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Abstract

Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the
immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation
and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to
considerable debate with different groups suggesting different mathematical models for that purpose. We show that the
three most common models, which are based on quite different biological assumptions, actually predict mathematically
identical labeling curves with one parameter for the exponential up and down slope, and one parameter defining the
maximum labeling level. By extending these previous models, we here propose a novel approach for the analysis of data
from deuterium labeling experiments. We construct a model of ‘‘kinetic heterogeneity’’ in which the total cell population
consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of
turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several
previously made experimental observations, such as a negative correlation between the length of the labeling period and
the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic
heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental
data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a novel way of interpreting
labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data
with variable labeling length.

Citation: Ganusov VV, Borghans JAM, De Boer RJ (2010) Explicit Kinetic Heterogeneity: Mathematical Models for Interpretation of Deuterium Labeling of
Heterogeneous Cell Populations. PLoS Comput Biol 6(2): e1000666. doi:10.1371/journal.pcbi.1000666

Editor: Angela R. McLean, University of Oxford, United Kingdom

Received May 22, 2009; Accepted December 30, 2009; Published February 5, 2010

Copyright: � 2010 Ganusov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the VICI grant 016.048.603 from NWO, Marie Curie Incoming International Fellowship (FP6), the Research Council for Earth
and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO), grant 836.07.002, and the U.S. Department of Energy
through the LANL/LDRD Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: None

* E-mail: vitaly.ganusov@gmail.com

¤ Current Address: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America

Introduction

There is little consensus about the expected life spans of

lymphocyte populations in health and disease. Labeling the DNA

of dividing cells with deuterium has proved to be one of the most

reliable and feasible ways to study the population dynamics of

lymphocytes in healthy human volunteers and in patients [1,2,3].

Deuterium, in the form of deuterated glucose or heavy water, is

used to measure the rate at which cells are dividing in vivo, without

the need to interfere with these cellular kinetics. Deuterium is

incorporated into newly synthesized DNA via the de novo pathway

[4], and enrichment of deuterium (over hydrogen) in the DNA of

cells is therefore related to cell division. During label administra-

tion, the fraction of deuterium-labeled nucleotides increases over

time, and after label withdrawal, the fraction generally declines

over time [2,3]. Labeling DNA with deuterium in humans has a

number of clear advantages over other labeling techniques such as

with BrdU, including the absence of toxicity, the fact that the rate

of incorporation of deuterium into the DNA is independent of the

amount of nucleotides present, and a simpler mathematical

interpretation of the data [5,6,4]. Several mathematical models

have been proposed for estimation of cellular turnover rates from

labeling data [1,2,7,8,9,10].

In their study on deuterium labeling, Mohri et al. [2] found that

the estimated rate of cell proliferation was typically smaller than

the rate of cell death. Because the cell population under

investigation was in steady state, the extra death must be

compensated by a source of cells, for example from the thymus.

This interpretation was challenged by the work of Asquith et al.

[9], which pointed out that estimated proliferation and death rates

do not have to be equal if the population is kinetically

heterogeneous (i.e., different cells in the population divide and

die at different rates). Because the labeled population preferentially

contains cells that proliferate (and die) relatively rapidly, the

estimated rate of cell death is in fact expected to be higher than the

average proliferation rate [9].

Here we extend these studies and propose an alternative

approach to estimate the rates of lymphocyte proliferation and

death from deuterium labeling experiments. First, we show that

the three most commonly used mathematical models lead to
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identical estimates of the average rate of cell turnover and only

differ in their biological interpretation of the model parameters.

Second, we formulate a novel mathematical model which

explicitly takes into account kinetic heterogeneity of lymphocyte

populations, and show how lymphocyte turnover rates can be

calculated using this model. Several previously made experimental

observations arise naturally from the new model. For example, we

find that the rate of label loss during delabeling generally exceeds

the rate of label accumulation during the labeling phase. Our

model also explains the dependence of the rate at which labeled

DNA is lost after label withdrawal on the duration of the labeling

period [9]. As a proof of principle, we demonstrate that the newly

developed model can fit artificially generated data, and correctly

returns their underlying kinetic parameters. We also illustrate the

usefulness of the new model by fitting it to several experimental

datasets. The novel explicit kinetic heterogeneity model may offer

alternative interpretations of how infections or treatments affect

the turnover of human lymphocytes in vivo.

Results

Previous models
Although different models have been proposed for interpreta-

tion of deuterium labeling data [2,9] and are being debated in the

literature, they are in fact mathematically identical, i.e., they

predict mathematically identical labeling curves with one param-

eter for the exponential up and down slope, and one parameter

defining the maximum labeling level. Following De Boer et al.

[11], consider a cell population consisting of a fraction a of cells

with average turnover rate d (i.e., an expected life span of 1=d
days), and a fraction 1{a of cells that do not turnover at all on the

time scale of the experiment. During the labeling phase, consider

the fraction of unlabeled DNA Ua in the sub-population with

death rate d. Because DNA is only lost by cell death, Ua changes

according to:

dUa=dt~{dUa:

During the delabeling phase the fraction of labeled DNA in that

same population (La) is described by:

dLa=dt~{dLa,

because labeled DNA can only be lost by cell death. Since

UazLa~1, the fraction of labeled DNA in the whole population

L(t)~aLa(t) is described by:

L(t)~
a 1{e{dt
� �

, if tƒT,

L(T)e{d(t{T), otherwise,

(
ð1Þ

where T is the duration of the labeling period. Given that only a

fraction a of all cells in the population are turning over (or dying)

at rate d , the average turnover rate of the whole population is

a|d [11]. Importantly, this approach does not require us to

describe how new cells are formed, i.e., they could be generated by

the thymus and/or by proliferation. As in our previous work [11],

this model assumes that the source produces cells with labeled

DNA during the labeling phase, and cells with unlabeled DNA

during the delabeling phase. This is in contrast with the model by

Mohri et al. [2] which allowed the source to produce both cells

with labeled and unlabeled DNA during both the labeling and the

delabeling period. The reason for this simplification is that the

model by Mohri et al. [2] was over-parameterized, i.e., the

different source constants cannot be reliably determined from

most labeling data (see [2] and results not shown). Moreover, the

simpler model with a source of cells with only labeled or unlabeled

DNA, typically describes the data with similar quality as the more

complicated models (e.g., [11]).

