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Preface and outline of the thesis 

The incidence of type 2 diabetes (T2D) is rising rapidly worldwide and there are 

already more than 180 million diabetic subjects. T2D risk factors include ethnic 

background, age, hypertension, overweight, increased abdominal fat, and lack of 

physical exercise. Obesity is considered to be the most important risk factor for T2D 

and the main one driving the current epidemic as 90% of T2D patients are obese. 

Worldwide obesity has also reached epidemic proportions, with 300 million adults 

classified as clinically obese. T2D and obesity are multifactorial disorders in which 

both genetic and non-genetic (environmental and lifestyle) factors play a role. The 

past years has witnessed substantial advances in understanding the genetic basis of 

obesity and T2D. To date, 17 common obesity loci and 18 common T2D loci have 

been identified. However, only around 10% of the genetic risk for these traits can be 

explained. Therefore, many more risk loci for obesity and T2D still need to be 

discovered.  

The high prevalence of T2D in many human populations poses a further evolutionary 

question: Why is the disease so common, when it should disappear as those 

genetically susceptible to it are removed by natural selection?  

In the present thesis we focus on (I) evaluating alternative methods to find candidate 

genes for T2D and obesity, (II) studying genetic and environmental risk factors for 

T2D and obesity, and (III) studying the origin of the high prevalence of T2D and 

obesity in modern societies. 

Both obesity and T2D are complex genetic traits but they share some non-genetic risk 

factors. In the introduction, chapter 2, we describe the genes recently identified for 

T2D and obesity by genome-wide association studies (GWAS) and evaluate their 

functions in an effort to determine whether there is any support for the hypothesis that 

T2D and obesity share some underlying mechanism(s). 

In the first, methodological, part of the thesis (part I), we use an alternative strategy to 

find candidate genes for obesity and T2D and explore alternative methods for the 

investigation of GWAS data to obtain valuable information on the biology and 

evolutionary origin of T2D. In chapter 3 we combine six tools for disease gene 

identification to analyse the overlapping T2D and obesity susceptibility loci to 

pinpoint shared candidate genes for T2D and obesity. In this study, we evaluated 

alternative methods to study GWAS data. Instead of focusing on the single nucleotide 
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polymorphisms (SNPs) with the highest statistical significance, we took advantage of 

prior biological information and tried to detect overrepresented pathways in the 

GWAS data in chapter 4. We evaluated whether pathway classification analysis can 

help prioritize the biological pathways most likely to be involved in the disease 

etiology.  

Part II of the thesis reports on studies investigating genetic and environmental risk 

factors for T2D and obesity. In chapter 5 we investigated the role of variants in 

NPY1R, NPY2R and NPY5R genes, involved in the hypothalamic pathway, in total 

and nutrient-specific energy intake. In chapter 6, we investigate whether we can 

replicate the recently reported associations of the susceptibility loci with different 

obesity related phenotypes and explored the effect of variation in the currently 

implicated obesity genes affects on dietary energy and macronutrient intake. In 

chapter 7, we assessed the association between both parity and age at first full-term 

pregnancy with the risk of T2D in women. 

The studies, described in part III, aim to investigate the evolutionary explanation of 

obesity and T2D.  In chapter 8 we tested a theory on the evolutionary origin of 

obesity and T2D, the thrifty gene hypothesis, by investigating whether recently 

identified T2D and obesity risk alleles have been under recent positive selection. In 

chapter 9 we investigate whether sub- or infertility predicts later-in-life T2D risk. To 

investigate body weight from a historical perspective, we studied weight distribution 

in an 18th century criminal gang (chapter 10). Chapter 11 provides a general 

discussion on the origin of obesity and T2D. 
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Gene variants for obesity and type 2 diabetes 
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Abstract 

The incidence of type 2 diabetes (T2D) is rising rapidly worldwide, mainly due to the 

increase in the incidence of obesity. Both obesity and T2D are complex genetic traits 

but they share some non-genetic risk factors. Hence, it is tempting to speculate that 

the susceptibility to T2D and obesity may also involve shared underlying genetic 

factors acting on common molecular mechanisms. Recent genome-wide association 

(GWA) studies identified 17 common loci for obesity and 18 common loci for T2D. 

This review explores whether the susceptibility loci for T2D and obesity can indicate 

potential overlapping mechanisms in the disorders. Additionally, we touch upon the 

challenges regarding follow-up of confirmed GWA signals as well as alternative 

approaches to analysing GWA data to a fuller potential. 
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Introduction 

The incidence of type 2 diabetes (T2D) is rising rapidly worldwide and there are 

already more than 180 million diabetic subjects. T2D risk factors include ethnic 

background, age, hypertension, overweight, increased abdominal fat, and lack of 

physical exercise. Obesity is considered to be the most important risk factor for T2D 

and the main one driving the current epidemic as 90% of T2D patients is obese. 

Worldwide obesity has also reached epidemic proportions, with 300 million adults 

classified as clinically obese (based on data from the World Health Organization 

(WHO)). Up to 50% of these obese individuals will develop T2D at some stage in 

their life, depending on the age when they became obese. 

T2D and obesity are multifactorial disorders in which both genetic and non-

genetic (environmental and lifestyle) factors play a role. While the life-time risk for 

T2D in the Western world is around 10%, first-degree relatives of patients have a 20-

40% risk for the disease, and concordance rates for identical twins have been 

estimated to be 57% or higher (up to 90%) for T2D in male twins [1]. These 

observations clearly indicate there is a genetic component to the disease; however, the 

model seems to be more complex, involving multiple genes and environmental 

factors. 

Common obesity and T2D share some non-genetic factors as both are 

influenced by diet and physical inactivity. Both conditions are characterised by 

insulin resistance, suggesting a shared pathology. It has been proposed that the 

susceptibility to develop T2D and obesity is, in part, due to shared underlying genetic 

factors involved in common molecular mechanisms. This review explores the genes 

recently identified for T2D and obesity by genome-wide association (GWA) studies 

and evaluates their functions in an effort to determine whether there is any support for 

the hypothesis that T2D and obesity share some underlying mechanism(s). 

 

Common T2D and obesity susceptibility loci 

Before the era of GWA studies, genes were prioritized as candidate disease genes 

because of their function and/or position, and they were then studied for association 

with obesity and T2D. These approaches had limited success as replication of 

associated genes only proved possible for variants in or near PPARG, KCNJ11, TCF2 

and WFS1 with T2D [2] and for variants in or near BDNF, MC4R and SH2B1 with 
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obesity. Recently, a number of GWA studies have identified 17 common loci for 

obesity and 18 common loci for T2D [3-14] (table 1, table 2). One interesting finding 

is that the results of GWA studies often point towards genes with currently unknown 

or poorly described functions. This is one of the reasons why the previous approaches 

to gene hunting had limited success. Most of the recently identified genes were not 

tested for association, simply because their biological functions were unknown and 

they were not therefore suspected of being involved in the disease.  

 GWA studies further indicate that associated common markers have only a 

minor impact on disease susceptibility. The known risk variants for T2D are all 

relatively frequent in the population, ranging from 0.26 for TCF7L2 to 0.85 for 

PPARG in the European population, and have a low effect size, with odds ratios 

(ORs) ranging from 1.10 (confidence interval (CI): 1.07-1.14) for TCF2 to 1.37 (CI: 

1.31-1.43) for TCF7L2. For obesity, each of the associated variants has a very modest 

effect ranging from 0.06 kg/m2 for KCTD15 to 0.33 kg/m2 for FTO per allele change 

in BMI. All these variants together can only explain a small percentage of the genetic 

susceptibly of T2D and obesity. However, these variants are generally not the causal 

variants; the ORs of the causal variants should be higher and will presumably explain 

a larger percentage of the genetic susceptibility to these two conditions. In addition, it 

is likely that there are many more genes contributing a similar or smaller effect.  

 

Functions of T2D and obesity genes 

The susceptibility loci for obesity and T2D can provide insight into the aetiology of 

the traits, yet it is difficult to link genetic associations to biological mechanisms. It is 

important to keep in mind that most of the observed associations are located in non-

coding regions of the genome and that the presented T2D and obesity genes are 

mostly genes near the associated markers. We assume that at least some of these 

nearby genes are truly involved in the traits as we discuss the function of these genes 

to gain more insight into the disease pathology.  
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Table 1. Overview of genetic variants associated with T2D and their putative role in 

disease pathogenesis. 

Marker Chr Closest gene(s) Putative mechanism in T2D 

rs7578597 2 THADA Apoptosis of beta cells 

rs10010131 4 WFS1 Apoptosis of beta cells 

rs10923931 1 NOTCH2 Beta cell growth and development 

rs4402960 3 IGF2BP2 Beta cell growth and development 

rs10946398 6 CDKAL1 Beta cell growth and development 

rs1111875 10 HHEX-IDE Beta cell growth and development 

rs7901695 10 TCF7L2 Beta cell growth and development 

rs4430796 17 TCF2 Beta cell growth and development 

      Cell cycle 

rs864745 7 JAZF1 Cell cycle 

rs10811661 9 CDKN2A-2B Cell cycle 

rs12779790 10 CDC123-CAMK1D Cell cycle 

rs13266634 8 SLC30A8 Insulin secretion 

rs2237892 11 KCNQ1 Insulin secretion 

rs5215 11 KCNJ11 Insulin secretion 

rs10830963 11 MTNR1B Insulin secretion 

rs17036101 3 SYNC, PPARG Unknown 

rs4607103 3 ADAMTS9 Unknown 

rs1153188 12 DCD Unknown 

rs7961581 12 TSPAN8 Unknown 
 

 

Type 2 diabetes 

The main feature of T2D is the inability of an individual to maintain proper blood 

glucose levels. The key player in this homeostasis is the peptide hormone insulin 

which is produced in the beta-cells of the pancreas. After a meal this hormone is 

released into the bloodstream and transported to its several target tissues, where it 

diminishes hepatic glucose output and triggers glucose uptake and storage as either fat 

or glycogen. T2D starts with the failure of several tissues, such as adipose tissue and 

muscle, to respond to the stimulus of insulin (this is often referred to as insulin 

resistance). As a result, insulin levels rise and it is presumed that, after a certain time, 

beta-cells are not able to keep up with the growing demands for insulin release. At 

this point a (second) vicious cycle of higher blood glucose levels and a higher demand 

for insulin is entered, which increases the strain on the beta-cells and leads to beta-cell 

apoptosis and ultimately a complete inability to produce insulin [15]. 



!"#$%&'(#)%" 

   17 

The T2D risk variants currently pinpointed appear to act through interference 

with beta-cell insulin secretion rather than through insulin sensitivity of insulin target 

tissues. This indicates that disturbances in beta-cell function are ultimately decisive 

for the actual development of T2D. The known T2D genes can be classified into 

subgroups for their potential role in beta-cell function, based on what is known about 

their molecular function [15]. It has been proposed that KCNJ11, KCNQ1, MTNR1B 

and SLC30A8 are involved in insulin secretion; CDKAL1, IGF2BP2, HHEX-IDE, 

NOTCH2, JAZF1, TCF7L2 and TCF2 in beta-cell growth and development; TCF2, 

CDKN2A-2B, CDC123 and JAZF1 in the cell cycle; and THADA and WFS1 in the 

apoptosis of beta-cells. 

 

Obesity 

Overweight and obesity result from a long-lasting imbalance between food intake and 

energy expenditure, leading to storage of excess calories as body fat. Control of 

energy balance involves the integration of satiety signals from the gastrointestinal 

tract, adipose tissue and nutrient-related signals. Adiposity signals provide feedback 

information from body energy stores to various hypothalamic regions and are 

mediated via the circulating hormones leptin and insulin and others. As a result, body 

weight remains remarkably stable most of the time in most people, but any defects in 

this system can lead to a deregulation of body weight. It is known that hypothalamic 

defects in either insulin or leptin signalling are associated with increased food intake 

and/or heavier body weight [16,17]. 

Many of the recently established obesity susceptibility loci are located near 

genes that are highly expressed in the brain and/or have been shown to have a 

function in neuronal development or activity. These suggest a key role for the 

hypothalamic pathways in regulating food intake and energy homeostasis in the 

architecture of obesity. The role of BDNF, MC4R and SH2B1 genes in obesity 

pathogenesis is well known from functional studies: MC4R is the key signalling 

neuropeptide, inhibiting food intake and increasing metabolic rate [18]. BDNF 

decreases food intake in response to nutritional status and MC4R signalling [19]. 

Studies show that SH2B1 regulates energy balance, body weight, peripheral insulin 

sensitivity, and glucose homeostasis, at least in part by enhancing hypothalamic leptin 

sensitivity [20]. The roles of the other recently identified loci in obesity pathogenesis 

are not yet clear: FTO is suggested to participate in the central control of energy 



!"#$%&'()(

 18 

homeostasis, where it is regulated by feeding and fasting [21]. NEGR1 and TMEM18 

are involved in neural development [11,13], whereas NPC1 is involved in endosomal 

cholesterol trafficking in the central nervous system, liver and macrophages [22]. 

