IMMOBILIZING GRASPS FOR TWO- AND
THREE-DIMENSIONAL OBJECTS

VOORWERPEN OP HUN PLAATS HOUDEN IN HET VLAK EN IN DE RUIMTE

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van
doctor aan de Universiteit Utrecht
op gezag van de rector magnificus,
prof. dr. W. H. Gispen, ingevolge het
besluit van het college voor promoties
in het openbaar te verdedigen op
maandag 6 hovember 2006 des middags te 12.45 uur

door

Jae-Sook Cheong

geboren op 22 maart 1971,
te Seoul, Zuid-Korea

Promotor: Prof. dr. M. H. Overmars
Copromotor: Dr. ir. A. F. van der Stappen

Contents

Introduction
1.1 Anaysisandexistence
111 General setting e
112 Modularsetting
12 Graspsynthesis
121 Synthesisof form-closuregrasps.
1.2.2 Synthesisof force-closuregrasps. o oo
1.2.3 Synthesisof second-order immobilitygrasps
1.3 Immobility under uncertainty
1.4 Thesisoutline e e
Grasp Analyses and Preliminaries
21 Formclosure
2.1.1 Anaysisintheobject plane: Reuleaux’'smethod
212 Anadysisinwrenchspace. e
2.2 Second-order immobility L
221 Anayssinconfigurationspace
2.2.2 Anaysisintheobject planefor smplepolygons
23 FOrceclosure
24 Preiminaries e e e
24.1 Projectionsofwrenches
2.4.2 Algorithms and data structures for intersection search problem

Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

31 Preliminaries
3.11 Theshapesofwrenchsets
3.1.2 Intersectionsearchagorithms
3.2 Computing all form-closure grasps with at most threefingers
321 TwoconcaveVvertiCeS v v e
3.22 Oneconcavevertexandtwoedges.
3.23 Twoconcaveverticesandoneedge
3.24 ThreeconcaveVvertiCes o i i i
3.3 Computing all form-closure grasps for rectilinear polygons
331 Fouredges e
332 Oneconcavevertexandtwoedges
333 TwoconCaveVvertiCeS v i i e

3.34 Twoconcaveverticesandoneedge

CONTENTS

34 Conclusion e 48
Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set 49
41 Preliminaries e 50
4.1.1 Algebraic arcs, wrenches and their projections 50
412 Two-arc-cellsandone-arc-cells 51
413 Intersectionsearchagorithms 52
4.1.4 Computing al graspson agiven set of arcsand vertices 52
4.2 Computing all form-closure graspswithfour fingers. 53
421 FOourarcs e 53
422 Threearcs. 54
4.3 Computing all form-closure grasps with at most threefingers 55
43.1 OneconcavevertexandtwoarcsS. v i v i it 55
43.2 OneconcavevertexandonearC v v v v v v i i e e 56
43.3 Twoconcaveverticesandonearc v v i e e 56
4.4 Conclusion e e 57
Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets 59
51 Preliminaries e 59
511 Edgewrenchsets 60
5.1.2 Concavevertexwrenchsets 60
513 Arcwrenchsets. e 61
514 Intersectionsearchagorithms 63
5.2 Computing all force-closuregraspsof polygons 63
521 Twoedges e 63
522 Oneconcavevertexandoneedge 64
523 Oneconcavevertexandtwoedges. 65
524 Twoconcaveverticesandoneedge 65
5.3 Computing al force-closure grasps of planar semi-algebraicsets 67
531 Oneconcavevertexandonearc 67
5.3.2 Twoconcaveverticesandonearc 68
5.3.3 Oneconcavevertexandtwoarcs. oo 69
54 Conclusion e 70
Computing All Second-Order Immobility Grasps of Polygons 71
6.1 Preliminaries e 71
6.2 Computing all second-order immobility graspswith threefingers 72
6.3 Computing all second-order immobility graspswithtwofingers 75
6.4 Conclusion e e e 78
Computing All Independent Form-Closure Grasp Regions of Polygons 79
7.1 Preliminaries 79
7.1.1 Ourapproach 80
7.1.2 Edgewrench patchesand vertexwrenchsets 80
7.1.3 Intersectionsearchagorithms L. 81
7.2 Computing all independent form-closure grasp regionsof apolygon 81
721 Fouredgepaiches 81

7.2.2 Oneconcavevertex andtwo edgepatches 82

CONTENTS

7.2.3 Twoconcaveverticesandoneedgepatch
7.3 Computing al independent form-closure grasp regions of arectilinear polygon
731 Fouredgepatches
7.3.2 Oneconcavevertexandtwoedgepatches
7.3.3 Twoconcaveverticesandoneedgepatch
7.4 Conclusion

8 Computing All Form-Closure Grasps of a Rectilinear Polyhedron
8.1 Preiminaries e
8.1.1 Familiesof faces, concave edges and concavevertices
8.1.2 Theform closure condition and the projectionscheme
8.1.3 Intersection search algorithms
8.2 Computing all form-closure grasps of arectilinear polyhedron
821 Sevenfaces
8.2.2 Combinationsof facesandconcaveedges
8.2.3 Combinationsof facesand concavevertices
8.2.4 Combinations of concave vertices, concaveedgesandfaces
83 Conclusion e

9 Immobilizing Hinged Polygons
9.1 Immobility and robust Immobility o oL
9.2 Immobility of aserial chainof hingedpolygons
9.21 Polygonswithoutparalleledges
9.2.2 Immobility of hinged polygonswith parallel edges
9.3 Robust immobility of aseria chainof hingedpolygons
9.3.1 Robust immobility of polygonswithout parallel edges
9.3.2 Robust immobility of polygonswith paralleledges
9.4 Immobilizing other typesof hingedpolygons
941 Acycleof hingedpolygons
9.4.2 A chainof hinged polygons attachedtoawall
95 Conclusion e

10 Conclusion and Future Work

CONTENTS

Chapter 1

Introduction

Automation of manufacturing processes is important and essential in modern industry. In manu-
facturing processes, immobilization is crucial to fixturing where a part needs to be held rigidly by
some fixturing device so that a machine or people can perform operations on it. In robotics and
assembly, immobilization is crucial to grasping where an object or part is held by a (robotic) hand
to moveit to anew location, or to perform ssimple operations on it. The fixturing devices are called
contacts, fingers, or fixels. In thisthesis, we will use the term fingers, or sometimes contacts. In
order not to damage the part, we place fingers along the boundary of the part in such a way that
motions of the part are prevented. Immobilizing an object involves many interesting problems.
The followings are some of the fundamental questions.

e Analysisquestions: How can immobilization be formally defined and how can it be analyzed?

e Existence questions: What kinds of parts can be immobilized and how many fingers are
necessary and/or sufficient to do so?

e Synthesis questions. Given a part and a collection of fingers, can we efficiently construct a
single immobilization, alarge set of immobilizations, or even all immobilizations of the part
with these fingers?

When fingers immobilize an object P, the fingers should be able to resist al external wrenches
(i.e. forces and torques), or equivalently, any rigid motion of P (rotation and translation) causes at
least one finger to penetrate theinterior of P [33]. In 1876, Reuleaux [70] formulated the notion of
form closure, which is a sufficient condition for immobilization. Intuitively, form closure is more
stable immobility compared to second-order immobility, in the sense that the fingers can be dlightly
perturbed along the contact edges while they maintain the immobility. See Figure 1.2 (a) and (b).
Reuleaux provided an analysis for form closure of a planar object, which is based on analysis of

Figure 1.1: Grasping with arobot hand. http://www-static.cc.gatech.edu/gvu/peopl e/faculty/nancy.pollard/grasp.html.

8 Introduction

Figure 1.2: (8) Anobject inform closure. (b) An object in second-order immobility. (c) Thisobject is not immobilized.

possible instantaneous vel ocity center in the object plane. Form closure can also be analyzed in so-
called wrench space or in configuration space, which will be explained in Chapter 2. The analysis
in wrench space generalizes to three-dimensional parts.

Note that form closureisfor immobility of an object held with frictionless point fingers. When
there is friction between the fingers and the part, we use the term force closure to refer the im-
mobility of the object. With frictional fingers, one needs fewer fingers to achieve force closure,
compared with form closure. In terms of analysis, force closure is very similar to form closure.
We discuss force closure further in Chapter 2.

Quite a large class of planar objects can be immobilized with three frictionless point fingers.
Figure 1.2 (b) illustrates such an object. Note that the fingers must be positioned carefully to keep
the object immobilized. Czyzowicz, Stojmenovic and Urrutia [32, 33] provided a necessary and
sufficient condition for simple polygons to be immobilized with three (frictionless point) fingers.
Rimon and Burdick [74, 75] generalized the idea of incorporating curvature into theory of second-
order immobility. The analysis for second-order immobility needs curvature information, while
that for form closure use the geometry of the object and the fingers. More precisely, second-order
immobility is based on a configuration space analysis of the possible placements of the part, in
which the fingers are seen as obstacles, and the current placement should be an isolated point in
the collision-free configuration space. More information can be found in Chapter 2.

In many manufacturing environments, modular fixturing systems are often used, where the
fixels are constrained to grid points. There has been extensive research performed in this area, as
well as in the general setting where fingers can be placed anywhere on the object boundary. In
Section 1.1, we will discuss what has been known for existence of grasps in the general setting,
as well as in a modular setting. In Section 1.2, grasp synthesis agorithms will be presented.
Section 1.3 will cover the immobility for non-rigid parts. Finally, Section 1.4 will describe the
contributions of thisthesis.

1.1 Analysis and existence

1.1.1 General setting

Reuleaux [70] showed that four (frictionless) fingers are necessary for form closure of a planar
object. Mishraet a. [56] and Markenscoff et a. [51] independently showed that four frictionless
point fingers are sufficient and often necessary to put a planar object in form closure. They aso
showed that seven fingers are necessary and sufficient to put a three-dimensional object in form
closure. There exist objects that cannot be immobilized, even with infinitely many fingers. They
are circles, three-dimensional objects with rotational symmetry, and screws [46, 51, 56, 80].

The result of Czyzowicz et al. [33] implies that any polygon without parallel edges can im-
mobilized. Rimon and Burdick [73] showed that three frictionless fingers with sufficiently flat
curvature can immobilize generic piecewise-smooth planar objects, with their analysis in config-
uration space. Rimon [72] extended these results to 3D; four frictionless fingers with sufficiently

1.1 Analysis and existence 9

Figure 1.3: A modular fixture vice with two fixture table jawsin [87].

flat curvature can immobilize generic piecewise-smooth three-dimensional objects.

Other than point fingers, one can use edge fingersto put a planar object in form closure. Wentink
et a. [92] showed that any polygon which has no edge parallel to the edges of its convex hull can
be held in form closure with one edge fingers and two point fingers, and with two edge fingers and
one point finger. Moreover, two orthogonal edge fingers and one point finger can achieve form
closure for any convex polygon.

Bose et a. [13] used parallel jaw grippers to hold polyhedra securely (clamp them). They
showed that al simple convex polyhedra, terrain polyhedra, or orthogonal polyhedra can be held
securely regardless of the gripper size. They also showed that every simple polyhedron can be held
securely with a gripper of a specific size. Goldberg, and Rao and Goldberg also have studied the
problem of grasping polygons [66] and algebraic parts [68] without friction, and also with friction
[67].

Czyzowicz et al. [33] aso studied immobilization of high dimensional objects. One of the
results is that six points suffice to immobilize any polyhedron. They also showed that 2d points
are sufficient and sometimes necessary to immobilize a d-dimensional polytope, and further, the
expected number of points necessary to immobilize a simple d-dimensional polytopeisd or (d +
1)—for convex polytopes, itis (d + 1).

1.1.2 Modular setting

In an automated manufacturing system, modular fixturing devices are useful because of reusabil-
ity and rapid reconfigurability; they offer alimited set of contacts and less freedom to place the
contacts. Modular fixturing involves a regular (often square) grid of lattice holes, at which fixture
elements (fixels) such as clamps and locators can be placed. Locators are rigid cylinders, while
clamps can extend along the grid lines [42]; the object rests against these fixels which constrain its
motions. There are many variations such as T-sots where locators can move along the slots [42],
or vices where two lattice boards can move aong aline [87].

Zhuang and Goldberg [94] showed that three locators and one clamp cannot immobilize all
parts with diameter larger than D, for any D (on a unit distance lattice). They also showed that
four clamps can fixture rectilinear polygons and convex polygons. Mishra [55] showed that any
rectilinear polygon whose edges all have length at least four can be held with in form closure by
six clamps. Wentink et al. [92] showed that four point fingers along grid lines can achieve form
closure for any polygon without parallel edges and with all edges of length greater than /3 on a
unit-resolution lattice. Van der Stappen [81] showed that four point fingers on two perpendicular
lines can achieve form closure for any polygon without parallel edges.

10 Introduction

1.2 Grasp synthesis

1.2.1 Synthesis of form-closure grasps

Mishra et al. [56] gave an agorithm to produce a form closure grasp with six and twelve fric-
tionless point fingers for two and three-dimensional objects. From O(n) fingers that immobilize
the object, they repeatedly removed one finger until no finger can be removed without collapsing
the immobilization. Four to six fingers remain for planar objects, and seven to twelve for three-
dimensional objects. Markenscoff et al. [51] used a maximal inscribed circle for planar objects to
find aform closure grasp with four fingers.

Van der Stappen et al. [82] proposed the first algorithm that enumerates all edge quadruples
of a polygon that have at least one form closure grasp with four frictionless point fingers. The
algorithm is output-sensitive, and it reports all K such edge quadruplesin O(n?**¢ + K), where e
is an arbitrarily small positive number, and n is the number of edges. The algorithm uses range
search techniques from computational geometry. Gopalakrishnan and Goldberg [39] studied the
problem of immobilizing parts in form closure using two fingers at two concave vertices. They
placed two fixtures at external or internal concavitiesin polygonal parts with polygonal holes and
polyhedral parts with polyhedral holes using a gripper with two vertical cylindrical jaws. The
algorithm also ranks the solutions based on a quality metric. In this work, one can pursue an
aternative quality metric that considers only the local shape around the jaws such as a measure
of the “capture region”—the volume of C-space that is guaranteed to converge to the desired grip,
and one can try to extend the definition of v-grips to curved parts, and also to more genera jaw
shapes.

For athree-dimensional object, Meyer [53] presented a way to construct a form closure grasp
with seven fingers for a convex polyhedron. It first finds the furthest vertices, and place six fingers
on the six faces incident to these vertices (three for each vertex). Splitting one of them into two
fingers produces a form closure grasp. It runsin O(n?*2y/logn) time, where n is the number of
faces of the convex polyhedron. There are also incremental constructions of form closure grasps
for three-dimensional objects. Ding et al. proposed algorithms to construct a form closure grasp
for three dimensional objects [35] and for three dimensional curved objects [37].

Other than using point fingers, Bose et al. [13] studied the grasping problem with parallel jaw
grippers. They presented an O(n + k) time algorithm to compute all valid clamp positions of a
simple convex polyhedron, where n is the number of faces, and £ is the number of antipodal pairs
of features.

Brost and Goldberg [15] studied modular fixturing for polygons using three round locators
and one clamp. The algorithm produces all fixture configurations that put the polygon in form
closure and obey geometric access constraints. The fixture configurations are ranked by a quality
metric. They used a negated cone condition on a force sphere to find a set of wrenches that span
the wrench space positively. The algorithm guarantees to find such form closure fixtures, if one
exists, in O(n°d®) time, where n is the number of edges, and d is the diameter of the object in
lattice units. This time bound is later improved to O(K'), where K is the output size [14]. This
work is extendible to frictional fixturing or a more generalized objects, such as curved objects or
three-dimensional objects.

There are other modular fixturing devices, one of which is fixture vise toolkit. It consists of
two fixture table jaws on a vise, and pegs, where the table jaws can move towards and away from
each other. Wallack and Canny [87] used this system and gave an algorithm that enumerates all
form closure fixture vice configurations! with four pegs, and the corresponding object poses. The

IWwallack and Canny used the term “force closure” in [87], but they assumed frictionless point contacts between the part and the pegs.

1.2 Grasp synthesis 11

object is two and half dimensional prismatic polygonal part, so it is actually two dimensional
fixturing problem. The agorithm runsin O(A) time, where A is the number of configurations
which simultaneously contact the object.

Wallack and Canny extended their work in [86]. They gave a complete algorithm to auto-
matically design fixtures in the fixture vise toolkit for generalized polyhedra prismatic parts. A
generalized polyhedral prismatic part is defined to have a generalized polygonal silhouette, with
a boundary composed of linear edges and circular arcs. All configurations holding a polygon in
form closure on a vise with four locators can be computed in time O(n*d*r?), where n isthe size
of the polygon, d isthe diameter of the object in lattice units, and r is the largest range of distance
between points on two edges. In addition, they showed that the maximum number of form closure
configurationsis also O(n*d*r?).

Wagner et al. [85] used seven frictionless adjustable-length struts mounted on four boards of
regular lattices—one floor and three walls. The struts exert only compressive forces, but no bend-
ing moments. To test if given seven points on the part achieve form closure, they used simplified
algebraic representation of the test proposed by Goldman and Tucker [38]. They provided an al-
gorithm that enumerates all possible form closure graspsto fixture a three-dimensional polyhedral
part in agiven pose. All grasps are ranked based on a quality metric.

Overmars et al. [59] used a ssimple modular fixturing device with an edge fixel, a locator, and
a clamp. They gave an output-sensitive algorithm to enumerate all valid modular fixtures for a
polygon, while sliding the polygon along the edge fixel, and find the fixtures, using range trees on
the angles of the edge normals. It runsin O(n(n + p):* 4 K)-time, where K isthe output size,
n isthe number of edges of the polygon, and p is the polygon’s perimeter in grid units.

Wang [90], and Wang and Pelinescu [88] proposed algorithmsto search for form closure grasps
for three-dimensional objects in a point set domain. They chose the possible locations of six
locators and one clamp from a set of discrete points. The algorithms are to avoid the prohibitively
large cost of an exhaustive search of all combinations of seven locations. Wang [90] used a greedy
approach to find a satisfactory solution rather than an optimal one. Wang and Pelinescu [88], on
the other hand, first randomly chose seven points, and from these found a new set of seven points
that achieves form closure. Ding et al. [36] presented heuristics for selecting fixturing surfaces on
apolyhedron.

Instead of locators and clamps, Wentink et a. [91, 92] used an edge fixel and an angle fixel.
The angle fixels can be fixed or adjustable. In the paper [92], they gave a linear time agorithm
to construct a configuration of an edge fixel, a locator and a clamp, such that they hold some
class of rectilinear polygons in form closure. They aso showed that all configurations holding
a given polygon in form closure with a fixed-angle fixel and a clamp can be enumerated in time
O(n(n+p)), wheren isthe number of edges of the polygon, and p isthe perimeter in lattice units.

1.2.2 Synthesis of force-closure grasps

Two frictional fingers on a planar object can achieve force closure [54, 58]. Nguyen [58] provided
an algorithm to find force closure grasps with two fingers. He also studied the grasps for three-
dimensional objects with two soft and three hard fingers. Mirtich and Canny [54] gave an O(n)
and O(n?)-time algorithm to construct grasps with two and three rounded frictional fingers for two
and three dimensional convex objects respectively.

Computing two-finger force-closure grasps on planar curved objects attracted many researchers
[11, 44, 63]. Blake and Taylor [11] presented a more general method to compute force-closure
grasps on smooth objects. This method is more general, in the sense that it does not require prior

12 Introduction

knowledge of the coefficient of friction. Ponce et al. [63] proposed an algorithm to produce many
force-closure grasps with two frictional hard point fingers. They worked on the planar curved ob-
jects, such that the boundaries are collections of polynomial parametric arcs. Force closure grasps
are characterized by systems of polynomial constraints asin [58]. They compute rectangular re-
gionsin the grasp configuration space regions satisfying the force closure constraint, such that this
rectangular regions have maximal curve segments where fingers can be positioned independently.
Jia [44] used a numerical method using curve functions to tackle the problem of force-closure
grasps with two frictional antipodal point fingers. He assumed that the boundary curves are closed,
simple, twice continuously differentiable, and planar. He presented an algorithm that finds all
pairs of antipodal points on the boundary, up to numerical resolution. Chen and Burdick [20] used
grasping energy function to compute an antipodal frictional finger grasping for arbitrarily shaped
smooth two and three dimensional objects. The energy function is proportional to the square of
the distance between the antipodal points. With grasping energy function, finding antipodal points
isturned into a constrained optimization procedure. They assumed that the curve representation is
uniform cubic B-spline for 2D, and spherical product surfaces for 3D.

Three frictional fingers on planar objects can achieve force closure [49, 50, 60]. Ponce and
Faverjon [60] presented an efficient algorithm for computing equilibrium and force-closure grasps
with linear constraints. They provided a sufficient condition to compute such grasps. Li et al.
[49, 50] provided a necessary and sufficient condition for three fingers on polygons to achieve
force closure. Cornella and R. Suéarez [28] computed optimal position for the fourth finger, for
given three finger positions on a polygon, such that they achieve force closure.

A three-dimensional object can be immobilized with four frictional fingers [61]. Ponce et al.
[61] gave an algorithm to compute concurrent grasps of a polyhedron, by computing the stable
grasp regions in configuration space, which is equivalent to eight dimensional projection of an
eleven dimensional polytope. To avoid heavy computations and checking the combinations of
faces, heuristics can be used [64, 65]. Prado and Suarez [64, 65] find three-finger force-closure
grasps on a polyhedron fast using heuristics.

1.2.3 Synthesis of second-order immobility grasps

Czyzowicz et al. [32, 33] gave alinear time algorithm to find a set of three points that immobilize
aconvex polygon, and an O(n log n)-time algorithm for a polygon without parallel edges, using a
maximal inscribed circle of the polygon.

Rimon and Burdick [71, 73, 76] showed that two fingers can immobilize atwo dimensional ob-
ject, and four fingers can immobilize any generic polyhedral or smooth three dimensional object,
when the fingers are allowed to have an arbitrary curvature. They also established how the cur-
vature affects second-order immobility in configuration space, by comparing it with form closure.
They proposed the name second-order immobility; form closure is equivalent to first-order immo-
bility in their terms. With Rimon and Burdick’s mobility theory, Ponce et a. [62] synthesized all
immobilizing grasps of a part bounded by polynomial splines. They presented an algorithm which
uses exact cell decomposition and homotopy continuation techniques to construct an explicit de-
scription of the immobilization regions in the contact configuration space.

Sudsang et a. [83] used a modular device to hold a three-dimensional object in second-order
immobility with four fingers. The device consists of two parallel plates with locator holes along
arectangular grid. The distance between the plates can be adjusted continuously. They provided
simple sufficient conditions for immobilization and stability of polyhedra, and proposed efficient
geometric algorithms to enumerate all stable immobilizing grasps.

1.3 Immobility under uncertainty 13

1.3 Immobility under uncertainty

When fixturing an object in practice, the object cannot always be positioned as it should be. Nat-
urally, a robust fixturing plan that works even with positioning error is desirable. Bone and Du
[12] introduced a grasp planning method based on a new metric for measuring the sensitivity of a
grasp to positioning errors. Nguyen [58] showed how to compute a maximal independent region
on apolygon for two frictional fingers, where fingers can be independently positioned maintaining
force closure. Ponce and Faverjon [60] and Ponce et a. [61] reported maximal independent regions
by linear optimization within the valid configuration space regions for planar objects [60] and for
polyhedra[61]. Cornellaand Suérez [29, 30, 31] also provided algorithmsto produce independent
regions for frictional and frictionless fingers on planar objects.

Another type of uncertainty that we should deal with in manufacturing is the shape uncertainty;
in most cases, the surface will be slightly different from the nominal boundary. To be able to use
the precomputed fixturing plan in practice, the plan hasto work for those slightly different objects.
One question that we can immediately ask is how different the shape can be to be able to use the
computed fixture plan, i.e. what the tolerance for agiven fixturing planis. To answer this question,
we first need arealistic model for the tolerance.

Requicha [69] proposed a mathematical theory of tolerancing that formalizes and generalizes
current practices. It is a suitable basis to incorporate tolerances into GMSs (geometric (solid)
modeling systems). A tolerance specification isacollection of geometric constraints on the surface
features of an object. An object isin tolerance if its surface features lie within tolerance zones,
which are regions of space constructed by expanding or shrinking the object’s nominal boundaries.

Other than the theoretical model, there is an experimental tolerance modeler proposed by Mo-
roni and Requicha [57]. They also described an associated APl (Application Programming In-
terface) that hides the modeler’s internal details. The tolerance modeler can be attached to any
nominal-geometry modeler through atolerance adaptor.

Akella and Mason [4] used a tolerance model in which the center of mass of the object and
itsverticesliein circular tolerance zones around their nominal positions, for the sensor-based and
sensorless part orienting problem. Chen et al. [21] used a similar tolerance zone model to orient
convex polygonal parts on a conveyor belt and to fixture convex polygonal parts using a right
angle fixture and one clamp. The tolerance zones used for fixturing are rectangles, while those
for orienting are circles. They gave an O(n)-time algorithm for testing if an n-sided part isin the
tolerance class for orienting and fixturing, and O(n?)- and O(1)-time algorithm to compute the
maximum tolerance zone size for orienting and fixturing respectively.

Another tolerance model regardsthe part as atoleranced polygon, whose edges can liein aband
around the edges. Cazals and Latombe [17] used this model, and they gave an efficient algorithm
to compute the tolerance zone size.

Brost and Peters [16] presented an implemented algorithm that automatically designs fixtures
and assembly pallets to hold three-dimensional parts, which isrobust to force and part-shape vari-
ations, easy to load, and economical to produce. The algorithm finds the global optimum design.
Wang [89] analyzed the problem of characterizing the accuracy of deterministic localization of
fixtures using statistical framework. More details about tolerancing, metrology and techniques can
befoundin[78, 84, 93].

Fixturing deformabl e objectsisanother interesting problem. 1nthe motion planning community,
some research has been conducted including deformation [5, 43, 47]. Recently Gopal akrishnan and
Goldberg [40, 41] proposed the concept of deform closure for immobilizing a deformable object.
They also proposed a numerical algorithm to produce an approximation to the optimal deform

14 Introduction

closure grasp with two contacts [40]. Another type of non-rigid bodies are objects connected by
hinges. Motion planning community has some related work (on articulated robots), but no work
has been found related to fixturing, as far as we know.

1.4 Thesis outline

This thesis attempts to provide efficient computations of al immobilizing grasps of two and three
dimensional objects in the non-modular setting. In particular, we enumerate all form and force
closure grasps of a polygon and a planar semi-algebraic set. In addition, we also report all second-
order immobility grasps with two and three fingers on polygons. We aso enumerate all indepen-
dent form-closure grasp regions of a polygon. Efficient computation of arbitrary three dimensional
objects is difficult, even for a polyhedron. The easiest (but still difficult) case to consider is that
of arectilinear polyhedron. We propose an agorithm to report all form-closure grasps and all
independent form-closure grasp regions of a rectilinear polyhedron. Finally, we present a way of
constructing some grasps of a serial chain of hinged polygons as a case study on non-rigid objects.

An intuitive analysis of form closure of a planar object takes place in the two-dimensional
plane of the object itself. For synthesis of form or force closure grasps, however, the formulation
in wrench space turns out to be more convenient and powerful. The form-closure condition on
wrenches is transformed into specific combinations of geometric intersection problems, and these
will be used to compute all form and force closure grasps of two and three dimensional objects.
Throughout thethesis, welet n denote the number of edges of apolygon, or arcs of asemi-algebraic
set, and m denote the number of concave vertices, unless stated otherwise.

Given a combination of concave vertices and edges or arcs, we can compute all form-closure
grasps in constant time [82]. As a consequence, the combinatorial complexity of computing all
form-closure grasps is determined by the number of such combinations. Clearly we would like
to minimize the time spent on the combinations that admit no form-closure grasp. Our goad is to
report al combinations of concave vertices and edges or arcs that allow at least one form-closure
grasp, in an efficient and output-sensitive way. Almost all algorithms between Chapter 3 and 8 are
efficient and output-sensitive, which means that their running times largely depend on the actual
size K rather than the (often much larger) maximum size of the output.

Chapter 3to 5 are about computing all immobilizing grasps for two-dimensional objects. More
specifically, we compute al form-closure grasps of a polygon and a planar semi-algebraic set with
at most four frictionless point fingers in Chapter 3 and in Chapter 4 respectively. In Chapter 7,
we compute all independent form-closure grasp regions for polygons and rectilinear polygons. In
Chapter 5, we use the approach in Chapter 3 and 4 to compute all force-closure grasps of apolygon
and a planar semi-algebraic set. We also compute al second-order immobility grasps of a polygon
and a planar semi-algebraic set in Chapter 6. The approach in wrench space is pushed into three-
dimensional space, and in Chapter 8, we compute al form-closure grasps, and all independent
form-closure grasp regions of arectilinear polyhedron. Finaly, in Chapter 9, we study the problem
of immobilizing a seria chain of hinged polygons.

In Chapter 3, we propose efficient algorithms to compute all form-closure grasps of polygons
using concave vertices. An efficient output-sensitive algorithm to compute all form-closure grasps
of polygons on three or four edges has already been proposed by van der Stappen et a. [82], as
mentioned earlier. Informally speaking, such vertices allow to have two fingers at the price of one,
as afinger at a concave vertex can be regarded as lying on both incident edges or arcs. Computing
all form-closure grasps with fingers at concave vertices was first studied by Gopalakrishnan and
Goldberg [39], who gave an O(m?) time algorithm to find all K concave vertex pairs that allow

1.4 Thesis outline 15

a two-finger form-closure grasp. We improve thisto O(m*/?log"® m + K) in Section 3.2.1. All
form-closure grasps with three fingers can be reported in O (n? log* n + K)-time. When a polygon
isrectilinear, we need less computation. In Section 3.3, we compute all combinations of edges and
concave vertices of a rectilinear polygon that yield form-closure grasps with three or four point
fingers efficiently. More specifically, we compute all such setsof: (i) four edgesin O(nlogn+ K)
time; (ii) one concave vertex and two edgesin O(nlogn + K) time; (iii) two concave verticesin
O(mlog®m + K) time; (iv) two concave vertices and an edge in O (nm logn + K) time.

Chapter 4 is about efficient computations of all form-closure grasps of a planar semi-algebraic
set P with at most four frictionless point fingers. The boundary of P consists of n algebraic arcs
with a constant degree, and P has m concave vertices. We enumerate all combinations of (i) four
arcs, (ii) three arcs, (iii) one concave vertex and two arcs, (iv) one concave vertex and one arc,
and (v) two concave vertices and one arc, such that three or four fingers on these combinations
yield at least one form-closure grasp. Let € be an arbitrarily small positive number. We can handle
the cases stated above in the following time complexities: case (i) O(n®?log!/® n + K); case (ii)
O(n®?*s + K); case (iii) O(n?>m!/?*¢ + K); case (iv) O(nm) or O(n®?* + K); case (V) O(nm?)
or O(n*** 4+ K). Case (iv) and (v) have multiple choices of time complexities, depending on the
size of m in comparison to n.

In Chapter 5, we extend the approach used in Chapter 3 and 4 to compute all force-closure
grasps of a polygon and a planar semi-algebraic set. For a polygon, we compute the combinations
of (i) two edges, (ii) one concave vertex and one edge, (iii) one concave vertex and two edges, and
(iv) two concave vertices and one edge, such that two or three fingers on these combinationsyield at
least one force-closure grasp. We can enumerate all these combinationsin (i) O(n*/?log®* n + K)
time, (ii) O(n*?logn + K) or O(n*?log®n + K) time, (iii) O(n?log® m + K) time, and (iv)
O(m?n) or O(n*?log® n+ K) or O(n?log* n+ K) time respectively. For aplanar semi-algebraic
set, we compute the combinations of (i) one concave vertex and one arc, (ii) two concave vertices
and one arc, and (iii) one concave vertex and two arcs, such that the fingers on these combinations
yield at least one force-closure grasp. We can enumerate all these combinations in (i) O(nm)
or O(n/?t + K) time, (ii) O(nm?) or O(n?*s + K) time, and (iii) O(n*m'/*** + K) time
respectively.

In Chapter 6, we enumerate all second-order immobility grasps with two and three frictionless
point fingers for a polygon. More precisely, we compute al K edge triples that yield a second-
order immobility grasp with three fingers in O(n?log® n + K) time, and al K pairs of an edge
and a concave vertex that yield a second-order immobility grasp with two fingersin O(n log* m +
(nm)?3log®"* m + K) time. We use the necessary and sufficient geometric condition for second-
order immobility grasps of a polygon, proposed by Czyzowicz, Stojmenovic and Urrutia[33].

In Chapter 7, we provide output-sensitive algorithms to report all sets of independent form-
closure grasp regions of a specified width on edges of a polygon, and arectilinear polygon. The
independent form-closure grasp regions are such that any placement of three or four frictionless
point fingers inside these regions will put the polygonsin form closure. The practical implication
isthat we yield form-closure grasps that are insensitive to misplacements of each of the individual
fingers by adistance of /2. For a polygon, we enumerate (i) al K edge patch quadruples, (ii) all
K triple of one concave vertex and two edge patches, and (iii) all K triplesof two concave vertices
and one edge patch, such that three or four fingers on these combinations yield at least one form-
closure grasp. We can report these K setsin (i) O(n®/3 1og®M n+ K) time, (i) O(n?log* m + K)
time, and (i) O(m?n) or O(n?log® n + K) time. For arectilinear polygon, we enumerate (i) all
K edge patch quadruples, (ii) all K triples of one concave vertex and two edge patches, and (iii)
al K triples of two concave vertices and one edge patch, such that three or four fingers on these

16 Introduction

combinationsyield at | east oneform-closuregrasp. We can report these K setsin (i) O(n logn+K)
time, (i) O(nlogn + K) time, and (iii) O(nlog®n + m?logn + K) time.

Chapter 8 is on computing all form-closure grasps and all independent form-closure grasp re-
gions of arectilinear polyhedron. A form-closure grasp needs at least seven lines of force. We
propose agorithms to compute all combinations of edges, concave edges and concave vertices,
such that four to seven fingers on these combinations achieve form closure.

In this chapter, we report all sets of (i) seven faces, (ii) faces and concave edges, (iii) faces
and concave vertices, and (iv) faces, concave edges and concave vertices, such that four to seven
frictionless point fingers on these sets yield a form-closure grasp. All K sets among all such sets
can be reported in (i) O(n*K’ log* n + K) time, (i) O(nK’ log* n 4 K) time, (iii) O(n?log® n +
nk'log*n + K) time, and (iv) O(n?log®n + nK'log* n + K) time, where n is the number of
faces, and K’ isthe size of the intermediate output. All of them except one are sensitiveto K’ and
K; the exception is sensitiveto K’ only.

When the object isnot rigid, the complexity of an immobilizing grasp can be high. For example,
when polygons are connected by hinges at the vertices, the configuration space of this set of objects
has a high dimension, which is proportional to the number of polygons. In Chapter 9, we study
the problem of immobilizing hinged polygons in a given placement with frictionless point fingers.
We define new notions of immobility and robust immobility, which are comparabl e to second-order
immobility and to form closure for a single object. Robust immobility is an immobilization that
is insensitive to small perturbations of fingers along the edges. Notice that this perturbation is
arbitrarily small; we do not guarantee that one can perturb each finger by a given value <, which
is the difference between robust immobility and independent form-closure grasps. We show, by
construction, that (n + 2) frictionless point fingers suffice to immobilize any serial chain of n # 3
polygons without parallel edges; it is unclear whether five fingers can immobilize three hinged
polygons. At most (n + 3) fingers suffice to immobilize a serial chain of n arbitrary polygons. We
also show, by construction, that [(n + 2)] and [5(n + 2)] fingers suffice to robustly immobilize
aseria chain of n hinged polygonswithout, and with parallel edges respectively.

Chapter 2

Grasp Analyses and Preliminaries

In this section, we introduce the notions of form closure (Section 2.1), second-order immobility
(Section 2.2.2) and force closure (Section 2.3), and the corresponding analyses. In Section 2.4, we
present a condition for form closure, and the intersection algorithms and the data structures used
in thisthesis.

2.1 Form closure

In this section, we present two types of analyses for form closure: one is Reuleaux’s method [70]
on the object plane, and the other isin wrench space. Reuleaux’s method is more intuitive, but it
only appliesto planar objects. The analysisin wrench space, on the other hand, isfor two and three
dimensional objects. Form closure can aso be analyzed in configuration space [74, 75], which we
will explain in Section 2.2.1. We do not include this analysis, because its major contribution is to
explain how curvatures affect a set of fingers to achieve second-order immobility.

Screw theory provides yet another way of modeling the effect of force. It is used by many
researchersfor kinematic analysis of body motions|6, 8, 27, 77]. Unfortunately, it does not provide
a nice characterization to check immobility as far as we know, therefore we do not discuss screw
theory further in thisthesis. Ponce et al. [61] provided an excellent explanation of screw theory.

2.1.1 Analysis in the object plane: Reuleaux’s method

Every infinitesimal motion can be seen as arotation around a point in acounterclockwise/clockwise
direction [70]. When a point finger is in the interior of a straight edge, the normal line divides
centers of counterclockwise and clockwise rotations. The |eft side of the normal line! has centers

1The boundary line is not included.

(a) (b)

Figure 2.1: (a) When a point finger is in the interior of an edge. (b) When a point finger is at a concave vertex. The
points on the thick part of normal line allow clockwise and counterclockwise rotations, while those on the thin part of
the normal line do not allow any.

18 Grasp Analyses and Preliminaries

Figure 2.2: (a) A polygon P in form closure with four fingers. (b) Theline pp’ isin the positive cones of the normal
lines. () pp’ isin the negative cones of the normal lines.

(a) (b) ()
p P ' O|C

Figure 2.3: (a) (b) Possible rotational centers on the normal line when a point finger is on the curved boundary of
an object. (c) (d) Possible rotational centers on the half planes when a curved finger is on the curved boundary of an
object.

of counterclockwise rotations and the right side has those of clockwise rotations, when facing the
interior of the object P from the finger. (See Figure 2.1.) In other words, for the point finger
rules out all infinitesimal rotations of P except counterclockwise rotations around a point on the
left side of the normal line, and clockwise rotations around a point on the right side. When a
point finger is at a concave vertex, it induces two normals to the incident edges at the vertex. The
common regions of counterclockwise and clockwise rotations induced by the two normals have
centers of possible rotations as in Figure 2.1 (b). The object P isin form closure, if and only if
the oriented half planes induced by the point fingers have an empty intersection. See Figure 2.2
(@). This can be seen in another way [58] Two directed lines ¢; and ¢, divide the plane into four
reglons L et the intersection point of ¢, and ¢, bethe origin. We take the region bounded by /, and
/5 with the outgoing directions, and call it positive cone—see Figure 2.2 (b). Similarly, we call
the region bounded by the incoming rays negative cone. We pair the normal lines, and connect the
intersection points p and p’ by aline ssgment. The object P isin form closure, if and only if pp’ is
in the positive cones of the normal lines, or in the negative cones of the normal lines. Figure 2.2
(b) and (c) illustrates these cases.

What about the points on the normal 1ine? Which rotations around these points are allowed? It
turns out that it depends on the curvatures of P and the fingers. In other words, the information
about these curvatures can be included in the half plane analysis. When the curvatures of the object
boundary and the finger at the contact are considered, we can distinguish which rotationis possible
around the points on the normal line—the other part is the same as with the case of a point finger
along a straight edge. Let C, and C. be the tangent circle at the finger of the object boundary and
the contact respectively. The points between the finger and the center of C,, and those between
the finger and the center of C. do not allow any rotation—the finger and the center of the circles
are not included. In Figure 2.3, no rotation is possible around the points on the thin parts of the
normal lines, while any rotation is allowed around those on the thick parts of the normal lines. This

2.1 Form closure 19

also explains the case of a point finger touching a straight edge in the interior in Figure 2.1 (a).
The points on the normal on the side where the object lies locally do not allow any rotation, while
the points on the other part of the normal line allow clockwise and counterclockwise rotations.
(See Figure 2.1.) Unfortunately, these insights cannot be used to obtain a graphical method for
immobilization analysis that takes into account curvature.

2.1.2 Analysis in wrench space

When a force is applied to an object P at position p, it will make the object translate and/or
rotate. The force is applied along an inward normal line of the boundary of P at p, and we call
this inward normal line line of force. We let be the normalized direction vector of a line of
force. How this force moves P depends on the line of force and the magnitude of force applied
aong it. A line of force with the normalized direction vector n can be represented as a point in
a three-dimensional space. We call this point a wrench of the finger pushing P. In other words,
a wrench is a three-dimensional description of a directed line. The space of al wrench points
is called wrench space. The wrench of a finger at p with a unit direction vector 7 is defined as
w=(n,pxn) =(nr1)= N0y, p xn) for atwo-dimensional object. For athree-dimensional
object, the wrench of afinger at p with a unit direction vector n = (7, 7,,n.) isasix-dimensional
vector w = (n,p xn) = (1,7) = (Na, Ny, N, Tx, Ty,). NOte that afinger induces awrench vector
Aw, where A > 0, depending on how much force is applied through the finger.

We first introduce a characterization of form closure [38, 56, 58, 79] for planar objects. Most
of our approachesin thisthesis are based on this.

Theorem 2.1 Given a set of x (> 4) wrenches w, ws, - - - , w, 0On a two-dimensional object P,
the following three conditions are equivalent:

(i) Pisinformclosure.
(if) Any wrench wy can bewrittenas —wr = \jw; + - - - + A\ w, with \; > 0.
(iif) Theorigin O liesin theinterior of the convex hull of wy, ws, - - - , wy.

The equivalence of (i) and (ii) relies on the fact that the fingers together can be seen to apply
any wrench that is a non-negative combination of the individual finger wrenches. Intuitively, P is
in form closure if and only if any wrench applied to P can be cancelled by such a non-negative
combination of finger wrenches. The equivalence of (ii) and (iii) can be verified easily: if we set
wr to be a zero vector, Theorem 2.1 (ii) becomes an algebraic formulation of Theorem 2.1 (iii).
When s = 4, al \;’s must be positive to make a zero vector, i.e. >r \w; = 0 for \; > 0.
Theorem 2.1 (iii) and Zle Mw; = 0 with \; > 0 are geometric and algebraic statements that
the k wrench vectors positively span the three-dimensiona wrench space—thisiswhy « isat least
four, the dimension plus one. The theorem implies that the magnitudes of wrench vectors are not
important; only the direction matters. This again justifies that we take wrenches with unit force
vector 7. Note that if the origin lies on the boundary of the convex hull of w1, ws, ws and w,,? the
object isnot in form-closure, but it may still be in second-order immobility—see Chapter 2 and 6.

Now we introduce a necessary and sufficient condition for a two or three dimensional object
held with « fingers to achieve form closure.

2Such grasps are called equilibrium grasps. This means that the object held with some fingers does not move, i.e. it isin equilibrium. Note
that al immobilizing grasps are equilibrium grasps, but not al equilibrium grasps are immobilizing grasps. The equilibrium grasp where the origin
of the wrench space is strictly inside the convex hull of the wrenches is called nonmarginal equilibrium grasp ([58]). Nguyen [58] showed that a
nonmarginal equilibrium grasp is aform-closure grasp.

20 Grasp Analyses and Preliminaries

Figure 2.4: In athree-dimensional space, the convex hull of w1, --- ,wg contains the origin O in the interior. When
one of the pointsis removed, the convex hull of the remaining points does not contain O in the interior.

T

(b) w2
w3 My
w1

Nz
L o

Negated cone of
w1y, Wy, and ws

_ —w1
Wy ws | * — W2
Figure 2.5: The negated cone of three wrench vectors w 1, ws, and w3 isthe cone of —wq, —ws, and —ws.

Theorem 2.2 [38, 79] An object P held with « fingersis in form closure, if and only if the
wrenches wq, - - -, w, positively span the wrench space.

Since the wrench space for a three-dimensional object is six-dimensional, x must be at least
seven. In other words, seven fingers are necessary to put athree-dimensional objectinform closure
[46, 51, 56]. Recall that four fingers are necessary to put a planar object in form closure. However,
we sometimes need six wrench points to positively span the wrench space [56, 51]; we cannot
remove any of the six wrench points to keep the wrench space spanned positively. This happens
when the six wrenches have three pairs of collinear wrench vectors, and two wrenchesin each pair
have opposite directions. One good example is the six points on the coordinate axes of a three-
dimensional space. In Figure 2.4, two vectors are on the positive and the negative side of each axis.
The same applies to six-dimensional wrench space; there are cases when one needs to have twelve
wrenches to positively span the six-dimensiona wrench space. In general, we may not be able to
remove any vector from 2d vectors to positively span the d-dimensional space (Steinitz Theorem
[56]).

To check if agiven set of x wrencheswy, - - - , w, achieveform closure, one can use the negated
cone formed by the others [14]. The convex hull of the x wrenches contains the origin strictly
inside, if and only if w, isinthe negated cone of wy, - - - ,w,_1, i.€. theconeof —wy, -+, —w,_1.
Figure 2.5 illustrates the negated cone formed by w,, w, and ws. Thisisan easy checking method,
but unfortunately, it does not lead to an efficient algorithm.

2.2 Second-order immobility

Four frictionless point fingers are necessary to put two-dimensional objects in form closure, but
often, three can immobilize planar objects. Applying Reuleaux’s method implies that the three

2.2 Second-order immobility 21

(a) fi (b) CS (<) i?
<d>@ <6>C ?7 (f)< i

Figure 2.6: (a) A polygon that needs four point fingersto be immobilized. Many types of objects held with three point
fingers on the boundary are shown in (b)—(f).

(a ' (b) '

Figure 2.7: (a) Both of P, and P| areinform closure. (b) P; isin second-order immobility, but P, is not.

normal lines must meet at one point. Obvioudly, thisis not sufficient. In other words, Reuleaux’s
method cannot decide in which case the object is immobilized and in which case it is not. For
example, the objects held with three fingers in Figure 2.6 (b), (c), and (f) are immobilized, and
those in (@), (d) and (e) are not. Observe that the three normal lines meet at one point in all
these cases. The objectsin Figure 2.6 (b), (c), and (f) are in second-order immobility. To identify
immobilized objects, we need to include curvatures in the analysis. Note that no information on
curvature is used in form closure analyses; they include only the geometry of the normal lines.

We first look at the objects in Figure 2.6 (a), (b) and (c). It is easy to see that the objects in
Figure 2.6 (b) and (c) are immobilized and that in (@) is not. We can understand this difference
with the curvature of the object and the fingers. Now we look at the objects in Figure 2.6 (d), (e)
and (f). Itisnot easy to see which oneisimmobilized and which oneisnot. Theobject in Figure 2.6
(f) isimmobilized and those in (d) and (e) are not. Rimon and Burdick observed that the curvature
of the motion of P should be considered to analyze second-order immobility [73, 74, 75, 76]. Note
that the grasps in Figure 2.6 are al equilibrium grasps, and they are marginal equilibrium grasps.
Form-closure grasps are non-marginal equilibrium grasps [56, 58].

To see the curvature effect more easily in comparison with form-closure grasps, let us take a
polygon P;, and put it in form closure with four fingers, and also put it in second-order immobility
with three fingers. We replace P, with curved objects P; and P, such that the normal linesremain
the same. See Figure 2.7 (a) and (b). Then P/ is still immobilized, while P/ is not immobilized.
The objects P, and P in Figure 2.7 (a) are in form closure, and P; in Figure 2.7 (b) is in second-
order immobility.

In Section 2.2.1, we summarize the mobility theory developed by Rimon and Burdick [73, 74,
75, 76]. They explained in configuration space how the curvatures affect immobility. Czyzowicz,
Stojmenovic and Urrutia [33] formulated a geometric condition on the object plane to analyze

22 Grasp Analyses and Preliminaries

-
Free Motion Penetration
Halfspace Halfspace

a(t)

i-thl c-obstacle

,
t N 2
dg

tangent plane

Figure 2.8: Thefirst order approximation to the free motionsof P at .

second-order immobility for smple polygons. In Section 2.2.2, we will introduce this condition
with amore visual and thorough explanation.

2.2.1 Analysis in configuration space

A placement of an object P can be described by a trandlation and rotation with respect to a ref-
erence placement. Thisis called configuration, and all possible configurations form configuration
space, or c-space. The configuration space for a planar object is three-dimensional, and that for a
three-dimensional object is six-dimensional. A finger prevents P from occupying certain configu-
rations, and thisset of configurationsis called the forbidden region, and the region of configurations
where P can be placed is called free region. The object cannot enter the forbidden region; it can
freely move in the free region only. Let C.A; be the forbidden area of the configuration space be-
cause of thei-th finger A4; and, S; isthe boundary of C.A;. A signed c-space distance function d;(q)
measures the minimal Euclidean distance of a configuration point ¢ from S; asfollows:

distance(q, S;) if gisoutsideof C.A;
0 if gisonS;
—distance(q, S;) if gisintheinterior CA;

di(Q) =

Let «(t) be a smooth c-space path such that at the starting configuration ¢,, P touches a finger
A;. This corresponds to a possible motion of P during which it maintains contact with A;. The
set of first order free motions of P at ¢, is related to the first order Taylor expansion of d; along
a(t). When the motionisalong S;, it is called first order roll-slide motions, and when the motion
isstrictly away from S;, it is called first order escape motions. Together, they are called first order
free motions. Thisanalysiswith first order free motionsis equivalent to form closure analysis, thus
form closure isfirst-order immobility in their notion.