Because the fraction of labeled nucleotides cannot exceed one,

there is always a trivial asymptote at a~1. The explicit asymptote

a defined in the above model (and those discussed later) implies

that even after infinite labeling, the fraction of labeled nucleotides

will be saturated at a level aƒ1, which could be due to the

presence of non-dividing cells.

Extending the simple model given in Eqn. (1)by assuming n sub-

populations with different rates of cell proliferation pi and death

di, and possibly generation of new cells from a source si (Figure 1),

the fraction of labeled nucleotides in the whole population at time

t is given by:

L(t)~

Pn
i~1

ai 1{e{dit
� �

, if tƒT,

Pn
i~1

ai 1{e{diT
� �

e{di(t{T), otherwise,

8>><
>>: ð2Þ

where ai is the fraction of cells in population i with death rate di,

and a~
Pn

i~1aiƒ1 is the asymptote that would be approached if

label would be administered indefinitely. The only requirement for

the model defined by eqn. (2) is that cells within a given sub-

population must have identical kinetic properties. For instance, in

the absence of an acute infection, we expect that a clone of T cells

with the same antigenic specificity may form a sub-population with

identical kinetic properties (although there is no experimental

evidence for that, see also Discussion section). In our model, new

cells are produced by proliferation and from a source (Figure 1).

For naive T cells, the source could represent production of cells by

the thymus and for memory T cells the source could represent

activation of resting cells [12,11]. Even though the biological

interpretation of the source may not always be clear, this forms no

problem from a mathematical point of view, because the source

Author Summary

Understanding of cellular processes is impossible without
quantitative estimates of how quickly cells in an organism
divide and die. The most widely used approach to measure
rates of cell turnover in humans is by labeling dividing cells
with deuterium given in the form of deuterated glucose or
heavy water. Surprisingly, quantitative estimates of the
rates of cell turnover obtained from accumulation and
decay of the labeled nucleotides in the cell population
varied between different studies. We demonstrate that
these differences were not likely to arise because of
different mathematical models used in data fitting, since
the previously used models have an identical mathemat-
ical structure. We extend these previous models to allow
for cell populations with different rates of turnover and
show how such a new explicit kinetic heterogeneity model
can be applied to simulated and experimental data. The
new model opens a new way of interpreting data from
deuterium labeling experiments and will likely lead to new
insights into how infections and/or treatments affect cell
turnover in humans.

Models of Kinetic Heterogeneity
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term si never enters the expression for the fraction of labeled DNA

(see Eqn. (2)).

The ‘‘source’’ model that was previously proposed by Mohri

et al. [2] considered one homogeneous cell population, but allowed

for a source of unlabeled cells during the labeling phase, i.e.,
dU

dt
~sU{dU , which also gives rise to an asymptote a~1{ŝsU=d,

defining the fraction of cells that can maximally become labeled

(here ŝsU~sU=X where X is the total number of cells in the

population at equilibrium and sU is the number of cells with

unlabeled DNA coming from the source per day during the labeling

phase [2]). Mathematically, the source model is therefore identical

to eqn. (1). Similarly, in the kinetic heterogeneity model devised by

Asquith et al. [9],
dL

dt
~p UzLð Þ{dL~p{dL for the labeling

phase and
dL

dt
~{dL for the delabeling phase. Assuming pƒd one

again obtains Eqn. (1)with a~p=d . Therefore, all these models are

mathematically identical and only differ in the biological interpre-

tation of their model parameters (see also [13]). We propose to call

all these models the ‘‘asymptote model’’. Importantly, in all models

the product a|d can be interpreted as the average rate of cell

turnover of the population as a whole [11], and therefore, all three

models, when fitted to data, will deliver identical estimates of the

average turnover rate, which is the parameter of key interest. There

is an important drawback of this approach, however. By

interpreting labeling data only in terms of the average turnover

rate one may not be able to explain why the average turnover rate is

different, for example, between healthy controls and infected

patients, and what the consequences of such a difference may be.

One would need a particular biological model to explain such a

difference. However, our results show that multiple models could be

consistent with the labeling data and therefore, model specific

predictions arising from labeling data alone may not be robust to

changes in the model assumptions.

Kinetic heterogeneity model with continuously
distributed turnover rates

Because of its simplicity, the model given in eqn. (1) has two

limitations. First, the asymptote level is a phenomenological

parameter that depends on the length of the labeling period [9]. As

a consequence, datasets with different labeling periods will likely

give rise to different estimated asymptotes and different estimated

average rates of cell turnover. Therefore strictly speaking, this

model cannot be used to explain multiple datasets coming from

the same experimental setup varying only in the length of the

labeling period; the differences in the rate at which labeled DNA is

lost would force either the asymptote or the estimated average

turnover rate to be different for the different labeling periods (Den

Braber et al. in preparation). Second, the model assumes that the

increase in labeled DNA during the uplabeling phase, and the loss

of labeled DNA during the delabeling phase can be described by

single exponentials. This may be incorrect if cell populations with

different turnover rates are labeled and subsequently lost.

Under very general assumptions, we have formulated an

alternative model that does not make these a priori assumptions.

In our new model, a cell population consists of n sub-populations

each with different kinetic properties (see Figure 1 and eqn. (2)). If

the number of sub-populations is large (n??), the sum in Eqn. (2)

can be replaced by an integral. The fraction of labeled nucleotides

in the population then becomes (see Text S1 for derivation)

L(t)~

ð?
0

L(t,d)dd ð3Þ

where L(t,d) is given by Eqn. (1)where a~f (d) is the frequency

distribution of turnover rates, and f (d)dd is the probability that

a randomly chosen cell in the population belongs to a sub-

population with a turnover rate in the range (d,d zdd). If the

turnover rates in the population, f (d), follow a gamma distribution,

the change in the fraction of labeled DNA with time is given by:

L(t)~

1{ 1z
�ddt

k

� �{k

, if tƒT,

1z
�dd(t{T)

k

� �{k

{ 1z
�ddt

k

� �{k

, otherwise,

8>>>><
>>>>:

ð4Þ

where �dd is the average rate of cell turnover in the population, k is

the shape parameter of the gamma distribution, and T is the

duration of the labeling period. For k~1, the gamma distribution

becomes an exponential distribution, and the rate at which the

fraction of labeled DNA changes is simply:

L(t)~

�ddt

1z�ddt
, if tƒT,

�ddT

(1z�ddt)(1z�dd(t{T))
, otherwise:

8>>><
>>>:

ð5Þ

This is an interesting model in which a single parameter �dd predicts

both the rate of uplabeling and downlabeling, and in which there

is no asymptote below 100% for the level of labeled DNA, i.e.,

under continuous label administration all cells in the population

will become labeled (Figure 2). Moreover, this model predicts

that the initial rate d� at which labeled DNA is lost after

label cessation depends on the duration of the labeling period,

d�&�dd(1z(1z�ddT){1) (see Text S1 for derivation). According to

this model, short labeling experiments (�ddT%1, d�&2�dd ) will lead to

2-fold faster initial rates of decline in the fraction of labeled

nucleotides than longer labeling experiments (�ddT&1, d�&�dd).

