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Abstract. It has been a longstanding problem to show how the irreversible behaviour
of macroscopic systems can be reconciled with the time-reversal invariance of these
same systems when considered from a microscopic point of view. A result by Lanford
(1975, 1976, 1981) shows that, under certain conditions, the famous Boltzmann equa-
tion, describing the irreversible behaviour of a dilute gas, can be obtained from the
time-reversal invariant Hamiltonian equations of motion for the hard spheres model.
Here, we examine how and in what sense Lanford’s theorem succeeds in deriving this
remarkable result. Many authors have expressed different views on the question which
of the ingredients in Lanford’s theorem is responsible for the emergence of irreversibil-
ity. We claim that the true culprit for the emergence of irreversibility lies in a point
that has hitherto not been sufficiently emphasized, i.e. in the choice of incoming, rather
than outgoing, configurations for collision points. We argue that this choice ought to be
recognized clearly as an explicit assumption in the theorem, and discuss its implications
for the question in what sense irreversible behaviour follows from Lanford’s theorem.

1 Introduction

The Boltzmann equation is one of the most important tools of statistical physics. It
describes the evolution of a dilute gas towards equilibrium, and serves as the key to the
derivation of further hydrodynamical equations. A striking aspect of this equation is that
it is not invariant under time reversal. Indeed, when Boltzmann (1872, 1875) presented
this equation, he immediately derived from it a celebrated theorem, now commonly known
as the H-theorem, which shows that a certain quantity H of the gas can only change
monotonically in time, so that the gas displays an evolution towards equilibrium.

Despite its long-standing legacy, the status of the H-theorem has remained contro-
versial. The reversibility objection by Loschmidt (1877) questioned the validity of the H-
theorem by constructing a counterexample. Essentially, this objection raised the problem of
how an irreversible macro-evolution equation can be obtained from the time-reversal invari-
ant micro-evolution equations governing molecular motion. More than twenty years later,
Culverwell (1894) posed the same problem and inaugurated a famous debate in Nature with
a provocative question: “Will anyone say exactly what the H-theorem proves?”.
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In his responses to the reversibility objection, Boltzmann (1877, 1895) suggested an
alternative approach and reading of the H-theorem, which the Ehrenfests (1912) called the
“modified formulation of the H-theorem”, and which we will refer to as the statistical H-
theorem. Yet, the problem of providing a rigorous statistical counterpart of the Boltzmann
equation and the H-theorem was left unsolved. It is widely believed that the work by Oscar
E. Lanford (1975, 1976, 1981) provides the best available candidate for a rigorous derivation
of the Boltzmann equation and the H-theorem from statistical mechanics, in the limiting
case of an infinitely diluted gas system described by the hard spheres model, at least for a
very brief time. To be sure, these clauses imply that Lanford’s result will hardly apply to
realistic circumstances. The importance of Lanford’s theorem is that it claims to show how
the conceptual gap between macroscopic irreversibility and microscopic reversibility can in
principle be overcome, at least in simple cases.

However, Lanford’s papers suggested various answers to the question how the irre-
versibility embodied in the Boltzmann equation or the ensuing H-theorem arises in this
rigorous statistical mechanical setting. Later commentators on Lanford’s theorem (e.g.:
Spohn, 1980,1991, 2001; Lebowitz 1983; Cercignani e.a. 1994; Cercignani 2008, Uffink, 2008)
have also expressed mutually incompatible views on this particular issue. So, one may well
ask: “Will anyone say exactly what Lanford’s theorem proves?”.

The present paper addresses this question. We analyse the problem of how Lanford’s
theorem gives rise to the emergence of irreversible behaviour and whether Lanford’s result
can be interpreted as providing a satisfactory statistical H-theorem. We will argue that
the responsibility for the emergence of macroscopic irreversibility in Lanford’s theorem is
to be sought in an ingredient that has not been sufficiently clearly recognized by previous
authors.

1.1 Problems of reduction

Statistical physics is a broad field that comprises many closely related but more strictly
circumscribed theories: thermodynamics, hydrodynamics, the kinetic theory of gases, and
statistical mechanics, to name the most relevant members. The inter-theoretical relations
between them are subtle but it is clear that the Boltzmann equation and the H-theorem
are crucial for the precise specification of such relations between all these theories.

For example, the putative reduction of thermodynamics to statistical
physics calls for a statistical counterpart of the approach to equilibrium, which, in the
kinetic theory of gases, is given by the H-theorem. Similarly, in the analysis of the inter-
theoretical relations between kinetic theory and statistical mechanics, regarded as two dif-
ferent theories of statistical physics, it is necessary to spell out what it takes for the original,
but untenable, H-theorem to be replaced by a statistical H-theorem. Also, the Boltzmann
equation is crucial for the bridge between kinetic theory and hydrodynamics.

For purposes of reduction, it is thus important to establish in what sense the Boltzmann
equation and the H-theorem are valid. Since Lanford’s theorem aims to address this issue,
this theorem is also highly relevant to these foundational issues of reduction in statistical
physics. Lanford provided a rigorous derivation of the Boltzmann equation and the H-
theorem for the hard spheres gas-model in the so-called Boltzmann-Grad limit. The proof of
his theorem is cast in the formalism developed by Bogolyubov, Born, Green, Kirkwood and
Yvon (BBGKY). This formalism provides, departing from the Hamiltonian formulation of
statistical mechanics, a hierarchy of equations for the time-evolution of macroscopic systems,
called the BBGKY hierarchy. On the other hand, the Boltzmann equation itself can also be
reformulated in the form of a hierarchy (the Boltzmann hierarchy). Lanford’s theorem then
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shows how the Boltzmann hierarchy can be obtained from the BBGKY hierarchy for the
hard spheres model in the Boltzmann-Grad limit under specific assumptions. To be sure,
the technical assumptions needed in this rigorous derivation present on several points severe
limitations. In particular, the convergence obtained in this Boltzmann-Grad limit holds for
a very brief time only, and the Boltzmann-Grad limit itself implies that the density of the
gas-model goes to zero, which is incompatible with the usual hydrodynamic limit. Clearly,
Lanford’s theorem by itself does not provide a full answer to the conceptual issues in the
reduction relations mentioned above. However, it provides the most successful approach to
these problems yet, and will likely be the guideline for future work towards a more complete
coverage of these reduction relations.

We begin by reviewing the Boltzmann equation and the H-theorem in the kinetic
theory of gases for the hard spheres model, along with the quest for a statistical H-theorem
(Section 2). Section 3 discusses the connection between the BBGKY hierarchy for the hard
spheres model and the Boltzmann hierarchy. Lanford’s theorem is then stated in section 4.
We take up the issue of irreversibility in section 5, and end with our conclusions.

2 The quest for a statistical H-theorem

2.1 The kinetic theory of gases and the Boltzmann equation

In the kinetic theory of gases, one considers a gas as a system consisting of a very
large number N of molecules, moving in accordance with the laws of classical mechanics,
enclosed in a container A with perfectly elastic reflecting and smooth walls. In the hard
spheres model, these molecules are further idealized as rigid and impenetrable spheres of
diameter a interacting only by collisions. The instantaneous state of the gas system at time
t is represented by a distribution function fi(q,p), which represents the relative number
of molecules in the gas with positions between ¢ and ¢ + dq inside the container A and
momenta between p and p'+ dp.

Of course, the question exactly how such a smooth function f; is meant to represent
the distribution of a finite number of particles is somewhat tricky, and we shall come back
to it later (section 4.1). Notice that, for each time ¢, f; formally defines a probability density
on the so-called p-space p = A x R?, i.e.:

/>0 and /Adq*/Rgdﬁft@mzl, (1)

assigning probabilities to molecular positions and momenta —which thus play the role of
stochastic variables. However, in kinetic theory, the distribution function itself is though to
represent, in some sense, the relative number of particles over their various possible positions
and momenta in the actual microstate of the gas. The distribution function should therefore
be sharply distinguished from probability densities as they arise from some probability
measure on phase space in statistical mechanics.

In order to describe the evolution of the gas system, one needs to consider how the
distribution function f;(g, p) evolves in time. The crucial assumption to obtain this evolution
equation is the Stofzahlansatz, or “assumption about the number of collisions”, also often
referred to as the Hypothesis of Molecular Chaos, which provides a constraint on the way
in which collisions between the particles take place. It can be decomposed in two distinct
conditions:
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— Factorization
The relative number of pairs of particles, with positions within d¢; and momenta
within dp;, and within d¢, and dps,, respectively, is given by

JEG@ P G, o)Ay A dady = fo(G 1) foldo, B2) A dddpadd, (2)
— Pre-collision
The number N(pi, pa) of such pairs of particles which are about to collide in a time

span dt is proportional to ft@)((j, D1, q, P2) and the volume dV of the “collisions cylin-
der”, i.e. the spatial region around the position ¢ at which the particles are located
when colliding, i.e.

NGy, o) = [ 71, @ o) - AV (3)

where

dV = a*@,s - <p LD 2) dtds (4)
m

Here, &9 is a unit vector pointing form the center of particle 1 to the center of particle
2 (See Fig. 1). The condition that the particles are “about to collide”can be expressed
mathematically by the condition

Gz - (P1 — p2) 2 0. (5)

The Stofizahlansatz may be interpreted as saying that particle pairs are uncorrelated in
their momenta just before they collide. We note that the literature is somewhat confusing in
the terminology here. Many authors use the name “Molecular Chaos” for the factorization
condition (2) alone, without including the pre-collision condition.

Whenever a collision occurs, molecular velocities change. If the particles have momenta
P1, Po just before the collision, their outgoing momenta will be denoted as p,’ and py,
respectively. In the hard-spheres model, these outtgoing momenta are simple functions of
p1 and p> and Wyo. Indeed:

271/ = p1— (G2 (9L — P2)) Gra

— / — — — — —

Py = P2t (G2 (91— P2)) G, (6)
which can be written more compactly in terms of a linear collision operator Tg,,, defined

by (6):
(Pr, p2) — (91, 1%) = Tiz,, (P4, Pa)- (7)

By standard arguments, one obtains from these assumptions the Boltzmann equation,
which the change of the distribution function in the course of time:

a_ft<q7p1> _1 . 8_—»ft<q7p1) = N(I2/ dpQ/ dw12 ! 2 - W12
t q R3 G1g-(P1—P2)>0 m

m
X [ft((faﬁll)ft(ffa@,) - ft(@ﬁl)ft(@ﬁQ)] (8)

The second term in the left-hand side of the equation accounts for the change of the distri-
bution function through free motion of particles, whereas the right-hand side is the collision
term. Here, the variables p;" are to be thought of as implicit functions g’ (py, p2) given by
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Figure 1: Geometry of a collision between two hard spheres.

(7). Note that the latter term is not linear in f;. Hence, the overall Boltzmann equation is
non-linear, and this is a major obstacle in attempts towards solving the equation. In fact,
the question whether the equation does have physically meaningful solutions for all times
for some given f; as initial condition remains hard even today and has only been answered
in special cases.