When the motion is along S;, and the first order term is zero, then the distance is decided by
the second order term. With considering the second order term, when the motionisaong S;, itis
called asecond order roll-slide motion, and when the motion is strictly away from S;, itiscalled a
second order escape motion. Figure 2.8 illustrates the difference between the first and second order
motions. The c-space curves «(t) and 3(t) in Figure 2.8 have the same tangent vector, and thus
they are equivalent to the first order. But «(¢) liesin the free space, while 5(¢) does not. Note that
all thefree motionsof P at an equilibrium grasp are necessarily roll-slideto first order. The objects
held with three fingers in Figure 2.6 (d), (e) and (f) need analysis in the second order term. When
the object turns out to be immobilized by checking the second order term for each of the fingers,
we call this immobility second-order immobility. The first-order properties of the free paths and

2.2 Second-order immobility 23

Figure 2.9: (a) The intersection of H(e;), H(e2) and H(e3) is a bounded triangle. (b) The intersection of H(e1),
H(es) and H (e3) isempty.

the c-obstacle boundaries (i.e. tangents and tangent hyperplanes) determine first order mobility of
P.

2.2.2 Analysis in the object plane for simple polygons

Czyzowicz, Stojmenovic and Urrutia [33] provided a necessary and sufficient geometrical condi-
tion for a ssimple polygon to be in second-order immobility with three point frictionless fingers.
Lemma 2.3 states the condition in [33]—we will refer to it as the CSU condition. Our agorithm
in Chapter 6 to efficiently report all second-order immobility grasps on a simple polygon is based
on the CSU condition. Unfortunately, to our best knowledge, there is no algorithm to efficiently
report all second-order immobility grasps of an arbitrary planar object.

We first define the term triangular triple. Let the three fingers be on three edges e, e, and es.
Let H(e;) be the open half-plane bounded by the supporting line of e, and it contains the interior
of P around the contact position p; (see Figure 2.9). When the region H(e;) N H(e2) N H(es)
formsa (bounded) triangle, then eq, e,, and e3 are said to be atriangular triple. Note that the object
in Figure 2.6 (f) satisfies the triangular triple condition, and those in (d) and (e) do not.

Lemma 2.3 [33] Three point fingersimmobilize a polygon P, if and only if the following two hold:
(i) The normals of the fingers meet at one point.

(if) The contact edges forma triangular triple.

Now we show why the triangular triple condition is necessary in the second-order immobility
condition. Let py, p» and ps be the three fingers a e;, e, and e, such that the normal lines meet
at one point. Instead of fixing the fingers, we fix P, and see how the triangle Ap;pop3 moves.
Because p; and p, are on e¢; and ey, we see how p; moves when p; and p, dide on e; and e,
respectively.® Let ¢,, ¢, and /5 bethe supporting linesof e, e, and e3, and let O be theintersecting
point of /; and /5. The three points O, p; and p, defineacircle C, and let p denote the center of C.

Lemma 2.4 If the normal lines at p, p, and p; meet at one point, and the triangle Ap,psps has
two vertices p; and p, that slide along ¢, and /5, then p; traces an ellipse.

Proof: First we will show that p rotates around O. As p; and p, dlide on ¢; and /5, the circle C'
with O, p; and p, on the boundary also moves. The angle Z/p,0Op, has a fixed value «, therefore
the interior angle Zp,pp, is also fixed—2a. Because [pips| is fixed, the radius of C' |Opl| is fixed,
therefore, p rotates around O. Since |Op| = |ppz| = |ppil, the position of p is fixed with respect

3The lemmas on the sliding triangle are from http://whistleralley.com/ellipse/ellipse.htm.

24 Grasp Analyses and Preliminaries

Figure 2.10: (a) The length of |pp3| and angle Zp2pps are constant. (b) Three points O, M and p, are on C, and
lOle = 7T/2

to segment p1p2, hence, with respect to the triangle Ap pops. Therefore, pps and angle Zpopps are
constant. See Figure 2.10 (a).

Let 0 be the angle ZpOp,, and v be Zpypps. When triangle Apipops slidesalong ¢; and /5, 0
changes, but not v. See Figure 2.10 (b). When we consider ¢, as = axis, the z coordinate for ps is
|Op| cos 6+ |pps| cos(y—0), and they coordinateis |Op| sin 64| pps| sin(y—6). Now we change our
coordinate system; we rotate ¢, around O by /2, and take this as new z axis. Then the coordinate
of p3 becomes (|Op| cos(—~/2+0)+|pps| cos(v/2—0), |Op| sin(—/2+40)+ |pps| sin(y/2—0)) =
((|Op| + |pps3]) cos(0 — ~v/2), (|Op| — |pps3|) sin(d — ~v/2)), which isadescription of an ellipse. O

The next lemma shows that the edge e3 keeps the ellipse that p; traces on one side.

Lemma 2.5 If the normals of p;, p; and p3 meet at one point, e5 istangent to the ellipse that p; of
the diding triangle Ap;pops traces.

Proof: Let M betheintersection of the two edge normal linesfor e; and e, at p; and p,. We first
show that OM contains p, i.e. it isadiameter of C. The three points O, M and p, are on C, and
the angle ZOp, M isaright angle from the construction of M. See Figure 2.10 (b). The center of
the circumcircle of atriangle lies on one of the triangle’s sides, if and only if the triangleis aright
triangle, therefore, p € OM. The coordinate of M with ¢, as z-axisis (2|Op| cos 8, 2|Op| sin 6).
The edge normal line of e3 at p; isthe supporting line of p; M from the construction—ps is chosen
such that the three normal lines of e, e; and e3 at p;, p» and p3 meet at one point.

Remember that ps M is an edge normal of e;. Thus if the tangent line of the ellipse at ps is
perpendicular to p3 M, e3 istangent to the ellipse at p;. The tangent di rectiorﬁctor ¢ of thedlipse
at ps is (—|Op| sin 0 + |pps| sin(y — 6),[Op| cos 6 — |pps]| cos(y — 0)), and ps M = (2|Op| cos § —
[Op| cos 6—[pp3| cos(y—0). 2/Op] sin 6—[Op] sin 6—[pps] sin(y—6)) = (|Op| cos 6— [pps| cos(y -
0), [Op| sin @ — |pps| sin(y — 6)). Showing that ps M - t = 0 will finish the proof.

pold T = ([Op| cos0 — [pps] cos(y —) ([0l sin + [pa]sin(— 6))
+(|Op|sin 6 — |pps| sin(y — 0)) (|Op| cos 6 — |pps| cos(y — 0))
= —|Opl|?sin @ cos 6 + |Op||pps| cos O sin(y — 6)
+|0pl |pp3| cos(y — 0) sin 6 — |pp3|*
+|Op|? sin 6 cos @ — |Op||pp3| cos(y — 0) sin 6
—|Op|[pps] cos 0 sin(y —) + [ppa|* sin(y —) cos(y — 0)
= 0.

sin(y — @) cos(y — 0)

2.3 Force closure 25

Lo
Y4 P2
gl P1 2 61
(a) (b) 1
b3 7 »
{3 T
12
b2 2
4y
0 Uy P1
(c) (d)
p
D2
l3 I b D3 |

Figure 2.11: The curvature of motions of the fingers on three edges that make a triangular triple, and those that does
not make atriangular triple.

When e, e; and e3 meet at one point, p3 follows a degenerate ellipse—a line segment (Fig-
ure 2.11 (a)). When ey, e, and e3 do not make a triangular triple, the ellipse is outside of H (e3).
See Figure 2.11 (b). When the edges make atriangular triple, the ellipseisin H (e3), which means
that the triangle cannot move any more without penetrating the interior of P, therefore, P isim-
mobilized. See Figure 2.11 (d).

2.3 Force closure

When frictional fingersimmobilize an object P, P issaid to bein force closure. The word “force”
is used to describe this immobility with frictional fingers, because friction assumes force. Fewer
than four (frictional) fingers can achieve force closure, because a frictional finger applies force
along a set of lines, while africtionless finger does along only one line. We call the set of lines of
force friction cone. In thisthesis, we focus on hard point fingers, and use Coulomb friction model
for analysis.* When a hard frictional point finger pushes an object P, the surface normal has a
friction conearound it with half angle, whichistheregion wherethelinesof forcelie. Figure2.12
describes friction cones for two-dimensiona and three-dimensional objects. The friction cone on
a three-dimensional object P can be constructed as follows: take the normal line at the contact,
rotate it around the contact by «}, and rotate this new line around the normal. The cone constructed
outside P isthe friction cone. Any line of force—it isin the friction cone—can be represented as
a positive combination of the boundary lines.

Assuming Coulomb friction, three and four frictional hard point fingers are necessary to im-
mobilize two and three dimensional objects respectively [51]. When we use rounded fingers with
static friction, two can grasp any two-dimensional object, and three can grasp any two-dimensional
object [54]. Asinthe case of form closure, anon-marginal equilibrium grasp achievesforce closure
for atwo-dimensional object [60] and also for athree-dimensional object [61].

To analyzeforce closure, we can basically use the analysisfor form closure: Reuleaux’s method
and the analysis in wrench space. For atwo-dimensional object, two or three frictional fingers can

4There are many kinds of fingers. The friction cones for different fingers are described in [58].

26 Grasp Analyses and Preliminaries

(a) \W (b) @vﬁ@

Figure 2.12: Coulomb friction model of africtional point finger. (a) A friction cone of afinger on aplanar object. (b)
A friction cone of afinger on athree-dimensional object. Any boundary line forms angle ¢ with the normal line.

p =1/
(a) (b) !’
P P
p L4)

Figure 2.13: Force closure grasps with two frictional fingers. (a) Line p1pz isin the internal friction cones, and (b)
P1p2 isin the external friction cones.

achieve force closure. A necessary and sufficient condition in wrench space for the fingers to
achieve force closure is similar to that for form closure; the wrenches of the boundary lines of the
friction cones must positively span the wrench space to achieve force closure [79]. A necessary
and sufficient condition on the object plane for two fingers to achieve force closure is as follows:
a planar object with two frictional fingers achieve force closure, if and only if the joining line of
the two contacts must be in the internal friction cones or in the externa friction cones [58, 60]—
see Figure 2.13. An equilibrium grasp with three fingers achieves force closure if and only if
there exist three lines in the friction cones which positively span the plane and which intersect at
one point [60]. Force closure grasps for three-dimensional objects with four Coulomb-frictional
point-contact hard fingers have been studied by Ponce et a. [61]. They also provided a geometric
characterization of force closure grasps with four fingers.

2.4 Preliminaries

In this section, we introduce the theorem of form closure, and data structures and algorithms to
report al intersections. In Section 2.4.1, we state the form closure condition and the transforma-
tion of the problem into intersection problem. In Section 2.4.2, we introduce all the intersection
algorithms and data structures.

2.4.1 Projections of wrenches

In the following, we define the segment pq to be the relatively open segment connecting p and ¢,
that is, theset pg := {A\p + (1 — X\)¢ | 0 < A < 1}. We have asimple geometric lemma.

Lemma 2.6 Let w,, w,, ws, wy befour pointsin R3. The origin O liesin theinterior of the convex
hull of w4, ..., w, if and only if there are points p; € wyw; and p, € wsw; such that O € pips.

Proof: The “if” direction is straightforward, so we show “only if” direction only. Suppose that
the origin O lies strictly inside the tetrahedron formed by w1, w,, w3 and w,. Consider the plane 11
containing wq, wq, and O. It intersects the segment w3wy in a point p,. See Figure 2.14. The

2.4 Preliminaries 27

Figure 2.14: The origin O liesin the interior of the convex hull of w 1, ws, w3 and wy, if and only if there are points
p1 € wiws and py € wawy, suchthat O € pips.

Figure 2.15: Screen I" and the projection of aline segment.

intersection of the tetrahedron with IT isthe triangle Awiwsp,. The point O liesin the interior of
thistriangle, and so the line Op, intersects wyws; at an interior point p; of wyws. O

If we project these four points on some planes, they have an interesting property. In wrench
space, the horizontal dimensions,, and n,, represent the direction of the force applied by awrench,
whilethe vertical dimension 7 representsthe torque that is caused by the force. We take two planes
I'; and I'; for our screen I' throughout the thesis, unless stated otherwise. They are defined as
follows: Ty == {(n,, 1, 7)) | -1 < < 1+e,7€R}yandly := {(-1,n,,7)" | -1 <n, <
1 +e,7 € R}, where ¢ is an arbitrarily small positive constant. The screens are extended by ¢,
so that an interior point of awrench set is projected as an interior point on at least one plane of T,
according to the following projection scheme. See Figure 2.15 and 2.16.

Now we will project wrenches w that do not lie on the 7-axis onto I' as follows. The projection
mi(w) of wonT; (: = 1,2) isthe intersection, if it exists, of I'; with the line through w and the
origin O. If w lies between O and 7;(w), we color 7;(w) blue. If O lies between w and 7;(w), we
color 7;(w) red. Itis easy to see that for each wrench w, at least one of 7, (w) and 7, (w) exists.

A segment wyws; is projected onto I" by projecting each point w € wiw,. The projection
m(wws) consists of at most four segments on I', where each segment is either blue or red. See

28 Grasp Analyses and Preliminaries

Iy

Figure 2.16: Screen I" in wrench space, viewed from the positive m axis.

Figure2.17: The originisinside the convex hull of w1, wa, w3 and wy, if and only if red and blue projections of wiws
and w3 wy intersect each other in the interior.

Figure 2.15. The following lemmais areformulation of Theorem 2.1 (iii) in terms of projections.
Figure 2.17 illustrates Lemma 2.7.

Lemma 2.7 Givenan object P with four contact wrenches w,, ws, w3 and wy, P isinform-closure
if and only if a red part of 7 (wywy) intersects a blue part of 7(wzwy), Or vice versa.

Proof: By Theorem 2.1 and Lemma 2.6, the object is in form closure if and only if there exist
p1 € wiws and py € wawy such that O € prps. Since 7(wiws) and 7 (wswy) are line segments,
neither wyw; nor wsw, passes through the origin. Furthermore, on a screen I'; where ;(p;) exists
(which must be truefor at least one of the screensT’; and I's), we must have 7;(p1) = m;(p2) (Since
they lie on the same line through the origin) and the colors of these projections differ (since they
lie on different sides of the origin)—see Figure 2.17. i

2.4 Preliminaries 29

2.4.2 Algorithms and data structures for intersection search problem

In this thesis, we need to search for red and blue intersections between points, line segments,
triangles, arcs and semi-algebraic sets. We will divide this section into two parts: the intersection
search strategies between points, line segments and triangles, and those between points, arcs and
semi-algebraic sets.

Intersections between points, line segments and triangles

We wish to search for red and blue intersections between the following pairs: (i) line segments, (ii)
points and triangles. To find all intersecting red and blue line segments, we use a segment intersec-
tion algorithm and a segment intersection search structure. To report all red and blue intersections
between points and triangles, we use atriangle search structure.

Segment intersection algorithmreports al K intersections between red and blue line segments
among ¢ red and blue line segments—there can be intersections between reds and also between
blues. The algorithm by Agarwal [1], improved by Chazelle [18] doesthisintime O (¢*/3 log"/® ¢+
K), (Chazelle's description mentions colorblind intersections only, but his approach also worksfor
red-blue intersections). Throughout this thesis, we let £ denote the output size for one query, and
K bethe overal output size, unless stated otherwise.

The segment inter section search structure supports aquery of the following form: given a set of
line segments, report all segmentsintersecting a query segment in theinterior. The triangle search
structure supports a query of the following form: given a set of points, report all pointslyingin a
query triangle. For both structures we use one type of data structure called hierarchical cutting tree
proposed by MatouSek [52]. Matousek explains how we can build, for any set P of m pointsin the
plane, and a prescribed parameter ¢ such that logm < ¢t < m, atree of height O(logm) with the
following properties:

e the number of nodes at depth 7 is O(p*), for some constant p; each node v at depth i has an
associated subset P, of P of size O(m/p);

e thereare O((m/t)?) leaves v, and their sets P, have size O(t);

e for any half plane H, the pointsin P N H are exactly the points in the sets associated with a
set of non-leaf nodes (one node at each depth in the tree), plus some or al of the pointsin a
singleleaf. The set of non-leaf nodes and the leaf can be identified in O(log m) time.

Thetree can bebuiltin O(m?/t) time.® If wejust storethe sets P, explicitly, thistree can obviously
be used to answer half plane range reporting queriesin O(logm + t + k) = O(t + k) time: find
the leaf, check its complete contents, and find the non-leaf nodes, and just report their complete
contents.

To extend this approach to a triangle search or segment intersection structure, we proceed as
follows. We generalize the above tree a little bit. Instead of points p, we store tuples of points
(p1,..-,px)- The haf plane property of the tree will now read as: “For any half plane H, the
tuples {(p1,--- ,px) | p1 € H} are exactly the tuples...”. We call such atree an order-1 tree. A
tree of order j, for j > 1, will be just like an order-1 tree, with two exceptions. First, and most
important: each set P, for anode v of the order-; tree will be stored as atree of order (j — 1) on
the tuplesin P,. Second, the half plane property now reads as. “For any half plane H, the tuples
{(p1,....,px) | p; € H} are exactly thetuples...”.

5Theorem 5.1 from Matoudek [52], with = m/t and d = 2. Note that there is atypographical error in Matoudek’s publication: it says O(p)
instead of O(p??).

30 Grasp Analyses and Preliminaries

Lemma 2.8 Atree of order j:
e can be builtin time O(m?(log’ ' m)/t), and

e can be used to report, for any set of j half planes (H,, ..., H;), all tuples {(p1,...,px) |
Vicic; pi € H;},intimeO(tlog’ ™' m + k), where k isthe number of tuples reported.

Proof: We prove the lemmaby induction on j.

For j = 1, itisobvioudly true.

The construction of atree of order j > 1, consists of the construction of the main structure,
in O(m?/t) time, and the construction of the associated trees of order (; — 1). By the induc-
tion hypothesis, the construction of an order-(j; — 1) tree at depth 7 in the order-; tree takes
O((m/p")?(log’ % m)/t) time. The construction times thus add up to:

m? OQog) o m\ > log’ ?m m?log’ ' m
o)+ X owmo((G)) o (")

The search in an order-j tree with H; yields O(log m) nodes whose order-(j — 1) trees have to
be searched. By the induction hypothesis, searching the order-(j — 1) trees costs O(t log” > m + k)
time for each tree, which adds up to O(tlog’ ' m + k). Furthermore, one leaf of size ¢ hasto be
searched, for acost of O(t), so that the total time spent searching is O(t log’ ™' m + k). O

Corollary 2.1 In O(m?log m) time, we can build a triangle search structure on a set S of m points
that answers queriesin O(log® m + k) time, where k is the number of pointsin S that lieinside the
query triangle.

Proof: We build atree of order 3 with ¢t = log m and store each point p € S init as atuple
(p,p,p). To answer atriangle query, we search the order-3 tree with the three half planes whose
intersection is the query triangle. By Lemma 2.8, the tree can be built in O(m?logm) time and
answers queriesin O (log® m + k) time. © O

Corollary 2.2 In O(m?) time, we can build a triangle search structure on a set S of m points that
answers queries in O(log* m + k) time, where k is the number of pointsin S that lie inside the
query triangle.

Proof: We follow the same approach as in Corollary 2.1, but now with t = log® m. O

Corollary 2.3 In O(m?log? m) time, we can build a segment intersection structure on a set of m
line segments that answers queriesin O(log* m + k) time, where k is the number of line segments
in .S that intersect the query segment.

Proof: We use the same transformation as, for example, in [3]. Assume that there are no vertical
segments (if there are vertical segments, we must turn everything just a little bit to prevent degen-
eracies). We build an order-4 tree with ¢ = log m, storing each line segment s = 5357 as atuple
(I*(s),1*(s), S0, 51), Where [*(s) = (a, b) isthe dual of the supporting linel(s) : y = ax + b of s.
Observe that a query segment ¢ = Goq; intersects s if and only if the following two conditions are
met:

6with Theorem 6.1 in MatouSek’s publication [52], he improves the construction time for the triangle search structure to O (n? log® m) (with

the same query time) for any constant ¢ > 0; the same technique could be used to improve the construction time for the segment intersection
structure to O(m? log! T m). However, these improvements don't affect our final bounds, so we will ignore them for simplicity.

2.4 Preliminaries 31

e s liesabove(q) while s; liesbelow [(q) (or the other way around), and

e (o liesabovei(s) while g, liesbelow [(s), or equivaently: I*(s) liesbelow the dua line ¢ of
¢o and above the dual line ¢} of ¢; (or the other way around).

An intersection query with aline segment can thus be formulated as a query with four half planes,
bounded by ¢, ¢7, and [(q) (twice) in the order-4 tree storing tuples (1*(s), I*(s), So, $1)- O

Sometimes, we use a variation of Matousek’s hierarchical cutting trees with space and query
time trade-off for triangle search structure. It storesthe pointsin M spacein O(q'** + M log® q)
time, and reports k pointsin aquery trianglein O(q/v/M log® 2 + k). If we set M to be ¢*/%, the
preprocessing time becomes O(¢*/? log® ¢), and the query timeis O(q'/? log® ¢ + k). See Theorem
6.2in[52].

Intersections between points, arcs and semi-algebraic sets

In thisthesis, we need to search for red and blue intersections between algebraic arcs and line seg-
ments, and between points and semi-algebraic sets. To find all red and blue intersections between
arcs and segments, we use a red-blue segment-arc intersection algorithm and a segment-arc query
structure. To report al red and blue intersections between points and semi-algebraic sets, we use a
semi-algebraic range search structure.

The red-blue segment-arc intersection algorithm by Koltun [45] works on ¢ possibly intersect-
ing red (blue) segments and ¢ possibly intersecting blue (red) arcs. It reports all K red and blue
intersecting arc and segment pairsin O(¢%/%*¢ + K)-time, using O(q) space. Alternatively, we can
store ¢ arcs in a segment-arc query structure by Koltun [45] in O(¢**¢) time, and report all k arcs
intersecting a query segment in O(log g + k) time.

The semi-algebraic range search structure by Agarwal and Matousek [2] isto report al points
in a query semi-algebraic set. It stores ¢ pointsin O(qlog ¢)-time, and reports all k£ pointsin a
query semi-algebraic setin O(¢'/?*¢ + k)-time.

32

Grasp Analyses and Preliminaries

Chapter 3

Computing All Form-Closure Grasps of a
Simple Polygon with Few Fingers

Many researchers studied the problem of reporting all form-closure grasps of polygonsin the non-
modular setting [39, 82, 91]. Four wrenches (normal lines) are necessary to achieve form closure
for a two-dimensional object. Van der Stappen et al. [82] proposed an efficient output-sensitive
O(n**¢ + K)-time algorithm to compute all K edge quadruples of a polygon with n edges, which
allow form-closure grasps with four frictionless point fingers. Fewer than four point fingers may
suffice for form closure if the object has concave vertices. Computing al form-closure grasps
involving concave vertices was first studied by Gopal akrishnan and Goldberg [39]. They checked
all concave vertex pairs to find all K concave vertex pairs that allow a two-finger form-closure
grasp.

In this chapter, we propose efficient output-sensitive algorithms to enumerate all combinations
of concave vertices and edges of a polygon that allow form-closure grasps with two or three fric-
tionless point fingers. More specifically they are: (i) pairs of concave vertices, (ii) triples of one
concave vertex and two edges, (iii) triples of two concave vertices and one edge, and (iv) triples of
concave vertices. Here, we improve the result in [39]. The proposed algorithms are based on the
analysis of form closure in wrench space. This turns out to work well for synthesis of all grasps,
whileit is not obvious how to compute all grasps with most intuitive analysis in two-dimensional
plane of the planar object itself, as Reuleaux’s method [70].

When polygons are rectilinear, all form-closure grasps can be enumerated faster, because the
wrenches have aregular pattern. We propose efficient output-sensitive algorithmsto enumerate al
combinations of concave vertices and edges of arectilinear polygon that allow form-closure grasps
with two, three or four frictionless point fingers. The combinations include: (i) edge quadruples,
(i) triples of one concave vertex and two edges, (iii) pairs of concave vertices, and (iv) triples of
two concave vertices and one edge.

This chapter is structured as follows. In Section 3.1, we introduce notations, form-closure con-
ditions, projection schemes, wrench shapes and data structures for intersection search problems.
In Section 3.2, we propose output-sensitive algorithms to report al combinations of edges and
concave vertices of a polygon that allow form-closure grasps with less than four frictionless point
fingers. Section 3.3 covers rectilinear polygons; we propose output-sensitive algorithms to report
all combinations of edges and concave vertices of a rectilinear polygon that alow form-closure
grasps with at most four frictionless point fingers.

1This chapter is based on “On computing al immobilizing grasps of a simple polygon with few contacts’ [23] by J.-S. Cheong, Herman
Haverkort and Frank van der Stappen in ISAAC (2003), and “On computing all immobilizing grasps of a simple polygon with few contacts’ [24]
by J.-S. Cheong, Herman Haverkort and Frank van der Stappen in Algorithmica (2006).

34 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

Nz
él N
my <@

Nz

) \
My \\
</

Figure 3.2: The wrench induced by a finger at a concave vertex and its projection. The projection is composed of at
most four line segmentsin general.

3.1 Preliminaries

As a consequence of Theorem 2.1, our problem isto find all edge wrench sets that contain four
points whose convex hull contains the origin of wrench space (7., n,, 7). As seen in Section 2.4,
this problem is transformed into red and blue intersection problems on the projected wrenches
on screen I'. More dtailed information on projections and screen I' can be found in Section 2.4.
First we will see the shape of awrench set induced by afinger along an edge in Section 3.1.1. In
Section 3.1.2, we discuss the data structures and algorithms that we use in this chapter.

3.1.1 The shapes of wrench sets

We place afinger at position p on an edge e. The corresponding wrench is (1, 7)* = (1., 1y, p X
n)*, wheren = (n,,n,)" istheinward normal line of e. As mentioned earlier in Section 2.4, 1,
and), arethe horizontal dimensions, and 7 isthe vertical dimension. When afinger slidesalong e,
the inward normal direction » does not change; only the torque = changes. Thus the set of wrench
points forms a vertical line segment. See Figure 3.1 (). We call this vertical segment the edge
wrench set of ¢, and denote it with é. An edge wrench set is a relatively open line segment, i.e.
the endpoints are excluded, since we place a finger in the interior of an edge. Note that wrenches
never lie on 7-axis, as the inward normal direction is never (0,0). The projection of a vertical
line segment ¢ is also a vertical line segment on I, which is denoted by 7(é).

When two fingers slide along two edges e, and e,, the corresponding wrench points w; and w-
also dlide along é; and é;. The union of the line segments connecting w; and w,, for al w; € é;
and wy € é, forms atrapezoid. Let r(eq, e;) denote the projection of this trapezoid. We formally
define (e, eg) asfollows: r(ey, e9) := | J{m(wiws) | wy € é1,wy € é5}. Observethat (e, es)
is also atrapezoid, and it is composed of at most four trapezoids on I'. Figure 3.1 (b) shows a
trapezoid r(eq, e2), Which is composed of two trapezoids. Note that r(eq, e;) is partialy open;
only the vertical boundary segments except the endpoints are included.

3.2 Computing all form-closure grasps with at most three fingers 35

(c) . '
NN

Figure 3.3: A polygon with two concave vertices whose vertex wrenches intersect each other. In (c), the concave
vertex wrenches arein black solid lines; the dotted line segments correspond to convex vertex wrenches and gray solid
vertical line segments correspond to edge wrenches.

A finger at a concave vertex v touches two incident edges e; and e, of v at position p. Let n;
be the normal line of edge e; at p, and w;(v) beitswrench (: = 1,2). A finger at v induces a set
of lines of force between 7, and 7, thus a set of wrench points between w; (v) and ws(v). More
precisely, they are (aym1 + aon, p X (a1m1 + aone)),2 which becomes o w; (v) + aows(v), where
0<ao <1,0<ay <1,and a; + ay = 1. Note that this line segment includes w, (v) and ws(v),
because the finger is at an endpoint of each of e¢; and e,. We call this line segment the vertex
wrench set (of v), and denote it by ©. The projection of the segment connecting w; (v) and wy(v) is
the (closed) line segment connecting 7 (w1 (v)) and m (w9 (v)) onI". Welet s(v) denote this segment
on I'. See Figure 3.2. Note that vertex wrench sets can intersect each other—see Figure 3.3.

3.1.2 Intersection search algorithms

In Section 3.2, we need to perform two kinds of queries to report all red and blue intersections.
For these queries, we use the following three: a segment intersection algorithm, a segment inter-
section search structure, and a triangle search structure. More information on these structures and
algorithms can be found in Section 2.4.2.

In Section 3.3, we use an interval tree, a binary search tree and a two-level orthogonal search
tree. All thesetrees can store ¢ intervalsor pointsin O(qlog ¢) time. The query time for an interval
tree and a binary search tree is O(log g + k), and the query time for a two-level orthogonal search
tree is O(log? ¢ + k), where k is the output size. More information on these trees can be found
in [9]). Throughout this chapter, we let k& denote the output size for one query, and K denote the
overall output size.

3.2 Computing all form-closure grasps with at most three fingers

Throughout this chapter, we let n be the number of edges and m be the number of concave vertices
of a polygon P. Before we introduce the algorithms to report al combinations of edges and
concave vertices, we show how to compute the exact positions on a given set of edges and concave
verticesthat achieve form-closure. In particular, we take a combination of two edgese; and e;, and
a concave vertex v. Note that a concave vertex has a fixed position where a finger can be placed.
Hence we focus on computing the positions of given edges that yield form-closure grasps with
a given concave vertex. A given set (e, e2, v) has form-closure grasps if and only if a blue/red
trapezoid of ¢, é, intersects a red/blue line segment of s(v) in the interior. (Readers can find more
detailed information in Section 3.2.2.) We take a point p in the intersection of red and blue é¢é,
and s(v). We have arange of pointson é; and é,, whose line segment contains p in the interior.

2|f we let a1 + a2 be aunit vector, the set of the corresponding wrench points forms an arc between w (v) and wa(v). Observe that this
arc lies on the plane defined by three points O, wi (v) and w2 (v). Hence the projection of this arc is a line segment connecting 7 (w (v)) and
(w2 (v)). For simplicity, we take the line segment connecting wj (v) and w2 (v) as the set of wrench points induced by afinger at v.

36 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

Figure 3.4: A range of pointson é; and é>; whose line segment contains p in the interior. In (b) and (c), p is denoted
by an open disc, because that point is not included in the intersection region.

RN

Figure 3.5: (a) This polygon has no concave vertex pair that allow aform-closure grasp. (b) This polygon has O(m 2)
concave vertex pairsthat allow aform-closure grasp.

Figure 3.4 showsarange on ¢; and é; when apoint p isgiven. We compute the rangesfor all points
intheintersection area. Asp moves, the ranges gradually grow and shrink. It isenough to compute
the ranges for the points along the intersection region boundary. The intersection region has a
constant complexity, because trapezoids and line segments have constant complexities. Note that
the non-vertical boundaries of é,é, and the endpoints of s(v) are not included in the intersection
region.

3.2.1 Two concave vertices

We wish to report al pairs of concave vertices that allow form-closure grasps by placing two
frictionless point fingers at these vertices. We assume that the concave vertices have already been
identified. For each concave vertex v, we compute s(v) on I', the projection of the line segment
connecting wy (v) and wy(v) . By Lemma 2.7, two concave vertices v and v" have a form-closure
grasp with two frictionless point fingers, if and only if theinteriorsof s(v) and s(v’) form ared-blue
intersectionon I'.

The family {s(v)} consists of at most 4m red and blue segmentson T". It remains to compute
all red-blue intersectionsin this set, which can be solved in time O (m*/3 log"/* m + K), using the
segment intersection algorithm. The following theorem summarizes the result. Note that the total
output size K is O(m?), but it can be zero. See Figure 3.5. In the worst case, K is O(m?), butin
most cases, K is smaller than this. The algorithm does not check all possible pairsto report O(m)
pairs, for example, which is an advantage of output-sensitive algorithms.

Theorem 3.1 Given a polygon with m concave vertices, all K form-closure grasps with two fric-
tionless point fingers at two concave vertices can be computed in time O (m*/3 log"?m + K).

3.2.2 One concave vertex and two edges

Form closure may aso be achieved by placing three frictionless point fingers, one at a concave
vertex v, and one on each of two edges e; and e,. We now give an algorithm to report all such
triples (v, e1, e5). Again, we have four wrenches: w, € é;, wy € é,, and the two wrenches w;(v)
and wy(v), the endpoints of s(v). All sets of line segments wyw; form atrapezoid r(eq, ey). If
s(v) intersects r(ey, e2) in the interior, there existsw, € é; and wy € é,, such that s(v) intersects
whwy in theinterior. Therefore by Lemma2.7, atriple (v, ey, e5) alowsaform-closure grasp with

3.2 Computing all form-closure grasps with at most three fingers 37

Figure 3.6: (a) Red line segments intersecting a blue trapezoid in the interior. (b) An arrangement of blue trapezoids
and red line segments.

(a) (b)

Figure 3.7: (&) This polygon has no triple of a concave vertex and two edges that allow aform-closure grasp, and (b)
this polygon has © (mn?) such triples.

three frictionless point fingers, if and only if the blue part of s(v) intersects ared part of trapezoid
r(e1, ez), OF Vice versa

There are m choices for s(v) and O(n?) trapezoids induced by n edge wrench sets: at most
four trapezoids for each pair of edges. It remains to solve the following problem: given a set of
m line segments and a set of O(n?) trapezoids, find al intersections between a line segment and
atrapezoid. See Figure 3.6. We observe that a segment s intersects a trapezoid r, if and only if s
liesin r, or s intersects one of the sides of . We report those that belong to each of the two cases
separately.

For the first we use a triangle search structure of Corollary 2.1. We build, in O(m?logm)
time, a triangle search structure on the set of midpoints of the m segments: this permits queries
with atrapezoid (by decomposing it into triangles), identifying the & points inside the trapezoid in
O(log® m + k) time. The triangle search structure will report the segments whose midpointsliein
r, but they intersect one of the sides of . However, they will be reported at most twice. For the
second we use a segment intersection structure of Corollary 2.3. We build, in O(m? log® m) time,
a segment intersection structure for segment intersection queries on the O(m) segments. Finding
al k segments intersecting a given trapezoid boundary takes O (log* m + k) time.

The total output size K is O(mn?), but it can be zero. Figure 3.7 shows the polygons with
O (mn?) triples and zero triple of a concave vertex and two edges that yield form-closure grasps.

Theorem 3.2 Given a polygon with m concave vertices and n edges, all K combinations of one
concave vertex and two edges that yield form-closure grasps with three frictionless point fingers
can be computed in time O (n? log* m + K).

3.2.3 Two concave vertices and one edge

Placing two point fingers at a pair of concave vertices v, v’ may not achieve form closure. Placing
one more finger in the interior of an appropriate edge e, however, can achieve form closure with
those at v and v". Here, we present an output-sensitive algorithm to report all such triples (v, v’, e).
Consider apair of concave vertices v, v’ that does not achieve form closure. Let w1, ws and ws, wy
be the wrenchesinduced by v and v’, respectively, and let W := {w;, ws, w3, w4}. By Theorem 2.1
the origin O doesnot liein theinterior of the convex hull of 177, An additional finger on e achieves
form closure if and only if O liesin the interior of the convex hull of W U {w}, where w is the
wrench induced by the finger.

38 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

Figure 3.8: (a) The convex hull of w1, - - - , w5 contains O strictly inside. (b) An arrangement of the blue convex hulls
and the red line segments.

Let W’ := W U {O}. The convex hull of W' is a convex polytope with four or five vertices,
one of which is O. Consider afacet f; incident to O, and let H; be the open half-space bounded
by the supporting plane of f; not containing 1W’. If O liesin the interior of the convex hull of
W U {w}, for some w, then w € H, for al i’s. Conversely, if thisistrue for every facet incident
to O, then O doesliein the interior of the convex hull of W U {w}.

It followsthat an edge e can achieve form closure together with v and »” if and only if the edge
wrench segment ¢é intersects the intersection of three or four half-spaces. The bounding planes
of these half-spaces pass through O, so we can again project everything onto a two-dimensional
screen. Here, we do not wish to identify wrenches that are symmetric around the origin, so we use
ascreen I'” enclosing the origin as follows:

I = {(ne,my, 7)" | max(|nl,[ny|) = 1,7 € R}.

To prevent degeneracies, we would turn the screen a little so that no segment is projected onto an
edge of the screen. We project the n segments é onto I, build a triangle search structure on their
endpoints, and a segment intersection structure on the segments themselves.

For the triangle search structure we use a structure by MatouSek again; however, this time we
use the variant that allows us to balance preprocessing and query time. More precisely, we can
choose a parameter M (in fact the size of the structure) such that n < M < n?, and will get a
preprocessing time of O(n'*¢ + M log® n), for an arbitrarily small constant ¢ > 0, and a query
time of O((n/v'M)log® 2 + k). We choose M = n?/log;, n, to get a preprocessing time which
is, in any case, O(n?log® m), and a query time of O((log/* n)log®n + k). Withe < 2 thisis
certainly O(log* n + k).

Before we choose the segment intersection structure, observe that all segments to be stored
are vertical. A query segment ¢ = Goqr, Where ¢; = (2(¢;),y(g:)), intersects a stored segment
s = So51, Wwhere s; = (z(s;), y(s;)), if and only if the following two conditions are met:

e 5 liesabove(q) while s; liesbelow [(q) (or the other way around), and
e x(s) lies between z(qy) and z(qy).

Therefore, we can solve our query problem with an order-2 structure, as explained in the previous
section. The structure stores tuples (s, s1), and storesthe sets P, associated with internal nodesin
order-1 trees sorted by z-coordinate. We can pre-sort all segments by z-coordinate asan initializa-
tion step, and keep them sorted while distributing and copying them to subtrees, so that no further
sorting is necessary. Thus, the complete structure can be constructed in the same time bound as a
normal order-2 structure: with ¢ = logn, we get construction time O(n?). The query time of an
order-2 structurewith ¢ = log n isnormally O(log® n+ k), but in this case, we cannot just report all

3If W’ has four vertices, one of the wrenches is redundant. This means that form closure could also be achieved by placing point fingerson e, at
one of the vertices v or «/, and on one of the edges incident to the other vertex. Thistriple will be reported by the algorithm given above for finding
all combinations of one concave vertex and two edges that yield a form-closure grasp.

3.2 Computing all form-closure grasps with at most three fingers 39

(a) (b)

Figure 3.9: (@) This polygon has no triple of two concave vertices and one edge that allow form-closure grasps, and
(b) this polygon has © (m?n) such triples.

contents of the internal nodes found: we have to do a binary search to report only those segments
with z-coordinates between x(q) and z(q,). Thisincreases the query timeto O(log® n + k).

In total, both data structures are built in O(n?) time. We now consider each pair (v,v’) of
concave vertices in turn. We compute the wrenches W induced by the two vertices, the convex
hull of W U{O}, and theintersection R of the three or four relevant half-spaces. We then compute
R := RN 1", apolygonal area of constant complexity. We triangulate R’, and find the & segment
endpoints inside R’ by triangle range queries in time O(log* n + k). Furthermore, we find all &
segments intersecting the boundary of R’ intime O(log® n + k) by a constant number of segment
intersection queries. Since there are ©(m?) pairs of concave vertices, the total running time is
O(n? +m?log* n + k).

To list all triples of two concave vertices and one edge that yield a form-closure grasp, we
should also run the algorithm of Section 3.2.1, to get, in time O(m*?log"® m + k), al k pairs
of concave vertices that yield a form-closure grasp, and combine the result with every edge of the

polygon.

Theorem 3.3 Given a polygon with m concave vertices and n edges, all K combinations of two
concave vertices and one edge that yield form-closure grasps with three frictionless point fingers
can be computed in time O(n? 4+ m?log* n + k).

It would be possible to trade some of the dependency on n in this bound for dependency on
m, by exploiting the trade-off between preprocessing and query time for triangle search and inter-
section search structures. However, in the end it would not affect the final bounds for describing
all three-point form-closure grasps, as that requires running the O (n? log* m + K)-time algorithm
from the previous section anyway. The latter will dominate the bound on the total running time.
Thetotal output size K isO(m?n), but it can be zero. Figure 3.9 showsthe polygonswith ©(m?n)
triples and zero triple of two concave vertices and one edge that yield form-closure grasps. Here as
well, our algorithm does not check all possibletriplesto report K tripleswith form-closure grasps.

3.2.4 Three concave vertices

A triple of concave vertices (vq, vo, v3) induces three sets of wrench points. Each set isaline seg-
ment connecting two wrench points. Let w1, - - - , wg be the end points of the three line segments.
Three point fingers in these vertices put an object in form closure if the convex hull of the six
wrenches contains the origin in itsinterior. We can distinguish two cases:

1. asubset of five wrenches already containsthe originin theinterior of its convex hull, and thus
achieves form closure;

2. no subset of five wrenches contains the origin in the interior of its convex hull.

In the first case, only two of the concave vertices contribute two wrenches to the convex hull. The
finger in the third vertex contributes only one wrench: it could just as well have been placed close

40 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

by on the corresponding edge which is incident to that vertex. The first case is thus very similar
to the case discussed in Section 3.2.3. The agorithm of that section can easily be adapted to list
al such cases. We will just use the triangle search structure only, not the segment intersection
structure, and store only the edge end points that are actually concave vertices. Building the data
structure takes O(m? log® m) time; we do O (m?) queriesin O(log® m + k) time each; thus, we can
list all triples of concave vertices of the first casein time O(m?log® m + K).

For the second case, we will make use of the following lemma from the theory of positive
bases [34, 48]

Lemma 3.4 Let S be any set of six pointsin R? such that the convex hull of S contains the origin
initsinterior, but no subset of five points of S containsthe origin in the interior of its convex hull.
It follows that S’ consists of six points on three lines through the origin: on each line, one point to
each side of the origin.

It followsthat the wrenchesinduced by the three concave vertices must form three pairs of opposite
wrenches. Since no vertex finger could induce opposite wrenchesitself, it followsthat we are |ook-
ing for tri pleS (Ul, Vg, ’U3> where w1 (’02) = —’LUQ(’Ul), w1 (’03) = —’LUQ(’UQ), and w1 (’Ul) = —’LUQ(’Ug).

A straightforward algorithm is now as follows. We sort all wrenches induced by concave ver-
tices lexicographically. For every concave vertex v;, we search in the sorted list for matching
vertices vy, that is, vertices v, wWith wy(vy) = —wsy(vy). For each vertex v, found, we do another
search for a vertex vz such that wy (v3) = —ws(ve) and we(vs) = —wq(vq). If such avertex vs is
found, we report the triple (v, v, v3).

The sorting is done in O(m log m) time. The query for v,, and testing for a matching v, takes
O(log m) time per candidate-v, which is tested, which amounts to O(m logm) in the worst case.
Searching for matching ¢ and r for each vertex v, thustakes O(m? log m) time.

In total, both cases can be dealt with in O(m? log® m + K) time.

Theorem 3.5 Given a polygon with m concave vertices, all K sets of three concave vertices that
yield form-closure graspswith three frictionless point fingers can be computed intime O (m 2 log® m+
K).

3.3 Computing all form-closure grasps for rectilinear polygons

In this section, we propose efficient computations of all combinationsof edgesand concave vertices
of arectilinear polygon that allow form-closure grasps with at most four frictionless point fingers.
The time complexities of the algorithms for rectilinear polygons are lower than that for arbitrary
polygons, because rectilinear polygons have only four different normal directions, namely, (1,0)7,
(—1,0)%, (0,1)" and (0, —1)7.

We divide the edges into four families £, W, N and S. Welet £, W, N and S be the sets
of edges whose normal directions are (1,0)%, (—1,0)7, (0,1)” and (0, —1), respectively. See
Figure 3.10 (@) — (d). We also divide concave vertices into four families according to the incident
edge families, namely, EN, WN, ES and WS. A finger at a vertex from EN induces a set of
lines of force, which lie between (0,1)7 and (1,0)”. The lines of force induced by a finger at a
vertex from W N, ES or WS liebetween (0,1)7 and (—1,0)7, (0, —1) and (1, 0)7, and (0, —1)7
and (—1,0)7, respectively. Figure 3.10 (€) — (h) illustrates these sets.

We use the projection scheme described in Section 2.4, but we use a different screen. We define
screen I as follows: T' := Ty U Ty, where I’y = {(n,, 1,7)" | pu+ 1, — 1 = 0,—e < n, <
l+e,7reR}andly = {(-1,n,,7)" | n.—n, —1=0,—¢ <n, <1+¢,7 € R} Theseplanes

3.3 Computing all form-closure grasps for rectilinear polygons 41

" ST e
i Cha

Figure 3.10: (8)—(d) Edgesfrom E, W, N and S. (e)—(h) Concave verticesfrom EN, WN, ES and W S.

(b) W

Figure 3.11: Top view of T'; and I's.

are extended by ¢ on the sides, so that I'; contains two lines (1,0) and (0, 1), and 'y contains
two lines (1, 0) and (0, —1), where the line (1, 0) isdefined as {(1,0,0)” + A(0,0,1)" | A € R},
the line (0, 1) is defined as {(0, 1,0)" + X(0,0,1)" | A € R}, and theline (0, —1) is defined as
{(0,—1,0)T + X(0,0,1)” | X € R}. Also note that each plane is perpendicular to the (horizontal)
nz1,-plane. Figure 3.11 shows atop view of these screens.

For simplicity, by “an edge wrench set from £, W, N or S”, we mean “the wrench set induced
by afinger along an edge from £, W, N or S”, and by “avertex wrench set from EN, WN, ES
or W S”, wemean “the wrench set of induced by afinger at avertex from EN, WN, ES or W S”.
The projections of edge wrench sets are vertical line segments on one of thelines (0, 1), (1,0) and
(0,—1)onT; oronTy.

In this section, we enumerate all edge quadruples, concave vertex pairs, triples of one concave
vertex and two edges, and triples of two concave vertices and one edge of a rectilinear polygon
that yield form-closure grasps with at most four frictionless point fingers. Wentink reported all
edge quadruples with form-closure graspsin O(n logn + K') time—see Section 4.1.2in [91]. She
used a formulation for form closure on the object plane. Here, we also report all edge quadruples
with form-closure graspsin the same time bound O (n logn + K), but with aformulation for form
closure in wrench space. Observe that any combination of edges and concave vertices that yield
form-closure grasps must contain all normal directions (1,0)7, (—1,0)%, (0,1)" and (0, —1)7.

3.3.1 Four edges

We wish to enumerate all edge quadruples of arectilinear polygon that yield a form-closure grasp
with four point fingers. As aresult of Lemma 2.7, we need to find all edge quadruples ey, e,, €3
and ey, such that the trapezoid formed by two red 7(é;) and 7 (é2) intersects the trapezoid formed
by two blue 7(é3) and 7(é,) in the interior. Since al of 7(é;), m(é2), m(é3) and m(é,) lie on one

42 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

/
Tu\ r ‘ Tu b b
(i) 7yl oo ()" vl (i) T Lo) u
bur‘ yo v ra ! ba b
/
ba o Hd by, by bi T "
d
b, b b ba by Td Ta

Figure 3.12: (i)—ii) Anillustration of Lemma3.6. (iii)—(iv) Two cases to consider to prove Lemma 3.6.

Tul bq b ,
Tab
Tui Tui
. 5
Tua a1

Figure 3.13: The sorted lists of b,,, b}, 74 and r,.

of the two liens (1,0) or (0, 1), we can compute al intersecting red and blue trapezoids on I';
only. Without loss of generality, we assumethat = (é,) = r,rq and 7(é3) = b,by areon (0, 1) line,
and that w(é,) = r,r;, and w(é,) = bl b, areon (1,0) line. Welet r,, r!, b, and b, be the upper
points of the corresponding (vertical) segments, and let r,4,), b; and b/, be the lower points of
the corresponding (vertical) segments. The following lemma provides a necessary and sufficient
condition for a red trapezoid to intersect a blue trapezoid in the interior. Figure 3.12 illustrates
Lemma 3.6.

Lemma 3.6 A red trapezoid r, 4!, intersects a blue trapezoid b,,b,b,b!, in the interior, if and
only if one of the following two holds:

(i) by < ry,and), > rl;
(i1) by > rgand b, < ri.

Proof: The*if” direction: Condition (i) and (ii) imply that the diagonals b,b, and b,,b/, intersect
r.ry and rgrl, respectively. Since b,b!, and b,b, are in the blue trapezoid, and r,,r/, and ryr,, arein
the red trapezoid, the two trapezoids intersect each other in the interior.