Solutions (4) and (5) predict that the initial rate of increase in the

fraction of labeled DNA is the average rate of cell turnover �dd (see

also Text S1). However, the increase in the fraction of labeled

DNA does not appear to be exponential, as was implicitly assumed

in the asymptote models discussed above. Similarly, during the

delabeling period, the model predicts a non-exponential decline in

the fraction of labeled DNA (Figures 2 and 3). In general, the

initial rate of label loss during delabeling d� is given by:

Figure 1. A cartoon of the model with explicit kinetic
heterogeneity. In the model, the population of cells consists of n
sub-populations with different rates of turnover. In the ith sub-
population, there is a source of new cells that enter the cell population
at rate si cells per day, cells divide at rate pi per day, and die at rate di

per day. To maintain the size of all sub-populations constant,
di{pi~si=Xi for every sub-population i, where Xi is the number of
cells in the ith sub-population. In this model we assume that the source
produces only labeled cells during the labeling phase, and delabeled
cells during the unlabeling phase [11].
doi:10.1371/journal.pcbi.1000666.g001

Models of Kinetic Heterogeneity
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d�&�ddz
var dð Þ

�dd
, ð6Þ

where var(d) is the variance of the distribution of turnover rates in

the population. In case when turnover rates follow a gamma

distribution, the initial rate of loss of the label after short labeling

periods depends on the shape parameter k of the distribution,

d�&�dd(1z1=k), while it does not after long labeling periods

(d�&�dd). The rate of loss of labeled DNA slows down as less DNA

remains labeled, which is most clearly seen when proliferation

rates are distributed according to a very skewed gamma

distribution (kv1, Figure 3). This is a natural property of the

explicit kinetic heterogeneity model as loss of labeled DNA is

reflecting the distribution of the turnover rates of the different sub-

populations, with labeled DNA from the most rapidly turning over

sub-populations being lost first (early fast decline) and labeled

DNA from the other, more slowly turning over, populations being

lost later (late slow decline).

To study the effect of the shape of the turnover rate distribution

on the predicted labeling curve, we plotted the changes in the

fraction of labeled DNA as predicted by the model (Figure 3A&B)

with different gamma-distributed turnover rates (Figure 3C).

When the gamma distribution is highly skewed (i.e., kv1), the

majority of cell sub-populations have very low rates of cell

turnover, and the average rate of cell turnover is dominated by a

few sub-populations that turn over unrealistically fast. This is best

illustrated by calculating the cumulative contribution of a sub-

population with a particular rate of turnover to the average

turnover rate of the population �dd (Figure 3D):

b(d)~
1
�dd

ðd

0

xf (x)dx: ð7Þ

For large values of the shape parameter k (e.g., k~5), the sub-

populations with turnover rates that are close to the average

turnover rate �dd, are the main contributors to the average rate of

cell turnover (Figure 3D). When the gamma distribution is

extremely skewed (k~0:01), the rate of turnover of the sub-

populations that contribute significantly to the average turnover

rate is as high as 101{102 per day, which is biologically

unrealistic. Therefore, the gamma distribution should be rejected

whenever one estimates a high average turnover rate �dd with a

highly skewed gamma distribution (i.e., a low value of the shape

parameter k). As a rule of thumb, k should be larger than 0.1

(Figure 3D); otherwise a relatively large fraction of sub-populations

has unrealistically high turnover rates.

It is possible, however, that not all cells in the population are

turning over. The models above can easily be extended to incorporate

this possibility by allowing for the same asymptote as in eqn. (1). An

example would be a labeling experiment in which slowly turning over

naive T lymphocytes and more rapidly turning over memory

lymphocytes are not separated [2]. If only a fraction a of cells have

turnover rates that are distributed exponentially, and the other cells

undergo negligible turnover on the time scale of the experiment, the

change of the fraction of labeled nucleotides with time is given by:

L(t)~

a�ddat

1z�ddat
, if tƒT,

a�ddaT

(1z�ddat)(1z�dda(t{T))
, otherwise,

8>>><
>>>:

ð8Þ

where �dda is the average of the exponentially distributed turnover

rates, and the average rate of cell turnover in the whole population is

�dd~a�dda.

It should be noted that the results of this section are applicable

both to proliferating and non-proliferating lymphocytes, given the

general structure of the cell population in the model (see Figure 1).

As a downside of this, the model does not allow to estimate which

fraction of labeling of lymphocytes is due to proliferation of

precursors (e.g., thymocytes for naive T cells) or due to peripheral

proliferation of the lymphocyte population itself. Additional

experiments, such as thymectomy in case of studies of naive T-

cell turnover, may allow to estimate the separate contribution of

peripheral T-cell proliferation [14, Den Braber et al. submitted].

Fitting artificial data to validate the model
Having analytical expressions for several kinetic heterogeneity

models, we analyzed how well these models can recover the

(known) average turnover parameter from simulated (artificial)

datasets. Three models were used to generate artificial datasets: 1)

the kinetic heterogeneity model with gamma-distributed rates of

turnover (eqn. (4)), referred to as the ‘‘Gamma model’’, 2) the

kinetic heterogeneity model in which a fraction aƒ1 of cells have

exponentially-distributed rates of turnover (eqn. (8)), referred to as

the ‘‘Exponential model’’, and 3) a ‘‘Two population model’’ (Eqn.

(2) with n~2, turnover rates d1 and d2, average turnover rate
�dd~ad1z(1{a)d2, and d1w

�dd). These datasets were subsequently

fitted by the same three models as well as by the conventional

Asymptote model (eqn. (1)).