Boltzmann circumvented this problem by showing that a general theorem could nev-
ertheless be obtained. To derive this result, now commonly known as the H-theorem, he
introduced a function of the distribution of state defined as

HIf) = / 1@ 5) In 1. B) dpidd. (9)

and proved that, under the assumption that the Boltzmann equation holds at all times,
and f; is a solution to this equation, then this quantity cannot increase, i.e.

dH[f]
dt

for all t. In the case that the distribution function is and remains spatially uniform, i.e.
f(@.7) = f(P), equality obtains only for a Maxwell distribution f(p) = Ae /B which
captures the equilibrium state. If the negative of the H-function is associated with the
entropy of the system, the H-theorem means that this entropy increases monotonically
through non-equilibrium states until the systems reaches equilibrium and then remains
constant.

<0 (10)
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Boltzmann claimed in 1872 that his result yields a rigorous, analytical proof of the
Second Law of thermodynamics. Yet, this is not quite correct. First of all, the Second Law
asserts that if an isolated system undergoes an adiabatic process, the entropy associated
with the final state cannot be less than the entropy associated with the initial state. But the
Boltzmann equation describes a gas evolving in a fixed vessel isolated from its environment
and does not refer to general adiabatic processes, e.g when work is performed by moving a
piston or stirring the gas. So, the H-theorem does not cover all the relevant thermodynam-
ical processes dealt with in the Second Law. Secondly, the Second Law does not prescribe
the monotonic increase of entropy, nor does it allude to non-equilibrium states. Hence, in
this sense Boltzmann actually obtained more than what is needed for the purpose of repro-
ducing the Second Law. Therefore, the relationship of the H-theorem and the Second Law
of thermodynamics is somewhat indirect (cf. Uffink 2008).

Nevertheless the H-theorem does provide another interesting connection between the
kinetic theory of gases and thermodynamics. Indeed, it yields a description of the sponta-
neous approach to equilibrium for gases. The Second Law does not imply that any isolated
gas confined in a finite volume would tend to evolve toward an equilibrium state. This is
instead captured by an independent principle, which Brown and Uffink (2001) dubbed the
Minus First Law. Therefore, although it does not reduce the Second Law to kinetic gas
theory, the H-theorem seems to provide a kinetic underpinning of the Minus First Law, at
least for the hard-spheres gas model.

However, the general validity of the H-theorem was called into question soon after its
formulation. Loschmidt’s reversibility objection, as rephrased by Boltzmann in (1877) goes
basically as follows. Take a non-equilibrium initial distribution of state f for which the H-
theorem holds and let it evolve for a certain amount of time ¢, so that H|[f;] < H|[fy]. Then,
suddenly reverse the velocities of all particles. The particles will now simply retrace all
their previous motions back to their original spatial configuration at time 2¢. If at point we
reverse their velocities again the distribution of state at time 2¢ will be identical to fy. But
since H, as defined by (9) is invariant under a velocity reversal, this means that under the
evolution from t to 2¢, H must have been increasing. In other words, for every dynamically
allowed evolution for the particles during which H decreases , one can construct another
for which H increases, but also allowed by the dynamics.

This argument relies on the tension between the time-reversal invariance of the dynam-
ics governing the motion of the particles and the explicit time-reversal non-invariance of
the H-theorem. In fact, one can trace this time-reversal non-invariance back to the Boltz-
mann equation from which the H-theorem has been derived. This is shown explicitly in
Proposition 1 in the Appendix.

The upshot of the reversibility objection is that the irreversible time-evolution of macro-
scopic systems cannot be a consequence of the laws of Hamiltonian mechanics alone. There
must be some additional non-dynamical ingredient in the H-theorem, or indeed in the
Boltzmann equation from which it follows, that picks out a preferred direction in time. As
we now know, the StoBzahlansatz is the culprit. The pre-collision condition introduces a
time-asymmetric element, since it is assumed to hold only for particle pairs immediately be-
fore collisions, but not for pairs immediately after they collided. This is responsible for the
failure of the Boltzmann equation to be time-reversal invariant. Indeed, if we had supposed,
instead of the pre-collision condition, a similar condition for the momenta immediately af-
ter collision, we would, by the same argument, have obtained a version of the Boltzmann
equation with an additional minus sign in the collision term, a version commonly called the
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anti-Boltzmann equation®, and accordingly, we would have derived an anti-H theorem, i.e.
dH|[f;]/dt > 0. Hence the irreversible behaviour in the macro-evolution of non-equilibrium
distributions towards equilibrium is due to the preference of this pre-collision rather than
a corresponding post-collision condition. But this preference cannot be grounded in the
dynamics.

2.2 Boltzmann’s statistical reading of the H-theorem

Boltzmann’s (1877) response to Loschmidt already argued that one cannot prove that
every initial distribution function should always evolve towards the equilibrium distribution
function, but rather that there are infinitely many more initial states that do evolve, in a
given time, towards equilibrium than do evolve away from equilibrium, and that even these
latter states will evolve towards equilibrium after an even longer time . However, Boltzmann
did not provide proofs for these claims.

A more detailed argument can be found in Boltzmann (1895, 1897). To any microstate
one can associate a curve (the H-curve), representing the behaviour of H[f;] in the course of
time. Boltzmann claimed that, with the exception of certain ‘regular’ microstates, the curve
exhibits the following properties: (i) for most of the time, H[f;] is very close to its minimal
value H,,;,; (ii) occasionally the H-curve rises to a peak well above the minimum value; (iii)
higher peaks are extremely less probable than lower ones. If at time ¢ = 0 the curve takes
on a value H|fy] much greater than H,,y,, the function may evolve only in two alternative
ways. Either H|[fy] lies in the neighbourhood of a peak, and hence H|f;] decreases in both
directions of time; or it lies on an ascending or descending slope of the curve, and hence
H|[f:] would correspondingly decrease or increase. However, statement (iii) entails that the
first case is much more probable than the second. One would thus conclude that there is
a very high probability that at time t = 0 the entropy of the system, associated with the
negative of the H-function, would increase for positive time; likewise there is a very high
probability that the entropy would increase for negative time.

It is this conclusion that is sometimes called the statistical H-theorem. Nevertheless,
Boltzmann gave no proof of these claims, nor did he indicate whether or how they might
still depend on the Stoffahlanasatz. Thus the statistical H-theorem is hardly a theorem.
The problem of finding an analogue of Boltzmann’s H-theorem in statistical mechanics
thus remained unsettled. We now investigate whether Lanford’s theorem does provide a
mathematically rigorous version of a statistical H-theorem.

3 On the derivation of the Boltzmann equation from Hamiltonian mechanics

3.1 From the Hamiltonian framework to the BBGKY hierarchy

In this section we briefly describe the general form of the BBGKY hierarchy. Again, we
consider a classical mechanical system consisting of N particles, each with the same mass
m. In order to alleviate a bit the notation of the equations to follow, we will set m = 1.
The particles are contained in a vessel A C R? with a finite volume and smooth wall OA.
But we now approach this system from statistical mechanics, rather than kinetic theory.
Its 6 N-dimensional phase space is given by I'y = (A x R3)Y and its evolution is governed

1. As it appears evident from the proof of Proposition 1 in the Appendix, the anti-Boltzmann equation can also be
obtained by applying a time-reversal transformation to the Boltzmann equation.
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by a Hamiltonian

N N
Hy(e) = S 52 + 36 - @) (11)
i=1 i<j
Here, = denotes the microstate x = (z1,...,2n) = (¢1, D1, - - -GN, PN )-

Strictly speaking, the Hamiltonian should also contain a term corresponding to the
elastic wall potential, describing the interaction when individual particles collide with the
boundary OA of the vessel. However, there are ways to suppress this complication. The
easiest way is to suppose that each particle ¢ undergoes specular reflection when it hits
the wall and identify the values (g, p;) just before such a collision and the values (g, 7;)
immediately after. In this move, the phase-space 'y is endowed with the topology of a
torus, and the dynamics under wall collisions becomes smooth. Indeed, a collision with the
wall becomes indistinguishable from free motion, and consideration of the wall potential
becomes redundant.

Now, although we will eventually focus on the hard-sphere model, i.e. the special case
when

. f oo when |[(G—q)||l=a
(¢ — 47) = { 0 otherwise 12

we assume, for now, that ¢ is a smooth function obeying the Lipshitz condition. The virtue
of this assumption is that, in this case, the Hamiltonian (11) is known to be integrable,
so that there exists a smooth one-parameter group of transformations, {7},t € R} on 'y,
called the Hamiltonian flow, T; : I'y — 'y, 'y 3 & — x; = T;(x) that characterizes the
dynamics.

The statistical state of the system is given by a probability measure p over I'y. We
assume that p is absolutely continuous with respect to Lebesgue measure on I', so one can
write

u(A) = / u()de (13)

in terms of a density function pu(z) with respect to the Lebesgue measure on I'.
The evolution of such a statistical state pu(x) at any instant ¢ is defined by

u(x) = p(T-1a) (14)

in terms of the Hamiltonian flow or, equivalently, by means of the Liouville equation

S~ OH ou  OH du
dq; Op;  Op; Op;

o B B o
W () = = Hup. (15)

i=1

The BBGKY approach exploits the fact that the above Hamiltonian (11) is invariant under
permutation of the particles, and, moreover, the inter-particle potential ¢ only contains
pair-interactions. Furthermore, we assume that p is permutation invariant as well:

p(y, ..z, xg, . an) = (e, o2 x, . cooy) Vg e{l,. ., N.} (16)

Obviously, for a permutation invariant Hamiltonian such as (11), this property of p; will
be conserved under the dynamical evolution (15).

With the above symmetry assumptions in place, it is clear that macroscopic quantities
of physical interest will only depend on how many particles have certain molecular prop-
erties, or how many pairs have certain relations to each other, but not on their particle
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labels. It thus becomes attractive to study the dynamics in terms of reduced probability
densities obtained by conveniently integrating out most of the variables. For this purpose,
one defines a hierarchy of reduced or marginal probability densities:

() = /p(:pl,...xN)dxg---xN

pe(Ty, ..., T) = /M(x)dxk+1"'d$N (17)

”N("L‘la"-al‘N) = M(:Ela"'axN)'

Here, for instance, py is the probability density that & particles occupy positions ¢, . . ., qk
and move with momenta pi, ..., ps, while the remaining N — k particles possess arbitrary
positions and momenta. Note that, although p(z) is thus a marginal probability density
on p-space, just like the distribution function f discussed in section 2.1, the conceptual
status of these two density functions is very different.
With a somewhat different normalization convention, one defines rescaled reduced prob-
ability densities:
_N! 1 18
(T, ... x) = mmﬂk(azl,...,xk). (18)

It remains, of course, to specify the time evolution of these rescaled reduced probability
densities.
Now, the N-particle Liouville operator Hy in the Liouville equation (15) can be ex-

panded as
N
=T 4 2 o
i=1 17
where 06( ) o
4 — 4
L. : 20
ij aq—; apl ( )
The evolution of p; is therefore given by
0p14(x L0
plgit(l) =p1- aq_; th(ZL'l) —+ N/d$2£12p27t(l‘1,l‘2), (21)
and for the higher-order rescaled reduced probability densities:
5‘p - q ) 0
kit k+1
__sz aapk+§£1]pk+NZ/dl‘k+1 . aﬁipk_i_l. (22)
Or, in abbreviated form:
apk
B Hype+ Clpipen, k=1, N (23)

where the superscript on the operator C is intended to remind one that it depends on the
smooth inter-particle potential ¢ in (11).
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These dynamical equations for the rescaled reduced densities of the statistical state u
constitute the BBGKY hierarchy. Note that, taken together, they are strictly equivalent
to the Hamiltonian evolution, i.e. nothing else has been assumed yet, except for the rather
harmless permutation invariance of p and the specific form of the Hamiltonian (11). As
one might expect, therefore, solving these equations is just as hard as for the original
Hamiltonian equations. Indeed, to find the time-evolution of p; from (21), we need to know
P2+ But to solve the dynamical equation for ps, we need to know ps, etc. Moreover, the
equations of the BBGKY hierarchy are still perfectly time-reversal invariant.