The“only if” direction: Suppose that r, 4! intersects b,by0),b., in theinterior, and that r,7/,
does not intersect b,b;, in the interior, and that r,, does not intersect b,b/, in the interior. We
first focus on r,r), and b,b),. Since they do not intersect, », > b, and »/, > b.,, or r,, < by and
r, < b,. We first look at the case r, > b, and 7/, > b). Notethat r;, > 0/, imply r;, > b,.
Hence for r,rqr/r!, and b,byb};b!, not to satisfy condition (ii), we must have b, < r,. Figure 3.12
(iii) depicts this situation. Obviously the supporting line of b,,b., separates r,,rqrr,, and b,bab,b.,,
which contradicts that r,,r .7/, intersects b, byb,,b.,. We can show this similarly when r,, < b, and
!, < bl,—see Figure 3.12 (iv). O

Now we explain how to identify all pairs of red and blue trapezoids that satisfy Lemma 3.6.
Thereare O(n) red and blue vertical segments, which are the projections of edge wrench sets. We
build sorted lists of b,,, by, b, and b/, in O(n logn) time. We also sort r,, and r, from top to bottom,
then , and r/, from bottom to top. See Figure 3.13. Here we show how to report all red and blue
trapezoids that satisfy the first condition in Lemma 3.6. Those that satisfy the second condition
in Lemma 3.6 can be reported similarly. Let ryq, ry2, -« -, 7uq @d 70y, 70, - -+, 7, be the sorted

3.3 Computing all form-closure grasps for rectilinear polygons 43

L P A b b

(EN,W,S) (ES,W,N) (WN,E,S) (WS, E,N)

Figure 3.14: Four cases of atriple a concave vertex and two edges that yield form-closure grasps.

lists of r,’s and 7/’s. We perform a binary search with r,,; on the list for b, and identify al &
blue vertical segments such that b; < r,; in O(logn + k) time, and put them in set A. We also
perform a binary search with 7/, on thelist for o/, and identify all &’ blue vertical segments such
that b/, > /,, in O(logn + k') time, and put them in set A’. We report the Cartesian product of
Ax Aie {(s,s) | s € A s € A'}. When we move from rj, to 7,) or from r,; t0 ryi+1),
we do not perform binary searchesin thelists; we only check the neighborsinthelist of b, and 0/,
until they satisfy the queries. For r,,; we repeat this process for each of /), (i = 1,2,---,0). We
also repeat the whole process for each of r,; (1 = 1,2,--- ,a). We can identify al K red and blue
trapezoids that satisfy Lemma 3.6 in total time O(nlogn + K).

Theorem 3.7 All K edge quadruples of a rectilinear polygon that yield form-closure grasps with
four frictionless point fingers can be enumerated in O(nlogn + K) time.

3.3.2 One concave vertex and two edges

We wish to enumerate all triples of a concave vertex and two edges of a rectilinear polygon that
yield a form-closure grasp with three point fingers. A triple of a concave vertex and two edges
that yield form-closure grasps bel ong to one of the following four combinations of edge and vertex
families: (EN,W,S), (ES,W,N), (WN, E,S)and (WS, E,N). See Figure 3.14. When a con-
cave vertex isfrom EN or W S, itsprojection isablue or red line segment on I'y; when avertex is
from W N (ES), its projection is a blue (red) line segment on I'y. See Figure 3.15. Asaresult of
Lemma 2.7, our problem can be formulated as to enumerate all pairs of ared (blue) segment and a
blue (red) trapezoid that intersect each other in the interior onI'; or on I's. The following lemma
describes a necessary and sufficient condition for a red line segment to intersect a blue trapezoid.
Figure 3.16 illustrates Lemma 3.8.

Lemma 3.8 Ared line segment 7’ intersects a blue trapezoid b,,b,b,b, in the interior, if and only
if one of the following holds:

(i) by < randd, >r’;
(ii) b, > randd), < r'.

Proof: Itisstraightforward to seethe“if” direction, so we show “only if” direction. Suppose that
rr’ does not intersect any blue diagonal of b,,b.,b/,b in theinterior, but rr’ intersects b, b.,b/,b in the
interior. When rr’ does not intersect any of the two blue diagonals, it does not intersect b,,0/,b/,bg,
the convex hull of the two blue diagonals. Thisisa contradiction. a

We follow the approach described in Section 3.3.1 closely. Thereare O(n) red and blue vertical
segments, and O (m) blueand red line segments. Without loss of generality, wetake blue trapezoids
and red segments. Those with red trapezoids and blue segments can be identified similarly in the
same time bound. We fist report all pairs of ared segment and a blue trapezoid that satisfy thefirst
condition of Lemma 3.8. Those that satisfy the second condition of Lemma 3.8 can be identified

44 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

(a) Tu Y,
b ra
Td bl

0,1) (1,0) (EN,W,5) (ES, W, N)
(b) p
b, %
. B,
bd r'
(0, (1,0) (WS, E,N) (WN, E, S)

Figure 3.15: Topview of the wrench sets and their projectionson I' of the four combinations.

<ab>r\ (b) . © y (@
u r Ty b
b; bu 'b/ 7‘,’u . 7";
b ’ " b "d “ rz/i
d r b /
bii d b:j b Tq y y
(1

,0) (0,1) (1,0) (0,1) (1,0)

Figure 3.16: The description of Lemma3.8.

similarly. We sort b, and b/, of the blue vertical segmentsin O(n logn) time. We query the sorted
list of b; with r to identify the vertical segments such that b; < r, and put them in set A. Then
we query the sorted list of b/, with r’ to identify the vertical segments such that b/, > +/, and put
them in set A’. We report the Cartesian product of A x A’. We can report all K solutions in
O(nlogn+mlogn+ K) = O(nlogn + K) time.

Theorem 3.9 All K triplesof one concave vertex and two edges of a rectilinear polygon that yield
form-closure graspswith three frictionless point fingers can be enumerated in O(n log n+ K) time.

3.3.3 Two concave vertices

We wish to enumerate all concave vertex pairs of a rectilinear polygon that yield a form-closure
grasp with two point fingers. A pair of two concave verticesthat yield form-closure graspsis either
(EN,WS)or (ES,WN). SeeFigure 3.17 (8) and (b). Asin Section 3.2.1, it is turned into the
problem of reporting all pairs of red and blue line segments that intersect each other in the interior.
One difference is that the endpoints lie on two vertical lines (see Figure 3.17 (c)), which makes
the intersection checking process easier. The following lemma states a necessary and sufficient
condition for two line segments to intersect each other in the interior. Since the proof istrivia, we
omit the proof.

Lemma 3.10 A blueline segment bb’ intersects a red line segment 77 in the interior, if and only if
one of the following holds:

3.3 Computing all form-closure grasps for rectilinear polygons 45

r b
I —
0,1) (1,0)
(a) EN and WS (b) ES and WN (¢) EN and WS on I'y

Figure 3.17: (a)—(b) Two cases of two concave vertices that yield a form-closure grasp. (c) The projections of their
wrench sets.

() b<randd >1r';
(i) b>randbd’ <.

There are O(m) red and blue line segments. We store them in a two-level orthogonal range
search treein O(m log m) time; the left pointsfor b are stored in the first level, and the right points
for ' are stored in the second level. Then we query them with a red line segment r/. More
precisely, we query with r on the first level, and with »’ on the second level. All pairs of ared
segment and a blue segment satisfying Lemma 3.10 can thus be reported in O(m log® m + K)
time.

Theorem 3.11 All K pairs of two concave vertices of a rectilinear polygon that yield a form-
closure grasp with two frictionless point fingers can be enumerated in O(m log® m + K) time.

3.3.4 Two concave vertices and one edge

We wish to enumerate all triples of two concave vertices and one edge of a rectilinear polygon
that yield a form-closure grasp with three frictionless point fingers. Such atriple of two concave
vertices and an edge belongs to one of the two cases: when the two concave vertices induce three
different normal directions, and when they induce four different normal directions. Two vertices
induce three different normal directions, when the two vertices and an edge belong to one of the
following four combinations: (EN, ES, W), (WN,WS, E), (EN,WN,S) and (ES,WS,N).
See Figure 3.18 (a). Two vertices induce four different normal directions, when they are from
(ES,WN) or (EN,WS). Figure 3.18 (b) shows all possible combinations of two such vertex
pairs and aface that yield aform-closure grasp.

Wefirst look at thefirst case when the verticesinduce three different normal directions. Without
loss of generality, we take a triple (vpy, v, es) from families of EN, W N and S, and we
take their projections on I';. Note that the convex hulls of the red points and the blue points are
triangles,* whose sides are either on (0, 1) line or on (1, 0) line. Observe that 7(és) has two red
points r,, and r4, and 7 (v y) has two blue points, one on (0, 1) line, and the other blue point b’
on (1,0) line. Also observe that (0w x) has one red point ' on (1, 0) line, and one blue point
on (0, 1) line. Among the blue points of 7(9xx) and 7 (0w) on (0, 1) line, we let b, denote the
uppermost point, and let b, denote the lowest one. See Figure 3.19. Here, we report all pairs of a
red triangle and a blue triangle that intersect each other in the interior, where the two triangles are
induced by two verticesfrom £N and W N, and an edge from S. The following lemma providesa

4Let A, be aset of wrench points such that their projections on I" are red, and 4, be a set of wrench points such that their projections are blue.
The projection of the convex hull edges of the pointsin A, is the convex hull edges of the red points on I", and the projection of the convex hull
edges of the pointsin A, isthe convex hull edges of the blue pointson I".

46 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

H B S b S b s

ENESW WNWSE ENWNS ESWSN
'a 5o 541~
—.—|_1
(EN,WS, E) (EN,WS,W) (EN,WS,N) (EN,WS,S)
c o2 o
S I I N ey B
(ES,WN,E) (ES,WN,W) (ES,WN,N) (ES,WN.,S)

Figure 3.18: (a) Four different combinations of a triple of two concave vertices and an edge, such that it yields a
form-closure grasp, and that the two concave vertices induce three different normal directions. (b) Eight different
combinations of atriple of two concave vertices and an edge, such that it yields a form-closure grasp, and that the two
concave vertices induce four different normal directions.

necessary and sufficient condition for ared triangle to intersect abluetriangle in the interior. Since
the proof of the following lemmais similar to that of Lemma 3.6, we omit the proof.

Lemma 3.12 A blue triangle bb), b, (b,bs') intersects a red triangle rr.,r!, (r,rqr’), if and only if
one of the following four holds:

(i) b, >rqgand b’ < 1’;
(i) by <r,and b’ > 1.

To enumerate all red and blueintersecting trianglesthat satisfy thefirst condition of Lemma3.12,
we first sort b, and &’. We query the sorted list of b, with r,; to identify the vertical segments such
that b, > ry, and put them in set A. Then we query the sorted list of b’ with »’ to identify the

B e

WN,WS,E) (EN,WN.,S) (ES,WS,N)

b;L b; Tu ’I"/ Tu ’I“/
b r b T bu
b, o, bu T o
T Th r ra rd b ba
Iy Iy ba Iy Iy

Figure 3.19: Aboveisthetopview of the wrench sets of two concave vertices and an edge. Below is the corresponding
red and bluetriangle pairson T';.

3.3 Computing all form-closure grasps for rectilinear polygons 47

: . ‘ /
@) b, i\ by, (i) ¢, Tu | b
Tu v ba r , vyl r’

Td v Tu | by V r! by

ba rq ! v Td ‘ by

Figure 3.20: Some cases of ared triangle and a blue triangle that satisfy condition (i) and (ii) of Lemma3.12.

(i) bu (i) bu (iii) bu (iv) b) rl 45
r T by ¥ v yoob
ba oo yooob b b , b r’
b b . b " b
| d

Figure 3.21: Anillustration of Lemma 3.13.

vertical segments such that " < +/, and put them in set A’. We report the Cartesian product of
A x A’. All red and blue intersecting triangles that satisfy the second condition of Lemma 3.12
can beidentified similarly.

There are O(nm) red triangles, because a concave vertex and an edge induce a red triangle.
There are O(m?) blue triangles, because two concave vertices induce a blue triangle. Hence we
have O(m?) points to store, and O(nm) queries. Sorting O(m?) points takes O(m?logm) time,
and we can report k intersecting blue triangles for ared query trianglein O(logm + k) time. We
can report similarly all triples of two concave vertices and an edge from other combinations that
yield form-closure grasps. One difference is that sometimes there are O(nm) points to store and
O(m?) queries, which leads to the time complexity of O(nmlogn + K). Thus the total time
complexity of thiscaseis O(nmlogn + K).

Now we look at the second case when the vertices induce four different normal directions.
Without loss of generality, we take a triple of two concave vertices and an edge (vey, vws, €x)-
The projections of the edge wrench set and the vertex wrench sets on I'; will be as follows. A
blue endpoint b of (), the blue segment b,,b,° of 7(éx) and ared endpoint r of 7 (ty g) are
on theline (0, 1). The other blue endpoint b’ of 7(vzy) and the other red endpoint ' of 7 (v s)
are on the line (1,0). See Figure 3.21. If ared segment and a blue triangle intersect each other
in the interior, the corresponding set of two vertices and an edge yields a form-closure grasp. The
following lemma provides a necessary and sufficient condition for a pair of a red segment and
a blue triangle to intersect each other in the interior. Figure 3.21 illustrates Lemma 3.13. This
lemma can easily be modified to check if a blue segment and ared triangle intersect each other in
the interior.

Lemma 3.13 A red segment 7+’ intersects the convex hull of bo’ and b, b, intheinterior, if and only
if one of the following holds:

(i) by <1 < by;
(i) b <randr < by;
(iii) r < bgandr < bandr’ > ¥;

(iv) b, <randr < b;

5Among the two endpoints of (¢), we let b,, denote the upper point, and b, denote the lower point.

48 Computing All Form-Closure Grasps of a Simple Polygon with Few Fingers

V) r >b,andr >bandr’ <.
(V)

Proof: When condition (i) or (ii) or (iv) holds, r is in the convex hull of b and b,b,, thus 77’
intersects the convex hull of bb’ and b, b, in the interior. Condition (iii) (r < b and ' > ¥') and (iv)
(r > bandr’ < ') imply that 7/ intersects b/ in the interior. Hence 7/ intersects the convex hull
of b/ and b, b, in theinterior. 0

Here we describe how we report all pairs of a red segment and a blue triangle that satisfy
Lemma 3.13. There are O(n) choices for b,b,; and O(m) choices for 7 and bt/. To identify all
pairs of a red segment and a blue triangle that satisfy condition (i) of Lemma 3.13, we build an
interval tree on blue vertical segmentson (0, 1) linein O(nlogn) time. We report al k intervals
where r of ared query segment 77/ liesin O(logn + k) time. Any segment b’ from the O (m) blue
segments with any pair b,b; and rr’ of the reported pairs will have a red and blue intersection in
the interior.

To identify all pairs of a red segment and a blue triangle that satisfy the condition (ii) of
Lemma 3.13, we build a binary search trees on b, in O(nlogn) time. For a given red query
segment 77/, we find, in O(logn + k) time, al blue segments b,,b; such that b; > r, and put them
inset A;. We also build a binary search tree on O(m) points for b in O(mlogm) time. Then we
find, in O(logm + k) time, all k blue segments b’ such that b < r, and put them in set A,. The
Cartesian product of A, x A, for aquery segment rr’ satisfy condition (ii) of Lemma3.13. We can
identify all triples of bb/, b,by and 1 that satisfy condition (iv) similarly in the same time bound.

To identify all pairs of a red segment and a blue triangle that satisfy the condition (iii) of
Lemma 3.13, we build a two-level orthogonal search tree on O(m) blue segmentsin O(m logm)
time; b and v’ are at the first and the second level respectively. We find, in O(log® m + k) time, all
k blue segments b’ such that b > r and b’ < 1/, and put them in set A;. The Cartesian product of
A; x As with i satisfy condition (iii) of Lemma3.13. We can identify all triples of b/, b,b, and
rr’ that satisfy condition (v) similarly in the same time bound.

Hence in total time O(nlogn + mlog®m + K), we can report all K triples of two concave
vertices and an edge where the two vertices induce four different normal directions. The following
theorem summarizes the result.

Theorem 3.14 All the triples of two concave vertices and an edge of a rectilinear polygon P that
yield form-closure grasps with three frictionless point fingers can be enumerated in O(nm logn +
K) time.

3.4 Conclusion

We proposed efficient output-sensitive algorithms to report all sets of edges and concave vertices
of an arbitrary polygon and a rectilinear polygon that yield form-closure grasps. Our approach
reduced the dimension of the problem by projections. In particular, when the polygons are rec-
tilinear, the problems boil down to orthogonal range search problems. Another advantage of our
approach isthat the reformulated problem on planes can be solved with other tools, if one can find
simpler, more efficient and more suitable ones for a given purpose or criteria.

Chapter 4

Computing All Form-Closure Grasps of a
Planar Semi-Algebraic Set

In this chapter, we propose the first efficient output-sensitive algorithms to compute all form-
closure grasps of a set of planar curved objects, which is called semi-algebraic sets. A planar
semi-algebraic set is a bounded set on a plane, whose boundary is composed of a set of algebraic
arcs. Many researchers have studied the problem of synthesizing immobilizing grasps of a planar
curved object [20, 37, 44, 51, 56, 67]. However, no algorithm can enumerate all immobilizing
grasps of planar curved objects, except [44]. Jia proposed an agorithm to report al antipodal
grasps with two frictional fingers, but the asymptotic bound is high.

In this chapter,! we propose an output-sensitive algorithm to report al combinations of arcs
and concave vertices that admit at |east one form-closure grasp with at most four frictionless point
fingers. More precisely, the combinations are: (i) arc quadruples and arc triples with four fingers,
(i) triples of one concave vertex and two arcs with three fingers, (iii) pairs of a concave vertex and
an arc with three fingers, and (iv) triples of two vertices and an arc with three fingers. (Recall that
the case of two points at two vertices was already solved in Chapter 3; the algorithm applies not
only to polygonal parts but also to curved parts.) We focus on reporting al combinations of arcs
and concave vertices, because once we have a set of arcs and concave vertices, we can compute
form-closure grasps in constant time as mentioned in Chapter 3. Four fingers can achieve form
closure on arc pairs and on one single arc (such as an ellipse) as well as on arc quadruples and
triples, but we treat only arc quadruples and triples, because of an efficiency issue. Section 4.2 has
more details. To deal with this agorithmic challenge of identifying these combinations, we use a
geometric condition in wrench space and the approach taken in Chapter 3.

Thischapter isorganized asfollows. In Section 4.1, we introduce notati ons, projection schemes,
wrench shapes and data structures for intersection search problems. In Section 4.2, we propose
output-sensitive algorithms to report all arc triples and quadruples that allow form-closure grasps
with four frictionless point fingers. We also propose, in Section 4.3, output-sensitive algorithms
to report all combinations of concave vertices and arcs that allow form-closure grasps with three
frictionless point fingers. Discussion will follow after these in Section 4.4.

1This chapter is based on “Output-sensitive computation of all form-closure grasps of a part bounded by algebraic arcs’ [25] by J.-S. Cheong
and A.F. van der Stappen in ICRA (2005).

50 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

4.1 Preliminaries

We let n be the number of arc pieces of a semi-algebraic set P, and m bethat of concave vertices of
P. The problem of enumerating al combinations of arcs and concave vertices with form-closure
grasps can be reformulated in terms of wrenches as follows. Given n arcs and m line segments
in three-dimensional wrench space, report all combinations of arcs and line segments that contain
four pointsthat positively span wrench space. We will explain why we have arcs and line segments
in wrench space in Section 4.1.1.

We closely follow the approach taken in Chapter 3. We project the wrench points on screen I,
which is as defined in Section 2.4.1. Lemma 2.7 states that a set of arcs and line segments with
four pointsthat positively span wrench space must form ared and blue intersection on I'. Thus our
problem becomes to report all setson I' that have red and blue intersections.

Thissectionisorganized asfollows. In Section 4.1.1, wefirst investigate the shapes of wrenches
and their projections, when afinger slidesalong an arc a. In Section 4.1.2, we define two-arc-cell
and one-arc-cell, and show that they have constant complexities. In Section 4.1.3, we introduce
the data structures and algorithms to search for al sets of two-arc-cells, one-arc-cells and line
segments that have red and blue intersections.

4.1.1 Algebraic arcs, wrenches and their projections

A semi-algebraic set P isa closed set bounded by a set of real algebraic arcs of bounded degree.
A real algebraic arc is apiece of area agebraic curve. We call this piece smply an arc. A red
algebraic curve over field R satisfies an equation ¥ (z, y) = 0, where W (z, y) isapolynomia in
and y with coefficients in R. Throughout the chapter, we assume that ¥ (z, y) = 0 has a constant
degree. The boundary of P can contain a straight edge, because aline segment is a special case of
an algebraic arc with zeros for some coefficients. We let n denote the number of arcs, and m the
number of concave vertices of P.

Now we show that the set of wrench pointsinduced by afinger slidingonan arc a isan algebraic
arc in wrench space. We call this set the arc wrench set (of a), and denoteit by a. Let ¥(z,y) = 0
represent an algebraic curve that contains a boundary arc a of P. Without loss of generality, let
U(z, y) > 0 denote the immediate interior of P bounded by a. We aso let ¥, and ¥, denote
Ouew) and 222 respectively. We assume that ¥, # 0 and ¥, # 0; we can satisfy this condltlon
by taking out the point of an arc where ¥, = 0 or ¥, = 0. The wrench (7, n,, T) a position
7 = (z,y)onais(¥,, ¥, 2¥,—y¥,). Let M beamap/\/l x = (2,y) ER? — (U, ¥, 20, —
yVU,) € R3. SinceV,, ¥, and 2V, — y¥, areal polynomiasin z and y, theimage of M isaso
algebraic. More precisely, the wrench points of a finger dliding along an arc a forms a semi-
algebraic set.

We project the wrench arc a onto I'. Portions of awrench arc may end up on different planes of
I and get different colors depending on where they are in wrench space with respect to the planes
n. +ny, = 0andn, —n, = 0 (see Figure 4.1). Portionsin region | and 11 turn into blue and red
arcs respectively on I'y, and portionsin region Il and 1V turn into red and blue arcs respectively
only. Letg = (¥,, V¥, 2V, —y¥,) beapointon a; thenn(q) = (¥, /¥, 1,z — y(¥,/¥,)) on
I'yif gisinsidel or I, and w(q) = (1, ¥, /¥, z(V,/¥,) —y) on Ty if gisinsidell or IV. We
assume that ¥, # 0 and ¥, # 0. We can fulfill this assumption, by cutting the arcs at the point
where U, = 0 or ¥, = 0. Semi-algebraic sets are closed under projections. The projection M
on I'; and the projection M, on I'; are asfollows.

M, ix = (2,y) € R®— (U, /U, 1,2 —y(V,/V,)) € R®

4.1 Preliminaries 51

I ATy
v 1 Iy 1I
Iy :
-1 1 e
-0 / -1
Ne = Ty I Ny +1y =0
Figure4.1: Screen I in wrench space and four regions|, 11, 111 and 1V, viewed from the positive T axis.

Lo~ D

(a) (b)

Figure4.2: (a) A two-arc-cell (b) One-arc-cells

My :x = (v,y) e R — (1,0, /¥, 2(V,/V,) —y) € R?
Therefore the projected arcs are also semi-algebraic sets, thus algebraic arcs.

4.1.2 Two-arc-cells and one-arc-cells

When two fingers slide along two distinct arcs a and o', they induce two wrench points w and w’
sliding along a and a’. The line segment connecting w and w’ will movewhen w and v’ slidealong
aandd’. Weletr(a,a’) := U{r(ww’) | w € a,w’ € a’'}. We call this set the two-arc-cell (of a
and «'): it isthe region where w(ww’) liefor al w € a and w’ € a'. Figure 4.2 (a) illustrates a
two-arc-cell. A two-arc-cell isasemi-algebraic set with a constant complexity, which is shownin
the following lemma.

Lemma 4.1 Atwo-arc-cell r(a,a’) onI"isbounded by portions of the arcs 7(a) and 7(a’) and a
constant number of line segments.

Proof: From the definition of r(a,a’), it is evident that the boundary of r(a,a’) consists of
portions of 7(a) and 7(a’) and line segments. It remains to show that the number of line segments
is constant. Observe that the boundary line segments of 7 (a, ') is the projections of the common
tangent line segments of a and a’. The wrench arcs a and @’ have a constant number of common
tangent line segments, because they have a constant degree and there are four endpointsin total.
This completes the proof. O

When two fingers slide along asingle arc a, they also induce two wrench points w and w’, both
of which glide along a independently. The line segment connecting w and w’ will move when w
and w' dide along a. We define r(a) to be J{r(ww’) | w € a,w’ € a}. We call this set the
one-arc-cell (of a): it is the region where dl 7(ww’) lie for al pairs of points w and w’ on a.
One-arc-cell (a) turns out to be the convex hull of 7(a), which isagain a semi-algebraic set—see
Lemma4.2. Figure 4.2 (b) illustrates one-arc-cells. A one-arc-cell aso has a constant complexity
as shown in the following lemma. The proof is basically the same as that of Lemma 4.1, thus we
omit the proof.

52 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

() (i)

(ii) (iv)

Figure 4.3: Thefirst four types of the red-blue intersections. The dashed entitiesare in red.

Lemma 4.2 One-arc-cell r(a) isbounded by portions of 7(a) and a constant number of line seg-
ments.

4.1.3 Intersection search algorithms

In this chapter, we need to report all red and blue intersections between semi-algebraic sets, line
segments and triangles. These intersections can be identified by checking the following five sub-
problemson I': (i) intersections between red and blue arcs, (ii) intersections between red and blue
line segments, (iil) intersections between red (blue) arcs and blue (red) line segments, (iv) red
(blue) points contained in blue (red) semi-algebraic sets, or (v) red (blue) points contained in blue
(red) quadrilaterals. Figure 4.3 showsthe first four types. To handle these intersections, we use the
algorithms and query structures below. More detailed information on these algorithms and query
structures can be found in Section 2.4.2.

The intersections between red and blue arcs are reported in a brute-force manner; there is no
efficient algorithm as far as we know. Fortunately, this does not affect the overall efficiency, asthe
number of arcs involved is aways sufficiently low.

To enumerate all intersections between segments, we use the following two: red-blue line seg-
ment intersection algorithm and segment-segment query structure. Among ¢ red and blue line
segments, the red-blue line segment intersection algorithm can report K intersecting red and blue
segmentsin O(¢*/3 log'? ¢+ K) time. The segment-segment query structure stores g line segments
in O(qlog? q) time, and reports k intersecting segmentsin O(log® ¢ + k) time.

The intersections between red and blue arcs and segments can be identified in two ways as
well: red-blue segment-arc intersection algorithm and segment-arc query structure. Among ¢ red
and blue line segments and arcs, the red-blue segment-arc intersection algorithm can report K
intersecting pairs of a segment and an arcin O(¢*/?*¢ + K') time. The segment-arc query structure
stores g arcsin O(¢**¢) time, and reports k intersecting arcsin O(log g + k) time.

We use semi-algebraic range search structure and triangle search structure to report the in-
tersections between points and semi-algebraic sets, and between points and triangles, respectively.
The semi-algebrai c range search structure stores ¢ pointsin O(q log ¢)-time, and reportsall £ points
in aquery semi-algebraic setin O(q'/?* + k)-time. In the intersections of type (v), we decompose
each quadrilateral into two triangles and query with the triangles. The triangle search structure
stores ¢ pointsin O(qlog q) time, and reports all k pointsin aquery trianglein O(log® ¢ + k)-time.

4.1.4 Computing all grasps on a given set of arcs and vertices

Once we are given a set of arcs and/or concave vertices admitting at |east one form-closure grasp
with at most four point fingers, we can compute the regions representing al grasps on this set in
constant time [58, 82]. As an example, consider the case of four arcs aq, as, as, and ay. Every
point ¢ in the intersection of the red r(a,, ay) and the blue r(as, ay) (or vice versa) corresponds

4.2 Computing all form-closure grasps with four fingers 53

TN

(i) (iv)

Figure 4.4: Four cases of the red-blue intersections. The dashed entitiesare in red.

to a set of placements of points along a, as, a3, and ay. The set of grasps associated with ¢ is
the Cartesian product of all lines through ¢ intersecting 7(a,) and 7(as), and al lines through ¢
intersecting 7 (a;) and m(a4). These line segments form a continuous set. Once we know a point
in the intersection region, we can compute the boundary of these sets of line segmentsin constant
time. Furthermore, the boundary changes also continuously. Hence it is enough to compute the
intersection region between r(a,, ay) and r(as, a4), which has a constant complexity.

4.2 Computing all form-closure grasps with four fingers

In this section, we provide output-sensitive algorithms for reporting all quadruples and triples of
arcs admitting at least one form-closure grasp with four frictionless point fingers. All single arcs
allowing for grasps with four fingers on each of them can be easily enumerated in linear time,
simply by checking each arc in constant time. Since we have to spend at least linear time, thisis
optimal.

Four fingers on two arcs can also achieve form closure. If al arc pairs allowing for form-
closure grasps with four fingers can be computed in subquadratic time, it is more efficient than a
naive approach that takes quadratic time. It is open to compute all such arc pairs in subquadratic
time. Hence we do not consider the problem of reporting all arc pairs that yield form-closure

grasps.

4.2.1 Four arcs

We wish to report all arc quadruples such that four frictionless point fingers on each quadruple
(one poaint finger per arc) achieve form closure. By Lemma 2.7, an arc quadruple (aq, as, as, a4)
alowsform-closure grasps, if and only if the red two-arc-cell (a4, as) intersects the blue two-arc-
cell 7(as, aq) intheinterior. To identify al arc quadruples (a1, as, as, a,) admitting form-closure
grasps, we must therefore report all intersecting red and blue two-arc-cells.

Aredr(ay, ag) intersectsabluer(as, a4), if and only if their boundariesintersect, or (a1, az) C
r(as,aq), o r(as,as) C r(ay,as). We observe that if r(ay,as) C r(as,aq), any point of m(a;)
lies inside r(as, a4), and if r(az,as) C r(ai,az), any point of 7(as) liesinside r(aq,as). All
intersecting red and blue two-arc-cells can thus be determined by computing all (i) intersecting red
and blue boundary arcs, (ii) intersecting red and blue boundary line segments, (iii) blue (red) arcs
intersecting red (blue) boundary line segments, and (iv) blue (red) representative pointsinside red
(blue) two-arc-cells. (See Figure 4.4).

There are O(n?) boundary segments and O(n) boundary arcs for al O(n?) red and blue two-
arc-cells. We take one representative point from each arc, thuswe have O(n) representative points.
Problem (i) can be solved in O(n?) time, by checking all red and blue arc pairs. We apply the

54 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

red-blue line segment intersection algorithmfor problem (i), which requires O(n%/3 log"/® n+ K)-
time. The segment-arc query structure can report the blue (red) arcsintersecting the red (blue) line
segments. The preprocessing time is O (n?*)-time, and the query timeis O(logn + k). There are
O(n?) query segments. Thus the total time complexity for problem (iii) becomes O(n?*** + K).
The semi-algebraic range search structure can identify all blue (red) pointscontained in ared (blue)
two-arc-cell. The preprocessing timeis O(n log n) time, the query timeis O(n'/?*¢ + k), and there
are O(n?) query two-arc-cells. Thetotal time complexity for problem (iv) becomes O (n°/?*¢ + K).
The following theorem summarizes the results.

Theorem 4.3 Given a planar semi-algebraic set with n arcs, all K arc quadruples admitting a
form-closure grasp with four frictionless point fingers can be computed in O (n8/3 log'?n + K)
time.

4.2.2 Three arcs

We wish to report all arc triples (a4, as, a3) such that two point fingers on one arc a;, and one
finger on each of the remaining arcs a, and a3 achieve form closure. By Lemma 2.7, such an arc
triple allows form-closure grasps, if and only if red (blue) r(a;) intersects blue (red) r(a;) in the
interior. To identify all arc triples (a1, a2, a3) admitting form-closure grasps with four fingers, we
must therefore report all red and blue intersections between a one-arc-cell and atwo-arc-cell.

A red (blue) one-arc-cell intersectsablue (red) two-arc-cell, if and only if their boundariesinter-
sect or the one-arc-cell is contained in the two-arc-cell, or vice versa. All red and blue intersecting
pairs of a one-arc-cell and a two-arc-cell can thus be determined by computing all (i) intersecting
red and blue arcs, (ii) intersecting red and blue segments, (iii) blue (red) arcsintersecting red (blue)
boundary line segments, and (iv) blue (red) arcsinside red (blue) arc-cells.

We focus on the case of all intersecting pairs of ared one-arc-cell and a blue two-arc-cell. The
case of al intersecting pairs of ared one-arc-cell and a blue two-arc-cell can be treated similarly
with the same time bound. There are O(n) red arcs, representative points and boundary segments,
and there are O(n?) blue two-arc-cells, blue boundary segmentsand O(n) blue arcsin total. Prob-
lem (i) can be solved again in O(n?) time. Problem (ii) can be solved in O(n?log* n + K) time
as follows. We store the O(n) red boundary segments in a segment-segment query structure in
O(n?*log®n) time, and query with each of the O(n?) blue boundary segmentsin O(log*n + k)
time.

Problem (iii) can be solved in O(n*™ + K) time as follows. We store the O(n) red arcs in
a segment-arc query structure in O(n?*¢) time, and query with each of the O(n?) blue boundary
segmentsin O(logn + k) time. We also store the O(n) blue arcsin a segment-arc query structure
in O(n**¢) time, and query with each of the O(n) red boundary segmentsin O(logn + k) time.

Finally, problem (iv) can be solved in O(n*/**¢ + K) time as follows. We store the O(n)
red representative points in a semi-algebraic range search structure in O(nlogn) time, and query
with each of the O(n?) blue two-arc-cells in O(n'/?*< + k) time. We also store the O(n) blue
representative points in a sesgment-arc query structure in O(n logn) time, and query with each of
the O(n) red one-arc-cellsin O(n'/?*< 4+ k) time. We pair two arcs (@) and 7 (a’) from the reported
arcs, and compute r(a, a’). The set of al such two-arc-cells contain al two-arc-cells contained in
the given query one-arc-cell.

Theorem 4.4 Given a planar semi-algebraic set with n arcs, all K arc triples admitting a form-
closure grasp with three frictionless point fingers can be computed in O(n*/?*¢ + K) time.

4.3 Computing all form-closure grasps with at most three fingers 55

Figure 4.5: Anintersecting pair of ablue two-arc-cell and ared line segment.

4.3 Computing all form-closure grasps with at most three fingers

If we take advantage of concave vertices, three frictionless point fingers on a semi-algebraic set
can achieve form closure. In this section, we provide output-sensitive algorithms for reporting all
combinations of arcs and concave vertices admitting at least one form-closure grasp with three
frictionless point fingers. Such combinations include: (i) triples of one concave vertex and two
arcs, (ii) pairs of one concave vertex and one arc, and (iii) triples of two concave vertices and one
arc.

We let m denote the number of concave vertices of a semi-algebraic set P. The number of arcs
are denoted by n. A finger at a concave vertex v induces a line segment in wrench space, and also
on I'—see Section 3.1.1. We let s(v) denote the line sesgment on I, induced by afinger at v.

4.3.1 One concave vertex and two arcs

We wish to report al triples of a concave vertex and two arcs, such that three frictionless point
fingers (one finger on each) achieve form closure. A triple (v, a, ') allowsaform-closure grasp, if
and only if the blue (red) segment s(v) intersectsthe red (blue) two-arc-cell r(a, a’) by Lemma2.7.
See Figure 4.5. Thus our problem becomesto report all blue (red) segmentsintersecting red (blue)
two-arc-cells. We focus on the case of all intersecting pairs of a blue segment and a red two-arc-
cell. The case of all intersecting pairs of a red segment and a blue two-arc-cell can be treated
similarly with the same time bound.

A blue segment s(v) intersects a red two-arc-cell r(a, d’), if and only if s(v) intersects the
boundary of r(a, a’), or s(v) C r(a, a’). Observethat if s(v) C r(a, a’), the representative midpoint
of s(v) liesinsider(a, a’). All intersecting red two-arc-cells and blue segments can thus be reported
by computing all (ii) intersecting red and blue line segments, (iii) red arcs intersecting blue line
segments, and (iv) blue midpointsinside red two-arc-cells.

There are O(n?) red two-arc-cells and red boundary segments, and O(n) red arcs. There are
O(m) blue line segments and representative points. Problem (ii) can be solved in O(n?log* m +
K) time as follows. We store the O(m) blue segments in a segment-segment query structure in
O(m?log® m) time, and query with each of the O(n?) red boundary segmentsin O(log* m + k)
time. Problem (iii) can be solved in O(n?/>*¢ 4+ K) time; we use the segment-arc intersection
agorithm. Problem (iv) can be solved in O(n?m!/?*¢ + K) time as follows. We store the O(m)
blue representative pointsin a semi-al gebraic range search structurein O (m log m) time, and query
with each of the O(n?) red two-arc-cellsin O(m'/?*¢ + k) time.

Theorem 4.5 Given a planar part with m concave vertices and n algebraic arcs, all K triples
of one concave vertex and two arcs admitting a form-closure grasp with three frictionless point
fingers can be enumerated in O(n?m!/?* + K) time.

56 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

Figure 4.6: Anintersecting pair of a blue one-arc-cell and ared line segment.

4.3.2 One concave vertex and one arc

We wish to report all pairs of a concave vertex v and an arc a, such that one point finger at v and
two on a achieve form closure. A pair (v, a) alows a form-closure grasp, if and only if the blue
(red) segment s(v) intersects the red (blue) one-arc-cell r(a) in the interior by Lemma 2.7. See
Figure 4.6. Thus our problem becomes to report all blue (red) segments intersecting red (blue)
one-arc-cellsin theinterior.

Here we focus on the case of al intersecting pairs of ablue segment and ared one-arc-cell. The
case of all intersecting pairs of ared segment and a blue one-arc-cell can be treated similarly with
the same time bound. A blue segment s(v) intersects a red one-arc-cell r(a), if and only if s(v)
intersects the boundary of r(a), or s(v) liesinsider(a). All intersecting pairs of ared one-arc-cell
and a blue segment can be identified by computing all red and blue intersections between (ii) line
segments, (iii) an arc and a line segment, and (iv) a midpoint and a one-arc-cell.

There are O(n) red one-arc-cells, red boundary segments and red boundary arcs. There are
O(m) blue line segments and representative points. When P has a small number of concave
vertices relative to n, more precisely, when m < /n, a naive approach has a better time bound,
whichisO(nm).

When m > /n, we do the following. First, we solve problem (iii) in O(n%/%° + K) time,
using a segment-arc intersection algorithm. Problem (iv) can be solved in O(nm!'/?*¢ + K) time
asfollows. We storethe O(m) blue representative pointsin a semi-algebraic range search structure
in O(mlogm) time, and query with each of the O(n) red one-arc-cells in O(m!'/?*¢ + k) time.
A red-blue line segment intersection can be computed efficiently using two algorithms, depending
on the size of m relativeto n: n'/2 < m < n?3 and n?? < m < n. When n?? < m <
n, ared-blue line segment intersection algorithm can report all pairs of intersecting segmentsin
O(n*3log'®n + K) time. When n'/2 < m < n?/3, we store the O(m) blue segments in a
segment-segment query structure in O(m?log®m) time, and query with each of the O(n) red
boundary segments in O(log* m + k) time. Thus we can report all intersecting pairs of a red
segment and a blue segment in O(m?log® m + K)-time. In total, it takes O(n*?*¢ + K) when
Vvn <m <n.

The following theorem summarizes the result.

Theorem 4.6 Given a planar part with m concave vertices and n algebraic arcs, all K pairsof a
concave vertex and an arc admitting a form-closure grasp with three frictionless point fingers can
be computed in O(mn) timewhen m < /n, and in O(n%?*¢ 4+ K) time when m > /n.

4.3.3 Two concave vertices and one arc

We wish to report all triples of two concave vertices and one arc, such that three frictionless point
fingers (one finger on each) achieve form closure. Let r(v,v') := [J{r(ww') | w € s(v),w" €

4.4 Conclusion 57

Figure4.7: Anintersecting pair of ablue quadrilateral and ared arc.

s(v')}. Note that r(v,v’) is a quadrilateral.> A triple (v,v’,a) allows a form-closure grasp, if
and only if the blue (red) arc 7(a) intersects the red (blue) quadrilateral r(v,v’) in the interior by
Lemma2.7. See Figure 4.7. Thus our problem becomes to report al red (blue) arcs intersecting
blue (red) quadrilateralsin the interior.

Here we focus on the case of al intersecting pairs of ared arc and ablue quadrilateral. The case
of al intersecting pairs of ablue arc and ared quadrilateral can be treated similarly with the same
time bound. There are O(m?) blue quadrilaterals and blue boundary segments. There are O(n) red
arcs and representative points. A blue segment s(v) intersects ared one-arc-cell r(a), if and only
if s(v) intersects the boundary of r(a), or s(v) liesinside r(a). All intersecting pairs of ared arc
and a blue quadrilateral can be identified by computing all red and blue intersections between (iii)
an arc and aline segment, and (iv) a point and a quadrilateral.

When m is small relative to n, more precisely, when m < /n, a naive approach has a better
time bound, which is O(nm?). When m > /n, we do the following. First, we solve problem
(iii) in O(n**¢ + K) time, using a segment-arc query structure. We store the O(n) red arcsin a
segment-arc query structure in O(n*<) time, and query with each of the O(m?) blue boundary
segmentsin O(log n + k) time. Problem (v) can be solved in O(n?log n + m?log® n + K) time as
follows. We store the O(n) red representative pointsin a triangle search structure in O(n?logn)
time. We divide each of the O(m?) blue quadrilaterals into two digoint triangles, and query the
structure with each of the O(m?) triangles in O(log®n + k) time. These lead to the following
theorem.

Theorem 4.7 Given a planar part with m concave vertices and n algebraic arcs, all K triples of
two concave vertices and an arc admitting form-closure grasps with three frictionless point fingers
can be reported in O(nm?) timewhen m < \/n, andin O(n**¢ + K) timewhen m > /n.

4.4 Conclusion

We proposed the first efficient output-sensitive algorithms to report al sets of arcs and concave
vertices of a semi-algebraic set that yield form-closure grasps. The projection method in Chapter 3
was general enough to be employed to tackle this problem. We proved that the shapes of the wrench
sets induced by africtionless point finger on an arc, and their projections are algebraic arcs.
Reporting all K arc pairs that yield form-closure grasps with two frictionless point fingers is
equivalent to the problem of reporting all red and blue intersecting pairs of one-arc-cells, which
are semi-algebraic sets. To solve this problem, we need an efficient algorithm to report al red and
blue intersecting arc pairs. We can use the line sweeping algorithm by Basch et a. [7] for this.
The agorithm can enumerate such K arc pairsin O(\o(n + K)log® n) time, where each pair of
the n arcsintersects at most ¢ times, and \,»(n + K) isthe maximum length of an (n + K, t + 2)
Davenport-Schinzel sequence. \;.2(n + K) isan aimost linear function of n + K for any fixed

2A triangle can be seen as a degenerate case of a quadrilateral, hence we consider (v, %) a quadrilateral.

58 Computing All Form-Closure Grasps of a Planar Semi-Algebraic Set

t + 2. In our setting, the algebraic arcs can intersect at most ¢ times, because the degree of the
polynomials is bounded by a constant ¢. This provides an efficient way of computing all arc pairs
with form-closure grasps, when K = O(n?®), a < 2. It remains open to find truly output-sensitive
computations of all such arc pairs, where the K term is additive to the other terms involving n or
m.
When a planar part is bounded by arbitrary curve pieces, we believe that the projected wrench
setsinvolve arbitrary curve pieces. Unfortunately, no efficient output-sensitive algorithm to detect
the intersections of arbitrary curves has been proposed, as far as we know. If the intersection
between the projected wrench sets can be efficiently computed, the approach presented in this
chapter can be applied to compute all form-closure grasps of any planar curved object.

Chapter 5

Computing All Force-Closure Grasps of
Polygons and Planar Semi-Algebraic Sets

Fewer fingers suffice for immobilization, if there is friction between the fingers and the part. This
chapter is about the first output-sensitive computations of all force-closure grasps with frictional
fingers of polygons and planar semi-algebraic sets. The beauty of the approach taken in Chapter 3
and 4 is that it can also be applied to compute all force-closure grasps of polygons and planar
semi-algebraic sets. With this method, we identify all combinations of edges and concave vertices
of a polygon such that two or three fingers on each of these combinations achieve force closure.
The combinations that we consider include: (i) edge pairs, (ii) a concave vertex and an edge, (iii)
one concave vertex and two edges, and (iv) two concave vertices and one edge. We also identify
al combinations of arcs and concave vertices of a planar semi-algebraic set, such that two or
three fingers on each of these combinations achieve force closure. The combinationsinclude: (i)
a concave vertex and an arc, (ii) two concave vertices and an arc, and (iii) a concave vertex and
two arcs. Two frictional fingers on two arcs can aso achieve force closure. However, we do not
consider these cases in this chapter, because the algorithm to deal with arc-arc intersectionsis not
efficient enough. We discuss this further in Section 5.4. Also note that three frictional fingers
on three arcs can achieve force closure. This case is basically the same as that in Section 4.2.2,
since it is the problem of reporting all intersecting pairs of a red semi-algebraic set and a blue
semi-algebraic set. Hence this can be solved in the same time bound as in Section 4.2.2, which is
O(n5/2+s + K)

5.1 Preliminaries

We project the wrench sets on I', and report all red and blue intersections between the projected
wrench sets on I'. The projection scheme and screen I' are as defined in Section 2.4.1. We first
introduce a necessary and sufficient condition for two frictional fingersto achieve force closure.

Lemma 5.1 Given an object with two contact wrench setsw; and w,, the object isin force-closure,
if and only if w, and ws have four points w1, w{, w) and w! such that the interior of a red part of
m(wiwy) intersectstheinterior of a blue part of = (wjwY), or vice versa.

The problem of enumerating al combinations of arcs/edges and concave vertices with force
closure grasps can be formulated in terms of wrench sets as follows. (i) given n red and blue
trapezoids and m red and blue line segments on I", report all combinations of trapezoids and line

60 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

£I E//

Figure 5.1: (a) Thefriction cone of africtional point finger on e. (b) The projected wrench sets of the finger.

segments that define red and blue intersections in the interior; (ii) given n red and blue semi-
algebraic setsand m red and blueline segmentson I, report all combinations of semi-algebraic sets
and line segmentsthat define red and blue intersectionsin the interior. We investigate the shapes of
wrench setsinduced by afinger adong an edge (Section 5.1.1), at a concave vertex ((Section 5.1.2),
and along an arc (Section 5.1.3). In Section 5.1.4, we introduce the data structures and algorithms
used in this chapter, to search for red and blue intersections.

5.1.1 Edge wrench sets

A frictionless point finger on an edge e induces one line of force—the normal line of e at the contact
point. When afinger isfrictional, it induces a set of lines of force; the set of lines of force through
the contact is the friction cone. Recall that we assume Coulomb friction model (see Section 2.3).
The bisector of the friction cone is the normal line at the contact point on the edge. Let ¥ denote
the half-angle of the friction cone. See Figure 5.1 (a). Let ¢ and ¢’ be the boundary lines of the
Coulomb friction cone; they make a positive or negative angle with the normal line.

A line through a point p with a direction vector n = (7,,n,) determines a point (1, 7,,p x 1)
in wrench space. Recall that 7 is normalized, i.e. |n| = 1 (see Section 2.1.2). A frictional finger
tranglating along an edge e induces a set of lines of force, and hence a set of wrench points, which
forms a trapezoid on I". Let w’ and w” be the sets of the wrench points for ¢ and ¢” trandating
along e respectively. Then w’ and w” are vertical line segments® in wrench space. We call the
trapezoidal convex hull of w’ and w” in wrench space the edge wrench set (of ¢), and let é denote
it. The projection of thistrapezoid ¢ isalso atrapezoid on I', because the projection of vertical line
segments are also vertical line segments. We let 7(e) denote the projection of é. See Figure 5.1

(b).

5.1.2 Concave vertex wrench sets

We now look at how the wrench set of a finger at a concave vertex looks. Let e; and e, be the
incident edges of a concave vertex v, and let ¢} and ¢/ be the boundary lines of the friction cone of
edge e; at v, and ¢, and ¢! be those of e, at v. Without loss of generality, we assume that ¢ and ¢}
are the boundary lines of the set of lines of force caused by the finger at the vertex. See Figure 5.2.
A finger at a concave vertex induces a set of lines of force between two lines ¢} and ¢, thusaline
segment w’w” in wrench space, where w’ is the wrench point corresponding to ¢/, and w” is the
wrench point corresponding to ¢4. We let s(v) denote the projection of w’w” onT.

10Observe that the first two components of «/ and w'’ are for the directions of # and ¢”’. Only the last component changes as ¢ or ¢ translates
along e. Hence w’ and w’’ are vertical line segments.

5.1 Preliminaries 61

Figure 5.2: (a) A finger at a concave vertex induces a friction cone with ¢/ and ¢7 as boundary lines. (b) Thered line
segment (in dashed lines) is the wrench set induced by a finger at a concave vertex.

5.1.3 Arc wrench sets

When africtional finger movesalong an arc, it induces a set of wrench points. Let a be aboundary
arc of asemi-algebraic set P’; a isaportion of an algebraic curve ¥(z, y) = 0 of constant degree.
The interior of the semi-algebraic set P’ could be U (z,y) > 0 or ¥(x,y) < 0. Without loss of
generality, we assume that ¥ (z,y) > 0 represents the interior of P’ bounded by « localy. We

let ¥, and ¥, denote 2224 and a‘ygjy) respectively. Then the wrench for the normal line at

ox
p=(v,y)T onais(V,, ¥, z¥, —yV,).? When afinger is frictional, it induces a set of lines
of force in the friction cone. If we rotate the normal line around p by 0, it represents aline in the
friction cone, when # < 9.3 In fact, any line in the friction cone can be represented thisway. The
wrench point for the rotated normal line by 6 can be expressed as follows:

(cos OV, —sin OV, sin OV, + cos OV, x sin OV, + x cos OV, — y cos OV, + ysin OV,)).

We assume that cos 0¥, — sin ¥, # 0 and sin 0¥, + cos O¥,, # 0 for al valuesof 6. If anarc a
does not satisfy this assumption, we divide a such that each portion of « satisfies the assumption.
We call the wrench set of a finger trandating along an arc a the arc wrench set (of a), and let a
denote it. In the following lemma, we show that an arc wrench set of a frictional finger forms a
semi-algebraic set in wrench space.

Lemma 5.2 The set of wrenches induced by all placements of a frictional point finger along an
arc forms a semi-algebraic set.