Figure 2.Model predictions for exponentially distributed turnover rates. We have plotted the changes in the fraction of labeled DNA
according to the explicit kinetic heterogeneity model with exponentially distributed turnover rates (eqn. (5), mean �dd~0:1=day). Predicted changes are
shown for a short labeling period (T~1 day, solid line) and a long labeling period (T~30 days, dashed line) on a linear (panel A) and a logarithmic
(panel B) scale. The initial uplabeling rate is independent of the length of the labeling period and is given by �dd . The initial rate of delabeling, in contrast,
depends on the length of the labeling period and is approximately twice as fast in the case of short-term labeling as compared to long-term labeling.
doi:10.1371/journal.pcbi.1000666.g002

Models of Kinetic Heterogeneity
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Not surprisingly, the models delivered correct estimates for the

average turnover parameter if a dataset was fitted with the model

that was used to generate the data (Table S1 and Figures 4 and 5).

All models described the data sets generated by the other models

reasonably well (Figure 4), although some features in the data

could not be reproduced. For example, the Asymptote model

failed to describe the decreasing rate at which labeled DNA is lost

over time, which is observed in the data generated by the Gamma

and the Exponential models (see last data points in Figure 4). Some

model fits delivered incorrect estimates for the average turnover

rate if the data were generated using another model. For example,

the Gamma model overestimated the average turnover rate when

the data were generated using the Exponential model (up to 2-

fold), and underestimated �dd for data generated using the Two

populations model (over 2-fold). This is most likely due to the

strong constraint of the model that both uplabeling and delabeling

curves have to be described with one mechanism, i.e., gamma-

distributed turnover rates. On the other hand, the Asymptote

model always underestimated the true average turnover rate (up to

2-fold for data generated by the Two-populations model; Table

S1). It did perform somewhat better than the Gamma model as

judged by the mean square distances, because the rate of

uplabeling and downlabeling are relatively independent in the

Asymptote model.

Given that natural lymphocyte populations are likely to contain

resting sub-populations, some extent of saturation in the fraction of

deuterium-labeled nucleotides is expected in almost any experi-

mental dataset. In our artificial data, such an asymptote was

imposed when using the Exponential model by letting only 50% of

all cells to turn over (Figure 4 and Table S1). It is therefore not

surprising that the Gamma model, which does not have an explicit

asymptote in the uplabeling phase (see eqn. (4)), did not correctly

estimate the average turnover rate for the data generated by the

Exponential model (Figure 5). Extending the Gamma model to

allow for an explicit asymptote during the labeling phase (a)

indeed improved the estimate of the average turnover rate
�dd~a�dda~0:13 day{1 (with 95% CIs = 0:095{0:22 day{1 which

includes the true average �dd~0:1 day{1), even though the

estimated fraction of turning over cells a was not significantly

different from 1 (i.e., an F-test would not reject a model with a~1;

results not shown). This exercise illustrates that when fitting

experimental data one should check whether allowing for an

explicit asymptote in the uplabeling phase leads to different

estimates of the average turnover rate. Interestingly, all models

underestimated the average rate of cell turnover when the data

were generated using the Two populations model. This is because

the models did not reproduce the relatively rapid accumulation of

the labeled DNA in the first days (Figure 4). Fitting the Two

populations model to these data led to better estimates of

the average turnover rate (�dd~0:084 per day with 95%

CIs = (0:062{0:35) for 7 days of labeling, and �dd~0:26 per day

with 95% CIs = (0:061{0:44) for 15 days of labeling, where the

constant �dd~0:1 day{1 is contained within both ranges, results not

shown).

Although stable isotope labeling seems to be the best tool at

hand to estimate rates of lymphocyte turnover, a recent review

[10] pointed out that estimated lymphocyte turnover rates differ

consistently, depending on the labeling method used (heavy

water or deuterated glucose), and the length of the label-

ing period. A priori, according to the Asymptote model that is

Figure 3. Model predictions for gamma-distributed turnover rates. We have plotted the changes in the fraction of labeled DNA according to
the kinetic heterogeneity model with gamma-distributed turnover rates (eqn. (4)) with average turnover rate �dd~0:1/day on a linear (panel A) or
logarithmic (panel B) scale. Predicted changes are shown for different values of the shape parameter k. Larger values of k correspond to a more
symmetric distribution (Panel C). For low values of the shape parameter k, the loss of labeled DNA after label cessation is biphasic, which is most clearly
visible on a logarithmic scale for kv1 (panel B). This characteristic of the kinetic heterogeneity model differs from the Asymptote models which have a
constant per capita rate at which labeled DNA is lost. Note that for shape parameters kv1, the distribution of turnover rates f (d) becomes extremely
skewed with most cells undergoing hardly any division and relatively few cells undergoing extremely many rounds of division (panel C). Panel D gives
the cumulative contribution of sub-populations with a particular turnover rate d to the average rate of turnover of the population �dd . The vertical line
shows the value of the average proliferation rate �dd . For high values of the shape parameter (k~5), the cell sub-populations with turnover rates that are
somewhat lower or higher than �dd give the main contribution to the average turnover rate. In contrast, for low values of k (k~0:01), the major
contribution to the average turnover rate comes from sub-populations with extremely rapid turnover rates (d&�dd); about 50% of the average turnover is
due to a few sub-populations with turnover rates that exceed 10 per day, which is biologically unrealistic.
doi:10.1371/journal.pcbi.1000666.g003

Models of Kinetic Heterogeneity
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Figure 4. Fits of artificial (simulated) data with various models. We have fitted artificial data (black dots) with the Asymptote model (eqn. (1),
solid black lines), the Exponential model, in which a fraction a of the cells have exponentially distributed turnover rates (eqn. (8), small red dashed
lines), and the Gamma model with gamma distributed turnover rates (eqn. (4), large green dashed lines). Data were generated using the Gamma
model (panel A&B), the Exponential model (panel C&D) and the Two-populations model (panel E&F, Eqn. (2)), respectively. Thin blue lines show the
exact curves of the models that were used to generate the data. The different models were fitted to 11 datapoints taken from these predicted curves
after having added noise to these data points. Noise was added by a relative change of the predicted value with a normally distributed error (with
standard deviation of the distribution s~0:1). The models were fitted to data from artificial labeling experiments in which the label was administered
for 7 (left panels) or 15 (right panels) days. Parameter estimates providing the best fit are shown in Table S1, and the corresponding estimates of the
average rates of cell turnover �dd are shown in Figure 5. Parameters used to generate the data are also given in Table S1.
doi:10.1371/journal.pcbi.1000666.g004