Nevertheless, the above might already make one hopeful that a counterpart of the
Boltzmann equation can be obtained from the exact Hamiltonian dynamics. Indeed, if we
tentatively identify Boltzmann’s f function with p;, (21) looks somewhat similar to the
Boltzmann equation (8). Of course, much work still remains to be done: first of all, the
Boltzmann equation pertains to the hard-sphere model, whereas the equation (21) assumes
a smooth pair-potential ¢(g — ¢;). More importantly, we will have to justify the tentative
relationship between p; and f. These tasks will be tackled in the following subsections.

3.2 From smooth potentials to the hard-spheres gas model

While the BBGKY hierarchy provides a generally useful format for studying the evo-
lution of a statistical state for a system of indistinguishable particles interacting by smooth
pair potentials, it is our purpose here to apply it to the hard-spheres potential (12).

There are several caveats when applying Hamiltonian dynamics or the BBKGY hier-
archy to the case of a hard-spheres model, in particular, because the potential (12) of this
model does not obey the Lipshitz condition. First of all, we have to remove configurations
in which particles overlap, i.e. restrict our original phase space I'y to:

W, ={z e AR : |G —qll >a i#j ije{l,....,N}}. (24)

More importantly, the dynamical evolution of the microstate of a collection of N hard
spheres enclosed in a vessel might lead to (i) grazing collisions (ii) more than two particles
colliding simultaneously or (iii) an infinite number of collisions (either between the particles
mutually or between some particle and the wall) occurring within a finite lapse of time.
In all of these cases, the Hamiltonian equations cannot be solved, and the trajectory in
phase space cannot be extended for all times. Fortunately, it has been shown by Alexander
(1975) that the subset consisting of microstates = showing such anomalous evolutions has
a Lebesgue measure zero in FS\‘;) . Therefore, if, as we assumed, the statistical state p is
absolutely continuous with respect to the Lebesgue measure, these unwanted microstates
make up a set of probability zero, and can be ignored for the purpose of our analysis.

That is to say, we can either delete this unwanted set A of measure zero from our phase

space Fg\?) ~, and in doing so guarantee that there is a Hamiltonian flow {7}, € R} defined

on the smaller phase space I'y . \ A, or continue with the original space, with the provision
that its Hamiltionian flow is defined only almost everywhere, i.e. outside of the above set
A.

Thus, the hard-sphere dynamics is such that if we consider any given phase point
x = (x1,...2y) (x € A) and consider how it will move under the flow in the next sufficiently
small time increment dt, then either all particles persist in free motion (or perhaps some
collide with the wall); or else some pair of particles, say i and j, collide. In the latter case,
at the moment of collision, they touch, i.e., their positions obey

4 = ¢ +aw;; for &y =q; — g, (25)
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which implies that the microstate x lies on the boundary of I'y », and in the collision their
momenta undergo an instantaneous transition, cf. (7):

(73, 73) — (03, 05) = T, (i, 7). (26)
Note that T3 is measure preserving, and an involution, i.e. Tz o Tz = 1. In other words,

whenever the incoming momenta before a collision between particles ¢, 7 happen to take
values (p;’,p}'), they are transformed into (p;, pj):

(B, 0") — (i, 05) = T, (0, ) (27)

Now, although this momentum transfer during collision is clearly discontinuous, one
can nevertheless maintain the idea that the dynamics is smooth, by mimicking a procedure
already applied to deal with collisions with the wall, i.e., by adopting a topology in which
the pre-collision coordinates (g, ps; ¢j, P;) and the post-collision coordinates (g;, p;’; @j, ;')
are identified. We will discuss this procedure in greater detail in section 5.

With these caveats taken care off, we thus recover a smooth dynamics for the hard
spheres model, and indeed one can show that the equations (23) go over in

Iy
W’t:%k,o L ant,  ke{l... N} (28)

where now

Clg;akJrlkarl Na Z/Sdﬁk—i—l /SQdCUz‘,k-i-l (U_jz‘,k-i-l' (ﬁk+1 —ﬁz))

X p](cz)&(xh vy Ty q_; + au—ji,k‘i’l?ﬁk‘i’l) (29)
and the superscript (a) is intended to remind one that these operators and the rescaled
probability densities refer to a hard spheres model with a sphere diameter a > 0. Of course,

for each value of k, these rescaled probability densities p,(f) are defined only on the domains

fo={(xr,. ) € AXRY |G =Gl >a, i#£4 dje{l,...k}}  (30)

We emphasize that the resulting form (28) of the BBGKY hierarchy for the hard sphere
model is still time-reversal invariant. This is indeed the content of Proposition 2 in the
Appendix.

However, one more crucial step is needed in order to make the collision term (29)
in the BBGKY hierarchy look like a Boltzmann collision term, as appears in (8). First
of all, we can split the integral over the unit sphere S? into two parts: the hemisphere
Wikt1 - (Di — Pr+1) > 0, and the hemisphere &; 41 - (95 — Pr+1) < 0. In the first hemisphere,
the collision configuration (q;, pi; ¢; + ad; k+1, Pk+1) represents a collision between particles
7 and k + 1 with incoming momenta p;, pr.1, and we leave the integrand as it is.

In the other hemisphere, characterized by &; k41 - (5; — Pr+1) < 0, the momenta in the
configuration (g, pi; ¢ + add; k+1, Pr+1) appear as outgoing momenta. In this hemisphere,
these momenta are replaced by the corresponding incoming momenta, which, according to
(27), gives the configuration:

(@7]5;/7 q: + awi,k+17ﬁk,-|-1) where (]5;‘,7ﬁk,-}—1) = Twi,k+1 (ﬁiuﬁkJrl) (31)
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Also, we replace the integration variable & 11 by —dJ; ;+1. The result of these operations
is that we obtain from (29) the collision term:

k
) . 2 — — — — —
CkﬁWM&AxMHWxH‘—Na E dii k1 dpry1 Gigra - (Pi — Drr1)
i=1 Y Wi k+1(Pi—Pr+1)>0

X [plg:czz1<x17 ceey q_»iuﬁ»z/? co s Ty Ji_awi,;+17ﬁkl—i-l)_plg:cle(xh ceey q_»iuﬁ)lﬁ c oo Ty q_)i+au7i,k+17ﬁk+1):|
(32)

Summing up Lanford’s argument so far, the general BBGKY hierarchy has been applied
to the particular case of the hard-spheres model. An equation (28) for the time-evolution
of the relevant reduced probability densities including the details of both collisions and
rectilinear motion of the particles is thus obtained. However, in the last passage from (29)

o (32) a particular step was made, namely to split integral and rewrite the integrands
in terms of pre-collision rather than the post-collision coordinates. But since such a step
is accompanied by an argument that, in order to assure that the dynamics is smooth,
we can identify these coordinates as representing the same physical phase point, it may
seem that this is just a conventional choice of representation, as Lanford himself suggested.
Nevertheless, we will argue in section 5 that this step is actually crucial for the emergence
of irreversibility in Lanford’s theorem.

3.3 From the Boltzmann equation to the Boltzmann hierarchy

In this section, we start from the other side of the bridge that we aim to cross. That is,
we take the Boltzmann equation as given, and reformulate it in a mathematically equivalent
hierarchy of distribution functions. This idea is captured by the lemma below, which is
spelled out by Lanford (1975, p. 88).

First, define a hierarchy of multi-particle distribution functions by

k
fealar, o) = [[ flw) keN (33)

where x; = (g;, p;). Then we have:

Lemma 3.1 The following two statements are equivalent: (i): f; is a solution of the Boltz-
mann equation and (i) the functions fi+ obey the equations

0

% == H]gfki + Ck7k+1fk+1,t keN (34)
where: . i

He=S L= 5 2 (35)
i=1 = G
and
Crpsrfrrne(@n, ..z = Na’ Z/ didi g41dPk+1 (Gis1 - (i — Pr1))
@i k1 (Pi—Pr+1)20

X [fk:-l—l(xla .. '7Qi7pi ). '7Qi7pk+1) - fk-l—l(xl) s 7@7@7 e '7@7ﬁk+1)] (36)
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and
(7i Pis1) = To(Pis Ph1) (37)

In other words, the problem of solving the Boltzmann equation for a distribution func-
tion f is equivalent to the problem of solving a hierarchy of evolution equations (34), called
the Boltzmann hierarchy, for the functions (f1, fo,...) under the assumption of a factoriza-
tion condition (33). One can write this hierarchy more compactly by regarding the f; as
components of a vector: f= (fi, f2,...). Then we can write (34) schematically as:

0
S =Hf+Cf. (39)

where H is a diagonal matrix with diagonal elements H; and C a matrix with elements
Ck,k+1 and zero elsewhere.

The lemma has two virtues: First, and most important is the point that while the
original non-linear Boltzmann equation is notoriously hard to solve, the Boltzmann hier-
archy (38) is linear. This contrast arises, of course, because the non-linearity is put, so to
say, in the factorization constraint (33). As a consequence, it is easier to write down (at
least formal) solutions to the Boltzmann hierarchy. A formal solution to this hierarchy of
equations is obtained by writing down an expansion familiar from Dyson’s time-dependent
perturbation theory:

ti—
0

ft=s<t>fo+i§; / dt, / ity / dtnS(t— 1)CS(t — t2)C---CS(tn)fo (39)

where the operator S(t) represents the collisionless time evolution, i.e.:

St) fr(z1, ... 2x) = fuldh — D1, D1, G2 — tha, Do, - .., dn — tDN, DN) (40)

Obviously, the above formal way of writing a general solution to the Boltzmann hier-
archy does not alleviate the original problems in solving the Boltzmann equation entirely;
these problems are merely transposed into a further problem of showing that the series
expansion in (39) actually converge.

The second virtue of the lemma is that it brings the Boltzmann equation in a form
which is more similar to the results from the BBGKY formalism discussed above, which
likewise take the form of a hierarchy, and this alleviates the effort to build a rigorous bridge
between them.

As we have remarked above, the factorization condition (33), taken as a generalization
of Boltzmann’s condition (2), is sometimes called ‘molecular chaos’. Interestingly, if the ini-
tial data of the Boltzmann hierarchy at time ¢ = 0 take the form (33), then this factorization
is preserved through time, i.e., it holds for the solution of (34) for all time ¢, with f; being a
solution of the Boltzmann equation. This important property of the Boltzmann hierarchy
is commonly known as ‘propagation of chaos’?. Note however, that this factorization, and
its preservation in time, has nothing to do with the pre-collision condition mentioned in
section 2.1 as a crucial ingredient of the molecular chaos hypothesis.

