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1. Introduction

Let m and n be coprime integers with n > m � 2. It follows from the abc conjecture, see e.g. [13],
that for each ε > 0 there exists c(ε) > 0 such that for any positive integers x, y with xm �= yn we have

∣∣xn − ym
∣∣ > c(ε)X1−1/m−1/n−ε, X = max

(
xn, ym)

. (1)

For a proof of this implication, see Section 2. In the case m = 2, n = 3 this inequality is known as Hall’s
(modified) conjecture. Unconditionally a weaker result applies. It follows from work of Sprindzuk [11,
12] and Schmidt [9], which refined earlier work of Baker [1], that there is a positive number δ =
δ(m,n), which is effectively computable in terms of m and n such that |xm − yn| � (log X)δ .

We believe that (1) is optimal in the following sense.

Conjecture 1.1. Let m,n be coprime integers with n > m � 2. Then, for any c > 0 there exist infinitely many
positive integers x, y such that
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0 <
∣∣xn − ym

∣∣ < c X1−1/m−1/n,

where X = max(xn, ym).

For the case m = 2, n = 3 this conjecture contradicts Hall’s original conjecture which predicted a
lower bound of the form c X1/6 with c > 0. It is generally believed that Hall’s original conjecture is
not true. In Section 2 we give a heuristic argument for the validity of Conjecture 1.1.

Given m,n we define the number θ(m,n) as the infimum over all θ such that 0 < |xn − ym| < Xθ ,
X = max(xn, ym) has infinitely many solutions in positive integers x, y. In view of the two conjectures
above we believe that θ(m,n) = 1 − 1/n − 1/m. Only the trivial lower bound 0 is known and any
improvement seems very hard to achieve. In this paper we focus our attention on upper bounds.
We define the number γ (m,n) by θ(m,n) = 1 − (1/m) − (1/n) + γ (m,n)/mn and find upper bounds
for γ (m,n). Our conjecture concerning θ(m,n) is now equivalent to

Conjecture 1.2. For any coprime integers m,n with n > m � 2 we have γ (m,n) = 0.

For any real number x let [x] denote the greatest integer less than or equal to x.

Theorem 1.3. Let n and m be coprime integers with n > m � 2. We have

γ (m,n) � min
{
n − m[n/m],m − (

n/
([n/m] + 1

))}
.

If n and m are both odd integers and n is slightly larger than an odd multiple of m we are able to
improve on Theorem 1.3.

Theorem 1.4. Let n and m be coprime odd integers with n > m � 2. Write n = (2q + 1)m + w with q � 0 and
0 < |w| < m. Then

γ (m,n) � n(|w| − 1) − m

n − 1
.

One can check that Theorem 1.4 yields an improvement on Theorem 1.3 precisely when w is
positive and m > (2q + 3)(w − 1).

Here is a table of values for the upper bounds for γ (m,n) given by Theorems 1.3 and 1.4. We
appealed to Theorem 1.4 only for the entries (5,7), (7,9) and (9,11).

����n
m

2 3 4 5 6 7 8 9 10

3 1/2
4 ∗ 1
5 1/3 1/2 1
6 ∗ ∗ ∗ 1
7 1/4 2/3 1/2 1/3 1
8 ∗ 1/3 ∗ 1 ∗ 1
9 1/5 ∗ 1 1/2 ∗ 1/4 1

10 ∗ 1/2 ∗ ∗ ∗ 2 ∗ 1
11 1/6 1/4 1/3 1 1/2 3/2 5/2 1/5 1
12 ∗ ∗ ∗ 1 ∗ 1 ∗ ∗ ∗
13 1/7 2/5 3/4 2/3 1 1/2 3/2 5/2 3
14 ∗ 1/5 ∗ 1/3 ∗ ∗ ∗ 2 ∗
15 1/8 ∗ 1/4 ∗ ∗ 1 1/2 ∗ ∗
16 ∗ 1/3 ∗ 1 ∗ 5/3 ∗ 1 ∗
17 1/9 1/6 3/5 3/4 1/3 4/3 1 1/2 3/2
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The proofs of Theorems 1.3–1.7 depend upon polynomial constructions and as a consequence for
each pair (m,n) there are positive numbers c1 = c1(m,n), c2 = c2(m,n) and λ = λ(m,n) such that for
each positive integer N larger than c2 there are at least Nλ pairs (xn, ym) with 1 � xn � N for which

0 <
∣∣xn − ym

∣∣ < c1 Xθ . (2)

Birch, Chowla, Hall and Schinzel [2], see Section 6.3, showed that γ (2,3) � 1/5 by a polynomial
construction. In 1982 Danilov [4] proved that γ (2,3) � 0. Danilov’s proof yielded a much thinner
set of pairs (x3, y2) for which (2) holds with θ = 1/6. The pairs exhibited by Danilov correspond to
solutions of a Pell’s equation and because of this their counting function grows as a constant times
log N .

We are able to improve on Theorems 1.3 and 1.4 for a sparse but infinite set of pairs (m,n).

Theorem 1.5. Let n and m be coprime positive integers with n > m � 2. Suppose that

6

5
<

n

m
<

3

2

and that there are positive integers u and v for which either (m,n) = (6v2 − u2,9v2 − 2u2) or (m,n) =
(2v2 − 3u2,3v2 − 6u2) then

γ (m,n) � m − 2n

3
.

Theorem 1.5 yields an improvement of Theorem 1.3 whenever it is applicable. We are also able to
improve on Theorem 1.3 when the conditions of the next result apply.

Theorem 1.6. Let n and m be coprime positive integers with n > m � 2. Suppose that there is a rational
number a such that (x, y) = (a,n/m) is a point on the curve

E: x3 + 3(y − 3)x2 + (y − 3)(y − 4)x + (y − 3)(y − 4)(y − 5)

15
= 0.