Figure 5. Average turnover rate estimated obtained by fitting mathematical models to simulated data. By fitting the artificial data
described in the text, we estimated the average turnover rate using three models: the Asymptote model (eqn. (1)), the Exponential model (in which a
fraction a of cells have exponentially distributed turnover rates, eqn. (8)), and the Gamma model (with gamma-distributed turnover rates, eqn. (4)).
Estimated mean values and 95% confidence intervals obtained by bootstrapping the residuals with 1000 simulations are shown. Data were generated
using the Gamma model (empty bars), the Exponential model (gray bars) and the Two-populations model (black bars). Labeling periods were 7 (panel
A) and 15 (panel B) days. Horizontal dashed lines denote the actual average rate of lymphocyte turnover in all data, �dd~0:1/day. Note that in this
example, the Asymptote model always underestimated the average rate of cell turnover, and that there is a systematic 2-fold underestimation of the
average turnover by all models when the data from the Two-populations model were fitted. This is because all three models fail to describe the
relatively rapid accumulation of the label at early time points (see Figure 4E–F).
doi:10.1371/journal.pcbi.1000666.g005
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generally used, the estimated average turnover rate should not

depend on the length of the labeling period. Using our explicit

kinetic heterogeneity models, we analyzed the influence of the

length of the labeling period on the estimated average turnover

rate. For all models, we found that the duration of labeling had

little influence on the estimated average turnover rate (for the

chosen labeling periods of 7 and 15 days, Table S1). This suggests

that longer labeling periods will not necessarily result in lower

estimates of the average cell turnover rate than shorter labeling

periods.

An overall conclusion of this analysis is that without a good

understanding of the underlying model of cell proliferation

(i.e., the distribution of turnover rates in the population), one

may obtain incorrect estimates of cellular turnover rates, even

if the quality of the fit to the data is acceptably good.

Therefore, when analyzing experimental data, one should aim

at using several alternative models for fitting, and investigate

whether estimates of kinetically important parameters, such as

the average rate of cell turnover, are independent of the model

used. There are two possible outcomes of such an analysis.

First, fitting multiple models to data may yield similar

estimates of the average rate of cell turnover. This would

imply that the average turnover rate can be robustly estimated

from the data, even though the precise model for cell kinetics

cannot be determined from such an analysis. Second, the

estimate of the average turnover rate may depend on the

model that was used to fit the data, while the quality of the fit

of various models to the data was similar. In this case, the

estimate of the average rate of cell turnover is not robust to

changes in the model. Additional data on cell kinetics (e.g., the

fraction of cells in division or the fraction of dying cells) would

then be required to discriminate between the alternative

models for cell kinetics, and to obtain more confident estimates

of the average rate of cell turnover.

Fitting experimental data
We next sought to determine how well the new kinetic

heterogeneity models fit experimental data. Using deuterated

glucose, Mohri et al. [2] obtained labeling data of T lymphocytes

from uninfected healthy human volunteers and from chronically

HIV-infected patients. Previously, these data were fitted using an

extended 4-parameter source model, to estimate the rates of cell

division and death of T lymphocytes in healthy humans, and to

obtain insights into how these rates change upon HIV-infection

[2]. Lymphocytes were sorted into CD4+ and CD8+ T cells,

without distinguishing between their naive and memory subpop-

ulations. Since naive T cells have a much slower rate of turnover

than memory T cells [3], it is natural to assume an asymptote in

the fraction of labeled nucleotides of unsorted CD4+ and CD8+ T

cells.

We have refitted the labeling data from the four healthy human

volunteers studied by Mohri et al. [2], again using the three

models for cell proliferation: the Asymptote model (eqn. (1)), the

Exponential model (with a fraction a of cells with exponentially

distributed turnover rates, eqn. (8)) and the Gamma model (with

gamma distributed turnover rates, eqn. (4)). The data were fitted

simultaneously for all four healthy volunteers while searching for

the minimal number of parameters that describe the data with

reasonable quality (using a partial F-test for nested models [15]).

Because cells with deuterium-labeled DNA appear in circulation

only a few days after the start of labeling [5], we allowed for a time

delay in our model.

Overall, the models described the data reasonably well (Figure 6

and Table S2 and S3). For CD4+ T cells, the average turnover rate

and the delay at which labeled cells appeared in the blood did not

differ significantly between patients (Table S2). For all volunteers,

the average rate of turnover was about 0.46% per day with a

corresponding estimated half-life of ln 2=�dd&151 days. There was

an average delay of one day before labeled cells appeared in the

Figure 6. Fits of the deuterium labeling data with mathematica models. Data on labeling of CD4+ (top rows) and CD8+ (bottom rows) T cells
in four healthy humans were fitted by three models: the Asymptote model (panels A and D), the Exponential model, in which a fraction a of cells have
exponentially-distributed turnover rates (eqn. (8), panels B and E), and the Gamma model, with gamma-distributed turnover rates (eqn. (4), panels C
and F). Experimental data obtained from Mohri et al. [2] are shown as symbols and the curves are the best model fits. The sum of squared residuals of
the model fits to the data on the dynamics of CD4+ T cells are (6:19,5:94,5:87)|10{3 for the Asymptote model, the Exponential model and the
Gamma model, respectively. The sum of squared residuals of the model fits to the data on the dynamics of CD8+ T cells are (3:4,3:85,1:56)|10{3 for
the Asymptote model, the Exponential model and the Gamma model, respectively. Note that the two explicit kinetic heterogeneity models describe
these data with similar (Exponential model) or even better (Gamma model) quality compared to the Asymptote model.
doi:10.1371/journal.pcbi.1000666.g006
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blood. The average turnover rate of CD4+ T cells from control c1

was always higher than that of the other individuals, irrespective of

the model used (Figure 7A), which may be a sign of an immune

response to an infection in c1 (see also below). Both the Asymptote

model (a&15%) and the Exponential model (a&25%) predicted

an asymptote in labeling that is smaller than the fraction of

memory phenotype CD4z T cells in humans of that age [3]. The

Gamma model could describe these data even better than the

other two models with no need for an asymptote. The observation

that the estimate of the asymptote can differ dramatically between

different models reconfirms our statement that this parameter is of

little use for data interpretation [11].