Finally, we stress that the Boltzmann hierarchy, being an equivalent way of expressing
the Boltzmann equation, is just as time-reversal non-invariant as the original Boltzmann
equation. In fact, by applying a time-reversal transformation to it, one obtains a hierarchy
of evolutions equation which has the same form as (34) except for a minus sign in front

2. See (Spohn 1991, p. 45; Cercignani, Illner & Pulvirenti 1994, p. 85) for a more extensive discussion of this property.
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of the collision term Cj ;1. We refer to the latter as the anti-Boltzmann hierarchy. Also,
notice that both the collision operators and the distribution functions in (36) resemble those
involved in (32), except that they do not depend on the diameter a of the particles. The
crucial point in Lanford’s theorem is to demonstrate that all relevant terms in the BBGKY
hierarchy tend to their counterparts in the Boltzmann hierarchy in the Boltzmann-Grad
limit, whereby a — 0. That would establish that the Boltzmann hierarchy can be obtained
from Hamiltonian mechanics.

4 Lanford’s theorem

So far, we have seen how the Hamiltonian dynamics for the hard-spheres model leads,
under a relatively harmless assumption of permutation invariance, to a hierarchy of BBGKY
equations describing the evolution of reduced density functions of a statistical state. And
we have also argued how the Boltzmann equation can be reformulated as a hierarchy of
equations in close resemblance to the BBGKY hierarchy. The question still remains how to
bridge the gap between these two descriptions. Lanford’s theorem establishes the conver-
gence of the BBGKY hierarchy to the Boltzmann hierarchy in the so-called Boltzmann-Grad
limit.

This Boltzmann-Grad limit defines a particular limiting regime within the hard spheres
model. Not only one lets the number of particles grow to infinity, i.e. N — oo, but one also
requires that their diameter goes to zero, i.e. a — 0 while keeping the volume |A| of the
container fixed. The limit is taken in such a way that the quantity Na? remains constant,
or at least approaches a finite non-zero value. This guarantees that the collision term in the
Boltzmann equation or Boltzmann hierarchy, which is proportional to this quantity, does
not vanish. Accordingly, the ‘mean free path’ X := m, which is the typical scale-distance
traveled by any particle between two subsequent collisions in an equilibrium state, also
remains of order one. The same holds for the ‘mean free time’, i.e. the typical duration
between collisions in equilibrium, which is of the order \/(3/3)ma®>N/|A|, where (3 is the
inverse temperature. Of course, this limit implies that Na® — 0, which means that the gas
also becomes infinitely diluted in the Boltzmann-Grad limit.

There is one final technical point we need to mention. Recall that the rescaled prob-

ability densities pgl) of the BBGKY hierarchy have as their domains the sets (28). As one
takes the Boltzmann-Grad limit, these sets converge to

Drp = JIW ={(ar,...m) € AX R . A£G, i), ijef{l,...k}}  (41)

a>0

Obviously, we cannot expect the convergence of pgl) — fir everywhere in Ty, := (A x R?)k,
but at most on I'y », i.e., away from the hypersurface I'y = := I'y \ 'y » of phase points
for which two particles (now considered as point particles), coincide in space. Actually, we
need to be even a little bit more restrictive. Let

Ces(s) = {(21,...2%) € (A X R)* 1 G — sp; # q; — spj,
it dje{l,  kLVE:0<t<s}. (42)

In words, this is the set of k point particle configurations for which no particle pairs collide
at time 0, but also have not collided within in a time span [—s, 0].

We are now ready to state the precise version of Lanford’s theorem, as given by Spohn
(1991, Theorem 4.5). Here, when we write lim, o, the Boltzmann-Grad limit is under-
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stood, i.e. it is assumed that N — oo simultaneously, while keeping Na? a fixed non-zero
constant.

LANFORD’S THEOREM

With the notation introduced in section 3, take 0 < a < ag and let pj be a

family of functions defined on F,i > and assume that for all such a, the following

conditions hold at time ¢ = 0.
(i) There exists positive real constants z, 5, M, independent of a, such that

k
P, a) < M he(i) (43)
i=1
for any k =1,2,..., where hg(p;) denotes the normalized Maxwellian distri-

2

BP; .
bution over momenta: hg(p;) = (%)% .e~73" at inverse temperature (3, and

the spatial distribution is constant inside the vessel A with density z = N/|A]|.
(ii) There exist continuous functions fio on I'y, for k =1,2... such that

lim ess sup |,0,(§a())(x1, ooy x) — fro(xr, . ooz)| =0 (44)
a—0 ($1,...1‘k)EK ’

for all compact subsets K C I'y .(s) for some s > 0.
Then, there exists a strictly positive time 7, such that

lim ess sup |pkt(a:1,...,xk)—fm(:cl,...,:ck)\ =0 (45)
@0 (@1, mp) €K
for any k = . and compact subset K C I'y (s + ).

Here, p,(cz are solutlons of the BBGKY hierarchy with initial conditions p,(cg = p,(f)

and fk ‘ solutions of the Boltzmann hierarchy with initial conditions f; o = f for

telo, 7']

Let us make some comments on the theorem. First, let us put its content in words.
Assumption (i) is a regularity condition which admits only initial conditions for the rescaled
reduced densities of the BBGKY hierarchy bounded by a product of some constant M times
Maxwellian distributions with uniform spatial density z and inverse temperature 5 . This
condition expresses that statistical state of the hard-spheres system should not be “too far
away” from equilibrium. By assumption (ii), these initial conditions for the BBGKY hier-
archy converge to functions fj o that serve as initial conditions of the Boltzmann hierarchy.
The theorem then states that this convergence is maintained through time, at least for
t € [0, 7], so that solutions of the BBGKY hierarchy p,(j”z converge to solutions fj; of the
Boltzmann hierarchy as a — 0, except for the phase-points comprised in the set I'y —(s+1).

Second, if we add the further assumption that the functions fio in equation (44)
initially factorize:

fk,()(l’l, e ,.ﬁL’k) = H f()(.ﬁl]l) (46)

then we can infer by the Lemma of section 3.3, and the propagation of chaos, that this
factorization property is maintained in time:

fk,t(xh e ,.ﬁL’k) = H ft(xz) (47)
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where f; is a solution of the Boltzmann equation. In that case, the Lanford theorem not only
obtains convergence of p®); to solutions of the Boltzmann hierarchy, but also obtains the
limiting validity of the Boltzmann equation in the sense of (47), for the duration ¢ € [0, 7].
But note that this factorization condition (46) is not actually needed in the above theorem.

Third, the exceptional sets I'y —(¢) increase in time, i.e. 'y —(¢) C Ty —(¢') if 0 <t < t'.
Moreover, they are not invariant under reversal of all velocities. However, being hypersur-
faces of codimension one, these sets all have Lebesgue measure zero, and probability zero for
any statistical state which is absolutely continuous with respect to the Lebesgue measure.

Finally, an explicit estimate given by (Spohn 1991, p. 62) shows that 0.21/(5/3)ra?z <
7, i.e. the theorem guarantees convergence for only one-fifth of the mean free time between
collisions for the above Maxwellian.

4.1 A measure-theoretic version of Lanford’s theorem

While the theorem formulated above deals with the convergence of the solutions of the
BBGKY hierarchy to the solutions of the Boltzmann hierarchy, it may seem that these two
sets of equations have little to do with each other, each coming from a very different theo-
retical framework (i.e. Hamiltonian statistical mechanics and kinetic theory, respectively).
Thus one may well ask what the relationship between these two frameworks is, in particular
how the Boltzmann distribution functions f; relate to the rescaled probability densities pg
in the Hamiltonian framework.

Let us attempt to spell this relationship out more explicitly. To each point Vv =
(@1,P1,---,qn,Pn) in the N-particle phase space I' one can associate a normalized (im-
proper) distribution function

Fl 253  — (P — p) (48)

on the one-particle u-space. Such a distribution, being a sum of Dirac ¢ functions it is
clearly not a suitable candidate to be fed into the Boltzmann equation (or into the H-
theorem, because its H-value would be infinite). However, one might intuitively hope that,
for increasingly large N, F' =™ will tend to approximate some continuous density function
f(q,p), which can be associated to a solution of the Boltzmann equation. One then needs
to express the sense in which the two distributions becomes sufficiently close to each other
in the limit of infinitely many N. For this purpose, one can introduce a distance function
d: we can then say that Flet] converges to f just in case d(F[mN}, f) — 0 when N — oo.

There are obviously various distance functions to choose from (cf. Spohn 1991 p. 26).
But a somewhat natural choice would be to stipulate some partition P of u-space into
disjoint rectangular cells, i.e. P = (Ay,...A,), and to say that two (possibly improper)
densities f and g on p-space satisfy d(f, g) < € if and only if

for all A; € P :

/A £(@. 7)dadp - /A g(@,ﬁ)dcfdﬁ]g (49)

Clearly, this distance function is sensitive to the choice of the pair (P, €): the larger the
number n of cells into which the p-space is partitioned and the smaller the value of e,
the more refined the resulting notion of “closeness” between the functions would be. It is
plausible that Boltzmann himself intended some such limiting procedure, whereby a discrete
distribution describing N particles would approximate a continuous function.
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Let us stress that the limit N — oo has to be taken with some care. There is no
algorithm for how to make the transition from the state 2"V in a 6N-dimensional phase
space to the state V1 in the larger 6(N + 1)-dimensional phase space. Thus, if we consider
a given sequence of microstates #% = (zy,...,zy) for N = 1,2,..., it might happen that
the convergence described above holds, or it might not hold, depending on how the sequence
is chosen, and there is nothing further to say.

However, a measure-theoretic procedure comes to the rescue. Let 'y, with N = 1,2, ...
be a sequence of N-particle phase spaces, and let

Ay = {2V d(FFY f) < e} (50)

be a sequence of sets of points in I'y whose corresponding exact distribution function is
close to the continuous distribution function f. A sequence uy of probability measures
for N = 1,2,..., each concentrated on Ay, i.e. such that uy(Ay) = 1, is said to be an
approximating sequence for f.

One can thus formulate Lanford’s theorem in the measure-theoretic terms introduced
above: if py is an approximating sequence for the initial distribution of states fy, under
what conditions is its time-evolution p o 7" ; an approximating sequence for the solution f;
of the Boltzmann equation at any subsequent time ¢7

LANFORD’S THEOREM (MEASURE-THEORETIC VERSION)

Suppose p is an approximating sequence for fy. If assumptions (i) and (ii) and
the factorization condition (46) hold at the initial time ¢t = 0, then there exists
a finite positive time 7 such that p o 7T ; is an approximating sequence for the
solution f; of the Boltzmann equation at all ¢ € [0, 7].