Because satiation signals influence how many calories are eaten during 

individual meals, it is interesting to further explore the effect of obesity susceptibility 

variants on total and nutrient-specific dietary intake. While total energy intake is a 

vital aspect of food intake, macronutrient composition or diet patterns may be equally 

important factors underlying the development of obesity. Common variants near the 

FTO and MC4R genes were recently found to be associated with total energy intake 

and a variant near MC4R was also found to be associated with dietary fat [23-25]. In 

addition, in a study population of 1700 Dutch females, the susceptibility loci near 

NEGR1, TMEM18, BDNF, MTCH2 and SH2B1 showed association with 

macronutrient intake [32]. It can be argued the genes associated with food intake play 

a role in satiation signalling. Further insight into the function of these genes may yield 

valuable clues for lifestyle intervention and therapeutics. 

 

Table 2. Overview of genetic variants associated with obesity and their putative role 

in pathogenesis. 

Marker Chr Closest gene(s) Putative mechanism in obesity 

rs4074134 11 BDNF Energy homeostasis 

rs7498665 16 SH2B1 Energy homeostasis 

rs9939609 16 FTO Energy homeostasis 

rs17782313 18 MC4R Energy homeostasis 

rs1805081 18 NPC1 Lipid transport 

rs2815752 1 NEGR1 Neural development 

rs6548238 2 TMEM18 Neural development 

rs10838738 11 MTCH2 Satiation signalling 

rs10913469 1 SEC16B Unknown 

rs7647305 3 ETV5 Unknown 

rs10938397 4 GNPDA2 Unknown 

rs2844479 6 NCR3 Unknown 

rs4712652 6 PRL Unknown 

rs10508503 10 PTER Unknown 

rs7138803 12 BCDIN3D Unknown 

rs1424233 16 MAF Unknown 

rs11084753 19 KCTD15 Unknown 
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GWA studies give insight into shared disease aetiology 

So far, results from the recent GWA studies do not point towards both obesity and 

T2D having an increased risk from shared disease susceptibility loci. It seems that the 

susceptibility genes for obesity are involved at the start of the trait (energy imbalance) 

and those for T2D at a later stage of the disease (beta-cell defect). 

 The initial finding of association of the FTO gene with T2D was subsequently 

shown to be entirely due to an obesity risk. The gene was found to be highly 

associated with T2D in several study populations [26], but failed to replicate in 

studies where they matched the cases and controls on BMI or selected relatively lean 

cases [7,9]. The loci near GNPDA2, BDNF and TMEM18 that were associated with 

obesity were also found to be weakly associated with T2D [11,13]. Follow-up studies 

should explore whether these associations with T2D mainly act through an effect on 

weight regulation; they need to take into account not only BMI, but also other 

measures of obesity. Recently it has become clear that not only the amount of body 

fat, but especially its distribution is important in determining disease risk; 

independently of BMI, a larger waist circumference (as a measure of abdominal 

obesity) is related to chronic disease risk, like T2D [27].  

However, because there are still many more obesity and T2D genes to 

discover, we cannot rule out that the susceptibility for developing T2D and obesity is 

partly due to shared underlying genetic factors. In a previous study we compared all 

the published genome scans for T2D and obesity and identified five overlapping 

chromosomal regions for both entities [28]. However, the shared genetic effect may 

be smaller than we initially thought or obesity could simply be a non-genetic risk 

factor for T2D because it provokes insulin resistance. 

 

Follow-up of confirmed associations and alternative gene-hunting 

approaches 

The next challenge is to go from the statistical association of the markers to a 

functional link between the genomic region and T2D and obesity. The associated SNP 

will either be the disease-causing variant or be in strong linkage disequilibrium (LD) 

with the causal variant, i.e. the ‘associated SNP’ and the causal variant are inherited 

together. Re-sequencing of the susceptibility loci is needed to establish the causal 

genes. This will be a daunting task because the LD blocks can be extensive. In GWA 
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studies, allele frequencies of approximately 300,000-500,000 common SNPs across 

the human genome are compared one by one between patients and healthy controls. 

Although this approach successfully identified new T2D and obesity genes, 99.9% of 

the GWA data has not yet been analysed to its full potential. 

It is possible that single locus methods do not reflect the correct underlying 

model of association. There is growing evidence that gene-gene and gene-

environment interactions contribute to complex diseases rather than single genes [29]. 

Several models for epistasis (i.e. gene-gene interactions) have been proposed [30], 

including ones in which the genes alone have no effect on disease aetiology but where 

their interaction modifies disease risk. In addition, it is likely that genetic variation 

contributes to disease risk through complex biological pathways. It is unlikely that the 

genes involved in these pathways will be picked up using traditional single-locus 

analyses, and different methods will be needed to extract this information from GWA 

datasets [31]. 

 

Conclusion 

Common obesity and T2D share some non-genetic factors as both are influenced by 

diet and physical inactivity. Both conditions are characterised by insulin resistance, 

suggesting a shared pathology. However, results from recent GWA studies do not 

point towards shared disease susceptibility loci with an increased risk for both obesity 

and T2D.  

Currently it seems that the susceptibility genes for obesity are involved at the 

start of the trait (energy imbalance) and those for T2D at a later stage of the disease 

(beta-cell defect). It is suggested that the shared genetic effect may be smaller than we 

thought or obesity could simply be a non-genetic risk factor for T2D because it 

provokes insulin resistance. Discovering more obesity and T2D genes will provide a 

broader insight into the shared disease pathology.  
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Abstract 

Worldwide the incidence of type 2 diabetes (T2D) is rising rapidly, mainly owing to 

the increase in the incidence of obesity, which is an important risk factor for T2D. 

Both obesity and T2D are complex genetic traits and they share some non-genetic risk 

factors. Hence, it is tempting to speculate that the susceptibility to T2D and obesity 

may also partly be due to shared genes. By comparing all published genome scans for 

T2D and obesity, five overlapping chromosomal regions for both diseases 

(encompassing 612 candidate genes) were identified. By analyzing these five 

susceptibility loci for T2D and obesity using six freely available bioinformatics tools 

for disease gene identification, 27 functional candidate genes were pinpointed that are 

involved in eating behaviour, metabolism and inflammation. These genes may reveal 

a molecular link between the two disorders.  
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Obesity and type 2 diabetes 

Worldwide the incidence of type 2 diabetes (T2D) is rising rapidly and there are 

already more than 170 million diabetics. T2D results from the body's inability to 

respond properly to the action of insulin produced by the pancreas; this results from 

impairment in both insulin sensitivity and insulin secretion [1]. T2D is a multifactorial 

disorder in which both genetic and non-genetic (environmental and life-style) factors 

play a role. The concordance rate of T2D amongst monozygotic twins is 76% 

compared to 40% amongst dizygotic twins, providing convincing evidence that 

genetic factors contribute to the development of T2D. In addition, there is a 3.5-fold 

increased risk for a first degree relative of a T2D patient to develop the disease [1]. 

Although both observations clearly imply there is a genetic component in the disease, 

the model seems to be more complex, involving multiple genes and environmental 

factors. A number of genes have been implicated that may contribute significantly to 

the risk of T2D, including peroxisome proliferator-activated receptor gamma 

(PPARG), potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) 

[2] and, more recently, transcription factor 7-like 2 (TCF7L2) [3]. These genes are 

known to explain only part of the underlying genetic component [2] so there are likely 

to be other, not yet identified, genes that are also important contributors to T2D 

susceptibility.  

Besides a positive family history, T2D risk factors include ethnic background, 

age, hypertension, overweight, increased abdominal fat, and lack of physical exercise. 

Obesity is considered to be the most important risk factor for T2D and the main one 

driving the current epidemic as 90% of T2D patients are obese. Worldwide obesity 

has also reached epidemic proportions, with 300 million adults classified as clinically 

obese (based on data from the World Health Organization (WHO)); 20% of these 

obese individuals suffer from T2D. Obesity is commonly assessed by the body mass 

index (BMI), defined as the weight in kilograms divided by the square of the height in 

meters (kg/m2). A BMI value higher than 30 is defined as obesity according to the 

WHO.  

Obesity and T2D share some non-genetic factors as both are influenced by 

diet and physical inactivity. Both traits are characterized by insulin resistance, 

suggesting a shared pathology. It has been proposed that low-grade inflammation in 

visceral fat may be a potential mechanism whereby obesity results in insulin 
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resistance [4]. It is tempting to speculate that the susceptibility to develop T2D and 

obesity is, in part, due to shared underlying genetic factors involved in common 

molecular mechanisms. This review explores whether there is any support for the 

hypothesis that T2D and obesity share some underlying susceptibility genes. 

 

Susceptibility loci for T2D and obesity 

Genome scans are a useful approach to define susceptibility loci for disease candidate 

genes [5]. Genome-wide linkage scans involve the typing of families and sibling pairs 

using polymorphic markers that are positioned across the whole genome, followed by 

calculation of the degree of linkage of the marker to a disease trait. Positional 

candidate genes can then be identified by examining the regions around the peaks of 

linkage that are obtained. Linkage-based studies have implicated many susceptibility 

loci for both T2D and obesity. Bell et al. [6] collected and evaluated genome scans 

performed on obesity till 2004 based on 31 papers. Since 2004 five additional genome 

scans on obesity have been published [7-11]. For T2D, 33 genome scans have been 

reported since 1996 [12-44] (Supplementary table 1). 

  A total of 14 susceptibility loci for obesity (blue bars, figure 1) and 18 

susceptibility loci for T2D (red bars, figure 1) fulfilled the inclusion criteria according 

to the methods assessed in box 1. Supplementary table 2 gives a complete overview of 

the susceptibility loci reported for both T2D and obesity. Five of these chromosomal 

regions, encompassing a total of 612 genes, were found to be linked to both obesity 

and T2D.  
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Figure 1. Genetic linkage map for obesity and T2D. The grey bars indicate 

susceptibility loci for T2D and the light grey bars for obesity. Five chromosomal 

regions (4q32, 6q22– 6q24, 11q24, 12q24 and 20q12–20q13) were found to be linked 

to both obesity and T2D. For detailed information on chromosomal locations, see the 

supplementary material online. 

 

Finding candidate genes using disease gene identification methods 

Unfortunately, the data from linkage studies do not directly indicate the gene of 

interest and identifying a potential gene is usually rather difficult [45, 46] as linkage 

intervals can contain dozens to hundreds of candidate genes. To identify the gene of 

interest, a dense map of single nucleotide polymorphisms (SNPs) encompassing the 

candidate region needs to be tested for genetic association in very large case-control 

studies. This strategy is based on the “common disease/common variant” hypothesis 

[47] and assumes that common disease susceptibility alleles are involved in complex 

traits. If a risk polymorphism exists, it will either be genotyped directly, or be in 

strong linkage disequilibrium (LD) with one of the genotyped SNPs. The recent 

completion of the HapMap project phase I has already resulted in a public database of 

more than 4 million common SNP variants across the genome [48]. This resource 

makes it feasible to carry out comprehensive genetic association studies needing a 

high density of SNPs (usually more than one SNP every 10 kb). Consequently, large 
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numbers of genotypes need to be generated so these studies are rather expensive, 

despite the recent drop in cost per genotype.  

An attractive alternative strategy is to first prioritize the positional candidate 

genes based on the function of the individual genes. Functional candidates are genes 

with products that can, in some way, be related to the pathogenesis of a disorder. 

Evidence for involvement of a gene in the disease process can, for example, be 

expression in the appropriate tissue or distribution of the gene product in a cell of 

interest. In the case of obesity, fat, adipose, hypothalamus, pituitary and gut are 

relevant tissues, whereas for T2D pancreas, fat, adipose, liver, kidney, gut and muscle 

tissues are considered relevant. Evidence for involvement can also be drawn from a 

similarity to phenotypes associated with naturally occurring or engineered mutations 

in other species. For example, the ob/ob mouse that has a defect in the leptin gene is 

an excellent model for studying obesity. Strong mechanistic support can also come 

from a causal relationship of the phenotype with a variant nucleotide, with altered 

protein expression, gene expression or function.  