Proof: Let N beamap N : (z,y,0) — (cosOV, — sinOV¥,,sin OV, + cosO¥,, xsin 0¥, +
xcos OV, —ycos OV, +ysin 0V,), wherex and y are on apiece of an algebraic curve ¥ (z, y) = 0,
and ¢ in an interva of I, = [0, 62]. We show that the image of A is agebraic. We parametrize
cos # and sin 0 interms of u in acertain interva of 1, asfollows:

2
2u and sinf = 1—714
1+ u? 1+ u?

Note that v isin aninterval [uy, us]. With this parametrization, N can be rewritten as follows.

cosf =

. 2V, (1—u?)¥, (1-u2)V, 2ul,,
N (.T, Y U) = (l—i—u126 T 1R 0 14w + 14u??
z(1—u?)T, 2ux Wy 2uyV, 1—u?)0,)

B y(
14+u2 + 14-u? 14-u? + 14+u2

Because al the components in the image are polynomials of z, y and u for a fixed vaue of u,
the image is also an algebraic arc. The set of algebraic arcs for all values of w in [uy, uy] forms a
semi-algebraic set. O

2Note that the direction vector (¥, ¥,,) isnot normalized here, to make the formula simpler. But the argumentsin this chapter still holds, with
the normalization of (U, ¥,)).
3Remember that) represents the half angle of the friction cone. See Section 2.3 in Chapter 2.

62 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

Figure 5.3: The projected wrench set of africtional finger transating along an arc.

I ATy
IV L L 1
T }
—1 1 e
-0 / -1
Ne = My I Ny + 1y =0
Figure5.4: Theregionsl, I, 111 and IV, and screen T" in wrench space, viewed from the positive 7 axis.

Now we show that the projection of an arc wrench set a is also asemi-algebraic set. Welet r(a)
denote the projection of a. Abusing the notation slightly, we also call r(a) the arc wrench set of a.
See Figure 5.3.

Lemma 5.3 The projected wrench set induced by a frictional finger tranglating on an arc forms a
semi-algebraic set.

Proof: The arc wrench sets are projected on different planes of I', depending on where they lie,
just likein Section 4.1.1. See Figure 5.4. Those lying in region | and |11 are projected in blue and
red on I'y, with the following description

((1—u?)¥, + 20V, x(l —u*)V, + 2uz¥P,
20V, — (1 —u?)¥, 2uV, — (1 —u?)¥,

Y),

and thosein region Il and IV are projected in red and blue on I'y, with the following description

20V, — (1 —u?)¥,) 2uyV, —y(1 —u?)Y,
y L, T —

(2u\11y + (1 —u?)"v, 2u¥, + (1 —u?)v,

).

Because al the components in the image are polynomias of u, z, y, ¥, and ¥, theimage is also
apiece of an algebraic curve. Thismeansthat r(a) isbounded by algebraic arcs, therefore r(a) is
asemi-algebraic set. O

When two frictional point fingers p and p’ diide along two arcs a and o’ independently, they
induce a set of line segments {ww’|w € a,w’ € a'}. The set of such line segments forms a semi-
algebraic set bounded by @, ' and a constant number of line segments. The projection of thisset is
also a semi-algebraic set bounded by 7 (), 7 (a’) and a constant number of line segments. We let
r(a,d) == J{r(ww’) | w € a,w’ € a'}. Notethat an arc a could be a segment—a line segment
is considered to be a special case of algebraic arcs.

5.2 Computing all force-closure grasps of polygons 63

5.1.4 Intersection search algorithms

In this chapter, we need to report all red and blue intersections* between semi-algebraic sets, line
segments and triangles. More precisely, we wish to report all red and blue intersections between:
(i) line segments; (ii) arcs and line segments; (iii) points and semi-algebraic sets; (iv) points and
triangles; (v) real algebraic arcs.

We use two options to report all red and blue intersecting line segments. segment intersection
algorithm and segment intersection search structure. All red and blue intersecting pairs of an
arc and a line segment can aso be reported in two ways. segment-arc intersection algorithm and
segment-arc query structure. To report al points lying in a semi-algebraic set, we use a semi-
algebraic range search structure. To identify all K points contained in a query triangle, we use the
triangle search structure. More detailed information on the algorithms and the data structures can
be found in Section 2.4.2.

Sometimes we use avariant of atriangle search structure whose preprocessing timeis O (¢ +
M log® ¢), and the query time is O(q/v/M log® &+ k), where M is the space used to store the
data. In this chapter, we set the space M to be ¢*/3. This leads to O(¢"/? log® q) preprocessing
time, and O(¢'/? log® ¢ + k) query time. See Theorem 6.2in [52].% Section 2.4.2 has more details
about these algorithms and data structures involving arcs. All K red and blue arc-arc intersections
are enumerated in a naive manner—we check every pair of arcs.

5.2 Computing all force-closure grasps of polygons

Let apolygon P have n edges and m concave vertices. In this section, we report all combinations
of edgesand concave verticesthat yield at |east one force-closure grasp with at most threefrictional
point fingers. The combinations are (i) two edges, (ii) one concave vertex and one edge, (iii) one
concave vertex and two edges, and (iv) two concave vertices and one edge. We do not consider the
problem of reporting all concave vertex pairs that yield a force-closure grasp with two frictional
fingers, because thisis basically the same problem as that solved in Section 3.2.1.

5.2.1 Two edges

We wish to report all edge pairs that yield a force-closure grasp with two frictional point fingers.
An edge pair allowsaforce-closure grasp, if and only if their projected edge wrench setson I" have
ared-blue intersection in the interior. Hence we have the problem of reporting all intersecting red
and blue trapezoids. A red trapezoid intersects a blue trapezoid in the interior, if and only if either
ared boundary segment intersects a blue boundary segment in the interior, or one is contained in
the other.

There are n edges, each of which has at most four trapezoidson I'. All intersecting red and blue
line segments can be identified in O (n*/3 log"? n+ K) time, using ared-blue segment intersection
algorithm. To identify al red (blue) trapezoids contained in a blue (red) trapezoid, we take a
vertex of each red trapezoid, and store them in atriangle search structure using O (n*/3) space. The
preprocessing time is O (n*/3 log® n) (¢ is an arbitrarily small positive number). We triangulate a
blue trapezoid, and query the structure with each of the triangle; the query timeis O(n'/3log® n +
k). There are O(n) queries, so the total time complexity is O(n*/? log* n + K). Note that querying
the triangle search structure will report all red trapezoids contained in a given blue trapezoid, but

4The red and blue intersection points must be the interior points of the red and blue sets.
SMatousek’s n is our ¢, and m isour ¢*/3.

64 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

Figure 5.5: (a) The red line segments (in dashed lines) intersect the boundary segments of a blue trapezoid (in solid
lines). (b) Thered line segments are contained in a blue trapezoid.

also some red trapezoids intersecting the blue trapezoid. These red trapezoids intersecting the blue
trapezoid will be reported at most twice, which does not affect the asymptotic time complexity.
Thisargument will hold for the problems that we consider in the remaining sections.

Theorem 5.4 Given a polygon with n edges, all K edge pairsthat yield a force-closure grasp with
two frictional point fingers can be computed in time O (n*/3 log® n + K).

5.2.2 One concave vertex and one edge

We wish to report al pairs of one concave vertex and one edge that yield a force-closure grasp
with two frictional point fingers. As a consequence of Lemma 5.1, a concave vertex and an edge
allow aforce-closure grasp, if and only if their wrench setson I' have ared-blue intersection in the
interior.® Remember that a finger at a concave vertex induces a line segment, and a finger along
an edge induces atrapezoid on I'. Our problem isthusto report all intersecting red trapezoids and
blue segments, and all intersecting red segments and blue trapezoids. Without loss of generality,
we take red trapezoids and blue line segments. The case of intersecting bluetrapezoids and red line
segments can be treated similarly. A red trapezoid intersects a blue line segment in the interior, if
and only if either ared trapezoid boundary segment intersects a blue trapezoid boundary segment
in the interior, or the line segment is contained in the trapezoid. See Figure 5.5.

There are O(n) blue trapezoids, and m red line segments. All intersecting red and blue line
segments can be identified in O(n*/?log"/® n + K) time using the red-blue segment intersection
algorithm. To identify all red segments in blue trapezoids, we store the midpoints of al the red
line segments in a triangle search structures in O(M) space. We adjust the space M, depending
on the size of m compared to n. When m < n??3, we take the triangle search structure with
O(m?log m) preprocessing time and O (log® m + k) query time. There are n. queries, so the time
complexity in thiscaseis O(m?logm + nlog® m + K). Whenn?? < m < n,weset M = m*/3,
which gives us O(m*/? log® m) preprocessing time (¢ is an arbitrarily small positive number), and
O(m!/?log® m + k) query time. There are n queries, so the time complexity is O (nm'/3 log® m +
K). The following table shows the data structures and algorithms used in each case and their time
complexities. The number of queries and the data size’ are asymptotic.

Rangeof m | Name of the algorithm | (Query,Data) | Time complexity
m < n?/3 segment-segment intersection algorithm O(n*?log'/® n + K)
triangle search structure (n,m) O(m?logm + nlog®m + K)
n?/3 < m <n | segment-segment intersection algorithm O(n*31og'? n + K)
triangle search structure (n,m) O(nm*/3log® m + K)

6The intersection must have at least one point which isthe interior point of the red set, and the interior point of the blue set.
“From here on, by data size in the table, we mean the size of the data to be stored in the data structure.

5.2 Computing all force-closure grasps of polygons 65

Figure 5.6: The red line segments (in dashed lines) intersect the convex hull of two blue edge wrench sets (in solid
lines).

Theorem 5.5 Given a polygon with m concave vertices and n edges, all K pairs of one con-
cave vertex and one edge that yield a force-closure grasp with two frictional point fingers can be
computed intime O(n*?3log® n + K). More precisely, they are:

(I) O(n4/3 log1/3n +m?2 log m + K) = O(n4/3 logn + K)-timewhenm < n2/3’ and

(i) O(n*?1og® n 4+ nm'/3log* m + K) = O(n*3log® n + K) timewhen n?3 < m < n.

5.2.3 One concave vertex and two edges

We wish to report all triples of one concave vertex and two edges that yield a force-closure grasp
with three frictional point fingers. As a consequence of Lemma 5.1, our problem is to report all
intersecting pairs of ared (blue) line segment and the blue (red) convex hull of two edge wrench
setson I'. Observe that the convex hull of two edge wrench setson I' is a polygon of a constant
complexity. A line segment intersectsapolygon, if and only if either the red and blue line segments
intersect each other in the interior, or the line segment is contained in the polygon. See Figure 5.6.

Without loss of generality, we take red line segments and blue trapezoidson I'. All sets of blue
line segmentsintersecting red edge wrench sets can be reported in asimilar way. Now we construct
the convex hulls of all pairs of blue trapezoids. There are O(n?) blue polygons, and O(m) red line
segments.

We build a segment intersection search structure on O(m) red line segmentsin O(m? log® m)
time, and query with each of the O(n?) blue boundary line ssgments. The query timeisO(log* m +
k), so the time complexity of segment intersection search problemis O(n? log* m + K). To report
all segments contained in a blue polygon, we triangulate the polygon, and report al midpoints
of the red segments contained in each triangle of the blue polygon. We build a triangle search
structure on m midpoints of the red line segmentsin O(m?logm) time, and query with each of
the O(n?) blue query triangles. The query time is O(log® m + k), so the time complexity of the
triangle intersection search problem is O(n?log® m + K). The total time complexity to report all
intersecting pairs of ared line segment and the convex hull of two blue edge wrench sets is thus
O(n*log*m + K).

Theorem 5.6 Given a polygon with m concave vertices and n edges, all K triples of one concave
vertex and two edges that yield a force-closure grasp with three frictional point fingers can be
computed in time O(n?log* m + K).

5.2.4 Two concave vertices and one edge

We wish to report all triples of two concave vertices v and " and one edge e that yield a force-
closure grasp with three frictional point fingers. As a consequence of Lemma 5.1, two concave

66 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

g/ 7

Figure5.7: A set of red trapezoids (in dashed lines) intersecting blue quadrilaterals (in solid lines).

verticesand an edge allow aforce-closure grasp, if and only if thered (blue) quadrilateral intersects
the blue (red) trapezoid in theinterior on I'. An edge wrench set on I isatrapezoid, and the convex
hull of two vertex wrench sets s(v) and s(v") on I" isa quadrilateral. See Figure 5.7. Our problem
isthusto report all red and blue intersecting pairs of atrapezoid and a quadrilateral. Here we focus
on reporting red trapezoids intersecting blue quadrilaterals. All sets of blue trapezoids intersecting
red quadrilaterals can be reported similarly. A red trapezoid intersects a blue quadrilateral in the
interior, if and only if either the red and blue line segments intersect each other in the interior, or
the red trapezoid is contained in the blue quadrilateral, or the blue quadrilateral is contained in the
red trapezoid.

There are O(m?) blue quadrilaterals and O(n) red trapezoids. For the line segment intersection
search problem, we use either a red-blue segment intersection algorithm or a segment intersec-
tion search structure on n red line segments, depending on the relative size of m compared to n.
To identify all blue quadrilaterals contained in a red trapezoid, and the red trapezoids in a blue
quadrilateral, we use some variants of the triangle search structure on O(m) midpoints of blue line
segments, and on O(n) points of red trapezoids with time-space trade-off. All possible combina-
tions of intersection algorithms produce two different time complexities, depending on the relative
size of m compared to n: (i) m < n'/S, (i) n'/6 < m < n'/?, and (i) n'/? < m < n.

Whenm < n'/6, wesearchfor all K intersecting pairsof ared trapezoid and ablue quadrilateral
in a brute-force manner. Thistakes O(m?n) time.

When n'/¢ < m < n'/?, we search for all K intersecting pairs of a red trapezoid and a blue
quadrilateral in total time O(n*/3log® n + K) asfollows. We first perform ared-blue line segment
intersection algorithm on O(n 4+ m?) red and blue line segmentsin O(n*/3log"/® n + K) time. To
identify red trapezoids contained in blue quadrilaterals, we store the O(n) red pointsin atriangle
search structureusing M = O(n*/?) space; the preprocessing timeis O(n/? log® n), and the query
timeis O(n'/?log® n + k) for each of the O(m?) queries. The total time complexity for this case
is O(n*?log®n + K). To identify blue quadrilaterals contained in red trapezoids, we store the
O(m) blue points in atriangle search structure with O(m? log m) preprocessing time. The query
timeis O(log® m + k) for each of the O(n) queries. We take all pairs of blue segments among the
k reported segments, and put them in set A. Then all blue quadrilaterals contained in the query red
trapezoid belong to A. The total time complexity of thiscaseis O(nlog® m + K).

Whenn'/? < m < n, thetotal time complexity isO(n? log? n+m?log* n+K) = O(n?log* n+
K). We store the n red line segments in a segment intersection structure in O(n? log® n) time and
query in O(log* n+k) timewith each of the O (m?) query line segments. Thetotal time complexity
is O(n%log®n + m?log*n + K). To identify all blue quadrilaterals contained in red trapezoids,
we store O(m) blue points in a triangle search structure with O(m?logm) preprocessing time.
The query time is O(log® m + k) for each of the O(n) queries. Hence the time complexity is
O(m?logm + K). To identify all red trapezoids contained in blue quadrilaterals, we store n red
pointsin atriangle search structure in O(n? log n) time. The query timeis O(log® n + k) for each
of the O(m?) queries, hence the time complexity is O(n?logn + m?log® n + K). The following

5.3 Computing all force-closure grasps of planar semi-algebraic sets 67

table shows the data structures and algorithms used in each case and their time complexities. The
number of queries and the data size are asymptotic.

Rangeof m | Name of the algorithm | (Query,Data) | Time complexity
m < n'/® naive segment-segment intersection search (m,n) O(m?n)
naive triangle search structure (m,n) O(m?n)
naive triangle search structure (m,n) O(m?n)
n'/% < m <n'/? | segment-segment intersection algorithm (n,m) O(n*?log'?n + K)
triangle search structure (m,n) O(n*3log®n + K)
triangle search structure (n,m?) O(nlog® m + K)
nt/?<m<n segment-segment query structure (m?,n) O(n?log®n + m?log* n + K)
triangle search structure (n,m) O(m?logm + K)
triangle search structure (m?,n) O(n?logn +m?log®n + K)

Theorem 5.7 Given a polygon with m concave vertices and n edges, all K triples of two concave
vertices and one edge that yield a force-closure grasp with three frictional point fingers can be
computed in total time O(n?log* n + K). More precisely, the time complexities are:

(i) O(m?n) whenm < n'/¢
(“) O(n4/3 loggn + K) when n1/6 <m S n1/2’ and

(iii) O(n?log®n 4+ m?log*n 4+ K) = O(n?log*n + K) whenn'/? < m < n.

5.3 Computing all force-closure grasps of planar semi-algebraic sets

Let P’ denote a planar semi-algebraic set with n boundary arcs and m concave vertices. The
boundary arcs are all real algebraic arcs. In this section, we wish to report all force-closure grasps
on the following combinations: (i) pairs of a concave vertex and an arc, (ii) triples of two concave
vertices and an arc, and (iii) triples of a concave vertex and two arcs.

5.3.1 One concave vertex and one arc

We wish to report al pairs of aconcave vertex and an arc that yield aforce-closure grasp with two
frictional point fingers. A frictional finger at a concave vertex v induces a line segment s(v) on
I', and a finger on an arc a induces a semi-algebraic set r(a). As a consequence of Lemma 5.1,
a concave vertex and an arc alow aforce-closure grasp, if and only if the red (blue) line segment
s(v) intersects the blue (red) semi-algebraic set (a) in the interior. Here we focus on the case of
red line segmentsintersecting blue semi-algebraic setsin theinterior. All setsof blue line segments
intersecting red semi-algebraic sets can be reported in the same way. A red line segment intersects
a blue semi-algebraic set in the interior, if and only if one of the following holds: (i) the red line
segment intersects the blue boundary arcs? in the interior, or (ii) the red segment lies in the blue
semi-algebraic set.

There are O(n) blue semi-algebraic setson I, thus O(n) arcson I'. There are O(m) red line
segments from the concave vertices, thus O(m) red midpoints. When m is small relative to n,
more precisely, when m < n'/?, we take a brute-force approach, which takes O (nm) time.

When n'/? < m < n, we use the segment-arc intersection algorithm to search for all red and
blue segment-arc intersections. Thisrunsin O(n*?*¢4 K time. To report all red segmentslyingin

8The boundary of (a) may have line segments. Since aline is a degenerate case of an agebraic curve, this case can handle segment-segment
intersections as well. In addition, this does not affect the time complexity.

68 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

() (i) (i)
-

Figure 5.8: A set of red quadrilaterals (in dashed lines) intersecting blue semi-algebraic sets (in solid lines).

blue semi-algebraic sets (case (ii)), we store O(m) red midpointsin a semi-algebraic range search
structure in O(m log m) time. We query the structure with each of the O(n) query semi-algebraic
sets, which takes O(m'/?*¢ 4 k) time. The time complexity for case (i) is O(nm'/**¢ + K).°
The following table shows the data structures and algorithms used in each case and their time
complexities. Asin the previous section, the number of queries and the data size are asymptotic.

Rangeof m | Name of the algorithm | (Query,Data) [Time complexity
m < n'/? brute-force approach (m,n) O(nm)
n'/? < m <n | segment-arcintersection algorithm (m,n) O(n**¢ L K)
semi-algebraic range search structure (n,m) O(nm*/?**s + K)

Theorem 5.8 Given a planar semi-algebraic set with n boundary arcs of constant degree and m
concave vertices, all K pairs of a concave vertex and an arc that yield force-closure grasps with
two frictional point fingers can be enumerated in total time O(n3/?* 4+ K). More precisely the
time complexities are:

1. O(nm) whenm < n'/2, and

2. O(n®?*s 4 K) whenn'/? < m < n.

5.3.2 Two concave vertices and one arc

We wish to report all triples of two concave vertices v and v’, and one arc « that yield a force-
closure grasp with three frictional point fingers. Three fingers at v, v and « induce two line
segments s(v), s(v’) and a semi-algebraic set (a) onT'. Asaresult of Lemma5.1, two concave
vertices and one arc allow a force-closure grasp, if and only if the red quadrilateral'® intersects
the blue semi-algebraic set in the interior on I'. Here we focus on the case of red quadrilaterals
and blue semi-algebraic sets. All intersecting pairs of a blue quadrilateral and ared semi-algebraic
set can be reported similarly. A red quadrilateral intersects a blue semi-algebraic set, if and only
if one of the following three holds: (i) red line segment intersects the blue boundary arc in the
interior, or (ii) ared point isin the blue semi-algebraic set, or (iii) a blue endpoint isinside the red
quadrilateral. See Figure 5.8.

There are O(n) blue semi-algebraic sets, thus O(n) blue boundary arcs and representative
points—we pick an endpoint from each of the semi-algebraic sets. There are O(m?) red quadri-
laterals and O (m) midpoints of the red segments. When m is small relative to n, more precisely,
when m < n'/2, we use brute-force algorithm, which takes O (nm?) time.

9Note that this query structure finds all the red line segments contained in a query semi-algebraic set, aswell as some segments intersecting the
query semi-algebraic set. The latter will be reported once again. In total the desired output can be reported at most twice, which does not affect the
asymptotic time complexity. In the following sections as well, the output will be reported at most three times.
10The convex hull of s(v) and s(v/) isin general, a quadrilateral. It can be atriangle, which we consider as a degenerate quadrilateral.

5.3 Computing all force-closure grasps of planar semi-algebraic sets 69

(i) (i) (i)

Figure5.9: A set of red line segments s(v) (in dashed lines) intersecting (a, a’) (in solid lines).

When n'/?2 < m < n, we do the following. We first store O(n) blue arcs in a segment-arc
query structure in O(n**<) time. Each of the O(m?) queries takes O(logn + k) time, therefore,
the total time complexity for case (i) is O(n*™ + K). Then we store O(m) red pointsin a semi-
algebraic range search structure in O(mlogm) time. With each of the O(n) semi-algebraic sets,
we query the structure in O(m!/?*< + k) time. The tota time complexity for case (ii) is thus
O(nm!/*** + K). Finaly we report all blue semi-algebraic sets contained in red quadrilaterals
(case (iii)) asfollows. We store O(n) blue pointsin atriangle search structurein O(n?log n) time.
We triangulate all red quadrilaterals; each quadrilateral has two triangles. We query the structure
with each of the O(m?) trianglesin O(log® n + k) time. The total time complexity of case (iii) is
thus O (n? logn + m?log® n + K).

The following table shows the algorithms used in each case and their time complexities. The
number of queries and the data size are asymptotic.

Rangeof m | Name of the algorithm | (Query,Data) [Time complexity
m < n'/? brute-force manner (n,m?) O(nm?)
n/2 <m<n segment-arc query structure (m,n) O(n**e + K)
semi-algebraic range search structure (n,m) O(nm!**¢ 4+ K)
triangle search structure (n, m?) O(n*log®n + K)

Theorem 5.9 Given a planar semi-algebraic set with n boundary arcs and m concave vertices, all
K triples of two concave vertices and an arc that yield force-closure grasps with three frictional
point fingers can be enumerated in total time O(n?** + K'). More precisely the time complexities
are.

(i) O(nm?) whenm < n'/2, and

(i) O(n*** + K) whenn'/?2 < m < n.

5.3.3 One concave vertex and two arcs

We wish to report all triples of a concave vertex v and two arcs a and o’ that yield a force-closure
grasp with three frictional point fingers. A finger at v induces a line segment s(v), and two fingers
dliding on a and a’ independently induce a semi-algebraic set r(a, a’) on I'—see Section 5.1.3. As
a consequence of Lemma 5.1, a concave vertex and two arcs alow a force-closure grasp, if and
only if the red line segment s(v) intersects r(a, a’) in the interior on I'. Here we focus on the case
of red line segments and blue semi-algebraic sets. All sets of blue segments intersecting red semi-
algebraic sets can be reported similarly. A red line segment intersects a blue semi-algebraic set, if
and only if one of the following three holds: (i) the red and blue boundary line segments intersect
each other in the interior, or (ii) the red line segment intersects the blue arcsin the interior, or (iii)
the red midpoint isin the blue semi-algebraic set. See Figure 5.9.

There are O(n) blue arcs and endpoints from O(n) arc wrench sets, and O(n?) blue line seg-
ments and semi-algebraic sets from al pairs of arc wrench sets. There are aso O(m) red line

70 Computing All Force-Closure Grasps of Polygons and Planar Semi-Algebraic Sets

segments and midpoints. When m is small relative to n, more precisely, when m < n'/?, we use
brute-force algorithm, which takes O (nm) time.

When n'/? < m < n, we do the following. We first build a segment-segment query structure
on O(m) red line segments to report all red and blue intersections between line segments (case
(i)). The preprocessing time is O (m? log® m), and the query timeis O(log* m + k) for each of the
O(n?) blue query line segments. The total time complexity for case (i) is O(n?log* m + K). We
use the segment-arc intersection algorithm to report all intersecting pairs of ared line segment and
abluearc. Thisrunsin O(n*?*¢ 4 K) time. Finally we report all red segments contained in blue
semi-algebraic sets (case (iii)) as follows. We store O(m) red midpointsin a semi-algebraic range
search structure in O(mlogm) time, and query it with each of the O(n?) semi-algebraic sets in
O(m!/?*¢ + k) time. The time complexity of case (iii) is thus O(n?m'/?*¢ + K. The following
table shows the algorithms used in each case and their time complexities. The number of queries
and the data size are asymptotic.

Rangeof m | Name of the algorithm | (Query,Data) [Time complexity
m < n'/? brute-force approach (m,n) O(nm)
segment-segment query structure (n?,m) O(n?log*m + K)
n'/?2 <m <n | segment-arcintersection algorithm | (0,n +m) On*/**¢ + K)
semi-algebraic range search structure (n,m) O(n*m'*¢ 1 K)

Theorem 5.10 Given a planar semi-algebraic set with n boundary arcs and m concave vertices,
all K triplesof one concave vertex and two arcsthat yield force-closure graspswith threefrictional
point fingers can be enumerated in total time O(n?m!/?*< + K).

5.4 Conclusion

In this chapter, we proposed efficient output-sensitive algorithms to enumerate all combinations
of edges and concave vertices of polygons, and all combinations of arcs and concave vertices of
semi-algebraic setsthat yield force-closure grasps. We extended the methodsin Chapter 3 and and
4 to compute all force-closure grasps. We investigated the shapes of the wrench sets induced by a
finger, when there is friction between the part and the finger.

Note that two frictional fingers on two arcs, and three frictional fingers on three arcs of a semi-
algebraic set can achieve force closure. Reporting al K arc pairs that yield force-closure grasps
with two frictional fingers is equivalent to the problem of reporting all red and blue intersecting
pairs of arc wrench sets, which are semi-algebraic sets. Asfar aswe know, one of the most efficient
algorithms that we could use to solve this problem is the line sweeping agorithm by Basch et al.
[7]. The time complexity of this algorithm is O(\,42(n + K)log®n), where \,»(n + K) is
an amost linear function of n + K in our setting. More detailed information can be found in
Section 4.4. This algorithm, however, works well only when K is sufficiently small. It remains
open to find an efficient output-sensitive algorithm for computing all arc pairs with force-closure
grasps, where the K term is additive to the other termsinvolving n or m.

Chapter 6

Computing All Second-Order Immobility
Grasps of Polygons

Many planar objects can beimmobilized with three frictionless point fingers. Thischapter! isabout
constructing al second-order immobility grasps of polygons with two and three frictionless point
fingers. We call a configuration of frictionless point fingers that achieves second-order immobility
a second-order immobility grasp. Polygons except some with parallel edges can be immobilized
with three fingers—four are necessary to immobilize the exceptions.

Czyzowicz, Stojmenovic and Urrutia[33] showed that there exists at |east one second-order im-
mobility grasp for polygons without parallel edges. They also provided a necessary and sufficient
condition for three normal lines of a polygon to achieve second-order immobility. See Section 2.2.
We need at least three normal lines to immobilize a planar object, because the directions must
positively span the object plane.

A finger a a concave vertex induces at least two normal lines. Taking advantage of concave
vertices, we can reduce the number of fingers to achieve second-order immobility. In this chapter,
we propose output-sensitve algorithms to report all edge triples and all pairs of a concave vertex
and an edge that allow a second-order immobility with three and two point fingers, respectively.
We first introduce notations and CSU condition in Section 6.1. Then we propose efficient output-
sensitivealgorithm to enumerate all edgetriples (Section 6.2) and al pairs of an edge and aconcave
vertex (Section 6.3) that allow a second-order immobility grasp with three and two frictionless
point fingers respectively. We discuss extensions and related issues in Section 6.4.

6.1 Preliminaries

In this section, we introduce some notations and definitions. Let the edges of the simple polygon
P be oriented counter-clockwise around P, that is, P lies locally to the left of each edge. See
Figure 6.1 (a). We denote the line orthogonal to an edge e through the start and end point of e
by so(e) and s;(e), respectively. Let s(e) be the relatively open infinite slab bounded by sq(e)
and s;(e), that is, the union of all lines that are orthogonal to and intersect the interior of e (see
Figure 6.4). Let I(e) be the supporting line of e, and let H (e) be the open half plane bounded
by I(e) lying locally to the left of e, that is, locally containing P (see Figure 6.2). When the

1This chapter is based on “On computing al immobilizing grasps of a simple polygon with few contacts’ [23] by J.-S. Cheong, Herman
Haverkort and Frank van der Stappen in ISAAC (2003), and “On computing all immobilizing grasps of a simple polygon with few contacts’ [24]
by J.-S. Cheong, Herman Haverkort and Frank van der Stappen in Algorithmica (2006).

72 Computing All Second-Order Immobility Grasps of Polygons

> N\ Caile)

() (v . © 1 e
(e)

3 ? w

Figure 6.1: (a) Edges of P have directions, such that the interior of P lieson theleft. (b) H(e) isthe open half plane
bounded by [(e) locally containing P. (c) §(e) isthe union of al normal lines of theinterior of e.

Figure6.2: Theedgese, e/, e” in (a) are atriangular triple, while those in (b) are not.

intersection of H(e), H(e') and H(e") forms a (finite) triangle, then e, ¢/, and ¢” are said to be a
triangular triple. (Compare Figure 6.2 (a) and (b).)

To identify all edgetriplesthat allow second-order immobility grasps, we use the necessary and
sufficient condition provided by Czyzowicz, Stojmenovic and Urrutia [33]. We will restate the
CSU condition below again. The proof of thislemma can be found in Section 2.2.

Lemma 6.1 (Czyzowicz et al. [33]) Three frictionless point fingers on the interior of three edges
e, €, and " immobilize a polygon, if and only if the followings are true:

(i) s(e) N s(e’) N s(e”) # (O (common normal intersection condition),

(i) H(e) N H(e') N H(e") isatriangle (triangular triple condition).

6.2 Computing all second-order immobility grasps with three fingers

To find al edgetriplesthat allow second-order immobility grasps, we take asimilar approach asin
[82]. We find all the edge triples that have a common normal intersection; among these, triangular
triples will be filtered out. The sketch of the global approach is as follows. For each edge e of P,
we build adata structure. It will be queried with each of the remaining n — 1 edgese’, to report all
edges ¢” such that thetriple (e, ¢/, ¢”) satisfies the conditions of Lemma6.1.

From now on, we focus on building and searching the data structure for a fixed edge e. First
we show the necessary and sufficient condition for the common normal intersection condition. We
choose a coordinate system such that i(e) is the y-axis, oriented in upward direction. We divide
the remaining edges into two groups L(ower) and U (pper); when an edge forms an angle between
—7% and 7 with the positive z-axis, it isin L, otherwise it isin U (see Figure 6.3 (b) and (c)). We
omit all vertical edges, i.e. all edges paralel to e from L and U, since they could never make a
triangular triple with e and athird edge. For i € {0, 1}, we define [, and r; as the z-coordinates of

6.2 Computing all second-order immobility grasps with three fingers 73

N\
(a) e m \ \ é (©) x
A

_—~ 7
Lv U/

—_—

—— positive z axis

Figure 6.3: (a) A polygon with directed edges, oriented such that e is on the y-axis, pointing upward. (b) The edgesin
L,and(c)inU.

Figure 6.4: Notation for Lemma6.2.

the left and right intersection points of s;(e) and the slab boundaries of 5(¢). We define [}, rg, I}
and r{ for edge ¢” likewise—see Figure 6.4. The following is a necessary and sufficient condition
for three edges to have a non-empty common normal intersection region.

Lemma 6.2 Two slabs 5(e’) and 5(e”) have a common intersection with s(e) if and only if one of
the following is true:

() I <rog NI <y
() iy <ronly <ot

Proof: We will first prove that if one of the conditions (i) or (ii) is met, there is a common
intersection. After that we will provethat if neither of the conditionsis fulfilled, there cannot be a
common intersection.

The “if” direction: the two cases are identical except for ¢’ and e” switching roles, so without
loss of generality, we restrict ourselvesto thefirst case. Condition (i) impliesthat the line segments
107t and 7717 intersect (see Figure 6.4 for an example). Thefirst line segment lies completely inside
s(e) and 5(¢’); the second lies completely inside 5(e) and $(e”). Hence, their intersection liesin
all three dabs, which means that the intersection of s(e), $(e’) and $(e”) is not empty.

The“only-if” direction: suppose neither condition (i) nor condition (ii) istrue, i.e. thefollowing
istrue:

(2 v 2 i) A 2 ry v 1 >)

Because by definition, [, < r{ and [{j < r{, we cannot simultaneously have [, > r{ and [> 7.
Likewise, we cannot simultaneously have [} > ' and I{ > r}. It follows that the proposition
aboveis equivalent to:

(lo=rg Al 2)V (g 2 g ANl = 7%)

74 Computing All Second-Order Immobility Grasps of Polygons

/6” . y:a,/$+b/,

\i’:y:a’x—i-b’

Figure 6.5: Anillustration of Lemma6.3.

In other words, the left boundary of one slab of s(e’) and s(e”) liesto theright of the right boundary
of the other dlab, and the situation is the same both at the intersection with the lower boundary of
5(e), and at the intersection with the upper boundary of s(e). It follows that the intersections of
s(e") and §(e”) with s(e) aredigoint.

So if there is a common intersection, at least one of the conditions must be fulfilled, and if at
least one of the conditionsis fulfilled, there must be a common intersection. O

Now we move on to the condition equivalent to the triangular triple condition. Supposel(e’) is
thelinedefined by y = o’z + b, and [(¢”) isthelinedefined by y = "« + 1.

Lemma 6.3 H(e) N H(e') N H(e") isatriangleif and only if one of the following is true:
(i) d <d”" ANV <V NeeLne €U
(i) a" <ad NV <V NeeUNE" €L

Proof: Let I’ bethe intersection (0, ") of I(e) and [(e”); let 1" be the intersection (0, ') of I(e)
and [(¢'), and let I be the intersection (I, 1,) of I(¢') and I(¢”), where I, = (" — V) /(d’ — a”)
and I, = d'I, +V = a"I, + 1" (see Figure 6.2). Observethat H(e) N H(e') N H(e") isatriangle
ifandonlyif I € H(e), I’ € H(¢')and I"” € H(e").

We will first prove that if one of the conditions (i) or (ii) holds, H(e) N H(e') N H(e") isa
triangle, and then, that if the latter isatriangle, one of the conditions must be fulfilled.

The “if” direction: the two cases are identical except for ¢’ and e” switching roles, so without
loss of generality, we restrict ourselves to the first case. Condition (i) (as well as (ii)) implies that
I, < 0,501 € H(e). Furthermore, ¢’ € L meansthat H(¢') is the half plane above [(¢’); since
b < V', wehavethat I' = (0,0") liesabove ((e’), and thus, inside H (¢). Likewise, frome” € U
and b’ < b" itfollowsthat I” € H(e"). Hence, H(e) N H(e') N H(e") isatriangle.

The “only-if” direction: suppose H(e) N H(e') N H(e") isatriangle, then I = (/) Ni(e") €
H(e), thatis: I, = (V" —V')/(a’ — a”) < 0. Thisimpliesthat one of the following is true:

(1) d <d" ANV <V
(2 " <d ANV <V

In thefirst case, I’ = (0, ") liesabove I"” = (0, V'), so the triangle formed by the [(¢’), I(¢”), and
the y-axis i(e), is bounded by /(e’) from below and by i(e”) from above. From the fact that this
triangle lies inside H (¢’) and H(e"), it followsthat ¢’ € L and ¢’ € U, fulfilling condition (i)
of the Lemma. In the same manner, we can derive that the second case impliesthat ¢/ € U and
¢” € L, fulfilling condition (ii) of the Lemma. O

From Lemmas 6.1, 6.2 and 6.3 it follows that ¢, ¢’ and e” alow athree-point immobility grasp
if and only if one of the following conditionsis satisfied:

6.3 Computing all second-order immobility grasps with two fingers 75

Cone™ (1, 77,/)

V-

1
, ,
o Cone(r,, myy)

Figure 6.6: Anillustration of Lemma 6.5.

) <rinry>lNa" >d NV >V Ne e LA €U
() iy <rinrf>lNnd" <d NV <V N eUNe €L
(iii) Iy <r{ Ar{ > ANd" >d NV >V Nee LN €U
(V) I} <r{Ary>1lgNd" <d AN <V N eUNe" €L

Since the roles of ¢’ and ¢” are interchangeable, we only need to search for triples satisfying
condition (i) or (ii). We can do thiswith two four-dimensional orthogonal rangetrees[9] asfollows.
Inthefirst tree, store every edge ¢” € U asafour-dimensional point (1}, 7y, a”,b"). Query thistree
with every edge e’ € L for al pointsin (—oo, r}) x (I, 00) x (a’, 00) x (b, 00). In the second tree,
storeevery edgee” € L asafour-dimensiona point (17, r(,a”, b"). Query thistree with every edge
¢’ € U foral pointsin (—oo,) x (If,, 00) X (—00,a’) x (—o0,). Every edge ¢” reported forms
atriple with e and e’ such that three point fingerson e, ¢’ and ¢” will immobilize the polygon.

Now we analyze the time complexity of this algorithm. A four-dimensional orthogonal range
tree can be built in O(nlog® n) time using O(n log® n) space, and can be queried in O(log* n + k)
time (see Chapter 5.4 in [9]). Thiscan be improved to O(log® n + k) query time, with the same
building time, using fractional cascading (see Chapter 5.6 in [9]).

We query each tree with O(n) edges ¢/, for atotal building and query time of O(n log®n + k)
per tree, and we do thisfor every edge e, so that the complete search takes O (n?log® n + k) time.

Theorem 6.4 Given apolygonwithn edges, all K edgetriples (e, ¢, ¢”) such that the polygon can
be immobilized by three frictionless point fingers on the interiors of e, e’ and e”, can be computed
intime O(n?log®n + K).

6.3 Computing all second-order immobility grasps with two fingers

If we exploit concave vertices, two fingers can achieve second-order immobility for asimple poly-
gon: one at a concave vertex v and the other in the interior of an edge e. When a polygon has n
edges and m concave vertices, all such pairs can be reported in time O(mn) by simply checking
al vertex-edge pairs. Obviously we want amore efficient algorithm. We could adapt the algorithm
in Section 6.2 to report only triples of edges where two edges are in fact reduced to points that
coincide on a concave vertex. But this would cost even more than O(mn) time. Therefore we
develop a specialized algorithm based on Lemma 6.5, which we will introduce later. This lemma
is equivalent to the condition described in Lemma6.1.

First, we introduce some notations used in this section. Let ¢’ and ¢” be the edges incident to
v. Let n/ be the inward normal to ¢’, and let n!/ be the inward normal to ¢”. Let Cone(r,, 7)) be
{Nn. + N'nl/|IN, N > 0}, that is, the set of al positive linear combinations of 7, and 7. In the

76 Computing All Second-Order Immobility Grasps of Polygons

Cone™ (n,,,m)) (b) i
w S(e)
s0(e) ‘ S1 (e)

nv COHG nva 77'0

Figure 6.7: (a) Notations of normals of edges and concave vertices. (b) Vertex v isin the simplex S(e) of edgee.

(a)
Ao, "AL
| >

Figure 6.8: Anillustration of the observation of angles.

same way, let Cone™ (7., 7!) be the set of al positive linear combinations of —»/ and —n! (see
Figure 6.7(a)). For each edge ¢, let 7). be theinward normal to e, and let the open ssimplex S(e) be
s(e) N H(e) (see Figure 6.7 (b)).

Lemma 6.5 Placing two point fingers at a concave vertex v and on an edge e immobilizes a poly-
gon if and only if:

(i) n. € Cone (7., n.), and
(ii) p € S(e).

Proof: Let e’ and e” be the adjacent edges to v, shrunk onto the vertex v, so that s(e’) isthe
line orthogonal to e’ through v, and s(e”) isthe line orthogonal to e” through v. We will first show
that any three edges ¢, ¢’ and ¢” satisfying the above statement must satisfy Lemma 6.1. Since
p = s(e)Ns(e”) € S(e) C 3(e), we must have 5(e) N s(e’) N §(e”) # (). Furthermore, since
p € S(e) C H(e), theintersection H(e) N H(e") N H(e") # 0. Infact, H(e) N H(e) N H(e") isa
triangle, because . € Cone™ (., n"), i.e., thenormalsof e, ¢’ and ¢” span the plane positively.

Let us now show that any three edges ¢, ¢’ and e, such that ¢’ and ¢” are both adjacent to and
shrunk onto a common concave vertex v, and e, ¢’ and e” satisfy Lemma 6.1, must also satisfy
the two conditions above. The common normal intersection condition assuresthat p € s(e). The
triangular triple condition, that H(e) N H(e') N H(e") # 0, implies that the normals of the edges
span the plane positively, which provesthat . € Cone™ (1., n.)). O

For any edge e and any concave vertex v, let 6., ¢, and 0. be the angles that »., —n. and —n./,
respectively, make with the positivex -axis. Let 0! bethe smaller angleof ¢/ and 6, i.e. 6, < 6.
Observethat n, € Cone (7., n”) if and only if one of the following is true:

() 0" —0, <7 AO, € (0,07

(i) 0" — 0/ > 7 NO, € [—m,60.) U (0", 7].

For agiven edge e, we find all concave vertices that have a two-point immobilizing grasp with
e. For this, we store the concave vertices in a data structure that stores pairs of the form (7, p),

6.3 Computing all second-order immobility grasps with two fingers 77

where [, is aone-dimensional interval ({0 ,0”)) and v isapoint in the plane. Each vertex v with

v v

07 — 0. < misstored once, asapair ((¢,,0.), p). Each vertex v with 0! — 6/ > 7 is stored twice:
onceasapair ((—oo,#.),p) and onceas ({02, o), p). We query this data structure with each edge
e of P, toreport all vertices v stored asapair (I,,p) suchthat 6. € I, andp € S(e).

The data structure we use is atwo-level data structure. The top level is a segment tree [9] on
the intervals I,,. Let X be the set of all begin and end points of intervals I, to be stored in the
tree, in order of increasing value. A segment treeis abalanced binary tree on the intervals between
consecutive values from X': each leaf is associated with one such interval. Each internal node p is
associated with an interval I(p), which is the union of the intervals of its descendants. With each
node p, we associate a data structure 7 (p) that stores all pairs (1, v) such that I, contains I (p)
but not 7 (parent(p)). In our case, the data structures 7 (v) will be triangle search structures on the
points v in the pairs (7, v). Again, we use the triangle search structure by Matousek [52], using
O(m*®) spaceto store O(m) points, for acertain constant d. We will explain later how « is chosen,
but in any case, we will chooseitsuchthat 1 < o < 2.

Let us first analyse the time needed to construct the data structure. A simplex range searching
structure can be built in time O(m%1og® m), where m is the number of points stored, m? is the
amount of storage used for them, and § is any small positive constant [52]. A node v at depth i in
asegment tree storesintervals 7, that completely contain /(v), but not 7(parent(v)), which means
that all intervals I, stored in v must have an endpoint in 7 (brother(v)). Since the segment treeis
balanced, there are at most 2m /2" such intervals. Thus, at each depth i in the segment tree, we
have at most 2 nodes storing at most 2m /2¢ intervals each. The time needed to build the complete
tree thus becomes O (m log m) (for the segment tree itself) plus, for the associated triangle search
structures, O(Y 18" 2/0((m/21)? log? (m/27))). Since d > 1, the larger triangle search structures
dominate, making atotal construction time of O (m?log® m).

A query with an edge e for matching v in this multi-level data structure proceeds as follows.
We walk down the segment tree, finding all O(logm) nodes v (one at each depth) such that 7 (v)
contains .. Together, these nodes contain al pairs (/,, p) suchthat 7, containsé.. For each of these
nodes, we search the associated triangle search structure, and report the answers. The query time
in asimplex range searching structure on m pointswith m¢ storageis O (m(log® m?=') /v/mi+k).
Thetotal time for aquery in our data structure is therefore

[logm] 3 d—1
3 m log” (5)
=0 (5)

If d = 2, thisis O(log* m + k), otherwiseit is O(m(log® m)/vmd + k).

Since we perform n queries, the time for building and querying the data structure adds up
to O(m®log® m + nlog*m + K) (for d = 2) or O(m%log’ m + nm(log®m)/vmd + K) (for
1 <d<?2).

Let's now choose d. If m/log*?*m < \/n, we choose d = 2, and the algorithm runs in
O(nlog*m + K) time. Otherwise, we have \/n < m/ log®? m, so n2/3log? m < m*/3, and thus
(mn)*3log? m < m?. Furthermore we have n > m, so certainly n??log®m > m!/3, and thus
(mn)?/®log® m > m. Hence we can choose d suchthat 1 < d < 2 and m? = (mn)?3log® m, re-
sulting in atotal running time of O (m®log® m+nm(log® m)/vVmi+K) = O((mn)*/log*"* m+
K).

Theorem 6.6 Given a polygon with n edges and m concave vertices, all K pairsof an edge e and
a concave vertex v such that the polygon can be immobilized by two frictionless point fingerson e

78 Computing All Second-Order Immobility Grasps of Polygons

Figure 6.9: Second-order immability grasps with two frictionless point fingers on semi-algebraic sets.

and at v, can be computed in time O (nlog* m + (mn)*31log*™ m + K).

6.4 Conclusion

We proposed the first efficient output-sensitive algorithms to report all sets of edges and concave
vertices of a simple polygon that yield second-order immobility grasps. The algorithms solve
geometric problemsin the object plane, which are based on the CSU condition [33].

It isopen to efficiently compute all second-order immobility grasps of an arbitrary planar object.
Three frictionless point fingers can often immobilize a planar object, but when the object is non-
convex, two fingers can also immobilize it. We believe that two fingers can achieve second-order
immobility, if and only if the following hold: (i) the normal lines coincidein the opposite direction,
(i) thereisacircle centered at each contact with radius of an arbitrary small number ¢, such that the
intersection of the object and thiscircleis contained in the circle with the two contacts as diameter,
and (iii) the corresponding boundaries are concave. See Figure 6.9.

It isalso open to efficiently enumerate all second-order immobility grasps of athree-dimensional
object. Ponce et al. [61] identified a necessary and sufficient condition for four fingers to hold a
three-dimensional object in equilibrium. From this, one may find a necessary and sufficient condi-
tion for four fingers to hold a three-dimensional object in second-order immobility.

Chapter 7

Computing All Independent Form-Closure
Grasp Regions of Polygons

This chapter isabout efficiently reporting all independent form-closure grasp regions of a specified
size . Anindependent form-closure grasp region isaset of edge patches (of length £) and concave
vertices, such that the fingers at the vertices and anywhere in the edge patches achieve form clo-
sure. Independent form-closure grasp regions are convenient and realistic, because in practice, the
fingers cannot be positioned with infinite accuracy. Nguyen [58] studied independent grasp regions
for thefirst time. He showed how to construct maximal independent regions on a given set of faces
of a polygon and a polyhedron, such that any placement of two to seven frictional fingersin these
regions resultsin aform-closure grasp. Most form-closure grasps tolerate small misposition of the
point fingers, but the permitted amount of positioning error differs from finger to finger, and it can
be extremely small. The independent form-closure grasp regionsreported in this chapter guarantee
form closure with a positioning error of ¢/2.

In this chapter, we propose output-sensitive algorithms to report all combinations of concave
vertices and edge patches that form independent form-closure grasp regions. The edge patches
have a specified length ¢, and each set yields a form-closure grasp with at most four frictionless
point fingers. We study this problem for a polygon and a rectilinear polygon. For both polygons
and rectilinear polygons, the combinations include: (i) edge patch quadruples, (ii) triples of one
concave vertex and two edge patches, and (iii) triples of two concave vertices and one edge patch.

This chapter is structured as follows. In Section 7.1, we describe our approach, the shapes of
the wrench sets and the intersection algorithms that we use. In Section 7.2, we propose efficient
and output-sensitive algorithms to report all combinations of edge patches and concave vertices of
a polygon that form independent form-closure grasp regions with three or four frictionless point
fingers. When apolygonisrectilinear, we can compute all independent form-closure grasp regions
more efficiently. Section 7.3 presents how we do this efficiently in an output-sensitive manner.

7.1 Preliminaries

We predivide the edges into segment pieces of a given length . (See Figure 7.1.) We call these
segments edge patches. Note that a concave vertex does not have any patch, because positioning
errorsat concave verticesarelesslikely. We sketch our approach and introduce a projection scheme
in Section 7.1.1. When a finger slides along an edge, or a finger is placed at a concave vertex,
the corresponding wrench points form some shapes in wrench space. These will be described in
Section 7.1.2. Finally, the data structures and algorithms to identify all independent regions will

80 Computing All Independent Form-Closure Grasp Regions of Polygons

e e >

P

€3
(&
€1 z 9

€

9

Figure 7.1: The edges are divided into segments of length ¢.