For CD8+ T cells, the parameters differed significantly between

different healthy volunteers, with the exception of the asymptote

level a in the Exponential model which could be fixed between

individuals. The estimates of the average turnover rates of CD8+ T

cells in healthy volunteers c2–c4 did not strongly depend on the

model that was used to fit the data. However, the estimated

turnover rate of CD8+ T cells in individual c1, which was much

higher than the estimated turnover rate in the other healthy

volunteers, depended strongly on the model used and was

estimated to be the highest when using the Gamma model. The

latter model fitted the labeling data from all four individuals very

well and reproduced the non-exponential change in the fraction of

labeled DNA in the downlabeling phase (Figure 6F). In all four

healthy individuals, CD8+ T cells turned over at a slower

rate than CD4z T cells; the average turnover rate of CD8+ T

cells was �dd~0:29% per day with a corresponding half-life of

ln 2=�dd&239 days. The fits of the Asymptote model and the

Exponential model predicted an asymptote in labeling of a&0:15
(Table S3). Even though the Gamma model lacks an explicit

asymptote lower than 1, it fitted these data with equally good

quality as the models with explicit asymptotes. Allowing for an

explicit asymptote in the Gamma model did not improve the

quality of the fit (CD4+ T cells: pw0:38, CD8+ T cells: pw0:99, F-

test), and the estimated average lymphocyte turnover rates were

not affected by the addition of an explicit asymptote (results not

shown).

It is important to investigate whether the good description of the

data of the model with gamma distributed turnover rates is

achieved with biologically reasonable parameter values. In all data

we estimated the shape parameter of the gamma distribution to be

small, i.e. kv1, but k was estimated to be larger than 0.1 in seven

of the eight fits. Low values of the shape parameter k imply that in

the population most cells turn over at very slow rates while a few

populations turn over very rapidly. To investigate whether such a

distribution is biologically reasonable, we calculated the fraction of

cells in the population with a turnover rate higher than dmax~1
per day which is the maximal rate of CD8+ T-cell proliferation in

rhesus macaques [16]. This fraction is given by
Ð?

dmax
f (d)dd for the

estimated parameters of the distribution (see Table S2 and S3). For

most fits, the fraction of cells with turnover rates higher than 1 per

day is ƒ10{11, and given the estimated total number of

lymphocytes in humans of *1012 [17], that would yield only a

few cells with unrealistically high rates of turnover. However, for

the CD8z T cells of healthy volunteer c1 we found that

*3|10{5|1012~3|107 cells turn over at rates higher than 1

per day, which is unrealistically high.

To investigate this further we reanalyzed the CD8+ T-cell

labeling data of individual c1 using several extended models. In

the first model, a fraction a of cells in the population have gamma-

distributed turnover rates while the other fraction (1{a) of cells

turn over at the highest possible rate dmax~1 day{1. This

situation may correspond to a scenario where a small fraction of

CD8z T cells is responding to an infection. However, this model

failed to describe the data with biologically reasonable parameter

values (a&1 and k~0:03).

In the second extended model, the gamma distribution of

turnover rates was truncated at a maximal value dmax~1 (see Text

S1 for analytical results). The fit of this model to the labeling data

for individual c1 was of similar quality as the fit in which the

gamma distribution was not truncated, and it delivered similar

estimates for the average turnover rate and the shape parameter

(�dd~0:66% per day and k~0:030, results not shown). We estimate

that in healthy volunteer c1 about 0.1% of all CD8+ T cells are

turning over rapidly at rates between 0:5{1:0 per day, which is

reasonable. For example, in mice responding to lymphocytic

choriomeningitis virus (LCMV) infection, at the peak of the

immune response more than 50% of all CD8+ T cells in the spleen

are specific for the virus [18,19].

Finally, in the third model, we assumed that the CD8+ T-cell

population in volunteer c1 consists of naive, memory and effector

Figure 7. Estimates of the average turnover rates of human T cells. Data on deuterium labeling of CD4+ (panel A) and CD8+ (panel B) T cells
in four healthy humans were fitted with three different models: the Asymptote model (empty bars), the Exponential model (gray bars), in which a
fraction a of the cells have exponentially-distributed turnover rates, and the Gamma model (black bars) with gamma-distributed turnover rates. Best
fits of the data are shown in Figure 6, and estimates of all parameters of the models are shown in Tables S2 and S3. Confidence intervals were
obtained by bootstrapping the residuals with 1000 simulations. Note that all models deliver very similar estimates for the average turnover rate �dd ,
with the exception of the estimated CD8+ T-cell turnover rates in individual c1 which are highly model-dependent.
doi:10.1371/journal.pcbi.1000666.g007
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T-cell subpopulations with 3 different rates of turnover (see Eqn.

(2) with n~3). Assuming that the rate of turnover of naive T cells

is 0 and that letting for effector cells dmax~1 per day, we could

obtain excellent fits of the labeling data with an estimated average

turnover rate �dd~1:4% per day (95%CIs~(1:2{1:6)% per day)

which is much higher than estimates obtained by other models

(Figure 7). Using model selection methods such as the Akaike

Information Criterion, we found equal support for the latter model

and the model in which the turnover rates follow a truncated

gamma distribution [20, results not shown]. We can conclude,

therefore, that the average turnover rate of CD8+ T cells in

volunteer c1 is at least 0.62% per day (Gamma model) and could

be as high as 1.4% per day (Three population model). In

summary, it seems that the average turnover rate of both CD4+

and CD8+ T cells was increased in individual c1 as compared to

other individuals, and this could be explained by a normal

immune response in this otherwise healthy volunteer. Differences

in CD8+ T cell kinetics between individuals c1 on the one hand

and c2–c4 on the other, were in fact to be expected from visual

inspection of the labeling data, because those from individual c1

reached a higher peak and had a faster decline in the fraction of

labeled DNA after the peak than those of the other volunteers (see

Figure 6F).

