
IMMOBILIZING GRASPS FOR TWO- AND

THREE-DIMENSIONAL OBJECTS

VOORWERPEN OP HUN PLAATS HOUDEN IN HET VLAK EN IN DE RUIMTE

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van
doctor aan de Universiteit Utrecht
op gezag van de rector magnificus,

prof. dr. W. H. Gispen, ingevolge het
besluit van het college voor promoties

in het openbaar te verdedigen op
maandag 6 november 2006 des middags te 12.45 uur

door

Jae-Sook Cheong

geboren op 22 maart 1971,
te Seoul, Zuid-Korea

2

Promotor: Prof. dr. M. H. Overmars
Copromotor: Dr. ir. A. F. van der Stappen

Contents

1 Introduction 7
1.1 Analysis and existence . 8

1.1.1 General setting . 8
1.1.2 Modular setting . 9

1.2 Grasp synthesis . 10
1.2.1 Synthesis of form-closure grasps . 10
1.2.2 Synthesis of force-closure grasps . 11
1.2.3 Synthesis of second-order immobility grasps 12

1.3 Immobility under uncertainty . 13
1.4 Thesis outline . 14

2 Grasp Analyses and Preliminaries 17
2.1 Form closure . 17

2.1.1 Analysis in the object plane: Reuleaux’s method 17
2.1.2 Analysis in wrench space . 19

2.2 Second-order immobility . 20
2.2.1 Analysis in configuration space . 22
2.2.2 Analysis in the object plane for simple polygons 23

2.3 Force closure . 25
2.4 Preliminaries . 26

2.4.1 Projections of wrenches . 26
2.4.2 Algorithms and data structures for intersection search problem 29

3 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers 33
3.1 Preliminaries . 34

3.1.1 The shapes of wrench sets . 34
3.1.2 Intersection search algorithms . 35

3.2 Computing all form-closure grasps with at most three fingers 35
3.2.1 Two concave vertices . 36
3.2.2 One concave vertex and two edges . 36
3.2.3 Two concave vertices and one edge . 37
3.2.4 Three concave vertices . 39

3.3 Computing all form-closure grasps for rectilinear polygons 40
3.3.1 Four edges . 41
3.3.2 One concave vertex and two edges . 43
3.3.3 Two concave vertices . 44
3.3.4 Two concave vertices and one edge . 45

4 CONTENTS

3.4 Conclusion . 48

4 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set 49
4.1 Preliminaries . 50

4.1.1 Algebraic arcs, wrenches and their projections 50
4.1.2 Two-arc-cells and one-arc-cells . 51
4.1.3 Intersection search algorithms . 52
4.1.4 Computing all grasps on a given set of arcs and vertices 52

4.2 Computing all form-closure grasps with four fingers 53
4.2.1 Four arcs . 53
4.2.2 Three arcs . 54

4.3 Computing all form-closure grasps with at most three fingers 55
4.3.1 One concave vertex and two arcs . 55
4.3.2 One concave vertex and one arc . 56
4.3.3 Two concave vertices and one arc . 56

4.4 Conclusion . 57

5 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets 59
5.1 Preliminaries . 59

5.1.1 Edge wrench sets . 60
5.1.2 Concave vertex wrench sets . 60
5.1.3 Arc wrench sets . 61
5.1.4 Intersection search algorithms . 63

5.2 Computing all force-closure grasps of polygons 63
5.2.1 Two edges . 63
5.2.2 One concave vertex and one edge . 64
5.2.3 One concave vertex and two edges . 65
5.2.4 Two concave vertices and one edge . 65

5.3 Computing all force-closure grasps of planar semi-algebraic sets 67
5.3.1 One concave vertex and one arc . 67
5.3.2 Two concave vertices and one arc . 68
5.3.3 One concave vertex and two arcs . 69

5.4 Conclusion . 70

6 Computing All Second-Order Immobility Grasps of Polygons 71
6.1 Preliminaries . 71
6.2 Computing all second-order immobility grasps with three fingers 72
6.3 Computing all second-order immobility grasps with two fingers 75
6.4 Conclusion . 78

7 Computing All Independent Form-Closure Grasp Regions of Polygons 79
7.1 Preliminaries . 79

7.1.1 Our approach . 80
7.1.2 Edge wrench patches and vertex wrench sets 80
7.1.3 Intersection search algorithms . 81

7.2 Computing all independent form-closure grasp regions of a polygon 81
7.2.1 Four edge patches . 81
7.2.2 One concave vertex and two edge patches 82

CONTENTS 5

7.2.3 Two concave vertices and one edge patch 83
7.3 Computing all independent form-closure grasp regions of a rectilinear polygon . . 84

7.3.1 Four edge patches . 85
7.3.2 One concave vertex and two edge patches 86
7.3.3 Two concave vertices and one edge patch 86

7.4 Conclusion . 88

8 Computing All Form-Closure Grasps of a Rectilinear Polyhedron 89
8.1 Preliminaries . 90

8.1.1 Families of faces, concave edges and concave vertices 90
8.1.2 The form closure condition and the projection scheme 97
8.1.3 Intersection search algorithms . 100

8.2 Computing all form-closure grasps of a rectilinear polyhedron 100
8.2.1 Seven faces . 101
8.2.2 Combinations of faces and concave edges 104
8.2.3 Combinations of faces and concave vertices 115
8.2.4 Combinations of concave vertices, concave edges and faces 117

8.3 Conclusion . 120

9 Immobilizing Hinged Polygons 121
9.1 Immobility and robust Immobility . 122
9.2 Immobility of a serial chain of hinged polygons 123

9.2.1 Polygons without parallel edges . 124
9.2.2 Immobility of hinged polygons with parallel edges 125

9.3 Robust immobility of a serial chain of hinged polygons 127
9.3.1 Robust immobility of polygons without parallel edges 127
9.3.2 Robust immobility of polygons with parallel edges 130

9.4 Immobilizing other types of hinged polygons . 130
9.4.1 A cycle of hinged polygons . 131
9.4.2 A chain of hinged polygons attached to a wall 131

9.5 Conclusion . 132

10 Conclusion and Future Work 133

6 CONTENTS

Chapter 1

Introduction

Automation of manufacturing processes is important and essential in modern industry. In manu-
facturing processes, immobilization is crucial to fixturing where a part needs to be held rigidly by
some fixturing device so that a machine or people can perform operations on it. In robotics and
assembly, immobilization is crucial to grasping where an object or part is held by a (robotic) hand
to move it to a new location, or to perform simple operations on it. The fixturing devices are called
contacts, fingers, or fixels. In this thesis, we will use the term fingers, or sometimes contacts. In
order not to damage the part, we place fingers along the boundary of the part in such a way that
motions of the part are prevented. Immobilizing an object involves many interesting problems.
The followings are some of the fundamental questions.

• Analysis questions: How can immobilization be formally defined and how can it be analyzed?

• Existence questions: What kinds of parts can be immobilized and how many fingers are
necessary and/or sufficient to do so?

• Synthesis questions: Given a part and a collection of fingers, can we efficiently construct a
single immobilization, a large set of immobilizations, or even all immobilizations of the part
with these fingers?

When fingers immobilize an object P , the fingers should be able to resist all external wrenches
(i.e. forces and torques), or equivalently, any rigid motion of P (rotation and translation) causes at
least one finger to penetrate the interior of P [33]. In 1876, Reuleaux [70] formulated the notion of
form closure, which is a sufficient condition for immobilization. Intuitively, form closure is more
stable immobility compared to second-order immobility, in the sense that the fingers can be slightly
perturbed along the contact edges while they maintain the immobility. See Figure 1.2 (a) and (b).
Reuleaux provided an analysis for form closure of a planar object, which is based on analysis of

Figure 1.1: Grasping with a robot hand. http://www-static.cc.gatech.edu/gvu/people/faculty/nancy.pollard/grasp.html.

8 Introduction

(a) (b) (c)

Figure 1.2: (a) An object in form closure. (b) An object in second-order immobility. (c) This object is not immobilized.

possible instantaneous velocity center in the object plane. Form closure can also be analyzed in so-
called wrench space or in configuration space, which will be explained in Chapter 2. The analysis
in wrench space generalizes to three-dimensional parts.

Note that form closure is for immobility of an object held with frictionless point fingers. When
there is friction between the fingers and the part, we use the term force closure to refer the im-
mobility of the object. With frictional fingers, one needs fewer fingers to achieve force closure,
compared with form closure. In terms of analysis, force closure is very similar to form closure.
We discuss force closure further in Chapter 2.

Quite a large class of planar objects can be immobilized with three frictionless point fingers.
Figure 1.2 (b) illustrates such an object. Note that the fingers must be positioned carefully to keep
the object immobilized. Czyzowicz, Stojmenovic and Urrutia [32, 33] provided a necessary and
sufficient condition for simple polygons to be immobilized with three (frictionless point) fingers.
Rimon and Burdick [74, 75] generalized the idea of incorporating curvature into theory of second-
order immobility. The analysis for second-order immobility needs curvature information, while
that for form closure use the geometry of the object and the fingers. More precisely, second-order
immobility is based on a configuration space analysis of the possible placements of the part, in
which the fingers are seen as obstacles, and the current placement should be an isolated point in
the collision-free configuration space. More information can be found in Chapter 2.

In many manufacturing environments, modular fixturing systems are often used, where the
fixels are constrained to grid points. There has been extensive research performed in this area, as
well as in the general setting where fingers can be placed anywhere on the object boundary. In
Section 1.1, we will discuss what has been known for existence of grasps in the general setting,
as well as in a modular setting. In Section 1.2, grasp synthesis algorithms will be presented.
Section 1.3 will cover the immobility for non-rigid parts. Finally, Section 1.4 will describe the
contributions of this thesis.

1.1 Analysis and existence

1.1.1 General setting

Reuleaux [70] showed that four (frictionless) fingers are necessary for form closure of a planar
object. Mishra et al. [56] and Markenscoff et al. [51] independently showed that four frictionless
point fingers are sufficient and often necessary to put a planar object in form closure. They also
showed that seven fingers are necessary and sufficient to put a three-dimensional object in form
closure. There exist objects that cannot be immobilized, even with infinitely many fingers. They
are circles, three-dimensional objects with rotational symmetry, and screws [46, 51, 56, 80].

The result of Czyzowicz et al. [33] implies that any polygon without parallel edges can im-
mobilized. Rimon and Burdick [73] showed that three frictionless fingers with sufficiently flat
curvature can immobilize generic piecewise-smooth planar objects, with their analysis in config-
uration space. Rimon [72] extended these results to 3D; four frictionless fingers with sufficiently

1.1 Analysis and existence 9

Figure 1.3: A modular fixture vice with two fixture table jaws in [87].

flat curvature can immobilize generic piecewise-smooth three-dimensional objects.

Other than point fingers, one can use edge fingers to put a planar object in form closure. Wentink
et al. [92] showed that any polygon which has no edge parallel to the edges of its convex hull can
be held in form closure with one edge fingers and two point fingers, and with two edge fingers and
one point finger. Moreover, two orthogonal edge fingers and one point finger can achieve form
closure for any convex polygon.

Bose et al. [13] used parallel jaw grippers to hold polyhedra securely (clamp them). They
showed that all simple convex polyhedra, terrain polyhedra, or orthogonal polyhedra can be held
securely regardless of the gripper size. They also showed that every simple polyhedron can be held
securely with a gripper of a specific size. Goldberg, and Rao and Goldberg also have studied the
problem of grasping polygons [66] and algebraic parts [68] without friction, and also with friction
[67].

Czyzowicz et al. [33] also studied immobilization of high dimensional objects. One of the
results is that six points suffice to immobilize any polyhedron. They also showed that 2d points
are sufficient and sometimes necessary to immobilize a d-dimensional polytope, and further, the
expected number of points necessary to immobilize a simple d-dimensional polytope is d or (d +
1)—for convex polytopes, it is (d + 1).

1.1.2 Modular setting

In an automated manufacturing system, modular fixturing devices are useful because of reusabil-
ity and rapid reconfigurability; they offer a limited set of contacts and less freedom to place the
contacts. Modular fixturing involves a regular (often square) grid of lattice holes, at which fixture
elements (fixels) such as clamps and locators can be placed. Locators are rigid cylinders, while
clamps can extend along the grid lines [42]; the object rests against these fixels which constrain its
motions. There are many variations such as T-slots where locators can move along the slots [42],
or vices where two lattice boards can move along a line [87].

Zhuang and Goldberg [94] showed that three locators and one clamp cannot immobilize all
parts with diameter larger than D, for any D (on a unit distance lattice). They also showed that
four clamps can fixture rectilinear polygons and convex polygons. Mishra [55] showed that any
rectilinear polygon whose edges all have length at least four can be held with in form closure by
six clamps. Wentink et al. [92] showed that four point fingers along grid lines can achieve form
closure for any polygon without parallel edges and with all edges of length greater than

√
3 on a

unit-resolution lattice. Van der Stappen [81] showed that four point fingers on two perpendicular
lines can achieve form closure for any polygon without parallel edges.

10 Introduction

1.2 Grasp synthesis

1.2.1 Synthesis of form-closure grasps

Mishra et al. [56] gave an algorithm to produce a form closure grasp with six and twelve fric-
tionless point fingers for two and three-dimensional objects. From O(n) fingers that immobilize
the object, they repeatedly removed one finger until no finger can be removed without collapsing
the immobilization. Four to six fingers remain for planar objects, and seven to twelve for three-
dimensional objects. Markenscoff et al. [51] used a maximal inscribed circle for planar objects to
find a form closure grasp with four fingers.

Van der Stappen et al. [82] proposed the first algorithm that enumerates all edge quadruples
of a polygon that have at least one form closure grasp with four frictionless point fingers. The
algorithm is output-sensitive, and it reports all K such edge quadruples in O(n2+ε + K), where ε
is an arbitrarily small positive number, and n is the number of edges. The algorithm uses range
search techniques from computational geometry. Gopalakrishnan and Goldberg [39] studied the
problem of immobilizing parts in form closure using two fingers at two concave vertices. They
placed two fixtures at external or internal concavities in polygonal parts with polygonal holes and
polyhedral parts with polyhedral holes using a gripper with two vertical cylindrical jaws. The
algorithm also ranks the solutions based on a quality metric. In this work, one can pursue an
alternative quality metric that considers only the local shape around the jaws such as a measure
of the “capture region”—the volume of C-space that is guaranteed to converge to the desired grip,
and one can try to extend the definition of v-grips to curved parts, and also to more general jaw
shapes.

For a three-dimensional object, Meyer [53] presented a way to construct a form closure grasp
with seven fingers for a convex polyhedron. It first finds the furthest vertices, and place six fingers
on the six faces incident to these vertices (three for each vertex). Splitting one of them into two
fingers produces a form closure grasp. It runs in O(n3/2

√
log n) time, where n is the number of

faces of the convex polyhedron. There are also incremental constructions of form closure grasps
for three-dimensional objects. Ding et al. proposed algorithms to construct a form closure grasp
for three dimensional objects [35] and for three dimensional curved objects [37].

Other than using point fingers, Bose et al. [13] studied the grasping problem with parallel jaw
grippers. They presented an O(n + k) time algorithm to compute all valid clamp positions of a
simple convex polyhedron, where n is the number of faces, and k is the number of antipodal pairs
of features.

Brost and Goldberg [15] studied modular fixturing for polygons using three round locators
and one clamp. The algorithm produces all fixture configurations that put the polygon in form
closure and obey geometric access constraints. The fixture configurations are ranked by a quality
metric. They used a negated cone condition on a force sphere to find a set of wrenches that span
the wrench space positively. The algorithm guarantees to find such form closure fixtures, if one
exists, in O(n5d5) time, where n is the number of edges, and d is the diameter of the object in
lattice units. This time bound is later improved to O(K), where K is the output size [14]. This
work is extendible to frictional fixturing or a more generalized objects, such as curved objects or
three-dimensional objects.

There are other modular fixturing devices, one of which is fixture vise toolkit. It consists of
two fixture table jaws on a vise, and pegs, where the table jaws can move towards and away from
each other. Wallack and Canny [87] used this system and gave an algorithm that enumerates all
form closure fixture vice configurations1 with four pegs, and the corresponding object poses. The

1Wallack and Canny used the term “force closure” in [87], but they assumed frictionless point contacts between the part and the pegs.

1.2 Grasp synthesis 11

object is two and half dimensional prismatic polygonal part, so it is actually two dimensional
fixturing problem. The algorithm runs in O(A) time, where A is the number of configurations
which simultaneously contact the object.

Wallack and Canny extended their work in [86]. They gave a complete algorithm to auto-
matically design fixtures in the fixture vise toolkit for generalized polyhedral prismatic parts. A
generalized polyhedral prismatic part is defined to have a generalized polygonal silhouette, with
a boundary composed of linear edges and circular arcs. All configurations holding a polygon in
form closure on a vise with four locators can be computed in time O(n4d4r2), where n is the size
of the polygon, d is the diameter of the object in lattice units, and r is the largest range of distance
between points on two edges. In addition, they showed that the maximum number of form closure
configurations is also O(n4d4r2).

Wagner et al. [85] used seven frictionless adjustable-length struts mounted on four boards of
regular lattices—one floor and three walls. The struts exert only compressive forces, but no bend-
ing moments. To test if given seven points on the part achieve form closure, they used simplified
algebraic representation of the test proposed by Goldman and Tucker [38]. They provided an al-
gorithm that enumerates all possible form closure grasps to fixture a three-dimensional polyhedral
part in a given pose. All grasps are ranked based on a quality metric.

Overmars et al. [59] used a simple modular fixturing device with an edge fixel, a locator, and
a clamp. They gave an output-sensitive algorithm to enumerate all valid modular fixtures for a
polygon, while sliding the polygon along the edge fixel, and find the fixtures, using range trees on
the angles of the edge normals. It runs in O(n(n + p)

4
3
+ε + K)-time, where K is the output size,

n is the number of edges of the polygon, and p is the polygon’s perimeter in grid units.
Wang [90], and Wang and Pelinescu [88] proposed algorithms to search for form closure grasps

for three-dimensional objects in a point set domain. They chose the possible locations of six
locators and one clamp from a set of discrete points. The algorithms are to avoid the prohibitively
large cost of an exhaustive search of all combinations of seven locations. Wang [90] used a greedy
approach to find a satisfactory solution rather than an optimal one. Wang and Pelinescu [88], on
the other hand, first randomly chose seven points, and from these found a new set of seven points
that achieves form closure. Ding et al. [36] presented heuristics for selecting fixturing surfaces on
a polyhedron.

Instead of locators and clamps, Wentink et al. [91, 92] used an edge fixel and an angle fixel.
The angle fixels can be fixed or adjustable. In the paper [92], they gave a linear time algorithm
to construct a configuration of an edge fixel, a locator and a clamp, such that they hold some
class of rectilinear polygons in form closure. They also showed that all configurations holding
a given polygon in form closure with a fixed-angle fixel and a clamp can be enumerated in time
O(n(n+ p)), where n is the number of edges of the polygon, and p is the perimeter in lattice units.

1.2.2 Synthesis of force-closure grasps

Two frictional fingers on a planar object can achieve force closure [54, 58]. Nguyen [58] provided
an algorithm to find force closure grasps with two fingers. He also studied the grasps for three-
dimensional objects with two soft and three hard fingers. Mirtich and Canny [54] gave an O(n)
and O(n3)-time algorithm to construct grasps with two and three rounded frictional fingers for two
and three dimensional convex objects respectively.

Computing two-finger force-closure grasps on planar curved objects attracted many researchers
[11, 44, 63]. Blake and Taylor [11] presented a more general method to compute force-closure
grasps on smooth objects. This method is more general, in the sense that it does not require prior

12 Introduction

knowledge of the coefficient of friction. Ponce et al. [63] proposed an algorithm to produce many
force-closure grasps with two frictional hard point fingers. They worked on the planar curved ob-
jects, such that the boundaries are collections of polynomial parametric arcs. Force closure grasps
are characterized by systems of polynomial constraints as in [58]. They compute rectangular re-
gions in the grasp configuration space regions satisfying the force closure constraint, such that this
rectangular regions have maximal curve segments where fingers can be positioned independently.
Jia [44] used a numerical method using curve functions to tackle the problem of force-closure
grasps with two frictional antipodal point fingers. He assumed that the boundary curves are closed,
simple, twice continuously differentiable, and planar. He presented an algorithm that finds all
pairs of antipodal points on the boundary, up to numerical resolution. Chen and Burdick [20] used
grasping energy function to compute an antipodal frictional finger grasping for arbitrarily shaped
smooth two and three dimensional objects. The energy function is proportional to the square of
the distance between the antipodal points. With grasping energy function, finding antipodal points
is turned into a constrained optimization procedure. They assumed that the curve representation is
uniform cubic B-spline for 2D, and spherical product surfaces for 3D.

Three frictional fingers on planar objects can achieve force closure [49, 50, 60]. Ponce and
Faverjon [60] presented an efficient algorithm for computing equilibrium and force-closure grasps
with linear constraints. They provided a sufficient condition to compute such grasps. Li et al.
[49, 50] provided a necessary and sufficient condition for three fingers on polygons to achieve
force closure. Cornellá and R. Suárez [28] computed optimal position for the fourth finger, for
given three finger positions on a polygon, such that they achieve force closure.

A three-dimensional object can be immobilized with four frictional fingers [61]. Ponce et al.
[61] gave an algorithm to compute concurrent grasps of a polyhedron, by computing the stable
grasp regions in configuration space, which is equivalent to eight dimensional projection of an
eleven dimensional polytope. To avoid heavy computations and checking the combinations of
faces, heuristics can be used [64, 65]. Prado and Suárez [64, 65] find three-finger force-closure
grasps on a polyhedron fast using heuristics.

1.2.3 Synthesis of second-order immobility grasps

Czyzowicz et al. [32, 33] gave a linear time algorithm to find a set of three points that immobilize
a convex polygon, and an O(n log n)-time algorithm for a polygon without parallel edges, using a
maximal inscribed circle of the polygon.

Rimon and Burdick [71, 73, 76] showed that two fingers can immobilize a two dimensional ob-
ject, and four fingers can immobilize any generic polyhedral or smooth three dimensional object,
when the fingers are allowed to have an arbitrary curvature. They also established how the cur-
vature affects second-order immobility in configuration space, by comparing it with form closure.
They proposed the name second-order immobility; form closure is equivalent to first-order immo-
bility in their terms. With Rimon and Burdick’s mobility theory, Ponce et al. [62] synthesized all
immobilizing grasps of a part bounded by polynomial splines. They presented an algorithm which
uses exact cell decomposition and homotopy continuation techniques to construct an explicit de-
scription of the immobilization regions in the contact configuration space.

Sudsang et al. [83] used a modular device to hold a three-dimensional object in second-order
immobility with four fingers. The device consists of two parallel plates with locator holes along
a rectangular grid. The distance between the plates can be adjusted continuously. They provided
simple sufficient conditions for immobilization and stability of polyhedra, and proposed efficient
geometric algorithms to enumerate all stable immobilizing grasps.

1.3 Immobility under uncertainty 13

1.3 Immobility under uncertainty

When fixturing an object in practice, the object cannot always be positioned as it should be. Nat-
urally, a robust fixturing plan that works even with positioning error is desirable. Bone and Du
[12] introduced a grasp planning method based on a new metric for measuring the sensitivity of a
grasp to positioning errors. Nguyen [58] showed how to compute a maximal independent region
on a polygon for two frictional fingers, where fingers can be independently positioned maintaining
force closure. Ponce and Faverjon [60] and Ponce et al. [61] reported maximal independent regions
by linear optimization within the valid configuration space regions for planar objects [60] and for
polyhedra [61]. Cornellá and Suárez [29, 30, 31] also provided algorithms to produce independent
regions for frictional and frictionless fingers on planar objects.

Another type of uncertainty that we should deal with in manufacturing is the shape uncertainty;
in most cases, the surface will be slightly different from the nominal boundary. To be able to use
the precomputed fixturing plan in practice, the plan has to work for those slightly different objects.
One question that we can immediately ask is how different the shape can be to be able to use the
computed fixture plan, i.e. what the tolerance for a given fixturing plan is. To answer this question,
we first need a realistic model for the tolerance.

Requicha [69] proposed a mathematical theory of tolerancing that formalizes and generalizes
current practices. It is a suitable basis to incorporate tolerances into GMSs (geometric (solid)
modeling systems). A tolerance specification is a collection of geometric constraints on the surface
features of an object. An object is in tolerance if its surface features lie within tolerance zones,
which are regions of space constructed by expanding or shrinking the object’s nominal boundaries.

Other than the theoretical model, there is an experimental tolerance modeler proposed by Mo-
roni and Requicha [57]. They also described an associated API (Application Programming In-
terface) that hides the modeler’s internal details. The tolerance modeler can be attached to any
nominal-geometry modeler through a tolerance adaptor.

Akella and Mason [4] used a tolerance model in which the center of mass of the object and
its vertices lie in circular tolerance zones around their nominal positions, for the sensor-based and
sensorless part orienting problem. Chen et al. [21] used a similar tolerance zone model to orient
convex polygonal parts on a conveyor belt and to fixture convex polygonal parts using a right
angle fixture and one clamp. The tolerance zones used for fixturing are rectangles, while those
for orienting are circles. They gave an O(n)-time algorithm for testing if an n-sided part is in the
tolerance class for orienting and fixturing, and O(n2)- and O(1)-time algorithm to compute the
maximum tolerance zone size for orienting and fixturing respectively.

Another tolerance model regards the part as a toleranced polygon, whose edges can lie in a band
around the edges. Cazals and Latombe [17] used this model, and they gave an efficient algorithm
to compute the tolerance zone size.

Brost and Peters [16] presented an implemented algorithm that automatically designs fixtures
and assembly pallets to hold three-dimensional parts, which is robust to force and part-shape vari-
ations, easy to load, and economical to produce. The algorithm finds the global optimum design.
Wang [89] analyzed the problem of characterizing the accuracy of deterministic localization of
fixtures using statistical framework. More details about tolerancing, metrology and techniques can
be found in [78, 84, 93].

Fixturing deformable objects is another interesting problem. In the motion planning community,
some research has been conducted including deformation [5, 43, 47]. Recently Gopalakrishnan and
Goldberg [40, 41] proposed the concept of deform closure for immobilizing a deformable object.
They also proposed a numerical algorithm to produce an approximation to the optimal deform

14 Introduction

closure grasp with two contacts [40]. Another type of non-rigid bodies are objects connected by
hinges. Motion planning community has some related work (on articulated robots), but no work
has been found related to fixturing, as far as we know.

1.4 Thesis outline

This thesis attempts to provide efficient computations of all immobilizing grasps of two and three
dimensional objects in the non-modular setting. In particular, we enumerate all form and force
closure grasps of a polygon and a planar semi-algebraic set. In addition, we also report all second-
order immobility grasps with two and three fingers on polygons. We also enumerate all indepen-
dent form-closure grasp regions of a polygon. Efficient computation of arbitrary three dimensional
objects is difficult, even for a polyhedron. The easiest (but still difficult) case to consider is that
of a rectilinear polyhedron. We propose an algorithm to report all form-closure grasps and all
independent form-closure grasp regions of a rectilinear polyhedron. Finally, we present a way of
constructing some grasps of a serial chain of hinged polygons as a case study on non-rigid objects.

An intuitive analysis of form closure of a planar object takes place in the two-dimensional
plane of the object itself. For synthesis of form or force closure grasps, however, the formulation
in wrench space turns out to be more convenient and powerful. The form-closure condition on
wrenches is transformed into specific combinations of geometric intersection problems, and these
will be used to compute all form and force closure grasps of two and three dimensional objects.
Throughout the thesis, we let n denote the number of edges of a polygon, or arcs of a semi-algebraic
set, and m denote the number of concave vertices, unless stated otherwise.

Given a combination of concave vertices and edges or arcs, we can compute all form-closure
grasps in constant time [82]. As a consequence, the combinatorial complexity of computing all
form-closure grasps is determined by the number of such combinations. Clearly we would like
to minimize the time spent on the combinations that admit no form-closure grasp. Our goal is to
report all combinations of concave vertices and edges or arcs that allow at least one form-closure
grasp, in an efficient and output-sensitive way. Almost all algorithms between Chapter 3 and 8 are
efficient and output-sensitive, which means that their running times largely depend on the actual
size K rather than the (often much larger) maximum size of the output.

Chapter 3 to 5 are about computing all immobilizing grasps for two-dimensional objects. More
specifically, we compute all form-closure grasps of a polygon and a planar semi-algebraic set with
at most four frictionless point fingers in Chapter 3 and in Chapter 4 respectively. In Chapter 7,
we compute all independent form-closure grasp regions for polygons and rectilinear polygons. In
Chapter 5, we use the approach in Chapter 3 and 4 to compute all force-closure grasps of a polygon
and a planar semi-algebraic set. We also compute all second-order immobility grasps of a polygon
and a planar semi-algebraic set in Chapter 6. The approach in wrench space is pushed into three-
dimensional space, and in Chapter 8, we compute all form-closure grasps, and all independent
form-closure grasp regions of a rectilinear polyhedron. Finally, in Chapter 9, we study the problem
of immobilizing a serial chain of hinged polygons.

In Chapter 3, we propose efficient algorithms to compute all form-closure grasps of polygons
using concave vertices. An efficient output-sensitive algorithm to compute all form-closure grasps
of polygons on three or four edges has already been proposed by van der Stappen et al. [82], as
mentioned earlier. Informally speaking, such vertices allow to have two fingers at the price of one,
as a finger at a concave vertex can be regarded as lying on both incident edges or arcs. Computing
all form-closure grasps with fingers at concave vertices was first studied by Gopalakrishnan and
Goldberg [39], who gave an O(m2) time algorithm to find all K concave vertex pairs that allow

1.4 Thesis outline 15

a two-finger form-closure grasp. We improve this to O(m4/3 log1/3 m + K) in Section 3.2.1. All
form-closure grasps with three fingers can be reported in O(n2 log4 n + K)-time. When a polygon
is rectilinear, we need less computation. In Section 3.3, we compute all combinations of edges and
concave vertices of a rectilinear polygon that yield form-closure grasps with three or four point
fingers efficiently. More specifically, we compute all such sets of: (i) four edges in O(n log n+K)
time; (ii) one concave vertex and two edges in O(n log n + K) time; (iii) two concave vertices in
O(m log2 m + K) time; (iv) two concave vertices and an edge in O(nm logn + K) time.

Chapter 4 is about efficient computations of all form-closure grasps of a planar semi-algebraic
set P with at most four frictionless point fingers. The boundary of P consists of n algebraic arcs
with a constant degree, and P has m concave vertices. We enumerate all combinations of (i) four
arcs, (ii) three arcs, (iii) one concave vertex and two arcs, (iv) one concave vertex and one arc,
and (v) two concave vertices and one arc, such that three or four fingers on these combinations
yield at least one form-closure grasp. Let ε be an arbitrarily small positive number. We can handle
the cases stated above in the following time complexities: case (i) O(n8/3 log1/3 n + K); case (ii)
O(n5/2+ε +K); case (iii) O(n2m1/2+ε +K); case (iv) O(nm) or O(n3/2+ε +K); case (v) O(nm2)
or O(n2+ε + K). Case (iv) and (v) have multiple choices of time complexities, depending on the
size of m in comparison to n.

In Chapter 5, we extend the approach used in Chapter 3 and 4 to compute all force-closure
grasps of a polygon and a planar semi-algebraic set. For a polygon, we compute the combinations
of (i) two edges, (ii) one concave vertex and one edge, (iii) one concave vertex and two edges, and
(iv) two concave vertices and one edge, such that two or three fingers on these combinations yield at
least one force-closure grasp. We can enumerate all these combinations in (i) O(n4/3 log3 n + K)
time, (ii) O(n4/3 log n + K) or O(n4/3 log3 n + K) time, (iii) O(n2 log4 m + K) time, and (iv)
O(m2n) or O(n4/3 log3 n+K) or O(n2 log4 n+K) time respectively. For a planar semi-algebraic
set, we compute the combinations of (i) one concave vertex and one arc, (ii) two concave vertices
and one arc, and (iii) one concave vertex and two arcs, such that the fingers on these combinations
yield at least one force-closure grasp. We can enumerate all these combinations in (i) O(nm)
or O(n3/2+ε + K) time, (ii) O(nm2) or O(n2+ε + K) time, and (iii) O(n2m1/2+ε + K) time
respectively.

In Chapter 6, we enumerate all second-order immobility grasps with two and three frictionless
point fingers for a polygon. More precisely, we compute all K edge triples that yield a second-
order immobility grasp with three fingers in O(n2 log3 n + K) time, and all K pairs of an edge
and a concave vertex that yield a second-order immobility grasp with two fingers in O(n log4 m +
(nm)2/3 log2+ε m + K) time. We use the necessary and sufficient geometric condition for second-
order immobility grasps of a polygon, proposed by Czyzowicz, Stojmenovic and Urrutia [33].

In Chapter 7, we provide output-sensitive algorithms to report all sets of independent form-
closure grasp regions of a specified width ε on edges of a polygon, and a rectilinear polygon. The
independent form-closure grasp regions are such that any placement of three or four frictionless
point fingers inside these regions will put the polygons in form closure. The practical implication
is that we yield form-closure grasps that are insensitive to misplacements of each of the individual
fingers by a distance of ε/2. For a polygon, we enumerate (i) all K edge patch quadruples, (ii) all
K triple of one concave vertex and two edge patches, and (iii) all K triples of two concave vertices
and one edge patch, such that three or four fingers on these combinations yield at least one form-
closure grasp. We can report these K sets in (i) O(n8/3 logO(1) n+K) time, (ii) O(n2 log4 m+K)
time, and (iii) O(m2n) or O(n2 log6 n + K) time. For a rectilinear polygon, we enumerate (i) all
K edge patch quadruples, (ii) all K triples of one concave vertex and two edge patches, and (iii)
all K triples of two concave vertices and one edge patch, such that three or four fingers on these

16 Introduction

combinations yield at least one form-closure grasp. We can report these K sets in (i) O(n log n+K)
time, (ii) O(n log n + K) time, and (iii) O(n log2 n + m2 log n + K) time.

Chapter 8 is on computing all form-closure grasps and all independent form-closure grasp re-
gions of a rectilinear polyhedron. A form-closure grasp needs at least seven lines of force. We
propose algorithms to compute all combinations of edges, concave edges and concave vertices,
such that four to seven fingers on these combinations achieve form closure.

In this chapter, we report all sets of (i) seven faces, (ii) faces and concave edges, (iii) faces
and concave vertices, and (iv) faces, concave edges and concave vertices, such that four to seven
frictionless point fingers on these sets yield a form-closure grasp. All K sets among all such sets
can be reported in (i) O(n2K ′ log4 n + K) time, (ii) O(n2K ′ log4 n + K) time, (iii) O(n2 log2 n +
nK ′ log4 n + K) time, and (iv) O(n2 log2 n + nK ′ log4 n + K) time, where n is the number of
faces, and K ′ is the size of the intermediate output. All of them except one are sensitive to K ′ and
K; the exception is sensitive to K ′ only.

When the object is not rigid, the complexity of an immobilizing grasp can be high. For example,
when polygons are connected by hinges at the vertices, the configuration space of this set of objects
has a high dimension, which is proportional to the number of polygons. In Chapter 9, we study
the problem of immobilizing hinged polygons in a given placement with frictionless point fingers.
We define new notions of immobility and robust immobility, which are comparable to second-order
immobility and to form closure for a single object. Robust immobility is an immobilization that
is insensitive to small perturbations of fingers along the edges. Notice that this perturbation is
arbitrarily small; we do not guarantee that one can perturb each finger by a given value ε, which
is the difference between robust immobility and independent form-closure grasps. We show, by
construction, that (n + 2) frictionless point fingers suffice to immobilize any serial chain of n �= 3
polygons without parallel edges; it is unclear whether five fingers can immobilize three hinged
polygons. At most (n + 3) fingers suffice to immobilize a serial chain of n arbitrary polygons. We
also show, by construction, that � 6

5
(n + 2)� and �5

4
(n + 2)� fingers suffice to robustly immobilize

a serial chain of n hinged polygons without, and with parallel edges respectively.

Chapter 2

Grasp Analyses and Preliminaries

In this section, we introduce the notions of form closure (Section 2.1), second-order immobility
(Section 2.2.2) and force closure (Section 2.3), and the corresponding analyses. In Section 2.4, we
present a condition for form closure, and the intersection algorithms and the data structures used
in this thesis.

2.1 Form closure

In this section, we present two types of analyses for form closure: one is Reuleaux’s method [70]
on the object plane, and the other is in wrench space. Reuleaux’s method is more intuitive, but it
only applies to planar objects. The analysis in wrench space, on the other hand, is for two and three
dimensional objects. Form closure can also be analyzed in configuration space [74, 75], which we
will explain in Section 2.2.1. We do not include this analysis, because its major contribution is to
explain how curvatures affect a set of fingers to achieve second-order immobility.

Screw theory provides yet another way of modeling the effect of force. It is used by many
researchers for kinematic analysis of body motions [6, 8, 27, 77]. Unfortunately, it does not provide
a nice characterization to check immobility as far as we know, therefore we do not discuss screw
theory further in this thesis. Ponce et al. [61] provided an excellent explanation of screw theory.

2.1.1 Analysis in the object plane: Reuleaux’s method

Every infinitesimal motion can be seen as a rotation around a point in a counterclockwise/clockwise
direction [70]. When a point finger is in the interior of a straight edge, the normal line divides
centers of counterclockwise and clockwise rotations. The left side of the normal line1 has centers

1The boundary line is not included.

(a) (b)

−++ −

Figure 2.1: (a) When a point finger is in the interior of an edge. (b) When a point finger is at a concave vertex. The
points on the thick part of normal line allow clockwise and counterclockwise rotations, while those on the thin part of
the normal line do not allow any.

18 Grasp Analyses and Preliminaries

(c)(b)

p

p′

(a)

p
p′

��2

��1
��1

��2

��1

Figure 2.2: (a) A polygon P in form closure with four fingers. (b) The line pp ′ is in the positive cones of the normal
lines. (c) pp′ is in the negative cones of the normal lines.

(a) (b) (c) (d)

+ −
Co

+ −
Co Cc

+ −
Co

+ −Co

Cc

P P

P
P

Figure 2.3: (a) (b) Possible rotational centers on the normal line when a point finger is on the curved boundary of
an object. (c) (d) Possible rotational centers on the half planes when a curved finger is on the curved boundary of an
object.

of counterclockwise rotations and the right side has those of clockwise rotations, when facing the
interior of the object P from the finger. (See Figure 2.1.) In other words, for the point finger
rules out all infinitesimal rotations of P except counterclockwise rotations around a point on the
left side of the normal line, and clockwise rotations around a point on the right side. When a
point finger is at a concave vertex, it induces two normals to the incident edges at the vertex. The
common regions of counterclockwise and clockwise rotations induced by the two normals have
centers of possible rotations as in Figure 2.1 (b). The object P is in form closure, if and only if
the oriented half planes induced by the point fingers have an empty intersection. See Figure 2.2
(a). This can be seen in another way [58]. Two directed lines ��1 and ��2 divide the plane into four
regions. Let the intersection point of ��1 and ��2 be the origin. We take the region bounded by ��1 and
��2 with the outgoing directions, and call it positive cone—see Figure 2.2 (b). Similarly, we call
the region bounded by the incoming rays negative cone. We pair the normal lines, and connect the
intersection points p and p′ by a line segment. The object P is in form closure, if and only if pp′ is
in the positive cones of the normal lines, or in the negative cones of the normal lines. Figure 2.2
(b) and (c) illustrates these cases.

What about the points on the normal line? Which rotations around these points are allowed? It
turns out that it depends on the curvatures of P and the fingers. In other words, the information
about these curvatures can be included in the half plane analysis. When the curvatures of the object
boundary and the finger at the contact are considered, we can distinguish which rotation is possible
around the points on the normal line—the other part is the same as with the case of a point finger
along a straight edge. Let Co and Cc be the tangent circle at the finger of the object boundary and
the contact respectively. The points between the finger and the center of Co, and those between
the finger and the center of Cc do not allow any rotation—the finger and the center of the circles
are not included. In Figure 2.3, no rotation is possible around the points on the thin parts of the
normal lines, while any rotation is allowed around those on the thick parts of the normal lines. This

2.1 Form closure 19

also explains the case of a point finger touching a straight edge in the interior in Figure 2.1 (a).
The points on the normal on the side where the object lies locally do not allow any rotation, while
the points on the other part of the normal line allow clockwise and counterclockwise rotations.
(See Figure 2.1.) Unfortunately, these insights cannot be used to obtain a graphical method for
immobilization analysis that takes into account curvature.

2.1.2 Analysis in wrench space

When a force is applied to an object P at position p, it will make the object translate and/or
rotate. The force is applied along an inward normal line of the boundary of P at p, and we call
this inward normal line line of force. We let η be the normalized direction vector of a line of
force. How this force moves P depends on the line of force and the magnitude of force applied
along it. A line of force with the normalized direction vector η can be represented as a point in
a three-dimensional space. We call this point a wrench of the finger pushing P . In other words,
a wrench is a three-dimensional description of a directed line. The space of all wrench points
is called wrench space. The wrench of a finger at p with a unit direction vector η is defined as
w = (η, p × η) = (η, τ) = (ηx, ηy, p × η) for a two-dimensional object. For a three-dimensional
object, the wrench of a finger at p with a unit direction vector η = (ηx, ηy, ηz) is a six-dimensional
vector w = (η, p× η) = (η, τ) = (ηx, ηy, ηz, τx, τy, τz). Note that a finger induces a wrench vector
λw, where λ > 0, depending on how much force is applied through the finger.

We first introduce a characterization of form closure [38, 56, 58, 79] for planar objects. Most
of our approaches in this thesis are based on this.

Theorem 2.1 Given a set of κ (≥ 4) wrenches w1, w2, · · · , wκ on a two-dimensional object P ,
the following three conditions are equivalent:

(i) P is in form closure.

(ii) Any wrench wF can be written as −wF = λ1w1 + · · · + λκwκ with λi ≥ 0.

(iii) The origin O lies in the interior of the convex hull of w1, w2, · · · , wκ.

The equivalence of (i) and (ii) relies on the fact that the fingers together can be seen to apply
any wrench that is a non-negative combination of the individual finger wrenches. Intuitively, P is
in form closure if and only if any wrench applied to P can be cancelled by such a non-negative
combination of finger wrenches. The equivalence of (ii) and (iii) can be verified easily: if we set
wF to be a zero vector, Theorem 2.1 (ii) becomes an algebraic formulation of Theorem 2.1 (iii).
When κ = 4, all λi’s must be positive to make a zero vector, i.e.

∑4
i=1 λiwi = �0 for λi > 0.

Theorem 2.1 (iii) and
∑4

i=1 λiwi = �0 with λi > 0 are geometric and algebraic statements that
the κ wrench vectors positively span the three-dimensional wrench space—this is why κ is at least
four, the dimension plus one. The theorem implies that the magnitudes of wrench vectors are not
important; only the direction matters. This again justifies that we take wrenches with unit force
vector η. Note that if the origin lies on the boundary of the convex hull of w1, w2, w3 and w4,2 the
object is not in form-closure, but it may still be in second-order immobility—see Chapter 2 and 6.

Now we introduce a necessary and sufficient condition for a two or three dimensional object
held with κ fingers to achieve form closure.

2Such grasps are called equilibrium grasps. This means that the object held with some fingers does not move, i.e. it is in equilibrium. Note
that all immobilizing grasps are equilibrium grasps, but not all equilibrium grasps are immobilizing grasps. The equilibrium grasp where the origin
of the wrench space is strictly inside the convex hull of the wrenches is called nonmarginal equilibrium grasp ([58]). Nguyen [58] showed that a
nonmarginal equilibrium grasp is a form-closure grasp.

20 Grasp Analyses and Preliminaries

w4 O

w1

w2

w3

w5

w6

Figure 2.4: In a three-dimensional space, the convex hull of w 1, · · · , w6 contains the origin O in the interior. When
one of the points is removed, the convex hull of the remaining points does not contain O in the interior.

(b)(a)

w1

w2
w3

w4

w1

w2
w3

−w1

−w2
−w3

Negated cone of
w1, w2, and w3

ηx

ηy

τ

ηx

ηy

τ

Figure 2.5: The negated cone of three wrench vectors w 1, w2, and w3 is the cone of −w1, −w2, and −w3.

Theorem 2.2 [38, 79] An object P held with κ fingers is in form closure, if and only if the κ
wrenches w1, · · · , wκ positively span the wrench space.

Since the wrench space for a three-dimensional object is six-dimensional, κ must be at least
seven. In other words, seven fingers are necessary to put a three-dimensional object in form closure
[46, 51, 56]. Recall that four fingers are necessary to put a planar object in form closure. However,
we sometimes need six wrench points to positively span the wrench space [56, 51]; we cannot
remove any of the six wrench points to keep the wrench space spanned positively. This happens
when the six wrenches have three pairs of collinear wrench vectors, and two wrenches in each pair
have opposite directions. One good example is the six points on the coordinate axes of a three-
dimensional space. In Figure 2.4, two vectors are on the positive and the negative side of each axis.
The same applies to six-dimensional wrench space; there are cases when one needs to have twelve
wrenches to positively span the six-dimensional wrench space. In general, we may not be able to
remove any vector from 2d vectors to positively span the d-dimensional space (Steinitz Theorem
[56]).

To check if a given set of κ wrenches w1, · · · , wκ achieve form closure, one can use the negated
cone formed by the others [14]. The convex hull of the κ wrenches contains the origin strictly
inside, if and only if wκ is in the negated cone of w1, · · · , wκ−1, i.e. the cone of −w1, · · · ,−wκ−1.
Figure 2.5 illustrates the negated cone formed by w1, w2 and w3. This is an easy checking method,
but unfortunately, it does not lead to an efficient algorithm.

2.2 Second-order immobility

Four frictionless point fingers are necessary to put two-dimensional objects in form closure, but
often, three can immobilize planar objects. Applying Reuleaux’s method implies that the three

2.2 Second-order immobility 21

(a) (b) (c)

(e) (f)(d)

Figure 2.6: (a) A polygon that needs four point fingers to be immobilized. Many types of objects held with three point
fingers on the boundary are shown in (b)–(f).

(a) (b)

P1

P ′
1

P1

P ′′
1

Figure 2.7: (a) Both of P1 and P ′
1 are in form closure. (b) P1 is in second-order immobility, but P ′′

1 is not.

normal lines must meet at one point. Obviously, this is not sufficient. In other words, Reuleaux’s
method cannot decide in which case the object is immobilized and in which case it is not. For
example, the objects held with three fingers in Figure 2.6 (b), (c), and (f) are immobilized, and
those in (a), (d) and (e) are not. Observe that the three normal lines meet at one point in all
these cases. The objects in Figure 2.6 (b), (c), and (f) are in second-order immobility. To identify
immobilized objects, we need to include curvatures in the analysis. Note that no information on
curvature is used in form closure analyses; they include only the geometry of the normal lines.

We first look at the objects in Figure 2.6 (a), (b) and (c). It is easy to see that the objects in
Figure 2.6 (b) and (c) are immobilized and that in (a) is not. We can understand this difference
with the curvature of the object and the fingers. Now we look at the objects in Figure 2.6 (d), (e)
and (f). It is not easy to see which one is immobilized and which one is not. The object in Figure 2.6
(f) is immobilized and those in (d) and (e) are not. Rimon and Burdick observed that the curvature
of the motion of P should be considered to analyze second-order immobility [73, 74, 75, 76]. Note
that the grasps in Figure 2.6 are all equilibrium grasps, and they are marginal equilibrium grasps.
Form-closure grasps are non-marginal equilibrium grasps [56, 58].

To see the curvature effect more easily in comparison with form-closure grasps, let us take a
polygon P1, and put it in form closure with four fingers, and also put it in second-order immobility
with three fingers. We replace P1 with curved objects P ′

1 and P ′′
1 such that the normal lines remain

the same. See Figure 2.7 (a) and (b). Then P ′
1 is still immobilized, while P ′′

1 is not immobilized.
The objects P1 and P ′

1 in Figure 2.7 (a) are in form closure, and P1 in Figure 2.7 (b) is in second-
order immobility.

In Section 2.2.1, we summarize the mobility theory developed by Rimon and Burdick [73, 74,
75, 76]. They explained in configuration space how the curvatures affect immobility. Czyzowicz,
Stojmenovic and Urrutia [33] formulated a geometric condition on the object plane to analyze

22 Grasp Analyses and Preliminaries

β(t)
α(t)

q0

tangent plane

i-th c-obstacle

Free Motion
Halfspace

Penetration
Halfspace

θ
dy

dx

Figure 2.8: The first order approximation to the free motions of P at q 0.

second-order immobility for simple polygons. In Section 2.2.2, we will introduce this condition
with a more visual and thorough explanation.

2.2.1 Analysis in configuration space

A placement of an object P can be described by a translation and rotation with respect to a ref-
erence placement. This is called configuration, and all possible configurations form configuration
space, or c-space. The configuration space for a planar object is three-dimensional, and that for a
three-dimensional object is six-dimensional. A finger prevents P from occupying certain configu-
rations, and this set of configurations is called the forbidden region, and the region of configurations
where P can be placed is called free region. The object cannot enter the forbidden region; it can
freely move in the free region only. Let CAi be the forbidden area of the configuration space be-
cause of the i-th finger Ai and, Si is the boundary of CAi. A signed c-space distance function di(q)
measures the minimal Euclidean distance of a configuration point q from Si as follows:

di(q) =

⎧⎨
⎩

distance(q,Si) if q is outside of CAi

0 if q is on Si

−distance(q,Si) if q is in the interior CAi

Let α(t) be a smooth c-space path such that at the starting configuration q0, P touches a finger
Ai. This corresponds to a possible motion of P during which it maintains contact with A i. The
set of first order free motions of P at q0 is related to the first order Taylor expansion of di along
α(t). When the motion is along Si, it is called first order roll-slide motions, and when the motion
is strictly away from Si, it is called first order escape motions. Together, they are called first order
free motions. This analysis with first order free motions is equivalent to form closure analysis, thus
form closure is first-order immobility in their notion.

When the motion is along Si, and the first order term is zero, then the distance is decided by
the second order term. With considering the second order term, when the motion is along Si, it is
called a second order roll-slide motion, and when the motion is strictly away from Si, it is called a
second order escape motion. Figure 2.8 illustrates the difference between the first and second order
motions. The c-space curves α(t) and β(t) in Figure 2.8 have the same tangent vector, and thus
they are equivalent to the first order. But α(t) lies in the free space, while β(t) does not. Note that
all the free motions of P at an equilibrium grasp are necessarily roll-slide to first order. The objects
held with three fingers in Figure 2.6 (d), (e) and (f) need analysis in the second order term. When
the object turns out to be immobilized by checking the second order term for each of the fingers,
we call this immobility second-order immobility. The first-order properties of the free paths and

2.2 Second-order immobility 23

(a) (b)

e1
e3

e2

e3
H(e1)

H(e2)

e1

e2

H(e2)

H(e3)
H(e1)

H(e3)

Figure 2.9: (a) The intersection of H(e1), H(e2) and H(e3) is a bounded triangle. (b) The intersection of H(e1),
H(e2) and H(e3) is empty.

the c-obstacle boundaries (i.e. tangents and tangent hyperplanes) determine first order mobility of
P .

2.2.2 Analysis in the object plane for simple polygons

Czyzowicz, Stojmenovic and Urrutia [33] provided a necessary and sufficient geometrical condi-
tion for a simple polygon to be in second-order immobility with three point frictionless fingers.
Lemma 2.3 states the condition in [33]—we will refer to it as the CSU condition. Our algorithm
in Chapter 6 to efficiently report all second-order immobility grasps on a simple polygon is based
on the CSU condition. Unfortunately, to our best knowledge, there is no algorithm to efficiently
report all second-order immobility grasps of an arbitrary planar object.

