0]+ eKh(Ω, a(3))h(Ωa(3))

=
h(Ω, a(3))h(Ω, a(3))

2ψ h(Ω,Ω)
=
h(a(3),Ω)h(a(3),Ω)

2ψ h(Ω,Ω)
,

(6.13)

where we have used that h is Hermitian and have expanded the exponentials of K̃ =
− log(2ψ) and K [0] = − log(−ZiNijZ̄j) = − log

(
1
2 |X

0|−2h(Ω,Ω)
)
. A quick comparison

with equation (2.36) from lemma 2.3.8 show that ū u = (2ψ)−1gW on a(3) ∈
(
H3,0(Y) ⊕

H0,3(Y)
)
∩H3(Y,R).
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Since ū u+ Ē(a)E(a) = 1
2ψ g

W and the Hodge decomposition is perpendicular with respect
to gW, we conclude that the sum ū u + Ē(a)E(a) is orthogonal and that ū u and Ē(a)E(a)

vanish on (H3,0(Y)⊕H0,3(Y))∩H3(Y,R) and (H3,0(Y)⊕H0,3(Y))∩H3(Y,R) respectively.

Corollary 6.1.3. The hypermultiplet metric can be written as

ghm = e(a)ē(a)︸ ︷︷ ︸
complex moduli

+ E(a)Ē(a) + u ū︸ ︷︷ ︸
the torus

+ v v̄︸ ︷︷ ︸
“line bundle”

. (6.14)

Proof: The forms e(a) had been defined at the beginning of this section and satisfy gC =
e(a)ē(a) by definition. We have just shown in proposition 6.1.2 that the torus part of the
metric is given by E(a)Ē(a) + u ū and a quick calculation shows that

v v̄ = (2ψ)−2|dψ − i (dσ −Ai
↔
dBi)|2 = (2ψ)−2dψ2 + (2ψ)−2(dσ −Ai

↔
dBi)2. (6.15)

By adding all of these we obtain the metric ghm from equation (6.1).

To describe the quaternion-Kähler structure on the hypermultiplet moduli space, it will be
convenient to write e+(0) = u, e+(a) = e(a), e−(0) = v and e−(a) = E(a) to combine e(a) with
u and E(a) with v into new vielbein 1-forms eα(i) = (e+(i), e−(i)), given by Equation (6.14)
then reads

ghm = eα(i)ēα(i) :=
∑
α=±

n∑
i=0

eα(i)ēα(i). (6.16)

Note that instead of combining E(a) with v, which would make sense since these forms
together describe the torus, we have e+(i) = (u, e(a)) and e−(i) = (v,E(a)).This will become
later in section 6.2.1

6.1.1 The connection

The Levi-Civita connection ∇ for ghm induces a natural connection on the cotangent bundle
that we will also denote by ∇ and is given by

(∇Xα)(Y ) = X(α(Y ))− α(∇XY ). (6.17)

for any 1-form α and any two vector fields X and Y on Mhm. This connection can be
extended to a connection on the complexified cotangent bundle through complex linear
extension. Since we have a (complex) basis (eα(i))α(i) for the complexified cotangent bundle
we can give a more explicit description through the connection 1-forms ϕ and χ, which are
matrices ϕα(i)

β(j) and χα(i)
β(j) such that

∇Xeα(i) = ϕ
α(i)
β(j)(X)eβ(j) + χ

α(i)
β(j)(X)ēβ(j), (6.18a)

∇X ēα(i) = ϕ̄
α(i)
β(j)(X)ēβ(j) + χ̄

α(i)
β(j)(X)eβ(j) (6.18b)

for any vector field X ∈ TMhm onM.