Until recently, investigating each gene separately for its likely involvement in 

the disease process had to be done manually with the aid of available public databases 

such as OMIM, Entrez, and genome browsers, but now there are some promising 

bioinformatics tools (disease gene identification methods) for disease gene 

identification. Six of these new tools are freely available online: Prioritizer [49], 

Geneseeker [50], PROSPECTR&SUSPECTS (P&S) [51], Disease Gene Prediction 

(DGP) [52], Genes2Diseases (G2D) [53] and Endeavour [54] (table 1). These tools 

use information extracted from public online databases, such as sequence data, 

medical literature, gene ontology/function annotation (GO), and information on 

biology, function and gene expression. Although the different tools have the same 

goal, they are based on different principles: Prioritizer ranks genes based on their 

functional interaction with genes on different susceptibility loci, assuming that disease 

genes in a specific disorder are usually functionally related. Geneseeker points to 

genes which are expressed in disease-related tissues. PROSPECTR differentiates 

between those genes that are likely to be involved in diseases and those which are not 

using sequence-based features like gene length, protein length and the percent identity 

of homologs in other species. SUSPECTS scores candidate genes using PROSPECTR 

and also assesses how similar their annotation is to already known disease genes. 

DGP assigns probabilities to genes that could indicate involvement in hereditary  
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disease using the parameters conservation, phylogenetic extent, protein length and 

paralogy. G2D scores all the terms of GO according to their relevance to the disease. 

Endeavour is a software application for the computational prioritization of test genes 

based on a training set of genes already known to be involved in the disease of 

interest. The ranking of a test gene is based on its similarity with the training genes. 

These six tools were combined to analyse the five overlapping T2D and obesity loci 

encompassing the 612 positional candidate genes (methodology box 1). This strategy 

resulted in 27 candidate genes (table 2), many of which qualify as “shared disease” 

candidate genes when looking at their function. 

When the 27 genes were grouped based on GO terms, it was found that five of 

the identified genes toll-like receptor 2 (TLR2), friends leukemia virus integration 1 

(FLI1) fibrinogen beta/gamma chain (FGB, FGG) and scavenger receptor class B 

member 1 (SCARB1) were involved in immunity and defense. It is known that low-

grade inflammation in visceral fat of obese individuals causes insulin resistance and 

subsequently T2D. Although there is little evidence to date that causally links 

inflammation and obesity, there are very recent data showing a role for inflammation 

in weight control [55]. Mice deficient for interleukin 18 (IL18) show an increased 

food intake resulting in accumulation of fat tissue. The insulin resistance seen in these 

IL18-deficient mice is secondary to obesity and involves an enhanced expression of 

genes associated with gluconeogenesis in the liver, resulting from defective 

phosphorylation of signal transducer and activator of transcription 3 (STAT3). Hence, 

TLR2, FLI1, FGG, FGB and SCARB1 might be interesting candidates to further 

investigate the link between satiety and inflammation and are promising “shared 

disease” candidate genes.  
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Box 1. Methodology 

Identification of susceptibility loci 

The degree of evidence for all reported T2D loci was quantified as follows: a locus with a 

LOD score of 3 or more was considered significant, a locus with a LOD score between 2.2 

and 3 was considered suggestive, and a locus with a LOD score between 1 and 2.2 was 

considered nominal. For T2D we included only those loci that were found significant at least 

once, or were found suggestive in at least one study and at least nominal in two or more 

studies. The inclusion of the second category of loci was based on a study by Wiltshire et al. 

[69] in which it was postulated that locus counting is a useful additional tool for the 

evaluation of genome scan data for complex trait loci. We used the same two criteria to 

determine the loci from the five papers published on obesity since 2004 and combined these 

loci with those from Bell et al.. As obesity phenotypes BMI, serum leptin levels, abdominal 

subcutaneous and visceral fat, percentage body fat were included. All these phenotypes were 

used as continuous quantitative traits as well as with various cut-off levels.  

Gene identification methods 

Prioritizer, Endeavour, DGP, Geneseeker, G2D and P&S were combined to analyse the five 

overlapping T2D and obesity loci encompassing the 612 positional candidate genes. The loci 

4q32, 6q22-6q24, 11q24, 12q24 and 20q12-20q13 were run in all systems as input. 

Additionally, Endeavour and P&S had to be trained with a set of genes. ACDC, ADRA2A, 

ADRA2B, ADRB1, ADRB2, ADRB3, LEP, LEPR, NR3C1, UCP1, UCP2, UCP3 6, PPARG, 

KCNJ11 and TCF7L2 [2] are already known to be involved in the diseases and were therefore 

used as training genes. Geneseeker required disease-related tissue as input. Fat, adipose, 

hypothalamus, pituitary, gut, liver, kidney and muscle were used. G2D needed OMIM # as an 

additional input, for T2D this is #125853. OMIM #601665 for obesity was not recognized by 

the program and was therefore omitted. 

Identification of candidate genes 

Geneseeker pinpoints to genes that show expression in disease-related tissue. Therefore we 

took all genes pinpointed by this method into consideration. All other tools produce rankings 

and therefore the top 20 genes from each method was included for comparison. A gene was 

considered interesting as a candidate gene if it was indicated by three or more of the tools. 

Because Endeavour, DGP and P&S partly use the same input information and show quite 

similar output, candidate genes were excluded if they were solely identified by these three 

methods. 
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The thrifty gene hypothesis 

The group of 27 genes also contained 10 genes involved in metabolism, sloth and 

gluttony (table 3). This observation may point towards a role for thrifty genes as being 

important in the shared molecular basis of obesity and T2D. 

 

 

Table 3.  Genes from the set of 27 genes pointed out by multiple gene identification 

systems which are associated with the following thrifty GO terms: metabolic, sloth 

and gluttony. 

 

 

Thrifty GO-term Genes 

metabolic   

fatty acid metabolism AACS, PTGIS 

gluconeogenesis PCK1 

lipid, fatty acid and steroid 

metabolism SCARB1, PTGIS, AACS 

glucose metabolism NPY1R 

energy reserve metabolism GNAS 

insulin processing CPE 

sloth   

locomotory behavior NPY1R, NPY2R 

gluttony   

eating behavior NPY1R, NPY2R, NPY5R 

 

 

Human evolution has shaped the genome of modern man and one major driver 

of natural selection is famine [56]. During the periods of prolonged famine that 

plagued our early ancestors, a survival advantage would have been conferred by genes 

favouring the economical use and storage of energy; the so-called thrifty genes. This 

theory was initially proposed by Neel [57] who focused on the efficient use of glucose 

as a biological fuel. He suggested that evolutionary pressure to preserve glucose for 

use by the brain during starvation led to a genetic propensity towards insulin 

resistance in peripheral tissue. In the Western world, food is, in general, easily 

available and plentiful, so these thrifty genes are maladaptive in modern society and 

may now contribute to susceptibility for obesity and T2D. However, although these 

evolutionary theories, focussing on the potential survival advantages of thrifty genes 

that are now maladaptive, are of great interest, they are speculative and difficult to 

prove [58]. Thriftiness can take many forms: (i) metabolic, an energy-sparing super-
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efficient metabolism, (ii) adipogenic, a propensity to rapid fat gain, (iii) physiological, 

an ability to switch off non-essential processes such as reproductive, thermogenic and 

immune capabilities, (iv) gluttony, a tendency to gorge when food is available, and 

(v) sloth, a tendency to conserve energy through inactivity [59]. Physiological 

thriftiness is not very likely to cause obesity and/or T2D, as the ability to switch off 

non-essential processes during famine will not be clearly maladaptive during normal 

or excessive food intake. However, the other forms of thriftiness could be plausible 

characteristics of genes that are maladaptive in modern society. Although the ten 

genes presented in table 3 would fit in with a “thrifty gene theory” based on their 

function (as they may influence mechanisms such as energy reserve metabolism and 

eating behaviour), in-depth genetic studies are needed to prove this theory. It would 

be interesting to compare the allele frequencies of these genes among different human 

populations with respect to food supply (past and present) and native climate. It 

would also be interesting to study the effect of long-term energy restriction on the 

expression of these genes [60].  

 

Candidate T2D and obesity genes 

In addition to the inflammatory and thrifty genes mentioned above, the computational 

disease gene identification methods indicated some interesting genes already known 

to be associated with T2D or obesity. These include transcription factor 1 (TCF1), 

hepatocyte nuclear factor 4, alpha (HNF4A), opioid receptor mu 1 (OPRM1), 

phosphoenolpyruvate carboxykinase 1 (PCK1), neuropeptide Y receptor 2 (NPY2R), 

ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), guanine nucleotide 

binding protein alpha stimulatin complex (GNAS), carboxypeptidase (CPE), and 

nuclear receptor co-repressor 2 (NCOR2). Many of these genes show genetic 

association to either T2D or obesity, or are in some other way functionally associated 

with either one of the disorders (for details see table 2). 

Of particular interest is the PCK1 gene, a main control point for the regulation 

of gluconeogenesis. A promoter SNP (-232C!G) in PCK1 is associated with T2D 

[61]. The odds ratio (OR) for T2D among individuals with one or two copies of -

232G compared with -232C/C homozygotes was 1.9 in a Canadian Oji-Cree Indian 

sample, and 2.8 in a Caucasian sample. However, this association was not replicated 

in a German Caucasian population [62]. An in vitro experiment in three different cell 
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lines showed that the -232G construct was resistant to down-regulation by insulin 

compared to a construct that did contain 232C [61]. The common assumption is that 

mutations in PCK1 lead to excessive glucose production through hepatic 

gluconeogenesis. However, there is an alternative explanation in which mutations at 

the PCK1 locus could selectively affect PCK1 expression in adipose tissue. This 

would result in changes in glyceroneogenesis that would affect the storage and 

releases of fatty acids. Beale et al. [63] therefore proposed the PCK1 gene as a 

candidate gene for both T2D and obesity.  

Another interesting gene is NCOR2. The protein encoded by this gene 

(NCOR2) interacts with PPAR!). PPAR)! is an inflammatory factor that is also 

involved in the development of adipose tissue. Genetic studies have implicated the 

PPARG gene with obesity as well as T2D. NCOR2 also plays an important role in the 

adipocyte by inhibiting adipocyte differentiation via repression of PPAR! activity 

[64]. Hence, the NCOR2 gene is another interesting candidate gene to investigate for 

its susceptibility to both obesity and T2D. 

The ENPP1 gene was also indicated by multiple gene identification systems. 

It is an inhibitor of the insulin receptor. Quantitative PCR analysis revealed a 

significant upregulation of ENPP1 transcription in liver (p=0.025) and brain 

(p=0.034) of diabetic rabbits compared with controls [65]. The polymorphic ENPP1 

121Q allele predicted genetic susceptibility to T2D in a South Asian sample (P=0.01) 

and a Caucasian sample (p=0.003). A three-allele risk haplotype also showed 

association with childhood obesity (OR=1.69), adult morbid and moderate obesity 

(OR=1.5 and OR=1.37, respectively) and T2D (OR=1.56, p=0.00002) 66. This makes 

ENPP1 the first example of a common genetic link between childhood obesity, adult 

obesity and T2D.  

 

Discussion 

Complex traits such as obesity and T2D pose special challenges for genetic analyses 

because of gene-gene and gene-environment interactions, genetic heterogeneity, and 

low penetrance of the individual genes. The heterogeneity means it is difficult to 

generalize genome scan results over different populations and ethnicities. In addition, 

the multifactorial nature of complex traits assumes that the contribution of each of the 

susceptibility genes is likely to be small, and that only the joint effect of several 
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susceptibility genes in combination with environmental factors will lead to disease 46. 

It is therefore not surprising that large numbers of chromosomal regions have been 

implicated in disease susceptibility of both T2D and/or obesity, and hence, analysing 

all the individual positional candidate genes and loci will be a daunting task. 

Applying computational disease gene identification methods can be hugely helpful in 

the hunt for complex disease genes. 

Recently, Tiffin et al. [67] analyzed 9556 positional candidate genes using 

multiple bioinformatics tools that could be implicated in T2D and/or obesity. Their 

approach was different from the approach in this study and resulted in a different list 

of genes for the following reasons. They included all susceptibility loci for either one 

of the traits which resulted in inclusion of nearly half the genome. Hence, they will 

have indicated genes that could be responsible for either one of the disorders, whereas 

the approach in the present review focused only on the overlapping T2D and obesity 

loci. In addition, two extra computational methods (Prioritizer and Endeavour) were 

used in the present review that incorporate a wider range of biological data sources 

than the other tools. 