We first define the term triangular triple. Let the three fingers be on three edges e1, e2 and e3.
Let H(e1) be the open half-plane bounded by the supporting line of e1, and it contains the interior
of P around the contact position p1 (see Figure 2.9). When the region H(e1) ∩ H(e2) ∩ H(e3)
forms a (bounded) triangle, then e1, e2, and e3 are said to be a triangular triple. Note that the object
in Figure 2.6 (f) satisfies the triangular triple condition, and those in (d) and (e) do not.

Lemma 2.3 [33] Three point fingers immobilize a polygon P , if and only if the following two hold:

(i) The normals of the fingers meet at one point.

(ii) The contact edges form a triangular triple.

Now we show why the triangular triple condition is necessary in the second-order immobility
condition. Let p1, p2 and p3 be the three fingers at e1, e2 and e3, such that the normal lines meet
at one point. Instead of fixing the fingers, we fix P , and see how the triangle �p1p2p3 moves.
Because p1 and p2 are on e1 and e2, we see how p3 moves when p1 and p2 slide on e1 and e2

respectively.3 Let �1, �2 and �3 be the supporting lines of e1, e2 and e3, and let O be the intersecting
point of �1 and �2. The three points O, p1 and p2 define a circle C, and let p denote the center of C.

Lemma 2.4 If the normal lines at p1, p2 and p3 meet at one point, and the triangle �p1p2p3 has
two vertices p1 and p2 that slide along �1 and �2, then p3 traces an ellipse.

Proof: First we will show that p rotates around O. As p1 and p2 slide on �1 and �2, the circle C
with O, p1 and p2 on the boundary also moves. The angle ∠p1Op2 has a fixed value α, therefore
the interior angle ∠p1pp2 is also fixed—2α. Because |p1p2| is fixed, the radius of C |Op| is fixed,
therefore, p rotates around O. Since |Op| = |pp2| = |pp1|, the position of p is fixed with respect

3The lemmas on the sliding triangle are from http://whistleralley.com/ellipse/ellipse.htm.

24 Grasp Analyses and Preliminaries

p1

�1

�2
C

p3

p

O

α

p2

θ

(c)(b)

γ

p1

C

p3

p

O

α

p2

θ

M

�1

�2

γ
x′ x′

p1

�1

�2
C

p3

p

O
α

p2

(a)

α

2α

Figure 2.10: (a) The length of |pp3| and angle ∠p2pp3 are constant. (b) Three points O, M and p1 are on C, and
∠Op1M = π/2.

to segment p1p2, hence, with respect to the triangle �p1p2p3. Therefore, pp3 and angle ∠p2pp3 are
constant. See Figure 2.10 (a).

Let θ be the angle ∠pOp2, and γ be ∠p2pp3. When triangle �p1p2p3 slides along �1 and �2, θ
changes, but not γ. See Figure 2.10 (b). When we consider �2 as x axis, the x coordinate for p3 is
|Op| cos θ+|pp3| cos(γ−θ), and the y coordinate is |Op| sin θ+|pp3| sin(γ−θ). Now we change our
coordinate system; we rotate �2 around O by γ/2, and take this as new x axis. Then the coordinate
of p3 becomes (|Op| cos(−γ/2+θ)+|pp3| cos(γ/2−θ), |Op| sin(−γ/2+θ)+|pp3| sin(γ/2−θ)) =
((|Op| + |pp3|) cos(θ − γ/2), (|Op| − |pp3|) sin(θ − γ/2)), which is a description of an ellipse. �

The next lemma shows that the edge e3 keeps the ellipse that p3 traces on one side.

Lemma 2.5 If the normals of p1, p2 and p3 meet at one point, e3 is tangent to the ellipse that p3 of
the sliding triangle �p1p2p3 traces.

Proof: Let M be the intersection of the two edge normal lines for e1 and e2 at p1 and p2. We first
show that OM contains p, i.e. it is a diameter of C. The three points O, M and p1 are on C, and
the angle ∠Op1M is a right angle from the construction of M . See Figure 2.10 (b). The center of
the circumcircle of a triangle lies on one of the triangle’s sides, if and only if the triangle is a right
triangle, therefore, p ∈ OM . The coordinate of M with �2 as x-axis is (2|Op| cos θ, 2|Op| sin θ).
The edge normal line of e3 at p3 is the supporting line of p3M from the construction—p3 is chosen
such that the three normal lines of e1, e2 and e3 at p1, p2 and p3 meet at one point.

Remember that p3M is an edge normal of e3. Thus if the tangent line of the ellipse at p3 is
perpendicular to p3M , e3 is tangent to the ellipse at p3. The tangent direction vector �t of the ellipse
at p3 is (−|Op| sin θ + |pp3| sin(γ − θ), |Op| cos θ − |pp3| cos(γ − θ)), and

−−→
p3M = (2|Op| cos θ −

|Op| cos θ−|−→pp3| cos(γ−θ), 2|Op| sin θ−|Op| sin θ−|pp3| sin(γ−θ)) = (|Op| cos θ−|pp3| cos(γ−
θ), |Op| sin θ − |pp3| sin(γ − θ)). Showing that

−−→
p3M · �t = 0 will finish the proof.

−−→
p3M · �t = (|Op| cos θ − |pp3| cos(γ − θ)) (−|Op| sin θ + |pp3| sin(γ − θ))

+(|Op| sin θ − |pp3| sin(γ − θ)) (|Op| cos θ − |pp3| cos(γ − θ))

= −|Op|2 sin θ cos θ + |Op||pp3| cos θ sin(γ − θ)

+|Op||pp3| cos(γ − θ) sin θ − |pp3|2 sin(γ − θ) cos(γ − θ)

+|Op|2 sin θ cos θ − |Op||pp3| cos(γ − θ) sin θ

−|Op||pp3| cos θ sin(γ − θ) + |pp3|2 sin(γ − θ) cos(γ − θ)

= 0.

�

2.3 Force closure 25

p1

p2

�1 �2

�3

p3

O

p1

p2

p3

(a) (b)

(c) (d)
�1 �2

�3

p2

p1

p3

�1

�2

�3

�1

�2

�3

p1

p2

p3

Figure 2.11: The curvature of motions of the fingers on three edges that make a triangular triple, and those that does
not make a triangular triple.

When e1, e2 and e3 meet at one point, p3 follows a degenerate ellipse—a line segment (Fig-
ure 2.11 (a)). When e1, e2 and e3 do not make a triangular triple, the ellipse is outside of H(e3).
See Figure 2.11 (b). When the edges make a triangular triple, the ellipse is in H(e3), which means
that the triangle cannot move any more without penetrating the interior of P , therefore, P is im-
mobilized. See Figure 2.11 (d).

2.3 Force closure

When frictional fingers immobilize an object P , P is said to be in force closure. The word “force”
is used to describe this immobility with frictional fingers, because friction assumes force. Fewer
than four (frictional) fingers can achieve force closure, because a frictional finger applies force
along a set of lines, while a frictionless finger does along only one line. We call the set of lines of
force friction cone. In this thesis, we focus on hard point fingers, and use Coulomb friction model
for analysis.4 When a hard frictional point finger pushes an object P , the surface normal has a
friction cone around it with half angle ϑ, which is the region where the lines of force lie. Figure 2.12
describes friction cones for two-dimensional and three-dimensional objects. The friction cone on
a three-dimensional object P can be constructed as follows: take the normal line at the contact,
rotate it around the contact by ϑ, and rotate this new line around the normal. The cone constructed
outside P is the friction cone. Any line of force—it is in the friction cone—can be represented as
a positive combination of the boundary lines.

Assuming Coulomb friction, three and four frictional hard point fingers are necessary to im-
mobilize two and three dimensional objects respectively [51]. When we use rounded fingers with
static friction, two can grasp any two-dimensional object, and three can grasp any two-dimensional
object [54]. As in the case of form closure, a non-marginal equilibrium grasp achieves force closure
for a two-dimensional object [60] and also for a three-dimensional object [61].

To analyze force closure, we can basically use the analysis for form closure: Reuleaux’s method
and the analysis in wrench space. For a two-dimensional object, two or three frictional fingers can

4There are many kinds of fingers. The friction cones for different fingers are described in [58].

26 Grasp Analyses and Preliminaries

(b)(a)
ϑ

ϑ

Figure 2.12: Coulomb friction model of a frictional point finger. (a) A friction cone of a finger on a planar object. (b)
A friction cone of a finger on a three-dimensional object. Any boundary line forms angle ϑ with the normal line.

(a) (b)

p

p′

P
p

p′

P

Figure 2.13: Force closure grasps with two frictional fingers. (a) Line p 1p2 is in the internal friction cones, and (b)
p1p2 is in the external friction cones.

achieve force closure. A necessary and sufficient condition in wrench space for the fingers to
achieve force closure is similar to that for form closure; the wrenches of the boundary lines of the
friction cones must positively span the wrench space to achieve force closure [79]. A necessary
and sufficient condition on the object plane for two fingers to achieve force closure is as follows:
a planar object with two frictional fingers achieve force closure, if and only if the joining line of
the two contacts must be in the internal friction cones or in the external friction cones [58, 60]—
see Figure 2.13. An equilibrium grasp with three fingers achieves force closure if and only if
there exist three lines in the friction cones which positively span the plane and which intersect at
one point [60]. Force closure grasps for three-dimensional objects with four Coulomb-frictional
point-contact hard fingers have been studied by Ponce et al. [61]. They also provided a geometric
characterization of force closure grasps with four fingers.

2.4 Preliminaries

In this section, we introduce the theorem of form closure, and data structures and algorithms to
report all intersections. In Section 2.4.1, we state the form closure condition and the transforma-
tion of the problem into intersection problem. In Section 2.4.2, we introduce all the intersection
algorithms and data structures.

2.4.1 Projections of wrenches

In the following, we define the segment pq to be the relatively open segment connecting p and q,
that is, the set pq := {λp + (1 − λ)q | 0 < λ < 1}. We have a simple geometric lemma.

Lemma 2.6 Let w1, w2, w3, w4 be four points in R
3. The origin O lies in the interior of the convex

hull of w1, . . . , w4 if and only if there are points p1 ∈ w1w2 and p2 ∈ w3w4 such that O ∈ p1p2.

Proof: The “if” direction is straightforward, so we show “only if” direction only. Suppose that
the origin O lies strictly inside the tetrahedron formed by w1, w2, w3 and w4. Consider the plane Π
containing w1, w2, and O. It intersects the segment w3w4 in a point p2. See Figure 2.14. The

2.4 Preliminaries 27

w1w3

w4

O w2

p1

p2

Π

Figure 2.14: The origin O lies in the interior of the convex hull of w 1, w2, w3 and w4, if and only if there are points
p1 ∈ w1w2 and p2 ∈ w3w4, such that O ∈ p1p2.

Γ1

Γ2

w1

w2

O

π2(w2)

π2(w1)

Figure 2.15: Screen Γ and the projection of a line segment.

intersection of the tetrahedron with Π is the triangle �w1w2p2. The point O lies in the interior of
this triangle, and so the line Op2 intersects w1w2 at an interior point p1 of w1w2. �

If we project these four points on some planes, they have an interesting property. In wrench
space, the horizontal dimensions ηx and ηy represent the direction of the force applied by a wrench,
while the vertical dimension τ represents the torque that is caused by the force. We take two planes
Γ1 and Γ2 for our screen Γ throughout the thesis, unless stated otherwise. They are defined as
follows: Γ1 := {(ηx, 1, τ)T | −1 < ηx < 1 + ε, τ ∈ R} and Γ2 := {(−1, ηy, τ)T | −1 < ηy <
1 + ε, τ ∈ R}, where ε is an arbitrarily small positive constant. The screens are extended by ε,
so that an interior point of a wrench set is projected as an interior point on at least one plane of Γ,
according to the following projection scheme. See Figure 2.15 and 2.16.

Now we will project wrenches w that do not lie on the τ -axis onto Γ as follows. The projection
πi(w) of w on Γi (i = 1, 2) is the intersection, if it exists, of Γi with the line through w and the
origin O. If w lies between O and πi(w), we color πi(w) blue. If O lies between w and πi(w), we
color πi(w) red. It is easy to see that for each wrench w, at least one of π1(w) and π2(w) exists.

A segment w1w2 is projected onto Γ by projecting each point w ∈ w1w2. The projection
π(w1w2) consists of at most four segments on Γ, where each segment is either blue or red. See

28 Grasp Analyses and Preliminaries

Γ1

ηx

ηy

−1

−1

1
Γ2

1
O

Figure 2.16: Screen Γ in wrench space, viewed from the positive τ axis.

Γ1

Γ2

O

w1

w2

p1

w3

w4

p2
π(w1w2)

π(w3w4)

Figure 2.17: The origin is inside the convex hull of w1, w2, w3 and w4, if and only if red and blue projections of w1w2

and w3w4 intersect each other in the interior.

Figure 2.15. The following lemma is a reformulation of Theorem 2.1 (iii) in terms of projections.
Figure 2.17 illustrates Lemma 2.7.

Lemma 2.7 Given an object P with four contact wrenches w1, w2, w3 and w4, P is in form-closure
if and only if a red part of π(w1w2) intersects a blue part of π(w3w4), or vice versa.

Proof: By Theorem 2.1 and Lemma 2.6, the object is in form closure if and only if there exist
p1 ∈ w1w2 and p2 ∈ w3w4 such that O ∈ p1p2. Since π(w1w2) and π(w3w4) are line segments,
neither w1w2 nor w3w4 passes through the origin. Furthermore, on a screen Γi where πi(p1) exists
(which must be true for at least one of the screens Γ1 and Γ2), we must have πi(p1) = πi(p2) (since
they lie on the same line through the origin) and the colors of these projections differ (since they
lie on different sides of the origin)—see Figure 2.17. �

2.4 Preliminaries 29

2.4.2 Algorithms and data structures for intersection search problem

In this thesis, we need to search for red and blue intersections between points, line segments,
triangles, arcs and semi-algebraic sets. We will divide this section into two parts: the intersection
search strategies between points, line segments and triangles, and those between points, arcs and
semi-algebraic sets.

Intersections between points, line segments and triangles

We wish to search for red and blue intersections between the following pairs: (i) line segments, (ii)
points and triangles. To find all intersecting red and blue line segments, we use a segment intersec-
tion algorithm and a segment intersection search structure. To report all red and blue intersections
between points and triangles, we use a triangle search structure.

Segment intersection algorithm reports all K intersections between red and blue line segments
among q red and blue line segments—there can be intersections between reds and also between
blues. The algorithm by Agarwal [1], improved by Chazelle [18] does this in time O(q4/3 log1/3 q+
K), (Chazelle’s description mentions colorblind intersections only, but his approach also works for
red-blue intersections). Throughout this thesis, we let k denote the output size for one query, and
K be the overall output size, unless stated otherwise.

The segment intersection search structure supports a query of the following form: given a set of
line segments, report all segments intersecting a query segment in the interior. The triangle search
structure supports a query of the following form: given a set of points, report all points lying in a
query triangle. For both structures we use one type of data structure called hierarchical cutting tree
proposed by Matoušek [52]. Matoušek explains how we can build, for any set P of m points in the
plane, and a prescribed parameter t such that log m ≤ t ≤ m, a tree of height O(log m) with the
following properties:

• the number of nodes at depth i is O(ρ2i), for some constant ρ; each node v at depth i has an
associated subset Pv of P of size O(m/ρi);

• there are O((m/t)2) leaves v, and their sets Pv have size O(t);

• for any half plane H , the points in P ∩ H are exactly the points in the sets associated with a
set of non-leaf nodes (one node at each depth in the tree), plus some or all of the points in a
single leaf. The set of non-leaf nodes and the leaf can be identified in O(log m) time.

The tree can be built in O(m2/t) time.5 If we just store the sets Pv explicitly, this tree can obviously
be used to answer half plane range reporting queries in O(log m + t + k) = O(t + k) time: find
the leaf, check its complete contents, and find the non-leaf nodes, and just report their complete
contents.

To extend this approach to a triangle search or segment intersection structure, we proceed as
follows. We generalize the above tree a little bit. Instead of points p, we store tuples of points
(p1, ..., pκ). The half plane property of the tree will now read as: “For any half plane H , the
tuples {(p1, · · · , pκ) | p1 ∈ H} are exactly the tuples...”. We call such a tree an order-1 tree. A
tree of order j, for j > 1, will be just like an order-1 tree, with two exceptions. First, and most
important: each set Pv for a node v of the order-j tree will be stored as a tree of order (j − 1) on
the tuples in Pv. Second, the half plane property now reads as: “For any half plane H , the tuples
{(p1, ..., pκ) | pj ∈ H} are exactly the tuples...”.

5Theorem 5.1 from Matoušek [52], with r = m/t and d = 2. Note that there is a typographical error in Matoušek’s publication: it says O(ρi)
instead of O(ρdi).

30 Grasp Analyses and Preliminaries

Lemma 2.8 A tree of order j:

• can be built in time O(m2(logj−1 m)/t), and

• can be used to report, for any set of j half planes (H1, ..., Hj), all tuples {(p1, ..., pκ) |
∀1≤i≤j pi ∈ Hi}, in time O(t logj−1 m + k), where k is the number of tuples reported.

Proof: We prove the lemma by induction on j.
For j = 1, it is obviously true.
The construction of a tree of order j > 1, consists of the construction of the main structure,

in O(m2/t) time, and the construction of the associated trees of order (j − 1). By the induc-
tion hypothesis, the construction of an order-(j − 1) tree at depth i in the order-j tree takes
O((m/ρi)2(logj−2 m)/t) time. The construction times thus add up to:

O

(
m2

t

)
+

O(log m)∑
i=0

O(ρ2i)O

((
m

ρi

)2
logj−2 m

t

)
= O

(
m2 logj−1 m

t

)

The search in an order-j tree with Hj yields O(log m) nodes whose order-(j − 1) trees have to
be searched. By the induction hypothesis, searching the order-(j−1) trees costs O(t logj−2 m+k)
time for each tree, which adds up to O(t logj−1 m + k). Furthermore, one leaf of size t has to be
searched, for a cost of O(t), so that the total time spent searching is O(t logj−1 m + k). �

Corollary 2.1 In O(m2 log m) time, we can build a triangle search structure on a set S of m points
that answers queries in O(log3 m+k) time, where k is the number of points in S that lie inside the
query triangle.

Proof: We build a tree of order 3 with t = log m and store each point p ∈ S in it as a tuple
(p, p, p). To answer a triangle query, we search the order-3 tree with the three half planes whose
intersection is the query triangle. By Lemma 2.8, the tree can be built in O(m2 log m) time and
answers queries in O(log3 m + k) time. 6 �

Corollary 2.2 In O(m2) time, we can build a triangle search structure on a set S of m points that
answers queries in O(log4 m + k) time, where k is the number of points in S that lie inside the
query triangle.

Proof: We follow the same approach as in Corollary 2.1, but now with t = log2 m. �

Corollary 2.3 In O(m2 log2 m) time, we can build a segment intersection structure on a set of m
line segments that answers queries in O(log4 m + k) time, where k is the number of line segments
in S that intersect the query segment.

Proof: We use the same transformation as, for example, in [3]. Assume that there are no vertical
segments (if there are vertical segments, we must turn everything just a little bit to prevent degen-
eracies). We build an order-4 tree with t = log m, storing each line segment s = s0s1 as a tuple
(l∗(s), l∗(s), s0, s1), where l∗(s) = (a, b) is the dual of the supporting line l(s) : y = ax + b of s.
Observe that a query segment q = q0q1 intersects s if and only if the following two conditions are
met:

6With Theorem 6.1 in Matoušek’s publication [52], he improves the construction time for the triangle search structure to O(m2 logε m) (with
the same query time) for any constant ε > 0; the same technique could be used to improve the construction time for the segment intersection
structure to O(m2 log1+ε m). However, these improvements don’t affect our final bounds, so we will ignore them for simplicity.

2.4 Preliminaries 31

• s0 lies above l(q) while s1 lies below l(q) (or the other way around), and

• q0 lies above l(s) while q1 lies below l(s), or equivalently: l∗(s) lies below the dual line q∗0 of
q0 and above the dual line q∗1 of q1 (or the other way around).

An intersection query with a line segment can thus be formulated as a query with four half planes,
bounded by q∗0 , q∗1 , and l(q) (twice) in the order-4 tree storing tuples (l∗(s), l∗(s), s0, s1). �

Sometimes, we use a variation of Matoušek’s hierarchical cutting trees with space and query
time trade-off for triangle search structure. It stores the points in M space in O(q1+ε + M logε q)

time, and reports k points in a query triangle in O(q/
√

M log3 M
q

+ k). If we set M to be q4/3, the

preprocessing time becomes O(q4/3 logε q), and the query time is O(q1/3 log3 q + k). See Theorem
6.2 in [52].

Intersections between points, arcs and semi-algebraic sets

In this thesis, we need to search for red and blue intersections between algebraic arcs and line seg-
ments, and between points and semi-algebraic sets. To find all red and blue intersections between
arcs and segments, we use a red-blue segment-arc intersection algorithm and a segment-arc query
structure. To report all red and blue intersections between points and semi-algebraic sets, we use a
semi-algebraic range search structure.

The red-blue segment-arc intersection algorithm by Koltun [45] works on q possibly intersect-
ing red (blue) segments and q possibly intersecting blue (red) arcs. It reports all K red and blue
intersecting arc and segment pairs in O(q3/2+ε +K)-time, using O(q) space. Alternatively, we can
store q arcs in a segment-arc query structure by Koltun [45] in O(q2+ε) time, and report all k arcs
intersecting a query segment in O(log q + k) time.

The semi-algebraic range search structure by Agarwal and Matoušek [2] is to report all points
in a query semi-algebraic set. It stores q points in O(q log q)-time, and reports all k points in a
query semi-algebraic set in O(q1/2+ε + k)-time.

32 Grasp Analyses and Preliminaries

Chapter 3

Computing All Form-Closure Grasps of a
Simple Polygon with Few Fingers

Many researchers studied the problem of reporting all form-closure grasps of polygons in the non-
modular setting [39, 82, 91]. Four wrenches (normal lines) are necessary to achieve form closure
for a two-dimensional object. Van der Stappen et al. [82] proposed an efficient output-sensitive
O(n2+ε + K)-time algorithm to compute all K edge quadruples of a polygon with n edges, which
allow form-closure grasps with four frictionless point fingers. Fewer than four point fingers may
suffice for form closure if the object has concave vertices. Computing all form-closure grasps
involving concave vertices was first studied by Gopalakrishnan and Goldberg [39]. They checked
all concave vertex pairs to find all K concave vertex pairs that allow a two-finger form-closure
grasp.

In this chapter,1 we propose efficient output-sensitive algorithms to enumerate all combinations
of concave vertices and edges of a polygon that allow form-closure grasps with two or three fric-
tionless point fingers. More specifically they are: (i) pairs of concave vertices, (ii) triples of one
concave vertex and two edges, (iii) triples of two concave vertices and one edge, and (iv) triples of
concave vertices. Here, we improve the result in [39]. The proposed algorithms are based on the
analysis of form closure in wrench space. This turns out to work well for synthesis of all grasps,
while it is not obvious how to compute all grasps with most intuitive analysis in two-dimensional
plane of the planar object itself, as Reuleaux’s method [70].

When polygons are rectilinear, all form-closure grasps can be enumerated faster, because the
wrenches have a regular pattern. We propose efficient output-sensitive algorithms to enumerate all
combinations of concave vertices and edges of a rectilinear polygon that allow form-closure grasps
with two, three or four frictionless point fingers. The combinations include: (i) edge quadruples,
(ii) triples of one concave vertex and two edges, (iii) pairs of concave vertices, and (iv) triples of
two concave vertices and one edge.

This chapter is structured as follows. In Section 3.1, we introduce notations, form-closure con-
ditions, projection schemes, wrench shapes and data structures for intersection search problems.
In Section 3.2, we propose output-sensitive algorithms to report all combinations of edges and
concave vertices of a polygon that allow form-closure grasps with less than four frictionless point
fingers. Section 3.3 covers rectilinear polygons; we propose output-sensitive algorithms to report
all combinations of edges and concave vertices of a rectilinear polygon that allow form-closure
grasps with at most four frictionless point fingers.

1This chapter is based on “On computing all immobilizing grasps of a simple polygon with few contacts” [23] by J.-S. Cheong, Herman
Haverkort and Frank van der Stappen in ISAAC (2003), and “On computing all immobilizing grasps of a simple polygon with few contacts” [24]
by J.-S. Cheong, Herman Haverkort and Frank van der Stappen in Algorithmica (2006).

34 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

O

(a) (b)ηx

ηy

τ

ηx

ηy

τΓ1
ê1

π(e2)

π(e1)

Figure 3.1: (a) The edge wrench induced by a finger on an edge. (b) The projection of a quadrilateral r(e 1, e2).

(a) (b)
ηx

O

ηy

ηx

ηy

τw1(v)

w2(v)

τπ(w1(v))

π(w2(v))
w2(v)

w1(v)

Figure 3.2: The wrench induced by a finger at a concave vertex and its projection. The projection is composed of at
most four line segments in general.

3.1 Preliminaries

As a consequence of Theorem 2.1, our problem is to find all edge wrench sets that contain four
points whose convex hull contains the origin of wrench space (ηx, ηy, τ). As seen in Section 2.4,
this problem is transformed into red and blue intersection problems on the projected wrenches
on screen Γ. More dtailed information on projections and screen Γ can be found in Section 2.4.
First we will see the shape of a wrench set induced by a finger along an edge in Section 3.1.1. In
Section 3.1.2, we discuss the data structures and algorithms that we use in this chapter.

3.1.1 The shapes of wrench sets

We place a finger at position p on an edge e. The corresponding wrench is (η, τ)T = (ηx, ηy, p ×
η)T , where η = (ηx, ηy)

T is the inward normal line of e. As mentioned earlier in Section 2.4, ηx

and ηy are the horizontal dimensions, and τ is the vertical dimension. When a finger slides along e,
the inward normal direction η does not change; only the torque τ changes. Thus the set of wrench
points forms a vertical line segment. See Figure 3.1 (a). We call this vertical segment the edge
wrench set of e, and denote it with ê. An edge wrench set is a relatively open line segment, i.e.
the endpoints are excluded, since we place a finger in the interior of an edge. Note that wrenches
never lie on τ -axis, as the inward normal direction is never (0, 0)T . The projection of a vertical
line segment ê is also a vertical line segment on Γ, which is denoted by π(ê).

When two fingers slide along two edges e1 and e2, the corresponding wrench points w1 and w2

also slide along ê1 and ê2. The union of the line segments connecting w1 and w2 for all w1 ∈ ê1

and w2 ∈ ê2 forms a trapezoid. Let r(e1, e2) denote the projection of this trapezoid. We formally
define r(e1, e2) as follows: r(e1, e2) :=

⋃
{π(w1w2) | w1 ∈ ê1, w2 ∈ ê2}. Observe that r(e1, e2)

is also a trapezoid, and it is composed of at most four trapezoids on Γ. Figure 3.1 (b) shows a
trapezoid r(e1, e2), which is composed of two trapezoids. Note that r(e1, e2) is partially open;
only the vertical boundary segments except the endpoints are included.

3.2 Computing all form-closure grasps with at most three fingers 35

(b)(a)

O

(c)

v v′

s(v′)

s(v)

Figure 3.3: A polygon with two concave vertices whose vertex wrenches intersect each other. In (c), the concave
vertex wrenches are in black solid lines; the dotted line segments correspond to convex vertex wrenches and gray solid
vertical line segments correspond to edge wrenches.

A finger at a concave vertex v touches two incident edges e1 and e2 of v at position p. Let ηi

be the normal line of edge ei at p, and wi(v) be its wrench (i = 1, 2). A finger at v induces a set
of lines of force between η1 and η2, thus a set of wrench points between w1(v) and w2(v). More
precisely, they are (α1η1 + α2η2, p× (α1η1 + α2η2)),2 which becomes α1w1(v) + α2w2(v), where
0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, and α1 + α2 = 1. Note that this line segment includes w1(v) and w2(v),
because the finger is at an endpoint of each of e1 and e2. We call this line segment the vertex
wrench set (of v), and denote it by v̂. The projection of the segment connecting w1(v) and w2(v) is
the (closed) line segment connecting π(w1(v)) and π(w2(v)) on Γ. We let s(v) denote this segment
on Γ. See Figure 3.2. Note that vertex wrench sets can intersect each other—see Figure 3.3.

3.1.2 Intersection search algorithms

In Section 3.2, we need to perform two kinds of queries to report all red and blue intersections.
For these queries, we use the following three: a segment intersection algorithm, a segment inter-
section search structure, and a triangle search structure. More information on these structures and
algorithms can be found in Section 2.4.2.

In Section 3.3, we use an interval tree, a binary search tree and a two-level orthogonal search
tree. All these trees can store q intervals or points in O(q log q) time. The query time for an interval
tree and a binary search tree is O(log q + k), and the query time for a two-level orthogonal search
tree is O(log2 q + k), where k is the output size. More information on these trees can be found
in [9]). Throughout this chapter, we let k denote the output size for one query, and K denote the
overall output size.

3.2 Computing all form-closure grasps with at most three fingers

Throughout this chapter, we let n be the number of edges and m be the number of concave vertices
of a polygon P . Before we introduce the algorithms to report all combinations of edges and
concave vertices, we show how to compute the exact positions on a given set of edges and concave
vertices that achieve form-closure. In particular, we take a combination of two edges e1 and e2, and
a concave vertex v. Note that a concave vertex has a fixed position where a finger can be placed.
Hence we focus on computing the positions of given edges that yield form-closure grasps with
a given concave vertex. A given set (e1, e2, v) has form-closure grasps if and only if a blue/red
trapezoid of ê1ê2 intersects a red/blue line segment of s(v) in the interior. (Readers can find more
detailed information in Section 3.2.2.) We take a point p in the intersection of red and blue ê1ê2

and s(v). We have a range of points on ê1 and ê2, whose line segment contains p in the interior.

2If we let α1η1 + α2η2 be a unit vector, the set of the corresponding wrench points forms an arc between w1(v) and w2(v). Observe that this
arc lies on the plane defined by three points O, w1(v) and w2(v). Hence the projection of this arc is a line segment connecting π(w1(v)) and
π(w2(v)). For simplicity, we take the line segment connecting w1(v) and w2(v) as the set of wrench points induced by a finger at v.

36 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

p

(c)
ê1

(a) p
(b)

p
ê2

ê1

ê2

ê1

ê2

Figure 3.4: A range of points on ê1 and ê2 whose line segment contains p in the interior. In (b) and (c), p is denoted
by an open disc, because that point is not included in the intersection region.

(a) (b)

Figure 3.5: (a) This polygon has no concave vertex pair that allow a form-closure grasp. (b) This polygon has O(m 2)
concave vertex pairs that allow a form-closure grasp.

Figure 3.4 shows a range on ê1 and ê2 when a point p is given. We compute the ranges for all points
in the intersection area. As p moves, the ranges gradually grow and shrink. It is enough to compute
the ranges for the points along the intersection region boundary. The intersection region has a
constant complexity, because trapezoids and line segments have constant complexities. Note that
the non-vertical boundaries of ê1ê2 and the endpoints of s(v) are not included in the intersection
region.

3.2.1 Two concave vertices

We wish to report all pairs of concave vertices that allow form-closure grasps by placing two
frictionless point fingers at these vertices. We assume that the concave vertices have already been
identified. For each concave vertex v, we compute s(v) on Γ, the projection of the line segment
connecting w1(v) and w2(v) . By Lemma 2.7, two concave vertices v and v′ have a form-closure
grasp with two frictionless point fingers, if and only if the interiors of s(v) and s(v ′) form a red-blue
intersection on Γ.

The family {s(v)} consists of at most 4m red and blue segments on Γ. It remains to compute
all red-blue intersections in this set, which can be solved in time O(m4/3 log1/3 m + K), using the
segment intersection algorithm. The following theorem summarizes the result. Note that the total
output size K is O(m2), but it can be zero. See Figure 3.5. In the worst case, K is O(m2), but in
most cases, K is smaller than this. The algorithm does not check all possible pairs to report O(m)
pairs, for example, which is an advantage of output-sensitive algorithms.

Theorem 3.1 Given a polygon with m concave vertices, all K form-closure grasps with two fric-
tionless point fingers at two concave vertices can be computed in time O(m4/3 log1/3 m + K).

3.2.2 One concave vertex and two edges

Form closure may also be achieved by placing three frictionless point fingers, one at a concave
vertex v, and one on each of two edges e1 and e2. We now give an algorithm to report all such
triples (v, e1, e2). Again, we have four wrenches: w1 ∈ ê1, w2 ∈ ê2, and the two wrenches w3(v)
and w4(v), the endpoints of s(v). All sets of line segments w1w2 form a trapezoid r(e1, e2). If
s(v) intersects r(e1, e2) in the interior, there exists w1 ∈ ê1 and w2 ∈ ê2, such that s(v) intersects
w1w2 in the interior. Therefore by Lemma 2.7, a triple (v, e1, e2) allows a form-closure grasp with

3.2 Computing all form-closure grasps with at most three fingers 37

(a) ê2ê1

(b)

Figure 3.6: (a) Red line segments intersecting a blue trapezoid in the interior. (b) An arrangement of blue trapezoids
and red line segments.

(a) (b)

Figure 3.7: (a) This polygon has no triple of a concave vertex and two edges that allow a form-closure grasp, and (b)
this polygon has Θ(mn2) such triples.

three frictionless point fingers, if and only if the blue part of s(v) intersects a red part of trapezoid
r(e1, e2), or vice versa.

There are m choices for s(v) and O(n2) trapezoids induced by n edge wrench sets: at most
four trapezoids for each pair of edges. It remains to solve the following problem: given a set of
m line segments and a set of O(n2) trapezoids, find all intersections between a line segment and
a trapezoid. See Figure 3.6. We observe that a segment s intersects a trapezoid r, if and only if s
lies in r, or s intersects one of the sides of r. We report those that belong to each of the two cases
separately.

For the first we use a triangle search structure of Corollary 2.1. We build, in O(m2 log m)
time, a triangle search structure on the set of midpoints of the m segments: this permits queries
with a trapezoid (by decomposing it into triangles), identifying the k points inside the trapezoid in
O(log3 m + k) time. The triangle search structure will report the segments whose midpoints lie in
r, but they intersect one of the sides of r. However, they will be reported at most twice. For the
second we use a segment intersection structure of Corollary 2.3. We build, in O(m2 log2 m) time,
a segment intersection structure for segment intersection queries on the O(m) segments. Finding
all k segments intersecting a given trapezoid boundary takes O(log4 m + k) time.

The total output size K is O(mn2), but it can be zero. Figure 3.7 shows the polygons with
Θ(mn2) triples and zero triple of a concave vertex and two edges that yield form-closure grasps.

Theorem 3.2 Given a polygon with m concave vertices and n edges, all K combinations of one
concave vertex and two edges that yield form-closure grasps with three frictionless point fingers
can be computed in time O(n2 log4 m + K).

3.2.3 Two concave vertices and one edge

Placing two point fingers at a pair of concave vertices v, v′ may not achieve form closure. Placing
one more finger in the interior of an appropriate edge e, however, can achieve form closure with
those at v and v′. Here, we present an output-sensitive algorithm to report all such triples (v, v ′, e).
Consider a pair of concave vertices v, v′ that does not achieve form closure. Let w1, w2 and w3, w4

be the wrenches induced by v and v′, respectively, and let W := {w1, w2, w3, w4}. By Theorem 2.1
the origin O does not lie in the interior of the convex hull of W . An additional finger on e achieves
form closure if and only if O lies in the interior of the convex hull of W ∪ {w}, where w is the
wrench induced by the finger.

38 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

(b)(a)

O

w1

w2

w3
w4

w5

ê

Figure 3.8: (a) The convex hull of w1, · · · , w5 contains O strictly inside. (b) An arrangement of the blue convex hulls
and the red line segments.

Let W ′ := W ∪ {O}. The convex hull of W ′ is a convex polytope with four or five vertices,3

one of which is O. Consider a facet fi incident to O, and let Hi be the open half-space bounded
by the supporting plane of fi not containing W ′. If O lies in the interior of the convex hull of
W ∪ {w}, for some w, then w ∈ Hi for all i’s. Conversely, if this is true for every facet incident
to O, then O does lie in the interior of the convex hull of W ∪ {w}.

It follows that an edge e can achieve form closure together with v and v ′ if and only if the edge
wrench segment ê intersects the intersection of three or four half-spaces. The bounding planes
of these half-spaces pass through O, so we can again project everything onto a two-dimensional
screen. Here, we do not wish to identify wrenches that are symmetric around the origin, so we use
a screen Γ′ enclosing the origin as follows:

Γ′ := {(ηx, ηy, τ)T | max(|ηx|, |ηy|) = 1, τ ∈ R}.

To prevent degeneracies, we would turn the screen a little so that no segment is projected onto an
edge of the screen. We project the n segments ê onto Γ′, build a triangle search structure on their
endpoints, and a segment intersection structure on the segments themselves.

For the triangle search structure we use a structure by Matoušek again; however, this time we
use the variant that allows us to balance preprocessing and query time. More precisely, we can
choose a parameter M (in fact the size of the structure) such that n ≤ M ≤ n2, and will get a
preprocessing time of O(n1+ε + M logε n), for an arbitrarily small constant ε > 0, and a query
time of O((n/

√
M) log3 M

n
+ k). We choose M = n2/ logε

m n, to get a preprocessing time which
is, in any case, O(n2 logε m), and a query time of O((logε/2

m n) log3 n + k). With ε ≤ 2 this is
certainly O(log4 n + k).

Before we choose the segment intersection structure, observe that all segments to be stored
are vertical. A query segment q = q0q1, where qi = (x(qi), y(qi)), intersects a stored segment
s = s0s1, where si = (x(si), y(si)), if and only if the following two conditions are met:

• s0 lies above l(q) while s1 lies below l(q) (or the other way around), and

• x(s) lies between x(q0) and x(q1).

Therefore, we can solve our query problem with an order-2 structure, as explained in the previous
section. The structure stores tuples (s0, s1), and stores the sets Pv associated with internal nodes in
order-1 trees sorted by x-coordinate. We can pre-sort all segments by x-coordinate as an initializa-
tion step, and keep them sorted while distributing and copying them to subtrees, so that no further
sorting is necessary. Thus, the complete structure can be constructed in the same time bound as a
normal order-2 structure: with t = log n, we get construction time O(n2). The query time of an
order-2 structure with t = log n is normally O(log2 n+k), but in this case, we cannot just report all

3If W ′ has four vertices, one of the wrenches is redundant. This means that form closure could also be achieved by placing point fingers on e, at
one of the vertices v or v′, and on one of the edges incident to the other vertex. This triple will be reported by the algorithm given above for finding
all combinations of one concave vertex and two edges that yield a form-closure grasp.

3.2 Computing all form-closure grasps with at most three fingers 39

(a) (b)

Figure 3.9: (a) This polygon has no triple of two concave vertices and one edge that allow form-closure grasps, and
(b) this polygon has Θ(m2n) such triples.

contents of the internal nodes found: we have to do a binary search to report only those segments
with x-coordinates between x(q0) and x(q1). This increases the query time to O(log3 n + k).

In total, both data structures are built in O(n2) time. We now consider each pair (v, v′) of
concave vertices in turn. We compute the wrenches W induced by the two vertices, the convex
hull of W ∪{O}, and the intersection R of the three or four relevant half-spaces. We then compute
R′ := R ∩ Γ′, a polygonal area of constant complexity. We triangulate R′, and find the k segment
endpoints inside R′ by triangle range queries in time O(log4 n + k). Furthermore, we find all k
segments intersecting the boundary of R′ in time O(log3 n + k) by a constant number of segment
intersection queries. Since there are Θ(m2) pairs of concave vertices, the total running time is
O(n2 + m2 log4 n + k).

To list all triples of two concave vertices and one edge that yield a form-closure grasp, we
should also run the algorithm of Section 3.2.1, to get, in time O(m4/3 log1/3 m + k), all k pairs
of concave vertices that yield a form-closure grasp, and combine the result with every edge of the
polygon.

Theorem 3.3 Given a polygon with m concave vertices and n edges, all K combinations of two
concave vertices and one edge that yield form-closure grasps with three frictionless point fingers
can be computed in time O(n2 + m2 log4 n + k).

It would be possible to trade some of the dependency on n in this bound for dependency on
m, by exploiting the trade-off between preprocessing and query time for triangle search and inter-
section search structures. However, in the end it would not affect the final bounds for describing
all three-point form-closure grasps, as that requires running the O(n2 log4 m + K)-time algorithm
from the previous section anyway. The latter will dominate the bound on the total running time.
The total output size K is O(m2n), but it can be zero. Figure 3.9 shows the polygons with Θ(m2n)
triples and zero triple of two concave vertices and one edge that yield form-closure grasps. Here as
well, our algorithm does not check all possible triples to report K triples with form-closure grasps.

3.2.4 Three concave vertices

A triple of concave vertices (v1, v2, v3) induces three sets of wrench points. Each set is a line seg-
ment connecting two wrench points. Let w1, · · · , w6 be the end points of the three line segments.
Three point fingers in these vertices put an object in form closure if the convex hull of the six
wrenches contains the origin in its interior. We can distinguish two cases:

1. a subset of five wrenches already contains the origin in the interior of its convex hull, and thus
achieves form closure;

2. no subset of five wrenches contains the origin in the interior of its convex hull.

In the first case, only two of the concave vertices contribute two wrenches to the convex hull. The
finger in the third vertex contributes only one wrench: it could just as well have been placed close

40 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

by on the corresponding edge which is incident to that vertex. The first case is thus very similar
to the case discussed in Section 3.2.3. The algorithm of that section can easily be adapted to list
all such cases. We will just use the triangle search structure only, not the segment intersection
structure, and store only the edge end points that are actually concave vertices. Building the data
structure takes O(m2 logε m) time; we do O(m2) queries in O(log3 m+k) time each; thus, we can
list all triples of concave vertices of the first case in time O(m2 log3 m + K).

For the second case, we will make use of the following lemma from the theory of positive
bases [34, 48]:

Lemma 3.4 Let S be any set of six points in R
3 such that the convex hull of S contains the origin

in its interior, but no subset of five points of S contains the origin in the interior of its convex hull.
It follows that S consists of six points on three lines through the origin: on each line, one point to
each side of the origin.

It follows that the wrenches induced by the three concave vertices must form three pairs of opposite
wrenches. Since no vertex finger could induce opposite wrenches itself, it follows that we are look-
ing for triples (v1, v2, v3) where w1(v2) = −w2(v1), w1(v3) = −w2(v2), and w1(v1) = −w2(v3).

A straightforward algorithm is now as follows. We sort all wrenches induced by concave ver-
tices lexicographically. For every concave vertex v1, we search in the sorted list for matching
vertices v2, that is, vertices v2 with w1(v2) = −w2(v1). For each vertex v2 found, we do another
search for a vertex v3 such that w1(v3) = −w2(v2) and w2(v3) = −w1(v1). If such a vertex v3 is
found, we report the triple (v1, v2, v3).

The sorting is done in O(m log m) time. The query for v2, and testing for a matching v3, takes
O(log m) time per candidate-v2 which is tested, which amounts to O(m log m) in the worst case.
Searching for matching q and r for each vertex v1 thus takes O(m2 log m) time.

In total, both cases can be dealt with in O(m2 log3 m + K) time.

Theorem 3.5 Given a polygon with m concave vertices, all K sets of three concave vertices that
yield form-closure grasps with three frictionless point fingers can be computed in time O(m2 log3 m+
K).

3.3 Computing all form-closure grasps for rectilinear polygons

In this section, we propose efficient computations of all combinations of edges and concave vertices
of a rectilinear polygon that allow form-closure grasps with at most four frictionless point fingers.
The time complexities of the algorithms for rectilinear polygons are lower than that for arbitrary
polygons, because rectilinear polygons have only four different normal directions, namely, (1, 0)T ,
(−1, 0)T , (0, 1)T and (0,−1)T .

We divide the edges into four families E, W , N and S. We let E, W , N and S be the sets
of edges whose normal directions are (1, 0)T , (−1, 0)T , (0, 1)T and (0,−1)T , respectively. See
Figure 3.10 (a) – (d). We also divide concave vertices into four families according to the incident
edge families, namely, EN , WN , ES and WS. A finger at a vertex from EN induces a set of
lines of force, which lie between (0, 1)T and (1, 0)T . The lines of force induced by a finger at a
vertex from WN , ES or WS lie between (0, 1)T and (−1, 0)T , (0,−1)T and (1, 0)T , and (0,−1)T

and (−1, 0)T , respectively. Figure 3.10 (e) – (h) illustrates these sets.
We use the projection scheme described in Section 2.4, but we use a different screen. We define

screen Γ as follows: Γ := Γ1 ∪ Γ2, where Γ1 = {(ηx, 1, τ)T | ηx + ηy − 1 = 0,−ε ≤ ηx ≤
1 + ε, τ ∈ R} and Γ2 = {(−1, ηy, τ)T | ηx − ηy − 1 = 0,−ε ≤ ηx ≤ 1 + ε, τ ∈ R}. These planes

3.3 Computing all form-closure grasps for rectilinear polygons 41

(h) WN(g) EN (f) WS(e) ES

(d) S(b) W (c) N(a) E

Figure 3.10: (a)–(d) Edges from E, W , N and S. (e)–(h) Concave vertices from EN , WN , ES and WS.

ηx

ηy

1

−1

1

Γ1

Γ2

Figure 3.11: Top view of Γ1 and Γ2.

are extended by ε on the sides, so that Γ1 contains two lines (1, 0) and (0, 1), and Γ2 contains
two lines (1, 0) and (0,−1), where the line (1, 0) is defined as {(1, 0, 0)T + λ(0, 0, 1)T | λ ∈ R},
the line (0, 1) is defined as {(0, 1, 0)T + λ(0, 0, 1)T | λ ∈ R}, and the line (0,−1) is defined as
{(0,−1, 0)T + λ(0, 0, 1)T | λ ∈ R}. Also note that each plane is perpendicular to the (horizontal)
ηxηy-plane. Figure 3.11 shows a top view of these screens.

For simplicity, by “an edge wrench set from E, W , N or S”, we mean “the wrench set induced
by a finger along an edge from E, W , N or S”, and by “a vertex wrench set from EN , WN , ES
or WS”, we mean “the wrench set of induced by a finger at a vertex from EN , WN , ES or WS”.
The projections of edge wrench sets are vertical line segments on one of the lines (0, 1), (1, 0) and
(0,−1) on Γ1 or on Γ2.

In this section, we enumerate all edge quadruples, concave vertex pairs, triples of one concave
vertex and two edges, and triples of two concave vertices and one edge of a rectilinear polygon
that yield form-closure grasps with at most four frictionless point fingers. Wentink reported all
edge quadruples with form-closure grasps in O(n log n + K) time—see Section 4.1.2 in [91]. She
used a formulation for form closure on the object plane. Here, we also report all edge quadruples
with form-closure grasps in the same time bound O(n logn + K), but with a formulation for form
closure in wrench space. Observe that any combination of edges and concave vertices that yield
form-closure grasps must contain all normal directions (1, 0)T , (−1, 0)T , (0, 1)T and (0,−1)T .

3.3.1 Four edges

We wish to enumerate all edge quadruples of a rectilinear polygon that yield a form-closure grasp
with four point fingers. As a result of Lemma 2.7, we need to find all edge quadruples e1, e2, e3

and e4, such that the trapezoid formed by two red π(ê1) and π(ê2) intersects the trapezoid formed
by two blue π(ê3) and π(ê4) in the interior. Since all of π(ê1), π(ê2), π(ê3) and π(ê4) lie on one

42 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

(i) (ii)
ru

rd

bu

bd

r′u

r′d

b′u

b′d

r′u

b′u

r′d

b′d

ru

rd

bu

bd

(iii) (iv)
r′u

r′d

b′u

b′d

ru

rd

bu

bd rd

r′u

r′d
ru

b′u
b′d

bu

bd

Figure 3.12: (i)–(ii) An illustration of Lemma 3.6. (iii)–(iv) Two cases to consider to prove Lemma 3.6.

ru1

rua

rui

r′d1

r′di

r′db
...

...

...

...

bd b′u

S

S′

Figure 3.13: The sorted lists of bu, b′d, rd and r′u.

of the two liens (1, 0) or (0, 1), we can compute all intersecting red and blue trapezoids on Γ1

only. Without loss of generality, we assume that π(ê1) = rurd and π(ê3) = bubd are on (0, 1) line,
and that π(ê2) = r′ur

′
d and π(ê4) = b′ub

′
d are on (1, 0) line. We let ru, r′u, bu and b′u be the upper

points of the corresponding (vertical) segments, and let rd, r′d, bd and b′d be the lower points of
the corresponding (vertical) segments. The following lemma provides a necessary and sufficient
condition for a red trapezoid to intersect a blue trapezoid in the interior. Figure 3.12 illustrates
Lemma 3.6.

Lemma 3.6 A red trapezoid rurdr
′
dr

′
u intersects a blue trapezoid bubdb

′
db

′
u in the interior, if and

only if one of the following two holds:

(i) bd < ru and b′u > r′d;

(ii) bu > rd and b′d < r′u.

Proof: The “if” direction: Condition (i) and (ii) imply that the diagonals bdb
′
u and bub

′
d intersect

rur
′
d and rdr

′
u respectively. Since bdb

′
u and bub

′
d are in the blue trapezoid, and rur

′
d and rdr

′
u are in

the red trapezoid, the two trapezoids intersect each other in the interior.
The “only if” direction: Suppose that rurdr

′
dr

′
u intersects bubdb

′
db

′
u in the interior, and that rur

′
d

does not intersect bdb
′
u in the interior, and that rdr

′
u does not intersect bub

′
d in the interior. We

first focus on rur
′
d and bdb

′
u. Since they do not intersect, ru > bd and r′d > b′u, or ru < bd and

r′d < b′u. We first look at the case ru > bd and r′d > b′u. Note that r′d > b′u imply r′u > b′d.
Hence for rurdr

′
dr

′
u and bubdb

′
db

′
u not to satisfy condition (ii), we must have bu < rd. Figure 3.12

(iii) depicts this situation. Obviously the supporting line of bub
′
u separates rurdr

′
dr

′
u and bubdb

′
db

′
u,

which contradicts that rurdr
′
dr

′
u intersects bubdb

′
db

′
u. We can show this similarly when ru < bd and

r′d < b′u—see Figure 3.12 (iv). �

Now we explain how to identify all pairs of red and blue trapezoids that satisfy Lemma 3.6.
There are O(n) red and blue vertical segments, which are the projections of edge wrench sets. We
build sorted lists of bu, bd, b′u and b′d in O(n log n) time. We also sort ru and rd from top to bottom,
then r′u and r′d from bottom to top. See Figure 3.13. Here we show how to report all red and blue
trapezoids that satisfy the first condition in Lemma 3.6. Those that satisfy the second condition
in Lemma 3.6 can be reported similarly. Let ru1, ru2, · · · , rua and r′d1, r

′
d2, · · · , r′db be the sorted

3.3 Computing all form-closure grasps for rectilinear polygons 43

(c) (WN, E, S) (d) (WS,E,N)(b) (ES,W, N)(a) (EN,W,S)

Figure 3.14: Four cases of a triple a concave vertex and two edges that yield form-closure grasps.

lists of ru’s and r′d’s. We perform a binary search with ru1 on the list for bd, and identify all k
blue vertical segments such that bd < ru1 in O(log n + k) time, and put them in set A. We also
perform a binary search with r′d1 on the list for b′u, and identify all k′ blue vertical segments such
that b′u > r′d1 in O(log n + k′) time, and put them in set A′. We report the Cartesian product of
A × A′, i.e. {(s, s′) | s ∈ A, s′ ∈ A′}. When we move from r′di to r′d(i+1) or from rui to ru(i+1),
we do not perform binary searches in the lists; we only check the neighbors in the list of bd and b′u,
until they satisfy the queries. For ru1 we repeat this process for each of r′di (i = 1, 2, · · · , b). We
also repeat the whole process for each of rui (i = 1, 2, · · · , a). We can identify all K red and blue
trapezoids that satisfy Lemma 3.6 in total time O(n log n + K).