Proposition 6.1.4. The Levi-Citiva connection is completely characterised by the equations

ϕ
α(i)
β(j) + ϕ̄

β(j)
α(i) = χ

α(i)
β(j) + χ

β(j)
α(i) = 0, (6.19a)

ϕ
α(i)
β(j) ∧ e

β(j) + χ
α(i)
β(j) ∧ ē

β(j) = deα(i). (6.19b)
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Proof: The Levi-Civita connection of a metric is characterised by flatness of this metric,
which translates to

∇Xg = ∇X
(
eα(i)ēα(i)

)
=
(
∇Xeα(i)

)
ēα(i) + eα(i)

(
∇X ēα(i)

)
=
(
ϕ
α(i)
β(j)(X)eβ(j) + χ

α(i)
β(j)(X)ēβ(j)

)
ēα(i)

+ eα(i)
(
ϕ̄
α(i)
β(j)(X)ēβ(j) + χ̄

α(i)
β(j)(X)eβ(j)

)
=
(
ϕ
α(i)
β(j) + ϕ̄

β(j)
α(i)

)
eβ(j)ēα(i)

+ χ
α(i)
β(j)ē

α(i)ēβ(j) + χ̄
α(i)
β(j)e

α(i)eβ(j) = 0

(6.20)

for all X ∈ TMhm. This equivalent to equation (6.19a). In addition to this, the Levi-Civita
connection is required to be torsion free, or equivalently,

deα(i)(X,Y )−
(
(∇Xeα(i))(Y )− (∇Y eα(i))(X)

)
=
(
X(eα(i)(Y ))− Y (eα(i)(X))− eα(i)([X,Y ])

)
−
(
X(eα(i)(Y ))− eα(i)(∇XY )− Y (eα(i)(X)) + eα(i)(∇YX)

)
= −eα(i)([X,Y ]) + eα(i)(∇XY −∇YX) = eα(i)(T∇(X,Y )) = 0,

(6.21)

which gives us equation (6.19b).

Theorem 6.1.5. The matrices ϕα(i)
β(j) and χα(i)

β(j) from equation (6.18) are given by

ϕ
α(i)
β(j) = −pαβδ

(i)
(j) − q

(i)
(j)δαβ and χ

α(i)
β(j) = −t(i)(j)εαβ . (6.22)

Here pαβ is a traceless anti-Hermitian 2×2-matrix of 1-forms given by p+
+ = −p−− = ṽ and

p+
− = −p̄−+ = −u, with ṽ = i

2 Im(v − (Z̄NZ)−1Z̄iNijdZj). Of the two 1-form valued
(1 + n)×(1 + n) matrices, q(i)

(j) and t(i)(j), q is anti-Hermitian and t is symmetric.

Proof: Through a lengthy calculation it can be shown that the exterior derivatives of the
vielbein 1-forms eα(i) are given by [2]

deα(i) = −pαβ ∧ eβ(i) − q(i)
(j) ∧ e

α(j) − t(i)(j)εαβ ∧ ē
β(j) (6.23)

for matrices p, q and t of the form described above. Since the matrices pαβ and q
(i)
(j) are

both anti-Hermitian, and t(i)(j)εαβ is anti-symmetric, it is easily verified that equation (6.19)
is satisfied.

6.2 The quaternion-Kähler structure

Using the orthonormal frame eα(i) we can define three almost complex structures, J (1), J (2)

and J (3) onMhm. These can be defined by specifying J (u)∗eα(i) for α = ± and i = 1, . . . , h1,2

and demanding that J (u)∗ēα(i) = J (u)∗eα(i) (because J is real).
In this section we will often use the Pauli-matrices, which are the anti-Hermitian traceless

matrices σ(u) for u = 1, 2, 3, given by

σ(1) =
(

0 1
1 0

)
σ(2) =

(
0 −i
i 0

)
σ(3) =

(
1 0
0 −1

)
. (6.24)

The product of two Pauli-matrices is given by σ(u)σ(v) = δ(u)(v) + i ε(u)(v)(w)σ
(w).
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Lemma 6.2.1. The endomorphisms J (u) : TM → TM on the tangent bundle of M defined
through

J (u)∗eα(i) = iσ(u)
αβ e

β(i) (6.25)

define three almost complex structures for u = 1, 2, 3 that satisfy the quaternionic algebra,
J (u)J (v) = −δ(u)(v) + ε(u)(v)(w)J

(w). Each of these almost complex structures is compatible
with the metric ghm.