This review has yielded an interesting list of candidate genes by investigating 

the overlapping chromosomal linkage regions for T2D and obesity, using a 

combination of computational disease gene identification methods. Many of these 

identified genes are excellent candidates to study further for their role in the shared 

disease aetiology between obesity and T2D, and a few have already been genetically 

or functionally associated with both disorders (ENPP1, NPY2R). Although this cannot 

be taken as evidence that these computational methods work, it is tempting to assume 

that at least some of these genes may be true candidates, especially as this list 

includes genes belonging to the inflammatory pathway recently suggested to form an 

important molecular link between obesity and T2D [4]. Based on the candidate gene 

list presented here, it can be speculated that the molecular link between obesity and 

T2D extends beyond low-grade inflammation and may also contain thrifty genes. It 

will be interesting to see whether high-resolution SNP typing of these candidate genes 

in obese and/or T2D cohorts can be used to establish genetic association. In addition, 

these genes might be interesting candidates for identifying quantitative trait loci 

(QTLs) affecting obesity and T2D phenotypes in mice [68]. The list of 27 genes and 

the pathways identified may also help in the further interpretation of genome-wide 

genetic association data for T2D and obesity.  
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Table S2. Review of chromosomal regions that show linkage in type 2 diabetes and obesity. 
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1q21-

1q25 Elbein et al.1999 [1] 

CRP-

APOA2 4.3 T2D 

 Frahling et al.2003 [2]  2.4 T2D 

 Hsueh et al.2003 [3] D18S858 2.4 T2D 

 Ng et al.2004 [4] 

APOA2-

D1S194 3.1 T2D 

 Sale et al.2004 [5] D1S1589  T2D 

 Silander et al.2004 [6] D1S1677 1.0a T2D 

 Vionnet et al.2000 [7] 

APOA2-

D1S484 3.0a T2D 

 Xiang et al.2004 [8] D1S1589 3.3a T2D 

 Zhao et al.2004 [9] D1S2851 2.2b T2D 

 Wiltshire et al.2001 [10]  2.4 T2D 

      

2p23-

2p21 Bell et al.2005 [11]   obesity 

      

2p14 Chen et al.2005 [12] D2S2739 3.3 obesity 

      

2q24-

2q32 Avery et al.2004 [13]  1.9 T2D 

 Busfield et al.2002 [14] D2S2345 3 T2D 

 Iwasaki et al.2003 [15] 

D2S1353-

D2S1776 1 T2D 

      

2q36-

2q37 Hanis et al.1996 [16] D2S125 4 T2D 

 Elbein et al.1999 [1] D2S336 2.2 T2D 

 Luo et al.2001 [17] D2S126 2.1 T2D 

      

3p26 Norris et al..2005 [18] 

D3S2387-

MFD433 3.7 obesity 

      

3p24-

3p22 Lindgren et al.2002 [19]  2.2 b  T2D 

 Ehm et al.2000 [20] D3S2432 2.4 T2D 

 Duggirala et al.1999 [21] 

D3S2394-

GAT128C02 2.5 T2D 

 Iwasaki et al.2003 [15] D3S3038 1.6 a T2D 

      

3q27 Bell et al.2005 [11]   obesity 

      

4p15-

4p14 Bell et al.2005 [11]   obesity 
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 Lewis et al.2005 [22]  1.7 obesity 

      

4q31-

4q32 Bell et al.2005 [11]   obesity 

4q32-

4q33 Lindgren et al.2002 [19] 

D4S1595-

D4S3047 2.5 b T2D 

 Ng et al.2004 [4] 

D4S2349-

D4S1644 2.6 T2D 

 Sale et al.2004 [5] D4S1629  T2D 

 

Aulchenko et 

al.2003 [23] D4S431 1.3 T2D 

 Rotimi et al.2004 [24] 

D4S623-

D4S2394 1.4 T2D 

 Hsueh et al.2003 [3] 

D4S1575-

D4S424 1.3 T2D 

 Permutt et al.2001 [25]   T2D 

      

5q13 Ehm et al.2000 [20] D5S1404 3.3 T2D 

 Frahling et al.2003 [2]  1.3 T2D 

      

6q21-

6q25 Sale et al.2004 [5] D6S1035 2.3 T2D 

 Xiang et al.2004 [8] D6S1040 6.2 a T2D 

 

Aulchenko et 

al.2003 [23] 

D6S1277-

D6S1027 1.9 T2D 

 Hanson et al.1998 [26] 

D6S1009-

D6S1003 1.4 T2D 

 Iwasaki et al.2003 [15] D6S1009 1.4 T2D 

 Luo et al.2001 [17] D6S264 1.4 T2D 

6q22-

6q25 Bell et al.2005 [11]   obesity 

      

7q31-

7q32   Bell et al.2005 [11]   obesity 

      

9q21 Lindgren et al.2002 [19] 

D9S1874-

D9S153 3.9 b T2D 

 Luo et al.2001 [17] D9S171 3.3 b T2D 

      

9q33 Iwasaki et al.2003 [15] D9S282 5.3 T2D 

 

Aulchenko et 

al.2003 [23] D9S1682 1 T2D 

      

10p12-

10p11 Bell et al.2005 [11]   obesity 

      

10q26 Duggirala et al.1999 [21]  3.8 T2D 

 Sale et al.2004 [5] 

D10S217-

D10S212  T2D 

 

Aulchenko et 

al.2003 [23] D10S212 1.1 T2D 

      

11q14-

11q24 Bell et al.2005 [11]   obesity 



!"#"$%&#'(#)*+',-'")("+*

 

   49 

11q24 Duggirala et al.1999 [21] 

D11S4464-

D11S912 2.3 T2D 

 Hanson et al.1998 [26] 

D11S4464-

D11S912 1.7 T2D 

 Elbein et al.1999 [1] 

D11S925-

D11S912 1.2 T2D 

      

12q23-

12q24 Bell et al.2005 [11]   obesity 

 Cornes et al.2005 [27]  3 obesity 

 Lewis et al.2005 [22] 

D12S395-

D12S2078 3.8 obesity 

 Norris et al.2005 [18] 

D12S1052-

D12S1064 2.9 obesity 

 Wilson et al.2006 [28] D12S1612 3.2 b obesity 

12q24 Zhao et al.2004 [9] D12S86 1.3 b T2D 

 Lindgren et al.2002 [19] 

D12S2070-

D12S324 2.1 b T2D 

 Mahtani et al.1996 [29] D12S1349 3.3 T2D 

 Rotimi et al.2004 [24] 

D12S2070-

D12S395 1.9 T2D 

      

14q11.2-

14q12 Hsueh et al.2003 [3]  3.5 T2D 

 

Aulchenko et 

al..2003 [23] D14S283 1.2 T2D 

 Wiltshire et al.2003 [10] 

D14S70-

D14S288 1.4 T2D 

      

15q14 Mori et al.2002 [30] D15S994 3.9 T2D 

 Hanis et al.1996 [16] CYP19 4 T2D 

      

15q25.3 Lewis et al.2005 [22] D15S655 3 obesity 

      

17q11.2 Avery et al.2004 [13]  3 T2D 

      

18p11 

Aulchenko et 

al.2003 [23] D18S63 2.3 T2D 

 Ng et al.2004 [4] D18S843 1 T2D 

 Elbein et al.1999 [1] D18S59 2.4 T2D 

 Zhao et al.2004 [9] D18S53 1.3 b T2D 

 

van Tilburg et 

al.2003 [31] 

D18S471-

D18S843 2.3 T2D 

 Parker et al.2001 [32]  3.8 T2D 

 

Reynisdottir et 

al.2003 [33] D18S63 1.3 T2D 

      

19q13.33-

19q13.43 Bell et al.2005 [11]   obesity 

      

20q12-

20q13 Elbein et al.1999 [1] D20S197 2.4 T2D 

 Silander et al.2004 [6] D20S197 2.5 a T2D 

 Zhao et al.2004 [9] D20S178 1.0 b T2D 
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 Permut et al.2001 [25]  2 T2D 

 Rotimi et al.2004 [24] 

D20S480-

D20S171 2.6 T2D 

 Mori et al.2002 [30] D20S119 2.3 T2D 

 Luo et al.2001 [17] D20S197 1.5 b T2D 

 Iwasaki et al.2003 [15] D20S107 2.0 a T2D 

20q11-

20q13 Bell et al.2005 [11]   obesity 

      

22q11-

22q12 Iwasaki et al.2003 [15] D22S420 2.2 a T2D 

 Frahling et al.2003 [2] D22S420 2.5 T2D 

 Zhao et al.2004 [9] D22S274 1.4 b T2D 

 Avery et al.2004 [13]  3.4 T2D 

      

X Bell et al.2005 [11]     obesity 
a
 multi point LOD score, 

 b
 non parametric linkage score 
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Abstract 

Several genome-wide association studies (GWAS) have been published on various 

complex diseases. Although, new loci are found to be associated with these diseases, 

still only very little of the genetic risk for these diseases can be explained. As GWAS 

are still underpowered to find small main effects, and gene-gene interactions are 

likely to play a role, the data might currently not be analyzed to its full potential. In 

this study, we evaluated alternative methods to study GWAS data. Instead of focusing 

on the single nucleotide polymorphisms (SNPs) with the highest statistical 

significance, we took advantage of prior biological information and tried to detect 

overrepresented pathways in the GWAS data. We evaluated whether pathway 

classification analysis can help prioritize the biological pathways most likely to be 

involved in the disease etiology.  

In this study, we present the various benefits and limitations of pathway-classification 

tools in analyzing GWAS data. We show multiple differences in outcome between 

pathway tools analyzing the same dataset. Furthermore, analyzing randomly selected 

SNPs always results in significantly overrepresented pathways, large pathways have a 

higher chance of becoming statistically significant and the bioinformatics tools used 

in this study are biased towards detecting well-defined pathways.  

As an example, we analyzed data from two GWAS on type 2 diabetes (T2D); the 

Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium 

(WTCCC). Occasionally the results from the DGI and the WTCCC GWAS showed 

concordance in overrepresented pathways, but discordance in the corresponding 

genes. Thus, incorporating gene networks and pathway classification tools into the 

analysis can point towards significantly overrepresented molecular pathways, which 

cannot be picked up using traditional single-locus analyses. However, the limitations 

discussed in this study, need to be addressed before these methods can be widely 

used.  
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Introduction 

Recently many genome-wide association studies (GWAS) have been published on 

several complex diseases, such as type 2 diabetes (T2D) [9,20,21,22,23,30]. Although 

these methods have been successful in finding new susceptibility genes for various 

complex diseases, not all the GWAS data is analyzed to its full potential. In most 

GWAS, single-locus case-control comparisons are used to identify SNPs associated 

with a disease. However, these methods are still underpowered to detect small risk 

effects. For instance, PPARG, a gene known to be associated with T2D, is not found 

to be associated in the individual GWAS on T2D. Moreover, the odds ratios (OR) of 

the genes found in T2D vary between 1.10 (confidence interval (CI): 1.07-1.14) for 

TCF2 and 1.37 (CI: 1.31-1.43) for TCF7L2 [8]. Even the largest GWAS on T2D, 

comprising 1,924 cases and 2,938 controls [1,30], had only 20% power to detect 

effects of this size. Therefore, it is likely that there are many more genes contributing 

similar or smaller effect sizes. 

It is possible that single locus methods do not reflect the correct underlying 

model of association. There is growing evidence that gene-gene and gene-

environment interactions contribute to complex diseases rather than single genes [14]. 

Several models for epistasis (i.e. gene-gene interactions) have been proposed [16], 

including models in which the genes alone have no effect on disease etiology but 

where their interaction modifies disease risk. The genetic contribution might even 

include higher-order interactions between genetic and non-genetic factors in complex 

biological pathways. The genes involved in these complex underlying pathways will 

probably not be picked up using traditional single-locus analyses, and different 

methods are needed to extract this information from GWAS datasets. 

It can be assumed that only a limited number of biological pathways 

contribute to the etiology of complex traits [3]. This implies that a large proportion of 

the disease susceptibility genes will be functionally related and/or interact with one 

another in biological pathways. Several publicly accessible bioinformatics tools are 

now available for pathway classification analysis [27]; they sort genes into pre-

defined pathways of cellular processes based on genomic and molecular information.  

In this study we assessed the usefulness of different pathway classification tools 

(Webgestalt ‘KEGG’ and ‘BioCarta’ [31], GATHER [4] and DAVID [11], 

PANTHER [18]) to detect biologically overrepresented pathways in GWAS datasets. 
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 We evaluated whether pathway classification analysis can help prioritize the 

biological pathways most likely to be involved in the disease etiology. As an example, 

we used data from two GWAS on T2D (the Diabetes Genetics Initiative (DGI) and 

the Wellcome Trust Case Control Consortium (WTCCC)) to investigate whether we 

could find overlapping overrepresented pathways between the datasets which cannot 

be picked up using traditional single-locus analyses. To study the robustness of our 

results, we analyzed the datasets with different in- and exclusion criteria. 

Furthermore, we analyzed 30 sets of randomly selected SNPs to test for bias of the 

pathway classification tools. 

 

Methods 

 

Study populations T2D GWAS  

Both DGI and WTCCC have recently published a GWAS on T2D using a case-

control design, using the Affymetrix GeneChip Human Mapping 500k Array Set 

[20,30]. The summaries of their results are publicly available online at 

http://www.broad.mit.edu/diabetes/scandinavs/type2.html and 

http://www.wtccc.org.uk/info/summary_stats.shtml. We used these datasets for our 

study.  