To put it differently, let us define the conditional probability function pa, = u(-|An),
which assigns probability one to the points in the set Ay comprising all microstates zg
such that the corresponding exact distribution function F[#! is close to f;. Then, for any
positive t < 7

Jim (€ TIA(FE, ) < ) =1 (51)

That is, the probability of the set of phase points zy whose time-evolved microstates x; are
such that the corresponding exact distribution function F='1 is close to f+ conditionalized
on Ay tends to one in the Boltzmann-Grad limit.

Under such a measure-theoretic interpretation of the theorem, the Boltzmann equation
seems to give an accurate description of the time development of the overwhelming majority
of initial microstates. Some points in phase space whose corresponding exact distribution
function is close to fy would inevitably have a trajectories which do not agree with the
Boltzmann equation. That is a consequence of the fact that the latter, contrary to the
Hamiltonian equations of motion, is not invariant under-time reversal. Yet, the micro-
dynamics and the macro-dynamics agree for most of the points in the N-particle phase
space satisfying the initial conditions.

This means that for the initial microstates belonging to the region Ay of phase space
the entropy of the system is very likely to increase. It would thus appear that Lanford’s
theorem constitutes a statistical H-theorem, hence representing a counterpart of the ther-
modynamical approach to equilibrium in statistical mechanics. notice that although the
time-scale 7 of the theorem is very short, it is not too short to make irreversibility unob-

servable: in a duration of %th of the mean collision time, one expects that about 20 % of
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the particles will have collided, and this can be sufficient for a significant decrease in the
H-function.

One might ask what happens if we consider negative times —7 < ¢ < 0. As pointed out
by Lanford (1975, p. 109-110), and more explicitly by Lebowitz (1983, p. 9-10), exactly the
same conclusions hold in that case too, provided one makes the following changes:

(a.) In condition (ii) we take s < 0.
(b.) The collision term Cj x41 in the Boltzmann hierarchy is replaced by —Cp g1

(c.) We systematically replace the configurations with incoming momenta by the outgoing
momenta instead of vice versa, as we did in (32).

With this understanding, Lanford’s theorem is clearly neutral with respect to time reversal:
that is, we obtain convergence to solutions of the Boltzmann equation for positive times,
and hence a decrease of H, as the H-theorem requires, but for negative times a convergence
towards a solution of the ‘anti-Boltzmann’ equation, i.e. the Boltzmann equation with the
sign of the collision integral reversed, and hence an increase of H . Accordingly, Lanford’s
theorem would itself be time-reversal invariant.

This is somewhat analogous to Boltzmann’s 1897 argument based on the H-curve.
Indeed, in this understanding, the theorem proves that for most initial microstates the H-
function lies at a local peak of the H-function. So, at the initial time instant ¢t = 0, H|[f;]
is expected to decrease in both directions of time. This offers a mathematical formalization
of Boltzmann’s claim that, apart from equilibrium, the most probable case is that the H-
function is at a maximum of the curve. Thus, Lanford’s result provides a rigorous version
of the statistical H-theorem. Notice, however, that this understanding implies that the
theorem would yield the wrong retrodictions, thus contradicting everyday experience which
would lead one to expect that entropy of an isolated gas system should increase rather than
decrease even during the interval [—7, 0] (cf. Drory 2008).

5 Time-reversal invariance and Lanford’s theorem

Lanford’s theorem shows how one can derive the Boltzmann equation from the Hamilto-
nian equations of motion under precise assumptions. As a statistical version of Boltzmann’s
H-theorem, it seems to account for the approach to equilibrium for a general class of non-
equilibrium initial conditions characterized by the regularity condition (i), at least during
the time-interval [0, 7]. The most important question is then how the implied irreversibility
of this macro-evolution arises. On this point Lanford and other commentators on his theo-
rem made remarks that are not quite univocal. We first survey and criticize these different
views and then present our own argument on the emergence of irreversibility.

5.1 Views on the emergence of irreversibility in the literature

Lanford’s first discussion of the issue of irreversibility concerns Boltzmann’s heuristic
derivation of the H-theorem. Here he writes:

The inequality dH /dt < 0 shows that the reversibility of the underlying molecular
dynamics has been lost when passing to the Boltzmann equation. The irreversibil-
ity must have been introduced in the Hypothesis of Molecular Chaos since the
rest of the derivation was straightforward mechanics. Indeed it is not hard to see
that the Hypothesis of Molecular Chaos is asymmetric in time; it gives a formula
for the number of pairs of particles that are about to collide. If we write down an
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analogous expression for the number of pairs which have just undergone collision
and repeat the argument, we obtain the Boltzmann collision term but with the
sign reversed. One conclusion is that something more is involved in the Hypothesis

of Molecular Chaos than simple statistical independence. [Lanford (1975), p.81]

Here of course we completely agree. 3

Later, when presenting his own re-examination of the derivation of the Boltzmann
equation from the BBGKY hierarchy, i.e. (32) specialized to the case k = 1, Lanford dis-
cusses a factorization condition which, in our notation, reads p;a) (1, 29) = pga) (x1) pﬁ“) (x2),
and comments:

It must be pointed out that the factorization assumption, like the Hypothesis of
Molecular Chaos to which it is evidently related,* is more subtle than it may
appear. We obtained [the BBGKY hierarchy for the hard spheres model with the
collision term expressed by equation (32) in the present paper| by systematically
writing collision phase points in their incoming representations. We could have
equally well have written them in their outgoing representations; if we then as-
sumed factorization we would have obtained the Boltzmann collision term with
its sign reversed. It is thus essential, in order to get the Boltzmann equation, to

assume @ " "

py (21, 22) = pi” (21)py" (x2) (52)
for incoming collision points (z1,x2) and not for outgoing ones. [Lanford (1975),
p.88]

While this quote is, by and large, consistent with the previous one in pointing out the
distinction between an assumption for incoming collision as opposed to the same assumption
for outgoing collision as responsible for the sign of the collision term in the Boltzmann
equation, and hence for irreversibility, something subtle has changed.

In the intermediate pages, Lanford argued for the identification of phase points which
differ only by having an incoming collision configuration replaced by the corresponding
outgoing collision configuration. It is this demand of identification that makes a subsequent
crucial distinction between incoming and outgoing collisions harder to explain. Recall that
the appeal to a topology identifying the coordinates (g, pi; @, pj) and (G, p;'; G, p)') was
introduced in order to assure the technical point that the hard-sphere dynamics becomes
smooth. Lanford writes about these as two distinct representations of the same phase point.
This suggests that the origin of irreversibility, rather than being a question of making
either one of two substantially different assumptions, would lie instead in a conventional
choice of representation. As Lanford (1975, p. 87) puts it “[T]hese two are really just
different representations of the same phase point.” Lebowitz (1983, p. 8) argues similarly
when he writes about the incoming and outgoing momenta as being “just two different
representations of the same phase point.” However, we wish to object here that it is not
clear at all how physical irreversibility can be due to a mere conventional choice of a
representation.

In the final pages of his first paper, Lanford comes back to the issue of irreversibility.
There he concludes:

The Boltzmann hierarchy, like the Boltzmann equation is not invariant under
time reversal. That is, irreversibility appears in passing to the limit a — 0, not

3. Note that in this quote the phrase “Molecular Chaos” refers the pre-collision condition, and not to the factorization
condition alone.

4. Note that, contrary to the previous quote, the envisaged relation to “Molecular Chaos” here refers to the factorization
condition rather than the pre-collision condition, as in Lanford’s previous quote. (Note added by the present authors.)
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in the assumption that the rescaled correlation functions factorize. (Lanford 1975,
p. 110)

This statement seems to put the blame somewhere else entirely. In contrast to the previous
quotes, there is no mention here of the distinction between incoming and outgoing collision
configurations; rather, the appearance of irreversibility is apparently due to the Boltzmann-
Grad limit procedure. Of course there is also a constant feature in all these quotes, namely
that Lanford consistently stressed that mere factorization is not in itself the explanation
of irreversibility. This claim is indeed fortified by the fact that, as we saw, Lanford’s the-
orem does not require a factorization condition to get convergence towards a solution of
the Boltzmann hierarchy, but only to guarantee that the latter becomes equivalent to the
Boltzmann equation. However, since irreversible behaviour already appears at the level of
the Boltzmann hierarchy, factorization by itself, at least in the version adopted by Lanford,
is surely not relevant for the emergence of irreversibility. We shall come back to this at the
end of the section.

Still, Lanford’s later papers seem to put yet another gloss on the issue. After a discussion
of the limit N — oo (which in the Boltzmann-Grad procedure is equivalent to a — 0)
he writes in his (1981):

None of this, however, really implies that irreversible behavior must occur in the
limiting regime; it merely makes this behavior plausible. For a really compelling
argument in favor of irreversibility, it seems to be necessary to rely on some version
of Boltzmann’s original proof of the H-theorem (Lanford 1981, p.75).

To be sure, the irreversible approach to equilibrium does not follow from taking the limit
for N — o0, as it has been argued e.g. by Goldstein (2001). As Lanford (1981) pointed
out, a counterexample is given by the Vlasov limit. This is a limiting regime in which the
interaction between particles is given by a sum of two-body potentials of the form

S ) = ool — ) (53)
where ¢o(q1 — ¢2) is a fixed singularity-free potential. The macroscopic distribution function
f(g,p) is in this case determined by the microstates of the system in the same way just
as in the Boltzmann-Grad limit. However, the time-evolution of f is given by the Vlasov
equation, rather than by the Boltzmann equation. In this case one can show that the H-
function remains constant through time, and hence the limit does not lead to irreversibility.
Yet, in this 1981 paper, Lanford did not specify how “some version of Boltzmann’s original
proof of the H-theorem” would provide a compelling argument in favor of irreversibility.
Be it as it may, there does not seem to be room even for Lanford’s claim of plausibility
about the emergencence of irreversible behaviour in the limiting regime, even in the case
of the hard-sphere model. Indeed, while Lanford’s theorem does show that the Boltzmann
hierarchy, which is not time-reversal invariant, is somehow derived from the BBGKY hi-
erarchy (28), which is time-reversal invariant, by taking the Boltzmann-Grad limit, our
Proposition 3 in the Appendix demonstrates that the BBGKY hierarchy with the collision
operator expressed by (32) is not time-reversal invariant. Therefore, the time-asymmetric
ingredient introducing irreversibility does not depend in any way on the Boltzmann-Grad
limit, it must lie hidden in the passage leading to the transformation of the collision term
(29) into (32).

An entirely different argument for the emergence of irreversibility is presented by Spohn
(1980,1991) and Lebowitz (1983). Spohn (1980, p. 596) devotes a paragraph to the question
“how Lanford’s theorem escapes the conflict the reversible character and the irreversible
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character of the Bolztmann hierarchy. ( A similar passage is found in (Spohn 1991, p. 66)).
He points out how Lanford’s theorem will not sustain the construction of a counterexample
as in the original reversibility objection (section 2.1). Recall that in that construction we
assume an initial distribution function fy(x) that evolves in accordance with the Boltzmann
equation from the initial time 0 to some positive time ¢, when the distribution function is
fi(z), and then suddenly all the velocities of the particles are reversed. Due to the time-
reversal invariance of the microdynamics, H[f] would then have to increase during the
interval [t, 2¢].