® & N (b) / N
77(6)[<)

s A——

Figure 7.2: (a) The edge wrench patch induced by afinger on an edge patch, and its projection. (b) A concave vertex
wrench set, and (c) its projection.

be introduced in Section 7.1.3.

7.1.1 Our approach

We base our approach on the ideas from Chapter 3. Remember that a combination of concave
vertices and edges yields a form-closure grasp with at most four fingers if and only if they have
four wrench points whose convex hull contains the origin in the interior (Theorem 2.1). For an
independent form-closure grasp region, it will be modified as follows. a combination of concave
vertices and edge patches form an independent form-closure grasp region with at most four fingers
if and only if the convex hull of any combination of points from an edge wrench patch and the
vertex wrench sets contains the origin strictly in itsinterior. To identify such wrench patches, we
project them on screen I', and identify al red and blue wrench patches, such that they make a
red and blue intersection for any point from each edge wrench patch (Lemma 2.7). We use the
projection scheme and screen I" defined in Section 2.4.1. We say that the convex hull of red sets
cross the convex hull of blue sets, when the convex hull of red points from every red set intersects
that of blue points from every blue set in the interior, no matter which point is chosen from each
Set.

7.1.2 Edge wrench patches and vertex wrench sets

The shapes of edge wrench patches and vertex wrench sets are as described in 3.1.1 of Chapter 3.
The wrench of a finger at position p on an edge patch e is (n, 7)" = (n.,n,,p x n)*. See Sec-
tion 3.1.1. We assume that n is a unit vector. Then the set of wrench points induced by a finger
dliding along e forms a vertical line segment é in wrench space. We call this edge wrench set é of
an edge patch e the edge wrench patch of e. The projection of ¢ isaso avertical line segment 7 (é)
on I'—see Figure 7.2 (a). Abusing the notation slightly, we call 7(¢é) the edge wrench patch of e as
well. We do not include the endpoints in the edge wrench patch for simplicity, although they are
included if the endpoints of the edge patch lie in the interior of an edge.

7.2 Computing all independent form-closure grasp regions of a polygon 81

A finger at a vertex induces a set of wrench points, which form aline segmenton I'. Figure 7.2
(b) and (c) show a vertex wrench set in wrench space, and its projection on I'. We let s(v) denote
the projected vertex wrench set of v, and call it the vertex wrench set of v as well.

7.1.3 Intersection search algorithms

In this chapter we need to perform two kinds of queries to report all red and blue intersections.
To answer these queries, we use the following two: a segment intersection search structure and an
extended triangle search structure.

The segment intersection search structure is explained in Section 2.4.2. We can have trade-off
between time and space for this structure as explained in Section 6.3 of Chapter 6. The extended
triangle search structure can report al £ line segments contained in a query triangle. Thisis an
order-6 tree as described in Section 2.4.2. It stores ¢ segmentsin O(¢? log® ¢), and the query time
isO(log® q + k).

7.2 Computing all independent form-closure grasp regions of a polygon

This section is about reporting al independent form-closure grasp regions of a polygon. More
precisely, we propose output-sensitive algorithms to enumerate all sets of: (i) four edge patches,
(if) one concave vertex and two edge patches, and (iii) two concave vertices and one edge patch,
such that four or threefrictionless point fingers on these setsyield aform-closure grasp. The case of
al pairs of concave verticesis not included, because vertices do not have patches, thus they cannot
be an independent form-closure grasp region. All pairs of concave vertices with form-closure
grasps can be reported with the algorithm proposed in Section 3.3.3. Throughout this chapter, we
let n be the number of edge patches and m be the number of concave vertices of apolygon P. We
alsolet p < ¢ to denote therelationship of apoint p and aline ¢ where p ison or below ¢. Likewise,
we let p > ¢ denote the relationship of p and ¢ where p ison or above /.

7.2.1 Four edge patches

We wish to report all edge patch quadruples that form independent form-closure grasp regions. An
edge patch quadruple forms an independent form-closure grasp region, if and only if the corre-
sponding red and blue trapezoids cross each other—see Section 7.1.1. Fingers on edges e; and es,
they induce two wrench points w; and w,. When the fingers dslide along e; and e, these points
wy; and w, slideaong é; and é,. The set of line segments connecting w; and wy, for any w, € é;
and wy € é, equals the convex hull of ¢, and é,. The projection of these line segments equal s the
convex hull of 7(é;) and w(é;). Since w(é;) and 7(é;) are vertical line segments, the convex hull
of m(é;) and 7(é,) isatrapezoid. The problem isthusformulated asfollows: given all red and blue
trapezoids, report all pairs of red and blue trapezoids that cross each other on I". Two trapezoids
cross each other, when they intersect each other, and the vertical sides of the trapezoids are digoint
with the intersection. See Figure 7.3.

Letr,rq and ! r/, bethered vertical segments,* and b,b, and b., b/, be the blue vertical segments
onI. Letr,, r,, b, and b, be the upper endpoints, and r,4, 7/, by and b, be the lower endpoints
of the segments. The convex hulls of r,r, and r, 1/, and b, b; and b.,b!, are red and blue trapezoids
respectively. We assume that r,r, is on the left side of the line containing 7, and b,.b, is on the
left side of the line containing b/,0/,. Suppose that red trapezoid r,rqr)r,, crosses blue trapezoid

INote that the vertical segments are projected edge wrench patches.

82 Computing All Independent Form-Closure Grasp Regions of Polygons

by,
(a) If , b o,
N0 ' <
T AN d T'd 2T, r

e~

\\‘Ib; by 7
A v bg

r

a~

Figure 7.3: The cases of red and blue trapezoids that cross each other.

b,babb,,. Note that the endpoints r.,, 77, b., b, 74, 75, bg and b, are not included in the edge
wrench patches, since a finger cannot be at a vertex. Hence these endpoints are allowed to be on
the boundary line segments r,r/,, rqr/;, b,b, and bsb),. We let ¢(x, ") be the supporting line of the

line segment z, /. The following lemma is a necessary and sufficient condition for r, .7/, to
cross b, bab,, bl Figure 7.3 illustrates Lemma 7.1.

Lemma 7.1 Two trapezoids r, 4., and b,bab,b), cross each other, if and only if one of the fol-
lowing holds:

(i) ru 2 L(bgbly), rly = L(b,D.,), by = L(r,r.,), and b, < ((rqr));
(i1) rq = €(b,b.,), v, 2 L(bgbl)), by =< L(rgr’y), and bl = L(rqr)).

We use a segment intersection search structure to identify all red and blue trapezoids that
satisfy Lemma 7.1. To identify pairs that satisfy the first condition of Lemma 7.1, we store
(7, Ty L(ryrl,) *, (rarhy)*) of all red trapezoids at each level of a segment intersection search struc-
ture, and query with £(b,b/,), £(b,b.,), b} and b/* of a blue trapezoid, for each level of the structure.
Note that ¢(r,r!)* and {(rqr’,)* are the dual points of segments ¢(r,r,) and ¢(rqr’;) respectively.
Likewise, b and b’ are the dual lines of points b, and b, respectively. See Section 2.4.2. Those
that satisfy the second condition of Lemma 7.1 can be found similarly.

Thereare O(n?) red and blue trapezoids, so we will use the segment search structure with trade-
off. We use O(n®/?) storage, then the preprocessing timeis O (n®? log® n), where § isan arbitrarily
small number. The query timeis O(n?/?10g®™ n + k)—to report k segmentsintersecting each of
O(n?) query segments. The following theorem summarizes the result.

Theorem 7.2 Given a polygon with n edge patches, all K edge patch quadruples that form an
independent form-closure grasp region for four frictionless point fingers can be computed in time
O(n®310g°Y n + K).

7.2.2 One concave vertex and two edge patches

We wish to report all triples of one concave vertex and two edge patches that form independent
form-closure grasp regions for three frictionless point fingers. Note that two fingers on two edges
induce aline segment on I', the endpoints of which are from two vertical segments (two projected
edge wrench patches). A set of two edge patches and a concave vertex forms an independent
form-closure grasp region if and only if the corresponding red (blue) line segment cross blue (red)
trapezoid, i.e. if and only if any blue (red) segment connecting two points from the two vertical
sides intersects the red (blue) segment in the interior. A line segment crosses a trapezoid, if they
have non-empty intersection, and the vertical sides of the trapezoid and the endpoints of the line
segment are digoint with the intersection. Our problem is thus to report all red and blue line
segment and trapezoid that cross each other.

7.2 Computing all independent form-closure grasp regions of a polygon 83

(a) b T (b) bo- 97
- Tél Tu / r
b/

&L~ g

y
Td T'd

Figure 7.4: The cases of a blue line segment crossing a red trapezoid.

Without loss of generality, we take a blue line segment b’ and a red trapezoid r,,rqr/;r’,. Asin
the previous section, b is the left endpoint and 0’ is the right endpoint. Also r,, r4, r;, and r/, are
defined asin the previous section. The following lemmais a necessary and sufficient condition for
bb' crossing r,rqr’;r’,. Figure 7.3 illustrates Lemma 7.3.

Lemma 7.3 A blue line segment b/ crosses a red trapezoid ruraryr,, if and only if one of the
following holds:

(i) b= L(ryr)), b = L(rarl), ry, 2 L(BY'), and r!, = £(bb');
(i) b < l(rqry), b = L(ryr)), rq = £(bV'), and r!, < £(DY).

We use a segment intersection search structure to identify the red and blue line segment and
trapezoid that satisfy the two conditions in Lemma 7.3. To identify all pairs that satisfy the first
condition of Lemma 7.3, we store b, v', ¢(bb')* and ¢(bb')* of all blue line segments at each level
of a segment intersection search structure,? and query with the half planes bounded by ¢(r,r’,),
U(rgrt), ri and 7y of ared trapezoid, for each level of the structure.

Thereare O(n?) red and blue trapezoids, and O(m) blue and red line segments. We store O(m)
line segments in a segment search structure. The preprocessing time is O(m?log? m), and the
query time is O(log* m + k)—to report k segments intersecting each of O(n?) query trapezoids.
The following theorem summarizes the result.

Theorem 7.4 Given a polygon with m concave vertices and n edge patches, all K combinations
of one concave vertex and two edge patches that form an independent form-closure grasp region
for three frictionless point fingers can be computed in time O (n?log* m + K).

7.2.3 Two concave vertices and one edge patch

We wish to report al triples of two concave vertices v and v" and one edge patch e that form
independent form-closure grasp regionsfor three frictionless point fingers. A set (v, v’, e) formsan
independent form-closure grasp region, if and only if the corresponding red or blue quadrilateral
induced by v and v’ contains the blue or red line segment induced by e. The reason is that two
fingers at v and v always induce the points in the convex hull of the two wrench line segments
s(v) and s(v'). If the convex hull of s(v) and s(v’) contains the whole edge wrench patch, no
matter where a finger is placed on e, the corresponding wrench point will be contained in the
quadrilateral, thusresult in ared and blue intersection. Thisisillustrated in Figure 7.3.

Our problem is thus to report al red (blue) quadrilaterals containing blue (red) line segments
(edge wrench patches). We can use two solutions, depending on the relative size of m compared
to n. When m < /n, we check all triples of two concave vertices and one edge patch. It takes
O(m?n) time,

2Recall that a segment intersection search structure has four levels.

84 Computing All Independent Form-Closure Grasp Regions of Polygons

@ y sw)) [4 o

s(v1) s(v1)

Figure 7.5: A red quadrilateral contains a blue vertical line segment.

When m > /n, we do the following. Without loss of generality, we take a red quadrilat-
era r,rqrlyr!, and ablue vertical line segment bb'. There are O(m?) red quadrilaterals and O(n)
blue (vertical) line segments. On O(n) blue segments, we build a two-level triangle search struc-
ture, which is an order 6 tree. We store (b, b,b,0', b, ') at each level. The preprocessing time
is O(n?log® n)—see Section 3.1.2. A quadrilateral can be decomposed into two digjoint trian-
gles A1 and A,, by cutting along a diagonal. The endpoints b and b’ can be in Ay, or in A,,
or onein A, and another in A,. Let 01, 05 and o3 be the half planes, such that each of them is
bounded by the supporting line of each boundary segment of A, and that A lies in the half
planes. We dso let 04, 05 and o4 be the half planes, such that each of them is bounded by
the supporting line of each boundary segment of A5, and that A\, lies in the half planes. For
each of O(m?) query quadrilaterals, we perform the following four queries: (o1, 0, 03, 01, 09, 73),
(047 05,06,04, 05, 06)’ (017 02,03,04, 05, 06)’ and (047 05,06,01,02, 03)' Each query can be per-
formedin O(log® n+k) timeto report & blue segments. We can build the structure on red segments,
and query with blue triangles, in the same way, with the same time bound. The following theorem
summarizes the result.

Theorem 7.5 Given a polygon with m concave vertices and n edge patches, all X combinations
of two concave vertices and one edge patch that form an independent form-closure grasp region
for three frictionless point fingers can be computed in time:

1. O(m?*n) timewhen m < y/n, and

2. O(n?log*n +m?log®n + K) = O(n?log® n + K) timewhenm > /n.

7.3 Computing all independent form-closure grasp regions of a rectilinear
polygon

This section is about reporting all independent form-closure grasp regions of arectilinear polygon.
More precisely, we propose output-sensitive algorithms to enumerate all sets of: (i) four edge
patches, (ii) one concave vertex and two edge patches, and (iii) two concave vertices and one edge
patch, such that four or three frictionless point fingers on these sets yield a form-closure grasp.

As mentioned in Section 7.1, the edges are divided into edge patches of length . We use the
same projection scheme, screen and notations described in Section 3.3. We divide the edge patches
and concave vertices into four families asin Section 3.3. The families of edge paiches are F, IV,
W and S, and those of concave verticesare EN, W N, ES and W S. Note that » isthe number of
edge patches and m isthe number of concave vertices of arectilinear polygon P.

We use the projection scheme described in Section 2.4.1, and the screen described in Sec-
tion 3.3. The problem of reporting all independent form-closure grasp regionsiseasier for rectilin-
ear polygonsthan for arbitrary polygons, because the edge wrench patches and the vertex wrench
sets are more regularly positioned. More precisely, the edge wrench patches on I lie on three

7.3 Computing all independent form-closure grasp regions of a rectilinear polygon 85

Iy b, b Fl r i T
Ty u ¢
@ yo O NCIE |
rq bq Tdi)
’ / Twi
b Ty , b, uL
u u . :
ba a rq b rda T
(0,1) (1,0) (0,1) (1,0)

Figure 7.6: (a) (b) Anillustration of Lemma7.6. (c) Anillustration of the algorithm.

lines: (1,0), (0,1) and (—1,0).2 See Section 3.3 for more details. When we say that two trape-
zoids (or atrapezoid and a line segment) cross each other, it means that they intersect each other,
and the vertical sides of the trapezoid and the endpoints of the line segment are digoint with the
intersection.

7.3.1 Four edge patches

Four edge patches form an independent form-closure grasp region, if and only if the corresponding
red and blue trapezoids cross each other. The following lemma states a necessary and sufficient
condition.

Lemma 7.6 Two trapezoids r, 4.1, and bbb/ b, cross each other, if and only if one of the fol-
lowing two holds:

(i) r7q > b, and r!, < b;
(ii) ry < bgand 7!, > b,.

Proof: It is straightforward to see the “if” direction, so we show the “only if” direction. Since
rurar,ry and b,bybl bl cross each other, any blue segment bb’ intersects any red line segment 77/
in the interior. Because bb' intersects r7 in the interior, b’ and r’ must satisfy either (1) » > b
and " < V,or(2)r < bandr > b. Notethat by < b < b,, b, <V <V, rs <r <r,and
ri, < r' <. Combining these with the two conditions (1) and (2) gives condition (i) and (ii)
stated in the lemma. O

We use an approach similar to that in Section 3.3. We have O(n) red and blue edge wrench
patches. We build sorted lists of b, by, V), and ¥, in O(nlogn) time. We also sort r,, and 4
from top to bottom, then r;, and r/, from bottom to top. See Figure 7.6. Here we show how to
report al quadrilaterals that satisfy the first condition in Lemma 7.1. Let 74,742, , 74, and
Th1sThay o Ty DE the sorted lists of r,'s and 7,’s. We take r4;, and identify al blue 7(¢é) such
that r, > b, in O(logn + k) time, and put them in set A. We take r/,,, and identify all blue 7 (¢é)
such that r!, < b}, in O(logn + k) time, and put them in set A’. We report the Cartesian product
A x A'. For agiven 4 we repeat this process for each of 7/, (i = 1,2,---,b). When we go
fromr;, tor), .., we do not have to perform a binary search in the lists; we check the neighbors
in the list until we find one that satisfies the condition. We repeat the whole process for each of
rg (i = 1,2,---,b). There are O(n) choices for r4;, and for each of them, the query time takes
O(logn + k), thus the total time complexity isO(nlogn + K).

3Thelines (1,0), (0,1) and (—1,0) areinfact (1,0, 7), (0, 1,7) and (—1,0,) lines, which lie on I" from the construction of T".

86 Computing All Independent Form-Closure Grasp Regions of Polygons

Iy b; Iy ,

(a) " b, (b) bub '
. bq ng
ba : " Va
(0,1) (1,0) (0,1) (1,0)

Figure 7.7: Anillustration of Lemma7.8.

Theorem 7.7 All K edge patch quadruples of a rectilinear polygon that form independent form-
closure grasp regions with four frictionless point fingers can be enumerated in O(nlogn + K)
time.

7.3.2 One concave vertex and two edge patches

Two edge patches and one concave vertex form an independent form-closure grasp region with
three frictionless point fingers, if and only if the red (blue) trapezoid crosses the blue (red) line
segment. The following lemma states a necessary and sufficient condition for ared line segment
to cross a blue trapezoid. Lemma 7.8 can be easily changed to check whether a blue line segment
crosses ared trapezoid. The proof for Lemma 7.6 can be easily modified to prove Lemma 7.8, so
we omit the proof.

Lemma 7.8 A red line segment 7/ intersects a blue trapezoid b,,b.,b/,b, in the interior indepen-
dently, if and only if one of the following two holds:

(i) > b, and " < bl;
(i) r < bgandr’' > b.,.

We use the same approach used in the previous section 7.3.1. One difference is that the query
isared line segment instead of atrapezoid. There are O(n) blue edge wrench patches, and O(m)
red query line segments, so the time complexity for this case is O(nlogn + mlogn + K) =
O(nlogn + K).

Theorem 7.9 All K triples of one concave vertex and two edge patches of a rectilinear polygon
that form independent form-closure grasp regions with three frictionless point fingers can be enu-
merated in O(nlogn + K) time.

7.3.3 Two concave vertices and one edge patch

We wish to report all triples of two concave vertices and an edge patch of a rectilinear polygon
that form an independent form-closure grasp region with three frictionless point fingers. Such a
triple of two concave vertices and an edge patch belongs to one of the two cases. when the two
concave vertices induce three different normal directions, and when they induce four different
normal directions. See Section 3.3.4.

Wefirst ook at the first case when the verticesinduce three different normal directions. We take
the convex hulls of red points and blue points, which form red and blue triangles. Note that the
triangle pairs that we will consider have both of the vertical sides on one of the threelines: (0, 1),
(1,0) or (0, —1)—see Section 3.3.4. If the projected red and blue triangles cross each other, the

7.3 Computing all independent form-closure grasp regions of a rectilinear polygon 87

Fl F1 ,
(a) ™ y (b) b "
Td bd
bu T., Tu b/
ba rd
(0,1) (1,0) (0,1) (1,0)

Figure 7.8: Anillustration of Lemma7.100onT";.

triple forms an independent form-closure grasp region. The following lemma provides a necessary
and sufficient condition for a pair of red and blue triangles to cross each other. The proof for
Lemma 7.6 can be easily modified to prove Lemma 7.10, so we omit the proof.

Lemma 7.10 A bluetriangle bl b, crossesared triangle !/, if and only if one of the following
two holds:

@) b, <rgandd’ >1’;
(i) bg > r,andd’ < r'.

Here we describe how we report all pairs of red and blue triangles that satisfy Lemma 7.10.
There are O(n) edge wrench patches and O(m) concave vertex wrench sets. Without loss of
generality, assume that the edge wrench patches are blue. Then there are O(nm) blue trianglesand
O(m?) red triangles. We build binary search trees on the upper and lower endpoints (b,, and b,) of
the blue edge wrench patchesin O(n logn) time. We take all O(m?) vertex wrench set pairs with
three red endpointsr,,, r4 and ' (r, and r, on (0, 1) lineand 4, < r,) and oneblue point 4" on (1, 0)
line. For each of these O(m?) vertex wrench set pairs, we find the following: (i) if &’ > +/, find all
blue edge wrench patches b, b4, such that b, < r,, (ii) if o <+, find al blue edge wrench patches
byuba, such that b, > r,. All k such blue edge wrench patches can be reported in O (log n + k) time.
Therefore the total time complexity of thiscaseis O(nlogn + m?logn + K). Thisapproach can
easily be modified to search for the pairs of red and blue triangles, whose vertical sides are on the
right. It has the same time complexity—O(n logn + m?logn + K).

Now we |ook at the second case when the verticesinduce four different normal directions. With-
out loss of generality, we take atriple of two concave vertices and an edge patch (ven, vws, en).
The projections of the edge wrench patch and the vertex wrench sets on I'; will be as follows. A
blue endpoint b of 7(vxy), the blue segment b,b; (by < b,) of 7(éy) and ared endpoint r of
7(0ws) areontheline (0, 1). The other blue endpoint b’ of 7 (vxy) and the other red endpoint »’ of
m(ows) areontheline (1,0). If the projected red segment and blue triangle cross each other, the
triple forms an independent form-closure grasp region. The following lemma provides a necessary
and sufficient condition for a pair of red segment and bluetriangleto cross each other. Lemma7.11
can easily be modified to report all blue segment and red triangle that cross each other. Figure 7.9
illustrates Lemma 7.11. The proof for Lemma 7.6 can be easily modified to prove Lemma7.11, so
we omit the proof.

Lemma 7.11 A red segment rr’ crosses the convex hull of bb" and b,b,, if and only if one of the
following two holds:

() b<rand?d >r"andb, < r;

(i) b>rand b <" and by > r.

88 Computing All Independent Form-Closure Grasp Regions of Polygons

Fl Fl
r by r’
(a‘) bl (b) b
ba / . b
b
(0,1) (1,0) (0,1) (1,0)

Figure 7.9: Anillustration of Lemma7.11.

We describe how we report all pairs of red segment and blue triangle that satisfy Lemma 7.11.
Note that there are O(n) blue vertical segments b,,b; and O(m) red and blue segments. We build a
two-level orthogonal search tree on the endpoints of blue segments (projected vertex wrench sets)
in O(mlogm) time. We also build binary search trees on the upper endpoints (b,,) and the lower
endpoints (b,) of al blue (projected) edge wrench patches in O(n logn) time. For each segment
rr’ of al O(m) projected vertex wrench sets, we find the following: (i) find al &, blue segments
bt', suchthat b < rand v’ > ¢/, and find al %, blue vertical segments b, by, such that b, < r; (ii)
find al &, blue segments bb’, such that b > r and &’ < »/, and find all &, blue vertical segments
b,bg, such that b; > r. All reported k&, pairs of b,b; and b’ satisfy Lemma 7.11, and they can
be reported in O(log” m + log n + kik;) time. Therefore the total time complexity of this caseis
O(nlogn + m(log>m +logn) + K) = O(nlog*n + K).

The following summarizes the result.

Theorem 7.12 All K triples of two concave vertices and an edge patch of a rectilinear polygon
that form independent form-closure grasp regions with three frictionless point fingers can be enu-
merated in O(nlog®n 4+ m?logn + K) time,

7.4 Conclusion

In this chapter, we proposed efficient output-sensitive algorithms to report all combinations of
edge patches and concave vertices that form independent form-closure grasp regions for at most
four frictionless point fingers, involving prespecified edge patches. By projecting the wrench sets,
this becomes red and blue intersection search problem on planes. In particular, the problem for
rectilinear polygons boils down to orthogonal range search problems.

When the edge patches are not given beforehand, one may need to know all combinations of
edge patches and concave vertices, which contain at least one independent form-closure grasp
region. Efficiently reporting such combinationsis open.

The approach presented in this chapter can be extended to any planar object, as long as there
are efficient algorithms or query data structuresthat can report all wrench sets contained in agiven
half-plane. A first challenge would be to compute all independent form-closure grasp regions of
a planar semi-algebraic sets. To achieve this, we need an algorithm or a data structure that can
efficiently report al arcs contained in a given half-plane.

Chapter 8

Computing All Form-Closure Grasps of a
Rectilinear Polyhedron

Many researchers provided ways of computing one form-closure grasp or many form-closure
grasps of three-dimensional objects [13, 35, 39, 53, 54, 56, 58, 85, 88, 90]. But, thereis no al-
gorithm to enumerate all form-closure grasps of a three-dimensiona object efficiently, as in the
case of fixturing a two-dimensional object. Thisis not surprising, because the problem itself is
more complicated than the two-dimensional fixturing problem; it has high dimensionality—a di-
rected line in a three-dimensional space has six degrees of freedom instead of three.

In this chapter, we propose algorithms to compute all form-closure grasps with at most seven
frictionless point fingers for a rectilinear polyhedron, which is the first attempt to compute all
grasps for a three-dimensional object. We use a form-closure condition in wrench space, which is
similar to Theorem 2.1 for two-dimensional objects. Asamatter of fact, thereisno easier, intuitive
or graphical form-closure condition expressed in terms of the geometry of the normal lines in
the three-dimensional object space, as far as we know. For this reason, we use the form-closure
condition in wrench space. In thischapter, we propose aform-closure condition which iscomposed
of two conditions on three-dimensional vectors. Intuitively, this comes from the following view
of fixturing: a three-dimensional object can be immobilized (fixtured) by holding it such that it
cannot move horizontally, and again holding it such that it cannot move vertically. One can see it
as squeezing the object vertically (along z direction), and putting the object in form-closure with
respect to the horizontal plane (parallel to the zy plane)—achieving two-dimensional form-closure
on the projection of the object onto the xy plane. A rectilinear polyhedron is an obvious example
where we can apply the horizontal and vertical immobilization in a straightforward way.

This chapter is structured as follows. We first introduce form-closure conditions in wrench
space and also in two subspaces of wrench space in Section 8.1. We also present notations and
detailed information required by the algorithm such as the shapes of wrenches, projection schemes
and the intersection algorithms that we use. In Section 8.2, we propose agorithms to report all
combinations of faces, concave edges and concave vertices of arectilinear polyhedron that allow
form-closure grasps with at most seven frictionless point fingers. All algorithms except for one
case presented in this chapter are sensitive to K’ and K, where K’ and K are the sizes of the
intermediate output and the final output. The algorithm for the exceptional case is sensitiveto K’
only.

90 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

Figure 8.1: (a) Families of faces £/, W, N, S, U and D. (b) The concave edges are in thick line segments, and a big
dot represents a concave vertex, which isfrom W N D here.

8.1 Preliminaries

Here weintroduce the notations, conditions, and other information that we need in this chapter. We
divide the faces, concave edges and concave vertices into some families according to their normal

directions. In Section 8.1.1, we introduce these families. We also define the wrench sets of faces,
concave edges and concave vertices, and their h and v components. In Section 8.1.2, we present
two form-closure conditions. one in six-dimensional wrench space, and the other in two subspaces
of wrench space. One can check whether a given set of faces, concave edges and concave vertices
achieve form-closure by solving two three-dimensional problems. If we project three-dimensional

vectors on a plane, the three-dimensional subproblems turn out to be two-dimensional intersection
problems, as described in the previous chapters, e.g. Chapter 3. The projection schemeis presented
in this section as well. In Section 8.1.3, we discuss the algorithms to tackle intersection search
problems.

8.1.1 Families of faces, concave edges and concave vertices

Let P bearectilinear polyhedron with n faces. We triangulate the faces of P, and each triangle of
the O(n) triangulated faces will be considered as aface. We place P in an zyz coordinate system,
such that the origin lies in the interior of P. In Section 3.3, we divided the faces of a rectilinear
polygon into four families according to the normal directions, namely, £, W, N and S. For a
rectilinear polyhedron, we divide the faces into six families according to the normal directions,
namely, £, W, N, S, U and D. Thefacesfrom £, W, N and S are vertical (i.e. perpendicular to
the xy plane), and those from U and D are horizontal (i.e. parallel to the xy plane). For simplicity,
we normalize the normal direction vector n of faces—n has a unit length.

According to which faces a concave edge is adjacent to, the concave edges are divided into
twelve families, namely, EN, ES, WN, WS, EU, WU, NU, SU, ED, WD, ND and SD.
If a concave edge is adjacent to two faces from £ and N, it belongs to family £N. Figure 8.1
shows concave edges from ND, WD and W N. Likewise, the concave vertices belong to one of
the following eight families, according to which faces they are adjacent to: ENU, ESU, WNU,
WSU, END, ESD, WND and WSD. If aconcave vertex is adjacent to three faces from W, N
and D, it belongsto family W N D. Figure 8.1 shows a concave vertex from W N D.

When afinger pushes an object on aface, force is applied along the inward normal line, which
we call line of force. This force makes the object translate and/or rotate, depending on where the
line of forceis. A line of force plays akey role to describe the instantaneous motion that the force
causes. A wrench is a six-dimensional description of a directed line in three-dimensional space,
and itisdefined as (1, p x 1), where) isadirection vector, and p is the position vector of a point

8.1 Preliminaries 91

7 N
0,177 & jon” v $
(a) Wl (b)
s] | oy =75
1 ey S L, o
l E,' 1 IN % == v
N , 1l
. j R . R - D
: E f{} and fg 5
(1v077z)T

Figure8.2: (a) f"’sand (b) f*’sfrom each family, when the position vectors have positive numbers only.

on the line. The magnitude of a wrench (n,p x n)” represents the magnitude of force. As one
can see, adirected line has a set of wrench vectors.® We normalize the direction vector 7, i.e. the
directed line can be represented as a unique wrench point in this chapter. However, to satisfy the
form closure condition, only the direction of the wrench matters, not the magnitude.?

We place a finger at position p = (p., p,,p.)” on aface, with the inward normal direction 7.
The inward normal line can be represented as awrench point (1, p X 1) = (9, My, M2, Tay Ty, T2) -

Let f be the set of wrench points of a finger when it moves in the interior of a face f. More
precisaly,
f=Am.n)"y={pxn)" |peint(f)},

where mt(f) denotes the set of interior points of f. We call f the face wrench set of f. Let fE

fw fns fsy fus fo bethewrench setsof afinger on facesfrom £, W, N, S, U and D respectively.
When a finger moves on faces from £ and W, only p,. isfixed. Similarly, when afinger moveson
facesfrom N and S, only p, isfixed, and on those from U and D, only p. isfixed. Throughout this

chapter, let (pie, Dyes Pze)” s (Paws Pyws Pow) ™ s (Dans Dyns Pon) '+ (Dass Pyss Pas) ™+ (Daus Pyus P2u)” @M
(pxd,pyd,pzd)T be the position of an interior point of faces fr € E, fw € W, fx € N, fs € S,

fuv e Uand fp € D, respectively. The following shows the face wrench set from each family.
fE - {(17 07 07 Oapzea _pye)T | Pye andpze are variablesin f € E},

fw ={(=1,0,0,0, =p-u. Pyu)” | Py @ p.,, are variablesin f € W},
fv = 1{(0,1,0, ~p2n, 0, p2n)” | pon @d p.,, are variablesin f € N},
fs =1{(0,=1,0,p.5,0, —pas)” | pus and p., are variablesin f € S},
fo =1{(0,0,1, pyus —Pau, 0)7 | pru and p,, arevariablesin f € U},
fo=1{(0,0, =1, =pya, Paa, 0)* | peq and p,q are variablesin f € D}.

We define , h and v componentsto be (1., n,, 77z) (N 1y, 72)T and (05, 7, 7)) 7, respectively.
We let f7, é" and ©" be the h components, and f“, ¢” and #* be the v components of f, ¢ and ©
respectively. Observe that f" describes the projection of the normal line of a face f on the zy
plane. More precisely, " = (1., 1, (P> py)" % (72, m,)")". The remaining components make f*.
We call the spaces of 7, h and v of all wrenches /', H and V spaces.

INote that 7’s with different lengths correspond to different wrench points.
2Thisis for the same reason for the form closure of a planar object, explained in Section 2.4.1. It will be further explained in Section 8.1.2.

92 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

Wefirst ook at the shapes of fh and f” from each family. We place the plane n,7, horizontally
in H space, and the plane 7,7, horizontally in V' space. In H space, fL, fl,, f& and f! are vertical
line segments parallel to 7, axis; as a finger moves in the interior of a face, (1.,7,)" remains
the same, but 7, changes. Moreover, they lie on the lines (1,0, 7.)%, (—1,0,7.)7, (0,1,7,)%, and
(0,—1,7.)T, where the line (1,0, 7,)” is defined as {(1,0,0)" + A(0,0,1)” | A € R}, theline
(=1,0,7.)" as{(—1,0,0)T + (0,0, 1)T | A € R}, theline (0,1, 7.)T as{(0,1,0)T + X(0,0,1)T |
A € R}, and the line (0, —1,7.)" as {(0,—1,0)" + X(0,0,1)" | A € R}. The h components
fl and fI lie at the origin of H space, because the inward normal directions have zeros for 1,
and 7, which makes 7, also zero. See Figure 8.2 (a). The » components f}; and fﬁ, are of the
form {(0,0,0)" +p.(0,0,+£1)" | p, isinan interval of R}; they are line segmentson 7, axis. The
v components f% and f4 are of the form {(0,0,0)” + p.(0,F1,0)” | p. isinaninterval of R};
they are line segments on 7, axis. The v components fg and ff) are of theform (1, +p,, Fp.)";
they are the faces of the polyhedron, rotated by 90 degrees, and placed on the planes 7., = 1 and
n. = —1 respectively. See Figure 8.2 (b). The followings are formal expressions of f” and f*
from each family.

fr=1{(1,0, —pye)" | pye isavariablein f € E},
fb = 1{(=1,0,py0)" | pyw isavariablein f € W},
fo={(0,1,pen)" | pun isavariablein f € N},
Fh = {(0, =1, —pus)" | pas isavariablein f € S},
ftr =(0,0,0)7,
7 = (0,0,0)".
£ =1{(0,0,p..)" | p.c isavariablein f € B},
fi=4(0,0,—pow)” | pow isavariablein f € W1,
F% = {(0, =pzn, 0)7 | p.n isavariablein f € N},
F4 = {(0,pss,0)" | p., isavariablein f € S},
£ =1, Pyu, —Pau)” | Pru @d py, arevariablesin f € U},
f4 = {(=1, =pya, pea)” | pea ad p,q arevariablesin f € D}.

We define ¢ to be the set of wrench points of afinger when it movesin the interior of aconcave
edge e. We call ¢ the edge wrench set of e. Let " and n” be the normal directions of the faces
incident to edge e, and let int(e) denote the interior points of e. Then ¢ is defined as follows.®

e={(m,pexn)" | pe € int(e),n=rin + kan",0 < k1, k9 < 1, k1 + kg = 1}

The h and v components & and ¢” are similarly defined as f* and f*. Before we define é, é"
and ¢ more formally, we need to introduce notations for the points on the boundary of é. Without
loss of generality, we take a concave edge e from EN. A finger at position p on egy induces a
set of lines of force, which is bounded by two face normals of the two incident faces from £ and
N. The wrench set induced by the finger at p is also bounded by two wrench points. Welet é py g

SNote that s in é are not unit vectors, when n # 1/ and n # 7. But this does not matter, because only the direction matters, not the
magnitude, to check whether a given set of wrench vectors positively spans wrench space. We chose these sets because it is easier to handle when
the vectors are on the line segment connecting +f and '’ than when they are on a curve between 7/ and "’.

8.1 Preliminaries 93

and ey y denote the sets of boundary points of ¢z, such that they correspond to the normals of
the incident faces from E and from N respectively, for all position p in the interior of egy. We
cal épn g and égy v the boundary sets of egy. The following shows formal definition of é gy g
and épn n for égn, and the corresponding sets for és;; and éyp. Those from other families are

defined similarly.

éene = {(me,pe xnE)" | np = (1,0,0)",p. € int(epn)}
1

707 07 prza _py)T ‘ Pe = (pmpyypz)T S int(eEN)}

1N, De X UN)T | nnN = (07 170)T7pe € Znt(eEN)}
07 17 07 —DPz, Oapac)T | Pe = (pacapyapz)T S int(eEN)}

{(
{(
éEN,N = {(
{(

ewpw = {(nw,pe x nw)™ | nw = (=1,0,0)",p. € int(ewp)}
= {(_17 07 O: 07 _pzapy>T ’ Pe = (p:tapyapz>T S Znt(eWD)}
éwp,p = {(p,pe x np)" | np =(0,0,-1)", p. € int(ewp)}
- {(07 7_]-7 _py7p3370)T | Pe = (pxapyupz)T € Znt(e‘/VD)}
€su,s = {(7757pe X nS)T ’ Ns = (07 _170)Tape S Z-nt(eSU)}
= {(07 _17 O:pza 07 _px>T ‘ Pe = (p:tapyapz>T S Z-nt(eSU)}

ésuu = {(nu,pe xnu)" | nu = (0,0,1)", p. € int(esy)}
- {(07 07 17py7 —DPzx, O)T ‘ Pe = (pampy?pz)T € int(BSU)}

/\h /\h A A~ A A~ A A
_The h and v components ey g, €ENNy €EN Can Ny Evuws G €5p.s and é%p, , are
defined asfollows. Those for the other families can aso be defined similarly.

é%N,E‘ = {(1707 _py)T ‘ Pe = (pxapyapZ>T € Znt(EEN)}

é]}EN,N ={(0,1,p,)" | pe = (pacypyypz)T € int(egn)}
o = {(=1,0,p)" | pe = (pa, py, p:)" € int(ewv)}
oy = {(0,0,0)" | pe = (pay 2y, p2)" € int(ewv)}
&5p,s = {00, =1, =p)" | pe = (P2 2y, p:)" € int(esn)}
ég‘D,D ={(0,0,0)" | pe = (pz, Py, p=)" € int(esp)}
ine ={(0,0,p:)" | pe = (parpy. p2)" € int(epn)}
T cint(epy)}
}
}

éEN,N - (07 _pzao)T | Pe = (pxapyapz)
éI];VU,W = {(0,0, _pz)T | pe = (pacypyvpz)T € int(ewu

)
éa/U,U = {(17py7 _pac)T | Pe = (pa:ypy,pz)T c int(eWU)
ég’D75 - {(0,]925, O)T ‘ Pe = (pacypyypz)T S int(GS’D)}

&pp={(=1, =0y pe)" | De = (D2 Py, p=)" € int(esp)}
The edge wrench set é of e from each family can now be reformulated with the boundary sets
asfollows.
éen = {mwg + kown | wE € épnp, WN € épnn, 0 < Ky, ko < 1,k + Ko =1}
- {(K17 R2, 07 —RaPz, K1Pz, _Iilpy + K?px)T ‘ O S R1, R2 S 17 K1 + Ro =]-7
Pe = (pxapyapz)T € int(eEN)}

94 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

ewn = {riww + kowy | ww € éwnw, Wn € Ewnn, 0 < K, kg < 1, Ky + Ky =1}
= {(_’ilv Ko, 0, —Rap,, —K1pz, R1Dy + /f2px)T | 0 < Ki,ke < 1,R1 + Ko =1,
Pe = (pacypyypz)T S int(GWN)}

éps = {mwg + rows | wWg € épsp, Ws € €pss,0 < Ky, kg <1,k + Ko =1}
= {(k1, —K2,0, Kaps, K1Pz, —K1Dy — Kopz)T | 0 < K1, kg < 1 Ky + kg = 1,
Pe = (p:vapyapz)T € int(eEs)}

ews = {mww + rowg | ww € ewsw, Ws € éwgs,0 < ki, kg < 1, K1+ kg = 1}
= {(_’ilv — k2,0, Kap,, —K1Ds, K1Py — /€2px)T | 0<Ki,ke <1,k + Ky =1,
Pe = (pxapyapz)T € mt(ews)}

épy = {mwg + Kowy | wg € épup, wu € €puy,0 < Ry, ko <1, K+ Ko =1}
- {(l{hO? R, RoPy, K1Pz — RaPx, _Klpy)T | 0 S R1, Rg S]-7 K1+ Ko = 17
Pe = (pxapyapz)T € int(eEU>}

ewu = {mww + rowy | ww € éwuw, wu € éwuy,0 < Ky, kg <1,k + Ko = 1}
= {(—k1,0, Ko, Kapy, —K1Ps — Ko, K1y)" | 0 < Ky, ko < 1, K1 + Ko = 1,
Pe = (pxapyapz)T € int(‘eWU)}

éenv = {mwn + Kowy | wy € énun, wu € Envr,0 < Ky, ke < 1, Ky + Ko = 1}
- {(07 R1, K2, —R1P- + KJpra —R2Px, /ilp:v)T | 0 S R1, R2 S 17 K1 + Ro =]-7
Pe = (pxapyapz)T € int(eNU>}

ésu = {Riws + kowy | ws € égu,s, Wy € sy, 0 < ki, ke < 1,k + Ko = 1}
- {(07 —R1, Re, k1P + Hpra —R2Pz, _Hlpac)T | 0 S R1, R2 S]-7 R1 + Ro = 17
Pe = (pxapyapz)T € int(eSU)}

égp = {kKi1wg+ Kewp | WE € égp ., Wp € égp.p,0 < Ky, ke < 1, K + Ko = 1}
= {(k1,0, —K2, —Kapy, K1Ps + Kope, —k1py)" | 0 < ki, ko < 1K1 + Ko = 1,
Pe = (pxapyapz)T € int(eE‘D)}

éwp = {rkww + kowp | ww € éwpw,wp € éwp,p,0 < K1, ke <1,k + Ky =1}
- {(_,{/17 07 —Ra, _Kpru —R1Pz + RoPz, K/lpy)T | 0 S R1, R2 S 17 R1 + Ro =]-7
Pe = (pxapyapz)T € int(‘eWD)}

énp = {K1wn + Kowp | WN € Enp N, Wp € énpp,0 < K1,k <1,k + Ky =1}
= {(0, K1, =Ko, —K1D: — KaPy, Ko, K1Dx)" | 0 < Ky, ko < 1, Ky + kg = 1,
Pe = (pxapyapz)T € int(eND)}

ésp = {riws + kowp | ws € ésp.g, wp € éspp,0 < K1, ke <1,k + Ky =1}
- {(07 —R1, —R2,R1P> — /{2py7 RoPz, _Hlp:v)T | 0 S R1, R2 S]-7 R1 + Ro = 17
Pe = (pxapyapz)T S int(@?D)}

The h and v components ¢" and ¢” of an edge e can be reformulated with the ~ and » compo-
nents of the boundary sets as follows. Here we reformulate only é% , ., é%, and é%,;;. Those
from other families can be reformulatd similarly.

é%N = {/‘ilhE + Kohy ‘ hg € é}EL‘]\QEahN S é}EL‘N,Nvo < Ky, ke <1, R 4 ko = 1}
= {(K1, K2, =K1y + Kopy)' | 0 < ki ke < 1K1+ ko = 1, pe = (P, Py, p2)" € int(epn)}
ph = {lilhE + KQhU | hE c é}EL‘U,E7 hU - é%U’U,O S K1, K9 S 1,/11 + Ro = 1}

€CEU =
= {(’ihov _Klpy)T | 0< K1, Ko < 17 K1+ Ke = 1ape = (p:vapyapz)T € int(eEU)}

8.1 Preliminaries 95

| Y -
(@) | (b) ey and ep
. ~h ~h
ey and ey

elys oy
> f > // .

"y | My I ey My
Nz ‘

sh sh
Na e €suland égp el
Sh sh ‘
epy 'and €pp

Figure 8.3: The shapes of é” from each family.

epy = {mive + kovn | vE € €4y pUn € ey N, 0 < K1y ko < 1Ry + kg = 1}
= {0, =kopz, k1p:)" | 0 < Ky, ke < 1Ky + ke = 1,pe = (D Dy, 02)" € int(epn)}
epy = {mve + ko | ve € ey v € €y, 0 < Ky ko <1 Ky + kg = 1}

= {(Ka, Kapy, k1p> — Kapz)T | 0 < K1y ke < 1,k + ke = 1, pe = (pa, Py, 02)" € int(epy)}

The shape of ¢" from each family is as follows. The sets é% ., éb, , éhg and el ¢ are line
segments with one endpoint lying on the lines (£1, 0, 7.)%, and the other endpoint on the lines
(0, £1,7.)T. Thesetsél,, el ;, ey, ey, éhp, e, e, and el are triangles that are incident
to the origin in H space, because f!* and % are (0,0,0)7. Infact, é%,,, &k, are triangles formed
by the origin of H space and a line segment on the line (1,0, 7,)”. The sets él,,; and ¢}y, are
triangles formed by the origin of H space and aline segment ontheline (—1,0,7,)7. Thesetsé?,,,
and é%,,, are triangles formed by the origin and aline segment on the line (0, 1, 7.)T, and those of
el and el are aso triangles formed by the origin and a line segment on the line (0, —1,7.)7.
The endpointsof ¢, e, v, g and el s areonthelines (1,0, 7.)T (for E), (—1,0,7.)T (for W),
(0,1,7.,)T (for N)and (0, —1,7.) (for S). Figure 8.3 shows an edge wrench set from each family,
when all position vectors have positive numbers only. Thelir shapes do not change much even when
the position vectors have negative numbers as well as positive ones.

Now we define v to be the set of wrench points of afinger at a concave vertex v. We call © the
vertex wrench set of v. Notice that a concave vertex is always incident to three faces: one from U
or D, onefrom N or S, and one from F or W. Let n, 1, and n3 be the normal directions of the
three incident faces of v, and let p, be the position vector of v. Then ¢ is defined as follows.*:

b ={(n.po x)" | m = pum + pams + a0z, 0 < i, pos s < 1oy + po + pz = 1}

Asinthe case of edge wrench sets, we can reformulate vertex wrench setsin terms of the boundary
sets. Without loss of generality, we take a concave vertex vgyy from ENU. A finger at vpny
induces a set of lines of force, which forms the convex hull of the three face normals of £, N and
U. The convex hull of the wrench points for these three face normalsis the wrench set induced by
the finger at vpny. Welet gy e, Venvu,n @Nd gy, denote the wrench points for these three
face normals, and call them the boundary vertices of v ;. Thefollowing showsformal definitions
of the boundary vertices, and their h and v components for vz . Those from other families are
defined similarly.

vpnve = {(Me,pe X nE)" | nE = (1,0,0)",p, @ vpyu}
= {(1,0,0,0,p., —py)" | o = (P2, Dy, 02)"}

4Asin the case of edge wrench set, s in © are not unit vectors, whenn # n, n # n2 and 7 # n3. This does not matter, because only the
direction matters, not the magnitude, to check whether a given set of wrench vectors positively spans wrench space. We chose these sets because it
is easier to handle when the vectors are in the convex hull of 1’s (3=, 11, = 1) than when they are in a curved surface between ’s (3°, 2 = 1).

96 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

| Y ' Y

~h ~h
Oy ny and Oy yp

~h ~h
Ugpyy and Vg Np

‘ >
My Ty

h ~h
Uplsy and 9gsp
Nx T

~h ~h
Oywsy and Oy sp

Figure 8.4: The shapes of 0" from each family, when the position vectors have positive numbers only.

vpnun = {(n,pe X nn)T | nv = (0,1,0)", p, @ vpny}
- {(07]-7 07 —Pz O7par)T ‘ Pv = (pampy?pz)T}

venvve = {(u,pe X nu)T | no = (0,0, 1), p, @ vene}
= {(07 O: 17py7 —Pz, O)T ‘ Pv = (pxapyapz)T}

@gNU,E = {(17 0, —py)T | by = (pacapyypz)T}
Unoy = 10, 1,02)" | po = (pes s p2) T}
@Z“NU,U = {(O, 0, O)T ‘ Pv = (px,Py,Pz)T}}
Vgvup = 100,0,02)" | po = (P2, pyo)"}
@%NU,N = {(0, —p-, O)T | po = (pxypyapz)T}

Upnuw = {(1, py, —px)T | po = (p:tapyapz)T}}

The sets vy, 0%y @d 0%, can be reformulated with the boundary sets as follows. Those
from other families can be reformulated similarly.

vpnu = {mwe + powy + pswy | wg = VpNu,E, WN = VpNUN, Wu = VENUU,
0 < pin, pio, s < 1, iy + o + s = 1}
= {(p1, po, pr3, —i2ps + 1Py, 1Pz — P3Pay — 1Dy + popz) |
0 < pin, pio, s < 1, iy + o + s = 1, py = (Pay Dy, 02) " }

N _ Ak _ Ak _ Ak
Vpny = {the + pehy + pshy | he = VENU,E> hy = UENU,NhU = VENU,U>

0 < pu, pros i3 < 1, piq + pio + p3 = 1}
= {(p1, po, —p1apy + piops)" | .
0 <y, pro, 3 < 1, pq + po +p3 = 1,p, = (pxapyapz) }

UpNy = {mve + povy + psvy | ve = @%NU,Ea VN = @Z“NU,Nv vy = f’%NU,Ua
0 < M1, 2, 3 < 17,ul+lu/2+:u3 - 1}
= {(3, —p2p: + papy, paps — p3pa)” |
0 < pugs oy i3 < 1, iy + o + piz = 1, py = (s 0y, 02) "}

Observe that 07, forms a triangle in H space. Since 0}y is (0,0,0)", a vertex of the
triangleisthe originin H space. Moreover, another vertex o3y, isontheline (1,0, 7.)", and the
third vertex 07y, v isontheline (0, 1, 7.)". Those from other families are similar. See Figure 8.4.