 

DGI   

The DGI is a collaboration of the Broad Institute of Harvard and Massachusetts 

Institute of Technology (MIT), Lund University, Sweden, and Novartis Institutes for 

Biomedical Research. The GWAS for T2D comprised 1,464 T2D cases and 1,467 

controls from Finland and Sweden. The subjects were obtained from family-based 

studies (326 sibships discordant for T2D; 442 cases and 392 euglycemic controls) and 

from population-based studies (1,022 T2D cases and 1,075 euglycemic controls, 

matched for gender, age, BMI, and region of origin). All subjects were characterized 

for anthropometric measures, glucose tolerance and insulin secretion, lipids and 

apolipoproteins, and blood pressure. Genotyping of 500,568 SNPs was attempted in 

each sample and the overall call rate for passing SNPs was 99.2%. After filtering rare 

and monomorphic variants and applying stringent quality control filters, we had high-

quality genotypes for 386,731 common SNPs for our analyses. 
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WTCCC 

The WTCCC study comprised 1,924 T2D cases and 2,938 controls from the UK. The 

patients were all of British or Irish decent, and were obtained from the Diabetes UK 

Warren 2 study. They were recruited as part of family-based studies or as isolated 

cases. Diagnosis of T2D was based on currently prescribed diabetes-specific 

medication or on laboratory evidence of hyperglycemia. Other forms of diabetes were 

excluded. The controls were obtained from two different sources: the 1958 birth 

cohort and the UK Blood Service donors, both distributed nationwide. No relevant 

phenotypic data for any of these samples was available for this study. Of the 490,032 

autosomal SNPs, 459,447 SNPs passed the initial quality control of the WTCCC [21].  

 

Inclusion criteria 

We obtained data on 386,731 and 459,447 SNPs from DGI and WTCCC, 

respectively. The DGI dataset contained fewer SNPs because of more stringent 

quality control filters than the WTCCC dataset [20.21]. Because of issues related to 

the analysis of X-chromosomal SNPs, we excluded X-chromosomal SNPs from our 

study. We also excluded a set of SNPs that did not meet our inclusion criteria 

(combined minor allele frequency (MAF) cases and controls > 0.01; call rate cases > 

0.95; call rate controls > 0.95; Hardy Weinberg equilibrium (HWE) p-value controls 

< 0.001). Ultimately, 370,519 SNPs from the DGI and 390,025 SNPs from the 

WTCCC fulfilled our inclusion criteria. 

Both DGI and WTCCC were designed to identify T2D susceptibility loci, but 

the two studies differed considerably in study design. Combining two different 

datasets increases the population size and therefore the power to detect associations, 

but does not take study design differences into account. We therefore decided to 

investigate pathways in the DGI and WTCCC datasets separately as well as in a 

combined dataset (supplementary information 1). We performed a Mantel-Haenszel 

procedure to obtain pooled estimates for the overlapping SNPs [19]. 
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SNP selection 

For our analyses we selected all SNPs that showed association with T2D with a p-

value lower than 0.003 from each dataset. This resulted in 1,179 SNPs that were 

selected from DGI and 1,712 SNPs from WTCCC (figure 1). The threshold of p < 

0.003 was chosen because this p-value was in all cases lower than the cut-off value 

where the observed p-value distribution deviated from expected. We also varied this 

threshold but, because of input-size related limitation of the bioinformatics tools the 

threshold of p < 0.003 was most suitable for our study.  

Fig. 1. Pipeline showing numbers of SNPs included at various stages of analyses. 

 

Mapping SNPs to haplotype blocks 

Because parts of the genome are inherited together, each SNP gives information about 

several other variants on that piece of chromosome. Because of these linkage 

disequilibrium (LD) patterns in the genome, a SNP can be mapped back to an LD 

block containing several genes. To perform pathway analyses on the GWAS data, we 

first allocated the genotyped SNPs to genomic regions, based on the LD structure 

around the SNPs. Unfortunately, we did not have access to the crude genotype data 

from the DGI or WTCCC. However, our lab has recently performed a GWAS in 778 

UK individuals with celiac disease and 1,422 UK population controls using the 

Illumina HumanHap300 BeadChips [26]. The genome-wide genotype data from this 

study was used to characterize the LD structure throughout the genome. It is valid to 

use this population because these controls overlap with the 1958 birth cohort from the 
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WTCCC GWAS study. The patterns were based on a large dataset, making the 

prediction of the haplotype blocks somewhat more robust compared to estimates 

based on, for instance, the HapMap database. 

We established the LD blocks around the top SNPs from the DGI and 

WTCCC data. We defined haploblocks as SNPs that were in LD with at least an r2 of 

0.25 with the selected SNP. SNPs that were located in a block that contained one or 

more genes were called ‘mappable SNPs’. SNPs which were located in gene deserts 

and mapped only to non protein-coding regions were excluded from further analyses 

(‘non-mappable SNPs’). From the 1,179 SNPs in the DGI dataset and the 1,712 SNPs 

in the WTCCC dataset that showed association with a p-value lower than 0.003, 559 

and 797 SNPs, respectively, were mappable (figure 1).  

 

Network analyses  

Most of our ‘mappable SNPs’ mapped back to loci that encompassed multiple genes. 

By including all these genes for pathway analyses, genes that were not involved in the 

disease could add noise to the results. To select the most likely T2D susceptibility 

gene(s) from each locus, we first used the gene network tool 'Prioritizer' [7]. This tool 

prioritizes those genes that are functionally related or that interact with genes in the 

other selected loci, assuming that true disease genes are mostly functionally related 

and will therefore be closer to each other in a gene interaction network than false-

positive genes that have been randomly selected. Prioritizer uses a Bayesian approach 

to reconstruct a functional gene network, based upon known functional interactions 

from the Human Protein Reference Database (HPRD), Biomolecular Interaction 

Network Database (BIND) and Kyoto Encyclopedia of Genes and Genomes (KEGG). 

It also makes use of circumstantial evidence, derived from sharing of Gene Ontology 

(GO) terms, co-expression information from microarray data, deposited in the Gene 

Expression Omnibus (GEO), ~70,000 known protein-protein interactions in other 

organisms that have been mapped to orthogolous pairs of genes [15] and 3,000 

predicted human protein-protein interactions [24]. Positional candidate genes, located 

in different loci but functionally closely related in a gene network are assigned higher 

interaction scores than positional candidate genes that were functionally further apart 

from each other. Detailed information on this scoring system is described elsewhere 

[7]. The lower the interaction p-value assigned to this interaction score, the more 
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likely it is that this specific gene is functionally closely related to another gene in the 

network. 

Although this network tool generates only theoretical evidence, it can pinpoint 

probable disease-causing genes. For example, Prioritizer predicted the NPY2R gene as 

being associated with obesity and T2D [6], and a few months later Campbell et al. 

published a paper stating they had found association of NPY2R with both traits in 

2,800 Caucasian individuals [2]. 

All the haploblocks that we defined based on the selected “mappable” SNPs  

were analyzed using the Prioritizer program. From each haploblock we selected those 

gene(s) that were, according to Prioritizer, functionally related to genes in other 

selected regions with an interaction p-value below 0.05 or, if none of the genes on a 

locus met this criterion, we selected the most significant gene per locus. 

 

Pathway tools 

After selecting the most probable candidate genes per locus, we sorted all genes into 

pathways using five pathway-classification tools. These tools test whether the number 

of genes from each pathway in our list of predicted candidate genes is higher than 

expected given the number of genes selected from the total number of genes. For 

example, from the total of 20,000 genes in the human genome, we sampled n genes in 

our study. Let there be y genes in a certain pathway according to the pathway-

classification tool of which we sampled x genes in our study, these tools test whether 

x out of y is what you expect given n out of 20,000. These tools use either the Fisher 

exact test or a Baysian tests. This resulted in a ranking of biological pathways by p-

value. 

We explored different pathway tools to investigate whether different methods 

resulted in consistent outcomes. First, we used three pathway tools that classified 

genes based on KEGG pathways: Webgestalt ‘KEGG’ [31], GATHER [4] and 

DAVID [11]. Second, we investigated two tools that used other pathway classification 

methods: PANTHER [18] and Webgestalt ‘BioCarta’ [31]. 

 

Different inclusion and exclusion criteria 

Because the in- and exclusion criteria that we chose might influence our results, we 

checked the consistency of our results by analyzing the datasets with several different 

in- and exclusion criteria: 
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1. Threshold p-value. We studied the influence of the threshold p-value that was 

chosen for the SNP selection, on the results by analyzing the datasets with different 

thresholds (0.001; 0.002; 0.003).   

2. Exclusion of the HLA region. The HLA region encodes proteins of classical HLA 

class I and class II genes in the major histocompatibility complex (MHC) and is 

essential in immune recognition. This region is highly polymorphic and its LD 

extends across multiple HLA and non-HLA genes in the MHC [5]. The extended 

haploblocks with functionally related genes could bias the analysis towards 

interactions and pathways of immune functions, so this region could possibly have 

influenced our network and pathway analysis. We therefore performed our analysis 

without the genes in the HLA region. We defined the HLA region in this study as the 

region on chromosome 6, from base pair 20,000,000 till base pair 40,000,000.  

3. Network analysis without GO terms. Prioritizer incorporates relatively unbiased 

genome-wide experimental datasets on molecular interactions like micro-array co-

expression data (MA), human yeast two-hybrid interactions (Y2H), and high-

throughput protein-protein interactions (PPI) from lower eukaryotes, but also the 

relatively more biased GO data source. GO-based analyses have a gene-centered view 

rather than focusing on physical and functional interactions between genes and are 

therefore more biased towards well-studied gene functions compared to PPI, Y2H and 

the MA. We therefore ran our network analysis twice, with and without the GO data 

source. 

4. Pathway analysis without network analysis. To further evaluate whether the 

network analysis would bias our results towards certain well studied pathway, we then 

performed pathway analysis on our original gene set without pre-selection by 

‘Prioritizer’ network analysis. 

5. Inclusion of all known T2D loci. The ten recently discovered T2D susceptibility 

loci for T2D in the original GWAS studies were not all present in our selected gene 

list. However, because these genes are known to be involved in T2D-related 

pathways, we added the following ten genes, PPARG, KCNJ11, TCF7L2, TCF2, 

WFS1, HHEX-IDE, SLC30A8, CDKAL1, CDKN2A-2B and IGF2BP2, to both our 

network and pathway analyses.  
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Random checks 

Genes vary greatly in size, LD blocks vary in the number of genes they contain, and 

pathways vary in the number of genes they contain. These differences influence the 

chances of each gene in each pathway to be selected in the gene set. In addition, 

larger pathways have more power to detect a certain difference in observed versus 

expected number of genes compared to smaller pathways. To investigate whether 

certain biological pathways were biased because of the problems outlined above, we 

repeated our analysis with 30 sets of randomly selected SNPs. 

 

Results  

 

Results of different pathway tools analyzing T2D GWAS as an example 

 To compare the outcomes of the different pathway tools, we focused on the ten 

strongest, overrepresented pathways in the GWAS datasets. 

In the DGI dataset, the pathways ‘cytokine-cytokine receptor interaction’ and 

‘Jak-STAT signaling pathway’ were overrepresented in the top-10 in all three KEGG 

pathway tools. The pathways ‘Calcium signaling pathway’, ‘Huntington disease’, 

‘ECM-receptor interaction’ and ‘Valine, leucine and isoleucine degradation’ were 

present in the top-10 in two out of three pathway tools (table 1). The analyses with the 

pathway tools Panther and Webgestalt ‘BioCarta’ resulted in similar outcomes. Again 

the ten strongest, overrepresented pathways in the DGI dataset pointed towards 

chemokine- and cytokine-mediated inflammation pathways, while the Panther results 

also contained the ‘Huntington disease’ pathway (table 2). 

In the WTCCC dataset, the ‘cell cycle’ and ‘Wnt signaling’ pathways were 

overrepresented in the top-10 in all three KEGG pathway tools. The ‘adherens 

junction’, ‘neuroactive ligand-receptor interaction’, ‘C21-Steroid hormone 

metabolism’, ‘ECM-receptor interaction’, ‘apoptosis’ and ‘alkaloid biosynthesis II’ 

pathways were present in the top-10 in two out of three pathway tools (table 3). 

Panther and Webgestalt ‘BioCarta’ pointed more towards pathways involved in 

inflammation and immunology, but the ‘apoptosis’ and ‘Wnt signaling’ pathways 

were also present in the top-10 most overrepresented pathways in the WTCCC dataset 

(table 4). The results of the combined dataset of the DGI and the WTCCC are 

presented in the supplementary information 1. 
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 Overall we observed similarities as well as differences in outcome between the 

tools when analyzing the same dataset and discordance as well as concordance in the 

results from the DGI and the WTCCC GWAS. 

 

Randomly selected SNPs 

Although the SNPs and the corresponding genes were randomly selected, all random 

datasets resulted in significantly overrepresented pathways using the three pathway 

classification tools, Webgestalt, GATHER and PANTHER (supplementary figure 1). 