Spohn considers what happens if we try to run this same argument on the basis of
Lanford’s theorem. The crucial point in his analysis is that the set 'y —(¢) of phase points
for which the theorem does not hold increases with time. Hence if we consider the rescaled
densities p,gaz at time ¢, such that 0 < ¢t < 7, and reverse the velocities, the ensuing evolution
of these functions will no longer be guaranteed by Lanford’s theorem, since I'y _(t) D
I'y —=(0). A more elaborate version of the argument is given by Lebowitz (1983).

The analysis by Spohn and Lebowitz is clearly correct, and convincingly shows that
the reversibility objection cannot be run against Lanford’s theorem in the same way as is it
was used by Loschmidt and Culverwell against Boltzmann’s original presentation of the H-
theorem. However, we believe that it is one thing to show how the reversibility objection is
evaded, but it is quite another thing to explain the emergence of irreversibility in Lanford’s
theorem. And although the Spohn-Lebowitz argument is successful in the first objective,
we feel it does little to offer the sought-after explanation. After all, the difference between
the measure-zero sets I'y _(s) and I'y _(s + ) is also a measure zero set. The difference
between these sets is, admittedly, important in the mathematical convergence conditions
of the theorem. But in the spirit of the derivation, these measure zero sets in phase-space
are not to be held physically significant. Indeed, to explain the emergence of irreversibility,
one would like to understand why the overwhelming majority of phase space points that
approximate the initial distribution function f will evolve for time 0 < t < 7 in accordance
with the Boltzmann equation, rather than the anti-Boltzmann equation. The consideration
of measure-zero sets like I'y _(¢) will not be helpful in this regard.

Cercignani, Illner & Pulvirenti (1994) and Cercignani (2008) have another analysis.
After an informal discussion of the problem, they write:

In fact, we remark that when giving a justification of the Boltzmann equation
in the previous chapter, we used the laws of elastic collisions and the continuity
of the probability density at the impact to express the distribution functions
corresponding to an after-collision state in terms of the distribution corresponding
to the state before the collision, rather than the latter in terms of the former. It
is obvious that the first way is the right one to follow if the equations are used
to predict the future from the past and not vice versa; it is clear, however, that
this choice introduced a connection with the everyday concepts of past and future
which are extraneous to molecular dynamics and are based on our macroscopic
experience. |...] [A] striking consequence of our choice is that the Boltzmann
equation describes motions for which the quantity H has a tendency to decrease,
while the opposite choice would have led to an equation having a negative sign
in front of the collision term and hence describing motions with increasing H
(Cercignani, Illner & Pulvirenti 1994, p. 53).

This quote clearly expresses the idea that the preference for the incoming (or ingoing) con-
figurations is responsible for the emergence of irreversibility. At the same time, it states
that the motivation for such a preference cannot be based on dynamics, but rather pre-
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supposes macroscopic experience, which allows us to distinguish between past and future.
Nevertheless, a later passage from the same book squarely contradicts this idea:

We are compelled to ask whether the representation in terms of ingoing configu-
rations is the right one, i.e. physically meaningful. As we shall later see, in a more
careful analysis of the validity problem, the representation in terms of ingoing
configurations follows automatically from hard-spheres dynamics and is, indeed,
not a matter of an a priori choice (Cercignani, Illner & Pulvirenti 1994, p. 74).

It is unclear to us how to reconcile these conflicting statements. The more so because the
“more careful analysis” promised in the above quote refers to a subsequent passage in their
book (pp. 77-81) where the choice of the incoming (or ingoing) configuration is assumed
from the outset in order for the calculations to go through. We have been unable to find
any explicit demonstration that the incoming representation is forced upon us by the hard-
spheres dynamics at all.

5.2 The role of the choice of incoming configurations in the theorem

It is rather striking that all of the authors we have considered explicitly recognize
the fact that the procedure of choosing incoming momenta configurations above outgoing
configurations, as used here in the transition from the collision term as given by(29) to
that given by (32), is crucial for obtaining the ‘right’ sign of the collision term in the
Boltzmann equation or hierarchy, and hence for the derivation of an irreversible approach
to equilibrium; and that choosing the outgoing configurations instead would lead one to
obtain the anti-Boltzmann equation. However, none of the above authors considers this
procedure to be crucial to the explanation of the emergence of irreversibility, and indeed,
no-one even mentions this choice as a crucial ingredient in Lanford’s theorem. Rather, the
consensus point of view seems to be that this step from (29) to (32) involves no more than
a conventional choice between equivalent representations of the same phase point. The only
exception to this consensus is the viewpoint expressed by Cercignani, Illner & Pulveirenti,
quoted above, to the effect that only one of these representations is “right”, or “physically
meaningful”.

In contrast, we believe that it is this predilection for writing the BBGKY hierarchy in
terms of incoming configurations, i.e. the transition from the collision term (29) to (32) itself,
instead of the Boltzmann-Grad limit, as argued by Lanford; the consideration of special
measure-zero sets, as argued by Spohn and Lebowitz; or the hard-spheres dynamics, as
argued by Cercignani, Illner & Pulvirenti; that is crucial for explaining the emergence of
irreversibility in Lanford’s theorem. Also, we claim that this predilection is not a matter of a
conventional choice between different representations of the same phase-point. Furthermore,
we argue that this crucial choice, rather than being derived from the hard-spheres dynamics
itself, is in fact, and ought to be recognized as, an independent ingredient of Lanford’s
theorem. We address these claims in more detail below.

First, let us stress that, as we pointed out in the previous section, the upshot of our
Proposition 3 is that the source of irreversibility must lie in the passage leading to the
BBGKY hierarchy with the collision term (32). Now, splitting the integral over the unit
sphere S in (29) and changing the integration variable w; ;i into —w; 41 are nothing
but mere mathematical procedures. Thus, one is left with identifying the adoption of the
incoming configurations of collision points as the element introducing the time-asymmetry.

Let us make this point more explicit by considering what happens if we make the
‘opposite’ choice. In that case, going back to Eqn. (29), we would again split the integral
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over S? into two hemispheres, but on the hemisphere with &1 - (Prr1 — p;) > 0 we
would leave the configuration for the pair (Gpi, ¢ + a@; k11, Pk+1) as it is (i.e. outgoing).
On the hemisphere characterized by &; k41 - (Pr+1 — i) < 0 we replace the coordinates
(@Di> G4l jy1, Drt1) By (G5, Gi+aid; wy1, Py, 1) as well as change the sign of the integration
variable &J; 11 so that the two hemisphere integrals have a common domain. The result is
that Eqn. (29) would go over in

k
P (i, x) = Na? Z/ did; k+1dPier1 Giger1 - (Pi — Dior1)
i=1 Y @i k1 (Pi—Pr41)>0
N A C NP YOr- DU N L N S TN S-S )
(54)

as an alternative to (32). Proposition 4 in the Appendix shows that neither the BBGKY
hierarchy with the collision term expressed by (54) is time-reversal invariant. This indicates
that the true source of irreversibility lies in the adoption of either one between the incoming
and the outgoing configurations of collision points.

Next, we discuss the issue of whether the predilection for the incoming over the outgoing
configurations may be due to a mere conventional choice of representation. We argue that
this is a misleading line of thought. In more detail, we object that the incoming and the
outgoing configurations could be seen as nothing more than different representations of the
same physical phase point, as claimed by Lanford and Lebowitz. In fact, the very use of
the terminology “representation” appears quite inappropriate in this context.

Recall that the alleged identification between incoming and outgoing collision points
arises by a specific choice of topology. This point may perhaps be elucidated by con-
sidering what happens if one takes a series of smooth spherically symmetrical pair po-
tentials ¢ in (11) that approaches the hard-spheres model (12). In such a case, when-
ever a collision between two particles, say ¢ and j, occurs, the momenta of the particles
do not change instantaneously from incoming values (p;, ;) to outgoing values (p;’,p}’)
as given by (6), but by some smooth trajectory in a non-zero time span (cf. Fig. 2.).
When we take the hard-sphere limit for such a collision (i.e., if we let the pair poten-
tial ¢ approach the hard-sphere potential (12), this interval goes to zero, and the tra-
jectory would jump instantaneously from zj, to ... Now, we can then still regard this
hard-sphere collision as a continuous process by adopting a topology on ' in which
the holes in this phase space are removed, so that incoming collision coordinates and
the outgoing collision coordinates become, as it were, adjacent to each other in phase
space, and a trajectory that jumps from =i, = (21,...,%i—1, G, Diy - - -+ GGy Djs Tjt1s - - - Tp) tO
Tous = (T15- o Tio1, G 05+ -5 GGy Dy Tje1, - - - Tp) 18 regarded as continuous (Fig. 3). One
may express this fact colloquially as an “identification” of these two points. Indeed, we are
free in adopting any topology we like on the boundary of I’;‘Z) ( as long as it extends the

Euclidean topology on its interior), and in particular we can choose a topology to make an
instantaneous transition from x;, to x., appear as a smooth trajectory. Such a choice of
topology entail that every metric, or distance function, d on Fg\?;, compatible with it would
have the property that d(zi,, Zouws) = 0, and hence (by the usual definition of a metric) it
would follow that x;, = xsy, i.e. those points are identified. But when choosing a topology,
we are not forced to introduce a metric. Moreover, even if we identify the incoming and
outgoing points z;, and x., for the purpose of topological or metrical considerations, it

does not follow that they thereby are physically identical. Indeed, that would overlook the
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distinctive relevant fact that the momenta are quite different in these two points! In other
words, all that this choice of topology enforces is that a trajectory connecting points like
Zin and xo,; becomes smooth, but not that these points are physically one and the same.

Figure 2: A region of the phase space 'Y showing a “hole” (gray area) due to the forbidden overlap
of hard spheres 7 and j. The points x;, and zoyt represent the microstate immediately before and after
the collision between particles ¢ and j. The dashed curve between them denotes the continuous trajectory
obtained these points in a smooth potential approximation to the hard spheres potential.

Tin Tout

Figure 3: The same region of the phase space 'y« with the hole sown up, and the points xpre and xout
identified. The phase space trajectory is now smooth even during the hard spheres collision.

Finally, we submit that the choice for the incoming collision configuration is needed as
an independent ingredient for the validity of Lanford’s theorem. Indeed, it is crucially needed
to derive the desired result: If we take the phrase ”solutions of the BBGKY hierarchy” in this
theorem to refer to the BBGKY hierarchy with the original BBGKY collision term (29), the
theorem is false; similarly, if we would write the collision term in the form (54) the theorem
would be false too (it would imply convergence to the anti-Boltzmannn hierarchy). The
theorem does hold, however, if we adopt the collision term (32) in the BBGKY hierarchy, but
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as we have argued, the choice of this form of the collision term is not warranted by an appeal
to dynamics or topology, and should be explicitly recognized as an independent assumption.
A change in this choice will produce radically different conclusions. In particular, if one
does not make this choice, one does not succeed in obtaining convergence of p,(:z (1, ...2x)
towards the functions fi¢(z1,...xy) that solve the Boltzmann hierarchy. As we have noted
above, if one chooses the outgoing configurations, one would derive a different collision
operator: in particular, C(® = —C@, Accordingly, one would arrive at the conclusion that
if the initial values p,(fg of the rescaled probability densities converge to f o, then p,(:z will
converge to solutions of the anti-Boltzmann hierarchy with fro as initial conditions. And
for the measure-theoretic reformulation of the theorem, one would now have to conclude
that “most” phase points which approximate some initial shape of a distribution function f
will actually hug closely to a solution of the anti-Boltzmann equation for a time 0 < ¢ < 7,
instead of a solution of the Boltzmann equation. Therefore, as the goal of Lanford’s theorem
is to obtain the Boltzmann equation, one must opt for the incoming configurations. The
more so because for a solution f; of the anti-Boltzmann equation, the entropy —H(f;)
decreases monotonically in the course of time, and thus the theorem would not agree with
our observations at the macroscopic level. This further enforces our claim that the incoming
and the outgoing configurations cannot be identified, in that they lead to entirely different
predictions.