Discussion

In this paper we have analyzed the models that are commonly

used in the literature to estimate the rates of cell turnover from

deuterium labeling data (see Table 1 for a summary of our main

results). We have shown that the three most commonly used

models are mathematically identical and therefore provide

identical fits to the data. These models, however, differ in the

biological interpretation of the estimated parameters [13]. The

simplest summary of labeling data is provided by a model that has

two parameters: d as the rate of cell death in the population, and

a as the fraction of cells that undergo turnover, which determines

the asymptote of the uplabeling phase (see eqn. (1)). In this model,

a|d gives the estimated average rate of cell turnover. We have

extended this model by allowing for multiple sub-populations i of

size ai with different turnover rates di (see Eqn. (2)). This

extended model can be used to investigate potential heterogene-

ity of cell populations, by fitting labeling data with a model that

has one, two, or more sub-populations with different turnover

rates. Using standard techniques of model selection (e.g., the

partial F-test or the Akaike Information Criterion), one can

investigate which of those models describes the labeling data best,

given the number of model parameters [15,20], or one can study

whether the estimated average turnover rate is converging to an

invariant value by increasing the number of compartments (work

in progress).

For the case where the number of sub-populations is large, we

derived a model with continuous kinetic heterogeneity. For

several continuous distributions such as the exponential and the

gamma distribution, the model predicts that the initial rate of loss

of labeled DNA after label withdrawal is determined by the

duration of the labeling period as has been observed experimen-

tally [9]. Moreover, in the model the average turnover rate,

which determines the initial rate of label accumulation in the

population, turned out to be independent of the length of the

labeling period. However, it should be noted that the average

rate of cell turnover that is estimated from experimental data

using, for example, the Asymptote model, may in fact depend on

the duration of labeling [10, Den Braber et al. (in prepartion)].

Potential reasons for this discrepancy will be investigated in more

detail elsewhere.

Previous models had certain artifacts: the asymptote labeling

level was dependent on the length of the labeling period, and the

accrual of labeled DNA during the uplabeling phase and the loss of

Table 1. Summary of the major findings of the paper.

What are the most important results of our analysis?

1. Different models have previously been used to interpret deuterium-labeling data and have reached different conclusions [13]. We have shown that in terms of
the average turnover rate all these previous models share an identical mathematical structure. Therefore, interpretation of the labeling data when expressed via
the average turnover rate, should not depend on the model used to fit the data (given that the tested models assume identical distribution of turnover rates in
the population, see also below).

2. In contrast with previous approaches, our novel model predicts a non-exponential accumulation and decay of the fraction of labeled nucleotides during the
labeling and delabeling phases.

3. Our model naturally explains the observed fast loss of labeled DNA during the Figure 2 phase after a short labeling period, as compared to that after a long
labeling period, due to preferential labeling of lymphocyte sub-populations with a rapid rate of turnover.

4. From the dynamics of the fraction of labeled nucleotides, the new model estimates the distribution of turnover rates in the population, that is the fraction of
cells that are turning over at a particular rate. This allows one to investigate how various conditions (e.g., infection, disease and treatment) affect the
distribution of turnover rates in the population rather than just the mean.

What are the implications of our results to the interpretation of labeling studies?

1. The estimation of the average turnover rate of lymphocytes may depend on the distribution of turnover rates that one assumes for a population of cells.
Therefore, the interpretation of experimental results may depend on the model used to analyze the data (given that different models assume different
distributions of turnover rates in the population).

2. Additional data on cell proliferation and/or cell death (e.g., short BrdU pulses, distribution of DNA, Ki67 or annexin V expression) will be helpful in determining
which of the alternative models are most consistent with the data.

How can labeling studies contribute to the general understanding of immunological processes?

1. Using labeling of dividing cells with deuterium one can in principle determine the average rate of lymphocyte turnover and the distribution of turnover rates in
the population. Comparing the average and the distribution of the rates of cell turnover between healthy individuals and various conditions (e.g., aged
individuals, chronically infected, and transplantation patients) may help us to better understand these conditions.

2. For example, for some cancers it is not known whether the growth of a population of cancer cells is mostly due to increased proliferation of cells, or largely due
to decreased apoptosis. Determining the rates of cell turnover using deuterium labeling could help one to choose drugs that specifically target either
proliferation or death of cancer cells [13].

doi:10.1371/journal.pcbi.1000666.t001
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labeled DNA during the downlabeling period were always

described by single exponential functions. It is, therefore, unclear

whether such limited models provide a good description of truly

kinetically heterogeneous populations. We have shown that

deuterium labeling data could be fitted and parameters estimated

reliably, using a model that assumes a large number of kinetically

heterogeneous subpopulations. By fitting artificial labeling data,

we have validated these new models: they generally give good fits

to the data and converge on average turnover rates that are close

to the known average turnover rate. Moreover, the new explicit

heterogeneity model outperformed the Asymptote model when it

came to fitting experimental data, especially when the rates of label

accumulation and loss are not exponential (see Figure 6).

Importantly, due to its relatively general structure, all results of

the kinetic heterogeneity model are applicable to both non-

proliferating and proliferating lymphocytes, all having a distribu-

tion of turnover values (results not shown). Moreover, because the

model naturally incorporates the dependence of the rate of label

loss on the length of the labeling period, this is the first model that

can be strictly applied to fit labeling data with different labeling

periods.

We have focused our analysis on a particular type of kinetic

heterogeneity in which kinetic properties of cells of a given

subpopulation do not change over time and there is no

exchange of cells between different sub-populations. Although

we have not specified the nature of sub-populations, one

possibility would be that cells within a sub-population share the

same antigenic specificity (i.e., they are T-cell clones). In that

case, within each functional compartment, and averaged over

potential temporal heterogeneity, cells expressing the same

antigen receptor would be assumed to have similar kinetic

properties. It would be interesting to investigate whether T-cell

clones or e.g. polyclonal T -cell populations sharing a particular

phenotype (like CD44 or CD62L) are indeed kinetically

sufficiently homogeneous to qualify as sub-populations of cells

with similar kinetic properties.

However, during acute immune responses, the assumption of

constant kinetic properties of all cells in a sub-population may be

violated. Over the course of an infection, lymphocytes do change

their kinetic properties over time (e.g., [21]). Under such

circumstances one should take such a type of temporal heterogeneity

into account. This requires future work to develop sufficiently

simple models from earlier examples [22,23]. Generally, future

studies should aim at testing multiple models in how well they

describe the labeling data and whether these models deliver similar

estimates of important kinetic parameters such as the average rate

of cell turnover.

Methods

When fitting experimental data, the models were extended to

allow for the initial delay in the labeling of cells (see also [2]). For

example, including a delay in the Asymptote model (given by eqn.