8.1 Preliminaries 97

8.1.2 The form closure condition and the projection scheme

The following theorem states a condition for a three-dimensional object to be in form closure,
which isanalogous to Theorem 2.1.

Theorem 8.1 Given a set of k (> 7) wrenches wy, ws, - - - , w, 0on a three-dimensional object P,
the following three conditions are equivalent:

(i) Pisinformclosure.
(if) Any wrench wy can bewritten as —wp = A\jw; + -« - - + A w,, With A; > 0.
(iii) Theorigin O liesin theinterior of the convex hull of wq, wy, - - -, w.

Theorem 8.1 basically states that P isin form closure if and only if the x wrenches positively
span wrench space. If welet wy be a zero vector, Theorem 8.1 (ii) becomes an algebraic formula-
tion of Theorem 8.1 (iii). In particular, when x = 7, al \;’smust be positive to make a zero vector,
i.e Zle Mw; = 0for \; > 0. Hence Theorem 8.1 (ii) and (iii) are algebraic and geometric
formulations that the x wrench vectors positively span six-dimensional wrench space. Thisiswhy
rk is @ least seven—the dimension plus one. Since a wrench is a six-dimensional description of
a directed line in three-dimensional space, Theorem 8.1 (ii) and (iii) imply that any directed line
in three-dimensional space can be represented by a linear combination of a given set of directed
lines, whose wrenches positively span wrench space. The following lemma is another algebraic
formulation of 23:1 Mw; = 0 (\; > 0) for arectilinear polyhedron. Thisis for the case of seven
fingers, two of which lie on a face either from U or D. This lemma can be applied to the other
cases when two fingers lie on aface from E, W N or S as well; rotate the polyhedron such that
these familiesbecome U or D.

Lemma 8.2 Given a set of seven wrenches wy, - - - , w; Of a rectilinear polyhedron P, let w1, ws,
ws and w, be the wrenches for vertical faces (from £, W, N and S), and ws, wg, w; be those
for horizontal faces (from U and D). Let h; and v; be the h and the v components of w;. Then
the seven wrenches wy, - - - , w; achieve form closure if and only if they satisfy the following two
conditions:

1. thereexist o; > O suchthat 37, a;h; = 0, and
2. thereexist 3; > 0 suchthat 37, avws + Y1 Biv; = 0.

Proof: Sinceh; # 0 (i = 1,2,3,4), there exist a; > 0 suchthat >+, a;h; = 0. There also exist
B > 0suchthat 7, cyus + S0 Bivy = 0. Since hy = hg = hy = 0, it is straightforward to see
that there exist \; > 0 suchthat S, Aw; = 0. (Set \i = o fori = 1,2,3,4, and)\, = 3; for
1=25,6,7). O

The conditions in Lemma 8.2 can be verified by projecting the vectors on some screens. We
define the screens 'y, in 'H spaceand I, in) space as follows.

I‘h::Fhlurh2 = {(nxanyaTz)T‘nx+77y_1:07_1_5<77x<1+€aTz€R}
U {(nx,’f]y,Tz)T|77x—77y—1:0,—1—5<7]m<1+€,TZER}

FV = Ful U FVQ - {(nzchcuTy)T | Tx +Ty -]- - 07772 S R}
U {(n7e7) | 7w —7—1=0,n, € R}

In the definition of 'y, ¢ is an arbitrarily small positive number. Figure 8.5 shows a top view
of I';, and T',. The planes of T';, are extended by ¢ so that the lines (1,0, 7.)” and (0,1, 7.)" are

98 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

Figure 8.5: A top view of the screensT';, and T",,.

completely contained in T';,;, and thelines (1,0, 7.)” and (0, —1, 7.)T are completely contained in
th.

Remember that we place the planes 7,1, and 7,7, horizontally in H and V space respectively.
The intersectionsof ', and 7, = 0, and ', and n, = 0 are horizontal lineson ', and I',,; we call
them 7, = 0 lineand 7, = 0 line respectively. Welet (0, 1), (1,0) and (0, —1) lineson I';, denote
thelines (0,1, 7.)7, (1,0,7.)" and (0, —1,7,)" on T, respectively. Likewise, we let (0,1), (1,0)
and (0, —1) lineson T, denotethelines (.,0,1)7, (n.,1,0)" and (1.,0, —1)” on T, respectively.

The projection scheme is the same as in Chapter 3. We project avector w # O onto aplane I’
asfollows’ : Consider theline ¢ through w and the origin O, and let 77(w) := ¢NT". Theorigin does
not have any projection on I' in our projection scheme. A non-vertical line intersecting a plane has
two cases: (i) O liesbetween w and 7(w), and (ii) O lieson theleft or on theright of w and 7 (w) on
¢. To visualy distinguish these two kinds of projections, we color 7(w) red when O lies between
w and 7(w), and we color 7 (w) blue when O lies on the left or on theright of w and 7w (w) on ¢.

To check whether a given set of vectors positively span three-dimensional space, we use the
following lemma.®

Lemma 8.3 Givenaset of x (> 4) vectorsinR? wy, ws, - - - , w,, the convex hull of wy, wy, - -+, Wy
contains the origin in the interior, if and only if the (blue) convex hull of the blue 7 (w;) intersects
the (red) convex hull of the red 7(w;) in the interior on the screen.

Proof: Without loss of generality, let the projectionsof wy, - - -, w; be blue, and let the projections
of wji1, -+ ,w, bered. We show the “if” direction first. Let p; and p, be the red and blue points
in the interior of the red and blue intersection region. From the construction, p; = —pup, for
p > 0, and the interior points p; and p, can be represented as follows: p; = > 7| \w; and
Py = Zf:(j) Aiw;, where \; > 0. Observe that there are at least four non-zero \;’s, because p;
and p, areintheinterior of the red and blue intersection region, and we need at |least four pointsto
have p; and p, in the interior of the red convex hull and the blue convex hull. When we combine
these three equations, we get > " | \iw; = 0, where \; > 0 and at least four)\,’s are non-zero.
(When k = 4, al \;’s are positive.) This means that the convex hull of the x vectors contains the
origin, according to Theorem 8.1.

The “only if” direction: From the assumption, there exist A\; > 0 such that there are at least
four non-zero \;’s, and > 7_, Aw; = — Zj:j +1Aiw;. Observethat 7 | \w; isin the convex
hull of j pointswy, - - - ,w;, and Zf:jﬂ Aiw; isin the convex hull of w;+,- -+, w,.. The equation

{:1 Aiw; = — Y 5 i1 Aiw; impliesthat their projections coincides on the plane, and their colors
differ because the origin lies between the two points 3 7, Aw; and 307 | Aiw;. O

5This projection schemeisto find a set of points whose convex hull contains the origin in the interior. It is thus meaningless that the origin isin
the point set. Thisjustifies that we do not define the projection of the origin.
6This is another formulation of Lemma2.7.

8.1 Preliminaries 99
(0,1) line (0,1) line
Tz Lpy :(1,0) line Tz Thy (1,0 line
(a) I > ny E r rr]y
d 7, =0 line I e 1,=0line
(0,1) line (0,1) line
UE ‘ = ‘
L1 (1,0) line [yy :(1,0) line
(b) R Ty
- T T Ty
~ 1. =0 line " n, =0 line
Figure 8.6: (a) The projectionsof f" and (b) f* from each family.
w(en and (et L : Lh1
(a) Crg) S : (b) 1 m(ésp) and m(égy) (c) 3
W(é}fzp) and 7T(é%u)l Tl'(é}ﬁm) and W(é}zifU)
(1,0) (0,1) (0,1) (1,0)

Figure 8.7: The projections of ¢” from each family.

Let us describe the shapes of =(f"), =(¢") and 7(9") on T';, and 7(f*) on T,,. The shapes of
fh fh, fiand f are vertica line segmentsin H space, thus the projections are also vertical line
segmentson T',. Note that (/) and «(/%) do not appear on Iy, because they are at the originiin

'H space. (The projection of theoriginisnot defined.) The sets fE, fW, fN and fS are line segments
on 7, and 7, axes, thustheir projectionsare pointsonI',.. More prec:|sely, they are (0, 1,0)7 (from

N and S), or (0,0,£1) (from E and W). The projections of fU and fD aretriangleson I',. See
Figure 8.6.

The shapesof él,;, e, ety ety ey e, €%, and e, are triangles with the origin as one
of their vertices, and the other two on (+1,0,7,)” lineand on (0, +1, 7,)" line. The projections
of these triangles are vertical line segmentson I';,, especialy on (1,0) lineand (0, £1) line. See
Figure 8.7 () and (b). The h components é%, é v, e and e, o are line segments whose
endpointslieonthelines(+1,0,7,)" and (0, 1, 7.)7, so their projectionsare line segmentswhose
endpointslieon (1,0) and (0, 1) lineson I',. See Figure 8.7 (c).

Remember that 0" is also atriangle in H space with the origin as a vertex, and with the other
two vertices on the lines (+1,0,7.)7 or (0,+1,7,)”. Thus the projection is a line ssgment one
endpoint of which ison (1, 0) line, and the other endpoint of whichison (0,+1) lineonT",. See
Figure 8.8.

100 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

(0,1) (1,0) (1,0) (0,-1)

Figure 8.8: The projections of o" from each family.

8.1.3 Intersection search algorithms

To compute all red and blue intersections, we use the following data structures. segment intersec-
tion search structure, triangle search structure and half-plane search structure. Section 2.4.2 has
more detailed explanations about segment intersection search structure and triangle search struc-
ture. Throughout this chapter, we let k& denote the output size of one query, and let K denote the
total output size.

Sometimes, we wish to report points in a half plane or in the intersection region of two half
planes. To report pointsin ahalf plane, we use the half-plane search structure by Chazel et al. [19].
The building time of the structure on ¢ pointsis O(q log ¢), and the query timeis O(log g + k).

To report pointsin the intersection region of two half planes, we use an order 2 tree. This stores
q pointsin an order 2 treein O(¢?) time’, as explained in Section 2.4.2: each point is stored twice,
one in the first level, another in the second level. We query the tree with one half plane on one
level, and with the other half plane on the other level, in O(log? ¢ + k) time.

8.2 Computing all form-closure grasps of a rectilinear polyhedron

This section proposes algorithms to report all combinations of faces, concave edges and concave
vertices of P that allow form-closure grasps with at most seven frictionless point fingers. We let
Aot denote al such sets. Let C' denote the combination of faces, concave edges and concave
vertices that we consider. The combination C' in Section 8.2.1 is seven faces. In Section 8.2.2, C
is acombination of faces and concave edges, more precisely, we consider one edge and five faces,
two edges and three faces, and three edges and one face. In Section 8.2.3, C' is a combination
of faces and concave vertices, more precisely, we consider one vertex and four faces, and two
vertices and one face. In Section 8.2.2, C' is one vertex, one edge and two faces. Note that each
of these combinations involves seven face normals, seven is necessary to span six-dimensional
wrench space positively, thus to achieve form-closure of athree-dimensional object.

Each of the algorithms proposed in the following sections reports a subset A of A, such
that each of A involves two face normals of afamily of U or D. In other words, each set of A of
combination C' has a form-closure grasp, and it involves two face normals of afamily of U or D.
The reason isthat the algorithms are based on Lemma 8.2, which imposes the additional condition
about two face normals of a family of U or D. Note that the face normals can be induced by the
fingers on edges or at vertices.

We can report A, by reporting A of apolyhedron P and appropriately rotated P. The form-
closure grasps involving two face normals of a family of £, W, N or S can be reported by the
corresponding algorithm applied to the rotated polyhedron P. When the set induces two face
normals of afamily of £ or W, we rotate P such that £ becomes D. When the set involves two

"Weset t = log ¢; t isthe parameter in Section 2.4.2.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 101

face normals of afamily of N or S, we rotate P such that N becomes D. The rotations that we
use are the following two:

1. Roty: N—-N,S— S, E—-D,W —-U,U— FandD — W,
2. Rotgx> N-D,S—U,EFE—-E,W —-W,U—-NandD — S.

Now we give the outline of the algorithms. We report A by filtering all candidates of com-
bination C' twice. Let combination C’ be a subset of C, such that a set of C' are necessary and
sufficient to have a set of pointsthat satisfy the first condition of Lemma8.2. We also let A’ denote
all setsof combination C”, such that each of these has a set of points that satisfy the first condition
of Lemma 8.2. In phase I, the algorithm finds A’. The time complexities of the algorithms in
phase | are sensitive to K, which is the cardinality of A’. In phase Il, the agorithm computes
the remaining faces that has a set of points satisfying the second condition of Lemma 8.2 together
with one of A’. These faces with A’ form A. Phase Il of all algorithms except one® have time
complexities sensitive to K, which isthe cardinality of A.

8.2.1 Seven faces

We wish to report all sets of seven facesthat yield form-closure grasps with seven frictionless point
fingers. Let arectilinear polyhedron P have n (triangulated) faces. We pick any form-closure
grasps on seven faces. If this set involves two face normals of afamily of U or D, itisin A. If
this set involves two face normals of a family of £, W, N or S, we rotate P with Rot, or Rot,
accordingly. It is straightforward to see that the rotated set isin A, i.e. it has two face normals of
afamily of U or D.

In phase I, we report A’. Four faces are necessary and sufficient to have a set of points that sat-
isfy thefirst condition of Lemma8.2; C" isfour faces. Note that fh of avertical face f corresponds
to an edge wrench set of a polygon. Hence in phase I, the approach in Section 3.3.1 can report A’
inO(nlogn + K') time; P hasO(n) faces.

We pick aface quadruple from A’. This quadruple (fi1, fz, fs, f1) has a range of coefficients
o > 0foreachofthewh1 € fl,hg € f2,h3 € f3 and hy € f4,suchthatz,lazh = (. The set
S°1 auw; with vy, € f formsapolygon A of the following form:

A={avy +agvs +asvs +aguy | vy € fl e € fY vs € fY vy € f1)

Plugging in the vectors show in Section 8.1.1 produces a vector (0, —a1p,1 + Qsp.3, @ap.o —
ayp.4)’, Where p; = (pui, pyi, p-:)" isthe position vector of afinger on f;. We get oy + aors +
a3 + vy, because thisis an equation for a point in the convex hull of vy, 15, v3 and v4. A set
of fixed position p; (i = 1,2, 3,4) determines the values of a4, as, as and oy,? and the position
vectors are independent, thus A forms a polygon on the planen., = 0 in V space. The projection
of A isapart of the (horizontal) line segment connecting two points (0, 1,0)” and (0,0, +1)"
I',. We first look at the case where w(A) isred. We let rq denote the red 7(A) for convenience.
The case where 7w(A) is blue can be handled in the same way as in the case when 7(A) isred.

In phase 1, we wish to report al blue triangle triples from w(f{j) and w(fg) that has a set of
points satisfying the second condition of Lemma 8.2 together with each set of A’. Three points
from three triangles of % and f% positively span) space with a point of A, if and only if one of

81t is the algorithm for the case of three edges and aface. It is sensitive to &’ only.
9The coefficients a1, as, ag, oy should be computed in H space originally. In our setting of T},, however, fh'sare on screen Ty, thus the
convex hull of two points from /" isalso on T';,. Therefore, we can compute these coefficients aq , aca, vz, ag directly on Ty,

102 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

Figure 8.9: Thetangent lines ¢, and ¢ of ro and b1, and their regionsin three cases (i), (ii) and (iii).

thefollowing holdson I',: (i) the convex hull of three blue trianglesintersectsr, in theinterior, (ii)
the convex hull of two blue triangles intersects that of ared triangle and r in the interior, and (iii)
a blue triangle intersects the convex hull of two red triangles and r in the interior. We enumerate
all red and blue triangle triples that belong to one of these three cases one by one.

We enumerate all blue triangle triples whose convex hull intersects r in the interior as follows.
We first look at the cases when one blue triangle of (/%) and two blue triangles of «(f). The
case when one blue triangle of 7(f) and two blue triangles of 7(f%) can be handled in a similar
way. We pick a blue triangle b; of 7(f[")) for example, and compute two tangent lines ¢/, and /¢,
which separates r, and b, ; ¢; touches the left endpoint of ry, and ¢, touches the right endpoint of
ro. Remember that the blue 7(%) and 7, do not intersect, because blue 7 (f%) liesin the region of
n. < 0, and ro liesonthelinen. = 0. Also observe that all blue triangles «r(f;) liein the region
n. > 0. Two lines ¢; and ¢, divide the region of 1, > 0 into three regions. We let o1, 05 and o3
denote the interior of these regions from left to right. See Figure 8.9 (i).

Let b, be a blue triangle of w(f{j) that intersects o,. Then (by, bs, b3) gives a face triple that
positively span V' space with the f quadruple for ro, where bs is any blue triangle in n(fg) or
w(fg)—i ncluding b; and b, itself. Note that o, is bounded by three half-planes: ¢, ¢, and theline
n. = 0. Since x(f4) and «(f%) lie on one side of theline . = 0, for each of «(f) and 7 (f%), o
can be considered to be the intersection of two half planes. Thus the blue triangles of 7 (f;j) inter-
secting o, can be reported by an order 2 tree described in Section 8.1.3 and a segment intersection
search structure. There are O(n) blue triangles of 7 (f) and (%), so the preprocessing times
are O(n?) and O(n? log® n) respectively, and the query times are O(log® n + k) and O(log* n + k)
respectively. Each of K’ sets induces r, and there are O(n) blue triangles of x(f4) and 7 (f%),
thus such blue triangle triples can be reported in O (n?log® n + nK'log* n + k) time.

If by intersects o, and by intersects o3, the corresponding faces of (b4, be, b3) have three points
that span V space positively with a point of A. A triangle intersects o, (or o3), if and only if
a vertex of the triangle lies in o, (or o3). We store the vertices of the O(n) blue triangles in a
half-plane search structure [19] in O(nlogn) time. The pointslying in o, and those in o3 can be
identified in O(logn + k) time. Then we report every pair (b,, bs), where b, intersects oy, and bs
intersects 5. Each of K’ setsinduces r(, and there are O(n) blue triangles of «(f%) and 7 (f%),
thusal K bluetriangle triples that intersect -, can bereported in O(nK'logn + K) time.

Now we look at case (ii). We wish to report all triples of ared triangle and two blue triangles,
such that the convex hull of two blue triangles intersects that of o and ared triangle in theinterior.
We pick one red triangle r; of w(fg) or w(fg), and compute the convex hull » of r; and r,. We

~ ~

also pick ablue triangle b, from = (f};) or 7(f},). If r and b; intersect each other in the interior,

8.2 Computing all form-closure grasps of a rectilinear polyhedron 103

. pe— o %
Pz Py
Py
Pz
Pz

Figure 8.10: A polyhedron with ©(n?) face quadruples that positively span H space, and ©(n°) sets of seven faces
that allow form-closure grasps with seven frictionless point fingers.

then we are done; two points on b, will positively span the space with three points from r, and r;.
Hence we focus on the case when r and b; do not intersect each other in the interior.

We compute the tangent lines ¢, and ¢, of b, and » such that ¢; and ¢, separate b, and . Let o
denote the region containing the interior of », which isbounded by ¢, ¢, and some edges of . See
Figure 8.9 (ii). Note that o does not include its boundaries. Observe that blue triangles of 7(fg)
(or m(fg)) intersect at most three boundary line segments of o, because blue triangles of (f,g)
(w(f;j)) lie below (above) the linen, = 0. See Figure 8.9 (ii). Hence, we use the triangle search
structure to report al & blue triangles intersecting o. There are O(n) blue triangles of 7(fg) and
w(fg), so the preprocessing timeis O(n? log n), and the query timeis O(log® n + k).

We repeat this process for each pair of red and blue triangles of 7 (/) and/or 7(f%). There are
O(n) red and blue triangles of (%) and = (%), so there are O(n?) red and blue triangle pairs.
The total time complexity of case (i) isthus O(n?K'log® n + K).

Now we look at case (iii). We wish to report al triples of a blue triangle and two red triangles
from = (f#) and/or (%), such that the convex hull of r, and the two red triangles intersects the
blue triangle in the interior. We pick ared triangle r, from red = (%) or (f%), and compute the
convex hull r of r; and r,. We also pick a blue triangle b, from blue 7(f%) or =(f%). Then we
compute the tangent lines ¢, and ¢, of b; and r, such that /; and ¢, separate b; and r. Let o denote
the region bounded by 7, ¢, and some edges of b;°, such that o contains the interior of b,. See
Figure 8.9 (iii). Here as well, o does not include its boundaries. Note that red triangles of w(f;j)
lie in the region of n, < 0, and red triangles of w(fg) in the region of n, > 0. Thisimplies that
red triangles of w(f{j) or w(f[”)) intersecting o liein the region bounded by at most three lines. We
use a triangle search structure to store the vertices of O(n) red triangles of (/%) and = (f%)—the
building timeis O(n?log n). We also use a segment intersection search structure to store the edges
of O(n) red triangles—the construction time is O(n?log®n). We report al & red pointsin ¢ in
O(log® n + k) time, and all k red segmentsintersecting o in O(log* n + k) time.

We repeat this process for each of blue triangles of 7(f) and 7(f%) as well. There are
O(n) blue triangles of 7 (f4) and = (f%), and each of A’ induces r,—remember that K’ = |.A/|.
Therefore, all K triples of a blue triangle and two red triangles of case (iii) can be reported in
O(n?K'log"n + K) time.

Theorem 8.4 All K sets of six to seven faces of P that yield form-closure grasps with seven fric-
tionless point fingers can be enumerated in O (n2K'log* n 4 K) time, where K/ = | A|.

Note that K’ is O(n*), and K is O(n"). The lower bound of K’ is Q(n?), and the lower
bound of K is Q(n®)—K’ is Q(n?) and three fingers are on three faces from U and D. (The
proof for the lower bound for K’ can be found in Lemma 4.6 in [91].) A polyhedron can have

10At most two edges of b; bound o.

104 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

1. = 0 line

v

Figure 8.11: The blue projection of f{j. They can overlap because the projections of the faces from U on the planes
1, = +1 can overlap. The blue projection of f’[’, isthe same, except that they liein theregion of r, < 0.

one rectilinear face in U and another rectilinear face in D, but the number of vertices of these
faces will be O(n), thus the polyhedron has O(n) triangulated faces in U and D. A polyhedron
with K’ = |A’| = Q(n?) has Q(n®) sets of seven faces that allow form-closure grasps with seven
fingers—see in Figure 8.10. The following lemma justifies the approach of computing all face
quadruplesin A, and then computing the remaining face triples for each of A’.

Lemma 8.5 K = Q(n’*K’).

Proof: We first show that each of A’ has at least one face triple from «(f;) and (%), such that
they together have a set of points satisfying the second condition of Lemma8.2. Let (f1, fo, f3, f1)
be aquadruple of A’. It isenough to show that 7(A) for (f1, f2, f3, f1) has at least onetriple of red
or blue triangles that has ared and blue intersection with 7(A). Without loss of generality, assume
that w(A) isred. We show that there exists a triple of blue triangles whose convex hull intersects
7(A) intheinterior.

First welook at the shapes of the blue triangles of f5 and f 7. If we project thefacesfrom U (D)
on the xy plane, the union of these projections form arectilinear simple polygon. Remember that
the origin of the object spaceisin the simple polygon. We rotate the projectionsfrom U (D) by 90
degrees, and placethemontheplanen. = 1 (n. = —1) inV space. Notethat). axisstill penetrates
these simple polygons on the planes ., = 4+1. Thisimpliesthat on I',,, any non-horizontal line

A

will intersect the red and blue triangles of 7(f};) and 7 (f},). Figure 8.11 shows an example of the

union of blue triangles of w(f(’j). The blue triangles of w(fg) look similar in the regionn, < 0.1
Therefore, there existsabluetriangle b, in () that intersects the region o, which isinduced by
7(A) and abluetriangle by in «(f%). In fact, thereis ablue triangle in 7 () intersecting o, for
any bluetriangle b, in7(f4), thus we have O(n) triples of bluetriangles (by, by, bs) for agiven b,.
Therefore, K = Q(n?K’). Thisargument holds for all red/blue triangles of (). O

8.2.2 Combinations of faces and concave edges

Let ¢ be the number of concave edges of arectilinear polyhedron P. When we use concave edges,
fewer fingers can induce seven face normals. In this section, we report all combinations of faces
and concave edges, such that the fingers on each of these combinations allow form-closure grasps
with at most six frictionless point fingers, and that each combination involves seven face normals.
In particular, we look at the following three cases. (i) when C' is one concave edge and five faces,
(if) when C' istwo concave edges and three faces, and (iii) when C' is three concave edges and one
face.

URed triangles of 7 (%) or w(f%) look similar to those in the region of 7 > 0 and 7. < 0, respectively.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 105

| [EN [WN|ES|[WS [EU][ED |WU][WD]NU][ND][SU]SD |
Rot, [ND | NU | SD [SU [ED |WD | EU | WU || EN [WN | BES | WS
Roty | ED [WD | EU |WU |[EN | ES |[WN | WS || ND | SD | NU | SU

Table 8.1: The renamed edge families after rotation Rot ; and after rotation Rot .

One concave edge and five faces

We wish to report al sets of a concave edge and five faces'? that yield form-closure grasps with
six frictionless point fingers;, C' is a concave edge and five faces. Remember that each set of A
reported by the algorithms presented in this section yields a form-closure grasp with six fingers,
and two fingers induce two face normals of afamily of U or D. To identify all sets of a concave
edge and five faces that allow aform-closure grasp A;,:.;, Wwe apply the algorithmsto P and rotated
P with Rot, and Rot,. The following lemma shows that the algorithms on P and rotated P with
Rot, and Rot, can indeed report Aoz

Lemma 8.6 When we rotate a set of one concave edge and five faces that yields a form-closure
grasp with Rot, or Rot,, the rotated set belongs to one of the following two cases:

(i) one vertical edge, two vertical faces™® and three horizontal faces, and

(i) one horizontal edge,* three vertical faces and two horizontal faces.

Proof: When aform-closure grasp on one concave edge and five faces induces two face normals
of £ (W), we rotate the set with Rot,. When the grasp induces two face normals of N (.5), we
rotate the set with Rot,. Then the two face normals will become those of D (U). Since a set of
one concave edge and five faces induces seven face normals, each of the other familiesinduces one
face normal.

Note that an edge is either vertical or horizontal. When we rotate a vertical edge with Rot, or
Rots, the vertical edge becomes horizontal—see Table 8.1. When we rotate a horizontal edge with
Roty or Rot,, the horizontal edge will either become vertical or remain horizontal—see Table 8.1.
When therotated edge is vertical, three of the five faces will be horizontal, which iscase (i). When
the rotated edge is horizontal, the edge is incident to a horizontal face, thus two of the five faces
will be horizontal, whichis case (ii). O

First, we wish to report all sets of one vertical edge and five faces that yields a form-closure
grasp. One vertical edge and two faces are necessary and sufficient to have a set of points that
satisfy the first condition of Lemma 8.2; C" is one vertical edge and two faces. Note that ¢" of
avertical edge e corresponds to a vertex wrench set of a polygon, and f h of aface f to an edge
wrench set of apolygon. See Figure 8.12 (a). Polyhedron P has O (n) facesand ¢ edges. Therefore,
the algorithm proposed in Section 3.3.2 can report A’ in O(nlogn + K') time.

We pick atriple of avertical concave edge and two faces from A’. Without loss of generality,
assume that the tripleis (egn, fw, fs); egn isfrom EN, fsisfrom S and fy isfrom W. The
triple induces three wrench sets fW, fs and Kiwg + Kowy, Where wy € égn e, Wy € €pnn,
0 < kiky < landeu + ko = 1. Lethy € éhyp hy € ehyy hw € fli and hs € fE.
Since (egn, fw, fs) € A, thereexist oy, e, as, ay, intheintervalsof 0 and 1, such that o hp +

12|n fact, this set can have one concave edge and four faces, because two fingers are allowed to be on one face.
13Remember that vertical edges and faces are parallel to the r, axis.
14Remember that horizontal edges and faces are parallel to the 7 7, plane.

106 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

) NP 1 r,
@ 2 /7) (©)
m(hs) b o X Ty rT Y
(f8)y o 4 w(Ji)
= m(hw) & T _
m(hy) () v ‘ > n: =0

Figure8.12: (a) The shapeinduced by é% ., f and f2 onT,. (b) Ain'V space. (c) 7(A) onT,,.

s N m(hg) M2
() (o) L . 2 E (b) _
ﬂ-(ég'U) : a1~ (67) ﬂ(f{}[/) !
m(hn) i) "

Figure 8.13: (a) The h componentsinduced by one horizontal edge e sy and threefaces fz, fv and fiy onT',y. (b) &
and A inV space.

ashy + ashy + ashg = 0, wherea; + o, = 1 and a3 + oy = 1. In other words, the intersection
point of two line segments 7(¢%,,) and w(hywhs) on T, is the projection of kg + axhy and
—(ashyw + auhg). See Figure 8.12 (a). We define A to be the set of pointsin V' space induced by
four fingers along the interior of exy, fuw and fs. Then A hasthe following form:

o UV UV AV AV
A= {awp + aovn + asvw + auvs | Vg € €y g UN € Epy vy Vv € fiy, vs € f§)

Replacing with the vectors given in Section 8.1.1 shows that A consists of vectors (0, —asp,, +
OyPzsy 1Pze — a?)pzw)T = (07 —Q2Dzn T Q4Dzs, O1P2n — a3pzw)Ta where Pzny Pzw and Dzs A€ in
some ranges. The equality holds because the finger on ez touches two incident faces from £ and
N.

When the fingers are at fixed positions, a1, as, a3 and ay are determined. Thus the three fixed
fingers induce a (closed) line segment § on the planen, = 0 in)V space. When the three fingers
moveintheinterior of ey, fs and fy independently, the segment § also movesin acertain region
on the planen, = 0. Thisregionis A, and it is a polygon of a constant complexity on the plane
n. = 0. The projection 7w(A) isaline segment on thelinen, = 0 on I',. When the edge e is from
other familiessuchas ES, W N or WS, the shapes of A and 7(A) are similar.

In phase I1, we wish to report all triangle triples from = (f) and = (f%) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A’. The phase |l of the agorithmin
Section 8.2.1 can report all such triangle triples, thus . A. There are O(n) red and blue triangles of
7(f;j) and 7(f ¥), thus the total time complexity to report all K sets of one vertical edge and five
faces that allow form-closure graspsis O(n>K'log* n + K).

Now we look at the case when C' is a horizontal concave edge and five faces. One horizontal
concave edge and three faces are necessary and sufficient to have a set of points that satisfy the
first condition of Lemma 8.2; C” is a horizontal concave edge and three faces. Note that ¢" of a
horizontal edge e and f h of aface f correspond to edge wrench sets of a polygon. See Figure 8.13
(8). There are O(n) faces and ¢ edges. Therefore, the algorithm proposed in Section 3.3.1 can
report A" in O(nlogn + K') time.

We pick a quadruple of a horizontal concave edge and three faces from .A’. Without loss of
generality, assume that the quadruple is (esu, fr, fv, fw); esv isfrom SU, frisfrom E, fy is

8.2 Computing all form-closure grasps of a rectilinear polyhedron 107

Figure 8.14: When r isinduced by a horizontal edge and three faces, the figures show the regions o to report (i) blue
triangle pairs, and (ii) one red triangle and one blue triangle that make ared and blue intersection with r .

from N and fy isfrom 1. The quadruple induces four wrench sets fr, fn, fir and kiws + Kowy,
where wg € éSU,Sa wy € éSU,Ua 0 < K1, Ko <1 and K1 + ko = 1. Let hE - fg, hN c f]}\Lf,
hw € flv, hsy € ey, hs € ey g and hy € el ;. Since (esu, fu, fn, fw) € A, there exist o,
g, as, vy, intheintervalsof 0 and 1, such that oy b + aohy + ashy 4 au(rkihg + kohy) = 0,18
where0 < k1 < 1,0 < ko < 1, k1 + ks =1, a1 + a3 = 1 and a3 + a4 = 1. In other words,
the intersection point of two line segments w(hrhy) and 7(hyhsy) on Ty, is the projection of
arhg + ashy and —(ashw + ay(k1hs + K2hy)). We define A to be the set of pointsin)V space
induced by four fingers along the interior of egyy, fz, fv and fi. The set A has the following
form:
A= {avg + vy + agvw + OZ4A(1{1VS + Kovy) |
Vg € fgal/N € foal/W € fII//V7VS S éEU,SUVU S éEU,U?
O<H1§1,0§/€2<1,/€1+l€2:1}

The set A consists of vectors of the form (ayks, —aop., + quk1p.s + ukoPyu, C1Pze — A3Pow —
a4/€2pxu)T = (054'%27 —QDzn T QyR1PDzs + AyR2Pysy X1Pze — A3Pzw — Oé4"£2p:vs)T- Note that Pysys Pzs
are fixed numbers, and that p.., p.,, p.., ad p,, are in some ranges.

When the four fingers are at fixed positions, o, as, az and «y are al determined. Thus the
four fixed fingers induce a (closed) line segment ¢, one endpoint of which lies on the planen. = 0
in V space. When the four fingers move in the interior of egy, fv, fg and fiy independently, the
segment ¢ also movesin a certain region. Thisregion is A, and it is a polyhedron of a constant
complexity with aface on the planer. = 0. The projection 7(A) isapolygon, aside of which lies
onthelinen, = 0. The shapesof A and 7(A) remain the same when the horizontal concave edge
isfrom other families. R X

In phase 11, we wish to report all triangle pairsfrom f;; and/or f}, with aset of points satisfying
the second condition of Lemma 8.2 with each set of .A’. Without |oss of generality, we assume that
7m(A) hasared part ry. For rg, al such face pairs belong to one of the following two cases: (i) the
convex hull of two blue triangles b, and b, of 7(f%) or m(f%) intersects r, in the interior, and (ii)
the convex hull of r, and ared triangle r; (of red 7(f%) or 7(f%)) intersects a blue triangle b, (of
blue 7 (f4) or x(f4)) in theinterior.

The blue triangle pairs of case (i) can be identified as follows. We pick a blue triangle b; from
7(f¥) orinz(f%), and compute the tangent lines ¢, and ¢, of b; and r, such that they separates b,
and ry. Let o denote the region bounded by ¢, ¢, and some edges of r,, such that ¢ contains the
interior of r,.1” We report all blue triangles intersecting o in the interior. See Figure 8.14 (i). We
build an order 2 tree described in Section 8.1.3 on the vertices of the O(n) blue triangles of 7()

5Note that hyy = 0.
18Since k1 hg must be a non-zero vector, x; must be non-zero, thus 2 must not be 1.
Thisis very similar to the case (i) in the previous case: avertical edge and two faces.

108 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

and (%) in O(n?) time, and report al k blue verticesin o in O(log? n + k) time. We also build
a segment intersection search structure on the sides of the O(n) blue triangles of = () and (%)
in O(n?log®n) time, and report al k sides intersecting the boundary of o in O(log* n + k) time.
The time complexity of case (i) isthus O(n?log? n + nK’log* n + K).

The face pairs of case (ii) can be identified similarly. We pick a blue triangle b; from w(f(’j) or
7(fg), and compute the tangent lines ¢, and ¢, of r, and b, such that they separate b, and r,. Then
we compute the region o as described in case (iii) in Section 8.2.1; o is the region bounded by /1,
/5, and some edges of b,8, such that o containsthe interior of b,. See Figure 8.14 (ii). A triangle
intersects o, if and only if it has at least one vertex in o, or its sides intersect the boundary of o.

We use the triangle search structure to identify al the vertices of red triangles in . When
o is bounded by four lines, we divide ¢ into two regions, each of which is bounded by at most
three lines. For example in Figure 8.14 (ii), o can be divided into b; and ¢ — b;. We store the
vertices of O(n) red triangles in a triangle search structure in O(n?logn) time, and report all &
red pointsin ¢ in O(log® n + k) time. We also build a segment intersection search structure on
the sides of O(n) red triangles of (%) and 7(f%) in O(n2log®n) time. We report all % sides
intersecting the boundary of o in O(log* n + k) time. The total time complexity of case (ii) isthus
O(n*log®n + nK'log" n + K).

We repeat these processes for the blue part of 7(A). Note that thiswill report all pairs of faces
from one family of U or D, or from two distinct families (one from U and the other from D).
There are O(n) red and blue triangles of «(f}) and =(f4), so the total preprocessing time for a
horizontal edge and five faces is O(n?1og® n). Hence the time complexity of reporting all sets of
an edge and five faces is O (n? log® n + nK'log* n + K).

Theorem 8.7 All K sets of one concave edge and five faces of P that allow form-closure grasps
with six frictionless point fingers can be enumerated in O(n? K’ log* n+ K) time, where K/ = | A|.

Two concave edges and three faces

We wish to report all sets of two concave edges and three faces'® that yield form-closure grasps
with five frictionless point fingers; C' is two concave edges and three faces. Remember that each
set of A reported by the algorithms presented in this section yields a form-closure grasp with five
fingers, and two of the five fingersinduce two face normals of one family of U or D. Toidentify all
sets of two concave edges and three faces that alow aform-closure grasp, we apply the algorithms
to P and rotated P with Rot, and Rot,. The following lemma shows that the algorithms on P and
rotated P with Rot; and Rot, can report all sets of two concave edges and three faces that yield
form-closure grasps.

Lemma 8.8 When we rotate a set of two concave edges and three faces that yields a form-closure
grasp with Rot, or Rot,, the rotated set belongs to one of the following four cases:

(i) two vertically parallel edges and three horizontal faces,
(if) two horizontally parallel edges, two vertical faces and one horizontal face,
(i) two horizontally skewed edges, two vertical faces and one horizontal face,

(iv) one vertical edge, one horizontal edge, one vertical face and two horizontal faces.

18At most two edges of b; bound o.
191 fact, this set can have two concave edges and two faces, because two fingers are allowed to be on one face.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 109

......

................

......

...............................

Figure 8.15: The four cases of the relative positions of two edges of P.

Proof: Note that an edge pair is either parallel or skewed. More precisely, when two edges are
paralel, they can be both vertical or both horizontal. When two edges are skewed, they can be
both horizontal edges, or one vertical edge and one horizontal edge. See Figure 8.15. All these
four cases of an edge pair match the four cases of an edge pair stated in the lemma.

We take any set of two concave edges and three faces of P that yields a form-closure grasp
with five fingers. Since two edges and three faces involve seven face normals, five face normals
are for five families (one for each family), and two face normals are for one family. If two of the
five fingers induce two face normals of afamily U or D, then we are done. Hence we will look at
the cases when two fingers induce two face normals of afamily of £, W, N or S. If there are two
face normalsof £ or W, we apply Rot; thethree face normalsof £ and IV rotated with Rot; will
become three face normals of D and U. If there are two face normals of NV or S, we apply Rots;
the three face normals of /V and S rotated with Rot, will become three face normalsof D and U.
Note that these three face normals could be induced by the fingers on edges. Next we will look at
the four cases of the relative positions of two edges.

First, we look at the case of two vertical edges and three faces that yield a form-closure grasp.
When we rotate any vertical edge with Rot; or Rot,, it becomes horizontal—see Table 8.1. Thus
when we rotate a set of two vertical edges and three faces with a form-closure grasp, this set
becomes a set of two horizontal edges and three faces. Observe that the set of two horizontal edges
and three faces induces three face normals of D and U, two of which are induced by two fingers
on two horizontal edges. Hence this set has two horizontally parallel edges, two vertical faces and
one horizontal face (case (ii)).

Let us look at the second case of two horizontally parallel edges and three faces that yield a
form-closure grasp. Without loss of generality, assume that two fingers induce two face normal s of
E. When we rotate a horizontally paralel edge pair from EU, ED, WU and/or W D with Rotq,
it remains as a horizontally parallel edge pair—see Table 8.1. Observe that thisrotated set induces
three face normals of D and U, two of which are induced by two fingers on the two horizontal
edges. Thus this set remains as two horizontally parallel edges and three faces of case (ii). When
we rotate a horizontally parallel edge pair from NU, ND, SU and SD, it becomes a vertical edge
pair—see Table 8.1. The rotated set induces three face normals of D and U. Since both of the two
edges are vertical, none of these three face normals is induced by the fingers on the edges. Thus
this rotated set istwo vertical edges and three horizontal faces of case (i).

110 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

Now we look at the case of a horizontally skewed edge pair and three faces that yield a form-
closure grasp. Without loss of generality, assume that two fingers induce two face normals of E.
Note that two horizontally skewed edges have one edge from EU, ED, WU and W D, and the
other edge from NU, ND, SU and SD. When we rotate a horizontally skewed edge pair with
Roty, this set becomes one vertical edge and one horizontal edge—see Table 8.1. Observe that the
set of one vertical edge, one horizontal edge and three faces induces three face normals of D and
U, one of whichisinduced by the finger on the horizontal edge. Thusthisrotated set isone vertical
edge, one horizontal edge, one vertical face and two horizontal faces, which is case (iv).

Finally, we look at the case of one vertical edge, one horizontal edge and three facesthat yield a
form-closure grasp. Without loss of generality, assume that two fingers induce two face normals of
E. When we rotate a vertical edge with Rot, it becomes horizontal. When we rotate a horizontal
edge from EU, ED, WU and W D with Rot, it remains horizontal—see Table 8.1. Observe that
this set of two horizontally skewed edges and three faces induces three face normals of D and U,
two of which are induced by two fingers on two horizontal edges. Thus the rotated set will be a
horizontally skewed edge pair and three faces, which is case (iii). When we rotate a horizontal
edge from NU, ND, SU and SD with Rot,, it becomes verticall—see Table 8.1. Observe that
this rotated set induces three face normals of D and U, one of which isinduced by a finger on the
horizontal edge. Hence this rotated set will be one vertical edge, one horizontal edge and three
faces, which is case (iv). O

We first look at the case of two vertical edges and three faces of case (i) that yield a form-
closure grasp. Two vertical edges are necessary and sufficient to have a set of points that satisfy
the first condition of Lemma8.2; C’ istwo vertical edges. Notethat ¢ of avertical concave edge e
corresponds to a vertex wrench set of a polygon. See Figure 3.17 (c). There are ¢ vertical concave
edges, so the algorithm proposed in Section 3.3.3 can report A’ in O(tlog*t + K') time.

We pick an edge pair from .4’. Without loss of generality, assume that the pair is (e gx, ews)-
The edge pair induces two wrench sets kiwg + kowy and yiww + Yaws, Where wy € épn g,
WN € EpNN, W € Ewsw, Ws € éws,s, 0 < Ky, ko, 71,72 < 1, k1 + ke = 1andy + 9, = 1.
Let h € ey g hv € €y s hw € €l gy ad hg € €l g 5. Since (epn, ews) € A, there exist
a1, (g, i3, (g AMONG K1, ke, 71 aNd 7o respectively, such that by + aohy + ashy + auhg = 0,
where a; + a; = 1 and a3 + a4 = 1. Notethat vy, as, as, ay are determined because w(hghy)
and 7(hwhg) are two intersecting line segments on I';,. We define A to be the set of pointsin V
space induced by the two fingers iding on e gy and ey 5. The set A has the following form:

[sV AV N2 AV

The set A consists of vectors (0, —aop., + aup.s, 01Pze — 3Pzw) = (0, —QoPon + QuPas, A1 —
asp.s)T, where the p.,, and p., are in some open ranges. The equality holds because the finger at
epn touches two incident faces from £ and N, and the finger at ey s touches two incident faces
from W and S. The set A isapolygon of a constant complexity on the planen., = 0 in) space,
and the projection 7(A) isaline segment on thelinen, =0onT,.

In phase Il, we wish to report all triangle triples from w(f{j) and w(f[”)) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A’. The phase Il of the algorithm
in Section 8.2.1 can report al such triangle triples, thus .A. There are O(n) faces from U and D,
therefore, the total time complexity of thiscaseis O(n?K’log* n + K).

We now look at the case of two horizontal edges and three faces that yield a form-closure
grasp. These horizontal edges can be parallel or skewed. In any case, two horizontal edges and
two faces are necessary and sufficient to have a set of points that satisfy the first condition of
Lemma 8.2; C" istwo horizontal edges and two faces. The algorithm in Section 3.3.1 can report

8.2 Computing all form-closure grasps of a rectilinear polyhedron 111

A"inO(nlogn + K') time; there are O(n) faces and ¢ edges.

We pick a quadruple from A’. We first look at the case when the two horizontal edges are
parallel. Without loss of generality, assume that the quadruple is (e gi, ewp, fn, [s); egv isfrom
EU, ewpisfromWD, fyisfromN and fsisfrom S. The quadrupleinducesfour wrench sets s
fs, kiwg + Kewy and yywy + yowp, Where wg € €pp g, wu € épuu, Www € éwp,w, Wp € Ewp. Dy
0 <Ky, ke, M, V2 < 1, k1 + Ko =1 and 71+ 72 = 1. Let hg € é}LL?U,E’ hy € é%U,U’ hw € éeVD,W’
hp € é}‘ﬁvaD, hy € f]}\Lf and hg € fg Since (eEU7€WD7fN7fS) e A/, there exist 1, Qig, (3, Oy
inthe intervalsof 0 and 1, such that Oél(lﬁhE + K,QhU) + ashy + Odg(’hhw + ”)/QhD) + ashg = 6
for 0 < Ki,v1 < 1,0 < Ko, V2 < 1% (/€1 + Ky =1 and’}/l + 72 = 1), Where@l +ay =1 and
as + a4 = 1. We define A to be the set of pointsin V' space induced by four fingers along the
interior of egy, ewp, fy ad fs. The set A hasthe following form:

A {Oq(/ﬁVE + Kovyy) + OZ2VN + 053('71VW + '727/D) + auvg |

0< ki, m <1,0< Ko < 1, H1+/€2—1771+72—1}

The set A consists of vectors (aiky — i3y, —QaPan + KDy — A3Y2Dyd + QaPss, V1K1Pze —
1 KoPau — O3Y1Pzw + 03Y2Dza)| = (K2 — Q3Y2, —QoPan + 01 KoDye — A3Y2Pyw + QuPzs; 1K1 Pze —
Q1 K9Pre — Q3V1Daw + A372Dsw) " - NOt€that pue, Pucy Daw, P2w e fixed numbers, and p.,., p.s, Pye,
Py arein someranges. Also notethat a4, o, g, g are in the ranges dictated by the equation.

A fixed position vector on egy, ewr, fv and fg determines o, as, as and ay; only k1, ko 71
and -, are variable. This implies that the fingers at fixed positions induce a tetrahedron 6 in V
space, whose vertices are determined by the combinations of the extreme values of 1, k2 v and
Yo, SUChask, = 1, ke = 0,and y; = 0, 72 = 1. The vertices of 6 move continuously in certain
regions, which are polytopes of constant complexities. Note that one vertex of any ¢ lies on the
planen, = 0in) space. The set A isaconvex polytopein V' space, thus7(A) isaconvex polygon
onI',. A hasaface ontheplanern, = 0, thus7(A) hasaside onthelinen, = 0. The shapes of A
and w(A) for two horizontally parallel or skewed edges and two faces of other cases are similar to
these described above. R R

In phase I, we wish to find al triangles from 7 (f;;) and 7 (f};), such that each triangle has
a set of points satisfying the second condition of Lemma 8.2 with each set of A’. Assume that

m(A) has ared part, and we call it ry. The case of a blue part of 7(A) is similar. We report
al blue triangles of «(f) and 7(f%) on T',, which intersect r,. A blue triangle intersects r, in
the interior, if and only if one of the following holds: (a) the red and blue boundary segments
intersect each other in theinterior, or (b) a blue vertex is contained in the red query triangle or vice
versa. To identify these intersections, we use the segment intersection structure and the triangle
search structure. We store the sides of O(n) blue triangles in a segment intersection structure in
O(n?*log® n) time, and report al k blue sidesintersecting ared line segment in O (log* n + k) time.
We aso store the vertices of O(n) blue trianglesin atriangle search structurein O(n?log n) time,
and report all k& blue verticesin ared trianglein O(log® n + k) time. The total time complexity is
thus O(n?log® n + K'log" n + K).

Finally, we look at the case of one vertical edge, one horizontal edge and three faces that yield a
form-closure grasp. One vertical edge, one horizontal edge and aface are necessary and sufficient
to have a set of points that satisfy the first condition of Lemma 8.2; C” is one vertical edge, one
horizontal edge and a face. Note that ¢" of a horizontal edge e and f* of a face f correspond
to edge wrench sets of a polygon. There are O(n) faces and ¢ edges. Therefore, the algorithm

28ince k1 h g and v1 hyy must be non-zero vectors, 1 and 1 must be non-zero, thus k2 and v2 must not be 1.

112 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

proposed in Section 3.3.2 can report A’ in O(nlogn + K') time.

We pick atriple of one vertical edge, one horizontal edge and a face from A’. Without loss of
generality, assumethat itis (egn, esu, fw); egn isfrom EN, egy isfrom SU, and fyy isfrom W,
Let by € ey iy hy € €y b € fli, his € élyy g and by € élyy; . With the same argument in
the case of a concave edge and five facesin Section 8.2.2, there exist a1, as, as, a4 intheintervals
of 0 and 1, suchthat vy h g +ashn +ashw +as(ki1hs +rahy) = 0for0 < sy <land0 < ko < 1,
where k1 + ko = 1. We define A to be the set of pointsin V space induced by three fingers along
theinterior of egy, esy and fy,. The set A hasthe following form:

A= {alVE + aovy + asvy + Oé4(l€17/5 + IiQVU) ‘

0 < Ky §1,0§ﬁ2<1,/€1+l€2:1}.