Proof: Using that σ(u)σ(v) = δ(u)(v) + i ε(u)(v)(w)σ
(w), we find that

(J (u)J (v))∗eα(i) = J (v)∗(J (u)∗eα(i)) = −σ(u)
αβ σ

(v)
βγ e

γ(i)

= −δ(u)(v)e
α(i) − i ε(v)(u)(w)σ

(w)
αβ e

β(i)

=
(
−δ(u)(v) + ε(u)(v)(w)J

(w)∗)eα(i),

(6.26)

so the three endomorphisms J (u) are almost complex structures and they satisfy the quater-
nionic algebra.

Together with the metric g = eα(i)ēα(i), J (u) moreover defines an almost Hermitian struc-
ture for u = 1, 2, 3 since for any two vector fields X and Y onMhm,

g(J (u)X, J (u) Y ) =
(
eα(i)ēα(i)

)
(J (u)X, J (u) Y ) =

(
J (u)∗eα(i)J (u)∗ēα(i)

)
(X,Y )

= (iσ(u)
αβ e

β(i)iσ(u)
αγ ē

γ(i))(X,Y ) =
(
σ(u)
γα σ

(u)
αβ e

β(i)ēγ(i)
)
(X,Y )

=
(
eα(i)ēα(i)

)
(X,Y ) = g(X,Y )

(6.27)

where we have used that the Pauli-matrices are Hermitian, i.e. that σ̄(u)
αβ = σ

(u)
βα .

Since the almost complex structures J (u) are compatible with the metric ghm on the hyper-
multiplet moduli space, we can define a set of fundamental forms ω(u) = ghm ◦ (J (u) × id).
These are given by

ω(u) = ghm ◦ (J (u) × id) = (eα(i)ēα(i)) ◦ (J (u) × id)

= 1
2

(
J (u)∗eα(i)

)
⊗ ēα(i) + 1

2

(
J (u)∗ēα(i)

)
⊗ eα(i)

= 1
2

(
iσ(u)
αβ e

β(i)
)
⊗ ēα(i) + 1

2

(
iσ(u)
αβ ē

β(i)
)
⊗ eα(i)

= i
2σ

(u)
αβ

(
eβ(i) ⊗ ēα(i) − ēα(i) ⊗ eβ(i)

)
= − i

2 σ
(u)
αβ ē

α(i) ∧ eβ(i).

(6.28)

Proposition 6.2.2. The fundamental forms ω(u) satisfy ∇Zω(u) = i
2 [σ(u), p(Z)]αβ ēα(i) ∧ eβ(i)

for u = 1, 2, 3, where p is the matrix from theorem 6.1.5.

Proof: Equation (6.18a) and theorem 6.1.5 allow us to explicitly work out the covariant
derivatives ∇Zω(u)

∇Zω(u) = − i
2σ

(u)
αβ

(
∇Z(ēα(i) ∧ eβ(i))

)
= − i

2σ
(u)
αβ

(
(∇Z ēα(i)) ∧ eβ(i) + ēα(i) ∧ (∇Zeβ(i))

)
= − i

2σ
(u)
αβ

(
(ϕ̄α(i)

γ(j)(Z) ēγ(j) + χ̄
α(i)
γ(j)(Z) eγ(j)) ∧ eβ(i)

+ ēα(i) ∧ (ϕβ(i)
γ(j)(Z) eγ(j) + χ

β(i)
γ(j)(Z) ēγ(j))

)
= i

2σ
(u)
αβ

(
p̄αγ(Z) ēγ(i) ∧ eβ(i) + pβγ(Z) ēα(i) ∧ eγ(i)

+ q̄
(i)

(j)(Z) ēα(j) ∧ eβ(i) + q
(i)

(j)(Z) ēα(i) ∧ eβ(j)

+ t̄
(i)