Theorem 3.7 All K edge quadruples of a rectilinear polygon that yield form-closure grasps with
four frictionless point fingers can be enumerated in O(n logn + K) time.

3.3.2 One concave vertex and two edges

We wish to enumerate all triples of a concave vertex and two edges of a rectilinear polygon that
yield a form-closure grasp with three point fingers. A triple of a concave vertex and two edges
that yield form-closure grasps belong to one of the following four combinations of edge and vertex
families: (EN, W, S), (ES, W, N), (WN, E, S) and (WS, E, N). See Figure 3.14. When a con-
cave vertex is from EN or WS, its projection is a blue or red line segment on Γ1; when a vertex is
from WN (ES), its projection is a blue (red) line segment on Γ2. See Figure 3.15. As a result of
Lemma 2.7, our problem can be formulated as to enumerate all pairs of a red (blue) segment and a
blue (red) trapezoid that intersect each other in the interior on Γ1 or on Γ2. The following lemma
describes a necessary and sufficient condition for a red line segment to intersect a blue trapezoid.
Figure 3.16 illustrates Lemma 3.8.

Lemma 3.8 A red line segment rr′ intersects a blue trapezoid bub
′
ub

′
dbd in the interior, if and only

if one of the following holds:

(i) bd < r and b′u > r′;

(ii) bu > r and b′d < r′.

Proof: It is straightforward to see the “if” direction, so we show “only if” direction. Suppose that
rr′ does not intersect any blue diagonal of bub

′
ub

′
dbd in the interior, but rr′ intersects bub

′
ub

′
dbd in the

interior. When rr′ does not intersect any of the two blue diagonals, it does not intersect bub
′
ub

′
dbd,

the convex hull of the two blue diagonals. This is a contradiction. �

We follow the approach described in Section 3.3.1 closely. There are O(n) red and blue vertical
segments, and O(m) blue and red line segments. Without loss of generality, we take blue trapezoids
and red segments. Those with red trapezoids and blue segments can be identified similarly in the
same time bound. We fist report all pairs of a red segment and a blue trapezoid that satisfy the first
condition of Lemma 3.8. Those that satisfy the second condition of Lemma 3.8 can be identified

44 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

(a)

(b)

Γ1

Γ2

Γ2

Γ1

(0, 1)

(1, 0)

ru

rd

b

bd

r′d

bu
b′d

b′u

r′u

b′

r

r′

(EN,W,S) (ES, W, N)

(WS,E,N) (WN, E, S)

(1, 0)

(0, 1)

Figure 3.15: Topview of the wrench sets and their projections on Γ of the four combinations.

(a) (b) (d)(c)
bu

bd

r
ru

rd

b

ru

rd

b

b′d

b′u

r′ r′d

r′u

b′

r′d

r′u

b′

(0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0)

bu

bd
b′d

b′ur

r′

Figure 3.16: The description of Lemma 3.8.

similarly. We sort bd and b′u of the blue vertical segments in O(n log n) time. We query the sorted
list of bd with r to identify the vertical segments such that bd < r, and put them in set A. Then
we query the sorted list of b′u with r′ to identify the vertical segments such that b′u > r′, and put
them in set A′. We report the Cartesian product of A × A′. We can report all K solutions in
O(n log n + m log n + K) = O(n logn + K) time.

Theorem 3.9 All K triples of one concave vertex and two edges of a rectilinear polygon that yield
form-closure grasps with three frictionless point fingers can be enumerated in O(n log n+K) time.

3.3.3 Two concave vertices

We wish to enumerate all concave vertex pairs of a rectilinear polygon that yield a form-closure
grasp with two point fingers. A pair of two concave vertices that yield form-closure grasps is either
(EN, WS) or (ES, WN). See Figure 3.17 (a) and (b). As in Section 3.2.1, it is turned into the
problem of reporting all pairs of red and blue line segments that intersect each other in the interior.
One difference is that the endpoints lie on two vertical lines (see Figure 3.17 (c)), which makes
the intersection checking process easier. The following lemma states a necessary and sufficient
condition for two line segments to intersect each other in the interior. Since the proof is trivial, we
omit the proof.

Lemma 3.10 A blue line segment bb′ intersects a red line segment rr′ in the interior, if and only if
one of the following holds:

3.3 Computing all form-closure grasps for rectilinear polygons 45

(c) EN and WS on Γ1

(0, 1) (1, 0)

r

b r′

b′

(a) EN and WS (b) ES and WN

Figure 3.17: (a)–(b) Two cases of two concave vertices that yield a form-closure grasp. (c) The projections of their
wrench sets.

(i) b < r and b′ > r′;

(ii) b > r and b′ < r′.

There are O(m) red and blue line segments. We store them in a two-level orthogonal range
search tree in O(m log m) time; the left points for b are stored in the first level, and the right points
for b′ are stored in the second level. Then we query them with a red line segment rr ′. More
precisely, we query with r on the first level, and with r ′ on the second level. All pairs of a red
segment and a blue segment satisfying Lemma 3.10 can thus be reported in O(m log2 m + K)
time.

Theorem 3.11 All K pairs of two concave vertices of a rectilinear polygon that yield a form-
closure grasp with two frictionless point fingers can be enumerated in O(m log2 m + K) time.

3.3.4 Two concave vertices and one edge

We wish to enumerate all triples of two concave vertices and one edge of a rectilinear polygon
that yield a form-closure grasp with three frictionless point fingers. Such a triple of two concave
vertices and an edge belongs to one of the two cases: when the two concave vertices induce three
different normal directions, and when they induce four different normal directions. Two vertices
induce three different normal directions, when the two vertices and an edge belong to one of the
following four combinations: (EN, ES, W), (WN, WS, E), (EN, WN, S) and (ES, WS, N).
See Figure 3.18 (a). Two vertices induce four different normal directions, when they are from
(ES, WN) or (EN, WS). Figure 3.18 (b) shows all possible combinations of two such vertex
pairs and a face that yield a form-closure grasp.

We first look at the first case when the vertices induce three different normal directions. Without
loss of generality, we take a triple (vEN , vWN , eS) from families of EN , WN and S, and we
take their projections on Γ1. Note that the convex hulls of the red points and the blue points are
triangles,4 whose sides are either on (0, 1) line or on (1, 0) line. Observe that π(êS) has two red
points ru and rd, and π(v̂EN) has two blue points, one on (0, 1) line, and the other blue point b′

on (1, 0) line. Also observe that π(v̂WN) has one red point r′ on (1, 0) line, and one blue point
on (0, 1) line. Among the blue points of π(v̂EN) and π(v̂WN) on (0, 1) line, we let bu denote the
uppermost point, and let bd denote the lowest one. See Figure 3.19. Here, we report all pairs of a
red triangle and a blue triangle that intersect each other in the interior, where the two triangles are
induced by two vertices from EN and WN , and an edge from S. The following lemma provides a

4Let Ar be a set of wrench points such that their projections on Γ are red, and Ab be a set of wrench points such that their projections are blue.
The projection of the convex hull edges of the points in Ar is the convex hull edges of the red points on Γ, and the projection of the convex hull
edges of the points in Ab is the convex hull edges of the blue points on Γ.

46 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

(EN,WN, S)

(ES, WN,E) (ES, WN,N)(ES, WN,W) (ES, WN,S)

(EN,WS,E) (EN,WS,N) (EN,WS, S)(EN,WS,W)

(a)

(b)

(WN, WS, E) (ES, WS,N)(EN,ES, W)

Figure 3.18: (a) Four different combinations of a triple of two concave vertices and an edge, such that it yields a
form-closure grasp, and that the two concave vertices induce three different normal directions. (b) Eight different
combinations of a triple of two concave vertices and an edge, such that it yields a form-closure grasp, and that the two
concave vertices induce four different normal directions.

necessary and sufficient condition for a red triangle to intersect a blue triangle in the interior. Since
the proof of the following lemma is similar to that of Lemma 3.6, we omit the proof.

Lemma 3.12 A blue triangle bb′ub
′
d (bubdb

′) intersects a red triangle rr ′
ur

′
d (rurdr

′), if and only if
one of the following four holds:

(i) bu > rd and b′ < r′;

(ii) bd < ru and b′ > r′.

To enumerate all red and blue intersecting triangles that satisfy the first condition of Lemma 3.12,
we first sort bu and b′. We query the sorted list of bu with rd to identify the vertical segments such
that bu > rd, and put them in set A. Then we query the sorted list of b′ with r′ to identify the

(b) (c)(a) (d)

ru

rd

bu

r′

b′

bd

Γ1

N

S

W E

(ES, WS,N)

Γ1

N

S

W E

r′

b′

ru

rd

bu

bd

(EN,WN, S)

Γ1

N

S

W E

r

b r′u

r′d

b′u

b′d

(WN, WS, E)

Γ1

N

S

W E

r

b r′u

r′d

b′u

b′d

(EN,ES, W)

Γ1 Γ1 Γ1 Γ1

Figure 3.19: Above is the topview of the wrench sets of two concave vertices and an edge. Below is the corresponding
red and blue triangle pairs on Γ1.

3.3 Computing all form-closure grasps for rectilinear polygons 47

r′

b′

(ii)(i)

ru

rd

bu

bd

r′

b′ru

rd

bu

bd

ru

rd

bu

bd r′
b′

ru

rd

bu

bd r′

b′

Figure 3.20: Some cases of a red triangle and a blue triangle that satisfy condition (i) and (ii) of Lemma 3.12.

r′

b′

bu

bdr

bu

bd

r′

b′ bu

bd

r′

b′

r′
b′

b

r

b

bu

bd r′

b′

r

b
r

b

bu

bd

r

b
(ii) (iii)(i) (iv) (v)

Figure 3.21: An illustration of Lemma 3.13.

vertical segments such that b′ < r′, and put them in set A′. We report the Cartesian product of
A × A′. All red and blue intersecting triangles that satisfy the second condition of Lemma 3.12
can be identified similarly.

There are O(nm) red triangles, because a concave vertex and an edge induce a red triangle.
There are O(m2) blue triangles, because two concave vertices induce a blue triangle. Hence we
have O(m2) points to store, and O(nm) queries. Sorting O(m2) points takes O(m2 log m) time,
and we can report k intersecting blue triangles for a red query triangle in O(logm + k) time. We
can report similarly all triples of two concave vertices and an edge from other combinations that
yield form-closure grasps. One difference is that sometimes there are O(nm) points to store and
O(m2) queries, which leads to the time complexity of O(nm logn + K). Thus the total time
complexity of this case is O(nm log n + K).

Now we look at the second case when the vertices induce four different normal directions.
Without loss of generality, we take a triple of two concave vertices and an edge (vEN , vWS, eN).
The projections of the edge wrench set and the vertex wrench sets on Γ1 will be as follows. A
blue endpoint b of π(v̂EN), the blue segment bubd

5 of π(êN) and a red endpoint r of π(v̂WS) are
on the line (0, 1). The other blue endpoint b′ of π(v̂EN) and the other red endpoint r′ of π(v̂WS)
are on the line (1, 0). See Figure 3.21. If a red segment and a blue triangle intersect each other
in the interior, the corresponding set of two vertices and an edge yields a form-closure grasp. The
following lemma provides a necessary and sufficient condition for a pair of a red segment and
a blue triangle to intersect each other in the interior. Figure 3.21 illustrates Lemma 3.13. This
lemma can easily be modified to check if a blue segment and a red triangle intersect each other in
the interior.

Lemma 3.13 A red segment rr′ intersects the convex hull of bb′ and bubd in the interior, if and only
if one of the following holds:

(i) bd < r < bu;

(ii) b < r and r < bd;

(iii) r < bd and r < b and r′ > b′;

(iv) bu < r and r < b;
5Among the two endpoints of π(êN), we let bu denote the upper point, and bd denote the lower point.

48 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

(v) r > bu and r > b and r′ < b′.

Proof: When condition (i) or (ii) or (iv) holds, r is in the convex hull of b and bubd, thus rr′

intersects the convex hull of bb′ and bubd in the interior. Condition (iii) (r < b and r ′ > b′) and (iv)
(r > b and r′ < b′) imply that rr′ intersects bb′ in the interior. Hence rr′ intersects the convex hull
of bb′ and bubd in the interior. �

Here we describe how we report all pairs of a red segment and a blue triangle that satisfy
Lemma 3.13. There are O(n) choices for bubd and O(m) choices for rr′ and bb′. To identify all
pairs of a red segment and a blue triangle that satisfy condition (i) of Lemma 3.13, we build an
interval tree on blue vertical segments on (0, 1) line in O(n logn) time. We report all k intervals
where r of a red query segment rr′ lies in O(log n+k) time. Any segment bb′ from the O(m) blue
segments with any pair bubd and rr′ of the reported pairs will have a red and blue intersection in
the interior.

To identify all pairs of a red segment and a blue triangle that satisfy the condition (ii) of
Lemma 3.13, we build a binary search trees on bd in O(n log n) time. For a given red query
segment rr′, we find, in O(log n + k) time, all blue segments bubd such that bd > r, and put them
in set A1. We also build a binary search tree on O(m) points for b in O(m log m) time. Then we
find, in O(logm + k) time, all k blue segments bb′ such that b < r, and put them in set A2. The
Cartesian product of A1×A2 for a query segment rr′ satisfy condition (ii) of Lemma 3.13. We can
identify all triples of bb′, bubd and rr′ that satisfy condition (iv) similarly in the same time bound.

To identify all pairs of a red segment and a blue triangle that satisfy the condition (iii) of
Lemma 3.13, we build a two-level orthogonal search tree on O(m) blue segments in O(m log m)
time; b and b′ are at the first and the second level respectively. We find, in O(log2 m + k) time, all
k blue segments bb′ such that b > r and b′ < r′, and put them in set A3. The Cartesian product of
A1 × A3 with rr′ satisfy condition (iii) of Lemma 3.13. We can identify all triples of bb ′, bubd and
rr′ that satisfy condition (v) similarly in the same time bound.

Hence in total time O(n log n + m log2 m + K), we can report all K triples of two concave
vertices and an edge where the two vertices induce four different normal directions. The following
theorem summarizes the result.

Theorem 3.14 All the triples of two concave vertices and an edge of a rectilinear polygon P that
yield form-closure grasps with three frictionless point fingers can be enumerated in O(nm log n +
K) time.

3.4 Conclusion

We proposed efficient output-sensitive algorithms to report all sets of edges and concave vertices
of an arbitrary polygon and a rectilinear polygon that yield form-closure grasps. Our approach
reduced the dimension of the problem by projections. In particular, when the polygons are rec-
tilinear, the problems boil down to orthogonal range search problems. Another advantage of our
approach is that the reformulated problem on planes can be solved with other tools, if one can find
simpler, more efficient and more suitable ones for a given purpose or criteria.

Chapter 4

Computing All Form-Closure Grasps of a
Planar Semi-Algebraic Set

In this chapter, we propose the first efficient output-sensitive algorithms to compute all form-
closure grasps of a set of planar curved objects, which is called semi-algebraic sets. A planar
semi-algebraic set is a bounded set on a plane, whose boundary is composed of a set of algebraic
arcs. Many researchers have studied the problem of synthesizing immobilizing grasps of a planar
curved object [20, 37, 44, 51, 56, 67]. However, no algorithm can enumerate all immobilizing
grasps of planar curved objects, except [44]. Jia proposed an algorithm to report all antipodal
grasps with two frictional fingers, but the asymptotic bound is high.

In this chapter,1 we propose an output-sensitive algorithm to report all combinations of arcs
and concave vertices that admit at least one form-closure grasp with at most four frictionless point
fingers. More precisely, the combinations are: (i) arc quadruples and arc triples with four fingers,
(ii) triples of one concave vertex and two arcs with three fingers, (iii) pairs of a concave vertex and
an arc with three fingers, and (iv) triples of two vertices and an arc with three fingers. (Recall that
the case of two points at two vertices was already solved in Chapter 3; the algorithm applies not
only to polygonal parts but also to curved parts.) We focus on reporting all combinations of arcs
and concave vertices, because once we have a set of arcs and concave vertices, we can compute
form-closure grasps in constant time as mentioned in Chapter 3. Four fingers can achieve form
closure on arc pairs and on one single arc (such as an ellipse) as well as on arc quadruples and
triples, but we treat only arc quadruples and triples, because of an efficiency issue. Section 4.2 has
more details. To deal with this algorithmic challenge of identifying these combinations, we use a
geometric condition in wrench space and the approach taken in Chapter 3.

This chapter is organized as follows. In Section 4.1, we introduce notations, projection schemes,
wrench shapes and data structures for intersection search problems. In Section 4.2, we propose
output-sensitive algorithms to report all arc triples and quadruples that allow form-closure grasps
with four frictionless point fingers. We also propose, in Section 4.3, output-sensitive algorithms
to report all combinations of concave vertices and arcs that allow form-closure grasps with three
frictionless point fingers. Discussion will follow after these in Section 4.4.

1This chapter is based on “Output-sensitive computation of all form-closure grasps of a part bounded by algebraic arcs” [25] by J.-S. Cheong
and A.F. van der Stappen in ICRA (2005).

50 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

4.1 Preliminaries

We let n be the number of arc pieces of a semi-algebraic set P , and m be that of concave vertices of
P . The problem of enumerating all combinations of arcs and concave vertices with form-closure
grasps can be reformulated in terms of wrenches as follows: Given n arcs and m line segments
in three-dimensional wrench space, report all combinations of arcs and line segments that contain
four points that positively span wrench space. We will explain why we have arcs and line segments
in wrench space in Section 4.1.1.

We closely follow the approach taken in Chapter 3. We project the wrench points on screen Γ,
which is as defined in Section 2.4.1. Lemma 2.7 states that a set of arcs and line segments with
four points that positively span wrench space must form a red and blue intersection on Γ. Thus our
problem becomes to report all sets on Γ that have red and blue intersections.

This section is organized as follows. In Section 4.1.1, we first investigate the shapes of wrenches
and their projections, when a finger slides along an arc a. In Section 4.1.2, we define two-arc-cell
and one-arc-cell, and show that they have constant complexities. In Section 4.1.3, we introduce
the data structures and algorithms to search for all sets of two-arc-cells, one-arc-cells and line
segments that have red and blue intersections.

4.1.1 Algebraic arcs, wrenches and their projections

A semi-algebraic set P is a closed set bounded by a set of real algebraic arcs of bounded degree.
A real algebraic arc is a piece of a real algebraic curve. We call this piece simply an arc. A real
algebraic curve over field R satisfies an equation Ψ(x, y) = 0, where Ψ(x, y) is a polynomial in x
and y with coefficients in R. Throughout the chapter, we assume that Ψ(x, y) = 0 has a constant
degree. The boundary of P can contain a straight edge, because a line segment is a special case of
an algebraic arc with zeros for some coefficients. We let n denote the number of arcs, and m the
number of concave vertices of P .

Now we show that the set of wrench points induced by a finger sliding on an arc a is an algebraic
arc in wrench space. We call this set the arc wrench set (of a), and denote it by â. Let Ψ(x, y) = 0
represent an algebraic curve that contains a boundary arc a of P . Without loss of generality, let
Ψ(x, y) > 0 denote the immediate interior of P bounded by a. We also let Ψx and Ψy denote
∂Ψ(x,y)

∂x
and ∂Ψ(x,y)

∂y
respectively. We assume that Ψx �= 0 and Ψy �= 0; we can satisfy this condition

by taking out the point of an arc where Ψx = 0 or Ψy = 0. The wrench (ηx, ηy, τ) at position
−→p = (x, y) on a is (Ψx, Ψy, xΨy−yΨx). LetM be a mapM : x = (x, y) ∈ R

2
→ (Ψx, Ψy, xΨy−
yΨx) ∈ R

3. Since Ψx, Ψy and xΨy − yΨx are all polynomials in x and y, the image of M is also
algebraic. More precisely, the wrench points of a finger sliding along an arc a forms a semi-
algebraic set.

We project the wrench arc â onto Γ. Portions of a wrench arc may end up on different planes of
Γ and get different colors depending on where they are in wrench space with respect to the planes
ηx + ηy = 0 and ηx − ηy = 0 (see Figure 4.1). Portions in region I and III turn into blue and red
arcs respectively on Γ1, and portions in region II and IV turn into red and blue arcs respectively
on Γ2. Let q = (Ψx, Ψy, xΨy − yΨx) be a point on â; then π(q) = (Ψx/Ψy, 1, x − y(Ψx/Ψy)) on
Γ1 if q is inside I or III, and π(q) = (1, Ψy/Ψx, x(Ψy/Ψx) − y) on Γ2 if q is inside II or IV. We
assume that Ψx �= 0 and Ψy �= 0. We can fulfill this assumption, by cutting the arcs at the point
where Ψx = 0 or Ψy = 0. Semi-algebraic sets are closed under projections. The projection M1

on Γ1 and the projection M2 on Γ2 are as follows.

M1 : x = (x, y) ∈ R
2
→ (Ψx/Ψy, 1, x− y(Ψx/Ψy)) ∈ R

3

4.1 Preliminaries 51

Γ1

ηx

ηy

−1

−1

1
Γ2

I

II

III

IV

1
O

ηx + ηy = 0ηx − ηy = 0

Figure 4.1: Screen Γ in wrench space and four regions I, II, III and IV, viewed from the positive τ axis.

(a) (b)

Γ

Figure 4.2: (a) A two-arc-cell (b) One-arc-cells

M2 : x = (x, y) ∈ R
2
→ (1, Ψy/Ψx, x(Ψy/Ψx) − y) ∈ R

3

Therefore the projected arcs are also semi-algebraic sets, thus algebraic arcs.

4.1.2 Two-arc-cells and one-arc-cells

When two fingers slide along two distinct arcs a and a′, they induce two wrench points w and w ′

sliding along â and â′. The line segment connecting w and w ′ will move when w and w′ slide along
â and â′. We let r(a, a′) :=

⋃
{π(ww′) | w ∈ â, w′ ∈ â′}. We call this set the two-arc-cell (of a

and a′): it is the region where π(ww′) lie for all w ∈ â and w′ ∈ â′. Figure 4.2 (a) illustrates a
two-arc-cell. A two-arc-cell is a semi-algebraic set with a constant complexity, which is shown in
the following lemma.

Lemma 4.1 A two-arc-cell r(a, a′) on Γ is bounded by portions of the arcs π(â) and π(â′) and a
constant number of line segments.

Proof: From the definition of r(a, a′), it is evident that the boundary of r(a, a′) consists of
portions of π(â) and π(â′) and line segments. It remains to show that the number of line segments
is constant. Observe that the boundary line segments of r(a, a′) is the projections of the common
tangent line segments of â and â′. The wrench arcs â and â′ have a constant number of common
tangent line segments, because they have a constant degree and there are four endpoints in total.
This completes the proof. �

When two fingers slide along a single arc a, they also induce two wrench points w and w ′, both
of which slide along â independently. The line segment connecting w and w ′ will move when w
and w′ slide along â. We define r(a) to be

⋃
{π(ww′) | w ∈ â, w′ ∈ â}. We call this set the

one-arc-cell (of a): it is the region where all π(ww′) lie for all pairs of points w and w ′ on â.
One-arc-cell r(a) turns out to be the convex hull of π(â), which is again a semi-algebraic set—see
Lemma 4.2. Figure 4.2 (b) illustrates one-arc-cells. A one-arc-cell also has a constant complexity
as shown in the following lemma. The proof is basically the same as that of Lemma 4.1, thus we
omit the proof.

52 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

(i) (ii) (iii) (iv)

Figure 4.3: The first four types of the red-blue intersections. The dashed entities are in red.

Lemma 4.2 One-arc-cell r(a) is bounded by portions of π(â) and a constant number of line seg-
ments.

4.1.3 Intersection search algorithms

In this chapter, we need to report all red and blue intersections between semi-algebraic sets, line
segments and triangles. These intersections can be identified by checking the following five sub-
problems on Γ: (i) intersections between red and blue arcs, (ii) intersections between red and blue
line segments, (iii) intersections between red (blue) arcs and blue (red) line segments, (iv) red
(blue) points contained in blue (red) semi-algebraic sets, or (v) red (blue) points contained in blue
(red) quadrilaterals. Figure 4.3 shows the first four types. To handle these intersections, we use the
algorithms and query structures below. More detailed information on these algorithms and query
structures can be found in Section 2.4.2.

The intersections between red and blue arcs are reported in a brute-force manner; there is no
efficient algorithm as far as we know. Fortunately, this does not affect the overall efficiency, as the
number of arcs involved is always sufficiently low.

To enumerate all intersections between segments, we use the following two: red-blue line seg-
ment intersection algorithm and segment-segment query structure. Among q red and blue line
segments, the red-blue line segment intersection algorithm can report K intersecting red and blue
segments in O(q4/3 log1/3 q+K) time. The segment-segment query structure stores q line segments
in O(q log2 q) time, and reports k intersecting segments in O(log4 q + k) time.

The intersections between red and blue arcs and segments can be identified in two ways as
well: red-blue segment-arc intersection algorithm and segment-arc query structure. Among q red
and blue line segments and arcs, the red-blue segment-arc intersection algorithm can report K
intersecting pairs of a segment and an arc in O(q3/2+ε + K) time. The segment-arc query structure
stores q arcs in O(q2+ε) time, and reports k intersecting arcs in O(log q + k) time.

We use semi-algebraic range search structure and triangle search structure to report the in-
tersections between points and semi-algebraic sets, and between points and triangles, respectively.
The semi-algebraic range search structure stores q points in O(q log q)-time, and reports all k points
in a query semi-algebraic set in O(q1/2+ε +k)-time. In the intersections of type (v), we decompose
each quadrilateral into two triangles and query with the triangles. The triangle search structure
stores q points in O(q log q) time, and reports all k points in a query triangle in O(log3 q +k)-time.

4.1.4 Computing all grasps on a given set of arcs and vertices

Once we are given a set of arcs and/or concave vertices admitting at least one form-closure grasp
with at most four point fingers, we can compute the regions representing all grasps on this set in
constant time [58, 82]. As an example, consider the case of four arcs a1, a2, a3, and a4. Every
point q in the intersection of the red r(a1, a2) and the blue r(a3, a4) (or vice versa) corresponds

4.2 Computing all form-closure grasps with four fingers 53

(i) (ii) (iii) (iv)

Figure 4.4: Four cases of the red-blue intersections. The dashed entities are in red.

to a set of placements of points along a1, a2, a3, and a4. The set of grasps associated with q is
the Cartesian product of all lines through q intersecting π(â1) and π(â2), and all lines through q
intersecting π(â3) and π(â4). These line segments form a continuous set. Once we know a point
in the intersection region, we can compute the boundary of these sets of line segments in constant
time. Furthermore, the boundary changes also continuously. Hence it is enough to compute the
intersection region between r(a1, a2) and r(a3, a4), which has a constant complexity.

4.2 Computing all form-closure grasps with four fingers

In this section, we provide output-sensitive algorithms for reporting all quadruples and triples of
arcs admitting at least one form-closure grasp with four frictionless point fingers. All single arcs
allowing for grasps with four fingers on each of them can be easily enumerated in linear time,
simply by checking each arc in constant time. Since we have to spend at least linear time, this is
optimal.

Four fingers on two arcs can also achieve form closure. If all arc pairs allowing for form-
closure grasps with four fingers can be computed in subquadratic time, it is more efficient than a
naive approach that takes quadratic time. It is open to compute all such arc pairs in subquadratic
time. Hence we do not consider the problem of reporting all arc pairs that yield form-closure
grasps.

4.2.1 Four arcs

We wish to report all arc quadruples such that four frictionless point fingers on each quadruple
(one point finger per arc) achieve form closure. By Lemma 2.7, an arc quadruple (a1, a2, a3, a4)
allows form-closure grasps, if and only if the red two-arc-cell r(a1, a2) intersects the blue two-arc-
cell r(a3, a4) in the interior. To identify all arc quadruples (a1, a2, a3, a4) admitting form-closure
grasps, we must therefore report all intersecting red and blue two-arc-cells.

A red r(a1, a2) intersects a blue r(a3, a4), if and only if their boundaries intersect, or r(a1, a2) ⊆
r(a3, a4), or r(a3, a4) ⊆ r(a1, a2). We observe that if r(a1, a2) ⊆ r(a3, a4), any point of π(â1)
lies inside r(a3, a4), and if r(a3, a4) ⊆ r(a1, a2), any point of π(â3) lies inside r(a1, a2). All
intersecting red and blue two-arc-cells can thus be determined by computing all (i) intersecting red
and blue boundary arcs, (ii) intersecting red and blue boundary line segments, (iii) blue (red) arcs
intersecting red (blue) boundary line segments, and (iv) blue (red) representative points inside red
(blue) two-arc-cells. (See Figure 4.4).

There are O(n2) boundary segments and O(n) boundary arcs for all O(n2) red and blue two-
arc-cells. We take one representative point from each arc, thus we have O(n) representative points.
Problem (i) can be solved in O(n2) time, by checking all red and blue arc pairs. We apply the

54 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

red-blue line segment intersection algorithm for problem (ii), which requires O(n8/3 log1/3 n+K)-
time. The segment-arc query structure can report the blue (red) arcs intersecting the red (blue) line
segments. The preprocessing time is O(n2+ε)-time, and the query time is O(log n + k). There are
O(n2) query segments. Thus the total time complexity for problem (iii) becomes O(n2+ε + K).
The semi-algebraic range search structure can identify all blue (red) points contained in a red (blue)
two-arc-cell. The preprocessing time is O(n logn) time, the query time is O(n1/2+ε +k), and there
are O(n2) query two-arc-cells. The total time complexity for problem (iv) becomes O(n5/2+ε+K).
The following theorem summarizes the results.

Theorem 4.3 Given a planar semi-algebraic set with n arcs, all K arc quadruples admitting a
form-closure grasp with four frictionless point fingers can be computed in O(n8/3 log1/3 n + K)
time.

4.2.2 Three arcs

We wish to report all arc triples (a1, a2, a3) such that two point fingers on one arc a1, and one
finger on each of the remaining arcs a2 and a3 achieve form closure. By Lemma 2.7, such an arc
triple allows form-closure grasps, if and only if red (blue) r(a1) intersects blue (red) r(a1) in the
interior. To identify all arc triples (a1, a2, a3) admitting form-closure grasps with four fingers, we
must therefore report all red and blue intersections between a one-arc-cell and a two-arc-cell.

A red (blue) one-arc-cell intersects a blue (red) two-arc-cell, if and only if their boundaries inter-
sect or the one-arc-cell is contained in the two-arc-cell, or vice versa. All red and blue intersecting
pairs of a one-arc-cell and a two-arc-cell can thus be determined by computing all (i) intersecting
red and blue arcs, (ii) intersecting red and blue segments, (iii) blue (red) arcs intersecting red (blue)
boundary line segments, and (iv) blue (red) arcs inside red (blue) arc-cells.

We focus on the case of all intersecting pairs of a red one-arc-cell and a blue two-arc-cell. The
case of all intersecting pairs of a red one-arc-cell and a blue two-arc-cell can be treated similarly
with the same time bound. There are O(n) red arcs, representative points and boundary segments,
and there are O(n2) blue two-arc-cells, blue boundary segments and O(n) blue arcs in total. Prob-
lem (i) can be solved again in O(n2) time. Problem (ii) can be solved in O(n2 log4 n + K) time
as follows. We store the O(n) red boundary segments in a segment-segment query structure in
O(n2 log2 n) time, and query with each of the O(n2) blue boundary segments in O(log4 n + k)
time.

Problem (iii) can be solved in O(n2+ε + K) time as follows. We store the O(n) red arcs in
a segment-arc query structure in O(n2+ε) time, and query with each of the O(n2) blue boundary
segments in O(log n + k) time. We also store the O(n) blue arcs in a segment-arc query structure
in O(n2+ε) time, and query with each of the O(n) red boundary segments in O(logn + k) time.

Finally, problem (iv) can be solved in O(n5/2+ε + K) time as follows. We store the O(n)
red representative points in a semi-algebraic range search structure in O(n log n) time, and query
with each of the O(n2) blue two-arc-cells in O(n1/2+ε + k) time. We also store the O(n) blue
representative points in a segment-arc query structure in O(n logn) time, and query with each of
the O(n) red one-arc-cells in O(n1/2+ε+k) time. We pair two arcs π(â) and π(â′) from the reported
arcs, and compute r(a, a′). The set of all such two-arc-cells contain all two-arc-cells contained in
the given query one-arc-cell.

Theorem 4.4 Given a planar semi-algebraic set with n arcs, all K arc triples admitting a form-
closure grasp with three frictionless point fingers can be computed in O(n5/2+ε + K) time.

4.3 Computing all form-closure grasps with at most three fingers 55

Γ

Figure 4.5: An intersecting pair of a blue two-arc-cell and a red line segment.

4.3 Computing all form-closure grasps with at most three fingers

If we take advantage of concave vertices, three frictionless point fingers on a semi-algebraic set
can achieve form closure. In this section, we provide output-sensitive algorithms for reporting all
combinations of arcs and concave vertices admitting at least one form-closure grasp with three
frictionless point fingers. Such combinations include: (i) triples of one concave vertex and two
arcs, (ii) pairs of one concave vertex and one arc, and (iii) triples of two concave vertices and one
arc.

We let m denote the number of concave vertices of a semi-algebraic set P . The number of arcs
are denoted by n. A finger at a concave vertex v induces a line segment in wrench space, and also
on Γ—see Section 3.1.1. We let s(v) denote the line segment on Γ, induced by a finger at v.

4.3.1 One concave vertex and two arcs

We wish to report all triples of a concave vertex and two arcs, such that three frictionless point
fingers (one finger on each) achieve form closure. A triple (v, a, a′) allows a form-closure grasp, if
and only if the blue (red) segment s(v) intersects the red (blue) two-arc-cell r(a, a′) by Lemma 2.7.
See Figure 4.5. Thus our problem becomes to report all blue (red) segments intersecting red (blue)
two-arc-cells. We focus on the case of all intersecting pairs of a blue segment and a red two-arc-
cell. The case of all intersecting pairs of a red segment and a blue two-arc-cell can be treated
similarly with the same time bound.

A blue segment s(v) intersects a red two-arc-cell r(a, a′), if and only if s(v) intersects the
boundary of r(a, a′), or s(v) ⊆ r(a, a′). Observe that if s(v) ⊆ r(a, a′), the representative midpoint
of s(v) lies inside r(a, a′). All intersecting red two-arc-cells and blue segments can thus be reported
by computing all (ii) intersecting red and blue line segments, (iii) red arcs intersecting blue line
segments, and (iv) blue midpoints inside red two-arc-cells.

There are O(n2) red two-arc-cells and red boundary segments, and O(n) red arcs. There are
O(m) blue line segments and representative points. Problem (ii) can be solved in O(n2 log4 m +
K) time as follows. We store the O(m) blue segments in a segment-segment query structure in
O(m2 log2 m) time, and query with each of the O(n2) red boundary segments in O(log4 m + k)
time. Problem (iii) can be solved in O(n3/2+ε + K) time; we use the segment-arc intersection
algorithm. Problem (iv) can be solved in O(n2m1/2+ε + K) time as follows. We store the O(m)
blue representative points in a semi-algebraic range search structure in O(m logm) time, and query
with each of the O(n2) red two-arc-cells in O(m1/2+ε + k) time.

Theorem 4.5 Given a planar part with m concave vertices and n algebraic arcs, all K triples
of one concave vertex and two arcs admitting a form-closure grasp with three frictionless point
fingers can be enumerated in O(n2m1/2+ε + K) time.

56 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

Γ

Figure 4.6: An intersecting pair of a blue one-arc-cell and a red line segment.

4.3.2 One concave vertex and one arc

We wish to report all pairs of a concave vertex v and an arc a, such that one point finger at v and
two on a achieve form closure. A pair (v, a) allows a form-closure grasp, if and only if the blue
(red) segment s(v) intersects the red (blue) one-arc-cell r(a) in the interior by Lemma 2.7. See
Figure 4.6. Thus our problem becomes to report all blue (red) segments intersecting red (blue)
one-arc-cells in the interior.

Here we focus on the case of all intersecting pairs of a blue segment and a red one-arc-cell. The
case of all intersecting pairs of a red segment and a blue one-arc-cell can be treated similarly with
the same time bound. A blue segment s(v) intersects a red one-arc-cell r(a), if and only if s(v)
intersects the boundary of r(a), or s(v) lies inside r(a). All intersecting pairs of a red one-arc-cell
and a blue segment can be identified by computing all red and blue intersections between (ii) line
segments, (iii) an arc and a line segment, and (iv) a midpoint and a one-arc-cell.

There are O(n) red one-arc-cells, red boundary segments and red boundary arcs. There are
O(m) blue line segments and representative points. When P has a small number of concave
vertices relative to n, more precisely, when m ≤

√
n, a naive approach has a better time bound,

which is O(nm).
When m >

√
n, we do the following. First, we solve problem (iii) in O(n3/2+ε + K) time,

using a segment-arc intersection algorithm. Problem (iv) can be solved in O(nm1/2+ε + K) time
as follows. We store the O(m) blue representative points in a semi-algebraic range search structure
in O(m log m) time, and query with each of the O(n) red one-arc-cells in O(m1/2+ε + k) time.
A red-blue line segment intersection can be computed efficiently using two algorithms, depending
on the size of m relative to n: n1/2 < m < n2/3 and n2/3 ≤ m ≤ n. When n2/3 ≤ m ≤
n, a red-blue line segment intersection algorithm can report all pairs of intersecting segments in
O(n4/3 log1/3 n + K) time. When n1/2 < m < n2/3, we store the O(m) blue segments in a
segment-segment query structure in O(m2 log2 m) time, and query with each of the O(n) red
boundary segments in O(log4 m + k) time. Thus we can report all intersecting pairs of a red
segment and a blue segment in O(m2 log2 m + K)-time. In total, it takes O(n3/2+ε + K) when√

n < m ≤ n.
The following theorem summarizes the result.

Theorem 4.6 Given a planar part with m concave vertices and n algebraic arcs, all K pairs of a
concave vertex and an arc admitting a form-closure grasp with three frictionless point fingers can
be computed in O(mn) time when m ≤ √

n, and in O(n3/2+ε + K) time when m >
√

n.

4.3.3 Two concave vertices and one arc

We wish to report all triples of two concave vertices and one arc, such that three frictionless point
fingers (one finger on each) achieve form closure. Let r(v, v′) :=

⋃
{π(ww′) | w ∈ s(v), w′ ∈

4.4 Conclusion 57

Γ

Figure 4.7: An intersecting pair of a blue quadrilateral and a red arc.

s(v′)}. Note that r(v, v′) is a quadrilateral.2 A triple (v, v′, a) allows a form-closure grasp, if
and only if the blue (red) arc π(â) intersects the red (blue) quadrilateral r(v, v ′) in the interior by
Lemma 2.7. See Figure 4.7. Thus our problem becomes to report all red (blue) arcs intersecting
blue (red) quadrilaterals in the interior.

Here we focus on the case of all intersecting pairs of a red arc and a blue quadrilateral. The case
of all intersecting pairs of a blue arc and a red quadrilateral can be treated similarly with the same
time bound. There are O(m2) blue quadrilaterals and blue boundary segments. There are O(n) red
arcs and representative points. A blue segment s(v) intersects a red one-arc-cell r(a), if and only
if s(v) intersects the boundary of r(a), or s(v) lies inside r(a). All intersecting pairs of a red arc
and a blue quadrilateral can be identified by computing all red and blue intersections between (iii)
an arc and a line segment, and (iv) a point and a quadrilateral.

When m is small relative to n, more precisely, when m ≤
√

n, a naive approach has a better
time bound, which is O(nm2). When m >

√
n, we do the following. First, we solve problem

(iii) in O(n2+ε + K) time, using a segment-arc query structure. We store the O(n) red arcs in a
segment-arc query structure in O(n2+ε) time, and query with each of the O(m2) blue boundary
segments in O(log n + k) time. Problem (v) can be solved in O(n2 log n + m2 log3 n + K) time as
follows. We store the O(n) red representative points in a triangle search structure in O(n2 log n)
time. We divide each of the O(m2) blue quadrilaterals into two disjoint triangles, and query the
structure with each of the O(m2) triangles in O(log3 n + k) time. These lead to the following
theorem.

Theorem 4.7 Given a planar part with m concave vertices and n algebraic arcs, all K triples of
two concave vertices and an arc admitting form-closure grasps with three frictionless point fingers
can be reported in O(nm2) time when m ≤ √

n, and in O(n2+ε + K) time when m >
√

n.

4.4 Conclusion

We proposed the first efficient output-sensitive algorithms to report all sets of arcs and concave
vertices of a semi-algebraic set that yield form-closure grasps. The projection method in Chapter 3
was general enough to be employed to tackle this problem. We proved that the shapes of the wrench
sets induced by a frictionless point finger on an arc, and their projections are algebraic arcs.

Reporting all K arc pairs that yield form-closure grasps with two frictionless point fingers is
equivalent to the problem of reporting all red and blue intersecting pairs of one-arc-cells, which
are semi-algebraic sets. To solve this problem, we need an efficient algorithm to report all red and
blue intersecting arc pairs. We can use the line sweeping algorithm by Basch et al. [7] for this.
The algorithm can enumerate such K arc pairs in O(λt+2(n + K) log3 n) time, where each pair of
the n arcs intersects at most t times, and λt+2(n + K) is the maximum length of an (n + K, t + 2)
Davenport-Schinzel sequence. λt+2(n + K) is an almost linear function of n + K for any fixed

2A triangle can be seen as a degenerate case of a quadrilateral, hence we consider r(v, v′) a quadrilateral.

58 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

t + 2. In our setting, the algebraic arcs can intersect at most t times, because the degree of the
polynomials is bounded by a constant t. This provides an efficient way of computing all arc pairs
with form-closure grasps, when K = O(nα), α < 2. It remains open to find truly output-sensitive
computations of all such arc pairs, where the K term is additive to the other terms involving n or
m.

When a planar part is bounded by arbitrary curve pieces, we believe that the projected wrench
sets involve arbitrary curve pieces. Unfortunately, no efficient output-sensitive algorithm to detect
the intersections of arbitrary curves has been proposed, as far as we know. If the intersection
between the projected wrench sets can be efficiently computed, the approach presented in this
chapter can be applied to compute all form-closure grasps of any planar curved object.

Chapter 5

Computing All Force-Closure Grasps of
Polygons and Planar Semi-Algebraic Sets

Fewer fingers suffice for immobilization, if there is friction between the fingers and the part. This
chapter is about the first output-sensitive computations of all force-closure grasps with frictional
fingers of polygons and planar semi-algebraic sets. The beauty of the approach taken in Chapter 3
and 4 is that it can also be applied to compute all force-closure grasps of polygons and planar
semi-algebraic sets. With this method, we identify all combinations of edges and concave vertices
of a polygon such that two or three fingers on each of these combinations achieve force closure.
The combinations that we consider include: (i) edge pairs, (ii) a concave vertex and an edge, (iii)
one concave vertex and two edges, and (iv) two concave vertices and one edge. We also identify
all combinations of arcs and concave vertices of a planar semi-algebraic set, such that two or
three fingers on each of these combinations achieve force closure. The combinations include: (i)
a concave vertex and an arc, (ii) two concave vertices and an arc, and (iii) a concave vertex and
two arcs. Two frictional fingers on two arcs can also achieve force closure. However, we do not
consider these cases in this chapter, because the algorithm to deal with arc-arc intersections is not
efficient enough. We discuss this further in Section 5.4. Also note that three frictional fingers
on three arcs can achieve force closure. This case is basically the same as that in Section 4.2.2,
since it is the problem of reporting all intersecting pairs of a red semi-algebraic set and a blue
semi-algebraic set. Hence this can be solved in the same time bound as in Section 4.2.2, which is
O(n5/2+ε + K).

5.1 Preliminaries

We project the wrench sets on Γ, and report all red and blue intersections between the projected
wrench sets on Γ. The projection scheme and screen Γ are as defined in Section 2.4.1. We first
introduce a necessary and sufficient condition for two frictional fingers to achieve force closure.

Lemma 5.1 Given an object with two contact wrench sets w1 and w2, the object is in force-closure,
if and only if w1 and w2 have four points w′

1, w′′
1 , w′

2 and w′′
2 such that the interior of a red part of

π(w′
1w

′′
1) intersects the interior of a blue part of π(w ′

2w
′′
2), or vice versa.

The problem of enumerating all combinations of arcs/edges and concave vertices with force
closure grasps can be formulated in terms of wrench sets as follows: (i) given n red and blue
trapezoids and m red and blue line segments on Γ, report all combinations of trapezoids and line

60 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

(a)

ηx

ηy

τ
Γ

(b)

ϑ

�′ �′′

e

P π(w′)

π(w′′)

w′

w′′

Figure 5.1: (a) The friction cone of a frictional point finger on e. (b) The projected wrench sets of the finger.

segments that define red and blue intersections in the interior; (ii) given n red and blue semi-
algebraic sets and m red and blue line segments on Γ, report all combinations of semi-algebraic sets
and line segments that define red and blue intersections in the interior. We investigate the shapes of
wrench sets induced by a finger along an edge (Section 5.1.1), at a concave vertex ((Section 5.1.2),
and along an arc (Section 5.1.3). In Section 5.1.4, we introduce the data structures and algorithms
used in this chapter, to search for red and blue intersections.

5.1.1 Edge wrench sets

A frictionless point finger on an edge e induces one line of force—the normal line of e at the contact
point. When a finger is frictional, it induces a set of lines of force; the set of lines of force through
the contact is the friction cone. Recall that we assume Coulomb friction model (see Section 2.3).
The bisector of the friction cone is the normal line at the contact point on the edge. Let ϑ denote
the half-angle of the friction cone. See Figure 5.1 (a). Let �′ and �′′ be the boundary lines of the
Coulomb friction cone; they make a positive or negative angle with the normal line.

A line through a point p with a direction vector η = (ηx, ηy) determines a point (ηx, ηy, p × η)
in wrench space. Recall that η is normalized, i.e. |η| = 1 (see Section 2.1.2). A frictional finger
translating along an edge e induces a set of lines of force, and hence a set of wrench points, which
forms a trapezoid on Γ. Let w′ and w′′ be the sets of the wrench points for �′ and �′′ translating
along e respectively. Then w′ and w′′ are vertical line segments1 in wrench space. We call the
trapezoidal convex hull of w′ and w′′ in wrench space the edge wrench set (of e), and let ê denote
it. The projection of this trapezoid ê is also a trapezoid on Γ, because the projection of vertical line
segments are also vertical line segments. We let π(e) denote the projection of ê. See Figure 5.1
(b).

5.1.2 Concave vertex wrench sets

We now look at how the wrench set of a finger at a concave vertex looks. Let e1 and e2 be the
incident edges of a concave vertex v, and let �′1 and �′′1 be the boundary lines of the friction cone of
edge e1 at v, and �′2 and �′′2 be those of e2 at v. Without loss of generality, we assume that �′1 and �′′2
are the boundary lines of the set of lines of force caused by the finger at the vertex. See Figure 5.2.
A finger at a concave vertex induces a set of lines of force between two lines �′1 and �′′2, thus a line
segment w′w′′ in wrench space, where w′ is the wrench point corresponding to �′1, and w′′ is the
wrench point corresponding to �′′2 . We let s(v) denote the projection of w′w′′ on Γ.

1Observe that the first two components of w′ and w′′ are for the directions of
′ and
′′. Only the last component changes as
′ or
′′ translates
along e. Hence w′ and w′′ are vertical line segments.

5.1 Preliminaries 61

�′1

�′′2(a)
Γ

�′1

�′′2
(b)

Figure 5.2: (a) A finger at a concave vertex induces a friction cone with � ′
1 and �′′2 as boundary lines. (b) The red line

segment (in dashed lines) is the wrench set induced by a finger at a concave vertex.

5.1.3 Arc wrench sets

When a frictional finger moves along an arc, it induces a set of wrench points. Let a be a boundary
arc of a semi-algebraic set P ′; a is a portion of an algebraic curve Ψ(x, y) = 0 of constant degree.
The interior of the semi-algebraic set P ′ could be Ψ(x, y) > 0 or Ψ(x, y) < 0. Without loss of
generality, we assume that Ψ(x, y) > 0 represents the interior of P ′ bounded by a locally. We
let Ψx and Ψy denote ∂Ψ(x,y)

∂x
and ∂Ψ(x,y)

∂y
respectively. Then the wrench for the normal line at

p = (x, y)T on a is (Ψx, Ψy, xΨy − yΨx).2 When a finger is frictional, it induces a set of lines
of force in the friction cone. If we rotate the normal line around p by θ, it represents a line in the
friction cone, when θ ≤ ϑ.3 In fact, any line in the friction cone can be represented this way. The
wrench point for the rotated normal line by θ can be expressed as follows:

(cos θΨx − sin θΨy, sin θΨx + cos θΨy, x sin θΨx + x cos θΨy − y cos θΨx + y sin θΨy).

We assume that cos θΨx − sin θΨy �= 0 and sin θΨx + cos θΨy �= 0 for all values of θ. If an arc a
does not satisfy this assumption, we divide a such that each portion of a satisfies the assumption.
We call the wrench set of a finger translating along an arc a the arc wrench set (of a), and let â
denote it. In the following lemma, we show that an arc wrench set of a frictional finger forms a
semi-algebraic set in wrench space.

Lemma 5.2 The set of wrenches induced by all placements of a frictional point finger along an
arc forms a semi-algebraic set.

Proof: Let N be a map N : (x, y, θ)
→ (cos θΨx − sin θΨy, sin θΨx + cos θΨy, x sin θΨx +
x cos θΨy−y cos θΨx+y sin θΨy), where x and y are on a piece of an algebraic curve Ψ(x, y) = 0,
and θ in an interval of Iθ = [θ1, θ2]. We show that the image of N is algebraic. We parametrize
cos θ and sin θ in terms of u in a certain interval of Iu as follows:

cos θ =
2u

1 + u2
and sin θ =

1 − u2

1 + u2
.

Note that u is in an interval [u1, u2]. With this parametrization, N can be rewritten as follows.

N : (x, y, u)
→ (2uΨx

1+u2 − (1−u2)Ψy

1+u2 , (1−u2)Ψx

1+u2 + 2uΨy

1+u2 ,
x(1−u2)Ψx

1+u2 + 2uxΨy

1+u2 − 2uyΨx

1+u2 + y(1−u2)Ψy

1+u2).

Because all the components in the image are polynomials of x, y and u for a fixed value of u,
the image is also an algebraic arc. The set of algebraic arcs for all values of u in [u1, u2] forms a
semi-algebraic set. �

2Note that the direction vector (Ψx, Ψy) is not normalized here, to make the formula simpler. But the arguments in this chapter still holds, with
the normalization of (Ψx, Ψy).

3Remember that ϑ represents the half angle of the friction cone. See Section 2.3 in Chapter 2.

62 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

(a)

ηx

ηy

τ
Γ

(b)

w′

ϑ

η′ η′′

w′′

a

P

Figure 5.3: The projected wrench set of a frictional finger translating along an arc.

Γ1

ηx

ηy

−1

−1

1
Γ2

I

II

III

IV

1
O

ηx + ηy = 0ηx − ηy = 0

Figure 5.4: The regions I, II, III and IV, and screen Γ in wrench space, viewed from the positive τ axis.

Now we show that the projection of an arc wrench set â is also a semi-algebraic set. We let r(a)
denote the projection of â. Abusing the notation slightly, we also call r(a) the arc wrench set of a.
See Figure 5.3.

Lemma 5.3 The projected wrench set induced by a frictional finger translating on an arc forms a
semi-algebraic set.