Only random analysis using DAVID did not always result in a statistically 

overrepresented pathway. As randomly selected genes should not result in 

overrepresented pathways, this suggests that the tools might be too sensitive for the 

detection of observed vs. expected differences. Therefore, the use of these 

bioinformatics tools for pathway analysis in GWAS might be limited.  

In addition, the random selection of SNPs and relevant genes gives 

information on whether some pathways are more likely to be included in our analysis 

by chance than others. A high number of expected genes represented large pathways, 

a low number of expected genes represented small pathways. Supplementary figure 1 

shows the correlation between the expected number of genes per pathway and the 

corresponding p-value for overrepresentation.  We observed that especially in the 

pathway classification tools ‘Panther’ and Webgestalt KEGG, large pathways were 

favored to become significantly overrepresented in our analysis. 

 

Analyzing T2D GWAS using different in- and exclusion criteria 

To study the robustness of our results, we analyzed the datasets with different in- and 

exclusion criteria (table 5, results DGI). These changes did not affect our results and 

we found parallel pathways overrepresented. Although the ranking of the pathways 

did not change much with or without network analysis, the p-values for 

overrepresentation for each pathway was smaller after network analysis, indicating 

that making a pre-selection from all genes selected on knowledge of functional 

relatedness, increases the power to detect associated pathways. The analysis with 

different p-value thresholds showed that with p-values below 0.003 the number of 

genes that could be selected as input for the pathway analysis was too small to be able 

to detect significantly overrepresented pathways.  
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Discussion 

 

The validity of the results presented in the example of T2D GWAS data depends 

greatly on the strengths and limitations of the methods used (box 1). The results in 

this study are all hypothetical until they are validated on real data. While the concept 

of pathway analysis is simple and attractive, it is restricted by our limited knowledge 

of cellular processes. The majority of genes in the genome are relatively unknown and 

their biological function still needs to be established. Because network and pathway 

tools make use of functional information from gene and protein databases, they are 

biased towards the well-studied genes, interactions and pathways.  

 

Differences in pathway definitions 

Differences in outcome between the tools by analyzing the same dataset could be due 

to different updates of gene lists and pathways, different human reference gene sets, 

and different statistical tests. For pathway tools not based on KEGG, differences 

could also be due to different definitions and classifications of pathways. For 

example, a consistently overrepresented pathway in the results from PANTHER in the 

DGI and the WTCCC data is that of inflammation mediated by chemokine and 

cytokine signaling. In PANTHER, ‘inflammation’ is a large pathway comprising 315 

genes, whereas in other tools, this pathway is divided into smaller inflammation and 

inflammation-related pathways, like the ‘Jak-STAT signaling pathway’ and 

‘cytokine-cytokine receptor interaction’. This makes it difficult to compare results 

from multiple pathway tools and it shows that there needs to be more consensus on 

pathway classification and definition. The difficulty is that biological processes 

usually involve more than one pathway and pathways interact with each other. 

Therefore, well-defined pathways are hard to establish and making good 

computational predictions of cellular processes from genomic and molecular 

information will be a great challenge for the future. 

Our results also clearly show that consensus of the tools depends on whether 

the tools keep their gene lists, pathways and human reference sets updated according 

to the latest versions of NCBI, KEGG, etc. We would emphasize that online pathway 

classification tools and other bioinformatics tools that are not regularly updated 

quickly become useless for classification purposes.  
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Box 1. Troubleshooting for analysing GWAS and microarray data using pathway 

classification tools 

Problem  Description Remark 

Differences in outcome 

between pathway tools 

Use of different updates of   

gene assembly and gene 

builds: Some genes are not 

recognized by pathway tools 

and other genes do not exist 

or are located elsewhere in 

the most recent version of 

NCBI 

Publicly available online 

pathway tools that are not 

regularly updated quickly 

become unusable for 

classification purposes 

 Use of different human 

reference gene sets: For 

example, Panther uses 

NCBI: Homo Sapiens, but 

other tools use privately 

composed reference sets or 

reference sets with only 

4,000 genes 

The source of the 

reference gene set should 

be clear and easy 

accessible 

 Different statistical tests: 

Fisher’s exact test, 

hypergeometric test, 

binomal test, Bayes’ factor 

 

 Different definition and 

classification of pathways: 

For example, in 

PANTHER,‘‘inflammation’’ 

is a large pathway 

comprising 315 genes, 

whereas in other tools, this 

pathway is divided into 

smaller inflammation and 

inflammation-related 

pathways, like the ‘‘Jak-

STAT signaling’’ and 

‘‘cytokine-cytokine receptor 

interaction’’ pathways 

There needs to be more 

consensus on pathway 

classification and 

definition. However, 

biological processes 

usually involve more than 

one pathway and 

pathways interact with 

each other. Thus, making 

good computational 

predictions of cellular 

processes from genomic 

and molecular 

information will be a 

great challenge for the 

future 

There are always 

significantly 

overrepresented pathways 

Samples taken at random 

resulted in significantly 

overrepresented pathways 

using the pathway 

classification tools, whereas 

analyzing randomly selected 

gene sets should 

hypothetically not result in 

overrepresented pathways 
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Some pathways have a 

higher chance of 

becoming statistically 

significant 

Some features make a gene 

more likely to be included 

in our analysis by chance: 

For example, large genes, 

genes in large LD blocks, 

and genes in pathways that 

contain more genes 

Although the statistical 

test we applied partly 

corrected for these biases, 

permutation and 

bootstrapping of the data 

would greatly improve 

the results of the analysis 

 Large pathways were 

favored to become 

significantly 

overrepresented in our 

analysis. This could be due 

to the statistical attribute 

that the power of the test 

increases when the numbers 

compared become larger, as 

is the case in analyzing 

larger pathways 

 

 The Affymetrix GeneChip 

Human Mapping 500k 

Array SetGeneChip covers 

the whole genome, but not 

all regions are equally well 

covered. This might have 

affected our analyses 

because some gene sets and 

pathways are better covered 

and therefore more likely to 

show up in the results 

 

The bioinformatics tools 

used in this study are 

biased toward detecting 

well-defined pathways 

Network and pathway tools 

make use of functional 

information from gene and 

protein databases. 

However, the majority of 

genes in the genome are 

relatively unknown and their 

biological function still 

needs to be established 

 

 

Large pathways in favor  

We observed that especially in the pathway classification tools ‘Panther’ and 

Webgestalt KEGG, large pathways were favored to become significantly 

overrepresented in our analysis. This could be due to the statistical attribute that the 

power of the test increases when the numbers for comparison become larger, as is the 

case in analyzing larger pathways. In addition, because we created large LD blocks 

around each selected SNP, multiple genes per SNP will be selected and the chance of 
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selecting a false-positive gene is large. Genes from large pathways with many genes 

will then have a higher chance of being selected, although we partly corrected for this 

feature statistically. 

Large genes, genes in large LD blocks, and genes in pathways that contain 

more genes, were all more likely to be included in our analysis by chance, although 

the statistical test used should partly correct for these features. 

 

Gene distribution per pathway 

The number of genes per pathway is not equally distributed. Figure 2 shows that the 

pathways in KEGG differ from 4 till 471 genes per pathway. This wide distribution of 

genes per pathway could again influence our results. Although pathways are not 

expected to have equal numbers of genes, if a smaller range is allowed, many of these 

problems will be eliminated. For example, Webgestalt Biocarta classifies the genes in 

pathways within a small range and this results in less bias towards larger pathways 

when analyzing the data (supplementary figure 1). Also, one can argue that a group of 

4 genes can hardly be considered a pathway, but a group of 471 genes could in fact be 

subdivided into several smaller pathways.  

 

Coverage Affymetrix GeneChip Human Mapping 500k Array 

The DGI and WTCCC both performed a GWAS using the Affymetrix GeneChip 

Human Mapping 500k Array Set. Although this gene chip covers the whole genome, 

not all regions are equally well covered. This might have affected our analyses 

because some gene sets and pathways are better covered and are therefore more likely 

to show up in the results (figure 3 and 4). The distribution of the average SNPs/gene 

is not normal on the Affymetrix GeneChip. The range varies from 7.84 SNPs/gene for 

the ‘fatty acid biosynthesis’ pathway to 441.5 SNPs/gene for the ‘antigen processing 

and presentation’ pathway. In addition, the SNP density, measured by the average 

number of basepairs (bp)/SNPs on the Affymetrix GeneChip varies from 69.72 

bp/SNP for the ‘antigen processing and presentation’ pathway to 5398.80 bp/SNP for 

the pathway ‘Heparan sulfate biosynthesis’. Permutation and bootstrapping might 

reduce these problems. Also, SNP imputation could solve the problem of bias in 

coverage of the Affymetrix GeneChip Human Mapping 500k Array, but wouldn’t 

solve the problem of bias of overall SNP coverage in the genome. 

 



!"#$%&'()*+(

 

 

 

 

 

 

74 

 

 Fig. 2. Coverage KEGG pathways Affymetrix GeneChip Human Mapping 500k 

Array. Although this gene chip covers the whole genome, not all regions are equally 

well covered. The distribu- tion of the average SNPs/gene is not normally distributed 

on the Affymetrix GeneChip. The range per pathway varies from 7.84 to 441.5 SNPs 

per gene. 

 

P-value thresholds 

The analysis with different p-value thresholds showed that with p-values below 0.003 

the number of genes that was selected as input for the pathway analysis was too small 

to be able to detect significantly overrepresented pathways. This would suggest that a 

minimum amount of genes is needed for these analyses. The analysis with p-value 

thresholds above 0.003 resulted in complications, because the bioinformatics tools 

only could handle a certain amount of genes as an input. This is a limitation of these 

methods, because we couldn’t study the effect of using high p-value thresholds on our 

results. However, although we cannot predict what the highest appropriate p-value 

threshold is, the cut-off should not be too low, because it is not convenient to include 

the whole genome for pathway analysis.  
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Fig. 3. Coverage of base pairs (bp) per SNP per KEGG pathway Affymetrix 

GeneChip Human Mapping 500k. The range per pathway varies from 69.72 to 

5,398.80 bp per SNP. 

 

 

Differences between GWAS T2D datasets 

The results from the DGI and the WTCCC GWAS show concordance as well as 

discordance. This could be due to differences in study design, genetic heterogeneity 

between the study populations, differential biases and errors across studies, and 

random effects [12]. Both DGI and WTCCC were designed to identify T2D 

susceptibility loci but the two study designs differed considerably. In the DGI study, 

the cases and controls were matched for gender, age, BMI and region of origin. This 

makes the DGI study capable of detecting T2D susceptibility genes and pathways that 

confer risk independently of obesity. Cases and controls from the WTCCC were not 

matched and anthropometric measurements, such as BMI, in the controls groups were 

unknown. Identified genes and pathways from the WTCCC can be both T2D genes as 

well as BMI genes. Therefore, the fact that not all pathways overlap between the DGI 

and WTCCC might just reflect a difference in pathways that are picked-up because of 

this difference in study design.  
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Replication of GWAS results, genes versus pathways 

The data from the DGI and WTCCC overlapped in overrepresented pathways, but 

frequently we picked up different genes in the same pathway. As an example, figure 5 

shows the inflammation mediated by chemokine and cytokine signaling and the genes 

involved in this pathway. This figures show that although this similar pathway seems 

important in both studies, the genes from this pathway differ per study. These results 

may therefore be difficult to replicate when investigating single loci, but 

incorporating gene networks and pathway classification tools into your analysis can 

point towards significantly overrepresented molecular pathways.  

 

 

Fig. 4. Distribution of genes per KEGG pathway, showing that the pathways in 

KEGG differ from 4 genes till 471 genes per pathway. This wide distribution is far 

from normal and could have influenced our results. 

 

New T2D genes 

Recently, after this study was performed, a meta-analysis was published on three T2D 

GWAS, including the DGI and the WTCCC. Eleven new susceptibility loci for T2D 

were found, containing the genes JAZF1, CAMK1D-CDC123, TSPAN8-LGR5, 

THADA, ADAMTS9, NOTCH2, DCD, SYNC2-PPARG, VEGFA, BCL11A and 
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ADAM30 [29]. Furthermore, 2 Japanese studies recently found the T2D susceptibility 

gene KCNQ1 [25,28]. 

In our initial gene set that is based on the top most associated SNPs, JAZF1, 

CAMK1D-CDC123, TSPAN and PPARG were present in the WTCCC data, and 

NOTCH2 and ADAM30 were present in the DGI dataset. Subsequently, JAZF1, 

CAMK1D and PPARG were predicted by Prioritizer as candidate genes for T2D in the 

WTCCC data and NOTCH2 and ADAM30 in the DGI dataset. This shows that from 

the five recently unknown T2D susceptibility genes (PPARG was already known to 

be involved in T2D) that were selected as input for our network analysis, Prioritizer 

was able to predict four. 