(j)(Z) εαγeγ(j) ∧ eβ(i) + t
(i)

(j)(Z) εβγ ēα(i) ∧ ēγ(j)
)

(6.29)
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We can use the fact that the matrix t(i)(j) to rewrite

σ
(u)
αβ t

(i)
(j)(Z) εβγ ēα(i) ∧ ēγ(j) = 1

2σ
(u)
αβ t

(i)
(j)(Z) εβγ

(
ēα(i) ∧ ēγ(j) + ēα(j) ∧ ēγ(i)

)
= 1

2 t
(i)

(j)(Z)
(
σ

(u)
αβ εβγ − σ

(u)
γβ εβα

)
ēα(i) ∧ ēγ(j),

(6.30)

which vanishes because we can explicitly that σ(u)ε is symmetric for u = 1, 2, 3. This tells us
that the last line from equation (6.29) vanishes. Similarly, it follows from the fact that q(i)

(j)

is anti-hermitian that

q̄
(i)

(j)ē
α(j) ∧ eβ(i) + q

(i)
(j)ē

α(i) ∧ eβ(j) =
(
q̄

(i)
(j) + q

(j)
(i)

)
ēα(j) ∧ eβ(i) = 0. (6.31)

This leaves us with

∇Zω(u) = i
2 (σ(u)

γβ p̄
γ
α(Z) + σ(u)

αγ p
γ
β(Z)) ēα(i) ∧ eβ(i)

= i
2 (−pαγ(Z)σ(u)

γβ + σ(u)
αγ p

γ
β(Z)) ēα(i) ∧ eβ(i)

= i
2 [σ(u), p(Z)]αβ ēα(i) ∧ eβ(i),

(6.32)

which proves the theorem

Lemma 6.2.3. We have that (∇Zω(u))(X,Y ) = ghm((∇ZJ (u))X,Y ) for u = 1, 2, 3 and any
three vector fields X, Y and Z onMhm.

Proof: The covariant derivatives of these fundamental forms are given by

(∇Zω)(X,Y ) = Z(ω(X,Y ))− ω(∇ZX,Y )− ω(X,∇ZY )
= Z(g(J X, Y ))− g(J ∇ZX,Y )− ω(J X,∇ZY )
= g(∇Z(J X), Y ))− g(J (∇ZX), Y ) = g((∇ZJ)X), Y )),

(6.33)

where we have used flatness of the metric with respect to its Levi-Civita connection.

Before we can conclude that J (u) defines a quaternion-Kähler structure on the domain
where the basis eα(i) is defined, we still need to verify that the bundle generated by these
almost complex structures is preserved by the connection. This turns out to be the case.

Corollary 6.2.4. The almost complex structures J (u) for u = 1, 2, 3 from lemma 6.2.1, together
with the metric ghm, define a quaternion-Kähler structure onMhm.

Proof: Since σ(u) is Hermitian and p(Z) is anti-Hermitian for u = 1, 2, 3 and any (real)
vector field Z, we have that

[σ(u), p(Z)]αβ = σ(u)
αγ p(Z)γβ − p(Z)αγσ

(u)
γβ

= −σ̄(u)
γα p̄(Z)βγ + p̄(Z)γασ̄

(u)
βγ = [σ̄(u), p̄(Z)]βα,

(6.34)

so [σ(u), p(Z)] is a Hermitian matrix. Since it is a commutator it is furthermore traceless and
will therefore be a linear combination of Pauli matrices, [σ(u), p(Z)] = A

(u)
(v)σ

(v) for some

coefficients A(u)
(v) .