Since the question of whether we derive dH/dt < 0 or dH/dt > 0 is a substantive
issue, such a difference cannot be a latter of mere convention. Rather, for Lanford’s result
to be empirically correct, the choice of the incoming configurations is to be adopted. One
is then left with two options: either it is an automatic consequence of the hard-spheres
dynamics, as argued by Cercignani e.a., or it is introduced as an independent ingredient
in the theorem. However, the hard-spheres dynamics itself is clearly neutral towards the
distinction between incoming and outgoing configurations and does not entail preference
for one of these. The only option is thus that the choice of the incoming configurations must
be regarded as an explicit assumption in the statement of the theorem.

Let us conclude by stressing that the adoption of the incoming configurations as an in-
dependent condition in Lanford’s theorem plays a similar role as the pre-collision condition
in the Stoflzahlansatz in Boltzmann’s original H-theorem, in that it is responsible for the
emergence of irreversibility. There is, however, a perhaps surprising, crucial difference. If one
were to replace the pre-collision condition in the Stoflzahlansatz with a post-collision con-
dition, which applies only to outgoing rather than incoming particles, one would derive the
anti-Boltzmann equation. That is equivalent to apply a time-reversal transformation to the
Boltzmann equation. To the contrary, Proposition 5 in our Appendix shows that adopting
the outgoing collision configurations for the BBGKY hierarchy is not equivalent to adopt-
ing the incoming collision configurations for the BBGKY hierarchy followed by applying
a time-reversal transformation. Indeed, the resulting hierarchies of evolution equations are
different. To be sure, once one takes the Boltzmann-Grad limit, they both reduce to the
anti-Boltzmann hierarchy, but the fact remains that the outgoing configurations should not
be regarded, so to speck, as the time-reversal counterpart of the incoming configurations.
A lesson one may draw from this result is that, contra Lanford and Lebowitz’s proposal we
reported toward the end of section 4.1, one should not adopt the outgoing configurations
for negative times. Instead, one can insist on the incoming configurations, thus consistently
obtaining the Boltzmann equation even for ¢t < 0.
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6 Conclusion

We have investigated the problem of whether and how Lanford’s theorem explains the
emergence of irreversibility in the macro-evolution equations like the Boltzmann equation
or the Boltzmann hierarchy; in particular, we discussed whether the theorem represents
a rigorous version of the statistical H-theorem. We have seen that the theorem obtains
the approximate validity of the Boltzmann equation from the Hamiltonian equations of
motion by providing a link between the Boltzmann hierarchy and the BBGKY hierarchy
for the hard spheres model in the Boltzmann-Grad limit. We then criticized the different
analysis offered in the literature as to where irreversibility in Lanford’s result comes from.
We argued, contra Spohn and Lebowitz, that it cannot be explained by any measure-
theoretic considerations. Instead, the culprit for the emergence of irreversibility lies in the
choice of the incoming configurations of collision points, which is introduced when casting
the BBGKY hierarchy in a form amenable to derive the Boltzmann hierarchy. However,
such a choice is not merely conventional, as Lanford maintains, nor does it follow from the
hard-spheres dynamics, as Cercignani e.a. suggest. Rather, the adoption of the incoming
collision representation is an independent ingredient which is necessary in order to obtain
the sought-after results. In fact, our main claim is that it ought to be included as an explicit
assumption of the theorem.

We conclude the paper by pointing out some remarks worth noting about Lanford’s
theorem.

First of all, there is an issue stressed by Lanford himself and nearly all subsequent
commentators. It concerns the validity of his result, that is the fact that the theorem
holds for a time length 7 of the order of 1/5 the mean free time. Since this time scale, for
realistic gas systems under ordinary circumstances, will be of the order of a milliseconds,
the theorem will hardly be enough ammunition to provide a justification of the Boltzmann
equation through macroscopic time scales, or even the time scale in which equilibration sets
in. It is true that Illner and Pulvirenti (1986, 1989), have derived a longer validity but only
under much more stringent conditions, i.e. for a gas cloud expanding into a vacuum.. As a
matter of fact, this repeated attention to time scale has deluded views from more serious
problems. Indeed Lanford already pointed out that there is a simple, if merely technical,
“fix” to the above problem: one would only need to require that assumption (i) of the
theorem holds for arbitrary times, and not just at ¢ = 0, and Lanford’s result may be
extended to all times. This issue will be taken up somewhere else®.

However, in our opinion, a more serious drawback to the applicability and physical
relevance of Lanford’s theorem lies in the usage of the Boltzmann-Grad limit. As we have
seen, this limit implies that the density of the gas goes to zero, and hence that the result
applies to infinitely diluted gases. And while it seems reasonable to impose this limit in
order to give the Boltzmann equation a fighting chance to be valid, it also means that the
thus-obtained result can hardly be relevant to real-life gas systems in which the density is
not close to zero. The main merit of Lanford’s theorem is therefore conceptual, in that it
makes a case that, under precise conditions on the initial data, the Boltzmann equation can
be derived from Hamiltonian mechanics, although just in rather idealized circumstances.

5. See Valente (2010).
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7 Appendix

In this appendix we consider in more detail the issue of time-reversal invariance for the
Boltzmann equation and two versions of the BBGKY hierarchy equations and prove the
claims concerning this issue in the body of the paper. The commonly accepted criterium for
judging time-reversal invariance of such evolution equations, describing a density function
(either f or py) over particle configurations is as follows: the equation determines a class S
of allowed solutions, where each solution can be seen as a ‘history’ of the density function,
either H := {f;, t € R} € S or H := {pr+, t € R}, carving out, so to say, a trajectory in
their respective spaces of all conceivable density functions.

Now consider a time-reversed version of such a history, defined as TH := {f_, t € R}
or TH :={pg,—+t € R} , where fi and py; are obtained by reversing the momenta in their
arguments: f;(¢,p) = fi(q,—p) , and pi(q1,01; - - G Ph) = Prt(Q1, =P - - - Gy —Pi)- The
question is then whether such a time-reversed history 7 H is a solution of the equation too,
whenever H is a solution of the equation in question. In other words: Is TH € S whenever
T € S7? If the answer is yes, the equation is time-reversal invariant, otherwise not.

Now in all cases considered below, we are dealing with equations that are first-order
differential equations in time. Hence a solution is in principle fixed by choosing an initial
value condition f;, or py ., at some instant of time ¢;. Thus, it is sufficient for the purpose
of determining the time-reversal invariance of these equations to study how they transform
under a replaceal of ¢t — —t, and f;; — fi, OF Pr.ty — Prito-

Moreover all equations we consider below are invariant under time translation. There-
fore, it is immaterial which instant of time is taken as the origin of the reversal. That is to
say, it does not matter whether one takes t — —t or (t —t9) — —(t —ty), for any value of
to. We will take advantage of this by supposing that the time ¢ = ¢; in the equations studied
below is the origin of the time reversal, and therefore invariant under the transformation,
so that the only temporal change needed in the transformation is % — —%.

Our strategy will be the same in all three cases. We consider an arbitrary solution of
the equation and construct from this a time-reversed history, and derive the equation it
obeys. If the resulting equation is equivalent to the original equation we have proved that
the original equation is time-reversal invariant. But if it is not, the original equation is not
time-reversal invariant.

Proposition 1. The Boltzmann equation (8) is not time-reversal invariant.

Proof. Since nothing interesting happens to the position variables in (8) we will suppress
them in the notation below, and also put the mass m = 1. Note that p; is the only
independent momentum variable in the equation: p> appears only in the right-hand side as a
mere integration variable and the outgoing momenta variables py’, p,’ in the collision integral
are functions of p;: that is, p;" = p,/(p1,p2) = Tiy, (P1, P2). So, under the transformations
0/0t — —0/0t and p) — —p}, the left-hand side of (8) transforms into

0 0 0 - o -
—aft(—p?) —pr- %ft(—ﬁl) = —gft(ﬁl) —Pi- 8_cfft<ﬁl> (55)

while the right-hand side of (8) becomes

Na? /dﬁg/ didya (—p1 — P2) - Wiz [fe(1”) fe(P2") — fe(=p1) fe(P2)] (56)
W12+ (P1+p2)<0
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Here, the notation p;” is used to indicate that these momenta have be thought of as functions
Of ( p17p2) (ﬁll/7ﬁ2//> = TW12<_ﬁ17ﬁ2)-

If we now perform an additional (cosmetic) transformation of the integration variables
Po —> —pPy and wya —> —wig, (H6) can also be written as

Na? /dp2/ )>Odw12 (pl P2) W2 [ft(p1 )ft(q//) ft(—ﬁl)ft(—ﬁ2)] (57)

where (p)"”, py") == T,,,,(—p1, —p2). But T, is a linear operator, and therefore p,"” = —p;’.
If we now substitute back f; (;5') f:(=p) in (57) and equate the transformed left-hand side
(55) of (8) to the transformed right-hand side (57) of (8), we find that the reversed solution

satisfies the equation

_ 0 -
— = Je(Ph) — P - a_q»ft<ﬁl) =
Na? /dﬁg/ didya (P1 — P2) - Di2 [ﬁ(ﬁl’)ﬁ(ﬁ2’) - ﬁ(ﬁ1)ﬁ(ﬁ2)] (58)
W12+(P1—P2

also known as the anti-Boltzmann equation. We conclude: whenever the solution {f; ,t €
R} satisfies the Boltzmann equation, the time reversed solution {f_; ,£ € R} solves the
(inequivalent) anti-Boltzmann equation, and therefore, the Boltzmann equation is not time-
reversal invariant. O

Proposition 2. The BBGKY hierarchy with the collision term expressed by (29) is time-
reversal invariant.