Then

γ (m,n) � n − 5m

2
if

5

2
<

n

m
<

21

8

and

γ (m,n) � m − 2n

5
if

15

7
<

n

m
<

5

2
.

The curve E together with a rational point, such as (0,3), is an elliptic curve. It has Weierstrass
form

Y 2 = X3 − 2475X − 5850. (3)

The set of real points (X, Y ) on (3) consists of two connected components, one of which is un-
bounded. Since (235,3520), a non-torsion rational point, is in the latter component the rational
solutions are dense in that component. Thus one may check that there are infinitely many coprime
pairs of positive integers (m,n) for which 5/2 < n/m < 21/8 and for which 15/7 < n/m < 5/2. How-
ever there are only two pairs (m,n) with m < 10000 for which n/m is in the above ranges. They are
(23,59) and (7991,19980) and we have γ (23,59) � 3/2 and γ (7991,19980) � 5/2.
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Theorem 1.7. γ (11,28) � 1/2.

Our strategy for proving Theorems 1.3–1.7 is the same as that employed by Birch, Chowla, Hall
and Schinzel [2]. That is, we look for polynomials f and g with rational coefficients and degrees
mk and nk respectively for which f n − gm is a non-zero polynomial of small degree and then we
specialize to produce an m-th power of an integer and an n-th power of an integer which are close.
Davenport [5] has shown that there are limitations on how small the degree of f n − gm can be. He
proved that if f and g are non-constant polynomials in C[x] then either f n = gm or

deg
(

f n − gm)
� kmn − km − kn + 1. (4)

We shall call pairs ( f n, gm) of polynomials with f , g ∈ Q[x] for which equality holds in (4) Davenport
pairs. These pairs are interesting in their own right and the last part of the paper is devoted to finding
Davenport pairs.

In the final section we include some numerical tables of pairs of powers that are very close. Ob-
serve that in the tables with m = 2 there are some examples with pairs of x-values that are extremely
close. Elaboration of this observation gave us the following theorem.

Theorem 1.8. Let m be an integer with m � 2. Let r be a positive even integer and put n = mr − 1. Then there
exist positive integers x and y for which

0 <
∣∣xn − ym

∣∣ <
2m2

r + 1
X1−1/m−1/n,

where X = max(xn, ym).

An immediate consequence of the above result is the following theorem.

Theorem 1.9. Let m be an integer � 2. Then, for any c > 0 the inequality

0 <
∣∣xn − ym

∣∣ < c X1−1/m−1/n,

where X = max(xn, ym), has an infinite number of positive integer solutions x, y,n with n > m.

Note that this theorem goes some way towards Conjecture 1.1 with the big difference that now
n is not kept fixed.

We would like to thank Wouter van der Bilt who performed a number of calculations for us.
In particular, his work led us to Theorems 1.5 and 1.8.

2. Justification of the conjectures

2.1. The abc conjecture implies inequality (1)

The abc-conjecture states that for any ε > 0 there exists c′(ε) > 0 such that for any positive inte-
gers a,b, c satisfying a + b = c and gcd(a,b, c) = 1 we have

c1−ε < c′(ε)Q (abc),

where for any positive integer N , Q (N) denotes the greatest square free factor of N or the radical
of N and so is the product of all distinct prime divisors of N . Put k = xn − ym , assume it is positive
(otherwise we take k = ym − xn) and define d = gcd(xm, yn,k). Apply the abc-conjecture to a = k/d,
b = ym/d, c = xn/d. We find that

(
xn/d

)1−ε
< c′(ε)Q

(
xn ymk/d

)
� c′(ε)xyk/d.
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Note that X = xn and x � X1/n , y � X1/m . Thus

X1−ε/d � (X/d)1−ε < c′(ε)X1/m+1/nk/d.

Multiply on both sides by dX−1/m−1/n to obtain our inequality with c(ε) = 1/c′(ε).

2.2. Heuristics for Conjecture 1.1

We base our conjecture on the following easy statement from probability theory.

Proposition 2.1. For each positive number c there exists a positive number ρ(c) such that if I ⊂ R is a closed
interval of length L and S and T are two disjoint finite sets which are distributed over I with uniform probability
distribution, then the probability that there exist s ∈ S, t ∈ T with |s − t| < cL/(|S| · |T |) is at least ρ(c).

Let I be the interval [N,2N] where N is a positive integer. We choose S to be the set of m-th
powers which are not mn-th powers and we let T be the set of n-th powers, the mn-th powers
excluded. The numbers |S| and |T | are proportional to respectively N1/m and N1/n . Our working
assumption is that n-th powers and m-th powers behave as if they are uniformly distributed when
n and m are coprime. Then, for any c > 0 there exists ρ(c) > 0 such that the probability for an m-th
power and an n-th power to have distance < cN/N1/m+1/n is at least ρ(c). There are infinitely many
disjoint intervals of the form [N,2N] so the expected number of m-th and n-th powers of size X ,
whose distance is positive and at most c X1−1/m−1/n is infinite.

3. Proof of Theorem 1.3

Our approach to construct very close pairs of m-th and n-th powers is via polynomials. More
particularly, it rests on the following lemma.

Lemma 3.1. Let m,n be coprime integers with n > m � 2 and let k be a positive integer. Suppose there exist
polynomials f , g,h ∈ Q[x] of degrees km,kn, D respectively with 0 < D < kmn such that

f n − gm = h.

Put D = kmn − km − kn + δ. Then θ(m,n) � (1 − 1/m − 1/n) + δ/kmn and γ (m,n) � δ/k.