Proof: The arc wrench sets are projected on different planes of Γ, depending on where they lie,
just like in Section 4.1.1. See Figure 5.4. Those lying in region I and III are projected in blue and
red on Γ1, with the following description

(1,
(1 − u2)Ψx + 2uΨy

2uΨx − (1 − u2)Ψy
,
x(1 − u2)Ψx + 2uxΨy

2uΨx − (1 − u2)Ψy
− y),

and those in region II and IV are projected in red and blue on Γ2, with the following description

(
2uΨx − (1 − u2)Ψy

2uΨy + (1 − u2)Ψx

, 1, x − 2uyΨx − y(1 − u2)Ψy

2uΨy + (1 − u2)Ψx

).

Because all the components in the image are polynomials of u, x, y, Ψx and Ψy, the image is also
a piece of an algebraic curve. This means that r(a) is bounded by algebraic arcs, therefore r(a) is
a semi-algebraic set. �

When two frictional point fingers p and p′ slide along two arcs a and a′ independently, they
induce a set of line segments {ww′|w ∈ â, w′ ∈ â′}. The set of such line segments forms a semi-
algebraic set bounded by â, â′ and a constant number of line segments. The projection of this set is
also a semi-algebraic set bounded by π(â), π(â′) and a constant number of line segments. We let
r(a, a′) :=

⋃
{π(ww′) | w ∈ â, w′ ∈ â′}. Note that an arc a could be a segment—a line segment

is considered to be a special case of algebraic arcs.

5.2 Computing all force-closure grasps of polygons 63

5.1.4 Intersection search algorithms

In this chapter, we need to report all red and blue intersections4 between semi-algebraic sets, line
segments and triangles. More precisely, we wish to report all red and blue intersections between:
(i) line segments; (ii) arcs and line segments; (iii) points and semi-algebraic sets; (iv) points and
triangles; (v) real algebraic arcs.

We use two options to report all red and blue intersecting line segments: segment intersection
algorithm and segment intersection search structure. All red and blue intersecting pairs of an
arc and a line segment can also be reported in two ways: segment-arc intersection algorithm and
segment-arc query structure. To report all points lying in a semi-algebraic set, we use a semi-
algebraic range search structure. To identify all K points contained in a query triangle, we use the
triangle search structure. More detailed information on the algorithms and the data structures can
be found in Section 2.4.2.

Sometimes we use a variant of a triangle search structure whose preprocessing time is O(q1+ε +

M logε q), and the query time is O(q/
√

M log3 M
q

+ k), where M is the space used to store the

data. In this chapter, we set the space M to be q4/3. This leads to O(q4/3 logε q) preprocessing
time, and O(q1/3 log3 q + k) query time. See Theorem 6.2 in [52].5 Section 2.4.2 has more details
about these algorithms and data structures involving arcs. All K red and blue arc-arc intersections
are enumerated in a naive manner—we check every pair of arcs.

5.2 Computing all force-closure grasps of polygons

Let a polygon P have n edges and m concave vertices. In this section, we report all combinations
of edges and concave vertices that yield at least one force-closure grasp with at most three frictional
point fingers. The combinations are (i) two edges, (ii) one concave vertex and one edge, (iii) one
concave vertex and two edges, and (iv) two concave vertices and one edge. We do not consider the
problem of reporting all concave vertex pairs that yield a force-closure grasp with two frictional
fingers, because this is basically the same problem as that solved in Section 3.2.1.

5.2.1 Two edges

We wish to report all edge pairs that yield a force-closure grasp with two frictional point fingers.
An edge pair allows a force-closure grasp, if and only if their projected edge wrench sets on Γ have
a red-blue intersection in the interior. Hence we have the problem of reporting all intersecting red
and blue trapezoids. A red trapezoid intersects a blue trapezoid in the interior, if and only if either
a red boundary segment intersects a blue boundary segment in the interior, or one is contained in
the other.

There are n edges, each of which has at most four trapezoids on Γ. All intersecting red and blue
line segments can be identified in O(n4/3 log1/3 n+K) time, using a red-blue segment intersection
algorithm. To identify all red (blue) trapezoids contained in a blue (red) trapezoid, we take a
vertex of each red trapezoid, and store them in a triangle search structure using O(n4/3) space. The
preprocessing time is O(n4/3 logε n) (ε is an arbitrarily small positive number). We triangulate a
blue trapezoid, and query the structure with each of the triangle; the query time is O(n1/3 log3 n +
k). There are O(n) queries, so the total time complexity is O(n4/3 log3 n+K). Note that querying
the triangle search structure will report all red trapezoids contained in a given blue trapezoid, but

4The red and blue intersection points must be the interior points of the red and blue sets.
5Matoušek’s n is our q, and m is our q4/3.

64 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

(a) (b)

Figure 5.5: (a) The red line segments (in dashed lines) intersect the boundary segments of a blue trapezoid (in solid
lines). (b) The red line segments are contained in a blue trapezoid.

also some red trapezoids intersecting the blue trapezoid. These red trapezoids intersecting the blue
trapezoid will be reported at most twice, which does not affect the asymptotic time complexity.
This argument will hold for the problems that we consider in the remaining sections.

Theorem 5.4 Given a polygon with n edges, all K edge pairs that yield a force-closure grasp with
two frictional point fingers can be computed in time O(n4/3 log3 n + K).

5.2.2 One concave vertex and one edge

We wish to report all pairs of one concave vertex and one edge that yield a force-closure grasp
with two frictional point fingers. As a consequence of Lemma 5.1, a concave vertex and an edge
allow a force-closure grasp, if and only if their wrench sets on Γ have a red-blue intersection in the
interior.6 Remember that a finger at a concave vertex induces a line segment, and a finger along
an edge induces a trapezoid on Γ. Our problem is thus to report all intersecting red trapezoids and
blue segments, and all intersecting red segments and blue trapezoids. Without loss of generality,
we take red trapezoids and blue line segments. The case of intersecting blue trapezoids and red line
segments can be treated similarly. A red trapezoid intersects a blue line segment in the interior, if
and only if either a red trapezoid boundary segment intersects a blue trapezoid boundary segment
in the interior, or the line segment is contained in the trapezoid. See Figure 5.5.

There are O(n) blue trapezoids, and m red line segments. All intersecting red and blue line
segments can be identified in O(n4/3 log1/3 n + K) time using the red-blue segment intersection
algorithm. To identify all red segments in blue trapezoids, we store the midpoints of all the red
line segments in a triangle search structures in O(M) space. We adjust the space M , depending
on the size of m compared to n. When m ≤ n2/3, we take the triangle search structure with
O(m2 log m) preprocessing time and O(log3 m + k) query time. There are n queries, so the time
complexity in this case is O(m2 log m + n log3 m + K). When n2/3 ≤ m ≤ n, we set M = m4/3,
which gives us O(m4/3 logε m) preprocessing time (ε is an arbitrarily small positive number), and
O(m1/3 log3 m + k) query time. There are n queries, so the time complexity is O(nm1/3 log3 m +
K). The following table shows the data structures and algorithms used in each case and their time
complexities. The number of queries and the data size7 are asymptotic.

Range of m Name of the algorithm (Query,Data) Time complexity

m ≤ n2/3 segment-segment intersection algorithm O(n4/3 log1/3 n + K)
triangle search structure (n, m) O(m2 log m + n log3 m + K)

n2/3 ≤ m ≤ n segment-segment intersection algorithm O(n4/3 log1/3 n + K)

triangle search structure (n, m) O(nm1/3 log3 m + K)

6The intersection must have at least one point which is the interior point of the red set, and the interior point of the blue set.
7From here on, by data size in the table, we mean the size of the data to be stored in the data structure.

5.2 Computing all force-closure grasps of polygons 65

Figure 5.6: The red line segments (in dashed lines) intersect the convex hull of two blue edge wrench sets (in solid
lines).

Theorem 5.5 Given a polygon with m concave vertices and n edges, all K pairs of one con-
cave vertex and one edge that yield a force-closure grasp with two frictional point fingers can be
computed in time O(n4/3 log3 n + K). More precisely, they are:

(i) O(n4/3 log1/3 n + m2 log m + K) = O(n4/3 log n + K)-time when m ≤ n2/3, and

(ii) O(n4/3 log1/3 n + nm1/3 log3 m + K) = O(n4/3 log3 n + K) time when n2/3 ≤ m ≤ n.

5.2.3 One concave vertex and two edges

We wish to report all triples of one concave vertex and two edges that yield a force-closure grasp
with three frictional point fingers. As a consequence of Lemma 5.1, our problem is to report all
intersecting pairs of a red (blue) line segment and the blue (red) convex hull of two edge wrench
sets on Γ. Observe that the convex hull of two edge wrench sets on Γ is a polygon of a constant
complexity. A line segment intersects a polygon, if and only if either the red and blue line segments
intersect each other in the interior, or the line segment is contained in the polygon. See Figure 5.6.

Without loss of generality, we take red line segments and blue trapezoids on Γ. All sets of blue
line segments intersecting red edge wrench sets can be reported in a similar way. Now we construct
the convex hulls of all pairs of blue trapezoids. There are O(n2) blue polygons, and O(m) red line
segments.

We build a segment intersection search structure on O(m) red line segments in O(m2 log2 m)
time, and query with each of the O(n2) blue boundary line segments. The query time is O(log4 m+
k), so the time complexity of segment intersection search problem is O(n2 log4 m + K). To report
all segments contained in a blue polygon, we triangulate the polygon, and report all midpoints
of the red segments contained in each triangle of the blue polygon. We build a triangle search
structure on m midpoints of the red line segments in O(m2 log m) time, and query with each of
the O(n2) blue query triangles. The query time is O(log3 m + k), so the time complexity of the
triangle intersection search problem is O(n2 log3 m + K). The total time complexity to report all
intersecting pairs of a red line segment and the convex hull of two blue edge wrench sets is thus
O(n2 log4 m + K).

Theorem 5.6 Given a polygon with m concave vertices and n edges, all K triples of one concave
vertex and two edges that yield a force-closure grasp with three frictional point fingers can be
computed in time O(n2 log4 m + K).

5.2.4 Two concave vertices and one edge

We wish to report all triples of two concave vertices v and v ′ and one edge e that yield a force-
closure grasp with three frictional point fingers. As a consequence of Lemma 5.1, two concave

66 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

Figure 5.7: A set of red trapezoids (in dashed lines) intersecting blue quadrilaterals (in solid lines).

vertices and an edge allow a force-closure grasp, if and only if the red (blue) quadrilateral intersects
the blue (red) trapezoid in the interior on Γ. An edge wrench set on Γ is a trapezoid, and the convex
hull of two vertex wrench sets s(v) and s(v ′) on Γ is a quadrilateral. See Figure 5.7. Our problem
is thus to report all red and blue intersecting pairs of a trapezoid and a quadrilateral. Here we focus
on reporting red trapezoids intersecting blue quadrilaterals. All sets of blue trapezoids intersecting
red quadrilaterals can be reported similarly. A red trapezoid intersects a blue quadrilateral in the
interior, if and only if either the red and blue line segments intersect each other in the interior, or
the red trapezoid is contained in the blue quadrilateral, or the blue quadrilateral is contained in the
red trapezoid.

There are O(m2) blue quadrilaterals and O(n) red trapezoids. For the line segment intersection
search problem, we use either a red-blue segment intersection algorithm or a segment intersec-
tion search structure on n red line segments, depending on the relative size of m compared to n.
To identify all blue quadrilaterals contained in a red trapezoid, and the red trapezoids in a blue
quadrilateral, we use some variants of the triangle search structure on O(m) midpoints of blue line
segments, and on O(n) points of red trapezoids with time-space trade-off. All possible combina-
tions of intersection algorithms produce two different time complexities, depending on the relative
size of m compared to n: (i) m ≤ n1/6, (ii) n1/6 < m ≤ n1/2, and (iii) n1/2 < m ≤ n.

When m ≤ n1/6, we search for all K intersecting pairs of a red trapezoid and a blue quadrilateral
in a brute-force manner. This takes O(m2n) time.

When n1/6 < m ≤ n1/2, we search for all K intersecting pairs of a red trapezoid and a blue
quadrilateral in total time O(n4/3 log3 n + K) as follows. We first perform a red-blue line segment
intersection algorithm on O(n + m2) red and blue line segments in O(n4/3 log1/3 n + K) time. To
identify red trapezoids contained in blue quadrilaterals, we store the O(n) red points in a triangle
search structure using M = O(n4/3) space; the preprocessing time is O(n4/3 logε n), and the query
time is O(n1/3 log3 n + k) for each of the O(m2) queries. The total time complexity for this case
is O(n4/3 log3 n + K). To identify blue quadrilaterals contained in red trapezoids, we store the
O(m) blue points in a triangle search structure with O(m2 log m) preprocessing time. The query
time is O(log3 m + k) for each of the O(n) queries. We take all pairs of blue segments among the
k reported segments, and put them in set A. Then all blue quadrilaterals contained in the query red
trapezoid belong to A. The total time complexity of this case is O(n log3 m + K).

When n1/2 < m ≤ n, the total time complexity is O(n2 log2 n+m2 log4 n+K) = O(n2 log4 n+
K). We store the n red line segments in a segment intersection structure in O(n2 log2 n) time and
query in O(log4 n+k) time with each of the O(m2) query line segments. The total time complexity
is O(n2 log2 n + m2 log4 n + K). To identify all blue quadrilaterals contained in red trapezoids,
we store O(m) blue points in a triangle search structure with O(m2 log m) preprocessing time.
The query time is O(log3 m + k) for each of the O(n) queries. Hence the time complexity is
O(m2 log m + K). To identify all red trapezoids contained in blue quadrilaterals, we store n red
points in a triangle search structure in O(n2 log n) time. The query time is O(log3 n + k) for each
of the O(m2) queries, hence the time complexity is O(n2 log n + m2 log3 n + K). The following

5.3 Computing all force-closure grasps of planar semi-algebraic sets 67

table shows the data structures and algorithms used in each case and their time complexities. The
number of queries and the data size are asymptotic.

Range of m Name of the algorithm (Query,Data) Time complexity

m ≤ n1/6 naive segment-segment intersection search (m, n) O(m2n)
naive triangle search structure (m, n) O(m2n)
naive triangle search structure (m, n) O(m2n)

n1/6 < m ≤ n1/2 segment-segment intersection algorithm (n, m) O(n4/3 log1/3 n + K)

triangle search structure (m, n) O(n4/3 log3 n + K)
triangle search structure (n, m2) O(n log3 m + K)

n1/2 ≤ m ≤ n segment-segment query structure (m2, n) O(n2 log2 n + m2 log4 n + K)
triangle search structure (n, m) O(m2 log m + K)
triangle search structure (m2, n) O(n2 log n + m2 log3 n + K)

Theorem 5.7 Given a polygon with m concave vertices and n edges, all K triples of two concave
vertices and one edge that yield a force-closure grasp with three frictional point fingers can be
computed in total time O(n2 log4 n + K). More precisely, the time complexities are:

(i) O(m2n) when m ≤ n1/6

(ii) O(n4/3 log3 n + K) when n1/6 < m ≤ n1/2, and

(iii) O(n2 log2 n + m2 log4 n + K) = O(n2 log4 n + K) when n1/2 < m ≤ n.

5.3 Computing all force-closure grasps of planar semi-algebraic sets

Let P ′ denote a planar semi-algebraic set with n boundary arcs and m concave vertices. The
boundary arcs are all real algebraic arcs. In this section, we wish to report all force-closure grasps
on the following combinations: (i) pairs of a concave vertex and an arc, (ii) triples of two concave
vertices and an arc, and (iii) triples of a concave vertex and two arcs.

5.3.1 One concave vertex and one arc

We wish to report all pairs of a concave vertex and an arc that yield a force-closure grasp with two
frictional point fingers. A frictional finger at a concave vertex v induces a line segment s(v) on
Γ, and a finger on an arc a induces a semi-algebraic set r(a). As a consequence of Lemma 5.1,
a concave vertex and an arc allow a force-closure grasp, if and only if the red (blue) line segment
s(v) intersects the blue (red) semi-algebraic set r(a) in the interior. Here we focus on the case of
red line segments intersecting blue semi-algebraic sets in the interior. All sets of blue line segments
intersecting red semi-algebraic sets can be reported in the same way. A red line segment intersects
a blue semi-algebraic set in the interior, if and only if one of the following holds: (i) the red line
segment intersects the blue boundary arcs8 in the interior, or (ii) the red segment lies in the blue
semi-algebraic set.

There are O(n) blue semi-algebraic sets on Γ, thus O(n) arcs on Γ. There are O(m) red line
segments from the concave vertices, thus O(m) red midpoints. When m is small relative to n,
more precisely, when m ≤ n1/2, we take a brute-force approach, which takes O(nm) time.

When n1/2 < m ≤ n, we use the segment-arc intersection algorithm to search for all red and
blue segment-arc intersections. This runs in O(n3/2+ε+K) time. To report all red segments lying in

8The boundary of r(a) may have line segments. Since a line is a degenerate case of an algebraic curve, this case can handle segment-segment
intersections as well. In addition, this does not affect the time complexity.

68 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

(i) (ii) (iii)

Figure 5.8: A set of red quadrilaterals (in dashed lines) intersecting blue semi-algebraic sets (in solid lines).

blue semi-algebraic sets (case (ii)), we store O(m) red midpoints in a semi-algebraic range search
structure in O(m logm) time. We query the structure with each of the O(n) query semi-algebraic
sets, which takes O(m1/2+ε + k) time. The time complexity for case (ii) is O(nm1/2+ε + K).9

The following table shows the data structures and algorithms used in each case and their time
complexities. As in the previous section, the number of queries and the data size are asymptotic.

Range of m Name of the algorithm (Query,Data) Time complexity

m ≤ n1/2 brute-force approach (m, n) O(nm)

n1/2 < m ≤ n segment-arc intersection algorithm (m, n) O(n3/2+ε + K)

semi-algebraic range search structure (n, m) O(nm1/2+ε + K)

Theorem 5.8 Given a planar semi-algebraic set with n boundary arcs of constant degree and m
concave vertices, all K pairs of a concave vertex and an arc that yield force-closure grasps with
two frictional point fingers can be enumerated in total time O(n3/2+ε + K). More precisely the
time complexities are:

1. O(nm) when m ≤ n1/2, and

2. O(n3/2+ε + K) when n1/2 < m ≤ n.

5.3.2 Two concave vertices and one arc

We wish to report all triples of two concave vertices v and v ′, and one arc a that yield a force-
closure grasp with three frictional point fingers. Three fingers at v, v ′ and a induce two line
segments s(v), s(v′) and a semi-algebraic set r(a) on Γ. As a result of Lemma 5.1, two concave
vertices and one arc allow a force-closure grasp, if and only if the red quadrilateral10 intersects
the blue semi-algebraic set in the interior on Γ. Here we focus on the case of red quadrilaterals
and blue semi-algebraic sets. All intersecting pairs of a blue quadrilateral and a red semi-algebraic
set can be reported similarly. A red quadrilateral intersects a blue semi-algebraic set, if and only
if one of the following three holds: (i) red line segment intersects the blue boundary arc in the
interior, or (ii) a red point is in the blue semi-algebraic set, or (iii) a blue endpoint is inside the red
quadrilateral. See Figure 5.8.

There are O(n) blue semi-algebraic sets, thus O(n) blue boundary arcs and representative
points—we pick an endpoint from each of the semi-algebraic sets. There are O(m2) red quadri-
laterals and O(m) midpoints of the red segments. When m is small relative to n, more precisely,
when m ≤ n1/2, we use brute-force algorithm, which takes O(nm2) time.

9Note that this query structure finds all the red line segments contained in a query semi-algebraic set, as well as some segments intersecting the
query semi-algebraic set. The latter will be reported once again. In total the desired output can be reported at most twice, which does not affect the
asymptotic time complexity. In the following sections as well, the output will be reported at most three times.

10The convex hull of s(v) and s(v′) is in general, a quadrilateral. It can be a triangle, which we consider as a degenerate quadrilateral.

5.3 Computing all force-closure grasps of planar semi-algebraic sets 69

(iii)(ii)(i)

Figure 5.9: A set of red line segments s(v) (in dashed lines) intersecting r(a, a ′) (in solid lines).

When n1/2 < m ≤ n, we do the following. We first store O(n) blue arcs in a segment-arc
query structure in O(n2+ε) time. Each of the O(m2) queries takes O(logn + k) time, therefore,
the total time complexity for case (i) is O(n2+ε + K). Then we store O(m) red points in a semi-
algebraic range search structure in O(m logm) time. With each of the O(n) semi-algebraic sets,
we query the structure in O(m1/2+ε + k) time. The total time complexity for case (ii) is thus
O(nm1/2+ε + K). Finally we report all blue semi-algebraic sets contained in red quadrilaterals
(case (iii)) as follows. We store O(n) blue points in a triangle search structure in O(n2 log n) time.
We triangulate all red quadrilaterals; each quadrilateral has two triangles. We query the structure
with each of the O(m2) triangles in O(log3 n + k) time. The total time complexity of case (iii) is
thus O(n2 log n + m2 log3 n + K).

The following table shows the algorithms used in each case and their time complexities. The
number of queries and the data size are asymptotic.

Range of m Name of the algorithm (Query,Data) Time complexity

m ≤ n1/2 brute-force manner (n, m2) O(nm2)

n1/2 < m ≤ n segment-arc query structure (m, n) O(n2+ε + K)

semi-algebraic range search structure (n, m) O(nm1/2+ε + K)
triangle search structure (n, m2) O(n2 log3 n + K)

Theorem 5.9 Given a planar semi-algebraic set with n boundary arcs and m concave vertices, all
K triples of two concave vertices and an arc that yield force-closure grasps with three frictional
point fingers can be enumerated in total time O(n2+ε + K). More precisely the time complexities
are:

(i) O(nm2) when m ≤ n1/2, and

(ii) O(n2+ε + K) when n1/2 < m ≤ n.

5.3.3 One concave vertex and two arcs

We wish to report all triples of a concave vertex v and two arcs a and a′ that yield a force-closure
grasp with three frictional point fingers. A finger at v induces a line segment s(v), and two fingers
sliding on a and a′ independently induce a semi-algebraic set r(a, a′) on Γ—see Section 5.1.3. As
a consequence of Lemma 5.1, a concave vertex and two arcs allow a force-closure grasp, if and
only if the red line segment s(v) intersects r(a, a′) in the interior on Γ. Here we focus on the case
of red line segments and blue semi-algebraic sets. All sets of blue segments intersecting red semi-
algebraic sets can be reported similarly. A red line segment intersects a blue semi-algebraic set, if
and only if one of the following three holds: (i) the red and blue boundary line segments intersect
each other in the interior, or (ii) the red line segment intersects the blue arcs in the interior, or (iii)
the red midpoint is in the blue semi-algebraic set. See Figure 5.9.

There are O(n) blue arcs and endpoints from O(n) arc wrench sets, and O(n2) blue line seg-
ments and semi-algebraic sets from all pairs of arc wrench sets. There are also O(m) red line

70 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

segments and midpoints. When m is small relative to n, more precisely, when m ≤ n1/2, we use
brute-force algorithm, which takes O(nm) time.

When n1/2 < m ≤ n, we do the following. We first build a segment-segment query structure
on O(m) red line segments to report all red and blue intersections between line segments (case
(i)). The preprocessing time is O(m2 log2 m), and the query time is O(log4 m + k) for each of the
O(n2) blue query line segments. The total time complexity for case (i) is O(n2 log4 m + K). We
use the segment-arc intersection algorithm to report all intersecting pairs of a red line segment and
a blue arc. This runs in O(n3/2+ε + K) time. Finally we report all red segments contained in blue
semi-algebraic sets (case (iii)) as follows. We store O(m) red midpoints in a semi-algebraic range
search structure in O(m log m) time, and query it with each of the O(n2) semi-algebraic sets in
O(m1/2+ε + k) time. The time complexity of case (iii) is thus O(n2m1/2+ε + K). The following
table shows the algorithms used in each case and their time complexities. The number of queries
and the data size are asymptotic.

Range of m Name of the algorithm (Query,Data) Time complexity

m ≤ n1/2 brute-force approach (m, n) O(nm)

segment-segment query structure (n2, m) O(n2 log4 m + K)

n1/2 < m ≤ n segment-arc intersection algorithm (0, n + m) O(n3/2+ε + K)

semi-algebraic range search structure (n, m) O(n2m1/2+ε + K)

Theorem 5.10 Given a planar semi-algebraic set with n boundary arcs and m concave vertices,
all K triples of one concave vertex and two arcs that yield force-closure grasps with three frictional
point fingers can be enumerated in total time O(n2m1/2+ε + K).

5.4 Conclusion

In this chapter, we proposed efficient output-sensitive algorithms to enumerate all combinations
of edges and concave vertices of polygons, and all combinations of arcs and concave vertices of
semi-algebraic sets that yield force-closure grasps. We extended the methods in Chapter 3 and and
4 to compute all force-closure grasps. We investigated the shapes of the wrench sets induced by a
finger, when there is friction between the part and the finger.

Note that two frictional fingers on two arcs, and three frictional fingers on three arcs of a semi-
algebraic set can achieve force closure. Reporting all K arc pairs that yield force-closure grasps
with two frictional fingers is equivalent to the problem of reporting all red and blue intersecting
pairs of arc wrench sets, which are semi-algebraic sets. As far as we know, one of the most efficient
algorithms that we could use to solve this problem is the line sweeping algorithm by Basch et al.
[7]. The time complexity of this algorithm is O(λt+2(n + K) log3 n), where λt+2(n + K) is
an almost linear function of n + K in our setting. More detailed information can be found in
Section 4.4. This algorithm, however, works well only when K is sufficiently small. It remains
open to find an efficient output-sensitive algorithm for computing all arc pairs with force-closure
grasps, where the K term is additive to the other terms involving n or m.

Chapter 6

Computing All Second-Order Immobility
Grasps of Polygons

Many planar objects can be immobilized with three frictionless point fingers. This chapter1 is about
constructing all second-order immobility grasps of polygons with two and three frictionless point
fingers. We call a configuration of frictionless point fingers that achieves second-order immobility
a second-order immobility grasp. Polygons except some with parallel edges can be immobilized
with three fingers—four are necessary to immobilize the exceptions.

Czyzowicz, Stojmenovic and Urrutia [33] showed that there exists at least one second-order im-
mobility grasp for polygons without parallel edges. They also provided a necessary and sufficient
condition for three normal lines of a polygon to achieve second-order immobility. See Section 2.2.
We need at least three normal lines to immobilize a planar object, because the directions must
positively span the object plane.

A finger at a concave vertex induces at least two normal lines. Taking advantage of concave
vertices, we can reduce the number of fingers to achieve second-order immobility. In this chapter,
we propose output-sensitve algorithms to report all edge triples and all pairs of a concave vertex
and an edge that allow a second-order immobility with three and two point fingers, respectively.
We first introduce notations and CSU condition in Section 6.1. Then we propose efficient output-
sensitive algorithm to enumerate all edge triples (Section 6.2) and all pairs of an edge and a concave
vertex (Section 6.3) that allow a second-order immobility grasp with three and two frictionless
point fingers respectively. We discuss extensions and related issues in Section 6.4.

6.1 Preliminaries

In this section, we introduce some notations and definitions. Let the edges of the simple polygon
P be oriented counter-clockwise around P , that is, P lies locally to the left of each edge. See
Figure 6.1 (a). We denote the line orthogonal to an edge e through the start and end point of e
by s0(e) and s1(e), respectively. Let ŝ(e) be the relatively open infinite slab bounded by s0(e)
and s1(e), that is, the union of all lines that are orthogonal to and intersect the interior of e (see
Figure 6.4). Let l(e) be the supporting line of e, and let H(e) be the open half plane bounded
by l(e) lying locally to the left of e, that is, locally containing P (see Figure 6.2). When the

1This chapter is based on “On computing all immobilizing grasps of a simple polygon with few contacts” [23] by J.-S. Cheong, Herman
Haverkort and Frank van der Stappen in ISAAC (2003), and “On computing all immobilizing grasps of a simple polygon with few contacts” [24]
by J.-S. Cheong, Herman Haverkort and Frank van der Stappen in Algorithmica (2006).

72 Computing All Second-Order Immobility Grasps of Polygons

(a) (b) e

H(e)

(c) e

s0(e)

s1(e)

ŝ(e)

Figure 6.1: (a) Edges of P have directions, such that the interior of P lies on the left. (b) H(e) is the open half plane
bounded by l(e) locally containing P . (c) ŝ(e) is the union of all normal lines of the interior of e.

(a) (b)

H(e)

H(e′)

H(e′′)H(e)

H(e′)

H(e′′)e

e′′

e′

e

e′′

e′
I ′

I I ′′
I ′

I
I ′′

Figure 6.2: The edges e, e′, e′′ in (a) are a triangular triple, while those in (b) are not.

intersection of H(e), H(e′) and H(e′′) forms a (finite) triangle, then e, e′, and e′′ are said to be a
triangular triple. (Compare Figure 6.2 (a) and (b).)

To identify all edge triples that allow second-order immobility grasps, we use the necessary and
sufficient condition provided by Czyzowicz, Stojmenovic and Urrutia [33]. We will restate the
CSU condition below again. The proof of this lemma can be found in Section 2.2.

Lemma 6.1 (Czyzowicz et al. [33]) Three frictionless point fingers on the interior of three edges
e, e′, and e′′ immobilize a polygon, if and only if the followings are true:

(i) ŝ(e) ∩ ŝ(e′) ∩ ŝ(e′′) �= ∅ (common normal intersection condition),

(ii) H(e) ∩ H(e′) ∩ H(e′′) is a triangle (triangular triple condition).

6.2 Computing all second-order immobility grasps with three fingers

To find all edge triples that allow second-order immobility grasps, we take a similar approach as in
[82]. We find all the edge triples that have a common normal intersection; among these, triangular
triples will be filtered out. The sketch of the global approach is as follows. For each edge e of P ,
we build a data structure. It will be queried with each of the remaining n− 1 edges e′, to report all
edges e′′ such that the triple (e, e′, e′′) satisfies the conditions of Lemma 6.1.

From now on, we focus on building and searching the data structure for a fixed edge e. First
we show the necessary and sufficient condition for the common normal intersection condition. We
choose a coordinate system such that l(e) is the y-axis, oriented in upward direction. We divide
the remaining edges into two groups L(ower) and U(pper); when an edge forms an angle between
−π

2
and π

2
with the positive x-axis, it is in L, otherwise it is in U (see Figure 6.3 (b) and (c)). We

omit all vertical edges, i.e. all edges parallel to e from L and U , since they could never make a
triangular triple with e and a third edge. For i ∈ {0, 1}, we define l′i and r′i as the x-coordinates of

6.2 Computing all second-order immobility grasps with three fingers 73

(a) (b) (c)e

L U

positive x axis

Figure 6.3: (a) A polygon with directed edges, oriented such that e is on the y-axis, pointing upward. (b) The edges in
L, and (c) in U .

e

e′
e′′l′0 r′0 l′′0 r′′0

l′1 r′1l′′1 r′′1

ŝ(e′) ŝ(e′′)

ŝ(e)

s0(e)

s1(e)

Figure 6.4: Notation for Lemma 6.2.

the left and right intersection points of si(e) and the slab boundaries of ŝ(e′). We define l′′0 , r
′′
0 , l

′′
1

and r′′1 for edge e′′ likewise—see Figure 6.4. The following is a necessary and sufficient condition
for three edges to have a non-empty common normal intersection region.

Lemma 6.2 Two slabs ŝ(e′) and ŝ(e′′) have a common intersection with ŝ(e) if and only if one of
the following is true:

(i) l′0 < r′′0 ∧ l′′1 < r′1

(ii) l′′0 < r′0 ∧ l′1 < r′′1

Proof: We will first prove that if one of the conditions (i) or (ii) is met, there is a common
intersection. After that we will prove that if neither of the conditions is fulfilled, there cannot be a
common intersection.

The “if” direction: the two cases are identical except for e′ and e′′ switching roles, so without
loss of generality, we restrict ourselves to the first case. Condition (i) implies that the line segments
l′0r

′
1 and r′′0 l

′′
1 intersect (see Figure 6.4 for an example). The first line segment lies completely inside

ŝ(e) and ŝ(e′); the second lies completely inside ŝ(e) and ŝ(e′′). Hence, their intersection lies in
all three slabs, which means that the intersection of ŝ(e), ŝ(e′) and ŝ(e′′) is not empty.

The “only-if” direction: suppose neither condition (i) nor condition (ii) is true, i.e. the following
is true:

(l′0 ≥ r′′0 ∨ l′′1 ≥ r′1) ∧ (l′′0 ≥ r′0 ∨ l′1 ≥ r′′1)

Because by definition, l′0 < r′0 and l′′0 < r′′0 , we cannot simultaneously have l′0 ≥ r′′0 and l′′0 ≥ r′0.
Likewise, we cannot simultaneously have l′1 ≥ r′′1 and l′′1 ≥ r′1. It follows that the proposition
above is equivalent to:

(l′0 ≥ r′′0 ∧ l′1 ≥ r′′1) ∨ (l′′0 ≥ r′0 ∧ l′′1 ≥ r′1)

74 Computing All Second-Order Immobility Grasps of Polygons

e

e′′ : y = a′′x + b′′

e′ : y = a′x + b′

Figure 6.5: An illustration of Lemma 6.3.

In other words, the left boundary of one slab of ŝ(e′) and ŝ(e′′) lies to the right of the right boundary
of the other slab, and the situation is the same both at the intersection with the lower boundary of
ŝ(e), and at the intersection with the upper boundary of ŝ(e). It follows that the intersections of
ŝ(e′) and ŝ(e′′) with ŝ(e) are disjoint.

So if there is a common intersection, at least one of the conditions must be fulfilled, and if at
least one of the conditions is fulfilled, there must be a common intersection. �

Now we move on to the condition equivalent to the triangular triple condition. Suppose l(e ′) is
the line defined by y = a′x + b′, and l(e′′) is the line defined by y = a′′x + b′′.

Lemma 6.3 H(e) ∩ H(e′) ∩ H(e′′) is a triangle if and only if one of the following is true:

(i) a′ < a′′ ∧ b′ < b′′ ∧ e′ ∈ L ∧ e′′ ∈ U

(ii) a′′ < a′ ∧ b′′ < b′ ∧ e′ ∈ U ∧ e′′ ∈ L

Proof: Let I ′ be the intersection (0, b′′) of l(e) and l(e′′); let I ′′ be the intersection (0, b′) of l(e)
and l(e′), and let I be the intersection (Ix, Iy) of l(e′) and l(e′′), where Ix = (b′′ − b′)/(a′ − a′′)
and Iy = a′Ix + b′ = a′′Ix + b′′ (see Figure 6.2). Observe that H(e) ∩ H(e′) ∩ H(e′′) is a triangle
if and only if I ∈ H(e), I ′ ∈ H(e′) and I ′′ ∈ H(e′′).

We will first prove that if one of the conditions (i) or (ii) holds, H(e) ∩ H(e′) ∩ H(e′′) is a
triangle, and then, that if the latter is a triangle, one of the conditions must be fulfilled.

The “if” direction: the two cases are identical except for e′ and e′′ switching roles, so without
loss of generality, we restrict ourselves to the first case. Condition (i) (as well as (ii)) implies that
Ix < 0, so I ∈ H(e). Furthermore, e′ ∈ L means that H(e′) is the half plane above l(e′); since
b′ < b′′, we have that I ′ = (0, b′′) lies above l(e′), and thus, inside H(e′). Likewise, from e′′ ∈ U
and b′ < b′′ it follows that I ′′ ∈ H(e′′). Hence, H(e) ∩ H(e′) ∩ H(e′′) is a triangle.

The “only-if” direction: suppose H(e) ∩ H(e′) ∩ H(e′′) is a triangle, then I = l(e′) ∩ l(e′′) ∈
H(e), that is: Ix = (b′′ − b′)/(a′ − a′′) < 0. This implies that one of the following is true:

(1) a′ < a′′ ∧ b′ < b′′

(2) a′′ < a′ ∧ b′′ < b′

In the first case, I ′ = (0, b′′) lies above I ′′ = (0, b′), so the triangle formed by the l(e′), l(e′′), and
the y-axis l(e), is bounded by l(e′) from below and by l(e′′) from above. From the fact that this
triangle lies inside H(e′) and H(e′′), it follows that e′ ∈ L and e′′ ∈ U , fulfilling condition (i)
of the Lemma. In the same manner, we can derive that the second case implies that e′ ∈ U and
e′′ ∈ L, fulfilling condition (ii) of the Lemma. �

From Lemmas 6.1, 6.2 and 6.3 it follows that e, e′ and e′′ allow a three-point immobility grasp
if and only if one of the following conditions is satisfied:

6.3 Computing all second-order immobility grasps with two fingers 75

v

Cone(η′
v, η′′

v)

Cone−(η′
v, η′′

v)

e

η(e)

η′
v

η′′
v

p

Figure 6.6: An illustration of Lemma 6.5.

(i) l′′1 < r′1 ∧ r′′0 > l′0 ∧ a′′ > a′ ∧ b′′ > b′ ∧ e′ ∈ L ∧ e′′ ∈ U

(ii) l′′1 < r′1 ∧ r′′0 > l′0 ∧ a′′ < a′ ∧ b′′ < b′ ∧ e′ ∈ U ∧ e′′ ∈ L

(iii) l′1 < r′′1 ∧ r′0 > l′′0 ∧ a′′ > a′ ∧ b′′ > b′ ∧ e′ ∈ L ∧ e′′ ∈ U

(iv) l′1 < r′′1 ∧ r′0 > l′′0 ∧ a′′ < a′ ∧ b′′ < b′ ∧ e′ ∈ U ∧ e′′ ∈ L

Since the roles of e′ and e′′ are interchangeable, we only need to search for triples satisfying
condition (i) or (ii). We can do this with two four-dimensional orthogonal range trees [9] as follows.
In the first tree, store every edge e′′ ∈ U as a four-dimensional point (l′′1 , r

′′
0 , a

′′, b′′). Query this tree
with every edge e′ ∈ L for all points in 〈−∞, r′1〉×〈l′0,∞〉×〈a′,∞〉×〈b′,∞〉. In the second tree,
store every edge e′′ ∈ L as a four-dimensional point (l′′1 , r

′′
0 , a

′′, b′′). Query this tree with every edge
e′ ∈ U for all points in 〈−∞, r′1〉 × 〈l′0,∞〉× 〈−∞, a′〉 × 〈−∞, b′〉. Every edge e′′ reported forms
a triple with e and e′ such that three point fingers on e, e′ and e′′ will immobilize the polygon.

Now we analyze the time complexity of this algorithm. A four-dimensional orthogonal range
tree can be built in O(n log3 n) time using O(n log3 n) space, and can be queried in O(log4 n + k)
time (see Chapter 5.4 in [9]). This can be improved to O(log3 n + k) query time, with the same
building time, using fractional cascading (see Chapter 5.6 in [9]).

We query each tree with O(n) edges e′, for a total building and query time of O(n log3 n + k)
per tree, and we do this for every edge e, so that the complete search takes O(n2 log3 n + k) time.

Theorem 6.4 Given a polygon with n edges, all K edge triples (e, e′, e′′) such that the polygon can
be immobilized by three frictionless point fingers on the interiors of e, e ′ and e′′, can be computed
in time O(n2 log3 n + K).

6.3 Computing all second-order immobility grasps with two fingers

If we exploit concave vertices, two fingers can achieve second-order immobility for a simple poly-
gon: one at a concave vertex v and the other in the interior of an edge e. When a polygon has n
edges and m concave vertices, all such pairs can be reported in time O(mn) by simply checking
all vertex-edge pairs. Obviously we want a more efficient algorithm. We could adapt the algorithm
in Section 6.2 to report only triples of edges where two edges are in fact reduced to points that
coincide on a concave vertex. But this would cost even more than O(mn) time. Therefore we
develop a specialized algorithm based on Lemma 6.5, which we will introduce later. This lemma
is equivalent to the condition described in Lemma 6.1.

First, we introduce some notations used in this section. Let e ′ and e′′ be the edges incident to
v. Let η′

v be the inward normal to e′, and let η′′
v be the inward normal to e′′. Let Cone(η′

v, η
′′
v) be

{λ′η′
v + λ′′η′′

v |λ′, λ′′ > 0}, that is, the set of all positive linear combinations of η ′
v and η′′

v . In the

76 Computing All Second-Order Immobility Grasps of Polygons

(a) (b)

v

Cone(η′
v, η′′

v)

Cone−(η′
v, η′′

v)

e

s0(e)
s1(e)

η′
v

η′′
v

S(e)

Figure 6.7: (a) Notations of normals of edges and concave vertices. (b) Vertex v is in the simplex S(e) of edge e.

θ′′v θ′vθe

θ′′v

θ′v

θe

(a) (b)

Figure 6.8: An illustration of the observation of angles.

same way, let Cone−(η′
v, η

′′
v) be the set of all positive linear combinations of −η ′

v and −η′′
v (see

Figure 6.7(a)). For each edge e, let ηe be the inward normal to e, and let the open simplex S(e) be
ŝ(e) ∩ H(e) (see Figure 6.7 (b)).

Lemma 6.5 Placing two point fingers at a concave vertex v and on an edge e immobilizes a poly-
gon if and only if:

(i) ηe ∈ Cone−(η′
v, η

′′
v), and

(ii) p ∈ S(e).

Proof: Let e′ and e′′ be the adjacent edges to v, shrunk onto the vertex v, so that ŝ(e′) is the
line orthogonal to e′ through v, and ŝ(e′′) is the line orthogonal to e′′ through v. We will first show
that any three edges e, e′ and e′′ satisfying the above statement must satisfy Lemma 6.1. Since
p = ŝ(e′) ∩ ŝ(e′′) ∈ S(e) ⊂ ŝ(e), we must have ŝ(e) ∩ ŝ(e′) ∩ ŝ(e′′) �= ∅. Furthermore, since
p ∈ S(e) ⊂ H(e), the intersection H(e) ∩H(e′) ∩H(e′′) �= ∅. In fact, H(e) ∩H(e′) ∩H(e′′) is a
triangle, because ηe ∈ Cone−(η′

v, η
′′
v), i.e., the normals of e, e′ and e′′ span the plane positively.

Let us now show that any three edges e, e′ and e′′, such that e′ and e′′ are both adjacent to and
shrunk onto a common concave vertex v, and e, e′ and e′′ satisfy Lemma 6.1, must also satisfy
the two conditions above. The common normal intersection condition assures that p ∈ ŝ(e). The
triangular triple condition, that H(e) ∩ H(e′) ∩ H(e′′) �= ∅, implies that the normals of the edges
span the plane positively, which proves that ηe ∈ Cone−(η′

v, η
′′
v). �

For any edge e and any concave vertex v, let θe, θ′v and θ′′v be the angles that ηe, −η′
v and −η′′

v ,
respectively, make with the positive x-axis. Let θ ′

v be the smaller angle of θ′v and θ′′v , i.e. θ′v < θ′′v .
Observe that ηe ∈ Cone−(η′

v, η
′′
v) if and only if one of the following is true:

(i) θ′′v − θ′v < π ∧ θe ∈ 〈θ′v, θ′′v〉
(ii) θ′′v − θ′v > π ∧ θe ∈ [−π, θ′v〉 ∪ 〈θ′′v , π].

For a given edge e, we find all concave vertices that have a two-point immobilizing grasp with
e. For this, we store the concave vertices in a data structure that stores pairs of the form (Iv, p),

6.3 Computing all second-order immobility grasps with two fingers 77

where Iv is a one-dimensional interval (〈θ′
v, θ

′′
v〉) and v is a point in the plane. Each vertex v with

θ′′v − θ′v < π is stored once, as a pair (〈θ′v, θ′′v 〉, p). Each vertex v with θ′′v − θ′v > π is stored twice:
once as a pair (〈−∞, θ′v〉, p) and once as (〈θ′′v ,∞〉, p). We query this data structure with each edge
e of P , to report all vertices v stored as a pair (Iv, p) such that θe ∈ Iv and p ∈ S(e).

The data structure we use is a two-level data structure. The top level is a segment tree [9] on
the intervals Iv. Let X be the set of all begin and end points of intervals Iv to be stored in the
tree, in order of increasing value. A segment tree is a balanced binary tree on the intervals between
consecutive values from X: each leaf is associated with one such interval. Each internal node p is
associated with an interval I(p), which is the union of the intervals of its descendants. With each
node p, we associate a data structure T (p) that stores all pairs (Iv, v) such that Ip contains I(p)
but not I(parent(p)). In our case, the data structures T (v) will be triangle search structures on the
points v in the pairs (Iv, v). Again, we use the triangle search structure by Matoušek [52], using
O(mα) space to store O(m) points, for a certain constant d. We will explain later how α is chosen,
but in any case, we will choose it such that 1 < α ≤ 2.

Let us first analyse the time needed to construct the data structure. A simplex range searching
structure can be built in time O(md logδ m), where m is the number of points stored, md is the
amount of storage used for them, and δ is any small positive constant [52]. A node v at depth i in
a segment tree stores intervals Iv that completely contain I(v), but not I(parent(v)), which means
that all intervals Iv stored in v must have an endpoint in I(brother(v)). Since the segment tree is
balanced, there are at most 2m/2i such intervals. Thus, at each depth i in the segment tree, we
have at most 2i nodes storing at most 2m/2i intervals each. The time needed to build the complete
tree thus becomes O(m logm) (for the segment tree itself) plus, for the associated triangle search
structures, O(

∑log m
i=0 2iO((m/2i)d logδ(m/2i))). Since d > 1, the larger triangle search structures

dominate, making a total construction time of O(md logδ m).
A query with an edge e for matching v in this multi-level data structure proceeds as follows.

We walk down the segment tree, finding all O(log m) nodes v (one at each depth) such that I(v)
contains θe. Together, these nodes contain all pairs (Iv, p) such that Iv contains θe. For each of these
nodes, we search the associated triangle search structure, and report the answers. The query time
in a simplex range searching structure on m points with md storage is O(m(log3 md−1)/

√
md +k).

The total time for a query in our data structure is therefore

O

⎛
⎝�log m�∑

i=0

⎛
⎝1 + O

⎛
⎝m

2i

log3
(

m
2i

)d−1√(
m
2i

)d
⎞
⎠
⎞
⎠+ k

⎞
⎠

If d = 2, this is O(log4 m + k), otherwise it is O(m(log3 m)/
√

md + k).
Since we perform n queries, the time for building and querying the data structure adds up

to O(md logδ m + n log4 m + K) (for d = 2) or O(md logδ m + nm(log3 m)/
√

md + K) (for
1 < d < 2).

Let’s now choose d. If m/ log3/2 m ≤
√

n, we choose d = 2, and the algorithm runs in
O(n log4 m + K) time. Otherwise, we have

√
n < m/ log3/2 m, so n2/3 log2 m < m4/3, and thus

(mn)2/3 log2 m < m2. Furthermore we have n > m, so certainly n2/3 log2 m > m1/3, and thus
(mn)2/3 log2 m > m. Hence we can choose d such that 1 < d < 2 and md = (mn)2/3 log2 m, re-
sulting in a total running time of O(md logδ m+nm(log3 m)/

√
md+K) = O((mn)2/3 log2+δ m+

K).

Theorem 6.6 Given a polygon with n edges and m concave vertices, all K pairs of an edge e and
a concave vertex v such that the polygon can be immobilized by two frictionless point fingers on e

78 Computing All Second-Order Immobility Grasps of Polygons

P

p1 p2
η2η1

P

p1

p2η2 η1

Figure 6.9: Second-order immobility grasps with two frictionless point fingers on semi-algebraic sets.

and at v, can be computed in time O(n log4 m + (mn)2/3 log2+δ m + K).

6.4 Conclusion

We proposed the first efficient output-sensitive algorithms to report all sets of edges and concave
vertices of a simple polygon that yield second-order immobility grasps. The algorithms solve
geometric problems in the object plane, which are based on the CSU condition [33].

It is open to efficiently compute all second-order immobility grasps of an arbitrary planar object.
Three frictionless point fingers can often immobilize a planar object, but when the object is non-
convex, two fingers can also immobilize it. We believe that two fingers can achieve second-order
immobility, if and only if the following hold: (i) the normal lines coincide in the opposite direction,
(ii) there is a circle centered at each contact with radius of an arbitrary small number ε, such that the
intersection of the object and this circle is contained in the circle with the two contacts as diameter,
and (iii) the corresponding boundaries are concave. See Figure 6.9.

It is also open to efficiently enumerate all second-order immobility grasps of a three-dimensional
object. Ponce et al. [61] identified a necessary and sufficient condition for four fingers to hold a
three-dimensional object in equilibrium. From this, one may find a necessary and sufficient condi-
tion for four fingers to hold a three-dimensional object in second-order immobility.

Chapter 7

Computing All Independent Form-Closure
Grasp Regions of Polygons

This chapter is about efficiently reporting all independent form-closure grasp regions of a specified
size ε. An independent form-closure grasp region is a set of edge patches (of length ε) and concave
vertices, such that the fingers at the vertices and anywhere in the edge patches achieve form clo-
sure. Independent form-closure grasp regions are convenient and realistic, because in practice, the
fingers cannot be positioned with infinite accuracy. Nguyen [58] studied independent grasp regions
for the first time. He showed how to construct maximal independent regions on a given set of faces
of a polygon and a polyhedron, such that any placement of two to seven frictional fingers in these
regions results in a form-closure grasp. Most form-closure grasps tolerate small misposition of the
point fingers, but the permitted amount of positioning error differs from finger to finger, and it can
be extremely small. The independent form-closure grasp regions reported in this chapter guarantee
form closure with a positioning error of ε/2.

In this chapter, we propose output-sensitive algorithms to report all combinations of concave
vertices and edge patches that form independent form-closure grasp regions. The edge patches
have a specified length ε, and each set yields a form-closure grasp with at most four frictionless
point fingers. We study this problem for a polygon and a rectilinear polygon. For both polygons
and rectilinear polygons, the combinations include: (i) edge patch quadruples, (ii) triples of one
concave vertex and two edge patches, and (iii) triples of two concave vertices and one edge patch.

This chapter is structured as follows. In Section 7.1, we describe our approach, the shapes of
the wrench sets and the intersection algorithms that we use. In Section 7.2, we propose efficient
and output-sensitive algorithms to report all combinations of edge patches and concave vertices of
a polygon that form independent form-closure grasp regions with three or four frictionless point
fingers. When a polygon is rectilinear, we can compute all independent form-closure grasp regions
more efficiently. Section 7.3 presents how we do this efficiently in an output-sensitive manner.

7.1 Preliminaries

We predivide the edges into segment pieces of a given length ε. (See Figure 7.1.) We call these
segments edge patches. Note that a concave vertex does not have any patch, because positioning
errors at concave vertices are less likely. We sketch our approach and introduce a projection scheme
in Section 7.1.1. When a finger slides along an edge, or a finger is placed at a concave vertex,
the corresponding wrench points form some shapes in wrench space. These will be described in
Section 7.1.2. Finally, the data structures and algorithms to identify all independent regions will

80 Computing All Independent Form-Closure Grasp Regions of Polygons

e1

ε

εe2
e3

e4
P

Figure 7.1: The edges are divided into segments of length ε.

(a) (c)ηx

O

ηy

ηx

ηy

τw1(v)

w2(v)

τπ(w1(v))

π(w2(v))
w2(v)

w1(v)

ηx

ηy

τΓ1

ê
π(e)

(b)

Figure 7.2: (a) The edge wrench patch induced by a finger on an edge patch, and its projection. (b) A concave vertex
wrench set, and (c) its projection.

be introduced in Section 7.1.3.

7.1.1 Our approach

We base our approach on the ideas from Chapter 3. Remember that a combination of concave
vertices and edges yields a form-closure grasp with at most four fingers if and only if they have
four wrench points whose convex hull contains the origin in the interior (Theorem 2.1). For an
independent form-closure grasp region, it will be modified as follows: a combination of concave
vertices and edge patches form an independent form-closure grasp region with at most four fingers
if and only if the convex hull of any combination of points from an edge wrench patch and the
vertex wrench sets contains the origin strictly in its interior. To identify such wrench patches, we
project them on screen Γ, and identify all red and blue wrench patches, such that they make a
red and blue intersection for any point from each edge wrench patch (Lemma 2.7). We use the
projection scheme and screen Γ defined in Section 2.4.1. We say that the convex hull of red sets
cross the convex hull of blue sets, when the convex hull of red points from every red set intersects
that of blue points from every blue set in the interior, no matter which point is chosen from each
set.