(1)) takes the form

L(t)~

0, if tƒt,

a(1{e{d(t{t)), if tvtƒTzt,

L(T)e{d(t{T{t), otherwise:

8><
>: ð9Þ

To normalize the residuals of the model fits to experimental

data, given that the data are expressed as proportions, the data

and the model predictions were transformed as arcsin (
ffiffiffi
x
p

) where

x is the frequency of labeled DNA in the population [24]. The

models were fitted according to the least squares method by using

the FindMinimum routine in Mathematica. Confidence intervals

were calculated by bootstrapping the residuals with 1000

simulations.

Supporting Information

Table S1 Estimates of the parameters after fitting three models

to three sets of artificial data.

Found at: doi:10.1371/journal.pcbi.1000666.s001 (0.06 MB PDF)

Table S2 Average turnover rates of CD4+ T cells from four

healthy humans as estimated by fitting experimental data.

Found at: doi:10.1371/journal.pcbi.1000666.s002 (0.06 MB PDF)

Table S3 Average turnover rates of CD8+ T cells from four

healthy humans as estimated by fitting experimental data.

Found at: doi:10.1371/journal.pcbi.1000666.s003 (0.05 MB PDF)

Text S1 Derivation of the model with continuous kinetic

heterogeneity.

Found at: doi:10.1371/journal.pcbi.1000666.s004 (0.09 MB PDF)

Acknowledgments

We would like to thank the referees for the critical reading of the

manuscript and insightful comments.

Author Contributions

Conceived and designed the experiments: VVG JAMB RJDB. Performed

the experiments: VVG. Analyzed the data: VVG JAMB RJDB. Wrote the

paper: VVG JAMB RJDB.

References

1. Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, et al. (1999)

Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-

infected humans. Nat Med 5: 83–9.

2. Mohri H, Perelson A, Tung K, Ribeiro R, Ramratnam B, et al. (2001) Increased

turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral

therapy. J Exp Med 194: 1277–87.

3. Vrisekoop N, den Braber I, de Boer AB, Ruiter AF, Ackermans MT, et al.

(2008) Sparse production but preferential incorporation of recently produced

naive T cells in the human peripheral pool. Proc Natl Acad Sci U S A 105:

6115–20.

4. Hellerstein M (1999) Measurement of T-cell kinetics: recent methodologic

advances. Immunol Today 20: 438–41.

5. Macallan DC, Fullerton CA, Neese RA, Haddock K, Park SS, et al. (1998)

Measurement of cell proliferation by labeling of DNA with stable isotope-labeled

glucose: studies in vitro, in animals, and in humans. Proc Natl Acad Sci USA 95:

708–13.

6. Neese R, Siler S, Cesar D, Antelo F, Lee D, et al. (2001) Advances in the stable

isotope-mass spectrometric measurement of DNA synthesis and cell prolifera-

tion. Anal Biochem 298: 189–95.

7. Ribeiro R, Mohri H, Ho D, Perelson A (2002) In vivo dynamics of T cell
activation, proliferation, and death in HIV-1 infection: why are CD4+ but not

CD8+ T cells depleted? Proc Natl Acad Sci USA 99: 15572–7.

8. Ribeiro R, Mohri H, Ho D, Perelson A (2002) Modeling deuterated glucose
labeling of T-lymphocytes. Bull Math Biol 64: 385–405.

9. Asquith B, Debacq C, Macallan D, Willems L, Bangham C (2002) Lymphocyte
kinetics: the interpretation of labelling data. Trends Immunol 23: 596–601.

10. Borghans J, de Boer R (2007) Quantification of T-cell dynamics: from telomeres

to DNA labeling. Immunol Rev 216: 35–47.

11. De Boer R, Mohri H, Ho D, Perelson A (2003) Estimating average cellular

turnover from 5-bromo-29-deoxyuridine (BrdU) measurements. Proc R Soc
Lond B Biol Sci 270: 849–58.

12. Bonhoeffer S, Mohri H, Ho D, Perelson AS (2000) Quantification of cell

turnover kinetics using 5-bromo-29-deoxyuridine. J Immunol 164: 5049–
54.

13. Asquith B, Borghans JA, Ganusov VV, Macallan DC (2009) Lymphocyte
kinetics in health and disease. Trends Immunol 30: 182–9.

14. Parretta E, Cassese G, Santoni A, Guardiola J, Vecchio A, et al. (2008) Kinetics

of in vivo proliferation and death of memory and naive CD8 T cells: parameter

Models of Kinetic Heterogeneity

PLoS Computational Biology | www.ploscompbiol.org 10 February 2010 | Volume 6 | Issue 2 | e1000666



estimation based on 5-bromo-29-deoxyuridine incorporation in spleen, lymph

nodes, and bone marrow. J Immunol 180: 7230–9.

15. Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications

John Wiles & Sons, Inc. 365 p.

16. Davenport M, Ribeiro R, Perelson A (2004) Kinetics of virus-specific CD8+ T

cells and the control of human immunodeficiency virus infection. J Virol 78:

10096–103.

17. Ganusov V, De Boer R (2007) Do most lymphocytes in humans really reside in

the gut? Trends Immunol 28: 514–8.

18. Murali-Krishna K, Altman J, Suresh M, Sourdive D, Zajac A, et al. (1998)

Counting antigen-specific CD8+ T cells: A re-evaluation of bystander actiation

during viral infection. Immunity 8: 177–187.

19. Homann D, Teyton L, Oldstone M (2001) Differential regulation of antiviral T-

cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat
Med 7: 913–919.

20. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a

practical information-theoretic approach. New York: Springer-Verlag. 340 p.
21. Antia R, Ganusov V, Ahmed R (2005) The role of models in understanding

CD8+ T-cell memory. Nat Rev Immunol 5: 101–111.
22. Grossman Z, Herberman RB, Dimitrov DS, Rouzine IM, Coffin JM (1999) T

cell turnover in SIV infection. Science 284: 555a–555d.

23. Grossman Z, Meier-Schellersheim M, Paul W, Picker L (2006) Pathogenesis of
HIV infection: what the virus spares is as important as what it destroys. Nat Med

12: 289–95.
24. Hogg R, Craig A (1995) Introduction to Mathematical Statistics. Macmillan.

Models of Kinetic Heterogeneity

PLoS Computational Biology | www.ploscompbiol.org 11 February 2010 | Volume 6 | Issue 2 | e1000666