Proof. Let N be the common denominator of the coefficients of the polynomials f , g . Then
(Nm f (x))n − (Nn g(x))m = Nmnh(x) is an identity between polynomials with integer coefficients. We
construct close m-th and n-th powers by substitution of x by an integer a. Since there exist positive
constants a0,b0 and c0 such that

(
Nm f (a)

)n
/akmn → a0,

(
Nn g(a)

)m
/akmn → b0, Nmnh(a)/aD → c0

as a → ∞, our estimate for θ(m,n) follows. �
To prove Theorem 1.3 we use the following polynomial constructions.

Lemma 3.2. Let m,n be coprime integers with n > m � 2 and let s = [n/m]. Let

B1(x) =
s∑

j=0

(
n/m

j

)
xn− jm.

Then (xm + 1)n − B1(x)m is a polynomial of degree mn − m(s + 1).
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Lemma 3.3. Let m,n be coprime integers with n > m � 2 and let s = [n/m] + 1. Let

B2(x) =
s∑

j=0

(
n/m

j

)
xsn− jn.

Then (xms + xms−n)n − B2(x)m is a polynomial of degree mns − n(s + 1).

Proof of Lemmas 3.2 and 3.3. Consider the following Taylor expansion in t ,

(1 + t)n/m =
s∑

j=0

(
n/m

j

)
t j + O

(
t(s+1)

)
. (5)

Replace t by 1/xm , raise both sides to the power m, and multiply on both sides by xmn . We obtain

(
xm + 1

)n = B1(x)m + O
(
xmn−m(s+1)

)
.

A more careful analysis of the constant in the O -term shows that the degree is precisely mn−m(s+1)

and Lemma 3.2 follows.
For the proof of Lemma 3.3 we replace t by 1/xn in (5), raise both sides to the power m and

multiply on both sides by xmns . We obtain

(
xms + xms−n)n = B2(x)m + O

(
xmns−n(s+1)

)
.

A more careful analysis of the constant in the O -term shows that the degree is precisely mns−n(s+1)

and so Lemma 3.3 holds. �
The proof of Theorem 1.3 now goes as follows. Application of Lemma 3.1 with k = 1 and Lemma 3.2

gives us γ (m,n) � mn−m([n/m]+1)−mn+m+n = n−[n/m]m. Application of Lemma 3.1 with k = s
and Lemma 3.3 gives us γ (m,n) � mn − n(1 + 1/([n/m] + 1)) − mn + m + n = m − (n/([n/m] + 1)).

4. A refinement of Theorem 1.3

Put

θ = x + √
x2 − 4

2

and notice that

θ−1 = x − √
x2 − 4

2
.

Define

Tn(x) = θn + θ−n.

By putting x = 2 cosφ one sees that θ = eiφ and Tn(2 cosφ) = 2 cos nφ. Up to the appearance of the
factor 2 this is the definition of a Chebyshev polynomial of the first kind.

Let n and m be coprime integers with n > m � 2 and let q and w be the integers with q � 0 and
0 < |w| < m for which n = (2q + 1)m + w . Notice that
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(
θm + θ−m)n/m =

q∑
r=0

(
n/m

2r

)
θn−2rm + O

(
θ−m+w)

and so

(
Tm(x)

)n/m =
q∑

r=0

(
n/m

2r

)
Tn−2rm(x) + O

(
θ−m+|w|),

hence

(
Tm(x)

)n =
( q∑

r=0

(
n/m

2r

)
Tn−2rm(x)

)m

+ O
(
xn(m−1)−m+|w|). (6)

The identity (6) together with Lemma 3.1 does not yield an improvement of Theorem 1.3. However,
the following observation will yield improvement in some cases, as formulated in Theorem 1.4.

If n is odd then all non-zero coefficients of Tn are associated with odd powers of x while if n is
even all non-zero coefficients of Tn are associated with even powers of n. Suppose that m,n are odd
and let

M = m − 1

2
, N = n − 1

2
.

Write

P M(x) = Tm(
√

x)/
√

x, Q N(x) =
q∑

r=0

(
n/m

2r

)
Tn−2rm(

√
x)/

√
x.

The newly defined polynomials P M , Q N have degrees M, N respectively and we obtain

(
P M(x)

)n
x(n−m)/2 = (

Q N(x)
)m + O

(
xn(m−1)/2−m+|w|/2).

Replace x by xn in the identity. We get

(
P M

(
xn)x(n−m)/2)n = (

Q N
(
xn))m + O

(
xn2(m−1)/2−mn+|w|n/2).

The degree of P M(xn)x(n−m)/2 equals nM + (n − m)/2 = mN , the degree of Q N (xn) equals nN . The
remainder term has order

n2(m − 1)/2 − mn + |w|n/2 = mnN − mN − nN + (|w| − 1
)
n/2 − m/2.

We can now apply Lemma 3.1 with k = N to conclude that

γ (m,n) � (|w| − 1)n/2 − m/2

N
= (|w| − 1)n − m

n − 1
.
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5. Further improvements on Theorem 1.3

In this section we generalize the constructions employed in the proof of Lemmas 3.2 and 3.3.
Instead of (1 + t)n/m we consider

(
1 + t + at2)n/m = 1 + b1t + b2t2 + · · · + bktk + bk+1tk+1 + · · · .

Now assume that we can find a ∈ Q such that bk+1 = 0. We get

(
1 + t + at2)n/m = 1 + b1t + b2t2 + · · · + bktk + O

(
tk+2). (7)

We consider two possibilities for construction, depending on whether 2n − km � 0 or 2n − km � 0.
In the first case, when 2n − km � 0, we replace t by 1/xm , raise everything to the power m and

multiply by x2mn . This yields

(
x2m + xm + a

)n = (
x2n + b1x2n−m + · · · + bkx2n−km)m + O

(
x2mn−(k+2)m)

.