7.1.2 Edge wrench patches and vertex wrench sets

The shapes of edge wrench patches and vertex wrench sets are as described in 3.1.1 of Chapter 3.
The wrench of a finger at position p on an edge patch e is (η, τ)T = (ηx, ηy, p × η)T . See Sec-
tion 3.1.1. We assume that η is a unit vector. Then the set of wrench points induced by a finger
sliding along e forms a vertical line segment ê in wrench space. We call this edge wrench set ê of
an edge patch e the edge wrench patch of e. The projection of ê is also a vertical line segment π(ê)
on Γ—see Figure 7.2 (a). Abusing the notation slightly, we call π(ê) the edge wrench patch of e as
well. We do not include the endpoints in the edge wrench patch for simplicity, although they are
included if the endpoints of the edge patch lie in the interior of an edge.

7.2 Computing all independent form-closure grasp regions of a polygon 81

A finger at a vertex induces a set of wrench points, which form a line segment on Γ. Figure 7.2
(b) and (c) show a vertex wrench set in wrench space, and its projection on Γ. We let s(v) denote
the projected vertex wrench set of v, and call it the vertex wrench set of v as well.

7.1.3 Intersection search algorithms

In this chapter we need to perform two kinds of queries to report all red and blue intersections.
To answer these queries, we use the following two: a segment intersection search structure and an
extended triangle search structure.

The segment intersection search structure is explained in Section 2.4.2. We can have trade-off
between time and space for this structure as explained in Section 6.3 of Chapter 6. The extended
triangle search structure can report all k line segments contained in a query triangle. This is an
order-6 tree as described in Section 2.4.2. It stores q segments in O(q2 log4 q), and the query time
is O(log6 q + k).

7.2 Computing all independent form-closure grasp regions of a polygon

This section is about reporting all independent form-closure grasp regions of a polygon. More
precisely, we propose output-sensitive algorithms to enumerate all sets of: (i) four edge patches,
(ii) one concave vertex and two edge patches, and (iii) two concave vertices and one edge patch,
such that four or three frictionless point fingers on these sets yield a form-closure grasp. The case of
all pairs of concave vertices is not included, because vertices do not have patches, thus they cannot
be an independent form-closure grasp region. All pairs of concave vertices with form-closure
grasps can be reported with the algorithm proposed in Section 3.3.3. Throughout this chapter, we
let n be the number of edge patches and m be the number of concave vertices of a polygon P . We
also let p � � to denote the relationship of a point p and a line � where p is on or below �. Likewise,
we let p � � denote the relationship of p and � where p is on or above �.

7.2.1 Four edge patches

We wish to report all edge patch quadruples that form independent form-closure grasp regions. An
edge patch quadruple forms an independent form-closure grasp region, if and only if the corre-
sponding red and blue trapezoids cross each other—see Section 7.1.1. Fingers on edges e1 and e2,
they induce two wrench points w1 and w2. When the fingers slide along e1 and e2, these points
w1 and w2 slide along ê1 and ê2. The set of line segments connecting w1 and w2 for any w1 ∈ ê1

and w2 ∈ ê2 equals the convex hull of ê1 and ê2. The projection of these line segments equals the
convex hull of π(ê1) and π(ê2). Since π(ê1) and π(ê2) are vertical line segments, the convex hull
of π(ê1) and π(ê2) is a trapezoid. The problem is thus formulated as follows: given all red and blue
trapezoids, report all pairs of red and blue trapezoids that cross each other on Γ. Two trapezoids
cross each other, when they intersect each other, and the vertical sides of the trapezoids are disjoint
with the intersection. See Figure 7.3.

Let rurd and r′ur
′
d be the red vertical segments,1 and bubd and b′ub

′
d be the blue vertical segments

on Γ. Let ru, r′u, bu and b′u be the upper endpoints, and rd, r′d, bd and b′d be the lower endpoints
of the segments. The convex hulls of rurd and r′ur

′
d, and bubd and b′ub

′
d are red and blue trapezoids

respectively. We assume that rurd is on the left side of the line containing r ′
ur

′
d, and bubd is on the

left side of the line containing b′ub
′
d. Suppose that red trapezoid rurdr

′
dr

′
u crosses blue trapezoid

1Note that the vertical segments are projected edge wrench patches.

82 Computing All Independent Form-Closure Grasp Regions of Polygons

bu
(a) (b)

bd

b′u
b′d

bu

bd

r′u
r′dru

rd

ru

rd r′u
r′d

b′u
b′d

Figure 7.3: The cases of red and blue trapezoids that cross each other.

bubdb
′
db

′
u. Note that the endpoints ru, r′u, bu, b′u, rd, r′d, bd and b′d are not included in the edge

wrench patches, since a finger cannot be at a vertex. Hence these endpoints are allowed to be on
the boundary line segments rur′u, rdr′d, bub′u and bdb′d. We let �(x, x′) be the supporting line of the
line segment x, x′. The following lemma is a necessary and sufficient condition for rurdr

′
ur

′
d to

cross bubdb
′
ub

′
d. Figure 7.3 illustrates Lemma 7.1.

Lemma 7.1 Two trapezoids rurdr
′
ur

′
d and bubdb

′
ub

′
d cross each other, if and only if one of the fol-

lowing holds:

(i) ru � �(bdb
′
d), r′d � �(bub

′
u), bd � �(rur

′
u), and b′u � �(rdr

′
d);

(ii) rd � �(bub
′
u), r′u � �(bdb

′
d), bu � �(rdr

′
d), and b′d � �(rdr

′
d).

We use a segment intersection search structure to identify all red and blue trapezoids that
satisfy Lemma 7.1. To identify pairs that satisfy the first condition of Lemma 7.1, we store
(ru, r

′
d, �(rur

′
u)

∗, �(rdr
′
d)

∗) of all red trapezoids at each level of a segment intersection search struc-
ture, and query with �(bdb

′
d), �(bub

′
u), b∗d and b′∗u of a blue trapezoid, for each level of the structure.

Note that �(rur
′
u)

∗ and �(rdr
′
d)

∗ are the dual points of segments �(rur
′
u) and �(rdr

′
d) respectively.

Likewise, b∗d and b′∗u are the dual lines of points bd and b′u respectively. See Section 2.4.2. Those
that satisfy the second condition of Lemma 7.1 can be found similarly.

There are O(n2) red and blue trapezoids, so we will use the segment search structure with trade-
off. We use O(n8/3) storage, then the preprocessing time is O(n8/3 logδ n), where δ is an arbitrarily
small number. The query time is O(n2/3 logO(1) n + k)—to report k segments intersecting each of
O(n2) query segments. The following theorem summarizes the result.

Theorem 7.2 Given a polygon with n edge patches, all K edge patch quadruples that form an
independent form-closure grasp region for four frictionless point fingers can be computed in time
O(n8/3 logO(1) n + K).

7.2.2 One concave vertex and two edge patches

We wish to report all triples of one concave vertex and two edge patches that form independent
form-closure grasp regions for three frictionless point fingers. Note that two fingers on two edges
induce a line segment on Γ, the endpoints of which are from two vertical segments (two projected
edge wrench patches). A set of two edge patches and a concave vertex forms an independent
form-closure grasp region if and only if the corresponding red (blue) line segment cross blue (red)
trapezoid, i.e. if and only if any blue (red) segment connecting two points from the two vertical
sides intersects the red (blue) segment in the interior. A line segment crosses a trapezoid, if they
have non-empty intersection, and the vertical sides of the trapezoid and the endpoints of the line
segment are disjoint with the intersection. Our problem is thus to report all red and blue line
segment and trapezoid that cross each other.

7.2 Computing all independent form-closure grasp regions of a polygon 83

(a) (b)b r′u
r′dru

rd

b′

b r′u
r′dru

rd b′

Figure 7.4: The cases of a blue line segment crossing a red trapezoid.

Without loss of generality, we take a blue line segment bb′ and a red trapezoid rurdr
′
dr

′
u. As in

the previous section, b is the left endpoint and b′ is the right endpoint. Also ru, rd, r′u and r′d are
defined as in the previous section. The following lemma is a necessary and sufficient condition for
bb′ crossing rurdr

′
dr

′
u. Figure 7.3 illustrates Lemma 7.3.

Lemma 7.3 A blue line segment bb′ crosses a red trapezoid rurdr
′
dr

′
u, if and only if one of the

following holds:

(i) b � �(rur
′
u), b′ � �(rdr

′
d), ru � �(bb′), and r′d � �(bb′);

(ii) b � �(rdr
′
d), b′ � �(rur

′
u), rd � �(bb′), and r′u � �(bb′).

We use a segment intersection search structure to identify the red and blue line segment and
trapezoid that satisfy the two conditions in Lemma 7.3. To identify all pairs that satisfy the first
condition of Lemma 7.3, we store b, b′, �(bb′)∗ and �(bb′)∗ of all blue line segments at each level
of a segment intersection search structure,2 and query with the half planes bounded by �(rur

′
u),

�(rdr
′
d), r∗u and r′∗d of a red trapezoid, for each level of the structure.

There are O(n2) red and blue trapezoids, and O(m) blue and red line segments. We store O(m)
line segments in a segment search structure. The preprocessing time is O(m2 log2 m), and the
query time is O(log4 m + k)—to report k segments intersecting each of O(n2) query trapezoids.
The following theorem summarizes the result.

Theorem 7.4 Given a polygon with m concave vertices and n edge patches, all K combinations
of one concave vertex and two edge patches that form an independent form-closure grasp region
for three frictionless point fingers can be computed in time O(n2 log4 m + K).

7.2.3 Two concave vertices and one edge patch

We wish to report all triples of two concave vertices v and v ′ and one edge patch e that form
independent form-closure grasp regions for three frictionless point fingers. A set (v, v ′, e) forms an
independent form-closure grasp region, if and only if the corresponding red or blue quadrilateral
induced by v and v′ contains the blue or red line segment induced by e. The reason is that two
fingers at v and v′ always induce the points in the convex hull of the two wrench line segments
s(v) and s(v′). If the convex hull of s(v) and s(v′) contains the whole edge wrench patch, no
matter where a finger is placed on e, the corresponding wrench point will be contained in the
quadrilateral, thus result in a red and blue intersection. This is illustrated in Figure 7.3.

Our problem is thus to report all red (blue) quadrilaterals containing blue (red) line segments
(edge wrench patches). We can use two solutions, depending on the relative size of m compared
to n. When m <

√
n, we check all triples of two concave vertices and one edge patch. It takes

O(m2n) time.

2Recall that a segment intersection search structure has four levels.

84 Computing All Independent Form-Closure Grasp Regions of Polygons

(a) (b)s(v2)
ê

s(v1)

s(v2)

s(v1)
ê

Figure 7.5: A red quadrilateral contains a blue vertical line segment.

When m ≥
√

n, we do the following. Without loss of generality, we take a red quadrilat-
eral rurdr

′
dr

′
u, and a blue vertical line segment bb′. There are O(m2) red quadrilaterals and O(n)

blue (vertical) line segments. On O(n) blue segments, we build a two-level triangle search struc-
ture, which is an order 6 tree. We store (b, b, b, b′, b′, b′) at each level. The preprocessing time
is O(n2 log4 n)—see Section 3.1.2. A quadrilateral can be decomposed into two disjoint trian-
gles �1 and �2, by cutting along a diagonal. The endpoints b and b′ can be in �1, or in �2,
or one in �1 and another in �2. Let σ1, σ2 and σ3 be the half planes, such that each of them is
bounded by the supporting line of each boundary segment of �1, and that �1 lies in the half
planes. We also let σ4, σ5 and σ6 be the half planes, such that each of them is bounded by
the supporting line of each boundary segment of �2, and that �2 lies in the half planes. For
each of O(m2) query quadrilaterals, we perform the following four queries: (σ1, σ2, σ3, σ1, σ2, σ3),
(σ4, σ5, σ6, σ4, σ5, σ6), (σ1, σ2, σ3, σ4, σ5, σ6), and (σ4, σ5, σ6, σ1, σ2, σ3). Each query can be per-
formed in O(log6 n+k) time to report k blue segments. We can build the structure on red segments,
and query with blue triangles, in the same way, with the same time bound. The following theorem
summarizes the result.

Theorem 7.5 Given a polygon with m concave vertices and n edge patches, all K combinations
of two concave vertices and one edge patch that form an independent form-closure grasp region
for three frictionless point fingers can be computed in time:

1. O(m2n) time when m <
√

n, and

2. O(n2 log4 n + m2 log6 n + K) = O(n2 log6 n + K) time when m ≥
√

n.

7.3 Computing all independent form-closure grasp regions of a rectilinear
polygon

This section is about reporting all independent form-closure grasp regions of a rectilinear polygon.
More precisely, we propose output-sensitive algorithms to enumerate all sets of: (i) four edge
patches, (ii) one concave vertex and two edge patches, and (iii) two concave vertices and one edge
patch, such that four or three frictionless point fingers on these sets yield a form-closure grasp.

As mentioned in Section 7.1, the edges are divided into edge patches of length ε. We use the
same projection scheme, screen and notations described in Section 3.3. We divide the edge patches
and concave vertices into four families as in Section 3.3. The families of edge patches are E, N ,
W and S, and those of concave vertices are EN , WN , ES and WS. Note that n is the number of
edge patches and m is the number of concave vertices of a rectilinear polygon P .

We use the projection scheme described in Section 2.4.1, and the screen described in Sec-
tion 3.3. The problem of reporting all independent form-closure grasp regions is easier for rectilin-
ear polygons than for arbitrary polygons, because the edge wrench patches and the vertex wrench
sets are more regularly positioned. More precisely, the edge wrench patches on Γ lie on three

7.3 Computing all independent form-closure grasp regions of a rectilinear polygon 85

(a)
Γ1 Γ1

(b) (c)

bu

bd

b′u

b′d
ru

rd

r′u

r′d

ru

rd

r′u

r′d
bu

bd
b′u

b′d

rd1

rda

rdi

r′u1

r′ui

r′ub
...

...

...

...

bu b′d

(1, 0) (1, 0)(0, 1)(0, 1)

Figure 7.6: (a) (b) An illustration of Lemma 7.6. (c) An illustration of the algorithm.

lines: (1, 0), (0, 1) and (−1, 0).3 See Section 3.3 for more details. When we say that two trape-
zoids (or a trapezoid and a line segment) cross each other, it means that they intersect each other,
and the vertical sides of the trapezoid and the endpoints of the line segment are disjoint with the
intersection.

7.3.1 Four edge patches

Four edge patches form an independent form-closure grasp region, if and only if the corresponding
red and blue trapezoids cross each other. The following lemma states a necessary and sufficient
condition.

Lemma 7.6 Two trapezoids rurdr
′
ur

′
d and bubdb

′
ub

′
d cross each other, if and only if one of the fol-

lowing two holds:

(i) rd > bu and r′u < b′d;

(ii) ru < bd and r′d > b′u.

Proof: It is straightforward to see the “if” direction, so we show the “only if” direction. Since
rurdr

′
ur

′
d and bubdb

′
ub

′
d cross each other, any blue segment bb′ intersects any red line segment rr′

in the interior. Because bb′ intersects rr′ in the interior, bb′ and rr′ must satisfy either (1) r > b
and r′ < b′, or (2) r < b and r′ > b′. Note that bd ≤ b ≤ bu, b′d ≤ b′ ≤ b′u, rd ≤ r ≤ ru and
r′d ≤ r′ ≤ r′u. Combining these with the two conditions (1) and (2) gives condition (i) and (ii)
stated in the lemma. �

We use an approach similar to that in Section 3.3. We have O(n) red and blue edge wrench
patches. We build sorted lists of bu, bd, b′u and b′d in O(n logn) time. We also sort ru and rd

from top to bottom, then r ′
u and r′d from bottom to top. See Figure 7.6. Here we show how to

report all quadrilaterals that satisfy the first condition in Lemma 7.1. Let rd1, rd2, · · · , rda and
r′u1, r

′
u2, · · · , r′ub be the sorted lists of rd’s and r′u’s. We take rd1, and identify all blue π(ê) such

that rd > bu in O(logn + k) time, and put them in set A. We take r ′
u1, and identify all blue π(ê)

such that r′u < b′d in O(log n + k) time, and put them in set A′. We report the Cartesian product
A × A′. For a given rd1 we repeat this process for each of r′ui (i = 1, 2, · · · , b). When we go
from r′ui to r′u(i+1), we do not have to perform a binary search in the lists; we check the neighbors
in the list until we find one that satisfies the condition. We repeat the whole process for each of
rdi (i = 1, 2, · · · , b). There are O(n) choices for rdi, and for each of them, the query time takes
O(log n + k), thus the total time complexity is O(n log n + K).

3The lines (1, 0), (0, 1) and (−1, 0) are in fact (1, 0, τ), (0, 1, τ) and (−1, 0, τ) lines, which lie on Γ from the construction of Γ.

86 Computing All Independent Form-Closure Grasp Regions of Polygons

(a)
Γ1 Γ1

(b)

r′

bu

bd

r

bu

bd

b′u

b′d

b′u

b′d

r′

r

(1, 0) (1, 0)(0, 1)(0, 1)

Figure 7.7: An illustration of Lemma 7.8.

Theorem 7.7 All K edge patch quadruples of a rectilinear polygon that form independent form-
closure grasp regions with four frictionless point fingers can be enumerated in O(n log n + K)
time.

7.3.2 One concave vertex and two edge patches

Two edge patches and one concave vertex form an independent form-closure grasp region with
three frictionless point fingers, if and only if the red (blue) trapezoid crosses the blue (red) line
segment. The following lemma states a necessary and sufficient condition for a red line segment
to cross a blue trapezoid. Lemma 7.8 can be easily changed to check whether a blue line segment
crosses a red trapezoid. The proof for Lemma 7.6 can be easily modified to prove Lemma 7.8, so
we omit the proof.

Lemma 7.8 A red line segment rr′ intersects a blue trapezoid bub
′
ub

′
dbd in the interior indepen-

dently, if and only if one of the following two holds:

(i) r ≥ bu and r′ ≤ b′d;

(ii) r ≤ bd and r′ ≥ b′u.

We use the same approach used in the previous section 7.3.1. One difference is that the query
is a red line segment instead of a trapezoid. There are O(n) blue edge wrench patches, and O(m)
red query line segments, so the time complexity for this case is O(n log n + m log n + K) =
O(n log n + K).

Theorem 7.9 All K triples of one concave vertex and two edge patches of a rectilinear polygon
that form independent form-closure grasp regions with three frictionless point fingers can be enu-
merated in O(n logn + K) time.

7.3.3 Two concave vertices and one edge patch

We wish to report all triples of two concave vertices and an edge patch of a rectilinear polygon
that form an independent form-closure grasp region with three frictionless point fingers. Such a
triple of two concave vertices and an edge patch belongs to one of the two cases: when the two
concave vertices induce three different normal directions, and when they induce four different
normal directions. See Section 3.3.4.

We first look at the first case when the vertices induce three different normal directions. We take
the convex hulls of red points and blue points, which form red and blue triangles. Note that the
triangle pairs that we will consider have both of the vertical sides on one of the three lines: (0, 1),
(1, 0) or (0,−1)—see Section 3.3.4. If the projected red and blue triangles cross each other, the

7.3 Computing all independent form-closure grasp regions of a rectilinear polygon 87

(a)
Γ1 Γ1

(b)
b′

r′bu

bd

ru

rd

b′

r′bu

bd

ru

rd

(1, 0) (1, 0)(0, 1)(0, 1)

Figure 7.8: An illustration of Lemma 7.10 on Γ1.

triple forms an independent form-closure grasp region. The following lemma provides a necessary
and sufficient condition for a pair of red and blue triangles to cross each other. The proof for
Lemma 7.6 can be easily modified to prove Lemma 7.10, so we omit the proof.

Lemma 7.10 A blue triangle bb′ub
′
d crosses a red triangle rr′ur

′
d, if and only if one of the following

two holds:

(i) bu ≤ rd and b′ > r′;

(ii) bd ≥ ru and b′ < r′.

Here we describe how we report all pairs of red and blue triangles that satisfy Lemma 7.10.
There are O(n) edge wrench patches and O(m) concave vertex wrench sets. Without loss of
generality, assume that the edge wrench patches are blue. Then there are O(nm) blue triangles and
O(m2) red triangles. We build binary search trees on the upper and lower endpoints (bu and bd) of
the blue edge wrench patches in O(n log n) time. We take all O(m2) vertex wrench set pairs with
three red endpoints ru, rd and r′ (ru and rd on (0, 1) line and rd < ru) and one blue point b′ on (1, 0)
line. For each of these O(m2) vertex wrench set pairs, we find the following: (i) if b′ > r′, find all
blue edge wrench patches bubd, such that bu ≤ rd, (ii) if b′ < r′, find all blue edge wrench patches
bubd, such that bd ≥ ru. All k such blue edge wrench patches can be reported in O(log n+k) time.
Therefore the total time complexity of this case is O(n log n + m2 log n + K). This approach can
easily be modified to search for the pairs of red and blue triangles, whose vertical sides are on the
right. It has the same time complexity—O(n logn + m2 log n + K).

Now we look at the second case when the vertices induce four different normal directions. With-
out loss of generality, we take a triple of two concave vertices and an edge patch (vEN , vWS, eN).
The projections of the edge wrench patch and the vertex wrench sets on Γ1 will be as follows. A
blue endpoint b of π(v̂EN), the blue segment bubd (bd < bu) of π(êN) and a red endpoint r of
π(v̂WS) are on the line (0, 1). The other blue endpoint b′ of π(v̂EN) and the other red endpoint r′ of
π(v̂WS) are on the line (1, 0). If the projected red segment and blue triangle cross each other, the
triple forms an independent form-closure grasp region. The following lemma provides a necessary
and sufficient condition for a pair of red segment and blue triangle to cross each other. Lemma 7.11
can easily be modified to report all blue segment and red triangle that cross each other. Figure 7.9
illustrates Lemma 7.11. The proof for Lemma 7.6 can be easily modified to prove Lemma 7.11, so
we omit the proof.

Lemma 7.11 A red segment rr′ crosses the convex hull of bb′ and bubd, if and only if one of the
following two holds:

(i) b < r and b′ > r′ and bu < r;

(ii) b > r and b′ < r′ and bd > r.

88 Computing All Independent Form-Closure Grasp Regions of Polygons

(a)
Γ1 Γ1

(b)
b′

r′
bu

b

r

b′

r′bu

bd

(1, 0) (1, 0)(0, 1)(0, 1)

rbd

b

Figure 7.9: An illustration of Lemma 7.11.

We describe how we report all pairs of red segment and blue triangle that satisfy Lemma 7.11.
Note that there are O(n) blue vertical segments bubd and O(m) red and blue segments. We build a
two-level orthogonal search tree on the endpoints of blue segments (projected vertex wrench sets)
in O(m log m) time. We also build binary search trees on the upper endpoints (bu) and the lower
endpoints (bd) of all blue (projected) edge wrench patches in O(n log n) time. For each segment
rr′ of all O(m) projected vertex wrench sets, we find the following: (i) find all k1 blue segments
bb′, such that b < r and b′ > r′, and find all k2 blue vertical segments bubd, such that bu < r; (ii)
find all k1 blue segments bb′, such that b > r and b′ < r′, and find all k2 blue vertical segments
bubd, such that bd > r. All reported k1k2 pairs of bubd and bb′ satisfy Lemma 7.11, and they can
be reported in O(log2 m + log n + k1k2) time. Therefore the total time complexity of this case is
O(n log n + m(log2 m + log n) + K) = O(n log2 n + K).

The following summarizes the result.

Theorem 7.12 All K triples of two concave vertices and an edge patch of a rectilinear polygon
that form independent form-closure grasp regions with three frictionless point fingers can be enu-
merated in O(n log2 n + m2 log n + K) time.

7.4 Conclusion

In this chapter, we proposed efficient output-sensitive algorithms to report all combinations of
edge patches and concave vertices that form independent form-closure grasp regions for at most
four frictionless point fingers, involving prespecified edge patches. By projecting the wrench sets,
this becomes red and blue intersection search problem on planes. In particular, the problem for
rectilinear polygons boils down to orthogonal range search problems.

When the edge patches are not given beforehand, one may need to know all combinations of
edge patches and concave vertices, which contain at least one independent form-closure grasp
region. Efficiently reporting such combinations is open.

The approach presented in this chapter can be extended to any planar object, as long as there
are efficient algorithms or query data structures that can report all wrench sets contained in a given
half-plane. A first challenge would be to compute all independent form-closure grasp regions of
a planar semi-algebraic sets. To achieve this, we need an algorithm or a data structure that can
efficiently report all arcs contained in a given half-plane.

Chapter 8

Computing All Form-Closure Grasps of a
Rectilinear Polyhedron

Many researchers provided ways of computing one form-closure grasp or many form-closure
grasps of three-dimensional objects [13, 35, 39, 53, 54, 56, 58, 85, 88, 90]. But, there is no al-
gorithm to enumerate all form-closure grasps of a three-dimensional object efficiently, as in the
case of fixturing a two-dimensional object. This is not surprising, because the problem itself is
more complicated than the two-dimensional fixturing problem; it has high dimensionality—a di-
rected line in a three-dimensional space has six degrees of freedom instead of three.

In this chapter, we propose algorithms to compute all form-closure grasps with at most seven
frictionless point fingers for a rectilinear polyhedron, which is the first attempt to compute all
grasps for a three-dimensional object. We use a form-closure condition in wrench space, which is
similar to Theorem 2.1 for two-dimensional objects. As a matter of fact, there is no easier, intuitive
or graphical form-closure condition expressed in terms of the geometry of the normal lines in
the three-dimensional object space, as far as we know. For this reason, we use the form-closure
condition in wrench space. In this chapter, we propose a form-closure condition which is composed
of two conditions on three-dimensional vectors. Intuitively, this comes from the following view
of fixturing: a three-dimensional object can be immobilized (fixtured) by holding it such that it
cannot move horizontally, and again holding it such that it cannot move vertically. One can see it
as squeezing the object vertically (along z direction), and putting the object in form-closure with
respect to the horizontal plane (parallel to the xy plane)—achieving two-dimensional form-closure
on the projection of the object onto the xy plane. A rectilinear polyhedron is an obvious example
where we can apply the horizontal and vertical immobilization in a straightforward way.

This chapter is structured as follows. We first introduce form-closure conditions in wrench
space and also in two subspaces of wrench space in Section 8.1. We also present notations and
detailed information required by the algorithm such as the shapes of wrenches, projection schemes
and the intersection algorithms that we use. In Section 8.2, we propose algorithms to report all
combinations of faces, concave edges and concave vertices of a rectilinear polyhedron that allow
form-closure grasps with at most seven frictionless point fingers. All algorithms except for one
case presented in this chapter are sensitive to K ′ and K, where K ′ and K are the sizes of the
intermediate output and the final output. The algorithm for the exceptional case is sensitive to K ′

only.

90 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

D

U

E
W

N

S

(a)
py

px

pz

(b)
W

E

U

D
S

N

Figure 8.1: (a) Families of faces E, W , N , S, U and D. (b) The concave edges are in thick line segments, and a big
dot represents a concave vertex, which is from WND here.

8.1 Preliminaries

Here we introduce the notations, conditions, and other information that we need in this chapter. We
divide the faces, concave edges and concave vertices into some families according to their normal
directions. In Section 8.1.1, we introduce these families. We also define the wrench sets of faces,
concave edges and concave vertices, and their h and ν components. In Section 8.1.2, we present
two form-closure conditions: one in six-dimensional wrench space, and the other in two subspaces
of wrench space. One can check whether a given set of faces, concave edges and concave vertices
achieve form-closure by solving two three-dimensional problems. If we project three-dimensional
vectors on a plane, the three-dimensional subproblems turn out to be two-dimensional intersection
problems, as described in the previous chapters, e.g. Chapter 3. The projection scheme is presented
in this section as well. In Section 8.1.3, we discuss the algorithms to tackle intersection search
problems.

8.1.1 Families of faces, concave edges and concave vertices

Let P be a rectilinear polyhedron with n faces. We triangulate the faces of P , and each triangle of
the O(n) triangulated faces will be considered as a face. We place P in an xyz coordinate system,
such that the origin lies in the interior of P . In Section 3.3, we divided the faces of a rectilinear
polygon into four families according to the normal directions, namely, E, W , N and S. For a
rectilinear polyhedron, we divide the faces into six families according to the normal directions,
namely, E, W , N , S, U and D. The faces from E, W , N and S are vertical (i.e. perpendicular to
the xy plane), and those from U and D are horizontal (i.e. parallel to the xy plane). For simplicity,
we normalize the normal direction vector η of faces—η has a unit length.

According to which faces a concave edge is adjacent to, the concave edges are divided into
twelve families, namely, EN , ES, WN , WS, EU , WU , NU , SU , ED, WD, ND and SD.
If a concave edge is adjacent to two faces from E and N , it belongs to family EN . Figure 8.1
shows concave edges from ND, WD and WN . Likewise, the concave vertices belong to one of
the following eight families, according to which faces they are adjacent to: ENU , ESU , WNU ,
WSU , END, ESD, WND and WSD. If a concave vertex is adjacent to three faces from W , N
and D, it belongs to family WND. Figure 8.1 shows a concave vertex from WND.

When a finger pushes an object on a face, force is applied along the inward normal line, which
we call line of force. This force makes the object translate and/or rotate, depending on where the
line of force is. A line of force plays a key role to describe the instantaneous motion that the force
causes. A wrench is a six-dimensional description of a directed line in three-dimensional space,
and it is defined as (η, p × η), where η is a direction vector, and p is the position vector of a point

8.1 Preliminaries 91

(a) (b)

ηy

ηx

τz

τx

τy

ηz

1

−1

(1, 0, τz)T

(0, 1, τz)T

(−1, 0, τz)T(0,−1, τz)T

NE

W

S

U

D
f̂h

U and f̂h
D

W
S

E

N

Figure 8.2: (a) f̂h’s and (b) f̂ν’s from each family, when the position vectors have positive numbers only.

on the line. The magnitude of a wrench (η, p × η)T represents the magnitude of force. As one
can see, a directed line has a set of wrench vectors.1 We normalize the direction vector η, i.e. the
directed line can be represented as a unique wrench point in this chapter. However, to satisfy the
form closure condition, only the direction of the wrench matters, not the magnitude.2

We place a finger at position p = (px, py, pz)
T on a face, with the inward normal direction η.

The inward normal line can be represented as a wrench point (η, p× η)T = (ηx, ηy, ηz, τx, τy, τz)
T .

Let f̂ be the set of wrench points of a finger when it moves in the interior of a face f . More
precisely,

f̂ = {(η, τ)T} = {(η, p × η)T | p ∈ int(f)},

where int(f) denotes the set of interior points of f . We call f̂ the face wrench set of f . Let f̂E,
f̂W , f̂N , f̂S , f̂U , f̂D be the wrench sets of a finger on faces from E, W , N , S, U and D respectively.
When a finger moves on faces from E and W , only px is fixed. Similarly, when a finger moves on
faces from N and S, only py is fixed, and on those from U and D, only pz is fixed. Throughout this
chapter, let (pxe, pye, pze)

T , (pxw, pyw, pzw)T , (pxn, pyn, pzn)T , (pxs, pys, pzs)
T , (pxu, pyu, pzu)

T and
(pxd, pyd, pzd)

T be the position of an interior point of faces fE ∈ E, fW ∈ W , fN ∈ N , fS ∈ S,
fU ∈ U and fD ∈ D, respectively. The following shows the face wrench set from each family.

f̂E = {(1, 0, 0, 0, pze,−pye)
T | pye and pze are variables in f ∈ E},

f̂W = {(−1, 0, 0, 0,−pzw, pyw)T | pyw and pzw are variables in f ∈ W},

f̂N = {(0, 1, 0,−pzn, 0, pxn)T | pxn and pzn are variables in f ∈ N},

f̂S = {(0,−1, 0, pzs, 0,−pxs)
T | pxs and pzs are variables in f ∈ S},

f̂U = {(0, 0, 1, pyu,−pxu, 0)T | pxu and pyu are variables in f ∈ U},

f̂D = {(0, 0,−1,−pyd, pxd, 0)T | pxd and pyd are variables in f ∈ D}.
We define η, h and ν components to be (ηx, ηy, ηz)

T , (ηx, ηy, τz)
T and (ηz, τx, τy)

T , respectively.
We let f̂h, êh and v̂h be the h components, and f̂ ν , êν and v̂ν be the ν components of f̂ , ê and v̂

respectively. Observe that f̂h describes the projection of the normal line of a face f on the xy

plane. More precisely, f̂h = (ηx, ηy, (px, py)
T × (ηx, ηy)

T)T . The remaining components make f̂ ν.
We call the spaces of η, h and ν of all wrenches N , H and V spaces.

1Note that η’s with different lengths correspond to different wrench points.
2This is for the same reason for the form closure of a planar object, explained in Section 2.4.1. It will be further explained in Section 8.1.2.

92 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

We first look at the shapes of f̂h and f̂ ν from each family. We place the plane ηxηy horizontally
in H space, and the plane τxτy horizontally in V space. In H space, f̂h

E , f̂h
W , f̂h

N and f̂h
S are vertical

line segments parallel to τz axis; as a finger moves in the interior of a face, (ηx, ηy)
T remains

the same, but τz changes. Moreover, they lie on the lines (1, 0, τz)
T , (−1, 0, τz)

T , (0, 1, τz)
T , and

(0,−1, τz)
T , where the line (1, 0, τz)

T is defined as {(1, 0, 0)T + λ(0, 0, 1)T | λ ∈ R}, the line
(−1, 0, τz)

T as {(−1, 0, 0)T +λ(0, 0, 1)T | λ ∈ R}, the line (0, 1, τz)
T as {(0, 1, 0)T +λ(0, 0, 1)T |

λ ∈ R}, and the line (0,−1, τz)
T as {(0,−1, 0)T + λ(0, 0, 1)T | λ ∈ R}. The h components

f̂h
U and f̂h

D lie at the origin of H space, because the inward normal directions have zeros for ηx

and ηy, which makes τz also zero. See Figure 8.2 (a). The ν components f̂ ν
E and f̂ ν

W are of the
form {(0, 0, 0)T + pz(0, 0,±1)T | pz is in an interval of R}; they are line segments on τy axis. The
ν components f̂ ν

N and f̂ ν
S are of the form {(0, 0, 0)T + pz(0,∓1, 0)T | pz is in an interval of R};

they are line segments on τx axis. The ν components f̂ ν
U and f̂ ν

D are of the form (±1,±py,∓px)
T ;

they are the faces of the polyhedron, rotated by 90 degrees, and placed on the planes ηz = 1 and
ηz = −1 respectively. See Figure 8.2 (b). The followings are formal expressions of f̂h and f̂ ν

from each family.
f̂h

E = {(1, 0,−pye)
T | pye is a variable in f ∈ E},

f̂h
W = {(−1, 0, pyw)T | pyw is a variable in f ∈ W},

f̂h
N = {(0, 1, pxn)

T | pxn is a variable in f ∈ N},

f̂h
S = {(0,−1,−pxs)

T | pxs is a variable in f ∈ S},

f̂h
U = (0, 0, 0)T ,

f̂h
D = (0, 0, 0)T .

f̂ ν
E = {(0, 0, pze)

T | pze is a variable in f ∈ E},

f̂ ν
W = {(0, 0,−pzw)T | pzw is a variable in f ∈ W},

f̂ ν
N = {(0,−pzn, 0)T | pzn is a variable in f ∈ N},

f̂ ν
S = {(0, pzs, 0)T | pzs is a variable in f ∈ S},

f̂ ν
U = {(1, pyu,−pxu)

T | pxu and pyu are variables in f ∈ U},

f̂ ν
D = {(−1,−pyd, pxd)

T | pxd and pyd are variables in f ∈ D}.
We define ê to be the set of wrench points of a finger when it moves in the interior of a concave

edge e. We call ê the edge wrench set of e. Let η′ and η′′ be the normal directions of the faces
incident to edge e, and let int(e) denote the interior points of e. Then ê is defined as follows.3

ê = {(η, pe × η)T | pe ∈ int(e), η = κ1η
′ + κ2η

′′, 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}

The h and ν components êh and êν are similarly defined as f̂h and f̂ ν . Before we define ê, êh

and êν more formally, we need to introduce notations for the points on the boundary of ê. Without
loss of generality, we take a concave edge eEN from EN . A finger at position p on eEN induces a
set of lines of force, which is bounded by two face normals of the two incident faces from E and
N . The wrench set induced by the finger at p is also bounded by two wrench points. We let êEN,E

3Note that η’s in ê are not unit vectors, when η �= η′ and η �= η′′ . But this does not matter, because only the direction matters, not the
magnitude, to check whether a given set of wrench vectors positively spans wrench space. We chose these sets because it is easier to handle when
the vectors are on the line segment connecting η′ and η′′ than when they are on a curve between η′ and η′′.

8.1 Preliminaries 93

and êEN,N denote the sets of boundary points of êEN , such that they correspond to the normals of
the incident faces from E and from N respectively, for all position p in the interior of eEN . We
call êEN,E and êEN,N the boundary sets of eEN . The following shows formal definition of êEN,E

and êEN,N for êEN , and the corresponding sets for êSU and êWD. Those from other families are
defined similarly.

êEN,E = {(ηE , pe × ηE)T | ηE = (1, 0, 0)T , pe ∈ int(eEN)}
= {(1, 0, 0, 0, pz,−py)

T | pe = (px, py, pz)
T ∈ int(eEN)}

êEN,N = {(ηN , pe × ηN)T | ηN = (0, 1, 0)T , pe ∈ int(eEN)}
= {(0, 1, 0,−pz, 0, px)

T | pe = (px, py, pz)
T ∈ int(eEN)}

êWD,W = {(ηW , pe × ηW)T | ηW = (−1, 0, 0)T , pe ∈ int(eWD)}
= {(−1, 0, 0, 0,−pz, py)

T | pe = (px, py, pz)
T ∈ int(eWD)}

êWD,D = {(ηD, pe × ηD)T | ηD = (0, 0,−1)T , pe ∈ int(eWD)}
= {(0, 0,−1,−py, px, 0)T | pe = (px, py, pz)

T ∈ int(eWD)}
êSU,S = {(ηS, pe × ηS)T | ηS = (0,−1, 0)T , pe ∈ int(eSU)}

= {(0,−1, 0, pz, 0,−px)
T | pe = (px, py, pz)

T ∈ int(eSU)}
êSU,U = {(ηU , pe × ηU)T | ηU = (0, 0, 1)T , pe ∈ int(eSU)}

= {(0, 0, 1, py,−px, 0)T | pe = (px, py, pz)
T ∈ int(eSU)}

The h and ν components êh
EN,E, êh

EN,N , êν
EN,E, êν

EN,N , êν
WU,W , êν

WU,U , êν
SD,S and êν

SD,D are
defined as follows. Those for the other families can also be defined similarly.

êh
EN,E = {(1, 0,−py)

T | pe = (px, py, pz)
T ∈ int(eEN)}

êh
EN,N = {(0, 1, px)

T | pe = (px, py, pz)
T ∈ int(eEN)}

êh
WU,W = {(−1, 0, py)

T | pe = (px, py, pz)
T ∈ int(eWU)}

êh
WU,U = {(0, 0, 0)T | pe = (px, py, pz)

T ∈ int(eWU)}

êh
SD,S = {(0,−1,−px)

T | pe = (px, py, pz)
T ∈ int(eSD)}

êh
SD,D = {(0, 0, 0)T | pe = (px, py, pz)

T ∈ int(eSD)}

êν
EN,E = {(0, 0, pz)

T | pe = (px, py, pz)
T ∈ int(eEN)}

êν
EN,N = {(0,−pz, 0)T | pe = (px, py, pz)

T ∈ int(eEN)}

êν
WU,W = {(0, 0,−pz)

T | pe = (px, py, pz)
T ∈ int(eWU)}

êν
WU,U = {(1, py,−px)

T | pe = (px, py, pz)
T ∈ int(eWU)}

êν
SD,S = {(0, pzs, 0)T | pe = (px, py, pz)

T ∈ int(eSD)}

êν
SD,D = {(−1,−py, px)

T | pe = (px, py, pz)
T ∈ int(eSD)}

The edge wrench set ê of e from each family can now be reformulated with the boundary sets
as follows.

êEN = {κ1wE + κ2wN | wE ∈ êEN,E, wN ∈ êEN,N , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(κ1, κ2, 0,−κ2pz, κ1pz,−κ1py + κ2px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eEN)}

94 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

êWN = {κ1wW + κ2wN | wW ∈ êWN,W , wN ∈ êWN,N , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(−κ1, κ2, 0,−κ2pz,−κ1pz, κ1py + κ2px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eWN)}

êES = {κ1wE + κ2wS | wE ∈ êES,E, wS ∈ êES,S, 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(κ1,−κ2, 0, κ2pz, κ1pz,−κ1py − κ2px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eES)}

êWS = {κ1wW + κ2wS | wW ∈ êWS,W , wS ∈ êWS,S, 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(−κ1,−κ2, 0, κ2pz,−κ1pz, κ1py − κ2px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eWS)}

êEU = {κ1wE + κ2wU | wE ∈ êEU,E, wU ∈ êEU,U , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(κ1, 0, κ2, κ2py, κ1pz − κ2px,−κ1py)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eEU)}

êWU = {κ1wW + κ2wU | wW ∈ êWU,W , wU ∈ êWU,U , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(−κ1, 0, κ2, κ2py,−κ1pz − κ2px, κ1py)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eWU)}

êNU = {κ1wN + κ2wU | wN ∈ êNU,N , wU ∈ êNU,U , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(0, κ1, κ2,−κ1pz + κ2py,−κ2px, κ1px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eNU)}

êSU = {κ1wS + κ2wU | wS ∈ êSU,S, wU ∈ êSU,U , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(0,−κ1, κ2, κ1pz + κ2py,−κ2px,−κ1px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eSU)}

êED = {κ1wE + κ2wD | wE ∈ êED,E, wD ∈ êED,D, 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(κ1, 0,−κ2,−κ2py, κ1pz + κ2px,−κ1py)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eED)}

êWD = {κ1wW + κ2wD | wW ∈ êWD,W , wD ∈ êWD,D, 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(−κ1, 0,−κ2,−κ2py,−κ1pz + κ2px, κ1py)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eWD)}

êND = {κ1wN + κ2wD | wN ∈ êND,N , wD ∈ êND,D, 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(0, κ1,−κ2,−κ1pz − κ2py, κ2px, κ1px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eND)}

êSD = {κ1wS + κ2wD | wS ∈ êSD,S, wD ∈ êSD,D, 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(0,−κ1,−κ2, κ1pz − κ2py, κ2px,−κ1px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1,
pe = (px, py, pz)

T ∈ int(eSD)}

The h and ν components êh and êν of an edge e can be reformulated with the h and ν compo-
nents of the boundary sets as follows. Here we reformulate only êh

EN , êh
EU , êν

EN and êν
EU . Those

from other families can be reformulatd similarly.

êh
EN = {κ1hE + κ2hN | hE ∈ êh

EN,E, hN ∈ êh
EN,N , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}

= {(κ1, κ2,−κ1py + κ2px)
T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1, pe = (px, py, pz)

T ∈ int(eEN)}

êh
EU = {κ1hE + κ2hU | hE ∈ êh

EU,E, hU ∈ êh
EU,U , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}

= {(κ1, 0,−κ1py)
T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1, pe = (px, py, pz)

T ∈ int(eEU)}

8.1 Preliminaries 95

(a) (c)

ηy

ηx

τz
(b)

ηy

ηx

τz

êh
SU and êh

SD

ηy
ηx

τz

êh
WU and êh

WD

êh
EU and êh

ED

êh
WN

êh
EN

êh
NU and êh

ND

êh
WS

êh
ES

Figure 8.3: The shapes of êh from each family.

êν
EN = {κ1νE + κ2νN | νE ∈ êν

EN,E, νN ∈ êν
EN,N , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}

= {(0,−κ2pz, κ1pz)
T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1, pe = (px, py, pz)

T ∈ int(eEN)}
êν

EU = {κ1νE + κ2νU | νE ∈ êν
EU,E, νU ∈ êν

EU,U , 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1}
= {(κ2, κ2py, κ1pz − κ2px)

T | 0 ≤ κ1, κ2 ≤ 1, κ1 + κ2 = 1, pe = (px, py, pz)
T ∈ int(eEU)}

The shape of êh from each family is as follows. The sets êh
EN , êh

WN , êh
ES and êh

WS are line
segments with one endpoint lying on the lines (±1, 0, τz)

T , and the other endpoint on the lines
(0,±1, τz)

T . The sets êh
EU , êh

WU , êh
NU , êh

SU , êh
ED, êh

WD, êh
ND and êh

SD are triangles that are incident
to the origin in H space, because f̂h

U and f̂h
D are (0, 0, 0)T . In fact, êh

EU , êh
ED are triangles formed

by the origin of H space and a line segment on the line (1, 0, τz)
T . The sets êh

WU and êh
WD are

triangles formed by the origin of H space and a line segment on the line (−1, 0, τz)
T . The sets êh

NU

and êh
ND are triangles formed by the origin and a line segment on the line (0, 1, τz)

T , and those of
êh

SU and êh
SD are also triangles formed by the origin and a line segment on the line (0,−1, τz)

T .
The endpoints of êh

EN , êh
WN , êh

ES and êh
WS are on the lines (1, 0, τz)

T (for E), (−1, 0, τz)
T (for W),

(0, 1, τz)
T (for N) and (0,−1, τz)

T (for S). Figure 8.3 shows an edge wrench set from each family,
when all position vectors have positive numbers only. Their shapes do not change much even when
the position vectors have negative numbers as well as positive ones.

Now we define v̂ to be the set of wrench points of a finger at a concave vertex v. We call v̂ the
vertex wrench set of v. Notice that a concave vertex is always incident to three faces: one from U
or D, one from N or S, and one from E or W . Let η1, η2 and η3 be the normal directions of the
three incident faces of v, and let pv be the position vector of v. Then v̂ is defined as follows.4:

v̂ = {(η, pv × η)T | η = µ1η1 + µ2η2 + µ3η3, 0 ≤ µ1, µ2, µ3 ≤ 1, µ1 + µ2 + µ3 = 1}.
As in the case of edge wrench sets, we can reformulate vertex wrench sets in terms of the boundary
sets. Without loss of generality, we take a concave vertex vENN from ENU . A finger at vENU

induces a set of lines of force, which forms the convex hull of the three face normals of E, N and
U . The convex hull of the wrench points for these three face normals is the wrench set induced by
the finger at vENU . We let v̂ENU,E, v̂ENU,N and v̂ENU,U denote the wrench points for these three
face normals, and call them the boundary vertices of v̂ENU . The following shows formal definitions
of the boundary vertices, and their h and ν components for v̂ENU . Those from other families are
defined similarly.

v̂ENU,E = {(ηE, pe × ηE)T | ηE = (1, 0, 0)T , pv at vENU}
= {(1, 0, 0, 0, pz,−py)

T | pv = (px, py, pz)
T}

4As in the case of edge wrench set, η’s in v̂ are not unit vectors, when η �= η1, η �= η2 and η �= η3. This does not matter, because only the
direction matters, not the magnitude, to check whether a given set of wrench vectors positively spans wrench space. We chose these sets because it
is easier to handle when the vectors are in the convex hull of ηi’s (

�
i µi = 1) than when they are in a curved surface between ηi’s (

�
i µ2

i = 1).

96 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

ηy

ηx

τz

v̂h
ENU and v̂h

END

v̂h
WSU and v̂h

WSD

ηy

ηx

τz

v̂h
WNU and v̂h

WND

v̂h
ESU and v̂h

ESD

Figure 8.4: The shapes of v̂h from each family, when the position vectors have positive numbers only.

v̂ENU,N = {(ηN , pe × ηN)T | ηN = (0, 1, 0)T , pv at vENU}
= {(0, 1, 0,−pz, 0, px)

T | pv = (px, py, pz)
T}

v̂ENU,U = {(ηU , pe × ηU)T | ηU = (0, 0, 1)T , pv at vENU}
= {(0, 0, 1, py,−px, 0)T | pv = (px, py, pz)

T}

v̂h
ENU,E = {(1, 0,−py)

T | pv = (px, py, pz)
T}

v̂h
ENU,N = {(0, 1, px)

T | pv = (px, py, pz)
T}

v̂h
ENU,U = {(0, 0, 0)T | pv = (px, py, pz)

T}}

v̂ν
ENU,E = {(0, 0, pz)

T | pv = (px, py, pz)
T}

v̂ν
ENU,N = {(0,−pz, 0)T | pv = (px, py, pz)

T}

v̂ν
ENU,U = {(1, py,−px)

T | pv = (px, py, pz)
T}}

The sets v̂ENU , v̂h
ENU and v̂ν

ENU can be reformulated with the boundary sets as follows. Those
from other families can be reformulated similarly.

v̂ENU = {µ1wE + µ2wN + µ3wU | wE = v̂ENU,E, wN = v̂ENU,N , wU = v̂ENU,U ,
0 ≤ µ1, µ2, µ3 ≤ 1, µ1 + µ2 + µ3 = 1}

= {(µ1, µ2, µ3,−µ2pz + µ3py, µ1pz − µ3px,−µ1py + µ2px)
T |

0 ≤ µ1, µ2, µ3 ≤ 1, µ1 + µ2 + µ3 = 1, pv = (px, py, pz)
T}

v̂h
ENU = {µ1hE + µ2hN + µ3hU | hE = v̂h

ENU,E, hN = v̂h
ENU,NhU = v̂h

ENU,U ,
0 ≤ µ1, µ2, µ3 ≤ 1, µ1 + µ2 + µ3 = 1}

= {(µ1, µ2,−µ1py + µ2px)
T |

0 ≤ µ1, µ2, µ3 ≤ 1, µ1 + µ2 + µ3 = 1, pv = (px, py, pz)
T}

v̂ν
ENU = {µ1νE + µ2νN + µ3νU | νE = v̂ν

ENU,E, νN = v̂ν
ENU,N , νU = v̂ν

ENU,U ,
0 ≤ µ1, µ2, µ3 ≤ 1, µ1 + µ2 + µ3 = 1}

= {(µ3,−µ2pz + µ3py, µ1pz − µ3px)
T |

0 ≤ µ1, µ2, µ3 ≤ 1, µ1 + µ2 + µ3 = 1, pv = (px, py, pz)
T}

Observe that v̂h
ENU forms a triangle in H space. Since v̂h

ENU,U is (0, 0, 0)T , a vertex of the
triangle is the origin in H space. Moreover, another vertex v̂h

ENU,E is on the line (1, 0, τz)
T , and the

third vertex v̂h
ENU,N is on the line (0, 1, τz)

T . Those from other families are similar. See Figure 8.4.

8.1 Preliminaries 97

8.1.2 The form closure condition and the projection scheme

The following theorem states a condition for a three-dimensional object to be in form closure,
which is analogous to Theorem 2.1.

Theorem 8.1 Given a set of κ (≥ 7) wrenches w1, w2, · · · , wκ on a three-dimensional object P ,
the following three conditions are equivalent:

(i) P is in form closure.

(ii) Any wrench wF can be written as −wF = λ1w1 + · · · + λκwκ, with λi ≥ 0.

(iii) The origin O lies in the interior of the convex hull of w1, w2, · · · , wκ.

Theorem 8.1 basically states that P is in form closure if and only if the κ wrenches positively
span wrench space. If we let wF be a zero vector, Theorem 8.1 (ii) becomes an algebraic formula-
tion of Theorem 8.1 (iii). In particular, when κ = 7, all λi’s must be positive to make a zero vector,
i.e.