The identified T2D genes on the eleven susceptibly loci also illustrate the 

limitations of pathway classification tools. The biological functions of most of these 

genes are unknown and only NOTCH2 and VEGFA could be sorted in pathways at all 

(i.e. notch signaling for NOTCH2). The pathway in which VEGFA is sorted fits the 

predicted pathways for T2D of cytokine-cytokine receptor interaction and focal 

adhesion. 
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Biology of T2D 

Because of the above mentions problems, our study does not provide major 

mechanistic insight in the etiology of T2D. However, our approach does show some 

interesting observations in the T2D GWAS data using prior biological information. 

It has been suggested that the genes found in the T2D GWAS imply a role for ! cell 

development and function in T2D etiology [8,17]. However, the results of our 

pathway analysis show that by taking a different view of the top SNPs it is possible to 

detect other biological mechanisms as well. The pathways that were most strongly 

overrepresented and showed the highest consistency throughout our results were all 

pathways involved in inflammation. It is known that low-grade inflammation in 

visceral fat of obese individuals causes insulin resistance and subsequently T2D [10]. 

However, our analysis does not rule out the involvement of ! cell development and 

function in the underlying biology of T2D. Oxidative stress as well as various 

inflammatory cytokines have also been proposed to play an important role in 

mediating ! cell destruction [13]. Unfortunately, none of the pathway classification 

tools contained a pathway of ! cell development and function, probably because it is 

relatively unknown and still needs to be described in detail in the literature and in 

pathway databases [1].  

 

Conclusion 

Incorporating gene networks and pathway classification tools into your analysis can 

point towards significantly overrepresented molecular pathways, which cannot be 

picked up using traditional single-locus analyses. However, while the concept of 

pathway analysis is simple and attractive, it is restricted by our limited knowledge of 

cellular processes. Pathway tools still suffer from several limitations and the next 

challenge is how to make better computational predictions of cellular processes from 

genomic and molecular information.  
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Supplementary information 

 

The combined dataset of the DGI and WTCCC 

 

Methods 

After filtering the data according to our inclusion criteria, 353,584 overlapping SNPs 

remained in the GWAS datasets. Both DGI and WTCCC were designed to identify 

T2D susceptibility loci, but the two studies differed considerably in study design. 

Combining two different datasets increases the population size and therefore the 

power to detect associations, but does not take study design differences into account. 

We therefore decided to investigate pathways in the DGI and WTCCC datasets 

separately as well as in a combined dataset. We performed a Mantel-Haenszel 

procedure to obtain pooled estimates for the overlapping SNPs  and found 1,340 

SNPs that showed association with a p-value lower than 0.003.  

To perform pathway analyses on the GWAS data, we first allocated the genotyped 

SNPs to genomic regions, based on the LD structure around the SNPs. From the 

pooled estimates of the results, 483 SNPs from the 1,340 SNPs were mappable. We 

included these SNPs in the analysis for this study. 

 

Results 

Several pathways were pinpointed as the strongest overrepresented pathways in the 

DGI and the WTCCC combined dataset by two out of the three KEGG pathway 

classification tools (table 1S): ‘Wnt signaling pathway’, ‘focal adhesion’, ‘T and B 

cell receptor signaling pathway’, ‘regulation of actin cytoskeleton’, ‘MAPK signaling 

pathway’, ‘epithelial cell signaling in Helicobacter pylori infection’, ‘apoptosis’ and 

‘toll-like receptor signaling pathway’. The other pathway classification tools both 

pointed to ‘toll-like receptor signaling’, and ‘Wnt signaling’ as an overrepresented 

BioCarta pathway (table 2S).  
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Supplementary figure 1. Correlation between the expected number of genes 

per pathways and corresponding p-value of overrepresentation per pathway. 
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This figure shows the correlation of a sample taken at random. We compared our 

observed number of genes per analysis to the number of genes expected by chance. A 

high number of expected genes represent large pathways, a low number of expected 

genes represent small pathways. We observed that some pathway classification tools 

favor large pathways leading to significant overrepresentation in our analysis. 
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Interrogating Type 2 Diabetes Genome-Wide Association Data Using a 

Biological Pathway-Based Approach 

Perry et al. [1] performed a pathway-based approach aiming to identify biological 

pathways associated with type 2  diabetes. They used genome-wide association 

(GWA) data from the type 2 diabetes study in the U.K. Wellcome Trust Case Control 

Consortium (WTCCC) for the initial analysis and validated the findings with data 

from the Diabetes Genetics Initiative (DGI) and Finland–United States Investigation 

of NIDDM Genetics (FUSION) studies. The Wnt signaling pathway was the most 

strongly associated, and they therefore postulated this was the most interesting 

candidate pathway. However, after correcting for multiple testing, none of the top-

ranking pathways reached statistical significance. Perry et al. concluded that type 2 

diabetes genes are likely to reside in multiple pathways.  

We recently performed comparable genome-wide pathway analysis in two of 

the three GWA datasets used by Perry et al. (the WTCCC and DGI) and found 

overlapping but also different results to theirs [2]. However, we encountered several 

problems using these pathway methods. Our main conclusion is therefore that 

pathway-based approaches have many limitations that need to be addressed before 

these methods can be used to provide accurate results and conclusions can be drawn.  

First, in classification systems like Kyoto Encyclopedia of Genes and 

Genomes (KEGG) or BioCarta, the majority of human genes are currently not sorted 

on any pathway. Of the 18 type 2 diabetes susceptibility loci recently identified, only 

5 (CDKN2A-2B, PPARG, NOTCH2, VEGFA, and TCF7L2) could be assigned to 

known biological pathways. In addition, !-cell function, one of the mechanisms 

suggested to underlie type 2 diabetes, has not been specifically described as a 

pathway in either KEGG or BioCarta. Thus, although type 2 diabetes genes may well 

play a role in multiple pathways, we feel that this conclusion cannot be drawn based 

on the results from pathway-based analyses.  

Second, as Perry et al. discuss, larger pathways are favored to become 

significantly overrepresented in pathway analysis. This is due to the statistical 

attribute that the power of tests increases as the numbers for comparison become 

larger, which is the case in analyzing lager pathways. One of the top associated 

pathways in both our study and that of Perry et al. is the Wnt signaling pathway, 

which comprises many genes. It is therefore highly likely to become statistically 
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overrepresented in pathway analyses. We analyzed 30 randomly selected sets of 

genes, encompassing around 1,500 genes per set, and in 16 of the 30 sets the Wnt 

signaling pathway was in the list of the top 10 ranked pathways, and in 5 of the 30 

sets it was even ranked in the top 3.  

We would like to emphasize that the limitations of pathway-based analyses in 

GWA data should be kept in mind when drawing conclusions based on 

overrepresented pathways.  
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Abstract 
There is a large variation in caloric intake and macronutrient preference between 

individuals and between ethnic groups, and these food intake patterns show a strong 

heritability. The transition to new food sources during the agriculture revolution 

around 11,000 years ago probably created selective pressure and shaped the genome 

of modern humans. One major player in energy homeostasis is the appetite-

stimulating hormone neuropeptide Y, in which the stimulatory capacity may be 

mediated by the neuropeptide Y receptors 1, 2 and 5 (NPY1R, NPY2R and NPY5R). 

We assess association between variants in the NPY1R, NPY2R and NPY5R genes and 

nutrient intake in a cross-sectional, single-center study of 400 men aged 40 to 80 

years, and we examine whether genomic regions containing these genes show 

signatures of recent selection in 270 HapMap individuals (90 Africans, 90 Asians, and 

90 Caucasians) and in 846 Dutch bloodbank controls. 

Our results show that derived alleles in NPY1R and NPY5R are associated with lower 

carbohydrate intake, mainly because of a lower consumption of mono- and 

disaccharides. We also show that carriers of these derived alleles, on average, 

consume meals with a lower glycemic index and glycemic load and have higher 

alcohol consumption. One of these variants shows the hallmark of recent selection in 

Europe. 

Our data suggest that lower carbohydrate intake, consuming meals with a low 

glycemic index and glycemic load, and/or higher alcohol consumption, gave a 

survival advantage in Europeans since the agricultural revolution. This advantage 

could lie in overall health benefits, because lower carbohydrate intake, consuming 

meals with a low GI and GL, and/or higher alcohol consumption, are known to be 

associated with a lower risk of chronic diseases. 
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Introduction 
One major player in energy homeostasis is the appetite-stimulating hormone 

neuropeptide Y (NPY)[1]. In rodents, NPY evokes eating behavior, inducing 

particularly carbohydrate intake. Injection of NPY in the brain elicits a strong feeding 

response even in satiated animals, eventually leading to obesity [2]. The effect of 

NPY is mediated by the neuropeptide Y receptors (NPYRs) [3]. Especially the Y1, 

Y2, and Y5 receptors (NPY1R, NPY2R, NPY5R) appear to be candidates for 

mediating the appetite stimulatory capacity of NPY [4,5] through binding of NPY. 

These are receptors in the arcuate and paraventricular nuclei of the hypothalamus. 

Variants in genes coding for these receptors may therefore influence energy intake, 

which could influence an individual’s susceptibility to becoming obese and 

developing T2D. We have previously pinpointed NPY1R, NPY2R and NPY5R as 

positional candidate genes for both obesity and T2D [6]. 

Large variations in caloric intake and macronutrient preference between 

individuals have been reported and these food intake patterns show a strong 

heritability [7]. There are also large differences in food intake and percentage of 

nutrient-specific energy intake among different ethnic groups [8,9]. These ethnic 

differences in total and nutrient-specific energy intake might be caused by the natural 

selection of mutations providing an advantage for a particular environment or type of 

agriculture. The transition to different food sources during the agricultural revolution, 

which started around 11,000 years ago, was an important selective pressure and the 

changes in food intake helped shape the genome of modern humans [10]. Genome-

wide sequence and SNP data of living humans can be used to study the recent natural 

selection over the past 30,000 years [11,12]. Under neutral selection, the linkage 

disequilibrium (LD) around variants in the genome will decay over time due to 

recombination, so that older (common) alleles typically have short-range LD and 

younger (rare) alleles have long-range LD. However, when an allele is under positive 

selection, its frequency rises rapidly in the population over a short time span and the 

haplotype carrying the advantageous allele therefore breaks down more slowly than 

an allele with the same frequency under neutral selection. 

In this study we investigated the role of single nucleotide polymorphisms 

(SNPs) in NPY1R, NPY2R and NPY5R genes in the total and nutrient-specific energy 

intake in a Dutch study population of 400 healthy older men. To see whether 
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changing environments in the past may have caused adaptation or maladaption to our 

current life style, we examined whether these loci showed a signature of recent 

selection, using genome-wide SNP data from the HapMap populations and a genome-

wide SNP dataset of 846 Dutch bloodbank controls. 

 

 
Figure 1. Characteristics of the NPY1R/NPY5R region. 
Figure 1A. tSNPs that optimally cover the genetic variation in the haplotype 
containing the NPY1R and NPY5R genes so that all SNPs with a minor allele 
frequency of ≥0.10 were captured with r2≥0.8. Figure 1B. The global allele frequency 
distributions per SNP are shown. NPY1R neuropeptide Y receptor 1; NPY5R 
neuropeptide Y receptor 5; CEU Utah residents with Northern and Western European 
ancestry from the CEPH collection; CHB Han Chinese in Beijing, China; JPT 
Japanese in Tokyo, Japan; YRI Yoruba in Ibadan, Nigeria. 
 

Results 
 

NPY1R, NPY2R and NPY5R Variation and Macronutrient Intake in Healthy 

Older Men 

Five tSNPs in the NPY2R gene and another five in the NPY1R and NPY5R genes were 

genotyped in the Hamlet population. The genotype success rates for all ten tSNPs 

were above 95%. There were no discordances in the genotypes of any of the CEPH 

sample and all genotypes were in agreement with Hardy-Weinberg equilibrium (p > 

0.01). Age, body mass index (BMI) and macronutrient intake of the participants are 

shown in Table 1. As neither age nor BMI were associated with any of the NPY2R 

and NPY1R/NPY5R SNPs, they do not confound the relation in this study. Therefore 

they were not included as covariates in the model. 
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Table 1. Characteristics of the Hamlet study population. 
Characteristic N Mean (SD) 
Age (years) 382 60.40 (11.22) 
BMI (kg/m2) 382 26.27 (3.44) 
Energy intake (kcal) 380 2255.30 (517.48) 
Protein intake (% of total energy intake) 380 15.02 (2.01) 
Fat intake (% of total energy intake) 380 35.59 (5.09) 
Carbohydrate intake (% of total energy intake) 380 42.98 (6.64) 
Alcohol intake (% of total energy intake) 380 6.41 (6.46) 
 

We did not find an association between any of the SNPs and total energy 

intake. However, by studying macronutrient-specific energy intake, we observed 

associations between SNPs in the NPY1R/NPY5R genes and carbohydrate intake, and 

with alcohol intake.  