Using Lemma 3.1 we get the bound γ (m,n) � n −mk/2. This is an improvement over the bound given
by Theorem 1.3 if and only if k is odd and k/2 < n/m < ((k + 1)(k + 2))/(2(k + 3)).

In the second case, when 2n − km � 0, we replace t by 1/xn , raise everything to the power m and
multiply by xkmn . We obtain

(
xkm + xkm−n + axkm−2n)n = (

xkn + b1xkn−n + · · · + bk
)m + O

(
xkmn−(k+2)n).

Using Lemma 3.1 we get the bound γ (m,n) � m − 2n/k. This is an improvement over Theorem 1.3 if
and only if k is odd and (k(k + 1))/(2(k + 2)) < n/m < k/2. Everything we said, of course, relies on
our success in finding a rational number a for which bk+1 = 0.

We now see if we are successful in finding such a for increasing values of k. When k = 1 we arrive
at the polynomials found in Lemmas 3.2 and 3.3. When k is even we have seen that we cannot expect
any improvement over Theorem 1.3.

5.1. The case k = 3 and the proof of Theorem 1.5

A brief calculation shows that b4 = 0 implies

12a2m2 − 24am2 + 12amn + 6m2 − 5mn + n2 = 0. (8)

This is quadratic in a, so a is rational if and only if the discriminant

48m2(3m − 2n)(2m − n)

is a square. Since gcd(m,n) = 1 there are four possibilities:

1. 2n − 3m = u2 and n − 2m = 3v2 for some coprime positive integers u, v . Hence m = −6v2 + u2

and n = −9v2 + 2u2.
2. 2n − 3m = 3u2 and n − 2m = v2 for some coprime positive integers u, v . Hence m = −2v2 + 3u2

and n = −3v2 + 6u2.
3. 3m − 2n = u2 and 2m −n = 3v2 for some coprime positive integers u, v . Hence m = 6v2 − u2 and

n = 9v2 − 2u2.
4. 3m − 2n = 3u2 and 2m − n = v2 for some coprime positive integers u, v . Hence m = 2v2 − 3u2

and n = 3v2 − 6u2.
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In the first two cases we have 2n−3m � 0 and so we obtain an improvement of Theorem 1.3 when
3/2 < n/m < 5/3. However, one can check that this does not occur. In the next two cases 2n − 3m < 0
and we obtain an improvement of Theorem 1.3 when 6/5 < n/m < 3/2. In case 3 we see that this is
equivalent to the condition 2u < 3v while in case 4 it is equivalent to the condition 2u < v . Further
in both cases, by our earlier remarks, γ (m,n) � m − 2n/3 and so Theorem 1.5 follows.

5.2. The case k = 5 and the proof of Theorem 1.6

The equation b6 = 0 is equivalent to

15a3 + 45

(
n

m
− 3

)
a3 + 15

(
n

m
− 3

)(
n

m
− 4

)
a +

(
n

m
− 3

)(
n

m
− 4

)(
n

m
− 5

)
= 0.

We have an improvement of Theorem 1.3 if 5/2 < n/m < 21/8 in which case γ (m,n) � n − 5m/2 or
if 15/7 < n/m < 5/2 in which case γ (m,n) � m − 2n/5. Theorem 1.6 now follows.

5.3. The proof of Theorem 1.7

One may check that

((
x22 + 11x11 + 22

)28
,
(
x56 + 28x45 + 294x34 + 1428x23 + 3213x12 + 2856x

)11)
(9)

is a Davenport pair. It now follows from Lemma 3.1 with δ = 1 and k = 2 that γ (11,28) � 1/2.

6. The bounds of Davenport and of Mason and Stothers

The inequality of Davenport is a consequence of the Mason–Stothers inequality. For any non-
zero polynomial p in C[x] we let N0(p) denote the number of distinct roots of p. Mason [8] and
Stothers [14] proved that if p and q are coprime polynomials in C[x] which are not both constant
then

max{deg p,deg q} � N0
(

pq(p − q)
) − 1. (10)

Here is a statement where we drop the condition of coprimality of p,q.

Proposition 6.1. Let p,q be non-zero polynomials in C[x] whose ratio p/q is non-constant. Then

max
(
deg(p),deg(q)

)
� N0(p) + N0(q) + deg(p − q) − 1.

Moreover, if equality holds then p and q are coprime and p − q is square-free.

Proof. Let d = gcd(p,q) and apply (10) to p/d,q/d. We obtain

max

(
deg

(
p

d

)
,deg

(
q

d

))
� N0

((
p

d

)(
q

d

)
p − q

d

)
− 1

� N0(p) + N0(q) − N0(d) + deg

(
(p − q)

d

)
− 1.

Adding deg(d) on both sides gives us the inequality

max
(
deg(p),deg(q)

)
� N0(p) + N0(q) − N0(d) + deg(p − q) − 1
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from which our desired inequality follows. Furthermore, when we are in a case when equality holds,
we necessarily have that N0(d) = 0, hence p,q are coprime. In that case application of (10) gives us

max
(
deg(p),deg(q)

)
� N0

(
pq(p − q)

) − 1 � N0(p) + N0(q) + deg
(
(p − q)

) − 1

and the equality implies that N0(p − q) = deg(p − q), in other words, p − q is square-free. �
When we apply this proposition to p = f n , q = gm we find, assuming that deg( f ) = mk,

deg(g) = nk,

mnk � N0( f ) + N0(g) + deg
(

f n − gm) − 1 � mk + nk + deg
(

f n − gm) − 1. (11)

This immediately implies inequality (4). Furthermore, our proposition implies that for a Davenport
pair ( f n, gm) we have that gcd( f , g) = 1 and f n − gm is a square-free polynomial. In addition in-
equality (11) shows that we have nk = N0( f ), mk = N0(g) in the case of a Davenport pair. Hence f , g
are square-free.