Proposition 6.2.2 now tells us that ∇Zω(u) = i
2A

(v)
(u)σ

(v)ēα(i)eβ(i) = A
(v)
(u)ω

(v), so if we fi-

nally apply lemma 6.2.3 we see that∇ZJ (u) = A
(v)
(u)J

(v). We already know from lemma 6.2.1

that the almost complex structures J (u) satisfy the quaternionic algebra and that they are
compatible with the metric ghm, so it follows thatMhm is quaternion-Kähler.
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Remark 6.2.5. We can provide a more explicit description of the Quaternion-Kähler structure
by working out the expressions in equation (6.25) for u = 1, 2, 3. This gives us

J (1)∗e±(i) = i e∓(i) J (2)∗e±(i) = ∓ e∓(i) J (3)∗e±(i) = ±i e±(i) (6.35)

and if we use theorem 6.1.5 to work out ∇ZJ (u) we obtain

∇ZJ (1) =ṽ(Z) J (2) + 2 Re(u)(Z) J (3) (6.36a)

∇ZJ (2) =− 2 Im(u)(Z) J (3) − ṽ(Z) J (1) (6.36b)

∇ZJ (3) =− 2 Re(u)(Z) J (1) + 2 Im(u)(Z) J (2), (6.36c)

where ṽ = 1
2 Im

(
v − Z̄iNijdZ

j

Z̄NZ

)
.

6.2.1 Intrinsic interpretation

The hypermultiplet moduli space metric consists of a number of orthogonal pieces that we
have studied separately in sections 5.1 and 5.2.

ghm = ∂2K(X,X̄)
∂Xi∂X̄j

dXidX̄j︸ ︷︷ ︸
complex structure moduli

+ 1
2ψ g

W︸ ︷︷ ︸
torus

+ 1
(2ψ)2

(
dψ2 + η2

)︸ ︷︷ ︸
circle+line

. (6.37)

To this decomposition of ghm corresponds a decomposition of the tangent bundle into
orthogonal pieces

T(t,a(3),ψ,σ)Mhm '

base space︷ ︸︸ ︷
TtMC︸ ︷︷ ︸
'H2,1(Y)

⊕

fibre︷ ︸︸ ︷
Ta(3)

(
H3(Y,R)

)︸ ︷︷ ︸
torus (twisted)

⊕ R ∂σ ⊕ R ∂ψ︸ ︷︷ ︸
circle+line

, (6.38)

where we say that the torus directions are “twisted” because they are determined by the
contact bundle on the Heisenberg group and there is no way to locally be embedded the
torus in Mhm such a way that it is tangent to this bundle since contact bundle are non-
integrable (cf. remark 4.2.4), . We had seen that the circle and the real line parametrised by
σ and ψ combine into a bundle of complex disks over the Weil intermediate Jacobian.

By using the Dolbeault cohomology groups, the tangent space H3(Y,R) to the torus can
be further decomposed into the pieces

(
H3,0(Y) ⊕ H0,3(Y)

)
∩ H3(Y,R) and

(
H2,1(Y) ⊕

H1,2(Y)
)
∩H3(Y,R), which are also orthogonal (cf. lemma 2.3.5). All-in-all, there are four

even-dimensional pieces, each of which comes with its own complex structure: The complex
structure moduli space, these two orthogonal parts of the Weil intermediate Jacobian and
the aforementioned punctured disks.

We know that both the base space and the fibres are Kähler manifolds and hence that both
come with a complex structure that we denote by JC and J̃ respectively (cf. corollary 2.2.8
and theorem 5.2.7).

The vielbein 1-forms e(a), E(a), u and v describe exactly these same pieces, as we had seen
in corollary 6.1.3 and proposition 6.1.2. The forms e(a) = P

(a)
b dZb are clearly (1, 0)-forms

on the base space with respect to its standard complex structure and each of the forms E(a),
u and v are (0, 1)-forms for the complex structure J̃ on the fibres. This is true for v because
v = 1

2ψ (dψ − i η) and J̃∗η = dψ and for E(a) and u because they are linear combinations of

the forms (dBi − ZW
ijdA

j) (recall that zi = −Bi + ZW
ijA

j were complex coordinates on the
Weil intermediate Jacobian and hence onMt, cf. proposition 5.2.9).