∑7
i=1 λiwi = �0 for λi > 0. Hence Theorem 8.1 (ii) and (iii) are algebraic and geometric

formulations that the κ wrench vectors positively span six-dimensional wrench space. This is why
κ is at least seven—the dimension plus one. Since a wrench is a six-dimensional description of
a directed line in three-dimensional space, Theorem 8.1 (ii) and (iii) imply that any directed line
in three-dimensional space can be represented by a linear combination of a given set of directed
lines, whose wrenches positively span wrench space. The following lemma is another algebraic
formulation of

∑7
i=1 λiwi = �0 (λi > 0) for a rectilinear polyhedron. This is for the case of seven

fingers, two of which lie on a face either from U or D. This lemma can be applied to the other
cases when two fingers lie on a face from E, W N or S as well; rotate the polyhedron such that
these families become U or D.

Lemma 8.2 Given a set of seven wrenches w1, · · · , w7 of a rectilinear polyhedron P , let w1, w2,
w3 and w4 be the wrenches for vertical faces (from E, W , N and S), and w5, w6, w7 be those
for horizontal faces (from U and D). Let hi and νi be the h and the ν components of wi. Then
the seven wrenches w1, · · · , w7 achieve form closure if and only if they satisfy the following two
conditions:

1. there exist αi > 0 such that
∑4

i=1 αihi = �0, and

2. there exist βi > 0 such that
∑4

i=1 αiνi +
∑7

i=5 βiνi = �0.

Proof: Since hi �= �0 (i = 1, 2, 3, 4), there exist αi > 0 such that
∑4

i=1 αihi = �0. There also exist
βi > 0 such that

∑4
i=1 αiνi +

∑7
i=5 βiνi = �0. Since h5 = h6 = h7 = �0, it is straightforward to see

that there exist λi > 0 such that
∑7

i=1 λiwi = �0. (Set λi = αi for i = 1, 2, 3, 4, and λi = βi for
i = 5, 6, 7). �

The conditions in Lemma 8.2 can be verified by projecting the vectors on some screens. We
define the screens Γh in H space and Γν in V space as follows.

Γh := Γh1 ∪ Γh2 = {(ηx, ηy, τz)
T | ηx + ηy − 1 = 0,−1 − ε < ηx < 1 + ε, τz ∈ R}

∪ {(ηx, ηy, τz)
T | ηx − ηy − 1 = 0,−1 − ε < ηx < 1 + ε, τz ∈ R}

Γν := Γν1 ∪ Γν2 = {(ηz, τx, τy)
T | τx + τy − 1 = 0, ηz ∈ R}

∪ {(ηz, τx, τy)
T | τx − τy − 1 = 0, ηz ∈ R}

In the definition of Γh, ε is an arbitrarily small positive number. Figure 8.5 shows a top view
of Γh and Γν . The planes of Γh are extended by ε so that the lines (1, 0, τz)

T and (0, 1, τz)
T are

98 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

ηx

ηy

1

−1

1

Γh1

Γh2

τx

Γν1

Γν2

τy

O

1

−1

1

Figure 8.5: A top view of the screens Γh and Γν .

completely contained in Γh1, and the lines (1, 0, τz)
T and (0,−1, τz)

T are completely contained in
Γh2.

Remember that we place the planes ηxηy and τxτy horizontally in H and V space respectively.
The intersections of Γh and τz = 0, and Γν and ηz = 0 are horizontal lines on Γh and Γν ; we call
them τz = 0 line and ηz = 0 line respectively. We let (0, 1), (1, 0) and (0,−1) lines on Γh denote
the lines (0, 1, τz)

T , (1, 0, τz)
T and (0,−1, τz)

T on Γh respectively. Likewise, we let (0, 1), (1, 0)
and (0,−1) lines on Γν denote the lines (ηz, 0, 1)T , (ηz, 1, 0)T and (ηz, 0,−1)T on Γν respectively.

The projection scheme is the same as in Chapter 3. We project a vector ω �= O onto a plane Γ
as follows5 : Consider the line � through ω and the origin O, and let π(ω) := �∩Γ. The origin does
not have any projection on Γ in our projection scheme. A non-vertical line intersecting a plane has
two cases: (i) O lies between ω and π(ω), and (ii) O lies on the left or on the right of ω and π(ω) on
�. To visually distinguish these two kinds of projections, we color π(ω) red when O lies between
ω and π(ω), and we color π(ω) blue when O lies on the left or on the right of ω and π(ω) on �.

To check whether a given set of vectors positively span three-dimensional space, we use the
following lemma.6

Lemma 8.3 Given a set of κ (≥ 4) vectors in R
3 ω1, ω2, · · · , ωκ, the convex hull of ω1, ω2, · · · , ωκ

contains the origin in the interior, if and only if the (blue) convex hull of the blue π(ω i) intersects
the (red) convex hull of the red π(ωj) in the interior on the screen.

Proof: Without loss of generality, let the projections of ω1, · · · , ωj be blue, and let the projections
of ωj+1, · · · , ωκ be red. We show the “if” direction first. Let p1 and p2 be the red and blue points
in the interior of the red and blue intersection region. From the construction, p1 = −µp2 for
µ > 0, and the interior points p1 and p2 can be represented as follows: p1 =

∑j
i=1 λiωi and

p2 =
∑κ

i=(j+1) λiωi, where λi ≥ 0. Observe that there are at least four non-zero λi’s, because p1

and p2 are in the interior of the red and blue intersection region, and we need at least four points to
have p1 and p2 in the interior of the red convex hull and the blue convex hull. When we combine
these three equations, we get

∑κ
i=1 λiωi = �0, where λi ≥ 0 and at least four λi’s are non-zero.

(When κ = 4, all λi’s are positive.) This means that the convex hull of the κ vectors contains the
origin, according to Theorem 8.1.

The “only if” direction: From the assumption, there exist λi ≥ 0 such that there are at least
four non-zero λi’s, and

∑j
i=1 λiωi = −

∑κ
i=j+1 λiωi. Observe that

∑j
i=1 λiωi is in the convex

hull of j points ω1, · · · , ωj, and
∑κ

i=j+1 λiωi is in the convex hull of ωj+1, · · · , ωκ. The equation∑j
i=1 λiωi = −

∑κ
i=j+1 λiωi implies that their projections coincides on the plane, and their colors

differ because the origin lies between the two points
∑j

i=1 λiωi and
∑κ

i=j+1 λiωi. �

5This projection scheme is to find a set of points whose convex hull contains the origin in the interior. It is thus meaningless that the origin is in
the point set. This justifies that we do not define the projection of the origin.

6This is another formulation of Lemma 2.7.

8.1 Preliminaries 99

(a)

(b)

ηx

ηy

Γν1

Γh1

ηz

τx

τy

ηx

τz

ηy

Γh1

τz (1, 0) line

(0, 1) line (0, 1) line

(1, 0) line

Γν1

ηz

τx

τy

(1, 0) line

(0, 1) line (0, 1) line

(1, 0) line

ηz = 0 line

τz = 0 line τz = 0 line

ηz = 0 line
Γν1

Figure 8.6: (a) The projections of f̂h and (b) f̂ν from each family.

(1, 0)

Γh1π(êh
WD) and π(êh

WU)

π(êh
ED) and π(êh

EU)

(0, 1) (1, 0)

π(êh
SE)

π(êh
NW)

(0, 1)

Γh1

π(êh
ND) and π(êh

NU)

π(êh
SD) and π(êh

SU)
Γh1(a) (c)(b)

Figure 8.7: The projections of êh from each family.

Let us describe the shapes of π(f̂h), π(êh) and π(v̂h) on Γh, and π(f̂ ν) on Γν . The shapes of
f̂h

E , f̂h
W , f̂h

N and f̂h
S are vertical line segments in H space, thus the projections are also vertical line

segments on Γh. Note that π(f̂h
U) and π(f̂h

D) do not appear on Γh, because they are at the origin in
H space. (The projection of the origin is not defined.) The sets f̂ ν

E , f̂ ν
W , f̂ ν

N and f̂ ν
S are line segments

on τx and τy axes, thus their projections are points on Γν . More precisely, they are (0, 1, 0)T (from
N and S), or (0, 0,±1) (from E and W). The projections of f̂ ν

U and f̂ ν
D are triangles on Γν . See

Figure 8.6.

The shapes of êh
EU , êh

WU , êh
NU , êh

SU , êh
ED, êh

WD, êh
ND and êh

SD are triangles with the origin as one
of their vertices, and the other two on (±1, 0, τz)

T line and on (0,±1, τz)
T line. The projections

of these triangles are vertical line segments on Γh, especially on (1, 0) line and (0,±1) line. See
Figure 8.7 (a) and (b). The h components êh

EN , êh
WN , êh

ES and êh
WS are line segments whose

endpoints lie on the lines (±1, 0, τz)
T and (0,±1, τz)

T , so their projections are line segments whose
endpoints lie on (1, 0) and (0,±1) lines on Γh. See Figure 8.7 (c).

Remember that v̂h is also a triangle in H space with the origin as a vertex, and with the other
two vertices on the lines (±1, 0, τz)

T or (0,±1, τz)
T . Thus the projection is a line segment one

endpoint of which is on (1, 0) line, and the other endpoint of which is on (0,±1) line on Γν . See
Figure 8.8.

100 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

(0, 1) (1, 0)

Γh1

τz = 0

(1, 0) (0,−1)

Γh2

τz = 0

Figure 8.8: The projections of v̂h from each family.

8.1.3 Intersection search algorithms

To compute all red and blue intersections, we use the following data structures: segment intersec-
tion search structure, triangle search structure and half-plane search structure. Section 2.4.2 has
more detailed explanations about segment intersection search structure and triangle search struc-
ture. Throughout this chapter, we let k denote the output size of one query, and let K denote the
total output size.

Sometimes, we wish to report points in a half plane or in the intersection region of two half
planes. To report points in a half plane, we use the half-plane search structure by Chazel et al. [19].
The building time of the structure on q points is O(q log q), and the query time is O(log q + k).

To report points in the intersection region of two half planes, we use an order 2 tree. This stores
q points in an order 2 tree in O(q2) time7, as explained in Section 2.4.2: each point is stored twice,
one in the first level, another in the second level. We query the tree with one half plane on one
level, and with the other half plane on the other level, in O(log2 q + k) time.

8.2 Computing all form-closure grasps of a rectilinear polyhedron

This section proposes algorithms to report all combinations of faces, concave edges and concave
vertices of P that allow form-closure grasps with at most seven frictionless point fingers. We let
Atotal denote all such sets. Let C denote the combination of faces, concave edges and concave
vertices that we consider. The combination C in Section 8.2.1 is seven faces. In Section 8.2.2, C
is a combination of faces and concave edges; more precisely, we consider one edge and five faces,
two edges and three faces, and three edges and one face. In Section 8.2.3, C is a combination
of faces and concave vertices; more precisely, we consider one vertex and four faces, and two
vertices and one face. In Section 8.2.2, C is one vertex, one edge and two faces. Note that each
of these combinations involves seven face normals; seven is necessary to span six-dimensional
wrench space positively, thus to achieve form-closure of a three-dimensional object.

Each of the algorithms proposed in the following sections reports a subset A of Atotal, such
that each of A involves two face normals of a family of U or D. In other words, each set of A of
combination C has a form-closure grasp, and it involves two face normals of a family of U or D.
The reason is that the algorithms are based on Lemma 8.2, which imposes the additional condition
about two face normals of a family of U or D. Note that the face normals can be induced by the
fingers on edges or at vertices.

We can report Atotal by reporting A of a polyhedron P and appropriately rotated P . The form-
closure grasps involving two face normals of a family of E, W , N or S can be reported by the
corresponding algorithm applied to the rotated polyhedron P . When the set induces two face
normals of a family of E or W , we rotate P such that E becomes D. When the set involves two

7We set t = log q; t is the parameter in Section 2.4.2.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 101

face normals of a family of N or S, we rotate P such that N becomes D. The rotations that we
use are the following two:

1. Rot1: N → N , S → S, E → D, W → U , U → E and D → W ,

2. Rot2: N → D, S → U , E → E, W → W , U → N and D → S.

Now we give the outline of the algorithms. We report A by filtering all candidates of com-
bination C twice. Let combination C ′ be a subset of C, such that a set of C ′ are necessary and
sufficient to have a set of points that satisfy the first condition of Lemma 8.2. We also let A ′ denote
all sets of combination C ′, such that each of these has a set of points that satisfy the first condition
of Lemma 8.2. In phase I, the algorithm finds A′. The time complexities of the algorithms in
phase I are sensitive to K ′, which is the cardinality of A′. In phase II, the algorithm computes
the remaining faces that has a set of points satisfying the second condition of Lemma 8.2 together
with one of A′. These faces with A′ form A. Phase II of all algorithms except one8 have time
complexities sensitive to K, which is the cardinality of A.

8.2.1 Seven faces

We wish to report all sets of seven faces that yield form-closure grasps with seven frictionless point
fingers. Let a rectilinear polyhedron P have n (triangulated) faces. We pick any form-closure
grasps on seven faces. If this set involves two face normals of a family of U or D, it is in A. If
this set involves two face normals of a family of E, W , N or S, we rotate P with Rot1 or Rot2
accordingly. It is straightforward to see that the rotated set is in A, i.e. it has two face normals of
a family of U or D.

In phase I, we report A′. Four faces are necessary and sufficient to have a set of points that sat-
isfy the first condition of Lemma 8.2; C ′ is four faces. Note that f̂h of a vertical face f corresponds
to an edge wrench set of a polygon. Hence in phase I, the approach in Section 3.3.1 can report A′

in O(n logn + K ′) time; P has O(n) faces.
We pick a face quadruple from A′. This quadruple (f1, f2, f3, f4) has a range of coefficients

αi > 0 for each of their h1 ∈ f̂h
1 , h2 ∈ f̂h

2 , h3 ∈ f̂h
3 and h4 ∈ f̂h

4 , such that
∑4

i=1 αihi = �0. The set∑4
i=1 αiνi with νi ∈ f̂ ν

i forms a polygon ∆ of the following form:

∆ := {α1ν1 + α2ν2 + α3ν3 + α4ν4 | ν1 ∈ f̂ ν
1 , ν2 ∈ f̂ ν

2 , ν3 ∈ f̂ ν
3 , ν4 ∈ f̂ ν

4 }.

Plugging in the vectors show in Section 8.1.1 produces a vector (0,−α1pz1 + α3pz3, α2pz2 −
α4pz4)

T , where pi = (pxi, pyi, pzi)
T is the position vector of a finger on fi. We get α1ν1 + α2ν2 +

α3ν3 + α4ν4, because this is an equation for a point in the convex hull of ν1, ν2, ν3 and ν4. A set
of fixed position pi (i = 1, 2, 3, 4) determines the values of α1, α2, α3 and α4,9 and the position
vectors are independent, thus ∆ forms a polygon on the plane ηz = 0 in V space. The projection
of ∆ is a part of the (horizontal) line segment connecting two points (0, 1, 0)T and (0, 0,±1)T on
Γν . We first look at the case where π(∆) is red. We let r0 denote the red π(∆) for convenience.
The case where π(∆) is blue can be handled in the same way as in the case when π(∆) is red.

In phase II, we wish to report all blue triangle triples from π(f̂ ν
U) and π(f̂ ν

D) that has a set of
points satisfying the second condition of Lemma 8.2 together with each set of A ′. Three points
from three triangles of f̂ ν

U and f̂ ν
D positively span V space with a point of ∆, if and only if one of

8It is the algorithm for the case of three edges and a face. It is sensitive to K′ only.
9The coefficients α1, α2, α3, α4 should be computed in H space originally. In our setting of Γh, however, f̂h’s are on screen Γh, thus the

convex hull of two points from f̂h is also on Γh. Therefore, we can compute these coefficients α1, α2, α3, α4 directly on Γh.

102 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

(i) (ii) (iii)

σ3

σ2

�2

σ1

�1

b1

�2

σ

�1
b1

r0

r1

Γν Γν
b2

r

r1

r0

�2

�1

σ
r2

b1

Γν

r

Figure 8.9: The tangent lines �1 and �2 of r0 and b1, and their regions in three cases (i), (ii) and (iii).

the following holds on Γν : (i) the convex hull of three blue triangles intersects r0 in the interior, (ii)
the convex hull of two blue triangles intersects that of a red triangle and r0 in the interior, and (iii)
a blue triangle intersects the convex hull of two red triangles and r0 in the interior. We enumerate
all red and blue triangle triples that belong to one of these three cases one by one.

We enumerate all blue triangle triples whose convex hull intersects r0 in the interior as follows.
We first look at the cases when one blue triangle of π(f̂ ν

D) and two blue triangles of π(f̂ ν
U). The

case when one blue triangle of π(f̂ ν
U) and two blue triangles of π(f̂ ν

D) can be handled in a similar
way. We pick a blue triangle b1 of π(f̂ ν

D) for example, and compute two tangent lines �1 and �2

which separates r0 and b1; �1 touches the left endpoint of r0, and �2 touches the right endpoint of
r0. Remember that the blue π(f̂ ν

D) and r0 do not intersect, because blue π(f̂ ν
D) lies in the region of

ηz < 0, and r0 lies on the line ηz = 0. Also observe that all blue triangles π(f̂ ν
U) lie in the region

ηz > 0. Two lines �1 and �2 divide the region of ηz > 0 into three regions. We let σ1, σ2 and σ3

denote the interior of these regions from left to right. See Figure 8.9 (i).

Let b2 be a blue triangle of π(f̂ ν
U) that intersects σ2. Then (b1, b2, b3) gives a face triple that

positively span V space with the f̂ ν quadruple for r0, where b3 is any blue triangle in π(f̂ ν
U) or

π(f̂ ν
D)—including b1 and b2 itself. Note that σ2 is bounded by three half-planes: �1, �2 and the line

ηz = 0. Since π(f̂ ν
U) and π(f̂ ν

D) lie on one side of the line ηz = 0, for each of π(f̂ ν
U) and π(f̂ ν

D), σ2

can be considered to be the intersection of two half planes. Thus the blue triangles of π(f̂ ν
U) inter-

secting σ2 can be reported by an order 2 tree described in Section 8.1.3 and a segment intersection
search structure. There are O(n) blue triangles of π(f̂ ν

U) and π(f̂ ν
D), so the preprocessing times

are O(n2) and O(n2 log2 n) respectively, and the query times are O(log2 n + k) and O(log4 n + k)

respectively. Each of K ′ sets induces r0, and there are O(n) blue triangles of π(f̂ ν
D) and π(f̂ ν

U),
thus such blue triangle triples can be reported in O(n2 log2 n + nK ′ log4 n + k) time.

If b2 intersects σ1, and b3 intersects σ3, the corresponding faces of (b1, b2, b3) have three points
that span V space positively with a point of ∆. A triangle intersects σ1 (or σ3), if and only if
a vertex of the triangle lies in σ1 (or σ3). We store the vertices of the O(n) blue triangles in a
half-plane search structure [19] in O(n log n) time. The points lying in σ1 and those in σ3 can be
identified in O(logn + k) time. Then we report every pair (b2, b3), where b2 intersects σ1 and b3

intersects σ3. Each of K ′ sets induces r0, and there are O(n) blue triangles of π(f̂ ν
D) and π(f̂ ν

U),
thus all K blue triangle triples that intersect r0 can be reported in O(nK ′ log n + K) time.

Now we look at case (ii). We wish to report all triples of a red triangle and two blue triangles,
such that the convex hull of two blue triangles intersects that of r0 and a red triangle in the interior.
We pick one red triangle r1 of π(f̂ ν

U) or π(f̂ ν
D), and compute the convex hull r of r1 and r0. We

also pick a blue triangle b1 from π(f̂ ν
U) or π(f̂ ν

D). If r and b1 intersect each other in the interior,

8.2 Computing all form-closure grasps of a rectilinear polyhedron 103

py

px

pz

(a) (b)
py

px

Figure 8.10: A polyhedron with Θ(n2) face quadruples that positively span H space, and Θ(n5) sets of seven faces
that allow form-closure grasps with seven frictionless point fingers.

then we are done; two points on b1 will positively span the space with three points from r0 and r1.
Hence we focus on the case when r and b1 do not intersect each other in the interior.

We compute the tangent lines �1 and �2 of b1 and r such that �1 and �2 separate b1 and r. Let σ
denote the region containing the interior of r, which is bounded by �1, �2 and some edges of r. See
Figure 8.9 (ii). Note that σ does not include its boundaries. Observe that blue triangles of π(f̂ ν

D)

(or π(f̂ ν
U)) intersect at most three boundary line segments of σ, because blue triangles of π(f̂ ν

D)

(π(f̂ ν
U)) lie below (above) the line ηz = 0. See Figure 8.9 (ii). Hence, we use the triangle search

structure to report all k blue triangles intersecting σ. There are O(n) blue triangles of π(f̂ ν
U) and

π(f̂ ν
D), so the preprocessing time is O(n2 log n), and the query time is O(log3 n + k).
We repeat this process for each pair of red and blue triangles of π(f̂ ν

U) and/or π(f̂ ν
D). There are

O(n) red and blue triangles of π(f̂ ν
U) and π(f̂ ν

D), so there are O(n2) red and blue triangle pairs.
The total time complexity of case (ii) is thus O(n2K ′ log3 n + K).

Now we look at case (iii). We wish to report all triples of a blue triangle and two red triangles
from π(f̂ ν

U) and/or π(f̂ ν
D), such that the convex hull of r0 and the two red triangles intersects the

blue triangle in the interior. We pick a red triangle r1 from red π(f̂ ν
U) or π(f̂ ν

D), and compute the
convex hull r of r1 and r0. We also pick a blue triangle b1 from blue π(f̂ ν

U) or π(f̂ ν
D). Then we

compute the tangent lines �1 and �2 of b1 and r, such that �1 and �2 separate b1 and r. Let σ denote
the region bounded by �1, �2, and some edges of b1

10, such that σ contains the interior of b1. See
Figure 8.9 (iii). Here as well, σ does not include its boundaries. Note that red triangles of π(f̂ ν

U)

lie in the region of ηz < 0, and red triangles of π(f̂ ν
D) in the region of ηz > 0. This implies that

red triangles of π(f̂ ν
U) or π(f̂ ν

D) intersecting σ lie in the region bounded by at most three lines. We
use a triangle search structure to store the vertices of O(n) red triangles of π(f̂ ν

U) and π(f̂ ν
D)—the

building time is O(n2 log n). We also use a segment intersection search structure to store the edges
of O(n) red triangles—the construction time is O(n2 log2 n). We report all k red points in σ in
O(log3 n + k) time, and all k red segments intersecting σ in O(log4 n + k) time.

We repeat this process for each of blue triangles of π(f̂ ν
U) and π(f̂ ν

D) as well. There are
O(n) blue triangles of π(f̂ ν

U) and π(f̂ ν
D), and each of A′ induces r0—remember that K ′ = |A′|.

Therefore, all K triples of a blue triangle and two red triangles of case (iii) can be reported in
O(n2K ′ log4 n + K) time.

Theorem 8.4 All K sets of six to seven faces of P that yield form-closure grasps with seven fric-
tionless point fingers can be enumerated in O(n2K ′ log4 n + K) time, where K ′ = |A|.

Note that K ′ is O(n4), and K is O(n7). The lower bound of K ′ is Ω(n2), and the lower
bound of K is Ω(n5)—K ′ is Ω(n2) and three fingers are on three faces from U and D. (The
proof for the lower bound for K ′ can be found in Lemma 4.6 in [91].) A polyhedron can have

10At most two edges of b1 bound σ.

104 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

ηz = 0 line
Γν

Figure 8.11: The blue projection of f̂ν
U . They can overlap because the projections of the faces from U on the planes

ηz = ±1 can overlap. The blue projection of f̂ν
D is the same, except that they lie in the region of ηz < 0.

one rectilinear face in U and another rectilinear face in D, but the number of vertices of these
faces will be O(n), thus the polyhedron has O(n) triangulated faces in U and D. A polyhedron
with K ′ = |A′| = Ω(n2) has Ω(n5) sets of seven faces that allow form-closure grasps with seven
fingers—see in Figure 8.10. The following lemma justifies the approach of computing all face
quadruples in A, and then computing the remaining face triples for each of A′.

Lemma 8.5 K = Ω(n2K ′).

Proof: We first show that each of A′ has at least one face triple from π(f̂ ν
U) and π(f̂ ν

D), such that
they together have a set of points satisfying the second condition of Lemma 8.2. Let (f1, f2, f3, f4)
be a quadruple of A′. It is enough to show that π(∆) for (f1, f2, f3, f4) has at least one triple of red
or blue triangles that has a red and blue intersection with π(∆). Without loss of generality, assume
that π(∆) is red. We show that there exists a triple of blue triangles whose convex hull intersects
π(∆) in the interior.

First we look at the shapes of the blue triangles of f̂ ν
U and f̂ ν

D. If we project the faces from U (D)
on the xy plane, the union of these projections form a rectilinear simple polygon. Remember that
the origin of the object space is in the simple polygon. We rotate the projections from U (D) by 90
degrees, and place them on the plane ηz = 1 (ηz = −1) in V space. Note that ηz axis still penetrates
these simple polygons on the planes ηz = ±1. This implies that on Γν , any non-horizontal line
will intersect the red and blue triangles of π(f̂ ν

U) and π(f̂ ν
D). Figure 8.11 shows an example of the

union of blue triangles of π(f̂ ν
U). The blue triangles of π(f̂ ν

D) look similar in the region ηz < 0.11

Therefore, there exists a blue triangle b2 in π(f̂ ν
U) that intersects the region σ2, which is induced by

π(∆) and a blue triangle b1 in π(f̂ ν
D). In fact, there is a blue triangle in π(f̂ ν

U) intersecting σ2 for
any blue triangle b1 in π(f̂ ν

D), thus we have O(n) triples of blue triangles (b1, b2, b3) for a given b1.
Therefore, K = Ω(n2K ′). This argument holds for all red/blue triangles of π(f̂ ν

D). �

8.2.2 Combinations of faces and concave edges

Let t be the number of concave edges of a rectilinear polyhedron P . When we use concave edges,
fewer fingers can induce seven face normals. In this section, we report all combinations of faces
and concave edges, such that the fingers on each of these combinations allow form-closure grasps
with at most six frictionless point fingers, and that each combination involves seven face normals.
In particular, we look at the following three cases: (i) when C is one concave edge and five faces,
(ii) when C is two concave edges and three faces, and (iii) when C is three concave edges and one
face.

11Red triangles of π(f̂ν
D) or π(f̂ν

U) look similar to those in the region of ηz > 0 and ηz < 0, respectively.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 105

EN WN ES WS EU ED WU WD NU ND SU SD

Rot1 ND NU SD SU ED WD EU WU EN WN ES WS
Rot2 ED WD EU WU EN ES WN WS ND SD NU SU

Table 8.1: The renamed edge families after rotation Rot1 and after rotation Rot2.

One concave edge and five faces

We wish to report all sets of a concave edge and five faces12 that yield form-closure grasps with
six frictionless point fingers; C is a concave edge and five faces. Remember that each set of A
reported by the algorithms presented in this section yields a form-closure grasp with six fingers,
and two fingers induce two face normals of a family of U or D. To identify all sets of a concave
edge and five faces that allow a form-closure grasp Atotal, we apply the algorithms to P and rotated
P with Rot1 and Rot2. The following lemma shows that the algorithms on P and rotated P with
Rot1 and Rot2 can indeed report Atotal.

Lemma 8.6 When we rotate a set of one concave edge and five faces that yields a form-closure
grasp with Rot1 or Rot2, the rotated set belongs to one of the following two cases:

(i) one vertical edge, two vertical faces13 and three horizontal faces, and

(ii) one horizontal edge,14 three vertical faces and two horizontal faces.

Proof: When a form-closure grasp on one concave edge and five faces induces two face normals
of E (W), we rotate the set with Rot1. When the grasp induces two face normals of N (S), we
rotate the set with Rot2. Then the two face normals will become those of D (U). Since a set of
one concave edge and five faces induces seven face normals, each of the other families induces one
face normal.

Note that an edge is either vertical or horizontal. When we rotate a vertical edge with Rot1 or
Rot2, the vertical edge becomes horizontal—see Table 8.1. When we rotate a horizontal edge with
Rot1 or Rot2, the horizontal edge will either become vertical or remain horizontal—see Table 8.1.
When the rotated edge is vertical, three of the five faces will be horizontal, which is case (i). When
the rotated edge is horizontal, the edge is incident to a horizontal face, thus two of the five faces
will be horizontal, which is case (ii). �

First, we wish to report all sets of one vertical edge and five faces that yields a form-closure
grasp. One vertical edge and two faces are necessary and sufficient to have a set of points that
satisfy the first condition of Lemma 8.2; C ′ is one vertical edge and two faces. Note that êh of
a vertical edge e corresponds to a vertex wrench set of a polygon, and f̂h of a face f to an edge
wrench set of a polygon. See Figure 8.12 (a). Polyhedron P has O(n) faces and t edges. Therefore,
the algorithm proposed in Section 3.3.2 can report A′ in O(n log n + K ′) time.

We pick a triple of a vertical concave edge and two faces from A′. Without loss of generality,
assume that the triple is (eEN , fW , fS); eEN is from EN , fS is from S and fW is from W . The
triple induces three wrench sets f̂W , f̂S and κ1ωE + κ2ωN , where ωE ∈ êEN,E, ωN ∈ êEN,N ,
0 ≤ κ1, κ2 ≤ 1 and κ1 + κ2 = 1. Let hE ∈ êh

EN,E , hN ∈ êh
EN,N , hW ∈ f̂h

W and hS ∈ f̂h
S .

Since (eEN , fW , fS) ∈ A′, there exist α1, α2, α3, α4, in the intervals of 0 and 1, such that α1hE +

12In fact, this set can have one concave edge and four faces, because two fingers are allowed to be on one face.
13Remember that vertical edges and faces are parallel to the ηz axis.
14Remember that horizontal edges and faces are parallel to the τxτy plane.

106 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

(b)

π(f̂h
S)

(a)

π(f̂h
W)

(c)
Γh

α3

α4

α2

ηz

τx

τy

Γν

π(êh
EN)

α1

ηz = 0

π(hS)

π(hW)

π(hE)

π(hN)

Figure 8.12: (a) The shape induced by êh
EN , f̂h

W and f̂h
S on Γh. (b) ∆ in V space. (c) π(∆) on Γν .

(b)

π(êh
SU)

(a)
ηz

τx

τy

Γh1

α3

α4

α2

π(f̂h
W)

α1

π(hSU)

π(hW)

π(hE)

π(hN)

Figure 8.13: (a) The h components induced by one horizontal edge e SU and three faces fE , fN and fW on Γh1. (b) δ
and ∆ in V space.

α2hN + α3hW + α4hS = �0, where α1 + α2 = 1 and α3 + α4 = 1. In other words, the intersection
point of two line segments π(êh

EN) and π(hWhS) on Γh is the projection of α1hE + α2hN and
−(α3hW + α4hS). See Figure 8.12 (a). We define ∆ to be the set of points in V space induced by
four fingers along the interior of eEN , fW and fS . Then ∆ has the following form:

∆ := {α1νE + α2νN + α3νW + α4νS | νE ∈ êν
EN,E, νN ∈ êν

EN,N , νW ∈ f̂ ν
W , νS ∈ f̂ ν

S}

Replacing with the vectors given in Section 8.1.1 shows that ∆ consists of vectors (0,−α2pzn +
α4pzs, α1pze − α3pzw)T = (0,−α2pzn + α4pzs, α1pzn − α3pzw)T , where pzn, pzw and pzs are in
some ranges. The equality holds because the finger on eEN touches two incident faces from E and
N .

When the fingers are at fixed positions, α1, α2, α3 and α4 are determined. Thus the three fixed
fingers induce a (closed) line segment δ on the plane ηz = 0 in V space. When the three fingers
move in the interior of eEN , fS and fW independently, the segment δ also moves in a certain region
on the plane ηz = 0. This region is ∆, and it is a polygon of a constant complexity on the plane
ηz = 0. The projection π(∆) is a line segment on the line ηz = 0 on Γν . When the edge e is from
other families such as ES, WN or WS, the shapes of ∆ and π(∆) are similar.

In phase II, we wish to report all triangle triples from π(f̂ ν
U) and π(f̂ ν

D) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A ′. The phase II of the algorithm in
Section 8.2.1 can report all such triangle triples, thus A. There are O(n) red and blue triangles of
π(f̂ ν

U) and π(f̂ ν
D), thus the total time complexity to report all K sets of one vertical edge and five

faces that allow form-closure grasps is O(n2K ′ log4 n + K).
Now we look at the case when C is a horizontal concave edge and five faces. One horizontal

concave edge and three faces are necessary and sufficient to have a set of points that satisfy the
first condition of Lemma 8.2; C ′ is a horizontal concave edge and three faces. Note that êh of a
horizontal edge e and f̂h of a face f correspond to edge wrench sets of a polygon. See Figure 8.13
(a). There are O(n) faces and t edges. Therefore, the algorithm proposed in Section 3.3.1 can
report A′ in O(n log n + K ′) time.

We pick a quadruple of a horizontal concave edge and three faces from A′. Without loss of
generality, assume that the quadruple is (eSU , fE, fN , fW); eSU is from SU , fE is from E, fN is

8.2 Computing all form-closure grasps of a rectilinear polyhedron 107

(ii)(i)

b1

r0

σ

Γν

�1 �2

Γνσ �1

�2
b1b1

r0

σ

Γν

�2

r0

Figure 8.14: When r0 is induced by a horizontal edge and three faces, the figures show the regions σ to report (i) blue
triangle pairs, and (ii) one red triangle and one blue triangle that make a red and blue intersection with r 0.

from N and fW is from W . The quadruple induces four wrench sets f̂E , f̂N , f̂W and κ1ωS +κ2ωU ,
where ωS ∈ êSU,S, ωU ∈ êSU,U , 0 ≤ κ1, κ2 ≤ 1 and κ1 + κ2 = 1. Let hE ∈ f̂h

E , hN ∈ f̂h
N ,

hW ∈ f̂h
W , hSU ∈ êh

SU , hS ∈ êh
SU,S and hU ∈ êh

SU,U . Since (eSU , fE , fN , fW) ∈ A′, there exist α1,

α2, α3, α4, in the intervals of 0 and 1, such that α1hE + α2hN + α3hW + α4(κ1hS + κ2hU) = �0,15

where 0 < κ1 ≤ 1, 0 ≤ κ2 < 1,16 κ1 + κ2 = 1, α1 + α2 = 1 and α3 + α4 = 1. In other words,
the intersection point of two line segments π(hEhN) and π(hW hSU) on Γh is the projection of
α1hE + α2hN and −(α3hW + α4(κ1hS + κ2hU)). We define ∆ to be the set of points in V space
induced by four fingers along the interior of eSU , fE , fN and fW . The set ∆ has the following
form:

∆ := {α1νE + α2νN + α3νW + α4(κ1νS + κ2νU) |
νE ∈ f̂ ν

E , νN ∈ f̂ ν
N , νW ∈ f̂ ν

W , νS ∈ êν
SU,S, νU ∈ êν

SU,U ,
0 < κ1 ≤ 1, 0 ≤ κ2 < 1, κ1 + κ2 = 1}

The set ∆ consists of vectors of the form (α4κ2,−α2pzn + α4κ1pzs + α4κ2pyu, α1pze − α3pzw −
α4κ2pxu)

T = (α4κ2,−α2pzn + α4κ1pzs + α4κ2pys, α1pze −α3pzw −α4κ2pxs)
T . Note that pys, pzs

are fixed numbers, and that pze, pzn, pzw and pxs are in some ranges.
When the four fingers are at fixed positions, α1, α2, α3 and α4 are all determined. Thus the

four fixed fingers induce a (closed) line segment δ, one endpoint of which lies on the plane ηz = 0
in V space. When the four fingers move in the interior of eSU , fN , fE and fW independently, the
segment δ also moves in a certain region. This region is ∆, and it is a polyhedron of a constant
complexity with a face on the plane ηz = 0. The projection π(∆) is a polygon, a side of which lies
on the line ηz = 0. The shapes of ∆ and π(∆) remain the same when the horizontal concave edge
is from other families.

In phase II, we wish to report all triangle pairs from f̂ ν
U and/or f̂ ν

D with a set of points satisfying
the second condition of Lemma 8.2 with each set of A′. Without loss of generality, we assume that
π(∆) has a red part r0. For r0, all such face pairs belong to one of the following two cases: (i) the
convex hull of two blue triangles b1 and b2 of π(f̂ ν

U) or π(f̂ ν
D) intersects r0 in the interior, and (ii)

the convex hull of r0 and a red triangle r1 (of red π(f̂ ν
U) or π(f̂ ν

D)) intersects a blue triangle b1 (of
blue π(f̂ ν

U) or π(f̂ ν
D)) in the interior.

The blue triangle pairs of case (i) can be identified as follows. We pick a blue triangle b1 from
π(f̂ ν

U) or in π(f̂ ν
D), and compute the tangent lines �1 and �2 of b1 and r0, such that they separates b1

and r0. Let σ denote the region bounded by �1, �2 and some edges of r0, such that σ contains the
interior of r0.17 We report all blue triangles intersecting σ in the interior. See Figure 8.14 (i). We
build an order 2 tree described in Section 8.1.3 on the vertices of the O(n) blue triangles of π(f̂ ν

U)

15Note that hU = �0.
16Since κ1hS must be a non-zero vector, κ1 must be non-zero, thus κ2 must not be 1.
17This is very similar to the case (i) in the previous case: a vertical edge and two faces.

108 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

and π(f̂ ν
D) in O(n2) time, and report all k blue vertices in σ in O(log2 n + k) time. We also build

a segment intersection search structure on the sides of the O(n) blue triangles of π(f̂ ν
U) and π(f̂ ν

D)
in O(n2 log2 n) time, and report all k sides intersecting the boundary of σ in O(log4 n + k) time.
The time complexity of case (i) is thus O(n2 log2 n + nK ′ log4 n + K).

The face pairs of case (ii) can be identified similarly. We pick a blue triangle b1 from π(f̂ ν
U) or

π(f̂ ν
D), and compute the tangent lines �1 and �2 of r0 and b1, such that they separate b1 and r0. Then

we compute the region σ as described in case (iii) in Section 8.2.1; σ is the region bounded by �1,
�2, and some edges of b1

18, such that σ contains the interior of b1. See Figure 8.14 (ii). A triangle
intersects σ, if and only if it has at least one vertex in σ, or its sides intersect the boundary of σ.

We use the triangle search structure to identify all the vertices of red triangles in σ. When
σ is bounded by four lines, we divide σ into two regions, each of which is bounded by at most
three lines. For example in Figure 8.14 (ii), σ can be divided into b1 and σ − b1. We store the
vertices of O(n) red triangles in a triangle search structure in O(n2 log n) time, and report all k
red points in σ in O(log3 n + k) time. We also build a segment intersection search structure on
the sides of O(n) red triangles of π(f̂ ν

U) and π(f̂ ν
D) in O(n2 log2 n) time. We report all k sides

intersecting the boundary of σ in O(log4 n + k) time. The total time complexity of case (ii) is thus
O(n2 log2 n + nK ′ log4 n + K).

We repeat these processes for the blue part of π(∆). Note that this will report all pairs of faces
from one family of U or D, or from two distinct families (one from U and the other from D).
There are O(n) red and blue triangles of π(f̂ ν

U) and π(f̂ ν
D), so the total preprocessing time for a

horizontal edge and five faces is O(n2 log2 n). Hence the time complexity of reporting all sets of
an edge and five faces is O(n2 log2 n + nK ′ log4 n + K).

Theorem 8.7 All K sets of one concave edge and five faces of P that allow form-closure grasps
with six frictionless point fingers can be enumerated in O(n2K ′ log4 n+K) time, where K ′ = |A|.

Two concave edges and three faces

We wish to report all sets of two concave edges and three faces19 that yield form-closure grasps
with five frictionless point fingers; C is two concave edges and three faces. Remember that each
set of A reported by the algorithms presented in this section yields a form-closure grasp with five
fingers, and two of the five fingers induce two face normals of one family of U or D. To identify all
sets of two concave edges and three faces that allow a form-closure grasp, we apply the algorithms
to P and rotated P with Rot1 and Rot2. The following lemma shows that the algorithms on P and
rotated P with Rot1 and Rot2 can report all sets of two concave edges and three faces that yield
form-closure grasps.

Lemma 8.8 When we rotate a set of two concave edges and three faces that yields a form-closure
grasp with Rot1 or Rot2, the rotated set belongs to one of the following four cases:

(i) two vertically parallel edges and three horizontal faces,

(ii) two horizontally parallel edges, two vertical faces and one horizontal face,

(iii) two horizontally skewed edges, two vertical faces and one horizontal face,

(iv) one vertical edge, one horizontal edge, one vertical face and two horizontal faces.

18At most two edges of b1 bound σ.
19In fact, this set can have two concave edges and two faces, because two fingers are allowed to be on one face.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 109

Figure 8.15: The four cases of the relative positions of two edges of P .

Proof: Note that an edge pair is either parallel or skewed. More precisely, when two edges are
parallel, they can be both vertical or both horizontal. When two edges are skewed, they can be
both horizontal edges, or one vertical edge and one horizontal edge. See Figure 8.15. All these
four cases of an edge pair match the four cases of an edge pair stated in the lemma.

We take any set of two concave edges and three faces of P that yields a form-closure grasp
with five fingers. Since two edges and three faces involve seven face normals, five face normals
are for five families (one for each family), and two face normals are for one family. If two of the
five fingers induce two face normals of a family U or D, then we are done. Hence we will look at
the cases when two fingers induce two face normals of a family of E, W , N or S. If there are two
face normals of E or W , we apply Rot1; the three face normals of E and W rotated with Rot1 will
become three face normals of D and U . If there are two face normals of N or S, we apply Rot2;
the three face normals of N and S rotated with Rot2 will become three face normals of D and U .
Note that these three face normals could be induced by the fingers on edges. Next we will look at
the four cases of the relative positions of two edges.

First, we look at the case of two vertical edges and three faces that yield a form-closure grasp.
When we rotate any vertical edge with Rot1 or Rot2, it becomes horizontal—see Table 8.1. Thus
when we rotate a set of two vertical edges and three faces with a form-closure grasp, this set
becomes a set of two horizontal edges and three faces. Observe that the set of two horizontal edges
and three faces induces three face normals of D and U , two of which are induced by two fingers
on two horizontal edges. Hence this set has two horizontally parallel edges, two vertical faces and
one horizontal face (case (ii)).

Let us look at the second case of two horizontally parallel edges and three faces that yield a
form-closure grasp. Without loss of generality, assume that two fingers induce two face normals of
E. When we rotate a horizontally parallel edge pair from EU , ED, WU and/or WD with Rot1,
it remains as a horizontally parallel edge pair—see Table 8.1. Observe that this rotated set induces
three face normals of D and U , two of which are induced by two fingers on the two horizontal
edges. Thus this set remains as two horizontally parallel edges and three faces of case (ii). When
we rotate a horizontally parallel edge pair from NU , ND, SU and SD, it becomes a vertical edge
pair—see Table 8.1. The rotated set induces three face normals of D and U . Since both of the two
edges are vertical, none of these three face normals is induced by the fingers on the edges. Thus
this rotated set is two vertical edges and three horizontal faces of case (i).

110 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

Now we look at the case of a horizontally skewed edge pair and three faces that yield a form-
closure grasp. Without loss of generality, assume that two fingers induce two face normals of E.
Note that two horizontally skewed edges have one edge from EU , ED, WU and WD, and the
other edge from NU , ND, SU and SD. When we rotate a horizontally skewed edge pair with
Rot1, this set becomes one vertical edge and one horizontal edge—see Table 8.1. Observe that the
set of one vertical edge, one horizontal edge and three faces induces three face normals of D and
U , one of which is induced by the finger on the horizontal edge. Thus this rotated set is one vertical
edge, one horizontal edge, one vertical face and two horizontal faces, which is case (iv).

Finally, we look at the case of one vertical edge, one horizontal edge and three faces that yield a
form-closure grasp. Without loss of generality, assume that two fingers induce two face normals of
E. When we rotate a vertical edge with Rot1, it becomes horizontal. When we rotate a horizontal
edge from EU , ED, WU and WD with Rot1, it remains horizontal—see Table 8.1. Observe that
this set of two horizontally skewed edges and three faces induces three face normals of D and U ,
two of which are induced by two fingers on two horizontal edges. Thus the rotated set will be a
horizontally skewed edge pair and three faces, which is case (iii). When we rotate a horizontal
edge from NU , ND, SU and SD with Rot1, it becomes vertical—see Table 8.1. Observe that
this rotated set induces three face normals of D and U , one of which is induced by a finger on the
horizontal edge. Hence this rotated set will be one vertical edge, one horizontal edge and three
faces, which is case (iv). �

We first look at the case of two vertical edges and three faces of case (i) that yield a form-
closure grasp. Two vertical edges are necessary and sufficient to have a set of points that satisfy
the first condition of Lemma 8.2; C ′ is two vertical edges. Note that êh of a vertical concave edge e
corresponds to a vertex wrench set of a polygon. See Figure 3.17 (c). There are t vertical concave
edges, so the algorithm proposed in Section 3.3.3 can report A′ in O(t log2 t + K ′) time.

We pick an edge pair from A′. Without loss of generality, assume that the pair is (eEN , eWS).
The edge pair induces two wrench sets κ1ωE + κ2ωN and γ1ωW + γ2ωS , where ωE ∈ êEN,E,
ωN ∈ êEN,N , ωW ∈ êWS,W , ωS ∈ êWS,S, 0 ≤ κ1, κ2, γ1, γ2 ≤ 1, κ1 + κ2 = 1 and γ1 + γ2 = 1.
Let hE ∈ êh

EN,E, hN ∈ êh
EN,N , hW ∈ êh

WS,W and hS ∈ êh
WS,S. Since (eEN , eWS) ∈ A′, there exist

α1, α2, α3, α4 among κ1, κ2, γ1 and γ2 respectively, such that α1hE + α2hN + α3hW + α4hS = �0,
where α1 + α2 = 1 and α3 + α4 = 1. Note that α1, α2, α3, α4 are determined because π(hEhN)
and π(hW hS) are two intersecting line segments on Γh. We define ∆ to be the set of points in V
space induced by the two fingers sliding on eEN and eWS. The set ∆ has the following form:

∆ := {α1νE + α2νN + α3νW + α4νS | νE ∈ êν
EN,E, νN ∈ êν

EN,N , νW ∈ êν
WS,W , νS ∈ êν

WS,S}.

The set ∆ consists of vectors (0,−α2pzn +α4pzs, α1pze−α3pzw)T = (0,−α2pzn +α4pzs, α1pzn−
α3pzs)

T , where the pzn and pzs are in some open ranges. The equality holds because the finger at
eEN touches two incident faces from E and N , and the finger at eWS touches two incident faces
from W and S. The set ∆ is a polygon of a constant complexity on the plane ηz = 0 in V space,
and the projection π(∆) is a line segment on the line ηz = 0 on Γν .

In phase II, we wish to report all triangle triples from π(f̂ ν
U) and π(f̂ ν

D) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A ′. The phase II of the algorithm
in Section 8.2.1 can report all such triangle triples, thus A. There are O(n) faces from U and D,
therefore, the total time complexity of this case is O(n2K ′ log4 n + K).

We now look at the case of two horizontal edges and three faces that yield a form-closure
grasp. These horizontal edges can be parallel or skewed. In any case, two horizontal edges and
two faces are necessary and sufficient to have a set of points that satisfy the first condition of
Lemma 8.2; C ′ is two horizontal edges and two faces. The algorithm in Section 3.3.1 can report

8.2 Computing all form-closure grasps of a rectilinear polyhedron 111

A′ in O(n logn + K ′) time; there are O(n) faces and t edges.
We pick a quadruple from A′. We first look at the case when the two horizontal edges are

parallel. Without loss of generality, assume that the quadruple is (eEU , eWD, fN , fS); eEU is from
EU , eWD is from WD, fN is from N and fS is from S. The quadruple induces four wrench sets f̂N ,
f̂S , κ1ωE +κ2ωU and γ1ωW +γ2ωD, where ωE ∈ êEU,E, ωU ∈ êEU,U , ωW ∈ êWD,W , ωD ∈ êWD,D,
0 ≤ κ1, κ2, γ1, γ2 ≤ 1, κ1 + κ2 = 1 and γ1 + γ2 = 1. Let hE ∈ êh

EU,E, hU ∈ êh
EU,U , hW ∈ êh

WD,W ,

hD ∈ êh
WD,D, hN ∈ f̂h

N and hS ∈ f̂h
S . Since (eEU , eWD, fN , fS) ∈ A′, there exist α1, α2, α3, α4

in the intervals of 0 and 1, such that α1(κ1hE + κ2hU) + α2hN + α3(γ1hW + γ2hD) + α4hS = �0
for 0 < κ1, γ1 ≤ 1, 0 ≤ κ2, γ2 < 120 (κ1 + κ2 = 1 and γ1 + γ2 = 1), where α1 + α2 = 1 and
α3 + α4 = 1. We define ∆ to be the set of points in V space induced by four fingers along the
interior of eEU , eWD, fN and fS . The set ∆ has the following form:

∆ := {α1(κ1νE + κ2νU) + α2νN + α3(γ1νW + γ2νD) + α4νS |
νE ∈ êν

EU,E, νU ∈ êν
EU,U , νN ∈ f̂ ν

N , νW ∈ êν
WD,W , νD ∈ êν

WD,D, νS ∈ f̂ ν
S

0 < κ1, γ1 ≤ 1, 0 ≤ κ2, γ2 < 1, κ1 + κ2 = 1, γ1 + γ2 = 1}.

The set ∆ consists of vectors (α1κ2 − α3γ2,−α2pzn + α1κ2pyu − α3γ2pyd + α4pzs, α1κ1pze −
α1κ2pxu−α3γ1pzw +α3γ2pxd)

T = (α1κ2−α3γ2,−α2pzn +α1κ2pye−α3γ2pyw +α4pzs, α1κ1pze−
α1κ2pxe − α3γ1pzw + α3γ2pxw)T . Note that pxe, pze, pxw, pzw are fixed numbers, and pzn, pzs, pye,
pyw are in some ranges. Also note that α1, α2, α3, α4 are in the ranges dictated by the equation.

A fixed position vector on eEU , eWU , fN and fS determines α1, α2, α3 and α4; only κ1, κ2 γ1

and γ2 are variable. This implies that the fingers at fixed positions induce a tetrahedron δ in V
space, whose vertices are determined by the combinations of the extreme values of κ1, κ2 γ1 and
γ2, such as κ1 = 1, κ2 = 0, and γ1 = 0, γ2 = 1. The vertices of δ move continuously in certain
regions, which are polytopes of constant complexities. Note that one vertex of any δ lies on the
plane ηz = 0 in V space. The set ∆ is a convex polytope in V space, thus π(∆) is a convex polygon
on Γν . ∆ has a face on the plane ηz = 0, thus π(∆) has a side on the line ηz = 0. The shapes of ∆
and π(∆) for two horizontally parallel or skewed edges and two faces of other cases are similar to
these described above.

In phase II, we wish to find all triangles from π(f̂ ν
U) and π(f̂ ν

D), such that each triangle has
a set of points satisfying the second condition of Lemma 8.2 with each set of A ′. Assume that
π(∆) has a red part, and we call it r0. The case of a blue part of π(∆) is similar. We report
all blue triangles of π(f̂ ν

U) and π(f̂ ν
D) on Γν , which intersect r0. A blue triangle intersects r0 in

the interior, if and only if one of the following holds: (a) the red and blue boundary segments
intersect each other in the interior, or (b) a blue vertex is contained in the red query triangle or vice
versa. To identify these intersections, we use the segment intersection structure and the triangle
search structure. We store the sides of O(n) blue triangles in a segment intersection structure in
O(n2 log2 n) time, and report all k blue sides intersecting a red line segment in O(log4 n+k) time.
We also store the vertices of O(n) blue triangles in a triangle search structure in O(n2 log n) time,
and report all k blue vertices in a red triangle in O(log3 n + k) time. The total time complexity is
thus O(n2 log2 n + K ′ log4 n + K).