7. Construction of Davenport pairs

7.1. Infinite families of Davenport pairs

In this subsection we list the Davenport pairs ( f n, gm) with f and g in Q[x] which we have found.
Suppose that the degree of f is km and the degree of g is kn with k a positive integer. We consider
the pairs ( f (x)n, g(x)m) and (ckm f (ax + b)n, (ckn g(ax + b))m) with a,b, c ∈ Q, ac �= 0 as equivalent.
Accordingly we may choose a representative ( f n, gm) from each equivalence class with f a monic
polynomial of degree km having 0 as the coefficient of degree km − 1 and with the next non-zero
coefficient an integer of smallest absolute value which, when possible, is taken to be positive. We
shall refer to this as the normalized form for a representative.

We have found seven infinite families of Davenport pairs as well as a number of sporadic examples.
Two of the families arise from the Taylor series expansion of (1 + t)n/m , three from the Taylor series
expansion of (1 + t + at2)n/m and the two other infinite families are connected with the Chebyshev
polynomials.

Notice that if n − sm = 1 for some positive integer s, or equivalently that m | n − 1 then by
Lemma 3.2

((
xm + 1

)n
, B1(x)m)

(12)

is a Davenport pair. Further if m | n + 1 then the polynomials in Lemma 3.3 form a Davenport pair.
However these polynomials belong to a larger family. To see this raise both sides of (5) to the
power m, substitute t = 1/xd and multiply by xrmn . We obtain

(
xrm + xrm−d)n =

(
xrn + · · · +

(
n/m

s

)
xrn−ds

)m

+ m

(
n/m

s + 1

)
xmnr−d(s+1) + O

(
xmnr−d(s+2)

)
.

Here d, r and s are positive integers for which rm − d � 0 and rn − ds � 0. They form a Davenport
pair whenever rm + rn − d(s + 1) = 1. Thus either rm − d = 0 and rn − ds = 1 in which case r = 1 and
we recover the pairs (12) or rm − d = 1 and rn − ds = 0. In the latter case d divides n and m divides
d + 1. Therefore we have the following result.

Proposition 7.1. Let n and m be coprime positive integers with n > m � 2. Suppose that there is a positive
divisor d of n such that m divides d + 1. Put s = (d + 1)/m and
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B3(x) =
ns/d∑
j=0

(
n/m

j

)
xns− jd.

Then (xd+1 + x)n − Bm
3 has degree mns − ms − ns + 1.

It follows from Proposition 7.1 that if d > 0, d | n and m | d + 1 then

((
xd+1 + x

)n
, Bm

3 (x)
)

(13)

is a Davenport pair.
Let us now raise both sides of (7) to the power m, substitute t = 1/xd and multiply by xrmn .

We obtain (xrm + xrm−d + axrm−2d)n = (xrn + · · · + bkxrn−kd)m + O (xrmn−d(k+2)). In order to have a
polynomial identity we need rm − 2d and rn − kd to be non-negative. Here we are assuming that
there is a rational number a for which bk+1 = 0. We have a Davenport pair precisely when rm + rn −
d(k + 2) = 1. Therefore there are two possibilities:

i) rm − 2d = 0 and rn − kd = 1
ii) rm − 2d = 1 and rn − kd = 0.

In case i) we see that r divides 2 so r is 1 or 2. If r is 1 then m = 2d and n = kd + 1 while if r = 2
then m = d and n = (kd + 1)/2. Observe that if k = 2 then r = 1 and m = 2d, n = 2d + 1. The condition
b3 = 0 holds when a = 1/3 − n/6m and so

((
x2d + xd + 2d − 1

12d

)2d+1

,

(
x2d+1 + 2d + 1

2d
xd+1 + 2d2 + 3d + 1

12d2
x

)2d)
(14)

is a Davenport pair for d a positive integer. We did not find new families for k = 1,3,4,5. However
when k = 5 we found two interesting examples. For the first example we take d = 2 and r = 1 so that
n = 11 and m = 4. This yields the Davenport pair

((
x4 + x2 + 1

8

)11

,

(
x11 + 11

4
x9 + 11

4
x7 + 77

64
x5 + 231

1024
x3 + 77

4096
x

)4)

which is equivalent to a Davenport pair from the infinite family given by (17). For the second example
we take d = 11 and r = 2 so that n = 28 and m = 11. This yields the Davenport pair

((
x22 + x11 + 2

11

)28

,

(
x56 + 28

11
x45 + 294

121
x34 + 1428

1331
x23 + 3213

14641
x12 + 2856

161051
x

)11)

which is equivalent to the Davenport pair (9).
In case ii) r divides k with (r,d) = 1 and r odd. If r = 1 then m = 2d + 1 and n = kd with k at

least 3. If k = 3 then 3m − 2n = 3 and on examining the four cases from Section 5.1 we find that
in case 4 we have u = 1. Thus m = 2v2 − 3 and n = 3v2 − 6 and so, by (8), a is either v(v−1)

2(2v2−3)
or

v(v+1)

2(2v2−3)
. Therefore we have, for e in {1,−1},

(
f 3v2−6
e , g2v2−3

e

)
(15)
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is a Davenport pair with

fe(x) = x2v2−3 + xv2−1 + v(v + e)

2(2v2 − 3)
x

and

ge(x) = x3v2−6 + 3v2 − 6

2v2 − 3
x2v2−4

+ 3(v2 − 2)(2v2 + ev − 3)

2(2v2 − 3)2
xv2−2 + (v2 − 2)v(v2 − 3)(2v + 3e)