88 A.G. Baarsma



6.2. THE QUATERNION-KÄHLER STRUCTURE

Lemma 6.2.6. Let J (0) : TMhm → TMhm be the almost complex structure on TMhm that
equals JC on the base spaceMC and−J̃ on the fibresMt. The vielbein 1-forms e+(i) = (u, e(a))
and e−(i) = (v,E(a)) from equation (6.7) satisfy

J (0)∗eα(i) = +i eα(i). (6.39)

for α = ± and i = 0, . . . , h1,2

Proof: The validity of this statement has been discussed above this lemma.

We also have an explicit descriptions for the almost complex structures J (u) (u = 1, 2, 3)
that make up the quaternion-Kähler structure on the total space in terms of these vielbeins.
By combining the decomposition (6.38) we can now give a slightly more intrinsic description
of the quaternion-Kähler structure onMhm.

Theorem 6.2.7. The almost complex structure J (u) described in lemma 6.2.1 and remark 6.2.5
satisfy the following properties.

- J (3) respects the decomposition from equation (6.38). It acts on TtMC through the
canonical complex structures on the complex structure moduli space and on R ∂σ ⊕ R ∂ψ
as J̃ . On the torus directions it acts as the complex structure corresponding to the Griffiths
intermediate Jacobian instead of the Weil intermediate Jacobian.

- J (1) and J (2) interchange vectors along the H1,2 ⊕ H2,1-directions of the torus with
tangent vectors for MC and vectors along the H3,0 ⊕ H0,3-directions with elements of
R ∂σ ⊕ R ∂ψ.

Proof: The almost complex structures J (u) were defined in terms of the forms eα(i). The
third almost complex structure was given by (cf. remark 6.2.5)

J (3)∗u = iu, J (3)∗e(a) = i e(a), J (3)∗v = −i v, J (3)∗E(a) = −iE(a). (6.40)

We see that it equals J (0) on TMC and on the torus directions corresponding to the H3,0 ⊕
H0,3-part of the torus, while it describes −J (0) on the remaining parts of the decomposi-
tion (6.38). We see that the H2,1⊕H1,2-part and the H3,0⊕H0,3-part of the torus directions
are treated differently: J (3) corresponds to JW = JG on the first and to −JW = JG on the
latter. It appears that on the torus J (3) should be interpreted as the almost complex struc-
ture corresponding to the Griffiths intermediate Jacobian rather than the Weil intermediate
Jacobian.

The other two almost complex structures are given by

J (1)∗u = i v, J (1)∗e(a) = iE(a), J (1)∗v = iu, J (1)∗E(a) = i e(a), (6.41)

J (2)∗u = −v, J (2)∗e(a) = −E(a), J (2)∗v = +u, J (2)∗E(a) = +e(a), (6.42)

from which we can immediately read off that they both interchange the H3,0 ⊕ H0,3-part
and the H2,1 ⊕H1,2-part of the torus with TMC and R ∂σ ⊕ R ∂ψ respectively.
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DISCUSSION

We were interested in the (known) quaternion-Kähler metric on the hypermultiplet moduli
space of the effective supergravity theory that arises from type IIA superstring theory in the
low energy limit after compactification on a Calabi-Yau 3-fold. By finding a more intrinsic
description for this space and its metric we ultimately hope to gain a better understanding
of the quaternionic nature of this space.

The hypermultiplet moduli space can be described as a fibre bundle over the moduli space
of the Calabi-Yau manifold used in the compactification procedure, with fibres consisting of
a torus with a circle and a line bundle corresponding to the (Kalb-Ramond) axion and the
dilaton respectively. This fibre bundle is flat and for the metric we wish to describe base
space and fibres are orthogonal. Since we already have a description of the metric on the
complex structure moduli space (cf. section 2.2.2), we have initially mostly focused on the
fibres. A previous study [1] has shown that the torus in this construction should be viewed
as the Weil intermediate Jacobian of the Calabi-Yau manifold and that the entire fibre can be
viewed as a coset space of an extended version of a Heisenberg group (c.f. remark 5.1.6).