Finally, we look at the case of one vertical edge, one horizontal edge and three faces that yield a
form-closure grasp. One vertical edge, one horizontal edge and a face are necessary and sufficient
to have a set of points that satisfy the first condition of Lemma 8.2; C ′ is one vertical edge, one
horizontal edge and a face. Note that êh of a horizontal edge e and f̂h of a face f correspond
to edge wrench sets of a polygon. There are O(n) faces and t edges. Therefore, the algorithm

20Since κ1hE and γ1hW must be non-zero vectors, κ1 and γ1 must be non-zero, thus κ2 and γ2 must not be 1.

112 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

proposed in Section 3.3.2 can report A′ in O(n log n + K ′) time.
We pick a triple of one vertical edge, one horizontal edge and a face from A′. Without loss of

generality, assume that it is (eEN , eSU , fW); eEN is from EN , eSU is from SU , and fW is from W .
Let hE ∈ êh

EN,E, hN ∈ êh
EN,N , hW ∈ f̂h

W , hS ∈ êh
SU,S and hU ∈ êh

SU,U . With the same argument in
the case of a concave edge and five faces in Section 8.2.2, there exist α1, α2, α3, α4 in the intervals
of 0 and 1, such that α1hE +α2hN +α3hW +α4(κ1hS +κ2hU) = �0 for 0 < κ1 ≤ 1 and 0 ≤ κ2 < 1,
where κ1 + κ2 = 1. We define ∆ to be the set of points in V space induced by three fingers along
the interior of eEN , eSU and fW . The set ∆ has the following form:

∆ := {α1νE + α2νN + α3νW + α4(κ1νS + κ2νU) |
νE ∈ êν

EN,E, νN ∈ êν
EN,N , νW ∈ f̂ ν

W , νS ∈ êν
SU,S, νU ∈ êν

SU,U ,
0 < κ1 ≤ 1, 0 ≤ κ2 < 1, κ1 + κ2 = 1}.

The set ∆ consists of vectors (α4κ2,−α2pzn + α4κ1pzs + α4κ2pyu, α1pze −α3pzw −α4κ2pxu)
T =

(α4κ2,−α2pzn + α4κ1pzs + α4κ2pys, α1pzn −α3pzw −α4κ2pxs)
T , where pyn, pys and pzs are fixed

numbers, and pzn, pzw and pxs are in some intervals.
When the finger positions are fixed, only κ1 and κ2 are variable, thus they induce a line segment

δ in V space; the extreme values of κ1 and κ2 determines the endpoints of δ: when κ1 = 0, κ2 = 1,
and when κ1 = 1, κ2 = 0. Note that an endpoint of δ is on the plane ηz = 0. When the three
fingers move in the interior of eEN , eSU and fW independently, the corresponding segment δ also
moves in a certain region. This region is ∆, and it is a polyhedron of a constant complexity, a
face of which lies on the plane ηz = 0. Thus the projection π(∆) is a polygon, a side of which
lies on the line ηz = 0 on Γν . See Figure 8.14. The shapes of ∆ and π(∆) of other cases such as
(eEN , eS, fWU) are similar to these described above.

In phase II, we wish to report all triangle pairs from f̂ ν
U and/or f̂ ν

D with a set of points satisfying
the second condition of Lemma 8.2 with each set of A′. The phase II of the algorithm for the case
of a horizontal edge and five faces in Section 8.2.2 can report all such triangle pairs, thus A in
O(n2 log2 n + nK ′ log4 n + K) time; there are O(n) faces.

Theorem 8.9 All K sets of two parallel and skewed concave edges and three faces of P that allow
form-closure grasps with five frictionless point fingers can be enumerated in O(n2K ′ log4 n + K)
and O(n2 log2 n + nK ′ log4 n + K) time, respectively, where K ′ = |A|.

Three concave edges and one face

We wish to report all sets of three concave edges and a face that yield form-closure grasps with
four frictionless point fingers; C is three concave edges and a face. Remember that each set of A
reported by the algorithms presented in this section yields a form-closure grasp with four fingers,
and two of the four fingers induce two face normals of a family of U or D. To identify all sets of
three concave edges and a face that allow a form-closure grasp, we apply the algorithms to P and
rotated P with Rot1 and Rot2. The following lemma shows that the algorithms on P and rotated
P with Rot1 and Rot2 can report all sets of three concave edges and a face that yield form-closure
grasps.

Lemma 8.10 When we rotate a set of three concave edges and one face that yields a form-closure
grasp, with Rot1 or Rot2, the rotated set belongs to one of the following two cases:

(i) two horizontal edges, one vertical edge, and a horizontal face,

(ii) three horizontal edges and a vertical face.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 113

Proof: We take any set of three concave edges and a face of P that yields a form-closure grasp
with four fingers. Any set of three edges belongs to one of the following four cases: (a) two
horizontal edges and one vertical edge, (b) three horizontal edges, (c) two vertical edges and one
horizontal edge, and (d) three vertical edges. Fingers on three vertical edges and a face (case (d))
cannot yield a form-closure grasp, because fingers on vertical edges never induce a face normal of
U or D, and we have only one face to cover both families of U and D. Without loss of generality,
we place a finger on a face from U . Then no finger induces a face normal of D, thus the fingers
fail to achieve form-closure. Hence the set of three concave edges and a face of P that yields a
form-closure grasp belongs to one of the first three cases (a), (b) and (c).

We first look at the case when fingers on two horizontal edges, a vertical edge and a face yield
a form-closure grasp (case (a)). If this set induces two face normals of a family of U or D, then
we are done. If this set induces two face normals of a family of E, W , N or S (the face normals
could be induced by the fingers on edges), then we apply Rot1 or Rot2 accordingly. Without loss
of generality, assume that the set induces two face normals of E. Then we rotate the set with
Rot1. The three face normals of E and W rotated with Rot1 will become three face normals
of D and U , which may be induced by the fingers on edges. When we rotate any vertical edge
with Rot1, it becomes horizontal—see Table 8.1. When we rotate two horizontally skewed edges
with Rot1, they become one vertical edge and one horizontal edge—see the proof of Lemma 8.8
and Table 8.1. When we rotate two horizontally parallel edges from EU , ED, WU and WD
with Rot1, they remain as two horizontally parallel edges—see Table 8.1. The set cannot have two
horizontally parallel edges from NU , ND, SU and SD. If it does, it must induce two face normals
of N or S, which contradicts that it induces two face normals of E.21 Therefore, the rotated edge
triple will be one of the two combinations: (1) two horizontal edges and one vertical edge, (2) three
horizontal edges. Since the rotated set involve three face normals of D and U , for the combination
of (1), two of the three face normals are induced by two fingers on the two horizontal edges. Thus
we need a horizontal face for two horizontal edges and one vertical edge to yield a form-closure
grasp, which leads to case (i). Likewise, for the combination of (2), all three face normals of D
and U are induced by three fingers on the three horizontal edges. Thus we need a vertical face for
three horizontal edges to yield a form-closure grasp, which leads to case (ii).

We now look at the case when fingers on three horizontal edges and a face yield a form-closure
grasp (case (b)). Since a horizontal edge is incident to a horizontal face, this set of case (b) already
involves three face normals of U and D. The vertical faces that the three horizontal edges are
incident to must be from three distinct families. Thus we need a vertical face for three horizontal
edges and a face to yield a form-closure grasp, which leads to case (ii).

Finally we look at the case when fingers on two vertical edges, one horizontal edge and a face
yield a form-closure grasp (case (c)). Observe that this set involves two horizontal face normals
and five vertical face normals. This implies that two fingers induce two face normals of a family E,
W , N or S. Without loss of generality, assume that the set induces two face normals of E. Then we
rotate the set with Rot1. When we rotate any vertical edge with Rot1, it becomes horizontal. When
we rotate any horizontal edge with Rot1, it may either remain horizontal, or become vertical. See
Table 8.1. Therefore, the rotated edge triple will be one of the two combinations: (1) two horizontal
edges and one vertical edge, (2) three horizontal edges. As shown in handling case (a), these two
combinations lead to case (i) and case (ii) respectively. �

We wish to report all sets of three horizontal edges and a face that yield form-closure grasps
with four frictionless point fingers; C is three horizontal edges and a face. We need all of three
horizontal edges and a face to have a set of points that satisfy the first condition of Lemma 8.2; C ′

21If the set induces two face normals of a family N or S, we should rotate P with Rot2 , not with Rot1.

114 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

is three horizontal edges and a face. In phase I, the algorithm proposed in Section 3.3.1 can report
A′ in O(n log n + K ′) time. In phase II, we check whether each set of A′ satisfies the second
condition of Lemma 8.2; we need the whole set of three horizontal edges and a vertical face to
compute the coefficients α1, α2, α3 and α4, which also determines the coefficients β5, β6 and β7 in
Lemma 8.2.

Now we provide an efficient algorithm to report all sets of two horizontal edges, one vertical
edge, and one horizontal face. Two horizontal edges and one vertical edge are necessary and
sufficient to have a set of points that satisfy the first condition of Lemma 8.2; C ′ is three edges.
Note that êh of a horizontal edge e corresponds to an edge wrench set, and êh of a vertical edge
e to a vertex wrench set of a polygon. There are t edges. Therefore, the algorithm proposed in
Section 3.3.2 can report A′ in O(t log t + K ′) time.

We pick a triple from A′. Without loss of generality, assume that the triple is (eEN , eWD, eSU);
eEN is from EN , eSU is from SU and eWD is from WD. Let hE ∈ êh

EN,E, hN ∈ êh
EN,N , hW ∈

êh
WD,W , hD ∈ êh

WD,D, hS ∈ êh
SU,S and hU ∈ êh

SU,U . With the same argument in the case of a
concave edge and five faces in Section 8.2.2, there exist α1, α2, α3, α4 in the intervals of 0 and
1, such that α1hE + α2hN + α3(γ1hW + γ2hD) + α4(κ1 hS + κ2hU) = �0 for 0 < κ1, γ1 ≤ 1,
0 ≤ κ2, γ2 < 1 (κ1 + κ2 = 1 and γ1 + γ2 = 1), where α1 + α2 = 1 and α3 + α4 = 1. We define ∆
to be the set of points in V space induced by three fingers along the interior of eEN , eSU and eWD.
The set ∆ has the following form:

∆ := {α1νE + α2νN + α3(γ1νW + γ2νD) + α4(κ1 νS + κ2νU) |
νE ∈ êν

EN,E, νN ∈ êν
EN,N , νW ∈ êν

WD,W , νD ∈ êν
WD,D, νS ∈ êν

SU,S, νU ∈ êν
SU,U ,

0 < κ1, γ1 ≤ 1, 0 ≤ κ2, γ2 < 1, κ1 + κ2 = 1, γ1 + γ2 = 1}.

The set ∆ consists of vectors (α4κ2 − α3γ2,−α2pzn − α3γ2pyd + α4κ1pzs + α4κ2pyu, α1pze −
α3γ1pzw+α3γ2pxd−α4κ2pxu)

T = (α4κ2−α3γ2,−α2pzn−α3γ2pyw+α4κ1pzs+α4κ2pys−, α1pzn−
α3γ1pzw + α3γ2pxw −α4κ2pxs)

T , where pzs, pys, pzw, pxw are fixed numbers, and pzn, pyw and pxs

are in some ranges.
When the position vectors are fixed, α1, α2, α3 and α4 are also determined; only κ1, κ2 γ1 and

γ2 are variable. This implies that the fingers induce a tetrahedron δ in V space, whose vertices are
determined by the combinations of the extreme values of κ1, κ2 γ1 and γ2. When the three fingers
move in the interior of eEN , eSU and eWD independently, the corresponding δ also moves in a
certain region. This region is ∆, and it is a convex polytope in V space; π(∆) is a convex polygon
on Γν . The shapes of ∆ and π(∆) for other sets of an edge triple are similar to these described
above.

In phase II, we wish to find all triangles from π(f̂ ν
U) and π(f̂ ν

D) with a set of points satisfying
the second condition of Lemma 8.2 with each set of A′. The phase II of the algorithm for the
case of two horizontal edges and three faces in Section 8.2.2 can identify all such triangles in
O(n2 log2 n + K ′ log4 n + K) time; there are O(n) triangles of π(f̂ ν

U) and π(f̂ ν
D).

When t is sufficiently small, we can find A in a brute-force manner. When t < n1/3, we report
A in O(t3n) time.

Theorem 8.11 All K sets of two horizontal edges, one vertical edge and one face of P that yield
form-closure grasps with four frictionless point fingers can be enumerated in:

1. O(t3n) time, when t < n1/3,

2. O(n2 log2 n + K ′ log4 n + K) time (K ′ = |A|), when n1/3 ≤ t ≤ n.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 115

8.2.3 Combinations of faces and concave vertices

Let m be the number of concave vertices of a rectilinear polyhedron P . In this section, we report
all combinations of faces and concave vertices that allow form-closure grasps with at most five
frictionless point fingers. The combinations that we consider in this section are: (i) one concave
vertex and four faces, and (ii) two concave vertices and one face.

One concave vertex and four faces

We wish to report all sets of one concave vertex and four faces22 that yield form-closure grasps with
five frictionless point fingers; C is a concave vertex and four faces. Remember that each set of A
reported by the algorithms presented in this section yields a form-closure grasp with five fingers,
and two of the five fingers induce two face normals of a family of U or D. To identify all sets of
a concave vertex and four faces that allow a form-closure grasp, we apply the algorithms to P and
rotated P with Rot1 and Rot2. The following lemma shows that the algorithms on P and rotated P
with Rot1 and Rot2 can report all sets of a concave vertex and four faces with form-closure grasps.

Lemma 8.12 When we rotate a set of a concave vertex and four faces that yields a form-closure
grasp with five fingers, using Rot1 or Rot2, the rotated set becomes a set of a concave vertex and
four faces, such that two of the five fingers induce two face normals of a family of U or D.

Proof: We take any set of a concave vertex and four faces that yields a form-closure grasp with
five fingers. If two of the five fingers induce two face normals of a family of U or D, we are done.
Hence we look at the case when the two fingers induce two face normals of E, W , N or S.

Without loss of generality, assume that two fingers induce two face normals of E. When we
rotate a concave vertex with Rot1, it is still incident to three faces: one from E or W , one from N
or S, and one from U or D. And the two face normals of E will be two face normals of D, with
Rot1. �

One vertex and two faces are necessary and sufficient to have a set of points that satisfy the
first condition of Lemma 8.2; C ′ is a concave vertex and two faces. We first see the shape of v̂h

of a vertex v on Γh. Without loss of generality, we take a vertex vENU from ENU . A finger
at vENU induces a wrench set µ1v̂ENU,E + µ2v̂ENU,N + µ3v̂ENU,U

23 for all 0 ≤ µ1, µ2, µ3 ≤ 1,
where µ1 + µ2 + µ3 = 1. Note that π(µ1v̂

h
ENU,E) for all µ1 and π(µ2v̂

h
ENU,N) for all µ2 map to

two points on Γh, thus π(µ1v̂
h
ENU,Eµ2v̂

h
ENU,N) for any µ1 and µ2 forms a line segment. Therefore,

v̂h of a vertex v corresponds to a vertex wrench set, and f̂h of a face f corresponds to an edge
wrench set of a polygon. There are O(n) faces and m vertices, therefore, the algorithm proposed
in Section 3.3.2 can report A′ in O(n log n + K ′) time.

We pick a triple of a concave vertex and two faces from A′. Without loss of generality, as-
sume that the triple is (vENU , fW , fS); vENU is from ENU , and fW and fS are from W and S

respectively. The triple induces three wrench sets f̂W , f̂S and µ1v̂ENU,E + µ2v̂ENU,N + µ3v̂ENU,U .
Let hE = v̂h

ENU,E, hN = v̂h
ENU,N , hU = v̂h

ENU,U , hW ∈ f̂h
W and hS ∈ f̂h

S . When µ3 = 0, there
exist α1, α2, α3 and α4 in the intervals of 0 and 1, such that α1hE + α2hN + α3hW + α4hS = �0,
where α1 + α2 = 1 and α3 + α4 = 1, because (vENU , fW , fS) ∈ A′. This implies that µ1 and
µ2 can be any number, as long as µ1 : µ2 = α1 : α2. Since hU = �0, µ3 can also be any num-
ber as long as 0 ≤ µ3 < 1. Thus we set µ1 = κ1α1, µ2 = κ1α2 and µ3 = κ2.24 Then we get

22In fact, this set can have one concave vertex and three faces, because two fingers are allowed to be on one face.
23Note that v̂ENU,E , v̂ENU,N and v̂ENU,U are three wrench points.
24Observe that κ1α1, κ1α2 and κ2 are in the intervals of 0 and 1, and κ1α1 + κ1α2 + κ2 = 1.

116 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

κ1(α1hE +α2hN)+κ2hU +α3hW +α4hS = �0 for 0 < κ1 ≤ 1, 0 ≤ κ2 < 1,25 where κ1 +κ2 = 1.
We define ∆ to be the set of points in V space induced by three fingers at v, and anywhere on fW

and fS . The set ∆ has the following form:

∆ := {κ1(α1νE + α2νN) + κ2νU + α3νW + α4νS |
νE = v̂ν

ENU,E, νN = v̂ν
ENU,N , νU = v̂ν

ENU,U , νW ∈ f̂ ν
W , νS ∈ f̂ ν

S ,
0 < κ1 ≤ 1, 0 ≤ κ2 < 1, κ1 + κ2 = 1}.

The set ∆ consists of vectors (κ2,−α2κ1pzn + κ2pyu + α4pzs, α1κ1pze − κ2pxu − α3pzw)T =
(κ2,−α2κ1pzn+κ2pyn+α4pzs, α1κ1pzn−κ2pxn−α3pzw)T , where pzn, pxn, pyn are fixed numbers,
and pzs and pzw are in some ranges.

The finger positions on vENU , fW and fS determine the coefficients α1, α2, α3 and α4; only κ1

and κ2 are variable. Hence the three fingers at fixed positions induce a line segment δ in V space;
the extreme values of κ1 and κ2 determine the endpoints of δ. Observe that an endpoint of ∆ is on
the plane ηz = 0, (the endpoint for the case when κ1 = 1 and κ2 = 0). When a finger is at vENU

and the two fingers move in the interior of fW and fS independently, the corresponding segment
δ also moves in a certain region in V space. This region is ∆, and it is a convex polytope, a face
of which lies on the plane ηz = 0. The projection of ∆ is a polygon, an edge of which lies on the
line ηz = 0 on Γν . When the vertex is from other families, the shapes of ∆ and π(∆) are similar to
these described above.

In phase II, we wish to report all triangle pairs from π(f̂ ν
U) and π(f̂ ν

D) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A ′. The phase II of the algorithm
for the case of a horizontal edge and five faces in Section 8.2.2 can report all such triangle pairs,
thus A in O(n2 log2 n + nK ′ log4 n + K) time; there are O(n) faces.

Theorem 8.13 Then all K sets of one concave vertex and four faces of P that yield form-closure
grasps with five frictionless point fingers can be enumerated in O(n2 log2 n + nK ′ log4 n + K)
time, where K ′ = |A|.

Two concave vertices and one face

We wish to report all sets of two concave vertices and one face that yield form-closure grasps with
three frictionless point fingers; C is two concave vertices and one face. Remember that each set
of A reported by the algorithms presented in this section yields a form-closure grasp with three
fingers, and two of the three fingers induce two face normals of a family of U or D. To identify all
sets of two concave vertices and a face that allow a form-closure grasp, we apply the algorithms
to P and rotated P with Rot1 and Rot2. The following lemma shows that the algorithms on P
and rotated P with Rot1 and Rot2 can report all sets of two concave vertices and a face with
form-closure grasps.

Lemma 8.14 When we rotate a set of two concave vertices and a face that yields a form-closure
grasp, with Rot1 or Rot2, the rotated set becomes a set of two concave vertices and a face, such
that it induces two face normals of a family of U or D.

Proof: We take any set of two concave vertices and a face of P that yields a form-closure grasp
with five fingers. If it induces two face normals of a family U or D (these face normals could be
induced by two fingers at the vertices), then we are done. Hence we will look at the cases when it
induces two face normals of a family of E, W , N or S.

25Since κ1(α1hE + α2hN) must be a non-zero vector, κ1 must be non-zero, thus κ2 must not be 1.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 117

Without loss of generality, assume that the set induces two face normals of E. When we rotate
a concave vertex with Rot1, it is still incident to three faces: one from E or W , one from N or S,
and one from U or D. With Rot1, the two face normals of E will be two face normals of D. �

A face must be horizontal, if the face and two concave vertices yield a form-closure grasp and
they induce two face normals of a family U or D. Thus C ′ is two concave vertices, because they
can have a set of points satisfying the first condition of Lemma 8.2. There are m concave vertices,
therefore, the algorithm proposed in Section 3.3.3 can report A′ in O(m log2 m + K ′) time.

We pick a vertex pair from A′. Without loss of generality, assume that the pair is (vENU , vWSD);
vENU is from ENU and vWSD is from WSD. Let hE = v̂h

ENU,E, hN = v̂h
ENU,N , hU = v̂h

ENU,U ,
hW = v̂h

WSD,W , hS = v̂h
WSD,S and hD = v̂h

WSD,D. With the arguments in the case of one concave
vertex and four faces in Section 8.2.3, there exist α1, α2, α3, α4 in the intervals of 0 and 1, such that
κ1(α1hE +α2hN)+κ2hU +γ1(α3hW +α4hS)+γ2hD = �0 for 0 < κ1, γ1 ≤ 1 and 0 ≤ κ2, γ2 < 1,
where κ1 + κ2 = 1, γ1 + γ2 = 1, α1 + α2 = 1 and α3 + α4 = 1. Two fingers at vENU and vWSD

induce the whole set of points of ∆ in V space, which has the following form:

∆ := {κ1(α1νE + α2νN) + κ2νU + γ1(α3νW + α4νS) + γ2νD |
νE = v̂ν

ENU,E, νN = v̂ν
ENU,N , νU = v̂ν

ENU,U , νW = v̂ν
WSD,W , νS = v̂ν

WSD,S,
νD = v̂ν

WSD,D, 0 < κ1, γ1 ≤ 1, 0 ≤ κ2, γ2 < 1, κ1 + κ2 = 1, γ1 + γ2 = 1}.

Then ∆ consists of vectors (κ2 − γ2,−α2κ1pzn + κ2pyu + α4γ1pzs − γ2pyd, α1κ1pze − κ2pxu −
α3γ1pzw +γ2pxd)

T = (κ2−γ2,−α2κ1pzn +κ2pyn +α4γ1pzs−γ2pys, α1κ1pzn−κ2pxn−α4γ1pzs +
γ2pxs)

T . Observe that the position vectors are all fixed. This determines α1, α2, α3 and α4 as well,
hence only κ1, κ2, γ1 and γ2 are variable. When κ1, κ2, γ1 and γ2 have the extreme values 0 and
1, they make the four vertices of ∆—∆ is a tetrahedron. The projection of ∆ on Γν is a convex
quadrilateral in general. Note that ∆ and π(∆) for the other vertex pairs from A′ are similar to
these described above.

In phase II, we wish to find all triangles from π(f̂ ν
U) and π(f̂ ν

D) with a set of points satisfying
the second condition of Lemma 8.2 with each set of A′. The phase II of the algorithm for the
case of two horizontal edges and three faces in Section 8.2.2 can identify all such triangles in
O(n2 log2 n + K ′ log4 n + K) time; there are O(n) triangles of π(f̂ ν

U) and π(f̂ ν
D).

When m is sufficiently small, we can find A in a brute-force manner. When m < n1/2, we
report A in O(m2n) time.

Theorem 8.15 All K sets of two concave vertices and one face of P that allow form-closure grasps
with three frictionless point fingers can be enumerated in:

1. O(m2n) time, when m < n1/2,

2. O(n2 log2 n + K ′ log4 n + K) time (K ′ = |A|), when n1/2 ≤ m ≤ n,

8.2.4 Combinations of concave vertices, concave edges and faces

Let n, t and m be the numbers of faces, concave edges and concave vertices of a rectilinear poly-
hedron P . In this section, we report all sets of one concave vertex, one concave edge and two faces
that allow form-closure grasps with four frictionless point fingers. We do not consider one concave
vertex and two edges, because Lemma 8.2 does not provide an efficient algorithm for this case.

We wish to report all sets of one concave vertex, one concave edge and two faces26 that allow
form-closure grasps with four frictionless point fingers. Remember that each set of A reported by

26In fact, this set may have one concave vertex, one concave edge and one face, because two fingers are allowed to be on one face.

118 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

the algorithms presented in this section yields a form-closure grasp with four fingers, and two of
the four fingers induce two face normals of a family of U or D. To identify all sets of one concave
vertex, one concave edge and two faces that allow a form-closure grasp, we apply the algorithms
to P and rotated P with Rot1 and Rot2. The following lemma shows that the algorithms on P and
rotated P with Rot1 and Rot2 can report all sets of one concave vertex, one concave edge and two
faces with form-closure grasps.

Lemma 8.16 When we rotate a set of one concave vertex, one concave edge and two faces that
yields a form-closure grasp, with Rot1 or Rot2, the rotated set becomes one of the two cases:

(i) one concave vertex, one vertical concave edge and two horizontal faces,

(ii) one concave vertex, one horizontal concave edge, one vertical face and one horizontal face.

Proof: We take any set of one concave vertex, one concave edge and two faces of P that yields a
form-closure grasp with four fingers. If two of the four fingers induce two face normals of a family
U or D (the face normals could be induced by the finger on the edge), then we are done. Hence we
will look at the cases when two fingers induce two face normals of a family E, W , N or S.

Without loss of generality, assume that two fingers induce two face normals of E. When we
rotate a concave vertex with Rot1, it is still incident to three faces: one from E or W , one from
N or S, and one from U or D. When we rotate a vertical edge with Rot1, it becomes horizontal.
When we rotate a horizontal edge with Rot1, it either remains horizontal or becomes vertical. See
Table 8.1. Observe that the rotated set involves three face normals of D and U . When the edge
is vertical, only one of these three face normals is induced by a finger at the vertex. This implies
that the two faces are horizontal, which leads to case (i). When the edge is horizontal, two of these
three face normals are induced by two fingers at the vertex and on the horizontal edge. This implies
that one face is horizontal, and another face is vertical, which leads to case (ii). �

When the edge is vertical, a vertex and an edge are necessary and sufficient to have a set
of points that satisfy the first condition of Lemma 8.2; C ′ is a vertex and an edge. There are
m vertices and t edges. Therefore, the algorithm proposed in Section 3.3.3 can report A′ in
O(max(m, t) log2 max(m, t) + K ′) time.

We pick a pair of a concave vertex and a vertical concave edge from A′. Without loss of
generality, assume that the pair is (vENU , eWS); vENU is from ENU and eWS is from WS. We
define ∆ to be the set of points in V space induced by the two fingers at vENU and anywhere on
eWS . With the arguments in the case of a horizontal concave edge and four faces in Section 8.2.2
and in the case of one concave vertex and four faces in Section 8.2.3, we have the following formula
for ∆:

∆ := {κ1(α1νE + α2νN) + κ2νU + α3νW + α4νS |
νE = v̂ν

ENU,E, νN = v̂ν
ENU,N , νU = v̂ν

ENU,U , νW ∈ êν
WS,W , νS ∈ êν

WS,S

0 < κ1 ≤ 1, 0 ≤ κ2 < 1, κ1 + κ2 = 1}.

Since π(v̂h
ENU) and π(êh

WS) are line segments on Γh, α1, α2, α3 and α4 are fixed numbers. The set
∆ consists of vectors (κ2,−α2κ1pzn+κ2pyu+α4pzs, α1κ1pze−κ2pxu−α3pzw)T = (κ2,−α2κ1pzn+
κ2pyn + α4pzs, α1κ1pzn − κ2pxn − α3pzs)

T . Note that pzs is in a range, and pxn, pyn and pzn are
fixed numbers. The equality holds because one finger at vENU induces three face normals of E, N
and U , and another finger on eWS induces two face normals of S and W .

The finger position at e determines the coefficients α1, α2, α3 and α4; only κ1 and κ2 are
variable. The two fingers at vENU and anywhere on eWS induce a line segment δ in V space, one
end point of which lies on the plane ηz = 0. When one of the two fingers move in the interior of

8.2 Computing all form-closure grasps of a rectilinear polyhedron 119

eWS , the corresponding segment δ also moves in a certain region in V space. This region is ∆, and
it is a convex polytope, a side of which lies on the plane ηz = 0 in V space. The projection π(∆)
is a convex polygon with a side on the line ηz = 0 on Γν . The shapes of ∆ and π(∆) are similar to
these described above, when the edge and the vertex are from other families.

In phase II, we wish to report all triangle pairs from π(f̂ ν
U) and π(f̂ ν

D) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A ′. The phase II of the algorithm
for the case of a horizontal edge and five faces in Section 8.2.2 can report all such triangle pairs,
thus A in O(n2 log2 n + nK ′ log4 n + K) time; there are O(n) faces.

When the edge is horizontal, a vertex, an edge and a face are necessary and sufficient to have a
set of points that satisfy the first condition of Lemma 8.2; C ′ is a vertex, an edge and a face. There
are O(n) faces, vertices and edges. Therefore, the algorithm proposed in Section 3.3.2 can report
A′ in O(n logn + K ′) time.

We pick a triple of a concave vertex, a vertical concave edge and a face from A′. Without loss
of generality, assume that the triple is (vENU , eSD, fW); vENU is from ENU , eSD is from SD and
fW is from W . We define ∆ to be the set of points in V space induced by the three fingers at vENU

and anywhere on eSD and fW . With the arguments in the case of a horizontal concave edge and
four faces in Section 8.2.2, and in the case of a horizontal edge and five faces in Section 8.2.2, we
have the following formula for ∆:

∆ := {κ1(α1νE + α2νN) + κ2νU + α3νW + α4(γ1νS + γ2νD) |
νE = v̂ν

ENU,E, νN = v̂ν
ENU,N , νU = v̂ν

ENU,U , νW ∈ f̂ ν
W , νS ∈ êν

SD,S, νD ∈ êν
SD,D,

0 < κ1, γ1 ≤ 1, 0 ≤ κ2, γ2 < 1, κ1 + κ2 = 1, γ1 + γ2 = 1}.

Note that α1, α2, α3, α4 are in the ranges dictated by the equation κ1(α1hE + α2hN) + κ2hU +

α3hW + α4(γ1hS + γ2hD) = �0, where hE = v̂h
ENU,E, hN = v̂h

ENU,N , hU = v̂h
ENU,U , hW ∈ f̂h

W ,
hS ∈ êh

SD,S and hD ∈ êh
SD,D. The set ∆ consists of vectors (κ2 − α4γ2,−α2κ1pzn + κ2pyu +

α4γ1pzs − α4γ2pyd, α1κ1pze − κ2pxu + α4γ2pxd − α3pzw)T = (κ2 − α4γ2,−α2κ1pzn + κ2pyn +
α4γ1pzs −α4γ2pys, α1κ1pzn −κ2pxn +α4γ2pxs −α3pzw)T . Note that pzw and pxs are in some open
ranges, and pxn, pyn, pzn, pys and pzs are fixed numbers. The equality holds because one finger at
vENU induces three face normals from E, N and U , and another finger on eSD induces two face
normals of S and D.

The finger positions on vENU , eSD and fW determine α1, α2, α3 and α4; only κ1, κ2 and γ1, γ2

are variable. Thus the three fingers (at fixed positions) induce a tetrahedron δ in V space, a vertex
of which lies on the plane ηz = 0; when κ2 − α3γ2 = 0. When two of the three fingers move in
the interior of eSD and fW independently, the corresponding tetrahedron δ also moves in a certain
region in V space. This region is ∆, and it is a convex polytope in V space, one face of which lies
on the plane ηz = 0. The projection π(∆) is a convex polygon, a side of which lies on the line
ηz = 0 on Γν . The shapes of ∆ and π(∆) are similar to these described above, when the vertex,
the edge and the face are from other families.

In phase II, we wish to report all triangles from π(f̂ ν
U) and π(f̂ ν

D) with a set of points satisfying
the second condition of Lemma 8.2 with each set of A′. The phase II of the algorithm for the
case of two horizontal edges and three faces in Section 8.2.2 can identify all such triangles in
O(n2 log2 n + K ′ log4 n + K) time; there are O(n) triangles of π(f̂ ν

U) and π(f̂ ν
D).

The following theorem summarizes the result.

Theorem 8.17 All K sets of one concave vertex, one concave edge and two faces of P that al-
low form-closure grasps with four frictionless point fingers can be enumerated in O(n2 log2 n +
nK ′ log4 n + K) time, where K ′ = |A|.

120 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

8.3 Conclusion

This work is the first step to provide efficient ways of reporting all form-closure grasps of a three-
dimensional object. The form-closure condition in six-dimensional wrench space is converted into
two subproblems in three-dimensional space, which are closely related. These subproblems are
again transformed into two-dimensional intersection search problems. The two subproblems cor-
respond to the immobilizations of the object against the horizontal movements, and then against the
vertical movements. Because of the nature of a rectilinear polyhedron, this formulation produced
efficient algorithms for a rectilinear polyhedron.

This formulation, unfortunately, does not lead to attractive efficient output-sensitive algorithms
for other kinds of three-dimensional objects; the difficulty lies in combining the two subproblems
with arbitrary normal directions. It is open to efficiently report all form-closure grasps on any
three-dimensional object. But it is already a great challenge to design an efficient output-sensitive
algorithm to report all combinations of faces, concave edges and concave vertices of any polyhe-
dron, such that fingers on the set yield at least one form-closure grasp.

All algorithms presented in this chapter except one are sensitive to both K ′ and K, where K ′

and K are the sizes of the intermediate output and the final output respectively; the algorithm to
compute all sets of three horizontal concave edges and a face is sensitive to K ′ only. It remains
open to design an efficient algorithm to report all sets of three horizontal concave edges and a face
of a rectilinear polyhedron that is sensitive to K ′ and K.

Another attractive characteristics of a grasp is insensitivity to small misplacements of the fingers
or minor shape variations of the objects. In such a setting, we should also be able to guarantee
insensitivity to minor variations in the directions of the surface normals or their locations. Although
such an extension is definitely challenging, we believe that the insights presented in this chapter
could be of use to attack those problems as well.

Chapter 9

Immobilizing Hinged Polygons

Most of the existing results on immobilization apply to rigid bodies, and none of the above results is
about immobilizing non-rigid objects. As a first step in this direction, we study immobilization of a
serial chain of polygons connected by hinges. This can be seen as a case study of immobilization of
non-rigid objects. A hinge allows the two adjacent polygons to rotate around it. We shall assume
that the hinges are located at vertices. Our aim is to immobilize any serial chain of n hinged
polygons in a priorly specified placement, with minimum number of fingers.1

We analyze motions by identifying the areas where a vertex of a polygon can move locally
from a given configuration with given set of point fingers on the boundary. Our analysis is based
on curvature effects, precisely as the analysis of Czyzowicz et al. [33] is on curvature effects. We
show that (n+2) frictionless point fingers suffice to immobilize any serial chain of n �= 3 polygons
without parallel edges in a given placement; it is unclear whether five fingers can achieve it. We
observe that the number of fingers required to immobilize a serial chain of n polygons equals the
number of degrees of freedom of the chain. Note that the number of hinges h equals to (n − 1),
and that the degrees of freedom of a serial chain is (n + 2), which is (h + 3). All the proofs are
constructive in the sense that we give actual configurations with (n+2) fingers for chains of n �= 3
polygons. Allowing for parallel edges leads to an increase in the number of fingers of at most one.

One observation about the first-order immobility is that any perturbation of any combination
of the (n + 2) fingers along the object’s boundary maintains the immobility. This has motivated
us to also investigate the number of point fingers required to obtain a more robust immobilization,
which has the property—like form closure—that any finger can be perturbed slightly along the
edges without destroying the immobility. We construct finger configurations for robust immobility
for a serial chain of n polygons with � 6

5
(n+2)� fingers if the polygons have no parallel edges, and

with � 5
4
(n + 2)� fingers if the polygons are allowed to have parallel edges. Informally speaking,

we achieve robustness at the cost of one additional finger per twenty polygons.
This chapter is structured as follows. We first introduce the concept of immobility and robust

immobility in Section 9.1. In Section 9.2, we show how we immobilize a serial chain of polygons
with n+2 fingers. Section 9.2.1 is about constructing an immobility grasp for a chain of polygons
without parallel edges, and Section 9.2.2 is for polygons with parallel edges. In Section 9.3, we
show how we robustly immobilize a serial chain of polygons. Section 9.3.1 is about constructing
a robust immobility grasp for a chain of polygons without parallel edges, and Section 9.3.2 is for
polygons with parallel edges. Section 9.4 is about a variation of hinged polygons: constructing
an immobility and robust immobility grasp for a cycle of hinged polygons and a chain of hinged

1This chapter is based on “Fixturing hinged parts” [22] by J.-S. Cheong, K. Goldberg, M.H. Overmars and A.F. van der Stappen in ICRA (2002),
and “Immobilizing hinged parts” [26] by J.-S. Cheong, A.F. van der Stappen, K. Goldberg, M.H. Overmars and E. Rimon, which will appear in the
International Journal on Computational Geometry and Applications.

122 Immobilizing Hinged Polygons

polygons with one vertex attached to a wall. In Section 9.5, we discuss the work presented in this
chapter.

9.1 Immobility and robust Immobility

In this section, we introduce notations, and discuss our notions of immobility and robust immobil-
ity. In addition, we report some known results on immobilization of a single polygon.

Let (P1, P2, · · · , Pn) be a serial chain of n hinged polygons. Each polygon Pi in the chain
shares a vertex—the hinge—with its successor Pi+1; we denote the hinge connecting Pi and Pi+1

by vi. A hinge vi allows the adjacent polygons Pi and Pi+1 to rotate relative to each other. It is our
aim to study how many frictionless point fingers along the boundaries are sufficient to immobilize
the chain in a given placement, or at a configuration q. We assume that the two edges of polygon
Pi incident to its hinge vi are not collinear. In addition, we assume that the polygons including the
boundaries are strictly disjoint except at the hinges. The finger arrangement for (P1, P2, · · · , Pn)
is represented as (n1,n2, ...,nn), where ni is the number of fingers placed on Pi.

A set of point fingers immobilizes the chain (P1, P2, · · · , Pn) at configuration q, if these fingers
prevent the chain from leaving q. In other words, there exists no free continuous motion from q
to a neighbor configuration q′. Showing that an object is immobilized (at an isolated configuration
q) involves considering the curvatures of potential motions, which are dictated by the shape of the
object and the fingers. Czyzowicz et al’s notion of immobility [33] and second-order immobility
[75] uses this, while form closure [70, 58, 46] and first-order immobility [74] does not need to
consider these details. In other words, an object in form closure or first-order immobility maintains
the immobility regardless of the shape of the object and the fingers. Our notion of immobility takes
the curvature of potential motions into account. Contrary to Rimon and Burdick, who carry out
their analysis in configuration space, we perform our analysis on the plane of the chain itself, as
Czyzowicz et al. To show that a chain is immobilized, we use an intuitive two-step analysis. The
first step is to show that none of the hinges vi can move. Then we show that P1 cannot rotate
around v1, and that Pn cannot rotate around vn−1; Pi (i = 2, · · · , n − 1) is immobilized because
two points of Pi, vi−1 and vi are fixed.

The immobility of a chain is analyzed by looking at the free areas of some vertices. Free area is
where a vertex of a polygon P can locally move around, when P is held with some fingers. There
are two different free areas depending on the nature (convex or concave) of the vertices. Let ϑ be
the angle at a vertex v of P . Let C(p, p′, p′′) be the unique circle defined by three non-collinear
points p, p′ and p′′. We denote the interior including the boundary of C(p, p′, p′′) by C+(p, p′, p′′),
and the exterior including the boundary of C(p, p′, p′′) by C−(p, p′, p′′). The following lemma
describes the behavior of a vertex v of a free polygon P , when two point fingers p1 and p2 are
placed along two adjacent edges e1 and e2 respectively. It is a generalization of the result on page
61–62 in [10].

Lemma 9.1 Any motion of P causes v to initially move into C+(v, p1, p2) when v is convex, and
C−(v, p1, p2) when v is concave.

Proof: When v is a convex vertex, we assume that v can reach outside of C(v, p1, p2) by translation
and rotation from the current position, under the restriction of p1 and p2. Let v′′ be the point outside
of C+(v, p1, p2) as in Figure 9.1 (a). Let v′ be the intersection point of the line p1v′′ and C(v, p1, p2).
It is a well known geometrical fact that the angle ∠p1v

′p2 = ∠p1vp2 = ϑ. A simple trigonometric
calculation shows that ∠p1v

′′p2 < ∠p1vp2, thus ∠p1v
′′p2 < ϑ, which is a contradiction. Therefore,

v can only move locally in C+(v, p1, p2).

9.2 Immobility of a serial chain of hinged polygons 123

(a) (b)

v′

p1

p2

C(v, p1, p2)

P

v′′
v

v′

p1

p2
v′′
ϑ

v

P

C(v, p1, p2)

ϑϑ

ϑ

Figure 9.1: The free area where v can locally move around under the restriction of the two fingers p 1 and p2 is: (a) the
interior and the boundary of C when v is convex, and (b) the exterior and the boundary of C when v is concave.

When v is a concave vertex, we assume that v can be placed inside of C(v, p1, p2) by translation
and rotation from the current position, under the restriction of p1 and p2. Let v′′ be the point inside
of C(v, p1, p2) as in figure 9.1 (b). Let v′ be the intersection point of the boundary of C(v, p1, p2)
and the supporting line of p1v′′. For the same reason described in the previous case, ∠p1v

′p2 =
∠p1vp2 = ϑ, thus ∠p1v

′′p2 > ϑ, which is a contradiction. Therefore, v can only move locally in
C−(v, p1, p2). �

Besides the fact that first-order immobility (form closure) do not take into account the cur-
vature of potential motions, there is another intuitive and essential difference with second-order
immobility (Czyzowicz et al’s notion). Any slight perturbation of the frictionless fingers along the
edges can maintain first-order immobility, which is highly unlikely for second-order immobility.
Our notion of immobility behaves consistently, as it will be easy to see that small perturbations of
the fingers destroy the immobility. This motivates us to explore the price of insensitivity to small
perturbations. Before we introduce the new notion, we formulate the notion of the immobility of
a chain (P1, P2, · · · , Pn): a set of fingers immobilize a chain (P1, P2, · · · , Pn) in its given place-
ment, if the chain cannot change its placement without violating the rigidity of the object and the
fingers, or the connectivity of the chain.

Definition 9.1 A set of point fingers robustly immobilize the chain (P1, P2, · · · , Pn) if these fingers
immobilize (P1, P2, · · · , Pn), and if there exists a real number ε > 0 for each finger placed along
the interior of an edge, such that any perturbation of the finger in the ε-interval in both directions
along the edge maintains the immobility.

We end this section by reporting a few simple results. The fairly easy proof of Lemma 9.2 is
left to the readers. Lemma 9.3 and 9.4 are from Lemma 9.2 and Markenscoff et al. [51], Mishra et
al. [56], Rimon and Burdick [73], van der Stappen et al. [82] and Czyzowicz et al. [33].

Lemma 9.2 A two dimensional polygon P in form closure is robustly immobilized.

Lemma 9.3 Any polygon can be robustly immobilized with four frictionless point fingers in linear
time.

Lemma 9.4 Any polygon without parallel edges can be immobilized with three frictionless point
fingers in linear time.

9.2 Immobility of a serial chain of hinged polygons

A polygon without parallel edges can be immobilized with three point fingers, while a polygon
with parallel edges may need one more finger to be immobilized. Likewise, a serial chain of

124 Immobilizing Hinged Polygons

(a) (b)
v1

l

l′

P1 P2

C1
C2

e1

e2

v1

l

l′
C1

C2

P1

P2

e′2e′1

Figure 9.2: Two hinged polygons with four fingers.

n polygons with parallel edges needs more fingers in general. First, we consider immobility of
hinged polygons without parallel edges, and then those with parallel edges.

9.2.1 Polygons without parallel edges

We will subsequently discuss the immobilization of serial chains of two, three and four polygons
without parallel edges. The immobilities of a single polygon, and of serial chains of two and four
polygons serve as building blocks to immobilize longer chains.

Two polygons without parallel edges

We show how four fingers can immobilize two hinged polygons P1 and P2. At most one polygon
can be concave at v1; the rest are convex at v1. We first focus on the case when both P1 and P2 are
convex at v1 (Figure 9.2 (a)). Let ei and e′

i be the two edges of Pi incident to the hinge v1. Let l be
a line containing v1 such that e1 and e′

1 are strictly on one side of l, and that e2 and e′
2 are strictly

on the other side. Let l′ be the perpendicular line of l at v1. Take a circle Ci for Pi(i = 1, 2), which
satisfies the following two conditions:

1. The center of Ci is on l′ so that Ci touches l at v1, and

2. Ci intersects ei and e′
i in their interiors.

Place four fingers at the intersection points of the circles and the polygons.
When one polygon, say P2, is concave at v1, the construction is the same as in the previous

case, except for a few details. First, the line l is a line through v1, only one side of which contains
all the adjacent edges—see Figure 9.2 (b). Second, C1 is smaller than C2. The next lemma shows
why these immobilize two hinged polygons.

Lemma 9.5 Four fingers suffice to immobilize two hinged polygons.

Proof: The free area of v1 is C+ or C− according to Lemma 9.1. In any case, the two free areas
(C+

1 and C+
2 or C+

1 and C−
2 or C−

1 and C+
2) touch each other at v1. The position of v1 is fixed, because

it is the only intersection of the free areas. In other words, v1 cannot move without breaking the
fingers or disconnecting the polygons. Four fingers on P1 and P2 prohibit he rotations of P1 and
P2 around v1. Therefore, four fingers suffice to immobilize two hinged polygons. �

In general, less than four fingers can not immobilize two hinged polygons; in most cases, one
finger on Pi cannot prevent the rotation of Pi around the hinge away from the finger.

9.2 Immobility of a serial chain of hinged polygons 125

Pi

Pi+1

vi vi+1

Pi+2

Pi+3

vi+1

Figure 9.3: A configuration of six fingers for four hinged polygons without parallel edges.

Four polygons without parallel edges

Four polygons without parallel edges can be immobilized with six fingers; immobilize the first and
the last polygons with three fingers for each. The finger arrangement is (3, 0, 0, 3). The following
lemma shows that the two polygons in the middle are immobilized.

Lemma 9.6 Two adjacent polygons P2 and P3 are immobilized if their neighbors P1 and P4 are
immobilized.

Proof: Let C1 and C3 be the circles around v1 and v3 that v2 follows respectively (Figure 9.3).
Since the hinges v1 and v3 are in fixed positions, v2 of P2 and P3 can move along the arc of C1 and
C3 respectively. Only at one intersection point of C1 and C3, v2 can lie such that the distances |v1v2|
and |v2v3| are preserved at the same time. In other words, the position of v2 is also fixed. Because
v1 and v2 of P2, and v2 and v3 of P3 are fixed, P2 and P3 are immobilized. �

Corollary 9.1 Six point fingers suffice to immobilize a serial chain of four hinged polygons.

Immobilizing n polygons without parallel edges

Here we immobilize a serial chain of n ≥ 5 hinged polygons, using the finger arrangements for
one polygon, and two and four hinged polygons. From the right end of the chain, cut off a trailing
multiple of four polygons, until at most four polygons are left. When three are left, combine them
with the next four polygons. Nine fingers with finger arrangement of (3, 0, 0, 3, 0, 0, 3) immobilize
these seven polygons. Lemma 9.4, 9.5 and Corollary 9.1 immobilize the remaining one polygon,
two or four polygons. Each of the remaining quadruples are immobilized with the arrangement
(0, 0, 2, 2). Since the total number equals to the degree of freedom of the whole chain, the number
of fingers is tight.

Theorem 9.7 A serial chain of n (�= 3) hinged polygons without parallel edges can be immobilized
with (n + 2) fingers, which is tight. Six fingers can immobilize three polygons without parallel
edges.

9.2.2 Immobility of hinged polygons with parallel edges

Four fingers are necessary to immobilize a polygon with parallel edges (Lemma 9.3). The immobil-
ity for two polygons in Lemma 9.5 still holds when the polygons have parallel edges. Six (= n+3)
fingers can immobilize three arbitrary polygons as follows. Immobilize the first two polygons P1

and P2 with (2, 2) finger arrangement. The last polygon P3 will rotate around the hinge v2. Placing
two fingers on the incident edges to v2 will immobilize P3. The finger arrangement is (2, 2, 2)
(Figure 9.4.)

126 Immobilizing Hinged Polygons

P2

v2

v1

P3

P1

Figure 9.4: A finger arrangement that immobilizes three arbitrary polygons.

P2

v3

v1

P4

P1

P3

v2

E4

l

p
p′

Figure 9.5: Four arbitrary polygons can be immobilized with seven fingers.

Lemma 9.8 Six fingers suffice to immobilize three polygons with parallel edges.

Proof: Since P1 and P2 are immobilized (Lemma 9.5), the positions of v1 and v2 are fixed. The
two fingers on P3 prohibits the rotation of P3 around v3. �

Seven (= n + 3) fingers can immobilize four polygons with parallel edges as follows. Immobi-
lize the first two polygons P1 and P2 with four fingers. Take a maximal inscribed circle of the last
polygon P4. If the touching points of the circle and P4 gives an immobility finger arrangement,
place fingers at the intersections. Otherwise, place a finger p1 at one touching point, and p2 and p3

on both sides of the other touching point—see P4 in Figure 9.5.

Lemma 9.9 Seven fingers suffice to immobilize four polygons with parallel edges.

Proof: Since P1 and P2 are immobilized (Lemma 9.5), the positions of v1 and v2 are fixed. If
the touching points of a maximal inscribed circle and P4 gives an immobility finger arrangement,
we are done. Otherwise, two of the touching edges are parallel edges. Let e and e′ be the parallel
edges of P4 along which the three fingers p1, p2 and p3 are placed. The vertex v3 of P3 follows the
circular arc C3 around v2, while v3 of P4 slides along the line l through v3 that is parallel to e and
e′. Only at the intersections of C3 and l, P3 preserve the distance |v2v3|, and P4 touches the fingers
at the same time. It is impossible for v3 to move from one intersection to the other by rotations and
translations, so v3 is fixed. Because v2 and v3 are fixed, P3 is immobilized, and P4 cannot rotate
around v3 because of the fingers. Therefore, the four polygons are immobilized. �

Now we show how at most (n + 3) fingers immobilize n hinged polygons with parallel edges.
From the right end of a serial chain, cut off a trailing multiple of four polygons, until at most four
polygons are left. Immobilize these left polygons as described in Lemma 9.5, 9.8 and 9.9; four
fingers are required to immobilize any single polygon [51, 56, 73].Immobilize each of the trailing
quadruples using the arrangement of (0, 0, 2, 2). Note that the finger arrangement of (0, 0, 2, 2)
can still be used, because the finger arrangement of (2, 2) still works for two arbitrary polygons
(Lemma 9.5). The number of fingers (n + 3) is tight in the sense that there exist n polygons that

9.3 Robust immobility of a serial chain of hinged polygons 127

(a) (b)

l′

l

l2

l1

p1

p2

p′2

v1p′′1
p′1

P1 P2
v1

p2

p′1
l2

l1

l

e′1

p′2
p′′1

p1

e1

P1

P2

e′1

e1

Figure 9.6: Two hinged polygons are robustly immobilized with five fingers, (a) when both of the hinged vertices are
convex, and (b) when one hinged vertex is concave.

cannot be immobilized with less than (n + 3) fingers. For example, when one polygon, or three or
four polygons remain on the left after cutting off multiples of quadruple, (n+3) fingers are indeed
necessary to immobilize the chain; when two polygons remain on the left, (n + 2) fingers suffice
to immobilize the chain.