2(2v2 − 3)3

for v = 2,3, . . . . Next if r = 3 and k = 3 then m = (2d + 1)/3 and n = d so 3m − 2n = 1. On again
examining the four cases from Section 4.1 we see that the only possibility is case 3 where u = 1.
Thus m = 6v2 − 1 and n = 9v2 − 2. By (8) a is either v(3v−1)

2(6v2−1)
or v(3v+1)

2(6v2−1)
. Therefore we have, for e

in {1,−1},

(
f 9v2−2
e , g6v2−1

e

)
(16)

is a Davenport pair with

fe(x) = x18v2−3 + x9v2−1 + v(3v + e)

2(6v2 − 1)
x

and

ge(x) = x27v2−6 + 9v2 − 2

6v2 − 1
x18v2−4

+ (9v2 − 2)(6v2 + ev − 1)

2(6v2 − 1)2
x9v2−2 + (9v2 − 2)v(3v2 − 1)(2v + e)

2(6v2 − 1)3

for v = 1,2, . . . .
We remark that the representatives given for the equivalence classes of Davenport pairs for the

families (12), (13), (14), (15) and (16) are in normalized form with the exception of the case d = 1
in (13) and the case d = 1 in (14). Further we may take fe and ge in non-normalized form to be

fe(x) = x2v2−3 + (
2v2 − 3

)
xv2−1 + v(v + e)(2v2 − 3)

2
x

and

ge(x) = x3v2−6 + (
3v2 − 6

)
x2v2−4

+ 3(v2 − 2)(2v2 + ev − 3)

2
xv2−2 + (v2 − 2)v(v2 − 3)(2v + 3e)

2

in (15) and to be

fe(x) = x18v2−3 + (
6v2 − 1

)
x9v2−1 + v(3v + e)(6v2 − 1)

x

2
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and

ge(x) = x27v2−6 + (
9v2 − 2

)
x18v2−4

+ (9v2 − 2)(6v2 + ev − 1)

2
x9v2−2 + (9v2 − 2)v(3v2 − 1)(2v + e)

2

in (16).

7.2. The Chebyshev families

Let m,q and e be integers with m � 2, q � 0 and e from {1,−1}. Put n = (2q + 1)m + e. Then,
by (6),

((
Tm(x)

)n
,

( q∑
r=0

(
n/m

2r

)
Tn−2rm(x)

)m)
(17)

is a Davenport pair.
Further by taking m odd and n = m + 2 in Section 4 we see that

(
f m+2
m , gm

m+2

)
(18)

is a Davenport pair where

fm(x) = x−m/2Tm
(
x(m+2)/2)

and

gm+2(x) = x−m+2/2Tm+2
(
x(m+2)/2).

The first few polynomials Tm(x) are

T2(x) = x2 − 2,

T3(x) = x2 − 3x,

T4(x) = x4 − 4x2 + 2,

T5(x) = x5 − 5x3 + 5x,

T6(x) = x6 − 6x4 + 9x2 − 2,

T7(x) = x7 − 7x5 + 14x3 − 7x

and in normalized form they are tm(x) where

t2(x) = x2 + 1,

t3(x) = x3 + x,

t4(x) = x4 + x2 + 1
,

8
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t5(x) = x5 + x3 + x

5
,

t6(x) = x6 + x4 + x2

4
+ 1

108
,

t7(x) = x7 + x5 + 2

7
x3 + 1

49
x.

7.3. Davenport pairs with (m,n) = (2,3)

The case when (m,n) = (2,3) has been studied intensively. It is readily checked that when k is 1,2
or 3 there is only one equivalence class of solutions with coefficients in Q. When k = 1, f = x2 + 1,
y = x3 + (3/2)x is a representative solution, when k = 2 we may take

f = x4 + x2 + 1

4
, g = x6 + 3

2
x4 + 3

4
x2 + 1

8

and when k = 3 we may take

f = x6 + x4 + 5

8
x2 + 3

32
, g = x9 + 3

2
x7 + 21

16
x5 + 35

64
x3 + 63

512
x.

In [7] Hall found an example with k = 4. Normalized in the usual manner the example is

f = x8 + 21x6 + 22x5 + 1183

8
x4 + 423x3 + 6721

16
x2 + 13679

8
x + 268777

256
,

g = x12 + 63

2
x10 + 33x9 + 6195

16
x8 + 981x7 + 42339

16
x6 + 78783

8
x5

+ 3758439

256
x4 + 632675

16
x3 + 32269011

512
x2 + 13826697

256
x + 280013653

4096
,

and it follows, for example, from work of Zannier, see p. 126 of [15], that there is only one equivalence
class with coefficients in Q with (n,m,k) = (3,2,4). Zannier relates equivalence classes of solutions
over C to certain regular trees. His approach is connected with the dessins d’enfants of Grothendieck,
see e.g. [10]. Similarly one can show that there are at most two equivalence classes of solutions
over Q for k = 5. Birch, Chowla, Hall and Schinzel [2] found one example

f = x10 + x7 + 5

12
x4 + 1

18
x,

g = x15 + 3

2
x12 + x9 + 1

3
x6 + 5

96
x3 + 1

576
.

Further Elkies [6] found the example

f = x10 − 2x9 + 33x8 − 12x7 + 378x6 + 336x5 + 2862x4 + 2652x3 + 14397x2 + 9922x + 18553,

g = x15 − 3x14 + 51x13 − 67x12 + 969x11 + 33x10 + 10963x9 + 9729x8 + 96507x7 + 108631x6

+ 580785x5 + 700503x4 + 2102099x3 + 1877667x2 + 3904161x + 1164691,

which we have not normalized in the usual manner.
Therefore the complete list of Davenport pairs with (n,m) = (3,2) and k at most 5 is known. It is

not known if there exist any with k larger than 5. This question was posed already in [2].
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7.4. Some sporadic Davenport pairs

In this subsection we collect some examples of Davenport pairs with (m,n) �= (2,3) which do not
belong to one of the seven infinite families given by (12), (13), (14), (15), (16), (17) and (18).