Instead of considering this extended version of the Heisenberg group, we have looked at
these fibres as a direct product of a compact quotient of an (unextended) Heisenberg group
and a real line that corresponds to the dilaton field. This compact quotient can naturally
be interpreted as a contact manifold because it inherits a contact structure from the Heisen-
berg group. By combining this contact structure with the complex structure on the Weil
intermediate Jacobian, we can view this space as a strictly pseudoconvex Cauchy-Riemann
manifold. This Cauchy-Riemann structure underlies a 1-dimension family of (Sasakian) con-
tact metric structures, which describe the metric on the fibre metric for fixed values of the
dilaton field. The entire fibre metric is obtained as a Kähler metric on the symplectisation
of this contact manifold obtained by choosing a specific extension of the Cauchy-Riemann
structure to a complex structure (cf. section 5.2).

Since the dilaton and the axion combine into a C∗-bundle over the Weil intermediate
Jacobian, we were interested in the possibility that they may in fact form (part of) a holo-
morphic line bundle and in particular one that corresponds to the canonical polarisation of
this torus. We discovered that the dilaton and the axion can together be interpreted as a
bundle of punctured disks inside exactly such a bundle (cf. section 5.2.5).

The tangent bundle of the complete hypermultiplet moduli space splits into directions cor-
responding to the complex structure moduli space, the torus and these complex disks. With
this in mind we have examined the explicit quaternion-Kähler structure found by Ferrara
and Sabharwal [2] and found that it exhibits some interesting behaviour (cf. section 6.2).
One of the almost complex structures that make up the quaternion-Kähler structure acts
separately on each of the components from the above construction. Interestingly enough, it
seems to correspond to the complex structure of the Griffiths intermediate Jacobian on the
torus, while it we had just seen that it is the Weil intermediate Jacobian that plays a big role
in the construction of the quaternion-Kähler metric.

Since quantum corrections still have to be taken into account and we know that also the
corrected expressions will be quaternion-Kähler, an important question that is what freedom
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we have to deform this structure. It may be promising to first look at the one-loop corrected
version of the quaternion-Kähler metric that is presented in [56], in which we also recognise
a contact form that can be used in combination with a well-chosen complex structure to
express large part of the metric quaternion-Kähler metric.

Although we have made a start, a fully intrinsic description of this quaternion-Kähler
structure in terms of the construction described above has not yet been obtained. The
complex structure moduli space and the fibres over it remain for a large part two separate
and unrelated pieces, so we would like to learn more about how the structures on each can
be related and why the combination of the two results in a quaternion-Kähler manifold. The
interpretation we have given to the hypermultiplet moduli space was completely in terms
of spaces defined using a Calabi-Yau 3-fold Y, but the entire quaternion-Kähler metric could
be expressed in terms of just the projective special Kähler structure of the complex structure
moduli space. By finding a natural way to combine the Heisenberg group and this moduli
space we may also learn something about the more general situation.

The fibres over the complex structure moduli space are complex manifolds, which have
a strictly pseudoconvex boundary at infinity (ψ = eφ → ∞) that corresponds to the (quo-
tient of the) Heisenberg group. The expression we have worked with is only valid in the
limit towards this boundary, so quantum corrections should only have an effect outside
this boundary. It may be interesting to note that this situation is very similar to that of
so-called asymptotically complex hyperbolic manifolds, which are complex manifolds that
have exactly the same asymptotic behaviour towards their boundary [71,72]. Moreover, the
boundary of such spaces comes with a strictly pseudoconvex CR structure and can has been
linked with the Heisenberg group [73]. To which extent this may be relevant or helpful
remains to be seen.

Although it is possibly just a coincidence, the fact that the twistor space for the quaternion-
Kähler structure on the hypermultiplet moduli space is a complex contact manifold of exactly
twice the dimension of the Heisenberg group, which we had interpreted as a real contact
manifold, can at least be said to be interesting.

In short, there are still many unanswered questions and unsolved problems and thus a lot
of opportunities for future research.
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