The set A consists of vectors (akia, —ap.n + Quk1Pas + QukaDyu, A1Dze — 3Paw — CakaPiy)’ =
(044/127 —Q2Dzn + OyR1Pzs + QyRoPys, X1Pzn — X3Pz — 044/12pxs)T; Wherepym Pys and pus A€ fixed
numbers, and p.,,, p.., and p,, arein someintervals.

When the finger positions arefixed, only x; and , are variable, thus they induce aline segment
0 in'Y space; the extreme values of «, and ko determinesthe endpointsof §: whenx, = 0, ko = 1,
and when k; = 1, ko = 0. Note that an endpoint of ¢ is on the plane ., = 0. When the three
fingers movein the interior of egy, esy and fi independently, the corresponding segment 6 al'so
moves in a certain region. Thisregion is A, and it is a polyhedron of a constant complexity, a
face of which lies on the plane n, = 0. Thus the projection 7(A) is a polygon, a side of which
liesonthelinern, = 0 onT',. See Figure 8.14. The shapes of A and 7(A) of other cases such as
(egn,es, fwo) are similar to these described above.

In phase 11, we wish to report all triangle pairs from fg and/or f,g with aset of points satisfying
the second condition of Lemma 8.2 with each set of A’. The phase Il of the algorithm for the case
of a horizontal edge and five faces in Section 8.2.2 can report all such triangle pairs, thus A in
O(n?*log®n + nK'log" n 4+ K) time; there are O(n) faces.

Theorem 8.9 All K sets of two parallel and skewed concave edges and three faces of P that allow
form-closure grasps with five frictionless point fingers can be enumerated in O(n2K’log* n + K)
and O(n?log®n +nk'log" n + K) time, respectively, where K’ = | A|.

Three concave edges and one face

We wish to report all sets of three concave edges and a face that yield form-closure grasps with
four frictionless point fingers; C' is three concave edges and a face. Remember that each set of .4
reported by the algorithms presented in this section yields a form-closure grasp with four fingers,
and two of the four fingers induce two face normals of afamily of U or D. To identify all sets of
three concave edges and a face that allow a form-closure grasp, we apply the algorithmsto P and
rotated P with Rot, and Rot,. The following lemma shows that the algorithms on P and rotated
P with Rot; and Rot, can report all sets of three concave edges and aface that yield form-closure

grasps.

Lemma 8.10 When we rotate a set of three concave edges and one face that yields a form-closure
grasp, with Rot, or Rot,, the rotated set belongs to one of the following two cases:

() two horizontal edges, one vertical edge, and a horizontal face,

(i) three horizontal edges and a vertical face.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 113

Proof: We take any set of three concave edges and a face of P that yields a form-closure grasp
with four fingers. Any set of three edges belongs to one of the following four cases. (a) two
horizontal edges and one vertical edge, (b) three horizontal edges, (c) two vertical edges and one
horizontal edge, and (d) three vertical edges. Fingers on three vertical edges and a face (case (d))
cannot yield aform-closure grasp, because fingers on vertical edges never induce a face normal of
U or D, and we have only one face to cover both families of U and D. Without loss of generality,
we place a finger on aface from U. Then no finger induces a face normal of D, thus the fingers
fail to achieve form-closure. Hence the set of three concave edges and a face of P that yields a
form-closure grasp belongsto one of the first three cases (a), (b) and (c).

We first look at the case when fingers on two horizontal edges, a vertical edge and aface yield
aform-closure grasp (case (8)). If this set induces two face normals of a family of U or D, then
we are done. If this set induces two face normals of afamily of £, W, N or S (the face normals
could be induced by the fingers on edges), then we apply Rot, or Rot, accordingly. Without loss
of generality, assume that the set induces two face normals of £. Then we rotate the set with
Rot;. The three face normals of £ and W rotated with Rot; will become three face normals
of D and U, which may be induced by the fingers on edges. When we rotate any vertical edge
with Roty, it becomes horizontal—see Table 8.1. When we rotate two horizontally skewed edges
with Rotq, they become one vertical edge and one horizontal edge—see the proof of Lemma 8.8
and Table 8.1. When we rotate two horizontally parallel edges from EU, ED, WU and W D
with Rot, they remain astwo horizontally parallel edges—see Table 8.1. The set cannot have two
horizontally parallel edgesfrom NU, N D, SU and SD. If it does, it must induce two face normals
of IV or S, which contradicts that it induces two face normals of £.2 Therefore, the rotated edge
triple will be one of the two combinations: (1) two horizontal edges and one vertical edge, (2) three
horizontal edges. Since the rotated set involve three face normalsof D and U, for the combination
of (1), two of the three face normals are induced by two fingers on the two horizontal edges. Thus
we need a horizontal face for two horizontal edges and one vertical edge to yield a form-closure
grasp, which leads to case (i). Likewise, for the combination of (2), all three face normals of D
and U are induced by three fingers on the three horizontal edges. Thus we need a vertical face for
three horizontal edges to yield aform-closure grasp, which leads to case (ii).

We now look at the case when fingers on three horizontal edges and aface yield aform-closure
grasp (case (b)). Since a horizontal edge isincident to a horizontal face, this set of case (b) already
involves three face normals of U and D. The vertical faces that the three horizontal edges are
incident to must be from three distinct families. Thus we need a vertical face for three horizontal
edges and aface to yield a form-closure grasp, which leads to case (ii).

Finally we look at the case when fingers on two vertical edges, one horizontal edge and aface
yield a form-closure grasp (case (¢)). Observe that this set involves two horizontal face normals
and five vertical face normals. Thisimpliesthat two fingers induce two face normals of afamily F,
W, N or S. Without loss of generality, assume that the set inducestwo face normalsof £. Thenwe
rotate the set with Rot,. When werotate any vertical edge with Rot, it becomes horizontal. When
we rotate any horizontal edge with Rotq, it may either remain horizontal, or become vertical. See
Table8.1. Therefore, the rotated edge triplewill be one of the two combinations: (1) two horizontal
edges and one vertical edge, (2) three horizontal edges. As shown in handling case (@), these two
combinations lead to case (i) and case (ii) respectively. O

We wish to report all sets of three horizontal edges and a face that yield form-closure grasps
with four frictionless point fingers; C' is three horizontal edges and a face. We need all of three
horizontal edges and aface to have a set of pointsthat satisfy the first condition of Lemma8.2; C’

21|f the set induces two face normals of afamily N or S, we should rotate P with Rot, not with Rot .

114 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

isthree horizontal edges and aface. In phase |, the algorithm proposed in Section 3.3.1 can report
A" in O(nlogn + K') time. In phase Il, we check whether each set of A’ satisfies the second
condition of Lemma 8.2; we need the whole set of three horizontal edges and a vertical face to
compute the coefficients a1, ap, a3 and a4, which aso determines the coefficients 35, G¢ and 37 in
Lemma8.2.

Now we provide an efficient algorithm to report all sets of two horizontal edges, one vertical
edge, and one horizontal face. Two horizontal edges and one vertical edge are necessary and
sufficient to have a set of points that satisfy the first condition of Lemma 8.2; C’ is three edges.
Note that ¢ of a horizontal edge e corresponds to an edge wrench set, and ¢ of a vertical edge
e to a vertex wrench set of a polygon. There are ¢ edges. Therefore, the algorithm proposed in
Section 3.3.2 can report A’ in O(tlogt + K') time.

We pick atriplefrom A’. Without loss of generality, assumethat thetripleis (e g, ewp, esv);
epy isfrom EN, egy isfrom SU and ey p isfrom WD. Let hp € e}y 5, hn € ehy o b €
Eypwr hp € éypp, hs € ély g and hy € ey ;. With the same argument in the case of a
concave edge and five faces in Section 8.2.2, there exist a1, as, as, a4 in the intervals of 0 and
1, such that arthg + ashy + Oé3(’71hw + ’}/QhD) + OZ4(I€1 hS + lighU) = 6f0r 0 < K1, 71 < 1,
0 <Ko, vo<1l(ki+kry=1andy +~ =1),wherea; +ay =1and az + ay = 1. We define A
to be the set of pointsin V space induced by three fingers along the interior of e gy, esy and ey p.
The set A has the following form:

A= {oqvg + aovy + as(ivw + Yavp) + au(ky vs + ko) |
VE € €pNps VN € Epn Ny VW € Elypws VD € €lyp ps Vs € €5y s, VU € €5
0<hi,1 <1,0< Ko, y2 <Lk +hoy =17+ =1}

The set A consists of vectors (auka — as7ya, —QoP.n — Q3V2Pyd + QuRK1Dzs + QukaPyu, 01Pze —
3V D20+ A3Y2Ped— QakoDeu)’ = (Quka =32, —02D2pn — A3Y2Pyw + 4k Das Qs koPys—, 01 Pan —
A3Y1Pzw + A3Y2Prw — 04452sz)T, Wherepzsa Pyss Pzws Pzw are fixed numbersa and Pzns Pyw and Pzs
are in some ranges.

When the position vectors are fixed, a1, as, a3z and ay, are also determined; only x1, k2 1 and
v, are variable. Thisimpliesthat the fingers induce a tetrahedron § in) space, whose vertices are
determined by the combinations of the extreme values of «1, k2 71 and 2. When the three fingers
move in the interior of egy, esy and ey p independently, the corresponding 6 also moves in a
certain region. Thisregionis A, and it isa convex polytopein)V space; 7(A) isaconvex polygon
onI',. The shapes of A and w(A) for other sets of an edge triple are similar to these described
above.

In phase I, we wish to find all triangles from w(f('j) and w(f[”)) with a set of points satisfying
the second condition of Lemma 8.2 with each set of A’. The phase Il of the algorithm for the
case of two horizontal edges and three faces in Section 8.2.2 can identify all such triangles in
O(n?log? n + K'log* n + K) time; there are O(n) triangles of (/%) and 7(f%).

When t is sufficiently small, we can find A in a brute-force manner. When ¢ < n'/3, we report
AinO(t*n) time.

Theorem 8.11 All K sets of two horizontal edges, one vertical edge and one face of P that yield
form-closure grasps with four frictionless point fingers can be enumerated in:

1. O(t3n) time, whent < n'/3,

2. O(n?log?n + K'log*n + K) time (K’ = | A|), whenn'/3 <t < n.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 115

8.2.3 Combinations of faces and concave vertices

Let m be the number of concave vertices of arectilinear polyhedron P. In this section, we report
all combinations of faces and concave vertices that alow form-closure grasps with at most five
frictionless point fingers. The combinations that we consider in this section are: (i) one concave
vertex and four faces, and (ii) two concave vertices and one face.

One concave vertex and four faces

We wish to report all setsof one concave vertex and four faces? that yield form-closure grasps with
five frictionless point fingers; C' is a concave vertex and four faces. Remember that each set of A
reported by the algorithms presented in this section yields a form-closure grasp with five fingers,
and two of the five fingers induce two face normals of afamily of U or D. To identify all sets of
a concave vertex and four faces that allow aform-closure grasp, we apply the algorithmsto P and
rotated P with Rot, and Rot,. Thefollowing lemma showsthat the algorithmson P and rotated P
with Rot, and Rot, can report all sets of aconcave vertex and four faces with form-closure grasps.

Lemma 8.12 When we rotate a set of a concave vertex and four faces that yields a form-closure
grasp with five fingers, using Rot; or Rots, the rotated set becomes a set of a concave vertex and
four faces, such that two of the five fingers induce two face normals of a family of U or D.

Proof: We take any set of a concave vertex and four faces that yields a form-closure grasp with
fivefingers. If two of the five fingers induce two face normals of afamily of U or D, we are done.
Hence we look at the case when the two fingers induce two face normalsof £, W, N or S.
Without loss of generality, assume that two fingers induce two face normals of £. When we
rotate a concave vertex with Rot, it is till incident to three faces. one from E or 1/, one from NV
or S, and one from U or D. And the two face normals of £ will be two face normals of D, with
ROtl . O
One vertex and two faces are necessary and sufficient to have a set of points that satisfy the
first condition of Lemma 8.2; C' is a concave vertex and two faces. We first see the shape of "
of a vertex v on I';,. Without loss of generality, we take a vertex vgyy from ENU. A finger
a vpny induces a wrench set ,ulf)ENUE + ILLQ@ENUVN + M3@ENU,U23 for all 0 < gy o, iy < 1,
where iy + 1o + ps = 1. Note that (19) for al py and m(p0f) for al p, map to
two points on ', thus 7 (11 0y g2 0 vy,) fOF @ny g and i, forms aline segment. Therefore,

h of a vertex v corresponds to a vertex wrench set, and f* of aface f corresponds to an edge
wrench set of a polygon. There are O(n) faces and m vertices, therefore, the algorithm proposed
in Section 3.3.2 can report A" in O(nlogn + K') time.

We pick a triple of a concave vertex and two faces from A’. Without loss of generdity, as-
sume that the triple is (venu, fw, fs); veny isfrom ENU, and fy and fg are from W and S
respectively. The triple induces three wrench sets fW, fS and (1 0pNu,E + HeVeNUN + UsOENUU-
Let hp = Ofnpp by = Oypns hy = g, hw € fl and hs € fE. When 1 = 0, there
exist oy, o, a3 and ay in the intervals of 0 and 1, such that o he + ashy + ashy + ashg = 0,
where a; + a3 = 1 and a3 + a4 = 1, because (venu, fw, fs) € A’. Thisimpliesthat 1, and
11> can be any number, aslong as i1 : pis = ay : as. Since hy = 0, py can aso be any num-
beraslongas0 < ps < 1. Thuswe set i1y = Kiaq, flo = Kiow and g = k924 Then we get

22|n fact, this set can have one concave vertex and three faces, because two fingers are allowed to be on one face.
BNotethat opNv, B, VENU, N @d OpNp,u are three wrench points.
240bserve that k11, k12 and ko areintheintervalsof 0 and 1, and k1 ag + k1o + ko = 1.

116 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

/il(OélhE‘i‘Odth) +/€2hU‘|‘O€3hW +Od4hs = 6f0r 0<r <1,0< Ky < 1,25 Wherelil + ko = 1.
We define A to be the set of pointsin) space induced by three fingers at v, and anywhere on fy,
and fs. The set A hasthe following form:

A = {/’il(Odll/E + OQVN) + Rolry + Q3w + Vg ’

— NV ey 7 Y 7 Al/ AV
vE = Upnu.py VN = UpNuns VU = Upnuos Yw € Jis Vs € f§,
0< kr < 1,0§/§,2 < 1,/4,1—'—/12:1}.

The set A consists of vectors (/4'27 —Q2K1Pzn + KoPyu + OyPzsy O1R1Pze — K2Pau — Oészw)T =
("127 —QoR1Pzn + Kprn + WYPzs, O1R1Pzn — K2Pxn — Oészw)T’ Wherepzna Pan, pyn are flxed numbers,
and p., and p.,, arein some ranges.

The finger positionson vgyy, fiy and fs determine the coefficients o, aws, as and ay; only xq
and x4 are variable. Hence the three fingers at fixed positionsinduce aline segment 6 in) space;
the extreme values of «; and x5 determine the endpoints of 9. Observe that an endpoint of A ison
the plane n, = 0, (the endpoint for the case when x; = 1 and xk, = 0). When afinger isat vgyy
and the two fingers move in the interior of fy, and fs independently, the corresponding segment
0 also movesin acertain region in) space. Thisregionis A, and it is a convex polytope, a face
of which lies on the plane r, = 0. The projection of A isa polygon, an edge of which lies on the
linen, = 0 onT',. When the vertex is from other families, the shapes of A and 7(A) are similar to
these described above. X R

In phase |1, we wish to report all triangle pairs from 7 (f;) and =(f},) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A’. The phase Il of the algorithm
for the case of a horizontal edge and five faces in Section 8.2.2 can report al such triangle pairs,
thus A in O(n?log® n + nK'log* n + K) time; there are O(n) faces.

Theorem 8.13 Then all K sets of one concave vertex and four faces of P that yield form-closure
grasps with five frictionless point fingers can be enumerated in O(n2log®n + nk'log*n + K)
time, where K’ = | A.

Two concave vertices and one face

We wish to report all sets of two concave vertices and one face that yield form-closure grasps with
three frictionless point fingers; C' is two concave vertices and one face. Remember that each set
of A reported by the algorithms presented in this section yields a form-closure grasp with three
fingers, and two of the three fingers induce two face normals of afamily of U or D. To identify all
sets of two concave vertices and a face that allow a form-closure grasp, we apply the algorithms
to P and rotated P with Rot; and Rots. The following lemma shows that the algorithms on P
and rotated P with Rot; and Rot, can report all sets of two concave vertices and a face with
form-closure grasps.

Lemma 8.14 When we rotate a set of two concave vertices and a face that yields a form-closure
grasp, with Rot; or Rot,, the rotated set becomes a set of two concave vertices and a face, such
that it induces two face normals of a family of U or D.

Proof: We take any set of two concave vertices and a face of P that yields a form-closure grasp
with five fingers. If it induces two face normals of a family U or D (these face normals could be
induced by two fingers at the vertices), then we are done. Hence we will look at the cases when it
induces two face normals of afamily of £, W, N or S.

3gince k1 (a1 hp + azhy) must be anon-zero vector, x; must be non-zero, thus k2 must not be 1.

8.2 Computing all form-closure grasps of a rectilinear polyhedron 117

Without loss of generality, assume that the set induces two face normals of £. When we rotate
aconcave vertex with Rotq, it is ill incident to three faces. one from E or W/, one from N or S,
and onefrom U or D. With Rot,, the two face normals of £ will be two face normals of D. O

A face must be horizontal, if the face and two concave vertices yield a form-closure grasp and
they induce two face normals of afamily U or D. Thus C” is two concave vertices, because they
can have a set of points satisfying the first condition of Lemma8.2. There are m concave vertices,
therefore, the algorithm proposed in Section 3.3.3 can report A’ in O(m log® m + K') time.

We pick avertex pair from A’. Without loss of generality, assumethat the pair is (v gy, vwsp);
VENU isfrom ENU and VW SD isfromWSD. Let hgp = @%NU,E’ hy = @%NU,N’ hy = Q%NU,U’
hw = Wyspw» hs = Uysp.s @d hp = Ofy s p. With the argumentsin the case of one concave
vertex and four facesin Section 8.2.3, there exist oy, «, g, v intheintervalsof 0 and 1, such that
/ﬂ)l(OdlhE‘ "—OCQ}LN) + kohy +")/1(063hw —|—Oé4hs) +"}/2hD =0for0 < K, 71 < land0 < Ko, v < 1,
whererk; + ke = 1,11+ % =1, a1 +ay =1and az + a4 = 1. Twofingersat vgyy and vy sp
induce the whole set of pointsof A in) space, which has the following form:

A = {ri(oqvg + avn) + kevy + i(asvw + auvs) + Yorp |
NV ey 7 ey 7 Y 7 Y 7
Ve = VgNnu,py VN = VgnUu,N» VU = VEnUuu: YW = Vwspw» VS = Vwsp,s:
vp = Oyspp, 0 < k1,1 < 1,0 < koo <1k + R = 1,71+ 72 =1}

Then A consists of vectors (/{2 — V2, —Q2R1Pzn + R2Pyu + Ay V1Pzs — V2Pyds “1R1Pze — K2Pzu —
A3Y1Pzw +’y2pxd)T = (HQ — 72, —Q2R1Pzn + K2Pyn + Ay V1Pzs — V2Pyss X1K1P2n — K2Pxn — Q4Y1Pz2s +
Y2pzs) . Observe that the position vectors are all fixed. This determines oy, o, a3 and oy aswell,
hence only k1, ko, 1 @and ~, are variable. When k1, ko, 71 and ~, have the extreme values 0 and
1, they make the four vertices of A—A is a tetrahedron. The projection of A on I',, is a convex
quadrilateral in general. Note that A and 7(A) for the other vertex pairs from .4’ are similar to
these described above. X R

In phase 11, we wish to find all triangles from = (f};) and = (f},) with a set of points satisfying
the second condition of Lemma 8.2 with each set of A’. The phase Il of the algorithm for the
case of two horizontal edges and three faces in Section 8.2.2 can identify all such triangles in
O(n?log? n + K'log* n + K) time; there are O(n) triangles of (%) and 7(f%).

When m is sufficiently small, we can find A in a brute-force manner. When m < n'/2, we
report A in O(m?n) time.

Theorem 8.15 All K setsof two concave vertices and one face of P that allow form-closure grasps
with three frictionless point fingers can be enumerated in:

1. O(m?n) time, when m < n'/2,

2. O(n?log’n + K'log*n + K) time (K’ = | A|), when n'/? < m < n,

8.2.4 Combinations of concave vertices, concave edges and faces

Let n, t and m be the numbers of faces, concave edges and concave vertices of arectilinear poly-
hedron P. Inthissection, we report all sets of one concave vertex, one concave edge and two faces
that allow form-closure grasps with four frictionless point fingers. We do not consider one concave
vertex and two edges, because Lemma 8.2 does not provide an efficient algorithm for this case.
We wish to report al sets of one concave vertex, one concave edge and two faces® that allow
form-closure grasps with four frictionless point fingers. Remember that each set of A reported by

2|n fact, this set may have one concave vertex, one concave edge and one face, because two fingers are allowed to be on one face.

118 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

the algorithms presented in this section yields a form-closure grasp with four fingers, and two of
the four fingers induce two face normals of afamily of U or D. To identify all sets of one concave
vertex, one concave edge and two faces that allow a form-closure grasp, we apply the algorithms
to P and rotated P with Rot, and Rots. The following lemma shows that the algorithmson P and
rotated P with Rot; and Rot, can report all sets of one concave vertex, one concave edge and two
faces with form-closure grasps.

Lemma 8.16 When we rotate a set of one concave vertex, one concave edge and two faces that
yields a form-closure grasp, with Rot, or Rot,, the rotated set becomes one of the two cases:

(i) one concave vertex, one vertical concave edge and two horizontal faces,

(if) one concave vertex, one horizontal concave edge, one vertical face and one horizontal face.

Proof: We take any set of one concave vertex, one concave edge and two faces of P that yieldsa
form-closure grasp with four fingers. If two of the four fingersinduce two face normals of afamily
U or D (the face normals could be induced by the finger on the edge), then we are done. Hence we
will look at the cases when two fingers induce two face normals of afamily £, W, N or S.

Without loss of generality, assume that two fingers induce two face normals of £. When we
rotate a concave vertex with Rot,, it is still incident to three faces. one from E or W, one from
N or S, and one from U or D. When we rotate a vertical edge with Rot,, it becomes horizontal.
When we rotate a horizontal edge with Rot, it either remains horizontal or becomes vertical. See
Table 8.1. Observe that the rotated set involves three face normals of D and U. When the edge
is vertical, only one of these three face normals is induced by afinger at the vertex. Thisimplies
that the two faces are horizontal, which leads to case (i). When the edge is horizontal, two of these
three face normals are induced by two fingers at the vertex and on the horizontal edge. Thisimplies
that one face is horizontal, and another face is vertical, which leads to case (ii). O

When the edge is vertical, a vertex and an edge are necessary and sufficient to have a set
of points that satisfy the first condition of Lemma 8.2; C” is a vertex and an edge. There are
m vertices and ¢ edges. Therefore, the algorithm proposed in Section 3.3.3 can report A’ in
O(max(m, t) log® max(m, t) + K') time.

We pick a pair of a concave vertex and a vertical concave edge from 4’. Without loss of
generality, assume that the pair is (venu, ews); veny iSfrom ENU and ey g isfrom WW.S. We
define A to be the set of pointsin V space induced by the two fingers at vz and anywhere on
ews. With the argumentsin the case of a horizontal concave edge and four faces in Section 8.2.2
and in the case of one concave vertex and four facesin Section 8.2.3, we have thefollowing formula
for A:

A = {ri(oqvg + aovy) + Kovy + asvw + agvs |

— NV — NV e 7 SV SV
VE = VpNu,er VN = VENUN> VU = VEnuu VW € Elysw, Vs € Cys s
0<kr <1,0< Ry < 1,/‘614—/12:1}.

Since (0% ;) and w(ély,) areline segmentson 'y, ay, v, a3 @nd oy are fixed numbers. The set
A consistsof vectors (H% _a2/{1pzn+"i2pyu+a4pzsa Oélﬁlpze_"iQpacu_a?)pzw)T = (/{27 —0R1Pznt
R2Pyn + QyPzs, 1K1Dzn — K2Pan — a?)pzs)T- Note that DPzs isina range, and Pzns Pyn and Den A€
fixed numbers. The equality holds because one finger at v induces three face normalsof £, N
and U, and another finger on ey, s induces two face normalsof S and 1.

The finger position at e determines the coefficients o, as, as and ay; only x; and x, are
variable. The two fingers at vy and anywhere on ey, s induce a line segment 6 in) space, one
end point of which lies on the plane . = 0. When one of the two fingers move in the interior of

8.2 Computing all form-closure grasps of a rectilinear polyhedron 119

ew s, the corresponding segment ¢ also movesin acertain regionin) space. Thisregionis A, and
it isaconvex polytope, aside of which lieson the planen, = 0 in 'V space. The projection 7(A)
isaconvex polygonwithasideonthelinen, = 0 onT',. The shapesof A and 7(A) are similar to
these described above, when the edge and the vertex are from other families.

In phase |1, we wish to report all triangle pairs from =(f4) and 7(f%) with a set of points
satisfying the second condition of Lemma 8.2 with each set of A’. The phase Il of the algorithm
for the case of a horizontal edge and five faces in Section 8.2.2 can report all such triangle pairs,
thus A in O(n?log® n + nK'log" n + K) time; there are O(n) faces,

When the edge is horizontal, a vertex, an edge and a face are necessary and sufficient to have a
set of pointsthat satisfy the first condition of Lemma8.2; C’ isavertex, an edge and aface. There
are O(n) faces, vertices and edges. Therefore, the algorithm proposed in Section 3.3.2 can report
A"inO(nlogn + K') time.

We pick atriple of a concave vertex, a vertical concave edge and a face from .A’. Without loss
of generality, assumethat thetripleis (venu, esp, fw); venu isfrom ENU, esp isfrom S D and
fw isfrom W. We define A to be the set of pointsin} space induced by the threefingersat vgyy
and anywhere on egsp and fiy. With the arguments in the case of a horizontal concave edge and
four facesin Section 8.2.2, and in the case of a horizontal edge and five facesin Section 8.2.2, we
have the following formulafor A:

A = {ri(oqvg + asvy) + kevy + asvw + as(1ivs + 'VQAVD) |

ey 7 ey 7 ey 7 14 UV SV
VE = VgNU,E» VN = VENU,Ns VU = VEnuu, VW € T vs € €sD,5: VD € €5p ps
0<rk1, <1,0< Ky, ye <1l,k1+Ky=1,7+7=1}

Note that a1, as, as, oy are in the ranges dictated by the equation x1 (i hg + ashy) + :‘ighU +

ashw + 064(”)/1}15 + ’}/QhD) = O where hp = UgNUE’ hy = U%NUN’ hy = ’U%NUU’ hy € fW’
hs € eSD,S and hp € eSD,D The set A consists of VeCtors (ke — Yy, —2k1Pan + KoPyu +
Ay V1Pzs — A4Y2Pyds X1R1Pze — R2Pzu + QyYoPrd — Oészw)T = ("12 — Qy7y2, —Q2K1P:zn + K2Pyn +
Oy V1Pzs — Q4YoPys, A1R1Pzn — R2Pen + Ay YoPxs — Oészw)T- Note that Pzw and Pzs A€ in some Open
ranges, and p,.,,, Pyn, P2n, Pys @Nd p. are fixed numbers. The equality holds because one finger at
veny induces three face normals from £, N and U, and another finger on esp induces two face
normalsof S and D.

The finger positionson vgyy, esp and fiy determine aq, g, az and ay; only k1, ko and vy, 7o
are variable. Thusthe three fingers (at fixed positions) induce a tetrahedron § in V' space, a vertex
of which lies on the plane ., = 0; when x; — a3y, = 0. When two of the three fingers movein
the interior of e5p and fy, independently, the corresponding tetrahedron § also movesin a certain
regioninV space. Thisregionis A, and it isa convex polytopein) space, one face of which lies
on the plane ., = 0. The projection w(A) is a convex polygon, a side of which lies on the line
n, = 0onT,. The shapes of A and 7(A) are similar to these described above, when the vertex,
the edge and the face are from other families.

In phase |1, we wish to report all triangles from «(f) and 7 (%) with aset of points satisfying
the second condition of Lemma 8.2 with each set of A’. The phase Il of the algorithm for the
case of two horizontal edges and three faces in Section 8.2.2 can identify all such triangles in
O(n*log*n + K'log* n + K) time; thereare O(n) triangles of «() and 7(f%).

The following theorem summarizes the result.

Theorem 8.17 All K sets of one concave vertex, one concave edge and two faces of P that al-
low form-closure grasps with four frictionless point fingers can be enumerated in O(n?log® n +
nk'log*n + K) time, where K’ = | Al

120 Computing All Form-Closure Grasps of a Rectilinear Polyhedron

8.3 Conclusion

Thiswork isthefirst step to provide efficient ways of reporting all form-closure grasps of a three-
dimensional object. The form-closure condition in six-dimensional wrench space is converted into
two subproblems in three-dimensional space, which are closely related. These subproblems are
again transformed into two-dimensional intersection search problems. The two subproblems cor-
respond to theimmobilizations of the object against the horizontal movements, and then against the
vertical movements. Because of the nature of a rectilinear polyhedron, this formulation produced
efficient algorithmsfor arectilinear polyhedron.

Thisformulation, unfortunately, does not lead to attractive efficient output-sensitive algorithms
for other kinds of three-dimensional objects; the difficulty liesin combining the two subproblems
with arbitrary normal directions. It is open to efficiently report al form-closure grasps on any
three-dimensional object. But it is aready a great challenge to design an efficient output-sensitive
algorithm to report all combinations of faces, concave edges and concave vertices of any polyhe-
dron, such that fingers on the set yield at least one form-closure grasp.

All agorithms presented in this chapter except one are sensitive to both K’ and K, where K’
and K are the sizes of the intermediate output and the final output respectively; the algorithm to
compute all sets of three horizontal concave edges and a face is sensitive to K/ only. It remains
open to design an efficient algorithm to report all sets of three horizontal concave edges and aface
of arectilinear polyhedron that is sensitiveto K’ and K.

Another attractive characteristics of agrasp isinsensitivity to small misplacements of thefingers
or minor shape variations of the objects. In such a setting, we should also be able to guarantee
insensitivity to minor variationsin the directions of the surface normalsor their locations. Although
such an extension is definitely challenging, we believe that the insights presented in this chapter
could be of useto attack those problems as well.

Chapter 9

Immobilizing Hinged Polygons

Most of the existing results onimmobilization apply to rigid bodies, and none of the aboveresultsis
about immobilizing non-rigid objects. Asafirst step in thisdirection, we study immobilization of a
serial chain of polygons connected by hinges. This can be seen as a case study of immobilization of
non-rigid objects. A hinge allows the two adjacent polygons to rotate around it. We shall assume
that the hinges are located at vertices. Our am is to immobilize any seria chain of n hinged
polygonsin a priorly specified placement, with minimum number of fingers.!

We analyze motions by identifying the areas where a vertex of a polygon can move locally
from a given configuration with given set of point fingers on the boundary. Our analysisis based
on curvature effects, precisely as the analysis of Czyzowicz et al. [33] is on curvature effects. We
show that (n+2) frictionless point fingers suffice toimmobilize any serial chain of n # 3 polygons
without parallel edges in a given placement; it is unclear whether five fingers can achieve it. We
observe that the number of fingers required to immobilize a serial chain of n polygons equals the
number of degrees of freedom of the chain. Note that the number of hinges h equalsto (n — 1),
and that the degrees of freedom of a serial chainis (n + 2), whichis (h + 3). All the proofs are
constructive in the sense that we give actual configurationswith (n + 2) fingersfor chainsof n # 3
polygons. Allowing for parallel edgesleads to an increase in the number of fingers of at most one.

One observation about the first-order immobility is that any perturbation of any combination
of the (n + 2) fingers aong the object’s boundary maintains the immobility. This has motivated
us to also investigate the number of point fingers required to obtain a more robust immaobilization,
which has the property—Ilike form closure—that any finger can be perturbed dlightly along the
edges without destroying the immobility. We construct finger configurations for robust immobility
for aserial chain of n polygonswith (g(n +2)] fingersif the polygons have no parallel edges, and
with [%(n + 2)] fingers if the polygons are allowed to have parallel edges. Informally speaking,
we achieve robustness at the cost of one additional finger per twenty polygons.

This chapter is structured as follows. We first introduce the concept of immobility and robust
immobility in Section 9.1. In Section 9.2, we show how we immobilize a serial chain of polygons
with n + 2 fingers. Section 9.2.1 is about constructing an immobility grasp for a chain of polygons
without parallel edges, and Section 9.2.2 is for polygons with parallel edges. In Section 9.3, we
show how we robustly immobilize a serial chain of polygons. Section 9.3.1 is about constructing
a robust immobility grasp for a chain of polygons without parallel edges, and Section 9.3.2 isfor
polygons with parallel edges. Section 9.4 is about a variation of hinged polygons. constructing
an immobility and robust immobility grasp for a cycle of hinged polygons and a chain of hinged

1This chapter isbased on “ Fixturing hinged parts’ [22] by J.-S. Cheong, K. Goldberg, M.H. Overmars and A.F. van der Stappen in ICRA (2002),
and “Immobilizing hinged parts’ [26] by J.-S. Cheong, A.F. van der Stappen, K. Goldberg, M.H. Overmars and E. Rimon, which will appear in the
International Journal on Computational Geometry and Applications.

122 Immobilizing Hinged Polygons

polygons with one vertex attached to awall. In Section 9.5, we discuss the work presented in this
chapter.

9.1 Immobility and robust Immobility

In this section, we introduce notations, and discuss our notions of immobility and robust immobil-
ity. In addition, we report some known results on immobilization of a single polygon.

Let (P, P,,---, P,) be aseria chain of n hinged polygons. Each polygon P; in the chain
shares a vertex—the hinge—with its successor P, ;; we denote the hinge connecting P; and P,
by v;. A hinge v; alows the adjacent polygons P; and P, ; to rotate relative to each other. It isour
aim to study how many frictionless point fingers along the boundaries are sufficient to immobilize
the chain in a given placement, or at a configuration ¢. We assume that the two edges of polygon
P; incident to its hinge v, are not collinear. In addition, we assume that the polygons including the
boundaries are strictly digjoint except at the hinges. The finger arrangement for (P, Py, - - - , P,)
isrepresented as (ny, ny, ..., n,), where n; isthe number of fingers placed on P,.

A set of point fingersimmobilizesthe chain (P, P, - - - , P,,) at configuration ¢, if these fingers
prevent the chain from leaving ¢. In other words, there exists no free continuous motion from ¢
to aneighbor configuration ¢’. Showing that an object isimmobilized (at an isolated configuration
q) involves considering the curvatures of potential motions, which are dictated by the shape of the
object and the fingers. Czyzowicz et a’s notion of immobility [33] and second-order immobility
[75] uses this, while form closure [70, 58, 46] and first-order immobility [74] does not need to
consider these details. In other words, an object in form closure or first-order immobility maintains
the immobility regardless of the shape of the object and the fingers. Our notion of immobility takes
the curvature of potential motions into account. Contrary to Rimon and Burdick, who carry out
their analysis in configuration space, we perform our analysis on the plane of the chain itself, as
Czyzowicz et a. To show that a chain isimmobilized, we use an intuitive two-step analysis. The
first step is to show that none of the hinges v; can move. Then we show that P, cannot rotate
around vy, and that P,, cannot rotate around v,,_y; P; (i = 2,---,n — 1) isimmobilized because
two pointsof P;, v;_; and v; are fixed.

Theimmobility of achainisanayzed by looking at the free areas of some vertices. Freeareais
where a vertex of apolygon P can locally move around, when P is held with some fingers. There
are two different free areas depending on the nature (convex or concave) of the vertices. Let ¢ be
the angle at a vertex v of P. Let C(p,p’,p”) be the unique circle defined by three non-collinear
points p, p’ and p”. We denote the interior including the boundary of C(p, p’,p”) by C*(p,p',p"),
and the exterior including the boundary of C(p,p’,p"”) by C~(p,p’,p"). The following lemma
describes the behavior of a vertex v of a free polygon P, when two point fingers p; and p, are
placed along two adjacent edges e; and e, respectively. It is ageneralization of the result on page
61-62 in [10].

Lemma 9.1 Any motion of P causes v to initially move into C* (v, p1, po) when v is convex, and
C~ (v, p1, p2) When v is concave.

Proof: Whenwv isaconvex vertex, we assumethat v can reach outside of C(v, p1, p2) by trandation
and rotation from the current position, under the restriction of p; and p,. Let v” be the point outside
of C* (v, p1,p2) asinFigure 9.1 (). Let v’ betheintersection point of thelinep,v” and C(v, p1, ps).
It isawell known geometrical fact that the angle Zpv'py = Zpivp, = 9. A simple trigonometric
calculation showsthat Zpv"py < Zpivps, thus Zpv"py < 19, whichisacontradiction. Therefore,
v can only movelocaly inC* (v, p1, p2).

9.2 Immobility of a serial chain of hinged polygons 123

C(U7p17p2)

(b)

C(’U, p17p2)
(a)

Ty

Figure 9.1: Thefree areawhere v can locally move around under the restriction of the two fingersp ; and p, is. () the
interior and the boundary of C when v is convex, and (b) the exterior and the boundary of C when v is concave.

When v isaconcave vertex, we assume that v can be placed inside of C(v, p1, p2) by translation
and rotation from the current position, under the restriction of p; and p,. Let v” be the point inside
of C(v, p1,p2) asin figure 9.1 (b). Let v" be the intersection point of the boundary of C(v, p1, ps)
and the supporting line of p;v”. For the same reason described in the previous case, /p,v'py =
Zpivpy = 9, thus Zpv”ps > ¢, which is a contradiction. Therefore, v can only move locally in
C~ (v, p1, p2). O

Besides the fact that first-order immobility (form closure) do not take into account the cur-
vature of potential motions, there is another intuitive and essential difference with second-order
immobility (Czyzowicz et a’s notion). Any slight perturbation of the frictionless fingers a ong the
edges can maintain first-order immobility, which is highly unlikely for second-order immobility.
Our notion of immobility behaves consistently, as it will be easy to see that small perturbations of
the fingers destroy the immobility. This motivates us to explore the price of insensitivity to small
perturbations. Before we introduce the new notion, we formulate the notion of the immobility of
achan (P, P,,--- , P,): aset of fingers immobilize achain (Py, P, --- , B,) inits given place-
ment, if the chain cannot change its placement without violating the rigidity of the object and the
fingers, or the connectivity of the chain.

Definition 9.1 A set of point fingersrobustly immobilizethe chain (P, P, - - - , P,) if thesefingers
immobilize (P, P, - - -, P,), and if there exists a real number ¢ > 0 for each finger placed along
the interior of an edge, such that any perturbation of the finger in the e-interval in both directions
along the edge maintains the immobility.

We end this section by reporting a few simple results. The fairly easy proof of Lemma9.2 is
left to the readers. Lemma 9.3 and 9.4 are from Lemma 9.2 and Markenscoff et a. [51], Mishra et
al. [56], Rimon and Burdick [73], van der Stappen et al. [82] and Czyzowicz et al. [33].

Lemma 9.2 Atwo dimensional polygon P inform closure is robustly immobilized.

Lemma 9.3 Any polygon can be robustly immobilized with four frictionless point fingersin linear
time.

Lemma 9.4 Any polygon without parallel edges can be immobilized with three frictionless point
fingersin linear time.

9.2 Immobility of a serial chain of hinged polygons

A polygon without parallel edges can be immobilized with three point fingers, while a polygon
with parallel edges may need one more finger to be immobilized. Likewise, a serial chain of

124 Immobilizing Hinged Polygons

N . ‘ by
_l U1 v ,v"/l’61 o Py
o ; : I
f 'Ul
ee “ | I\(T)
P1 P2 Pl
e'l 1 elg l

Figure 9.2: Two hinged polygons with four fingers.

n polygons with parallel edges needs more fingers in general. First, we consider immobility of
hinged polygons without parallel edges, and then those with parallel edges.

9.2.1 Polygons without parallel edges

We will subsequently discuss the immobilization of serial chains of two, three and four polygons
without parallel edges. The immobilities of a single polygon, and of serial chains of two and four
polygons serve as building blocks to immobilize longer chains.

Two polygons without parallel edges

We show how four fingers can immobilize two hinged polygons P; and P,. At most one polygon
can be concave at v;; therest are convex at v;. We first focus on the case when both P; and P, are
convex at v; (Figure9.2 (a)). Let e; and e} be the two edges of P; incident to the hingev;. Let [be
aline containing v; such that e; and €/ are strictly on one side of /, and that e, and e/, are strictly
on the other side. Let I’ be the perpendicular line of [at v,. TakeacircleC; for P;(i = 1,2), which
satisfies the following two conditions:

1. Thecenter of C; ison !’ so that C; touches! at v;, and
2. C; intersects e; and €] in their interiors.

Place four fingers at the intersection points of the circles and the polygons.

When one polygon, say P, is concave at v;, the construction is the same as in the previous
case, except for afew details. First, the linel isaline through v, only one side of which contains
all the adjacent edges—see Figure 9.2 (b). Second, C; is smaller than C,. The next lemma shows
why these immobilize two hinged polygons.

Lemma 9.5 Four fingers suffice to immobilize two hinged polygons.

Proof: Thefreeareaof v; isC* or C~ according to Lemma 9.1. In any case, the two free areas
(C{ andC; or C and C; or C; and C;7) touch each other at v;. The position of v; isfixed, because
it isthe only intersection of the free areas. In other words, v; cannot move without breaking the
fingers or disconnecting the polygons. Four fingers on P, and P, prohibit he rotations of P; and
P, around v,. Therefore, four fingers suffice to immobilize two hinged polygons. O

In general, less than four fingers can not immobilize two hinged polygons; in most cases, one
finger on P; cannot prevent the rotation of P; around the hinge away from the finger.

9.2 Immobility of a serial chain of hinged polygons 125

Vi+1

Figure 9.3: A configuration of six fingersfor four hinged polygonswithout parallel edges.

Four polygons without parallel edges

Four polygonswithout parallel edges can be immobilized with six fingers; immobilize thefirst and
the last polygons with three fingers for each. The finger arrangement is (3, 0, 0, 3). The following
lemma shows that the two polygonsin the middle are immobilized.

Lemma 9.6 Two adjacent polygons P, and P; are immobilized if their neighbors P, and P, are
immobilized.

Proof: Let C; and C3 be the circles around v, and v that v, follows respectively (Figure 9.3).
Since the hinges v, and v5 are in fixed positions, v, of P, and P; can move along the arc of C; and
Cs respectively. Only at oneintersection point of C; and Cs, v, can lie such that the distances |v773|
and |u,u3| are preserved at the same time. In other words, the position of v, isalso fixed. Because
v; and vy of Py, and v, and vs of Ps arefixed, P, and P; are immobilized. O

Corollary 9.1 Sx point fingers suffice to immobilize a serial chain of four hinged polygons.

Immobilizing n polygons without parallel edges

Here we immobilize a seria chain of n > 5 hinged polygons, using the finger arrangements for
one polygon, and two and four hinged polygons. From the right end of the chain, cut off atrailing
multiple of four polygons, until at most four polygons are left. When three are |eft, combine them
with the next four polygons. Nine fingers with finger arrangement of (3,0, 0, 3,0, 0, 3) immobilize
these seven polygons. Lemma 9.4, 9.5 and Corollary 9.1 immobilize the remaining one polygon,
two or four polygons. Each of the remaining quadruples are immobilized with the arrangement
(0,0,2,2). Since the total number equals to the degree of freedom of the whole chain, the number
of fingersistight.

Theorem 9.7 Aserial chainof n (# 3) hinged polygonswithout parallel edges can beimmobilized
with (n + 2) fingers, which is tight. Sx fingers can immobilize three polygons without parallel
edges.

9.2.2 Immobility of hinged polygons with parallel edges

Four fingers are necessary to immobilize a polygon with parallel edges (Lemma9.3). Theimmobil-
ity for two polygonsin Lemma9.5 still holds when the polygons have parallel edges. Six (= n+3)
fingers can immobilize three arbitrary polygons as follows. Immobilize the first two polygons P,
and P, with (2, 2) finger arrangement. Thelast polygon P; will rotate around the hinge v,. Placing
two fingers on the incident edges to v, will immobilize P;. The finger arrangement is (2, 2, 2)
(Figure9.4.)

126 Immobilizing Hinged Polygons

Figure 9.4: A finger arrangement that immobilizes three arbitrary polygons.

Figure 9.5: Four arbitrary polygons can be immobilized with seven fingers.

Lemma 9.8 Sx fingers suffice to immobilize three polygons with parallel edges.

Proof: Since P, and P, are immobilized (Lemma 9.5), the positions of v; and v, are fixed. The
two fingers on P prohibitsthe rotation of P; around vs. O

Seven (= n + 3) fingers can immobilize four polygonswith parallel edges as follows. Immobi-
lize thefirst two polygons P, and P, with four fingers. Take amaximal inscribed circle of the last
polygon P,. If the touching points of the circle and P, gives an immobility finger arrangement,
place fingers at the intersections. Otherwise, place afinger p; at one touching point, and p, and ps3
on both sides of the other touching point—see P, in Figure 9.5.

Lemma 9.9 Seven fingers suffice to immobilize four polygonswith parallel edges.

Proof: Since P, and P, are immobilized (Lemma 9.5), the positions of v, and v, are fixed. If
the touching points of a maximal inscribed circle and P, gives an immobility finger arrangement,
we are done. Otherwise, two of the touching edges are parallel edges. Let e and e’ be the parallel
edges of P, along which the three fingers p,, p» and p; are placed. The vertex v; of P; followsthe
circular arc C3 around v,, while vz of P, dslides along the line [through v3 that is parallel to e and
e¢’. Only at the intersections of C3 and I, P; preserve the distance |v;73, and P, touches the fingers
at the sametime. It isimpossiblefor v3 to move from one intersection to the other by rotations and
trandations, so vs is fixed. Because v, and vs are fixed, P; isimmobilized, and P, cannot rotate
around v because of the fingers. Therefore, the four polygons are immobilized. O

Now we show how at most (n + 3) fingers immobilize n hinged polygons with parallel edges.
From the right end of a serial chain, cut off atrailing multiple of four polygons, until at most four
polygons are left. Immobilize these left polygons as described in Lemma 9.5, 9.8 and 9.9; four
fingers are required to immobilize any single polygon [51, 56, 73].Immobilize each of the trailing
quadruples using the arrangement of (0,0, 2,2). Note that the finger arrangement of (0,0, 2, 2)
can still be used, because the finger arrangement of (2, 2) still works for two arbitrary polygons
(Lemma 9.5). The number of fingers (n + 3) istight in the sense that there exist n polygons that

9.3 Robust immobility of a serial chain of hinged polygons 127

l/

Figure 9.6: Two hinged polygons are robustly immobilized with five fingers, (a) when both of the hinged vertices are
convex, and (b) when one hinged vertex is concave.

cannot be immobilized with less than (n + 3) fingers. For example, when one polygon, or three or
four polygonsremain on the left after cutting off multiples of quadruple, (n + 3) fingers are indeed
necessary to immobilize the chain; when two polygons remain on the left, (n + 2) fingers suffice
to immobilize the chain.

Theorem 9.10 At most (n + 3) fingers suffice to immobilize a serial chain of n hinged arbitrary
polygons.

9.3 Robust immobility of a serial chain of hinged polygons

As in the case of immobility, we have different results for a serial chain of polygons with, and
without parallel edges.

9.3.1 Robust immobility of polygons without parallel edges

The finger arrangements for one polygon, two, three, and four hinged polygonswill serve as build-
ing blocks to achieve robust immobility. The result of robust immobility for a single polygon is
presented in Lemma 9.3. We proceed to show how to robustly immobilize two, three and four
polygons.

Two polygons without parallel edges

Here we show how to achieve robust immobility for two hinged polygons with five fingers from
Lemma 9.5. Note that both polygons cannot be simultaneously concave at the hinge v+, i.e, at
least one polygon is convex at v;. Without loss of generality, let P, isconvex at v;. Let e; and €,
be the edges of P, incident to v4, and e, and e} be those of P, incident to v, asin Figure 9.6. Line
[is chosen in the same way as in Section 9.2.1. We rotate [around v; such that it lies between
the original [and the lower edge incident to v,; we call it /. Now we rotate [around v, such that
it lies between the original [and the upper edge incident to v; we call it [,. Take acircle for P,
that touches [at v, and that intersects e; and €/ in their interiors. Place two fingers p, and ps at
these intersections. Take acircle for P, that touches [; at v; and that intersects e, and €, in their
interiors. Place two fingers p; and p, at the intersections. Take another circle for P, that satisfies
the following three conditions: (i) it touches [, at vy, (ii) it intersects e, and €, in their interiors,
and (iii) it passes through one of p; and p, (in Figure 9.6, it is p;). Place afinger p; at the empty
intersection point.

128 Immobilizing Hinged Polygons

ly

Figure 9.7: (a) A robust immobility of three hinged polygonswith six fingerswhen ¢ 1, v; and v, are not collinear. (b)
When ¢, v; and v, are collinear, a new position of ¢; can be computed.

Lemma 9.11 Five fingers suffice to robustly immobilize two hinged polygons.