We remark that if (n,m,k) is specified with n > m and ( f n, gm) is a Davenport pair then the
coefficients of g are determined once the coefficients of f are known.

Since the pairs are determined by f when n,m and k are given we have only listed f . We have
found the pairs by means of the Groebner package in MAPLE.

(m,n,k) f

(2,5,2) x4 + 6x2 + 64x − 55

(3,5,1) x3 + x + 1
3

(3,7,1) x3 + 2x + 2
3

(3,8,1) x3 + 3x + 3

(3,10,1) x3 + 6x + 6

(4,5,1) x4 − 2x2 + 2x + 3
2

(5,6,1) x5 + x3 + 3
5 x

(5,9,1) x5 + 2x3 + 4
5 x + 4

25

(5,11,1) x5 + 3x3 + 9
5 x + 9

25

(5,14,1) x5 + 6x3 + 36
5 x + 108

25

(5,16,1) x5 + x3 + x
5 + 1

25

(11,28,2) x22 + x11 + 2
11

8. Numerical results and calculations

8.1. Proof of Theorem 1.8

Proof. Let r be a positive even integer and put n = mr − 1. Let t be a real number with −1/4 < t < 0.
By Taylor’s theorem

(1 + t)n/m =
r∑

j=0

(
n/m

j

)
t j + 	tr+1, (19)

where 	 is the (r + 1)-th derivative of (1 + t)n/m evaluated at some point ξ between t and 0. Thus

	 =
(

n/m

r + 1

)
(1 + ξ)−1/m−1. (20)

We have

−m

(
n/m

r + 1

)
= 1

r + 1

(
n/m

r

)
.

Since −1/4 < ξ < 0 and m � 2

|m	| � 1

r + 1

(
n/m

r

)(
4

3

)3/2

. (21)
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Put

Q (m,n, t) =
r∑

j=0

(
n/m

j

)
t j.

If a and b are real numbers with a > b > 0 and a = b + δ then for any positive integer m

am − bm � mδam−1. (22)

Since t and 	 are negative and r is even we see from (19) that (1 + t)n/m > Q (m,n, t). Further, since
−1/4 < t < 0, m � 2, r � 2 and

(n/m
r

)
< 1, we see from (19) and (21) that Q (m,n, t) > 0. We now

apply (22) with a = (1 + t)n/m and b = Q (m,n, t) to conclude that

∣∣(1 + t)n − Q (m,n, t)m
∣∣ � m	tr+1(1 + t)n−n/m. (23)

Suppose that A is a positive integer and B is a negative integer with −1/4 < B/Am < 0. Put
t = B/Am and then by (21) and (23) we see that

∣∣(Am + B
)n − Q (m,n, A, B)m

∣∣
� 1

r + 1

(
n/m

r

)(
4

3

)3/2(
1 + B

Am

) |B|r+1

A

(
Am + B

)n(1−1/m−1/n)
, (24)

where

Q (m,n, A, B) =
r−1∑
j=0

(
n/m

j

)
An− jm B j +

(
n/m

r

)
Br

A
.

By, for example, Lemma 4.1 of [3], m2 j
(n/m

j

)
is an integer for j = 0, . . . , r. Thus if we take B = −m2

and A = (n/m
r

)
m2r then Q (m,n, A, B) is an integer. Further B/Am < 0 and |B/Am| = m2/

((n/m
r

)
m2r

)m
.

We have

n/m

r − 1
· n/m − 1

r − 2
· n/m − (r − 2)

1
> 1.

Hence

(
n/m

r

)
>

n/m − (r − 1)

r
= 1 − 1/m

r
.

Thus

∣∣∣∣ B

Am

∣∣∣∣ <

(
r

1 − 1/m

)m 1

m2rm−2
�

(
2r

m2r

)m

m2 �
(

1

4

)m

m2 � 1

4
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as required. Furthermore |B|r/A = (n/m
r

)−1
and 0 < (1 + B/Am) < 1 so by (24),

∣∣(Am + B
)n − Q (m,n, A, B)m

∣∣ � 2m2

r + 1

(
Am + B

)n(1−1/m−1/n)
.

We take x = Am + B and y = Q (m,n, A, B) and our result follows. �
A remarkable consequence of the above construction is the following. We constructed the close

pair of powers (Am + B)n and Q (m,n, A, B)m . Changing B into −B does not affect the estimates
substantially and we find that (Am − B)n, Q (m,n, A,−B)m is a close pair as well with almost the
same quality of approximation. Similarly we may remove the requirement that r is even at a small
cost to our estimates. In the table for m = 2, n = 5 we see for example the x-values 1352 ± 6, in the
table for m = 2, n = 7 the x-values 702 ± 4, in the table for m = 2, n = 9 the x-values 2522 ± 4 and in
the table for m = 2, n = 11 we observe the occurrence of x = 9242 ± 4.