Proof. Recall that the BBGKY hierarchy has the form:

apl(gcjt) ('xh B ka)
ot

In this equation, we deal with k particles (the momentum of the k + 1th particle appears
in (29) only as an integration variable). If we reverse sign of the momenta pj, . .. p;, and the
sign of /0t it is easy to see the the left hand side of (65) changes sign. But here, the right-
hand side (29) clearly changes sign too when we change sign of all momenta pi, ..., pki1,
due to the fact that the integration over the antisymmetric factor (41 (Prr1 — §i)) in
the integrand is extended over the entire unit sphere. More explicitly, if we use the notation

(ql, —p;) along x; = (¢, p;), the transformed version of the left-hand side of equation

- Hkpz(fz (xlv REERY ) <Ck k+1pk—21 t) (xlv cee 7xk) (59)

— oy (@1, d) + Hpl) (- B = — o pe (@) + Hepy) (2, m) (60)

while the right-hand side transforms into:

k
<Clg?lz+1pl(~cﬁl,t> (Z1,...7)) = Na* Z /3 APt /2 ;i1 (i1 - (Por + 7))
i=1 /R o

X ,ngzl(fl, ce Ty G+ au—ji,k-i-lvﬁk-i-l) (61)
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Hence, if we rewrite the integration variable py.; as —pk41, we obtain from (61):

k
(Cé?,iﬂp,ﬁ‘fil,t) (Z1,...,%) = —Na’ Z /gﬁkJrl /gﬁz,kﬂ (@i pot1 - (Posr — 17))
— Jr s

X ,05521(517 s 7jk7 C.TZ + a'aji,k-i—l) _ﬁk-i-l)
k
= —Na® Z /Rgﬁk+1 /SQd@,kH (@',kﬂ : (ﬁk+1 - 171)) 52?1(9517 s Tk G aﬁi7k+1>ﬁk+1)
i=1

(62)
Comparing this with (29), we conclude
(Clhiapiie) o) = =€ A @ 2) (63)

Putting (60) and (63) together, we see that the time-reversed version of an arbitrary solution
of (59) obeys the equivalent equation

0 _(a
atpkt + Hkpkt = -} J1P I(cJZIt (64)
This shows that if {pk+1 ¢t € R} solves equation (59), then {pk+1 _,,t € R} solves the
same equation, so that we can conclude that (59) is time-reversal invariant. a

Proposition 3. The BBGKY hierarchy with the collision term expressed by (32) is not
time-reversal invariant.

Proof. Recall that, after adopting the incoming representation for collision points, the
BBGKY hierarchy takes the form:

ap(a)<x17..-,xk) o
= ot — Hy Pk it ($1a o Ty) = <Ck k+1pkj31 t) (T1,..., %) (65)

where the left-hand side is the same as in (59), but the collision operator is now expressed
by (32).

Here, we are again dealing with £ particles, but in this case both incoming and outgoing
momenta appear in the same formula, just as in the Boltzmann equation. And just as in the
Boltzmann equation, one ought to take the outgoing momenta variables here as (implicit)
functions of the incoming momenta: (p;’, Py} ,) = To, ., (Dis Pr+1)-

We now apply a combination of the arguments we used above to judge the time-reversal
invariance of the Boltzmann equation and the BBGKY hierarchy in the version (59): we
replace 0t/0t by —0t/0t and (x1,...,x) by (Z1,...,Tx). Since the left-hand side is the
same as in (59), we draw the same conclusion: this side transforms into (60). But we have
to scrutinize the behaviour of the right-hand side in more detail. This side transforms to:

a) — — — — —
(C k+1pk+1> (Z1,...,3) = —Na’ E / A 41 1 Gi g1 - (Pi + Phr)
Wi k1 (PitPr+1)<0
x[m@ TP Fier e — a0
pk;+1 17"'7x2717QZ7pi 7xl+17---xk7QZ aw, Py

- p/(:i)-l(:i‘la s a‘%i—la Cjia _]5;7 ji-i—la s jk) C.TZ + (1,(25, _ﬁkﬂ—l)} (66)
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Where, as before, the variables (p;’,p),,) are defined as (p;’, P 1) = T,y (=D Prt1)-
Repeating a similar step of our first argument, we perform a conventional transformation
on the integration variables pyy1 — —Drt1 and w, 11 — —w;k+1 and use that the
primed momenta transform into (p;’, i) = T, ., (=P, —Pkt1) = (=0;s —P)/1) to rewrite
the integral as

(Cé“;iﬂp;i?l) (Z1,...,4k) = Na? Z/ dpk+1/ di k1 Gi 1+ (Pi — Diet1)
@i, k41 (Pi —Pr+1) 20
(a) g ‘ P d 4 ad. —)
X [pk;-yl(xlu"wxzfluqm p@ 7‘r2+17---xk7ql+aw7 pk+1)
- pgil(:i‘la v 7ji—17 Cjia _]3;7 "Z‘H-la v jk) C.TZ - aaja _ﬁk-f-l)} (67)

For the purpose of comparison of this result with the original equation, we use two
further conventions. First, we make the condition ¢y4+1 = ¢ % adj; x11 in the integrand of
(67) more explicit by introducing an extra integration over g1, while including a delta
function 6(gr+1 — ¢ F aW; x+1) in the respective terms in the integrand. Accordingly,
P;(ﬁzl(%, e Ty @ £ AW ey 1, Pry1) = O( Qo1 — G F a@,m)pfﬂl(wl, ey Thy) (68)
Secondly, we introduce a formal operation on probability density functions that implements
the transformation of (p;, pi+1) — (7', P}, 1) in their arguments, for which, with a slight

abuse of notation, we use the symbol already in use, T, , . ,. Thus, we define:
Twi,k+1pg21(x17 s 7(_27]717 e Lk §k+17ﬁk+1) = szz1(l‘1> s 7@7]5;'/7 v Ty §k+17ﬁk+1/) (69)

So, we can write

Twz k+1ﬁl(€021<x17 s 7xk+1> = plg?1<j17 s 7'%i*17 q_;ﬁ _ﬁilv '%iJrlv e 'flﬁ q_;<~‘+17 _ﬁk/—i-l) (70)

In this notation, we can rewrite (67) as

(G, 100 @1 24) = Na? Z / Dty / 051 Brger - (o — Pos)
Wi kg1 (Pi—Prs1)>0
X [5((fk+1 — i —a@,kJrl)Twi’kHﬁ;(ﬁzl(ﬂfla oo Teg1) = 0y —qz'+awi,k+1)/7;(;:21(3717 . 7«Tk+1)}
(71)

while the original collision operator (32), for comparison, takes the form

(Clg k+1pk-1)-1> (z1,...,2%) = Na? Z /dfb’kﬂ/ dd; jo1 i1 - (Di — Prt1)
i k17 (P —Pr+1)=0
X [5(6719—1—1 —q; +a"‘_ji,k+1)Tw1 k+lpi(~c£1($1, Sy $k+1) _5(Qk+1 —qi— awi,k+1)p$1($1, ) $k+1)}
(72)

Now, in analogy to the previous case (cf. Eqn. (63)), we inquire whether

AN(a a ~ ~ ? a _
(C’,(Cv,zﬂp( )> (T1,.. ., Tg) — — (C,g ,2+1p( )> (T1,..., %) (73)
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holds. But on inspection, we find that (C’,gagﬂp(“)) (Z1,...,7x) as expressed by (71) is

almost, but not quite, equal to (C’ k+1pk+1> (x1,...,2x) as obtained from (73) by substi-

tuting p by p, since the position argument ¢x; is displaced in different directions in the
two terms of the last factor of the integrands in (71) and (73) . (Of course, the distinction
between these two expressions will disappear in the limit a — 0. )

Nevertheless, for the purpose of testing time reversal invariance, we can conclude that
in general

(c,gang( >) (Z1,...,050) # — (c,g )P ) (z1,. .., zx) (74)

because nothing prevents us from considering special initial conditions for the BBGKY
hierarchy for hard spheres, with the property that, for all 1 < k < N, pl(f) (x1,...2p) is
uniform over all allowed position coordinates, (i.e., it takes a constant value, for given
Dis- -, Pk, for all (¢, ..., qs) compatible with the condition ||¢ — ¢j|| > a (Vi # j) in the
domain of these probability density functions). For such a special case we do obtain

P (@1, Ty G — D, Prsr)) = P (@1, Tk @+ 0B, Prsr)) (T5)

, and thus 6(qy+1 — G + adi j+1) = 6(Gk+1 — G — a; g+1), which implies

(c,g )1 ) (F1,...,5) = (C,g ), ) (21, ..., 28). (76)

Note that this choice of special initial conditions does not commit us to the thermal
equilibrium solution, since no demand had been placed on the dependency on the mo-
mentum variables. In fact, the solutions might still deviate in an arbitrary manner from a
Maxwellian dependency. As a result, our choice is not trivial, in that both the left-hand
side and right-hand side of (76) will in general be different from zero.

So, if we introduce yet one more notational convention, and define a new collision é,éag:rl
operator to mimick the right-hand side of (71) by

k
(Clg k+1/) ) (1,...,2) = Na? Z /dkarl/ A jo1 i gey1 * (Di — Prey1)
i=1 @i k1 (Pi—Pry1

)>0
X [5(<fk+1 —qi— awz’,k+1)Twi,k+1pz(21 (T2, s Thy1) = 0( Q1 — G +a¢3z,k+1)/?;(:21 (T15 0, xkﬂ)}
(77)
we conclude that if {p,(fz t € R} is an arbitrary solution to the equation
apéfz(xl,...,xk) (a) )
ot — HPry (1, a8) = <Ck k+1Pk+1 t) (1, xx) (78)
the time reversed solution { /3/(:;)—1: t € R} will be a solution of the equation
Op) (w1, ..., xp) W .
— g ) = (G () (79)
but, since it does not hold generally that C,gak = C,gak 41, the equation is not time-reversal

invariant. =
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Proposition 4. The BBGKY hierarchy with the collision term expressed by (54) is not
time-reversal invariant.

Proof. Recall that, after adopting the outgoing representation for collision points, the
BBGKY hierarchy takes the form:

8p(a)(x1,...,xk) o
k.t = —Hkpi(g,t)(ﬂh,..., k) = (Ckkﬂpkllt) (T1,. .., x1) (80)

where the left-hand side is the same as in (59), but the collision operator is now expressed
by (54). Exactly the same analysis as in the proof of Proposition 3 applies here, and thus
in analogy to (74) we need to show that

(élg?lz+1p(a)> (@1,..., %) # — (Clg k+1/7(a ) (@1,...,28) (81)

Again, the special choice of initial conditions for the BBGKY hierarchy for hard spheres

with the property that, forall 1 < k < N, p,(f) (21, ...xx) is uniform over all allowed position
coordinates, yields

(CiRap®) @) = (G P (@, ). (82)

and so the rest of the proof carries over as in the previous proposition. O

Proposition 5. The BBGKY hierarchy with the collision term expressed by (54) is not
equivalent to the time-reversal transformation of the BBGKY hierarchy with the collision
term expressed by (32).

Proof. The BBGKY hierarchy with the collision term expressed by (54) is given by eq.(65),
whereas the time-reversal transformation of the BBGKY hierarchy with the collision term
expressed by (32) is given by eq ( ). Clearly, the two equations have the same form just in
case Ck bl = —C/,(C i1 Slnce Ck il = Ck %+1, We need to check whether Ck bl = Ck il
However, comparing (54) and (77) shows directly that the two collision operators differ in
general, in that the displacements +aw; ;41 and —aw; k41 for the position variables ¢; are
reversed: specifically, —aw; ;11 appears in (f,galz 41 Within the argument of p’gﬂzl with primed
momenta ¢;’, while it appears in Ck r+1 Within the argument of pgﬂzl with unprimed momenta
¢;; and vice versa for +aw; 1. O
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