Proof: The free area of v; induced by p, and ps on P; is either C*(vy, ps, ps) or C™ (v, pa, Ps)-
In Figure 9.6, the free area of v, of P, is partialy defined by the intersection of C* (vy, py, p2) and
C* (v1, p1, p3)—thethick arcs from the two circles make the partial boundary of thisfree area. The
two free areas touch each other at a single point on their boundaries, which isv;. For P, and P,
to remain connected, v; has to stay at the intersection, which is isolated from other intersections
of the free areas. None of the polygons can rotate around v; because of the fingers, thus the two
hinged polygons are immobilized.

There existsa set of perturbations of all fingers on the polygons such that the induced free areas
still touch each other at one isolated point. Therefore, five fingers can robustly immobilize two
hinged polygons. O

Three polygons without parallel edges

Three polygons can be robustly immobilized as follows. Compute maximal inscribed circles M,
and M; for P, and P; respectively, and let ¢; and ¢ be their centers. Let [; and [, be the perpen-
dicular linesto the line v7v5 at the hinges v, and v, (Figure 9.7 (a)). For the time being, we have
two assumptions for simplicity. First, the touching points of M, and P; are in the interior of the
edges (see P, in Figure 9.7 (a)). Second, none of ¢; and ¢z are collinear with v705.

Since the polygons do not have parallel edges, three fingers can immobilize P;, and the three
normals induced by the fingers meet at one point. If we perturb one finger, the normals form a
triangular region, which is a set of rotation centersin either clockwise or counterclockwise direc-
tion. Infinitesimal rotations of v; of P, around a point ¢ in this triangular region move v, in a
direction along a half-line emanating from v, orthogonal to the line gv7. All these half-lines lie
in a wedge-like region—the shaded region on the left side of {; in Figure 9.7 (a). It is important
that we can always choose the direction of rotations, so that v; move strictly towardsthe | eft or the
right side of ;. For P, in Figure 9.7 (a), v; can be only on the left side of /;. The two boundary
lines of the shaded wedge region are perpendicular to the tangent lines of the triangle through v;.
Notice that the wedge region does not include any point of /; except v,; otherwise, P, can rotate
around v,. We construct the same finger arrangement for P; so that the wedge region for v, lies
strictly on the right side of /5.

Now we remove the first assumption; assume that one of the fingers touches a vertex of a
polygon. Without |loss of generality, let this polygon be P;. The vertex must be concave, and three

9.3 Robust immobility of a serial chain of hinged polygons 129

fingers at the intersection of M3 and P; achieve form closure [81] (Figure 9.7 (a)). If thisisthe
case with P, aswell, P; isinform closure; otherwise, it can be held with three fingers such that v,
can move away from Ps, thus towards the left side of [, (Figure 9.7 (a)).

To remove the second assumption, assume that one of ¢; or ¢, say ¢, is collinear with vyvs. If
one of the intersection points of M, and P; isavertex, it is concave, and the collinearity does not
affect the form closure. So assumethat M touches P; in the interior of some edges. The meeting
point of the three normals can be perturbed by moving two normals together along the third one
(Figure 9.7 (b)). After perturbing the meeting point ¢;, we can use the same method described
before.

Lemma 9.12 Sx fingers suffice to robustly immobilize three hinged polygons without parallel
edges.

Proof: When a polygon isin form closure with three fingers, the proof is rather straightforward.
Thus we consider the other case when none of the polygons are in form closure. To maintain the
distance 7115 of P, v; and v, should stay at the apexes of the wedges. Since P, and P3; cannot
rotate around v, or vy, they are immobilized. There exists a set of perturbation intervals of the
fingers, such that either it still keeps form closure of a polygon, or an induced wedge-like region
gtill stays on the same side of its corresponding line. This concludes the proof. O

Four polygons without parallel edges

Eight fingers can robustly immobilize four hinged polygons as follows: robustly immobilize the
first and the last polygons with four fingers each. The finger arrangement is (4, 0,0, 4).

Lemma 9.13 Two adjacent polygons P, and P; are robustly immobilized if P, and P, are robustly
immobilized.

Proof: The two polygonsin the middle are immobilized by Lemma 9.13. Since the neighbors are
robustly immobilized, the whole chain is robustly immobilized. O

Five polygons without parallel edges

The construction for five hinged polygons is a variation of that for four polygons: robustly immo-
bilize the first polygon with four fingers, and the last two polygons with five fingers. The finger
arrangement is (4,0, 0, 3, 2).

Lemma 9.14 Nine fingers suffice to robustly immobilize five hinged polygons without parallel
edges.

Proof: Since the first and the last polygons are in robust immobility (Lemma 9.3 and 9.11), the
whole chain of polygonsis robustly immobilized according to Lemma 9.13. O

Robust immobility of n polygons without parallel edges

The following is how to robustly immobilize n > 6 polygons. From the right end of the chain, cut
off atrailing multiple of five polygons, until at most five polygons are left. These |eft polygons can
be robustly immobilized as in [56, 51, 58] and in Lemma 9.11, 9.12, 9.13, and 9.14. Each group
of five polygons can be immobilized with the finger arrangement of (0, 0, 3,0, 3), where (3,0, 3)
isthe construction in Lemma9.12.

130 Immobilizing Hinged Polygons

Figure 9.8: Seven fingers can immobilize three arbitrary polygons.

Theorem 9.15 A serial chain of n hinged polygons without parallel edges can be robustly immo-
bilized with [¢(n + 2)] fingers.

9.3.2 Robust immobility of polygons with parallel edges

The building blocks to robustly immobilize arbitrary polygons are Lemmas 9.3, 9.11, 9.12 and
9.13. Except the finger arrangement of (3, 0, 3) for three polygons (Lemma 9.12), all of these can
be used for polygons with parallel edges without any modification. We proceed to show how to
modify the construction in Lemma 9.12 to robustly immobilize three polygons.

The finger arrangement of (4, 0, 3) robustly immobilizes three hinged polygons as follows. Ro-
bustly immobilize the first polygon P, with four fingers. Take a maximal inscribed circle C; for
Ps. If it dlows afinger arrangement for immobility by placing fingers at the touching points, we
can use Lemma9.12. Otherwise, C5 touches P; at parallel edges. Place afinger p; a one touching
point, and p, and p3; on both sides of the other touching point (see P; in Figure 9.8).

Lemma 9.16 Seven point fingers can robustly immobilize three arbitrary polygons.

Proof: When C; touches P; on parallel edges, the chain isimmobilized with the same argument as
in Lemma 9.9, so we show that the immobility isrobust. Thefirst polygonisin robust immobility.
We can perturb the three fingers on P; along the parallel edges, without changing the line along
which vy moves. This concludes the proof. O

Now we show how to robustly immobilize n > 5 arbitrary polygons. From the right end of
the chain, cut off a trailing multiple of four polygons, until at most four polygons are left. Each
quadruple can be robustly immobilized by the finger arrangement of (0,0, 3,2). The remaining
polygon(s) can be robustly immobilized as described above with four, five, seven and eight fingers
respectively.

Theorem 9.17 Aserial chain of n arbitrary polygons can be robustly immobilized with (%(nJr 2)]
fingers.

9.4 Immobilizing other types of hinged polygons

Hinged polygons may not form a seria chain. It can be asingle cycle, atree, ageneral graph, or a
serial chain with one vertex of apolygon at the end attached to awall. Here we consider the cases
when the hinged polygons form a single cycle and when an end vertex of the chain is attached to a
wall. The previous results can easily be used for these cases.

9.4 Immobilizing other types of hinged polygons 131

(a) (b)

Figure 9.9: (a) Two polygonsforming acycle. (b) A cycle with more than two polygons.

A{ \A;A

Figure 9.10: A chain of n polygons one end of which is attached to awall.

9.4.1 A cycle of hinged polygons

First let’s look at the case of a cycle. A cycle needs at least two polygons (Figure 9.9). Two
polygons forming a cycle can be considered as one polygon, hence three and four point fingers can
immobilize or robustly immobilize them.

When a cycle contains three or more polygons, this can be divided into two groups. any two
adjacent polygons, and the rest (the rest are shaded in Figure 9.9 (b). The rest polygons can be
seen as afree serial chain of (n — 2) hinged polygons. Immobilizing or robustly immobilizing the
chain of shaded polygons immobilizes or robustly immobilizes the entire cycle. Thisleads to the
next theorem.

Theorem 9.18 A cycle of n hinged polygons without parallel edges can be immobilized with n
point fingers, when n > 3 and n # 5; two and five polygons can be immobilized with three and
six point fingers respectively. A cycle of n hinged polygons without parallel edges can be robustly
immobilized with (gn} point fingers; two and five polygons can be robustly immobilized with four
and six fingers respectively.

9.4.2 A chain of hinged polygons attached to a wall

Now consider the case when one vertex of a polygon at the end of a chain is attached to a wall
asin Figure 9.10. Let P, P, --- , P, be the polygons from the one attached to the wall. This
can be (robustly) immobilized in a similar way. Skip the two polygons P, and P,, and (robustly)
immobilize therest. The number of the point fingers needed for immobility isn —2+2 = n, when
n > 3 andn # 5; six fingers suffice for five polygons. Likewise, the number for robust immobility
forn > 3 polygonsis [2(n — 2+ 2)] = [2n].

Two fingers are necessary to immobilize a single polygon with one vertex attached to a wall.
Now welook at the casewhenn = 2. Let v; bethe hingebetween P, and P,. For two fingerstoim-
mobilize two polygons attached to awall, the last polygon P, must satisfy the following condition:
(i) if P, has two edges whose normals meet at the line o707 and (ii) if the half-planes induced by
these edges have counterclockwise rotational centers above vo7, and clockwise rotational centers
below w7, two point fingers suffice to immobilize the two polygons (Figure 9.11 (a)).

132 Immobilizing Hinged Polygons

Figure 9.11: (a) These two polygons can be immobilized with two fingers. (b) These two polygons cannot be immo-
bilized with two fingers.

Let C be the circle around v that v, follows, and let [be the half-plane bounded by the tangent
line of C at vy, which does not contain C. If P, does not satisfy the conditions (i) and (ii) de-
scribed above, the immediate rotation of P, around some point in the wedges will not confine the
immediate motion of v; in the half-plane .

Unfortunately, P, may not have such an edge pair that satisfy the condition (i) (Figure 9.11
(b)). Thus we need three point fingers to immobilize them. Surprisingly, three point fingers can
also robustly immobilize them; use a similar method to that for three polygonsin Section 9.3. This
leads to the next lemma.

Lemma 9.19 Two and three point fingers suffice to (robustly) immobilize a single polygon and two
hinged polygons attached to a wall respectively.

The next theorem summarizes the results so far.

Theorem 9.20 When achainof n > 3,n # 5 hinged polygons without parallel edges has a vertex
at an end attached to awall, n point fingers can immobilize the chain; two, threeand six (= n+ 1)
point fingers can immobilize one, two and five such polygons respectively. Moreover, [%n} point
fingers can robustly immobilize such a serial chain.

9.5 Conclusion

Note that the number of hinges i is (n — 1), and that the degree of freedom of the serial chain
isn+2 = h+ 3. We believe that at least (n + 3) fingers—which is degree of freedom plus
one—are necessary to robustly immobilize n hinged polygons without parallel edges. The reason
comes from the equilibrium condition in [74], which requires that the origin be in the convex hull
of the finger normals in the configuration space. The future research includes to verify whether
thisisindeed the lower bound. For the same reason, we believethat (n + 2) isthe lower bound for
immobility of aserial chain of hinged polygonswithout parallel edges.

Throughout the paper, we have assumed that the placement in which the serial chain hasto be
immobilized is given. The number of fingers required for immobilization is expected to be smaller
when the placement can be chosen freely. In the future, we intend to study whether or not this
is indeed the case. We also plan to work on immobilizing other types of hinges, more general
structures of connected polygons other than serial chains or single cycles, and on the possibility of
exploiting curvature for chain immobilization.

Chapter 10

Conclusion and Future Work

This thesis connects two areas:. part manipulation and computational geometry. Here we refor-
mulate fixturing problems as geometric intersection search problems. A form-closure grasp is
formulated as a set of vectorsthat positively span a three-dimensional space (called wrench space),
which is a geometrical problem. The fundamental question underlying most synthesis problems
in this thesis (Chapters 3 to 5 and 7 to 8) is as follows. Given a number of sets in three- or
six-dimensional space, determine tuples (of various dimensionalities) of sets so that there exists
a convex hull defined by one point (sometimes two or three points) per set that contains the ori-
gin of the space. The shapes of these sets depends on the types of parts at hand; we showed that
these shapes are line segments and/or algebraic arcsin three-dimensional wrench space for aplanar
object, and polyhedral shapes in six-dimensional wrench space for a three-dimensional object.

The formulation of form closure in wrench space (Theorem 2.2) has an advantage, namely it is
easily extendible. It can be used to report form- or force-closure grasps of two or three dimensional
parts with different shapes, aslong asthe intersections of the projected wrench sets are computabl e.
The algorithms presented in this thesis efficiently reported all form-closure grasps on polygons,
semi-algebraic sets and rectilinear polyhedra, as well as all force-closure grasps on polygons and
semi-algebraic sets. This formulation can also be employed to tackle many variations of immo-
bilization problems, such as efficiently computing all force-closure grasps of three-dimensional
objects, or all form-closure grasps that is tolerant to minor shape variations or misplacements of
the fingers, which will be discussed later.

The main contribution of thisthesisis the conversion of fixturing problem into geometric prob-
lem with reduced dimensionality. The problem in three-dimensional wrench space is solved by
searching for all red and blue intersections on planes. The problem in six-dimensional wrench
spaceisdivided into two closely related subproblemsin three-dimensional space, each of whichis
again solved on planes,

Our approach isflexible in the sense that it is independent of the choice of solution method for
the lower-level red-blue intersection problems. It merely breaks down a high-level immobilization
problem into lower-dimensional red-blue intersection problems. Future improvements of current
solutions to these problems may well result in improvements of our synthesis algorithms. Thisis
why we believe that our approach could be used to attack many variations of immobilization prob-
lems, such as computing all form- or force-closure grasps of arbitrary planar objects, or computing
all independent form- or force-closure grasp regions of planar and three-dimensional objects. Once
we identify the characteristics of their projected wrench sets, and we find tools to search for red
and blue intersections between these projected wrench sets, this method can easily be employed to
solve these problems.

134 Conclusion and Future Work

Figure 10.1: A form-closure grasp tolerant to a small shape variation.

In many cases, we do not need all grasps, but a few good ones. Among the reported grasps, we
can alwaysfilter those of good quality for a given quality metric. If we can characterize the wrench
sets of good grasps, we could incorporate the characteristics directly into the agorithm. This will
make the solution simpler and more efficient. We believe that the insights gained in thisthesis can
be of good use to identify the characteristics of the wrench sets for good grasps for a given quality
metric.

In practice, there are often errors in finger placements and also in object shapes. Hence grasp
planning must take errors into account. If a grasp is sensitive to these errors, it will not hold the
object in form closure. We will first discuss the grasps insensitive to finger misplacements.

As mentioned in Chapters 7 and 9, form closure is less sensitive to finger mispacements than
for example second-order immobility (with fewer fingers). The insensitivity can, however, occa-
sionally be very small, and it differs from finger to finger. We wish to report grasps insensitive to
finger misplacements of specified size =. In Chapter 7, we proposed output-sensitive algorithmsto
compute all such sets of prespecified regions for polygons. It is open to efficiently report al such
setsfor planar arbitrary objects and for three-dimensional objects. With the approach and insights
gained in Chapter 8, it seems promising to first study the problem of computing all independent
form-closure grasp regions of arectilinear polyhedron.

There are many issues related to shape variations. One important problem is to efficiently
synthesize grasps that are insensitive to minor shape variations. A form-closure grasp tolerant to
shape variation is a form-closure grasp on an ideal part, such that it keeps a part with dlightly
different shape in form closure, when the fingers are moved to touch the new part in a specified
way. Figure 10.1 illustrates such agrasp. Changesin the part shape result in changes of the normal
line. When we give restrictions on how much the shape can change, we actually restrict how much
the normal lines can change. Thisleads to aregion in wrench space where the wrench points for
these normal lines are. We believe that our approach can easily be used to tackle the problems
related to this tolerance issue in an efficient way, if we can identify these regionsin wrench space
and on screen.

Extending our approach to immobilization problems in a modular setting (see Section 1.1.2) is
relatively easier. When the object isin a given position, the set of finger positionswill be a set of
points in wrench space. We believe that our approach can efficiently compute all form- or force-
closure grasps or afew good grasps or form-closure grasps tolerant to shape variations. When the
object is allowed to change its position, computing all such grasps of an object remains open.

In Chapter 6, we proposed the first efficient output-sensitive algorithmsto compute all second-
order immobility grasps of polygons. It remains open to identify a necessary and sufficient con-
dition for three fingers on an arbitrary planar object and for four fingers on a three-dimensional
object to achieve second-order immobility. Ponce et al. [61] identified a necessary and sufficient
condition for a three-dimensional object held with four fingers to be in equilibrium. Even for a
polyhedron, to find a necessary and sufficient condition that takes into account relative curvatures

135

Figure 10.2: (a) A planar object caged by three fingers. (b) The dark gray region is the free region, where the caged
object lies. Light gray regions are forbidden areas induced by the three fingers.

of the fingers and a polyhedron is challenging.

So far, we considered the problem of constructing immobilizing grasps of rigid parts. In prac-
tice, however, many parts are not rigid. When afinger presses against the part, it will deform. Asa
first step to tackle immobilization problem of deformable objects, we considered hinged polygons
in Chapter 9. Among the problems that we considered in this thesis, this problem of Chapter 9 is
the only one where we showed how to build one immobilizing grasp. To identify all immobilizing
grasps of a serial chain of hinged polygons is definitely a challenging problem. To be able to find
al immobilizing grasps of hinged polygons systematically, it would be useful to have a notion
that is equivalent to wrench for rigid objects—a mathematical formulation to describe how a given
force on one of the polygons affects the whole chain. To find immobilizing grasps of hinged poly-
gons with a formulation of immobility based on this notion will be difficult, because of the high
dimensionality, which is three plus the number of polygonsin the chain.

Gopal akrishnan and Goldberg [41, 40] proposed a nice definition of form closure for deformable
objects. They called this immobility deform closure. If we can formulate the problem of immo-
bilizing a deformable object as the problem of searching for positively spanning vectors in some
space, in combination with the proposed definition of deform closure, searching for al deform-
closure grasps or choosing a few good grasps according to a given quality metric could be solved
in an efficient way. The approach presented in thisthesisthen could be of useto attack the problem.

In this thesis, we focused on immobilizing grasps. But sometimes, it is enough to hold an
object in a certain region, such that the object cannot escape the region. This is called caging.
See Figure 10.2. Caging has many applications. For example, three independently moving robots
can cage an object, and take it to a destination. The nature of caging problem is quite different
from that of immobilization problem, since the caged object can move around in a certain region.
Therefore analyzing instantaneous velocities alone is not enough to check whether an object is
caged or not. A caged object in certain position has a corresponding point in configuration space.
Thus the object with all possible positions and rotations in the caging fingers is mapped to a set
of pointsin configuration space. This set is bounded and isolated from other pointsin free region.
See Figure 10.2 (b). There are many attractive open problems related to caging, such asto find all
finger positionsfor caging or to find good caging grasps.

136 Conclusion and Future Work

Bibliography

[1] P. K. Agarwal. Partitioning arrangementsof lines1l: Applications. Discrete & Computational
Geometry, 5:533-573, 1990.

[2] P. K. Agarwa and J. MatouSek. On range searching with semialgebraic sets. Discrete &
Computational Geometry, 11:393-418, 1994.

[3] Pankg K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In
B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advancesin Discrete and Computational
Geometry, volume 223 of Contemporary Mathematics, pages 1-56. American Mathematical
Society, Providence, RI, 1999.

[4] S. Akellaand M. T. Mason. Orienting toleranced polygona parts. International Journal of
Robotics Research, 19(12):1147-1170, 2000.

[5] E. Anshelevich, S. Owens, F. Lamiraux, and L. Kavraki. Deformable volumesin path plan-
ning applications. In Proceedings of The |IEEE International Conference on Robotics and
Automation (ICRA), pages 2290-2295, San Fransisco, CA, April 2000.

[6] H. Asada and A. By. Kinematic analysis of workpart fixturing for flexible assembly with
automatically reconfigurable fixtures. |EEE Journal of Robotics and Automation, 1(2):86—
94, 1985.

[7] J. Basch, L. J. Guibas, and G. Ramkumar. Sweeping lines and line segments with a heap. In
Annual ACM Symposium on Computational Geometry, pages 469471, 1997.

[8] J. Bausch and K. Youcef-Toumi. Kinematic methods for automated fixture reconfiguration
planning. In International Conference on Robotics and Automation, pages 1396-1401, May,
1990.

[9] M. deBerg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geome-
try: Algorithmsand Applications. Springer-Verlag, Berlin, 1997.

[10] R-P. Berretty. Geometric design of part feeders. PhD thesis, Institute of Information and
Computing Sciences, Utrecht University, 2000.

[11] A. Blake and M. Taylor. Planning planar grasps of smooth contours. In IEEE International
Conference on Robotics and Automation (ICRA), page 834, 1993.

[12] G. M. Boneand Y. Du. Multi-metric comparison of optimal 2d grasp planning algorithms. In
|EEE International Conference on Robotics and Automation (ICRA), pages 3061-3066, May
2001.

138 BIBLIOGRAPHY

[13] Prosenjit K. Bose, David Bremner, and Godfried T. Toussaint. All convex polyhedra can
be clamped with parallel jaw grippers. Computational Geometry: Theory and Applications,
6(5):291-302, 1996.

[14] R. Brost and K. Goldberg. A complete algorithm for designing planar fixtures using modular
components. In IEEE Transactions on Robotics and Automation, volume 12, pages 3146,
1996.

[15] R. C. Brost and K. Y. Goldberg. A complete algorithm for synthesizing modular fixtures
for polygonal parts. |IEEE International Conference on Robotics and Automation (ICRA),
12:535-542, 1994,

[16] R. C. Brost and R. Peters. Automatic design of 3-d fixtures and assembly pallets. Interna-
tional Journal of Robotics Research, 17(12):1243-1281, 1998.

[17] F. Cazals and J.-C. Latombe. Effect of tolerancing on the relative positions of parts in an
assembly. In IEEE International Conference on Robotics and Automation (ICRA), 1997.

[18] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational Geom-
etry, 9(1):145-158, 1993.

[19] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25(1):76 — 90,
1985.

[20] I.-M. Chen and JW. Burdick. Finding antipodal point grasps on irregularly shaped objects.
| EEE Transactions on Robotics and Automation, 9(4):507-512, 1993.

[21] J. Chen, K. Y. Goldberg, M. H. Overmars, D. Halperin, K-F. Bohringer, and Y. Zhuang. Shape
tolerance in feeding and fixturing. In Robotics, the algorithmic perspective, pages 297-311.
A K. Peters, 1998.

[22] J.-S. Cheong, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Fixturing hinged
polygons. In |EEE International Conference on Robotics and Automation (ICRA), volume 1,
pages 876-881, Washington DC, 2002.

[23] J.-S. Cheong, H.J. Haverkort, and A. F. van der Stappen. On computing al immobilizing
grasps of a simple polygon with few contacts. In ISAAC: 14th Internat. Sympos. Algorithms
Computation, pages 260269, 2003.

[24] J.-S. Cheong, H.J. Haverkort, and A. F. van der Stappen. On computing all immobilizing
grasps of asimple polygon with few contacts. Algorithmica, 44:117-136, 2006.

[25] J.-S. Cheong and A. F. van der Stappen. Output-sensitive computation of all form-closure
grasps of a part bounded by algebraic arcs. In IEEE International Conference on Robotics
and Automation (ICRA), pages 784—790, Barcelona, 2005.

[26] J.-S. Cheong, A. F. van der Stappen, K. Y. Goldberg, M. H. Overmars, and E. Rimon. Immo-
bilizing hinged parts. International Journal on Computational Geometry and Applications, to

[27] Y-C. Chou, V. Chandry, and M. M. Barash. A mathematical approach to automatic config-
uration of machining fixtures: Analysis and synthesis. Journal of Engineering for Industry,
Transactions of the ASME, 111:199-306, 1990.

BIBLIOGRAPHY 139

[28] J. Cornellaand R. Suarez. On 2d 4-finger frictionless optimal grasps. In International \Work-
shop On Intelligent Robots and Systems (IROS), pages 3680-3685, 2003.

[29] J. Cornellaand R. Suarez. Determining independent grasp regions on 2d discrete objects. In
International Workshop On Intelligent Robots and Systems (IROS), pages 2936-2941, 2005.

[30] J. Cornella and R. Suarez. Fast and flexible determination of force-closure independent re-
gionsto grasp polygonal objects. In |EEE International Conference on Robotics and Automa-
tion (ICRA), pages 778-783, 2005.

[31] J. Cornella and R. Suarez. On computing form-closure grasps/fixtures for non-polygonal
objects. In IEEE International Symposium on Assembly and Task Planning, pages 138-143,
2005.

[32] J. Czyzowicz, I. Stojmenovic, and J. Urrutia. Immobilizing a polytope. In Algorithms and
Data structures — Proc. 2nd Workshop, volume 519 of Lecture Notes in Computer Science,
pages 214-227, 1991.

[33] J. Czyzowicz, |. Stojmenovic, and J. Urrutia. Immobilizing a shape. International Journal of
Computational Geometry and Applications, 9(2):181-206, 1999.

[34] C. Davis. Theory of positive linear dependence. American Journal of Mathematics, pages
733-746, 1954,

[35] Dan Ding, Yun-Hui Liu, Yan-Tao Shen, and Guo-Liang Xiang. An efficient algorithm for
computing a 3d form-closure grasp. In IEEE International Conference on Robotics and Au-
tomation (ICRA), page 834, 2000.

[36] Dan Ding, Yun-Hui Liu, Michael Yu Wang, and S. Wang. Automatic selection of fixturing
surfaces and fixturing points for polyhedral workpieces. |EEE Transactions on Robotics and
Automation, 17(6):833-841, 2001.

[37] Dan Ding, Guoliang Xiang, Yun-Hui Liu, and Michael Yu Wang. Fixture layout design for
curved workpieces. In |EEE International Conference on Robotics and Automation (ICRA),
pages 29062911, May 2002.

[38] A.J. Goldman and A.W. Tucker. Polyhedral convex cones. Linear Inequalities and Related
Systems, pages 1940, 1956.

[39] Gopal Gopalakrishnan and Ken Goldberg. Gripping parts at concave vertices. In |EEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1590-1596, May 2002.

[40] K. Gopal Gopalakrishnan and K. Y. Goldberg. Computing deform closure grasps. In Inter-
national Workshop on Algorithmic Foundations of Robotics, pages 203-218, 2004.

[41] K. Gopal Gopaakrishnan and K. Y. Goldberg. D-space and deform closure: A framework
for holding deformable parts. In |EEE International Conference on Robotics and Automation
(ICRA), pages 345-350, 2004.

[42] E.Hoffman. Modular Fixturing. Manufacturing Technology Press, Lake Geneva, Wisconsin,
1987.

[43] C. Holleman, L. E. Kavraki, and J. Warren. Planning paths for a flexible surface patch. In
|EEE International Conference on Robotics and Automation (ICRA), pages 21-26, Leuven,
Belgium, 1998.

140 BIBLIOGRAPHY

[44] Yan-Bin Jia. Curvature-based computation of antipodal grasps. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1571-1577, May 2002.

[45] V. Koltun. Segment intersection searching problemsin genera settings. Discrete & Compu-
tational Geometry, 30:25-44, 2003.

[46] K. Lakshminarayana. Mechanicsof form closure. Technical report, ASME 78-DET-32 Amer-
ican Society of Mechanical Engineers, 1978. to appear in Algorithmica.

[47] F Lamiraux and L. E. Kavraki. Planning paths for elastic objects under manipulation con-
straints. International Journal of Robotics Research, 20(3):188-208, 2001.

[48] R. M. Lewisand V. Torczon. Rank ordering and positive bases in pattern search algorithms.
Technical report, crpc-tr96674, Center for Research on Parallel Computation, Rice U niver-
sity, Nov 1996.

[49] J-W. Li, M.-H. Jin, and H. Liu. A new algorithm for three-finger force-closure grasp of
polygonal objects. In IEEE International Conference on Robotics and Automation (ICRA),
pages 18001804, 2003.

[50] J-W. Li, M.-H. Jin, and H. Liu. On computing three-finger force-closure grasps of 2-d and
3-d objects. |EEE Transactions on Robotics and Automation, 19(1):155-161, 2003.

[51] X. Markenscoff, L. Ni, and C. H. Papadimitriou. The geometry of grasping. International
Journal of Robotics Research, 9(1):61—-74, 1990.

[52] J. MatouSek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2):157-182, 1993.

[53] Walter Meyer. Seven fingers allow force-torque closure grasps on any convex polyhedron.
Algorithmica, 9(3):278-292, 1993.

[54] B. Mirtich and J. Canny. Easily computable optimum grasps in 2-D and 3-D. In IEEE
International Conference on Robotics and Automation (ICRA), pages 739-747. A K. Peters,
1994.

[55] B. Mishra. Workholding-analysis and planning. In International Workshop On Intelligent
Robots and Systems (IROS), pages 53-57, 1991.

[56] B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis of multifinger
positive grips. Algorithmica, 2:541-558, 1987.

[57] G. Moroni and A. A. G. Requicha. Tolerance modeling and application programming inter-
faces. In Proc. Symp. Tools and Methods for Concurrent Engineering, pages 28-38, May
1996.

[58] V-D. Nguyen. Constructing force-closure grasps. International Journal of Robotics Research,
7(3):3-16, 1988.

[59] M. H. Overmars, A. Rao, O. Schwarzkopf, and C. Wentink. Immobilizing polygons against
awall. In Annual ACM Symposium on Computational Geometry, pages 29-38, 1995.

[60] J. Ponce and B. Faverjon. On computing three-finger force-closure grasps of polygonal ob-
jects. |EEE Transactions on Robotics and Automation, 11(6):868-881, 1995.

BIBLIOGRAPHY 141

[61] J.Ponce, S. Sullivan, A. Sudsang, J-D. Boissonnat, and J-P. Merlet. On computing four-finger
equilibrium and force-closure grasps of polyhedral objects. International Journal of Robotics
Research, 16(1):13-35, 1996.

[62] Jean Ponce, Joel Burdick, and Elon Rimon. Computing the immobilizing three-finger grasps
of planar objects. In Proc. of the 1995 Wbrkshop on Computational Kinematics, pages 281—
300, 1995.

[63] Jean Ponce, Darrell Stam, and Bernard Faverjon. On computing force-closure grasps of
curved two-dimensional objects. International Journal of Robotics Research, 12(3):263-273,
1993.

[64] R. Prado and R. Suarez. Heuristic approach to construct 3-finger force-closure grasps for
polyhedral objects. In the 7th IFAC Symposium on Robot Control, SYROCO'’ 2003, pages
387-392, 2003.

[65] R.Pradoand R. Suérez. Heuristic grasp planning with threefrictional contacts on two or three
faces of a polyhedron. In IEEE International Symposium on Assembly and Task Planning,
pages 112-118, 2005.

[66] A. Rao and K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica,
10(2):201-225, 1993.

[67] A. Rao and K. Y. Goldberg. Friction and part curvature in parallel-jaw grasping. Journal of
Robotic Systems, 12(6):365-382, 1995.

[68] A.RaoandK. Y. Goldberg. Manipulating algebraic partsin the plane. |IEEE Transactionson
Robotics and Automation, 11(4):598-602, 1995.

[69] A.A.G. Requicha. Toward a theory of geometric tolerancing. International Journal of
Robotics Research, 2(4):45-60, 1983.

[70] F. Reuleaux. The Kinematics of Machinery. Macmilly and Company, 1876. Republished by
Dover in 1963.

[71] E. Rimon. New bounds on the number of frictionless fingers required to immobilize three
dimensional objects. Technical report, UU-CS-1996-49, Department of Mechanical Engi-
neering, Technion, Israel Institute of Technology, 1999.

[72] E. Rimon. A curvature-based bound on the number of frictionlessfingersrequired to immobi-
lize three-dimensional objects. |IEEE Transactions on Robotics and Automation, 17(5):679—
697, 2001.

[73] E. Rimon and J. W. Burdick. New bounds on the number of frictionless fingers required to
immobilize planar objects. J. of Robotic Systems, 12(6):433-451, 1995.

[74] E. Rimon and J. W. Burdick. Mobility of bodiesin contact—part I: A second-order mobility
index for multiple-finger graps. | EEE Transactions on Robotics and Automation, 14:696—708,
1998.

[75] E. Rimonand J. W. Burdick. Mobility of bodiesin contact—part I1: How forces are generated
by curvature effects. |EEE Transactions on Robotics and Automation, 14:709-717, 1998.

142 BIBLIOGRAPHY

[76] E. Rimon and J. W. Burdick. New bounds on the number of frictionless fingers required to
immobilize an object. Technical report, rms-94-01, Department of Mechanical Engineering,
Cadlifornia Institute of Technology, Sept 1994.

[77] B. Roth. Screws, motors, and wrenches that cannot be bought in a hardware store. In Int.
Symp. on Robotics Research, pages 679693, 1984.

[78] U. Roy, C.R. Liu, and T.C. Woo. Review of dimensioning and tolerancing: Representation
and processing. Computer-Aided Design, 23(7):466—468, 1991.

[79] K. Sdlisbury. Kinematic and force analysis of articulated hands. PhD thesis, Stanford Uni-
versity, 1982.

[80] P Somov. Uber Gebiete von Schraubengeschwindigkeiten eines starren Korpers bei ver-
schiedener Zahl von Stutzflachen. Zeitschrift Mathematik Physik, 45:245-306, 1900.

[81] A. F. van der Stappen. On the existence of form-closure configurations on a grid. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
12371242, 2000.

[82] A.F. vander Stappen, C. Wentink, and M. H. Overmars. Computing immobilizing grasps of
polygonal parts. International Journal of Robotics Research, 19(5):467-479, 2000.

[83] A. Sudsang, J. Ponce, and N. Srinivasa. Algorithms for constructing immobilizing fixtures
and grasps of three-dimensional objects. In JP. Laumond and M. H. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 363-380. A.K. Peters, 1997.

[84] H. Voelcker. A current perspective on tolerancing and metrology. Manufacturing Review,
6:258-268, 1993.

[85] R. Wagner, Y. Zhuang, and K. Y. Goldberg. Fixturing faceted parts with seven modular struts.
In IEEE International Symposium on Assembly and Task Planning, pages 133-139, 1995.

[86] A. S. Wallack and J. Canny. Modular fixture design for generalized polyhedra. In IEEE
International Conference on Robotics and Automation (ICRA), pages 830837, 1996.

[87] A. S Wallack and J. Canny. Planning for modular and hybrid fixtures. Algorithmica, 19(1—
2):40-60, 1997.

[88] M. Y. Wang and D. Pelinescu. Optimal fixture layout design in a discrete domain for 3d
workpieces. In IEEE International Conference on Robotics and Automation (ICRA), pages
792—798, May 2001.

[89] Michael Yu Wang. Characterizations of positioning accuracy of deterministic localization
of fixtures. In IEEE International Conference on Robotics and Automation (ICRA), pages
28942899, May 2002.

[90] Y. Wang. An optimum design approach to 3d fixture synthesis in a point set domain. |EEE
Transactions on Robotics and Automation, 16(6):839-846, 2000.

[91] C. Wentink. Fixture Planning—Geometry and Algorithms. PhD thesis, Department of Com-
puter Science, Utrecht University, 1998.

BIBLIOGRAPHY 143

[92] C. Wentink, A. F. van der Stappen, and M. H. Overmars. Algorithmsfor fixture design. In J-
P. Laumond and M. H. Overmars, editors, Algorithms for Robotic Motion and Manipulation,
pages 321-346. A .K. Peters, 1997.

[93] Chee K. Yap. Exact computational geometry and tolerancing metrology. In Snapshots of
Computational and Discrete Geometry, Volume 3, Sept. 1995. McGill School of Computer
Science Tech. Report No. SOCS-94.50.

[94] Y. Zhuang and K. Y. Goldberg. On the existence of solutionsin modular fixturing. Interna-
tional Journal of Robotics Research, 15:646—656, 1996.

144 BIBLIOGRAPHY

Samenvatting

Automatisering van fabricageprocessen is van wezenlijk belang voor de moderne industrie. In
veel fabricageprocessen is het nodig om voorwerpen te immobiliseren, dat wil zeggen, ze zodanig
vast te houden dat ze niet kunnen bewegen. Een machine of een monteur kan er dan onderdelen
aan bevestigen of er andere bewerkingen op uitvoeren. Wanneer voorwerpen machinaal worden
verplaatst, bijvoorbeeld op een lopende band of door een robot, dan is het vaak van belang dat ze
niet kunnen draaien of verschuiven ten opzichte van de band of de robothand die ze verplaatst.

Het immmobiliseren van een voorwerp kan op veel verschillende manieren worden gemod-
elleerd, afhankelijk van bijvoorbeeld het soort robotvingers waarmee het voorwerp op zijn plaats
wordt gehouden, met welke elgenschappen van voorwerp en vingers rekening wordt gehouden,
en hoe nauwkeurig de vingers moeten worden geplaatst. Het basismodel is form-closure, in 1876
geformuleerd door Reuleaux [70]. Een stijf voorwerp is in form-closure als een aantal wrijv-
ingsloze vingers aan de rand van het voorwerp elke eindige beweging en elke oneindig kleine
beweging van het voorwerp uitsluiten. Andere modellen zijn force-closure, waarbij we gebruik
maken van wrijvingsweerstand tussen de vingers en het voorwerp, en second-order-immobility,
waarbij door rekening te houden met de kromming van het object met minder vingers kan worden
volstaan, mits zeer nauwkeurig gepl aatst.

Veel onderzoekers hebben reeds aan immobilisatievraagstukken gewerkt. Ze hebben antwo-
ord gegeven op vragen zoals: hoeveel vingers zijn in het slechtste geval nodig en toereikend om
een voorwerp in form-closure te houden? Hoe kunnen we een form-closure-greep (een adequate
plaatsing van vingers) berekenen? Dit proefschrift richt zich op de tweede vraag. Tot op zekere
hoogte beantwoordden Van der Stappen et al. [82] deze vraag a: zij sommen alle viertalen van
kanten van een veelhoek op zodat er een form-closure-greep bestaat met een vinger aan elke kant
van het viertal.

In dit proefschrift gaan we verder. We leggen uit hoe we voor veelhoeken en een bepaald
soort gebogen voorwerpen in het vliak efficiént alle tweetallen, drietallen en viertallen van concave
hoekpunten en (eventueel gebogen) kanten kunnen berekenen, zodat we het voorwerp in form-
closure of force-closure kunnen houden met een vinger aan elk hoekpunt en elke kant van het
tweetal, drietal of viertal. We geven ook enkele resultaten voor second-order-immobility. Boven-
dien leggen we uit hoe we alle form-closure-grepen van een een as-parallel veelvliak?! efficient
kunnen berekenen. Daarmee wordt voor het eerst resultaat geboekt met betrekking tot het efficient
opsommen van form-closure-grepen van drie-dimensionale voorwerpen.

De algoritmen in dit proefschrift zijn efficient in de zin dat ze weinig rekentijd besteden aan
combinaties van hoekpunten en kanten die uiteindelijk geen form-closure-greep opleveren. De
algoritmen in hoofdstuk 3 tot en met 7 zijn in feite uitvoer-gevoelig: de rekentijd hangt vooral
af van het feitelijke aantal verschillende combinaties van hoekpunten en kanten die form-closure-
grepen opleveren, en niet van het theoretische maximum-aantal combinaties.

1Een as-parallel veelvlak is een veelviak waarvan alle ribben evenwijdig met de z-as, y-as of z-aszijn.

146 Samenvatting

Figure 3: (a) Form-closure-grepen (b) Een second-order-immoability-greep

Hoewel Reuleauxs analyse van form-closure makkelijk te begrijpen is, blijkt het construeren
van alleform-closure-grepen voor een voorwerp in het vliak eenvoudiger al's we ons baseren op een
andere, gelijkwaardige formulering van form-closure. Een aantal vingers houden een voorwerp in
form-closure als zij alle mogelijke krachten en momenten die op het voorwerp werken kunnen oph-
effen. Om een form-closure-greep voor een voorwerp in het vliak te vinden, kunnen we dus zoeken
naar een combinatie van vingers waarmee we de volledige drie-dimensionale ruimte van combi-
naties van krachten en momenten bestrijken. Ons probleem wordt dan een meetkundig probleem
van de volgende vorm. We krijgen een verzameling eenvoudige vormen in een drie-dimensionale
ruimte, die de mogelijke posities van vingers vertegenwoordigen. We willen nu alle combinaties
van vormen vinden zodat elke combinatie vier punten bevat waarvan de convexe omhullende de
oorsprong bevat. Dit meetkundige probleem in drie dimensies zetten we vervolgens weer om in
een twee-dimensionaal probleem door de vormen op viakken te projecteren, en naar de vormen te
zoeken die elkaar in de projectie snijden. Daartoe maken we gebruik van methoden die bekend
Zijn uit de computationale geometrie.

De formulering van form-closure in de ruimte van krachten en momenten kan worden uitgebreid
tot drie-dimensionale voorwerpen—de ruimte heeft dan zes dimensies.

In hoofdstuk 3 geven we efficiénte algoritmen om voor veelhoeken alle combinaties van con-
cave hoekpunten en kanten op te sommen die minstens één form-closure-greep met minder dan
vier wrijvingsloze puntvingers toelaten. Voor as-parallelle veelhoeken geven we algoritmen die
efficiénter zijn dan de algoritmen voor willekeurige veel hoeken.

In hoofdstuk 4 doen we hetzelfde voor viervingerige form-closure-grepen voor een bepaald
soort gebogen voorwerpen in het vliak, namelijk semi-algebraische verzamelingen.

In hoofdstuk 5 zoeken we naar grepen waarbij we gebruik maken van de wrijvingsweerstand
tussen de vingers en het voorwerp. Onbeweeglijkheid als gevolg van het gebruik van vingers met
wrijving wordt force-closure genoemd. We berekenen efficiént alle twee- en drievingerige force-
closure-grepen van veelhoeken en semi-algebraische verzamelingen.

In hoofdstuk 6 beschrijven we efficiénte, uitvoer-gevoelige algoritmen om alle twee- en drievin-
gerige immobiliserende grepen voor een veelhoek op te sommen. Het is bekend dat in het alge-
meen voor de meeste voorwerpen in het vlak vier vingers nodig en voldoende zijn om zein form-
closure te houden [51, 56]. Veel voorwerpen in het vliak (vooral veelhoeken) kunnen echter toch
met drie wrijvingsloze vingers op hun plaats worden gehouden dankzij second-order-immobility.
Onze algoritmen zijn gebaseerd op de noodzakelijke en voldoende meetkundige voorwaarden voor
second-order-immobility zoals beschreven door Czyzowicz et al. [33].

Hoofdstuk 7 gaat over grepen die kleine afwijkingen in de plaatsing van de vingers kunnen
verdragen. We verdelen de kanten van de veelhoek die we op zijn plaats willen houden eerst in
kleine segmenten van lengte . Vervol gens berekenen we alle combinaties van drie of vier concave
hoekpunten en segmenten, zodat we de veelhoek in form-closure kunnen houden met vingers aan
elk van deze hoekpunten of segmenten—ongeacht waar de vingers de segmenten precies raken.
Op deze manier berekenen we form-closure-grepen die ongevoelig zijn voor afwijkingen van max-

147

imaal %5 in de plaatsing van de vingers aan de kanten. Voor as-parallelle veelhoeken geven we
weer een efficiénter algoritme.

In hoofdstuk 8 maken we de stap naar drie-dimensional e voorwerpen: we berekenen alle com-
binaties van zijvlakken, concave ribben en concave hoekpunten van een as-parallel veelvlak, zodat
vier tot zeven wrijvingsloze puntvingers op elk van deze combinaties minstens één form-closure-
greep toelaten. De algoritmen filteren eerst alle combinaties van hoekpunten, ribben en zijvliakken
om kandidaten voor form-closure-grepen te selecteren. Vervolgensworden deze kandidaten gecon-
troleerd om de uiteindelijke grepen te bepalen. Bij vrijwel ale voorgestelde algoritmen hangt de
rekentijd vooral van de uitvoergrootte af; sommige agoritmen moeten echter alle kandidaatgrepen
stuk voor stuk controleren.

In hoofdstuk 9 richten we ons op het immobiliseren van een ingewikkelder voorwerp: een
keten van scharnierend aan elkaar bevestigde veelhoeken. Zulke ketens zijn moeilijker op hun
plaats te houden dan stijve voorwerpen omdat een keten meer vrijheidsgraden heeft, evenredig met
het aantal veelhoeken waaruit de keten bestaat. We bestuderen hoe zo'n keten in een bepaalde
stand kan worden gehouden door middel van wrijvingsloze puntvingers. We geven en analyseren
voorwaarden voor de onbeweeglijkheid en voor de robuuste onbeweeglijkheid (robust immobility)
van zulke ketens, vergelijkbaar met de voorwaarden voor second-order-immobility en form-closure
van stijve voorwerpen. Voor beide gevallen laten we zien hoevedl vingers in het slechtste geval
nodig zijn om een gegeven keten van scharnierende veelhoeken te immobiliseren, en hoe we een
greep kunnen vinden die voldoet.

Tot slot bespreken we in hoofdstuk 10 enkele interessante vraagstukken voor verder onderzoek.

148 Samenvatting

Acknowledgement

| am a lucky person. During the stay in the Netherlands, | met not only great people, but also a
different culture, which improved my attitude towards life. Moreover, my beloved son Junha was
born, and my husband Otfried and my copromotor Frank were promoted. Without the help and
support of the people around me, this thesis would not have been compl eted.

First of all, my promotors Mark Overmars and Frank van der Stappen deserve big thanks. They
were very supportive, patient and offered me good guidance and brilliant inspirations. They taught
me many things not only in words but also in actions. A few of those that | learned from them are
how they handled and arranged their duties and works, how they did research with other people,
and how they find interesting research problems. Thank you very much!

| also would like to thank Jean-Daniel Boissonnat, Ken Goldberg, Frans Groen, Rolf Klein
and Jan van Leeuwen for being in the reading committee for my thesis and for reading my thesis
carefully . Ken Goldberg offered me an intriguing problem about hinged polygons, which lead to
publishing a paper together. | appreciate his great inspirations. He also invited me to Berkeley for
research, which was a great experience.

I would like to thank other coauthors, Elon Rimon and Herman Haverkort for their cooperation.
Elon Rimon’s passion toward research has motivated me and gave me courage for challenging
problems. Herman Haverkort offered good cooperation with me. He also kindly helped me with
the” samenvatting”, title page, and paperwork. He also invited me to Karlsruhe for research. It was
nice to see other people doing computational geometry. Alexander Wolff (Sascha) kindly offered
me his place to stay in Karlsruhe—I appreciate it, Saschal | also would like to express thanks
to Frans Oort, Pankg K. Agarwal, Marc van Kreveld, Xavier Goaoc, Hyeon-Suk Na, Chee K.
Yap, Mark de Berg and Yan-Bin Jia for their helpful discussions about algebraic curves and data
structures. | hopethat | can get such good people around me in the future as well.

My colleagues at the institute, my friends and my family also deserve many thanks. Especially,
| would like to express my respect, love and thank to my husband Otfried Cheong for his endless
support and love. He was the one who showed me that research could be fun. He and his students
at KAIST offered me space and warm support so that | could finish my thesisin 2005. | especially
thank Hyo-Sil Kim, Jang-Hwan Kim, Chang-Bum Choi and Chang-Yul Choi for proof-reading
some chapters and discussions. | also would like to express specia thanks to Arno Kamphuis,
Mirela Tanase, Iris Reinbacher and Jur van den Berg for helping me with formatting the thesis,
proof-reading and paperwork. Mirelaand Iris, thank you for your support, and for agreeing to be
my paranymphs. There are alot of people, who indirectly contributed to this thesisfilling my life
with happiness and pleasure. My parents, my three dear sisters, and my friends Bertha, Madalina,
Karina, Twan, René, Geert-Jan, Remco, Roland, Frank ter Haar, Joachim, Dennis, Monique, Lydia,
Sandra, Corine, Wilke, Rita, Floor, Esther, Eveline, Ate, Koos, Sim, Henk and Henk, Thomas,
Hyojeong, Seol-Ah, Jae-Seok, Mira, Jung-Gun, Sang-Won, Linda, Nokyoung and Manfred, | thank
you all. Those friends and family who are not listed here, please forgive me, but the space is
limited. Dank je wel, allemaal! Thank you al! Modu Komawayo!

150

Curriculum Vitae

Jaesook Cheong

22.03. 1971
1991 - 1996

1997 - 2000
2000 - 2005
July 2002

Aug 2004

born in Seoul, South Korea

Computer Science and Engineering

at Pohang University of Science and Technology, South Korea
Computer Science

at Hong Kong University of Science and Technology, Hong Kong
Information and Computing Sciences

at Utrecht University, The Netherlands

guest at the department of Industrial Engineering and Operations Research
at Berkeley University, USA

guest at the department of Computer Science

at Karlsruhe University, Germany

NNSN

ST oY & X

PN eSS SN 976

0368 TS o

L0998 0o g S
NOK

Advanced School for Computing and Imaging

Thiswork was carried out in the ASCI graduate school.
ASCI dissertation series number 136.

ISBN-10: 90-393-4380-2
ISBN-13: 978-90-393-4380-7