8.2. The tables

The following tables display all x ∈ Z that are part of a pair (x, y) ∈ Z2
>0 with 0 < |xn − ym| <

xn(1−1/m−1/nn) and 0 < x � 4000000, m < n � 12 and gcd(m,n) = 1. The second entry in each row is
the quality q(x,m,n) of nearness defined by xn(1−1/m−1/n)/|xn − yn|. The y’s are omitted because they
can be easily calculated from the corresponding x’s (y = round(xn/m)). These examples were found
using PARI/GP.

m = 2, n = 3

2 1.41
5234 4.26
8158 3.76

93844 1.03
367806 2.93
421351 1.05
720114 3.77
939787 3.16

m = 2, n = 5

5 1.02
8 3.23

23 4.24
27 3.79
55 21.5
73 1.69
76 11.0

377 21.5
396 1.01
432 1.09

18219 1.33
18231 1.33

747343 2.27
748635 1.09

m = 2, n = 7

12 1.29
93 1.11

239 3.42
4896 1.25
4904 1.25
6546 2.44
7806 1.69
9104 51.9

20542 1.54
35962 3.30
43783 2.23
96569 3.12

616400 4.05
635331 36.9
842163 1.78

m = 2, n = 9

892 1.10
1110 1.65
1498 2.38
1827 8.94
3657 9.69
9249 2.03

10637 1.08
27590 9.41
63500 1.50
63508 1.50

248461 1.29
300221 1.15
357450 1.18

1317619 1.88

m = 2, n = 11

3 1.49
21 1.10

145 1.09
1005 1.72
1746 24.2
5559 3.79

29005 36.7
34320 1.55
76053 1.12

146402 24.6
154269 1.00
553624 1.27
853772 1.75
853780 1.75

1841222 1.64
2582634 1.22
3051972 145.

m = 3, n = 4

15 3.26
42 1.15
71 2.42

168 1.34
9172 4.55

15844 3.56
542482 1.03
548554 1.15
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m = 3, n = 5

4 1.06
23 1.01

122 1.02
199 4.65
408 1.34

4995 2.71
7320 1.34

44217 1.53
177682 3.24
394826 9.23

1706886 1.58
1738064 34.2

m = 3, n = 7

2 4.23
3 5.62

32 3.94
33 2.07
34 1.12
88 1.04

442 1.77
498 5.04
942 1.03

2266144 73.5

m = 3, n = 8

97 2.46
37840 1.07

199652 4.95
2905727 10.2

m = 3, n = 10

2 2.12
3 1.87

48 5.76
73 1.19

436 1.03
23494 1.57
37381 2.30

621706 3.65
781913 1.13

2351612 1.62

m = 3, n = 11

82 2.52
858 4.58

28439 1.06
166378 2.50
174879 1.70
977170 1.10

1330997 5.00
1595395 1.40
3393037 2.04

m = 4, n = 5

3 1.58
53 1.63

7702 1.10
10836 5.27
11944 4.09

338295 1.33
422295 1.20
857745 1.68

m = 4, n = 7

6 21.4
13 8.64
21 1.52
59 1.06

3053 3.95
7075 1.04
8509 6.02

168511 3.08
1413693 1.82

m = 4, n = 9

12 1.47
127 1.12

3137 1.15
208870 1.09
298574 2.01

m = 4, n = 11

6 3.56
28 1.20

402 16.3
892 1.63

1065 1.32
2818 1.04

15197 1.10
314820 11.0

m = 5, n = 6

41031 1.15
60840 1.20

994895 1.52

m = 5, n = 7

4 1.39
93 1.29

389 1.04
1184258 1.09

m = 5, n = 8

2 3.25
947971 9.59

m = 5, n = 9

39 2.81
233817 1.48
878236 1.07

1853987 2.77
3845948 9.87

m = 5, n = 11

8 4.27
26 1.85
92 1.06

59613 1.02
483168 7.52
838882 1.05

m = 5, n = 12

3 1.99
61 1.54

2889 16.4
7295 2.66

22434 1.88

m = 6, n = 7

4 1.07
337 1.15
817 1.02

45858 1.15
923498 2.76

1097437 3.37
2028879 1.10

m = 6, n = 11

19 1.62
95 1.74

184 1.52
238 15.7

1938094 3.23

m = 7, n = 8

23 1.78
37502 1.35
73319 1.91

232450 4.30
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m = 7, n = 9

6 2.16
206 2.18
351 1.68

34477 1.34
403982 1.21
576482 1.52

m = 7, n = 10

45 1.39
155 1.33

8116 47.3
61834 2.39

1812959 11.3

m = 7, n = 11

2 2.48
109 11.4

105936 24.4
438963 4.38
944988 1.25

m = 7, n = 12

11 1.08
39 1.54

163 2.13
876 1.89

259632 4.85
310504 1.06

1521835 4.92

m = 8, n = 9

426 2.83
9807 1.66

84332 1.91

m = 8, n = 11

177 1.51
11266 1.21

115871 4.98

m = 9, n = 10

5 1.05
44 1.01

133 4.86
3550208 1.07

m = 9, n = 11

55 1.27
706 10.8

m = 10, n = 11

20598 1.63
125496 2.50
681143 1.05
803178 1.12

m = 11, n = 12

65 113.

70 1.83
473 70.3
692 2.16

290599 2.12

8.3. Examples with high quality

The tables in the previous subsection show that the quality q doesn’t get very big in general. To
find examples with very high quality, it is better to restrict the search to small x with high exponents.
The following table contains all examples with quality over 1000 with x � 100 and 2 � m < n � 650.

q x n m

37704 26 361 2
29736 7 303 154
16317 48 525 344
15234 7 510 431

9038 3 120 17
5442 42 131 4
4640 13 482 129
4248 7 457 154
3784 67 470 17
3013 9 60 17
3013 3 137 17
2578 39 399 43
2451 7 434 11
2176 10 431 255

q x n m

2124 46 308 303
2006 7 71 32
1728 15 374 5
1670 89 384 265
1537 13 560 69
1450 26 363 2
1410 6 211 4
1219 10 569 6
1202 6 595 463
1166 69 360 29
1009 18 466 37
1005 11 373 26
1004 27 40 17
1004 3 154 17

The quality of the pair (3120,233317) is so high, that (960,233317) and (2740,233317) still have
quality over 1000. Also, if a pair (xn, ym) has quality q, then one straightforwardly checks that
(xm+n, (xy)m) has quality q

x .
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