Theorem 9.10 At most (n + 3) fingers suffice to immobilize a serial chain of n hinged arbitrary
polygons.

9.3 Robust immobility of a serial chain of hinged polygons

As in the case of immobility, we have different results for a serial chain of polygons with, and
without parallel edges.

9.3.1 Robust immobility of polygons without parallel edges

The finger arrangements for one polygon, two, three, and four hinged polygons will serve as build-
ing blocks to achieve robust immobility. The result of robust immobility for a single polygon is
presented in Lemma 9.3. We proceed to show how to robustly immobilize two, three and four
polygons.

Two polygons without parallel edges

Here we show how to achieve robust immobility for two hinged polygons with five fingers from
Lemma 9.5. Note that both polygons cannot be simultaneously concave at the hinge v1, i.e., at
least one polygon is convex at v1. Without loss of generality, let P2 is convex at v1. Let e2 and e′

2

be the edges of P2 incident to v1, and e1 and e′
1 be those of P1 incident to v1 as in Figure 9.6. Line

l is chosen in the same way as in Section 9.2.1. We rotate l around v1 such that it lies between
the original l and the lower edge incident to v1; we call it l1. Now we rotate l around v1 such that
it lies between the original l and the upper edge incident to v1; we call it l2. Take a circle for P1

that touches l at v1 and that intersects e1 and e′
1 in their interiors. Place two fingers p4 and p5 at

these intersections. Take a circle for P2 that touches l1 at v1 and that intersects e2 and e′
2 in their

interiors. Place two fingers p1 and p2 at the intersections. Take another circle for P2 that satisfies
the following three conditions: (i) it touches l2 at v1, (ii) it intersects e2 and e′

2 in their interiors,
and (iii) it passes through one of p1 and p2 (in Figure 9.6, it is p1). Place a finger p3 at the empty
intersection point.

128 Immobilizing Hinged Polygons

(a) (b)

P2

l2

v2
v1

P3

m′

P1

l1

mm

lγ1 v1 v2m

lE1

E3E1

P1

Figure 9.7: (a) A robust immobility of three hinged polygons with six fingers when c 1, v1 and v2 are not collinear. (b)
When c1, v1 and v2 are collinear, a new position of c1 can be computed.

Lemma 9.11 Five fingers suffice to robustly immobilize two hinged polygons.

Proof: The free area of v1 induced by p4 and p5 on P1 is either C+(v1, p4, p5) or C−(v1, p4, p5).
In Figure 9.6, the free area of v1 of P2 is partially defined by the intersection of C+(v1, p1, p2) and
C+(v1, p1, p3)—the thick arcs from the two circles make the partial boundary of this free area. The
two free areas touch each other at a single point on their boundaries, which is v1. For P1 and P2

to remain connected, v1 has to stay at the intersection, which is isolated from other intersections
of the free areas. None of the polygons can rotate around v1 because of the fingers, thus the two
hinged polygons are immobilized.

There exists a set of perturbations of all fingers on the polygons such that the induced free areas
still touch each other at one isolated point. Therefore, five fingers can robustly immobilize two
hinged polygons. �

Three polygons without parallel edges

Three polygons can be robustly immobilized as follows. Compute maximal inscribed circles M1

and M3 for P1 and P3 respectively, and let c1 and c3 be their centers. Let l1 and l2 be the perpen-
dicular lines to the line v1v2 at the hinges v1 and v2 (Figure 9.7 (a)). For the time being, we have
two assumptions for simplicity. First, the touching points of M i and Pi are in the interior of the
edges (see P1 in Figure 9.7 (a)). Second, none of c1 and c3 are collinear with v1v2.

Since the polygons do not have parallel edges, three fingers can immobilize Pi, and the three
normals induced by the fingers meet at one point. If we perturb one finger, the normals form a
triangular region, which is a set of rotation centers in either clockwise or counterclockwise direc-
tion. Infinitesimal rotations of v1 of P1 around a point q in this triangular region move v1 in a
direction along a half-line emanating from v1 orthogonal to the line qv1. All these half-lines lie
in a wedge-like region—the shaded region on the left side of l1 in Figure 9.7 (a). It is important
that we can always choose the direction of rotations, so that v1 move strictly towards the left or the
right side of l1. For P1 in Figure 9.7 (a), v1 can be only on the left side of l1. The two boundary
lines of the shaded wedge region are perpendicular to the tangent lines of the triangle through v1.
Notice that the wedge region does not include any point of l1 except v1; otherwise, P1 can rotate
around v2. We construct the same finger arrangement for P3 so that the wedge region for v2 lies
strictly on the right side of l2.

Now we remove the first assumption; assume that one of the fingers touches a vertex of a
polygon. Without loss of generality, let this polygon be P3. The vertex must be concave, and three

9.3 Robust immobility of a serial chain of hinged polygons 129

fingers at the intersection of M3 and P3 achieve form closure [81] (Figure 9.7 (a)). If this is the
case with P1 as well, P1 is in form closure; otherwise, it can be held with three fingers such that v1

can move away from P3, thus towards the left side of l1 (Figure 9.7 (a)).
To remove the second assumption, assume that one of c1 or c3, say c1, is collinear with v1v2. If

one of the intersection points of M1 and P1 is a vertex, it is concave, and the collinearity does not
affect the form closure. So assume that M1 touches P1 in the interior of some edges. The meeting
point of the three normals can be perturbed by moving two normals together along the third one
(Figure 9.7 (b)). After perturbing the meeting point c1, we can use the same method described
before.

Lemma 9.12 Six fingers suffice to robustly immobilize three hinged polygons without parallel
edges.

Proof: When a polygon is in form closure with three fingers, the proof is rather straightforward.
Thus we consider the other case when none of the polygons are in form closure. To maintain the
distance v1v2 of P2, v1 and v2 should stay at the apexes of the wedges. Since P1 and P3 cannot
rotate around v2 or v1, they are immobilized. There exists a set of perturbation intervals of the
fingers, such that either it still keeps form closure of a polygon, or an induced wedge-like region
still stays on the same side of its corresponding line. This concludes the proof. �

Four polygons without parallel edges

Eight fingers can robustly immobilize four hinged polygons as follows: robustly immobilize the
first and the last polygons with four fingers each. The finger arrangement is (4, 0, 0, 4).

Lemma 9.13 Two adjacent polygons P2 and P3 are robustly immobilized if P1 and P4 are robustly
immobilized.

Proof: The two polygons in the middle are immobilized by Lemma 9.13. Since the neighbors are
robustly immobilized, the whole chain is robustly immobilized. �

Five polygons without parallel edges

The construction for five hinged polygons is a variation of that for four polygons: robustly immo-
bilize the first polygon with four fingers, and the last two polygons with five fingers. The finger
arrangement is (4, 0, 0, 3, 2).

Lemma 9.14 Nine fingers suffice to robustly immobilize five hinged polygons without parallel
edges.

Proof: Since the first and the last polygons are in robust immobility (Lemma 9.3 and 9.11), the
whole chain of polygons is robustly immobilized according to Lemma 9.13. �

Robust immobility of n polygons without parallel edges

The following is how to robustly immobilize n ≥ 6 polygons. From the right end of the chain, cut
off a trailing multiple of five polygons, until at most five polygons are left. These left polygons can
be robustly immobilized as in [56, 51, 58] and in Lemma 9.11, 9.12, 9.13, and 9.14. Each group
of five polygons can be immobilized with the finger arrangement of (0, 0, 3, 0, 3), where (3, 0, 3)
is the construction in Lemma 9.12.

130 Immobilizing Hinged Polygons

v2

v1

P1

p1

p2

p3

E3

P2
P3

Figure 9.8: Seven fingers can immobilize three arbitrary polygons.

Theorem 9.15 A serial chain of n hinged polygons without parallel edges can be robustly immo-
bilized with � 6

5
(n + 2)� fingers.

9.3.2 Robust immobility of polygons with parallel edges

The building blocks to robustly immobilize arbitrary polygons are Lemmas 9.3, 9.11, 9.12 and
9.13. Except the finger arrangement of (3, 0, 3) for three polygons (Lemma 9.12), all of these can
be used for polygons with parallel edges without any modification. We proceed to show how to
modify the construction in Lemma 9.12 to robustly immobilize three polygons.

The finger arrangement of (4, 0, 3) robustly immobilizes three hinged polygons as follows. Ro-
bustly immobilize the first polygon P1 with four fingers. Take a maximal inscribed circle C3 for
P3. If it allows a finger arrangement for immobility by placing fingers at the touching points, we
can use Lemma 9.12. Otherwise, C3 touches P3 at parallel edges. Place a finger p1 at one touching
point, and p2 and p3 on both sides of the other touching point (see P3 in Figure 9.8).

Lemma 9.16 Seven point fingers can robustly immobilize three arbitrary polygons.

Proof: When C3 touches P3 on parallel edges, the chain is immobilized with the same argument as
in Lemma 9.9, so we show that the immobility is robust. The first polygon is in robust immobility.
We can perturb the three fingers on P3 along the parallel edges, without changing the line along
which v2 moves. This concludes the proof. �

Now we show how to robustly immobilize n ≥ 5 arbitrary polygons. From the right end of
the chain, cut off a trailing multiple of four polygons, until at most four polygons are left. Each
quadruple can be robustly immobilized by the finger arrangement of (0, 0, 3, 2). The remaining
polygon(s) can be robustly immobilized as described above with four, five, seven and eight fingers
respectively.

Theorem 9.17 A serial chain of n arbitrary polygons can be robustly immobilized with � 5
4
(n+2)�

fingers.

9.4 Immobilizing other types of hinged polygons

Hinged polygons may not form a serial chain. It can be a single cycle, a tree, a general graph, or a
serial chain with one vertex of a polygon at the end attached to a wall. Here we consider the cases
when the hinged polygons form a single cycle and when an end vertex of the chain is attached to a
wall. The previous results can easily be used for these cases.

9.4 Immobilizing other types of hinged polygons 131

(a) (b)

B1

B2

Figure 9.9: (a) Two polygons forming a cycle. (b) A cycle with more than two polygons.

B1

B2

Bn

Figure 9.10: A chain of n polygons one end of which is attached to a wall.

9.4.1 A cycle of hinged polygons

First let’s look at the case of a cycle. A cycle needs at least two polygons (Figure 9.9). Two
polygons forming a cycle can be considered as one polygon, hence three and four point fingers can
immobilize or robustly immobilize them.

When a cycle contains three or more polygons, this can be divided into two groups: any two
adjacent polygons, and the rest (the rest are shaded in Figure 9.9 (b). The rest polygons can be
seen as a free serial chain of (n − 2) hinged polygons. Immobilizing or robustly immobilizing the
chain of shaded polygons immobilizes or robustly immobilizes the entire cycle. This leads to the
next theorem.

Theorem 9.18 A cycle of n hinged polygons without parallel edges can be immobilized with n
point fingers, when n ≥ 3 and n �= 5; two and five polygons can be immobilized with three and
six point fingers respectively. A cycle of n hinged polygons without parallel edges can be robustly
immobilized with � 6

5
n� point fingers; two and five polygons can be robustly immobilized with four

and six fingers respectively.

9.4.2 A chain of hinged polygons attached to a wall

Now consider the case when one vertex of a polygon at the end of a chain is attached to a wall
as in Figure 9.10. Let P1, P2, · · · , Pn be the polygons from the one attached to the wall. This
can be (robustly) immobilized in a similar way. Skip the two polygons P1 and P2, and (robustly)
immobilize the rest. The number of the point fingers needed for immobility is n−2+2 = n, when
n ≥ 3 and n �= 5; six fingers suffice for five polygons. Likewise, the number for robust immobility
for n ≥ 3 polygons is � 6

5
(n − 2 + 2)� = �6

5
n�.

Two fingers are necessary to immobilize a single polygon with one vertex attached to a wall.
Now we look at the case when n = 2. Let v1 be the hinge between P1 and P2. For two fingers to im-
mobilize two polygons attached to a wall, the last polygon P2 must satisfy the following condition:
(i) if P2 has two edges whose normals meet at the line vv1 and (ii) if the half-planes induced by
these edges have counterclockwise rotational centers above vv1, and clockwise rotational centers
below vv1, two point fingers suffice to immobilize the two polygons (Figure 9.11 (a)).

132 Immobilizing Hinged Polygons

B1

(a)

B2
v

v1 (b)

C

l
B1 B2

v1

v

l

Figure 9.11: (a) These two polygons can be immobilized with two fingers. (b) These two polygons cannot be immo-
bilized with two fingers.

Let C be the circle around v that v1 follows, and let l be the half-plane bounded by the tangent
line of C at v1, which does not contain C. If P2 does not satisfy the conditions (i) and (ii) de-
scribed above, the immediate rotation of P2 around some point in the wedges will not confine the
immediate motion of v1 in the half-plane l.

Unfortunately, P2 may not have such an edge pair that satisfy the condition (i) (Figure 9.11
(b)). Thus we need three point fingers to immobilize them. Surprisingly, three point fingers can
also robustly immobilize them; use a similar method to that for three polygons in Section 9.3. This
leads to the next lemma.

Lemma 9.19 Two and three point fingers suffice to (robustly) immobilize a single polygon and two
hinged polygons attached to a wall respectively.

The next theorem summarizes the results so far.

Theorem 9.20 When a chain of n ≥ 3, n �= 5 hinged polygons without parallel edges has a vertex
at an end attached to a wall, n point fingers can immobilize the chain; two, three and six (= n+1)
point fingers can immobilize one, two and five such polygons respectively. Moreover, � 6

5
n� point

fingers can robustly immobilize such a serial chain.

9.5 Conclusion

Note that the number of hinges h is (n − 1), and that the degree of freedom of the serial chain
is n + 2 = h + 3. We believe that at least (n + 3) fingers—which is degree of freedom plus
one—are necessary to robustly immobilize n hinged polygons without parallel edges. The reason
comes from the equilibrium condition in [74], which requires that the origin be in the convex hull
of the finger normals in the configuration space. The future research includes to verify whether
this is indeed the lower bound. For the same reason, we believe that (n + 2) is the lower bound for
immobility of a serial chain of hinged polygons without parallel edges.

Throughout the paper, we have assumed that the placement in which the serial chain has to be
immobilized is given. The number of fingers required for immobilization is expected to be smaller
when the placement can be chosen freely. In the future, we intend to study whether or not this
is indeed the case. We also plan to work on immobilizing other types of hinges, more general
structures of connected polygons other than serial chains or single cycles, and on the possibility of
exploiting curvature for chain immobilization.

Chapter 10

Conclusion and Future Work

This thesis connects two areas: part manipulation and computational geometry. Here we refor-
mulate fixturing problems as geometric intersection search problems. A form-closure grasp is
formulated as a set of vectors that positively span a three-dimensional space (called wrench space),
which is a geometrical problem. The fundamental question underlying most synthesis problems
in this thesis (Chapters 3 to 5 and 7 to 8) is as follows. Given a number of sets in three- or
six-dimensional space, determine tuples (of various dimensionalities) of sets so that there exists
a convex hull defined by one point (sometimes two or three points) per set that contains the ori-
gin of the space. The shapes of these sets depends on the types of parts at hand; we showed that
these shapes are line segments and/or algebraic arcs in three-dimensional wrench space for a planar
object, and polyhedral shapes in six-dimensional wrench space for a three-dimensional object.

The formulation of form closure in wrench space (Theorem 2.2) has an advantage, namely it is
easily extendible. It can be used to report form- or force-closure grasps of two or three dimensional
parts with different shapes, as long as the intersections of the projected wrench sets are computable.
The algorithms presented in this thesis efficiently reported all form-closure grasps on polygons,
semi-algebraic sets and rectilinear polyhedra, as well as all force-closure grasps on polygons and
semi-algebraic sets. This formulation can also be employed to tackle many variations of immo-
bilization problems, such as efficiently computing all force-closure grasps of three-dimensional
objects, or all form-closure grasps that is tolerant to minor shape variations or misplacements of
the fingers, which will be discussed later.

The main contribution of this thesis is the conversion of fixturing problem into geometric prob-
lem with reduced dimensionality. The problem in three-dimensional wrench space is solved by
searching for all red and blue intersections on planes. The problem in six-dimensional wrench
space is divided into two closely related subproblems in three-dimensional space, each of which is
again solved on planes.

Our approach is flexible in the sense that it is independent of the choice of solution method for
the lower-level red-blue intersection problems. It merely breaks down a high-level immobilization
problem into lower-dimensional red-blue intersection problems. Future improvements of current
solutions to these problems may well result in improvements of our synthesis algorithms. This is
why we believe that our approach could be used to attack many variations of immobilization prob-
lems, such as computing all form- or force-closure grasps of arbitrary planar objects, or computing
all independent form- or force-closure grasp regions of planar and three-dimensional objects. Once
we identify the characteristics of their projected wrench sets, and we find tools to search for red
and blue intersections between these projected wrench sets, this method can easily be employed to
solve these problems.

134 Conclusion and Future Work

Figure 10.1: A form-closure grasp tolerant to a small shape variation.

In many cases, we do not need all grasps, but a few good ones. Among the reported grasps, we
can always filter those of good quality for a given quality metric. If we can characterize the wrench
sets of good grasps, we could incorporate the characteristics directly into the algorithm. This will
make the solution simpler and more efficient. We believe that the insights gained in this thesis can
be of good use to identify the characteristics of the wrench sets for good grasps for a given quality
metric.

In practice, there are often errors in finger placements and also in object shapes. Hence grasp
planning must take errors into account. If a grasp is sensitive to these errors, it will not hold the
object in form closure. We will first discuss the grasps insensitive to finger misplacements.

As mentioned in Chapters 7 and 9, form closure is less sensitive to finger mispacements than
for example second-order immobility (with fewer fingers). The insensitivity can, however, occa-
sionally be very small, and it differs from finger to finger. We wish to report grasps insensitive to
finger misplacements of specified size ε. In Chapter 7, we proposed output-sensitive algorithms to
compute all such sets of prespecified regions for polygons. It is open to efficiently report all such
sets for planar arbitrary objects and for three-dimensional objects. With the approach and insights
gained in Chapter 8, it seems promising to first study the problem of computing all independent
form-closure grasp regions of a rectilinear polyhedron.

There are many issues related to shape variations. One important problem is to efficiently
synthesize grasps that are insensitive to minor shape variations. A form-closure grasp tolerant to
shape variation is a form-closure grasp on an ideal part, such that it keeps a part with slightly
different shape in form closure, when the fingers are moved to touch the new part in a specified
way. Figure 10.1 illustrates such a grasp. Changes in the part shape result in changes of the normal
line. When we give restrictions on how much the shape can change, we actually restrict how much
the normal lines can change. This leads to a region in wrench space where the wrench points for
these normal lines are. We believe that our approach can easily be used to tackle the problems
related to this tolerance issue in an efficient way, if we can identify these regions in wrench space
and on screen.

Extending our approach to immobilization problems in a modular setting (see Section 1.1.2) is
relatively easier. When the object is in a given position, the set of finger positions will be a set of
points in wrench space. We believe that our approach can efficiently compute all form- or force-
closure grasps or a few good grasps or form-closure grasps tolerant to shape variations. When the
object is allowed to change its position, computing all such grasps of an object remains open.

In Chapter 6, we proposed the first efficient output-sensitive algorithms to compute all second-
order immobility grasps of polygons. It remains open to identify a necessary and sufficient con-
dition for three fingers on an arbitrary planar object and for four fingers on a three-dimensional
object to achieve second-order immobility. Ponce et al. [61] identified a necessary and sufficient
condition for a three-dimensional object held with four fingers to be in equilibrium. Even for a
polyhedron, to find a necessary and sufficient condition that takes into account relative curvatures

135

(a) (b)

Figure 10.2: (a) A planar object caged by three fingers. (b) The dark gray region is the free region, where the caged
object lies. Light gray regions are forbidden areas induced by the three fingers.

of the fingers and a polyhedron is challenging.
So far, we considered the problem of constructing immobilizing grasps of rigid parts. In prac-

tice, however, many parts are not rigid. When a finger presses against the part, it will deform. As a
first step to tackle immobilization problem of deformable objects, we considered hinged polygons
in Chapter 9. Among the problems that we considered in this thesis, this problem of Chapter 9 is
the only one where we showed how to build one immobilizing grasp. To identify all immobilizing
grasps of a serial chain of hinged polygons is definitely a challenging problem. To be able to find
all immobilizing grasps of hinged polygons systematically, it would be useful to have a notion
that is equivalent to wrench for rigid objects—a mathematical formulation to describe how a given
force on one of the polygons affects the whole chain. To find immobilizing grasps of hinged poly-
gons with a formulation of immobility based on this notion will be difficult, because of the high
dimensionality, which is three plus the number of polygons in the chain.

Gopalakrishnan and Goldberg [41, 40] proposed a nice definition of form closure for deformable
objects. They called this immobility deform closure. If we can formulate the problem of immo-
bilizing a deformable object as the problem of searching for positively spanning vectors in some
space, in combination with the proposed definition of deform closure, searching for all deform-
closure grasps or choosing a few good grasps according to a given quality metric could be solved
in an efficient way. The approach presented in this thesis then could be of use to attack the problem.

In this thesis, we focused on immobilizing grasps. But sometimes, it is enough to hold an
object in a certain region, such that the object cannot escape the region. This is called caging.
See Figure 10.2. Caging has many applications. For example, three independently moving robots
can cage an object, and take it to a destination. The nature of caging problem is quite different
from that of immobilization problem, since the caged object can move around in a certain region.
Therefore analyzing instantaneous velocities alone is not enough to check whether an object is
caged or not. A caged object in certain position has a corresponding point in configuration space.
Thus the object with all possible positions and rotations in the caging fingers is mapped to a set
of points in configuration space. This set is bounded and isolated from other points in free region.
See Figure 10.2 (b). There are many attractive open problems related to caging, such as to find all
finger positions for caging or to find good caging grasps.

136 Conclusion and Future Work

Bibliography

[1] P. K. Agarwal. Partitioning arrangements of lines II: Applications. Discrete & Computational
Geometry, 5:533–573, 1990.

[2] P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete &
Computational Geometry, 11:393–418, 1994.

[3] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In
B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Computational
Geometry, volume 223 of Contemporary Mathematics, pages 1–56. American Mathematical
Society, Providence, RI, 1999.

[4] S. Akella and M. T. Mason. Orienting toleranced polygonal parts. International Journal of
Robotics Research, 19(12):1147–1170, 2000.

[5] E. Anshelevich, S. Owens, F. Lamiraux, and L. Kavraki. Deformable volumes in path plan-
ning applications. In Proceedings of The IEEE International Conference on Robotics and
Automation (ICRA), pages 2290–2295, San Fransisco, CA, April 2000.

[6] H. Asada and A. By. Kinematic analysis of workpart fixturing for flexible assembly with
automatically reconfigurable fixtures. IEEE Journal of Robotics and Automation, 1(2):86–
94, 1985.

[7] J. Basch, L. J. Guibas, and G. Ramkumar. Sweeping lines and line segments with a heap. In
Annual ACM Symposium on Computational Geometry, pages 469–471, 1997.

[8] J. Bausch and K. Youcef-Toumi. Kinematic methods for automated fixture reconfiguration
planning. In International Conference on Robotics and Automation, pages 1396–1401, May,
1990.

[9] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geome-
try: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[10] R-P. Berretty. Geometric design of part feeders. PhD thesis, Institute of Information and
Computing Sciences, Utrecht University, 2000.

[11] A. Blake and M. Taylor. Planning planar grasps of smooth contours. In IEEE International
Conference on Robotics and Automation (ICRA), page 834, 1993.

[12] G. M. Bone and Y. Du. Multi-metric comparison of optimal 2d grasp planning algorithms. In
IEEE International Conference on Robotics and Automation (ICRA), pages 3061–3066, May
2001.

138 BIBLIOGRAPHY

[13] Prosenjit K. Bose, David Bremner, and Godfried T. Toussaint. All convex polyhedra can
be clamped with parallel jaw grippers. Computational Geometry: Theory and Applications,
6(5):291–302, 1996.

[14] R. Brost and K. Goldberg. A complete algorithm for designing planar fixtures using modular
components. In IEEE Transactions on Robotics and Automation, volume 12, pages 31–46,
1996.

[15] R. C. Brost and K. Y. Goldberg. A complete algorithm for synthesizing modular fixtures
for polygonal parts. IEEE International Conference on Robotics and Automation (ICRA),
12:535–542, 1994.

[16] R. C. Brost and R. Peters. Automatic design of 3-d fixtures and assembly pallets. Interna-
tional Journal of Robotics Research, 17(12):1243–1281, 1998.

[17] F. Cazals and J.-C. Latombe. Effect of tolerancing on the relative positions of parts in an
assembly. In IEEE International Conference on Robotics and Automation (ICRA), 1997.

[18] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational Geom-
etry, 9(1):145–158, 1993.

[19] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25(1):76 – 90,
1985.

[20] I.-M. Chen and J.W. Burdick. Finding antipodal point grasps on irregularly shaped objects.
IEEE Transactions on Robotics and Automation, 9(4):507–512, 1993.

[21] J. Chen, K. Y. Goldberg, M. H. Overmars, D. Halperin, K-F. Böhringer, and Y. Zhuang. Shape
tolerance in feeding and fixturing. In Robotics, the algorithmic perspective, pages 297–311.
A.K. Peters, 1998.

[22] J.-S. Cheong, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Fixturing hinged
polygons. In IEEE International Conference on Robotics and Automation (ICRA), volume 1,
pages 876–881, Washington DC, 2002.

[23] J.-S. Cheong, H.J. Haverkort, and A. F. van der Stappen. On computing all immobilizing
grasps of a simple polygon with few contacts. In ISAAC: 14th Internat. Sympos. Algorithms
Computation, pages 260–269, 2003.

[24] J.-S. Cheong, H.J. Haverkort, and A. F. van der Stappen. On computing all immobilizing
grasps of a simple polygon with few contacts. Algorithmica, 44:117–136, 2006.

[25] J.-S. Cheong and A. F. van der Stappen. Output-sensitive computation of all form-closure
grasps of a part bounded by algebraic arcs. In IEEE International Conference on Robotics
and Automation (ICRA), pages 784–790, Barcelona, 2005.

[26] J.-S. Cheong, A. F. van der Stappen, K. Y. Goldberg, M. H. Overmars, and E. Rimon. Immo-
bilizing hinged parts. International Journal on Computational Geometry and Applications, to
appear.

[27] Y-C. Chou, V. Chandry, and M. M. Barash. A mathematical approach to automatic config-
uration of machining fixtures: Analysis and synthesis. Journal of Engineering for Industry,
Transactions of the ASME, 111:199–306, 1990.

BIBLIOGRAPHY 139

[28] J. Cornellá and R. Suárez. On 2d 4-finger frictionless optimal grasps. In International Work-
shop On Intelligent Robots and Systems (IROS), pages 3680–3685, 2003.

[29] J. Cornellá and R. Suárez. Determining independent grasp regions on 2d discrete objects. In
International Workshop On Intelligent Robots and Systems (IROS), pages 2936–2941, 2005.

[30] J. Cornellá and R. Suárez. Fast and flexible determination of force-closure independent re-
gions to grasp polygonal objects. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 778–783, 2005.

[31] J. Cornellá and R. Suárez. On computing form-closure grasps/fixtures for non-polygonal
objects. In IEEE International Symposium on Assembly and Task Planning, pages 138–143,
2005.

[32] J. Czyzowicz, I. Stojmenovic, and J. Urrutia. Immobilizing a polytope. In Algorithms and
Data structures – Proc. 2nd Workshop, volume 519 of Lecture Notes in Computer Science,
pages 214–227, 1991.

[33] J. Czyzowicz, I. Stojmenovic, and J. Urrutia. Immobilizing a shape. International Journal of
Computational Geometry and Applications, 9(2):181–206, 1999.

[34] C. Davis. Theory of positive linear dependence. American Journal of Mathematics, pages
733–746, 1954.

[35] Dan Ding, Yun-Hui Liu, Yan-Tao Shen, and Guo-Liang Xiang. An efficient algorithm for
computing a 3d form-closure grasp. In IEEE International Conference on Robotics and Au-
tomation (ICRA), page 834, 2000.

[36] Dan Ding, Yun-Hui Liu, Michael Yu Wang, and S. Wang. Automatic selection of fixturing
surfaces and fixturing points for polyhedral workpieces. IEEE Transactions on Robotics and
Automation, 17(6):833–841, 2001.

[37] Dan Ding, Guoliang Xiang, Yun-Hui Liu, and Michael Yu Wang. Fixture layout design for
curved workpieces. In IEEE International Conference on Robotics and Automation (ICRA),
pages 2906–2911, May 2002.

[38] A.J. Goldman and A.W. Tucker. Polyhedral convex cones. Linear Inequalities and Related
Systems, pages 19–40, 1956.

[39] Gopal Gopalakrishnan and Ken Goldberg. Gripping parts at concave vertices. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1590–1596, May 2002.

[40] K. Gopal Gopalakrishnan and K. Y. Goldberg. Computing deform closure grasps. In Inter-
national Workshop on Algorithmic Foundations of Robotics, pages 203–218, 2004.

[41] K. Gopal Gopalakrishnan and K. Y. Goldberg. D-space and deform closure: A framework
for holding deformable parts. In IEEE International Conference on Robotics and Automation
(ICRA), pages 345–350, 2004.

[42] E. Hoffman. Modular Fixturing. Manufacturing Technology Press, Lake Geneva, Wisconsin,
1987.

[43] C. Holleman, L. E. Kavraki, and J. Warren. Planning paths for a flexible surface patch. In
IEEE International Conference on Robotics and Automation (ICRA), pages 21–26, Leuven,
Belgium, 1998.

140 BIBLIOGRAPHY

[44] Yan-Bin Jia. Curvature-based computation of antipodal grasps. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1571–1577, May 2002.

[45] V. Koltun. Segment intersection searching problems in general settings. Discrete & Compu-
tational Geometry, 30:25–44, 2003.

[46] K. Lakshminarayana. Mechanics of form closure. Technical report, ASME 78-DET-32 Amer-
ican Society of Mechanical Engineers, 1978. to appear in Algorithmica.

[47] F. Lamiraux and L. E. Kavraki. Planning paths for elastic objects under manipulation con-
straints. International Journal of Robotics Research, 20(3):188–208, 2001.

[48] R. M. Lewis and V. Torczon. Rank ordering and positive bases in pattern search algorithms.
Technical report, crpc-tr96674, Center for Research on Parallel Computation, Rice U niver-
sity, Nov 1996.

[49] J.-W. Li, M.-H. Jin, and H. Liu. A new algorithm for three-finger force-closure grasp of
polygonal objects. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1800–1804, 2003.

[50] J.-W. Li, M.-H. Jin, and H. Liu. On computing three-finger force-closure grasps of 2-d and
3-d objects. IEEE Transactions on Robotics and Automation, 19(1):155–161, 2003.

[51] X. Markenscoff, L. Ni, and C. H. Papadimitriou. The geometry of grasping. International
Journal of Robotics Research, 9(1):61–74, 1990.

[52] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2):157–182, 1993.

[53] Walter Meyer. Seven fingers allow force-torque closure grasps on any convex polyhedron.
Algorithmica, 9(3):278–292, 1993.

[54] B. Mirtich and J. Canny. Easily computable optimum grasps in 2-D and 3-D. In IEEE
International Conference on Robotics and Automation (ICRA), pages 739–747. A.K. Peters,
1994.

[55] B. Mishra. Workholding-analysis and planning. In International Workshop On Intelligent
Robots and Systems (IROS), pages 53–57, 1991.

[56] B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis of multifinger
positive grips. Algorithmica, 2:541–558, 1987.

[57] G. Moroni and A. A. G. Requicha. Tolerance modeling and application programming inter-
faces. In Proc. Symp. Tools and Methods for Concurrent Engineering, pages 28–38, May
1996.

[58] V-D. Nguyen. Constructing force-closure grasps. International Journal of Robotics Research,
7(3):3–16, 1988.

[59] M. H. Overmars, A. Rao, O. Schwarzkopf, and C. Wentink. Immobilizing polygons against
a wall. In Annual ACM Symposium on Computational Geometry, pages 29–38, 1995.

[60] J. Ponce and B. Faverjon. On computing three-finger force-closure grasps of polygonal ob-
jects. IEEE Transactions on Robotics and Automation, 11(6):868–881, 1995.

BIBLIOGRAPHY 141

[61] J. Ponce, S. Sullivan, A. Sudsang, J-D. Boissonnat, and J-P. Merlet. On computing four-finger
equilibrium and force-closure grasps of polyhedral objects. International Journal of Robotics
Research, 16(1):13–35, 1996.

[62] Jean Ponce, Joel Burdick, and Elon Rimon. Computing the immobilizing three-finger grasps
of planar objects. In Proc. of the 1995 Workshop on Computational Kinematics, pages 281–
300, 1995.

[63] Jean Ponce, Darrell Stam, and Bernard Faverjon. On computing force-closure grasps of
curved two-dimensional objects. International Journal of Robotics Research, 12(3):263–273,
1993.

[64] R. Prado and R. Suárez. Heuristic approach to construct 3-finger force-closure grasps for
polyhedral objects. In the 7th IFAC Symposium on Robot Control, SYROCO’2003, pages
387–392, 2003.

[65] R. Prado and R. Suárez. Heuristic grasp planning with three frictional contacts on two or three
faces of a polyhedron. In IEEE International Symposium on Assembly and Task Planning,
pages 112–118, 2005.

[66] A. Rao and K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica,
10(2):201–225, 1993.

[67] A. Rao and K. Y. Goldberg. Friction and part curvature in parallel-jaw grasping. Journal of
Robotic Systems, 12(6):365–382, 1995.

[68] A. Rao and K. Y. Goldberg. Manipulating algebraic parts in the plane. IEEE Transactions on
Robotics and Automation, 11(4):598–602, 1995.

[69] A.A.G. Requicha. Toward a theory of geometric tolerancing. International Journal of
Robotics Research, 2(4):45–60, 1983.

[70] F. Reuleaux. The Kinematics of Machinery. Macmilly and Company, 1876. Republished by
Dover in 1963.

[71] E. Rimon. New bounds on the number of frictionless fingers required to immobilize three
dimensional objects. Technical report, UU-CS-1996-49, Department of Mechanical Engi-
neering, Technion, Israel Institute of Technology, 1999.

[72] E. Rimon. A curvature-based bound on the number of frictionless fingers required to immobi-
lize three-dimensional objects. IEEE Transactions on Robotics and Automation, 17(5):679–
697, 2001.

[73] E. Rimon and J. W. Burdick. New bounds on the number of frictionless fingers required to
immobilize planar objects. J. of Robotic Systems, 12(6):433–451, 1995.

[74] E. Rimon and J. W. Burdick. Mobility of bodies in contact—part I: A second-order mobility
index for multiple-finger graps. IEEE Transactions on Robotics and Automation, 14:696–708,
1998.

[75] E. Rimon and J. W. Burdick. Mobility of bodies in contact—part II: How forces are generated
by curvature effects. IEEE Transactions on Robotics and Automation, 14:709–717, 1998.

142 BIBLIOGRAPHY

[76] E. Rimon and J. W. Burdick. New bounds on the number of frictionless fingers required to
immobilize an object. Technical report, rms-94-01, Department of Mechanical Engineering,
California Institute of Technology, Sept 1994.

[77] B. Roth. Screws, motors, and wrenches that cannot be bought in a hardware store. In Int.
Symp. on Robotics Research, pages 679–693, 1984.

[78] U. Roy, C.R. Liu, and T.C. Woo. Review of dimensioning and tolerancing: Representation
and processing. Computer-Aided Design, 23(7):466–468, 1991.

[79] K. Salisbury. Kinematic and force analysis of articulated hands. PhD thesis, Stanford Uni-
versity, 1982.

[80] P. Somov. Über Gebiete von Schraubengeschwindigkeiten eines starren Körpers bei ver-
schiedener Zahl von Stützflächen. Zeitschrift Mathematik Physik, 45:245–306, 1900.

[81] A. F. van der Stappen. On the existence of form-closure configurations on a grid. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1237–1242, 2000.

[82] A. F. van der Stappen, C. Wentink, and M. H. Overmars. Computing immobilizing grasps of
polygonal parts. International Journal of Robotics Research, 19(5):467–479, 2000.

[83] A. Sudsang, J. Ponce, and N. Srinivasa. Algorithms for constructing immobilizing fixtures
and grasps of three-dimensional objects. In J-P. Laumond and M. H. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 363–380. A.K. Peters, 1997.

[84] H. Voelcker. A current perspective on tolerancing and metrology. Manufacturing Review,
6:258–268, 1993.

[85] R. Wagner, Y. Zhuang, and K. Y. Goldberg. Fixturing faceted parts with seven modular struts.
In IEEE International Symposium on Assembly and Task Planning, pages 133–139, 1995.

[86] A. S. Wallack and J. Canny. Modular fixture design for generalized polyhedra. In IEEE
International Conference on Robotics and Automation (ICRA), pages 830–837, 1996.

[87] A. S. Wallack and J. Canny. Planning for modular and hybrid fixtures. Algorithmica, 19(1–
2):40–60, 1997.

[88] M. Y. Wang and D. Pelinescu. Optimal fixture layout design in a discrete domain for 3d
workpieces. In IEEE International Conference on Robotics and Automation (ICRA), pages
792–798, May 2001.

[89] Michael Yu Wang. Characterizations of positioning accuracy of deterministic localization
of fixtures. In IEEE International Conference on Robotics and Automation (ICRA), pages
2894–2899, May 2002.

[90] Y. Wang. An optimum design approach to 3d fixture synthesis in a point set domain. IEEE
Transactions on Robotics and Automation, 16(6):839–846, 2000.

[91] C. Wentink. Fixture Planning—Geometry and Algorithms. PhD thesis, Department of Com-
puter Science, Utrecht University, 1998.

BIBLIOGRAPHY 143

[92] C. Wentink, A. F. van der Stappen, and M. H. Overmars. Algorithms for fixture design. In J-
P. Laumond and M. H. Overmars, editors, Algorithms for Robotic Motion and Manipulation,
pages 321–346. A.K. Peters, 1997.

[93] Chee K. Yap. Exact computational geometry and tolerancing metrology. In Snapshots of
Computational and Discrete Geometry, Volume 3, Sept. 1995. McGill School of Computer
Science Tech. Report No. SOCS-94.50.

[94] Y. Zhuang and K. Y. Goldberg. On the existence of solutions in modular fixturing. Interna-
tional Journal of Robotics Research, 15:646–656, 1996.

144 BIBLIOGRAPHY

Samenvatting

Automatisering van fabricageprocessen is van wezenlijk belang voor de moderne industrie. In
veel fabricageprocessen is het nodig om voorwerpen te immobiliseren, dat wil zeggen, ze zodanig
vast te houden dat ze niet kunnen bewegen. Een machine of een monteur kan er dan onderdelen
aan bevestigen of er andere bewerkingen op uitvoeren. Wanneer voorwerpen machinaal worden
verplaatst, bijvoorbeeld op een lopende band of door een robot, dan is het vaak van belang dat ze
niet kunnen draaien of verschuiven ten opzichte van de band of de robothand die ze verplaatst.

Het immmobiliseren van een voorwerp kan op veel verschillende manieren worden gemod-
elleerd, afhankelijk van bijvoorbeeld het soort robotvingers waarmee het voorwerp op zijn plaats
wordt gehouden, met welke eigenschappen van voorwerp en vingers rekening wordt gehouden,
en hoe nauwkeurig de vingers moeten worden geplaatst. Het basismodel is form-closure, in 1876
geformuleerd door Reuleaux [70]. Een stijf voorwerp is in form-closure als een aantal wrijv-
ingsloze vingers aan de rand van het voorwerp elke eindige beweging en elke oneindig kleine
beweging van het voorwerp uitsluiten. Andere modellen zijn force-closure, waarbij we gebruik
maken van wrijvingsweerstand tussen de vingers en het voorwerp, en second-order-immobility,
waarbij door rekening te houden met de kromming van het object met minder vingers kan worden
volstaan, mits zeer nauwkeurig geplaatst.

Veel onderzoekers hebben reeds aan immobilisatievraagstukken gewerkt. Ze hebben antwo-
ord gegeven op vragen zoals: hoeveel vingers zijn in het slechtste geval nodig en toereikend om
een voorwerp in form-closure te houden? Hoe kunnen we een form-closure-greep (een adequate
plaatsing van vingers) berekenen? Dit proefschrift richt zich op de tweede vraag. Tot op zekere
hoogte beantwoordden Van der Stappen et al. [82] deze vraag al: zij sommen alle viertallen van
kanten van een veelhoek op zodat er een form-closure-greep bestaat met een vinger aan elke kant
van het viertal.

In dit proefschrift gaan we verder. We leggen uit hoe we voor veelhoeken en een bepaald
soort gebogen voorwerpen in het vlak efficiënt alle tweetallen, drietallen en viertallen van concave
hoekpunten en (eventueel gebogen) kanten kunnen berekenen, zodat we het voorwerp in form-
closure of force-closure kunnen houden met een vinger aan elk hoekpunt en elke kant van het
tweetal, drietal of viertal. We geven ook enkele resultaten voor second-order-immobility. Boven-
dien leggen we uit hoe we alle form-closure-grepen van een een as-parallel veelvlak1 efficiënt
kunnen berekenen. Daarmee wordt voor het eerst resultaat geboekt met betrekking tot het efficiënt
opsommen van form-closure-grepen van drie-dimensionale voorwerpen.

De algoritmen in dit proefschrift zijn efficiënt in de zin dat ze weinig rekentijd besteden aan
combinaties van hoekpunten en kanten die uiteindelijk geen form-closure-greep opleveren. De
algoritmen in hoofdstuk 3 tot en met 7 zijn in feite uitvoer-gevoelig: de rekentijd hangt vooral
af van het feitelijke aantal verschillende combinaties van hoekpunten en kanten die form-closure-
grepen opleveren, en niet van het theoretische maximum-aantal combinaties.

1Een as-parallel veelvlak is een veelvlak waarvan alle ribben evenwijdig met de x-as, y-as of z-as zijn.

146 Samenvatting

(a) (b)

Figure 3: (a) Form-closure-grepen (b) Een second-order-immobility-greep

Hoewel Reuleauxs analyse van form-closure makkelijk te begrijpen is, blijkt het construeren
van alle form-closure-grepen voor een voorwerp in het vlak eenvoudiger als we ons baseren op een
andere, gelijkwaardige formulering van form-closure. Een aantal vingers houden een voorwerp in
form-closure als zij alle mogelijke krachten en momenten die op het voorwerp werken kunnen oph-
effen. Om een form-closure-greep voor een voorwerp in het vlak te vinden, kunnen we dus zoeken
naar een combinatie van vingers waarmee we de volledige drie-dimensionale ruimte van combi-
naties van krachten en momenten bestrijken. Ons probleem wordt dan een meetkundig probleem
van de volgende vorm. We krijgen een verzameling eenvoudige vormen in een drie-dimensionale
ruimte, die de mogelijke posities van vingers vertegenwoordigen. We willen nu alle combinaties
van vormen vinden zodat elke combinatie vier punten bevat waarvan de convexe omhullende de
oorsprong bevat. Dit meetkundige probleem in drie dimensies zetten we vervolgens weer om in
een twee-dimensionaal probleem door de vormen op vlakken te projecteren, en naar de vormen te
zoeken die elkaar in de projectie snijden. Daartoe maken we gebruik van methoden die bekend
zijn uit de computationale geometrie.

De formulering van form-closure in de ruimte van krachten en momenten kan worden uitgebreid
tot drie-dimensionale voorwerpen—de ruimte heeft dan zes dimensies.

In hoofdstuk 3 geven we efficiënte algoritmen om voor veelhoeken alle combinaties van con-
cave hoekpunten en kanten op te sommen die minstens één form-closure-greep met minder dan
vier wrijvingsloze puntvingers toelaten. Voor as-parallelle veelhoeken geven we algoritmen die
efficiënter zijn dan de algoritmen voor willekeurige veelhoeken.

In hoofdstuk 4 doen we hetzelfde voor viervingerige form-closure-grepen voor een bepaald
soort gebogen voorwerpen in het vlak, namelijk semi-algebraı̈sche verzamelingen.

In hoofdstuk 5 zoeken we naar grepen waarbij we gebruik maken van de wrijvingsweerstand
tussen de vingers en het voorwerp. Onbeweeglijkheid als gevolg van het gebruik van vingers met
wrijving wordt force-closure genoemd. We berekenen efficiënt alle twee- en drievingerige force-
closure-grepen van veelhoeken en semi-algebraı̈sche verzamelingen.

In hoofdstuk 6 beschrijven we efficiënte, uitvoer-gevoelige algoritmen om alle twee- en drievin-
gerige immobiliserende grepen voor een veelhoek op te sommen. Het is bekend dat in het alge-
meen voor de meeste voorwerpen in het vlak vier vingers nodig en voldoende zijn om ze in form-
closure te houden [51, 56]. Veel voorwerpen in het vlak (vooral veelhoeken) kunnen echter toch
met drie wrijvingsloze vingers op hun plaats worden gehouden dankzij second-order-immobility.
Onze algoritmen zijn gebaseerd op de noodzakelijke en voldoende meetkundige voorwaarden voor
second-order-immobility zoals beschreven door Czyzowicz et al. [33].

Hoofdstuk 7 gaat over grepen die kleine afwijkingen in de plaatsing van de vingers kunnen
verdragen. We verdelen de kanten van de veelhoek die we op zijn plaats willen houden eerst in
kleine segmenten van lengte ε. Vervolgens berekenen we alle combinaties van drie of vier concave
hoekpunten en segmenten, zodat we de veelhoek in form-closure kunnen houden met vingers aan
elk van deze hoekpunten of segmenten—ongeacht waar de vingers de segmenten precies raken.
Op deze manier berekenen we form-closure-grepen die ongevoelig zijn voor afwijkingen van max-

147

imaal 1
2
ε in de plaatsing van de vingers aan de kanten. Voor as-parallelle veelhoeken geven we

weer een efficiënter algoritme.
In hoofdstuk 8 maken we de stap naar drie-dimensionale voorwerpen: we berekenen alle com-

binaties van zijvlakken, concave ribben en concave hoekpunten van een as-parallel veelvlak, zodat
vier tot zeven wrijvingsloze puntvingers op elk van deze combinaties minstens één form-closure-
greep toelaten. De algoritmen filteren eerst alle combinaties van hoekpunten, ribben en zijvlakken
om kandidaten voor form-closure-grepen te selecteren. Vervolgens worden deze kandidaten gecon-
troleerd om de uiteindelijke grepen te bepalen. Bij vrijwel alle voorgestelde algoritmen hangt de
rekentijd vooral van de uitvoergrootte af; sommige algoritmen moeten echter alle kandidaatgrepen
stuk voor stuk controleren.

In hoofdstuk 9 richten we ons op het immobiliseren van een ingewikkelder voorwerp: een
keten van scharnierend aan elkaar bevestigde veelhoeken. Zulke ketens zijn moeilijker op hun
plaats te houden dan stijve voorwerpen omdat een keten meer vrijheidsgraden heeft, evenredig met
het aantal veelhoeken waaruit de keten bestaat. We bestuderen hoe zo’n keten in een bepaalde
stand kan worden gehouden door middel van wrijvingsloze puntvingers. We geven en analyseren
voorwaarden voor de onbeweeglijkheid en voor de robuuste onbeweeglijkheid (robust immobility)
van zulke ketens, vergelijkbaar met de voorwaarden voor second-order-immobility en form-closure
van stijve voorwerpen. Voor beide gevallen laten we zien hoeveel vingers in het slechtste geval
nodig zijn om een gegeven keten van scharnierende veelhoeken te immobiliseren, en hoe we een
greep kunnen vinden die voldoet.

Tot slot bespreken we in hoofdstuk 10 enkele interessante vraagstukken voor verder onderzoek.

148 Samenvatting

Acknowledgement

I am a lucky person. During the stay in the Netherlands, I met not only great people, but also a
different culture, which improved my attitude towards life. Moreover, my beloved son Junha was
born, and my husband Otfried and my copromotor Frank were promoted. Without the help and
support of the people around me, this thesis would not have been completed.

First of all, my promotors Mark Overmars and Frank van der Stappen deserve big thanks. They
were very supportive, patient and offered me good guidance and brilliant inspirations. They taught
me many things not only in words but also in actions. A few of those that I learned from them are
how they handled and arranged their duties and works, how they did research with other people,
and how they find interesting research problems. Thank you very much!

I also would like to thank Jean-Daniel Boissonnat, Ken Goldberg, Frans Groen, Rolf Klein
and Jan van Leeuwen for being in the reading committee for my thesis and for reading my thesis
carefully . Ken Goldberg offered me an intriguing problem about hinged polygons, which lead to
publishing a paper together. I appreciate his great inspirations. He also invited me to Berkeley for
research, which was a great experience.

I would like to thank other coauthors, Elon Rimon and Herman Haverkort for their cooperation.
Elon Rimon’s passion toward research has motivated me and gave me courage for challenging
problems. Herman Haverkort offered good cooperation with me. He also kindly helped me with
the ”samenvatting”, title page, and paperwork. He also invited me to Karlsruhe for research. It was
nice to see other people doing computational geometry. Alexander Wolff (Sascha) kindly offered
me his place to stay in Karlsruhe—I appreciate it, Sascha! I also would like to express thanks
to Frans Oort, Pankaj K. Agarwal, Marc van Kreveld, Xavier Goaoc, Hyeon-Suk Na, Chee K.
Yap, Mark de Berg and Yan-Bin Jia for their helpful discussions about algebraic curves and data
structures. I hope that I can get such good people around me in the future as well.

My colleagues at the institute, my friends and my family also deserve many thanks. Especially,
I would like to express my respect, love and thank to my husband Otfried Cheong for his endless
support and love. He was the one who showed me that research could be fun. He and his students
at KAIST offered me space and warm support so that I could finish my thesis in 2005. I especially
thank Hyo-Sil Kim, Jang-Hwan Kim, Chang-Bum Choi and Chang-Yul Choi for proof-reading
some chapters and discussions. I also would like to express special thanks to Arno Kamphuis,
Mirela Tanase, Iris Reinbacher and Jur van den Berg for helping me with formatting the thesis,
proof-reading and paperwork. Mirela and Iris, thank you for your support, and for agreeing to be
my paranymphs. There are a lot of people, who indirectly contributed to this thesis filling my life
with happiness and pleasure. My parents, my three dear sisters, and my friends Bertha, Madalina,
Karina, Twan, René, Geert-Jan, Remco, Roland, Frank ter Haar, Joachim, Dennis, Monique, Lydia,
Sandra, Corine, Wilke, Rita, Floor, Esther, Eveline, Ate, Koos, Sim, Henk and Henk, Thomas,
Hyojeong, Seol-Ah, Jae-Seok, Mira, Jung-Gun, Sang-Won, Linda, Nokyoung and Manfred, I thank
you all. Those friends and family who are not listed here, please forgive me, but the space is
limited. Dank je wel, allemaal! Thank you all! Modu Komawayo!

150

Curriculum Vitae

Jaesook Cheong

22. 03. 1971 born in Seoul, South Korea
1991 - 1996 Computer Science and Engineering

at Pohang University of Science and Technology, South Korea
1997 - 2000 Computer Science

at Hong Kong University of Science and Technology, Hong Kong
2000 - 2005 Information and Computing Sciences

at Utrecht University, The Netherlands
July 2002 guest at the department of Industrial Engineering and Operations Research

at Berkeley University, USA
Aug 2004 guest at the department of Computer Science

at Karlsruhe University, Germany

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 136.

ISBN-10: 90-393-4380-2
ISBN-13: 978-90-393-4380-7