 For rs17724320 in the NPY1R/NPY5R genes, we found a dose-response 

relationship of the derived T allele with carbohydrate intake (p < 0.01 for trend), 

meaning that carbohydrate intake was lowest in men carrying two ancestral C alleles 

and that it increased with each extra derived allele (Figure 2a). The haplotype analysis 

showed that carriers of the TTTGT haplotype consumed, on average, 6.2% more total 

carbohydrates than carriers of the reference haplotype TCAAC (p = 0.003) (Figure 

2b). 

There are many types of carbohydrates and the physiological responses to 

these vary substantially. We therefore also studied the association between SNPs in 

the NPY1R/NPY5R genes and relative mono- and disaccharide intake, relative 

polysaccharide intake, and GI and GL. The association appeared to be mainly 

restricted to mono- and disaccharides. For rs11100489, rs12507653, rs4234955 and 

rs17724320 in the NPY1R/NPY5R genes, we found the same dose-response 

relationship with mono- and disaccharide intake as for total carbohydrates for the 

derived allele (all showed a p < 0.05 trend) (Figure 3a). Men carrying two derived C 

alleles of rs11100489 ate 1.9% less mono- and disaccharides compared to men 

carrying one or two ancestral T alleles (p = 0.02). For rs12507653, men carrying one 

or two derived A alleles consumed 2.3% and 3.0% less mono- and disaccharides, 

respectively, than men homozygote for the ancestral T allele (p = 0.04 and p = 0.008, 

respectively). For rs11100489, the same genotype that was associated with a decrease 

in mono- and disaccharide intake was also associated with an increase in 

polysaccharide intake of 1.1% (p = 0.05) (Figure 4a).  
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The haplotype analysis showed that carriers of the TTTGT haplotype 

consumed 6.2% more mono- and disaccharides than carriers of the reference TCAAC 

haplotype (p = 0.002) (Figure 3b). We found no difference in polysaccharide intake 

between the different haplotypes (Figure 4b). 

There were no associations between single SNP genotypes and GI and GL 

(Figures 5a and 6a). However, the GI of the daily food intake of individuals carrying 

the TCTGT haplotype was significantly higher than of individuals carrying the 

reference haplotype TCAAC (0.533 versus 0.509; p = 0.01) (Figure 5b). The daily 

food intake of individuals who carry the ancestral TCTGT, TCAGC or TTTGT 

haplotypes had a significantly higher GL than individuals carrying the reference 

haplotype TCAAC (147, 160 and 130 versus 118, respectively; p = 0.001, p = 0.03 

and p < 0.0001, respectively)) (Figure 6b).  

For alcohol intake there was an association with rs11724320 in the 

NPY1R/NPY5R genes (Figure 7a). Men homozygote for the derived allele consumed 

2.4% more alcohol than men homozygote for the ancestral allele (p = 0.04). Carriers 

of the TTTGT and CCAAC haplotypes showed a difference of 4.0% and 2.0% in 

relative consumption of alcohol compared to the reference haplotype TCAAC (both 

p-values: 0.03) (Figure 7b).  
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Figure 2. NPY1R/NPY5R variants and carbohydrate intake in the Hamlet population. 
Figure 2a shows the association of SNPs in the NPY1R/NPY5R region with 
carbohydrate intake as percentage of total energy intake. The ancestral alleles are 
indicated as capital letters. # p<0.01 for trend. Figure 2b shows the association of 
NPY1R/NPY5R haplotypes with carbohydrate intake as percentage of total energy 
intake. The haploblocks consist of the SNPs rs9764, rs11100489, rs12507653, 
rs4234955 and rs11724320 and the ancestral alleles are indicated as capital letters. 
**p<0.01 (compared with linear regression model). 
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Figure 3. NPY1R/NPY5R variants and mono- and disaccharide intake in the Hamlet 
population. 
Figure 3a shows the association of SNPs in the NPY1R/NPY5R region with mono- 
and disaccharide intake as percentage of total energy intake. The ancestral alleles are 
indicated as capital letters.*p<0.05, **p<0.01(compared with linear regression 
model), # P<0.01 for trend. Figure 3b shows the association of NPY1R/NPY5R 
haplotypes with mono- and disaccharide intake as percentage of total energy intake. 
The haploblocks consist of the SNPs rs9764, rs11100489, rs12507653, rs4234955 and 
rs11724320 and the ancestral alleles are indicated as capital letters. *p<0.05 
(compared with linear regression model). 
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Figure 4. NPY1R/NPY5R variants and polysaccharide intake in the Hamlet 
population. 
Figure 4a shows the association of SNPs in the NPY1R/NPY5R region with 
polysaccharide intake as percentage of total energy intake. The ancestral alleles are 
indicated as capital letters.*p<0.05(compared with linear regression model) Figure 4b 
shows the association of NPY1R/NPY5R haplotypes with polysaccharide intake as 
percentage of total energy intake. The haploblocks consist of the SNPs rs9764, 
rs11100489, rs12507653, rs4234955 and rs11724320 and the ancestral alleles are 
indicated as capital letters. *p<0.05 (compared with linear regression model). 
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Figure 5. NPY1R/NPY5R variants and dietary glycemic index in the Hamlet 
population. 
Figure 5a shows the association of SNPs in the NPY1R/NPY5R region with dietary 
glycemic index. The ancestral alleles are indicated as capital letters. Figure 5b shows 
the association of NPY1R/NPY5R haplotypes with dietary glycemic index. The 
haploblocks consist of the SNPs rs9764, rs11100489, rs12507653, rs4234955 and 
rs11724320 and the ancestral alleles are indicated as capital letters. *p<0.05 
(compared with linear regression model). 
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Figure 6. NPY1R/NPY5R variants and dietary glycemic load in the Hamlet 
population. 
Figure 6a shows the association of SNPs in the NPY1R/NPY5R region with dietary 
glycemic load. The ancestral alleles are indicated as capital letters. Figure 6b shows 
the association of NPY1R/NPY5R haplotypes with dietary glycemic index. The 
haploblocks consist of the SNPs rs9764, rs11100489, rs12507653, rs4234955 and 
rs11724320 and the ancestral alleles are indicated as capital letters. *p<0.05, 
**p<0.001, ***p<0.0001 (compared with linear regression model). 
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Figure 7. NPY1R/NPY5R variants and alcohol intake in the Hamlet population. 
Figure 3a shows the association of SNPs in the NPY1R/NPY5R region with alcohol 
intake as percentage of total energy intake. The ancestral alleles are indicated as 
capital letters. *p<0.05, **p<0.01(compared with linear regression model), # P<0.01 
for trend. Figure 3b shows the association of NPY1R/NPY5R haplotypes with alcohol 
intake as percentage of total energy intake. The haploblocks consist of the SNPs 
rs9764, rs11100489, rs12507653, rs4234955 and rs11724320 and the ancestral alleles 
are indicated as capital letters. *p<0.05 (compared with linear regression model). 
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Signatures of Recent Selection in the NPY1R/NPY5R Gene 

As evident from Figure 8a, the derived C allele of rs11724320, located in the 

NPY1R/NPY5R region, is positioned on an unusually long haplotype compared to the 

ancestral T allele in the European HapMap individuals. In the African and Asian 

HapMap individuals, the haplotype lengths around rs11724320 are much shorter and 

there is no difference in haplotype lengths between the derived locus and the ancestral 

locus (Figure 8b: Africans).  

The standardized iHS score is –2.160 inHapMap Caucasians, indicating that 

the haplotypes on the derived allele background are significantly longer than the 

haplotypes associated with the ancestral allele (empirical p-value p=0.03). This 

indicates that the locus is under recent positive selection in the European HapMap 

population. 

To replicate these results, we calculated the haplotype decay of the derived 

and the ancestral alleles around the same SNP in 846 Caucasians, using EHH and iHS 

analysis. In this population, the derived C allele frequency was 63% and that for the 

ancestral T allele 37%. Although the derived C allele is very common in Europeans, it 

has long-range linkage disequilibrium (Figure 9). The standardized iHS score is –2.12 

in for the NPY1R/NPY5R locus in the Dutch dataset and this correlates with a 

empirical p-value of 0.05. This implies that the allele frequency rose rapidly in the 

population over a short period and it confirms our previous findings that the C allele 

of rs11724320 is under positive selection in Europeans.  
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Figure 8. Haplotype decay around rs11724320 in Europeans and Africans. 
Figure 8a shows the haplotype decay in genomic region of 1Mb around rs11724320, 
located in the NPY1R/NPY5R region, in 90 Utah residents with Northern and 
Western European ancestry from the CEPH collection (European HapMap 
individuals). Each horizontal line represents a haplotype and the center column 
represents the core SNP rs11724320 with the derived C-allele below and the ancestral 
T-allele above. The derived C allele of rs11724320is positioned on an unusually long 
haplotype compared to the ancestral T allele in the European HapMap individuals. 
Figure 8b shows the haplotype decay in genomic region of 1Mb around rs11724320, 
located in the NPY1R/NPY5R region, in 90 YRI Yoruba in Ibadan from Nigeria 
(African HapMap individuals). The haplotype lengths around the derived C allele and 
the ancestral T allele of rs11724320 do not significantly differ in the African 
population. 
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Figure 9. Haplotype decay around rs11724320 in 864 Caucasians from the 
Netherlands. 
Extended haplotype homozygosity and distance from core region rs11724320 in 
GWAS data with the derived allele shown (*) and the ancestral allele (#). For this 
analysis we used the derived and ancestral haplotypes of 864 Caucasians from the 
Netherlands. Although the derived C allele is very common in this population (allele 
frequency of 63%), it has long-range LD. This implies that the allele frequency 
increased rapidly in the population over a short time span. 
 

Age Estimation of Locus under Selection 

We used the haplotype of the 846 Dutch Caucasians to obtain a crude estimate of the 

time of the selective sweep. At EHH = 0.25, the haplotype length around the derived 

allele of rs11724320 is 436,713 base pairs long. The number of generations g 

therefore equals (ln 0.25 / –2*0.436713) * 100 ≈  160. Taking the generation time to 

be 25 years, the ancestor time becomes t = 25g and the selective sweep therefore 

started 25*160 ≈ 4000 years ago. The support interval, calculated at EHH = 0.15 and 

EHH = 0.35 is ~3800 to ~4300 years ago. 

 

Discussion 

 
The results of this study show that derived alleles in NPY1R and NPY5R are 

associated with lower relative carbohydrate intake, mainly because of a lower 

# 
* 

* 

# 
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consumption of mono- and disaccharides. We also show that carriers of these derived 

alleles on average consume meals with a lower GI and GL. However, the same alleles 

are associated with increased alcohol consumption. The derived allele of rs11724320 

appears to be under recent selection in the European population, and probably 

originates from around 4,000 years ago.  

A predicted selective sweep of around 4,000 years ago fits the theory of 

adaptation to novel food sources during the agriculture revolution, which started in 

Europe around 6,000 years ago and was gradually further developed from that point 

on. Our data suggest that a lower carbohydrate intake, consumption of meals with a 

low GI and GL, and/or higher alcohol consumption gave a survival advantage in 

Europeans during the agricultural revolution.  

 

Adaptation to New Food Sources 

The consumption of new food sources or the transition to novel dietary habits can 

lead to selective pressure when certain gene variants are better adapted to a particular 

dietary habit than others, resulting in a survival advantage for humans carrying the 

better adapted variants of the gene. One famous example is the selective advantage of 

variants in the lactase gene (LCT) which preserves the ability to digest lactose, the 

major sugar in milk, after weaning and throughout adult life [13]. This lactase 

persistence is considered an adaptation to dietary change brought about by the 

development of agriculture and animal domestication and husbandry.  

The agricultural revolution started around 11,000 years ago in the area of the 

Black Sea and was accompanied by major changes in diet for many human 

populations [14]. In Western Europe, agriculture was started about 6,000 years ago 

and was gradually further developed from that point on. Therefore the selection of the 

derived allele of rs11724320, which originated about 4,000–5,000 years ago, might 

well have been driven by the transition to novel food habits. 

The Mediterranean agriculture that developed in Europe at that time 

comprised livestock husbandry, which supplied much more protein and fat than the 

agricultures that developed in warmer parts of the world [14]. It can be argued that the 

allele under selection in the NPY1R/NPY5R genes, which is associated with reduced 

carbohydrate intake, is in fact adapted to this increased amount of protein and fat in 

the diet after the agriculture revolution. A higher percentage of dietary protein and fat 

necessarily results in a lower percentage of other macronutrients like carbohydrates. 
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However, we did not find an association between SNP variants in the NPY1R/NPY5R 

genes and fat and protein intake as a percentage of total energy intake, even when we 

took the percentage of fat and protein together in the linear regression model. This 

could be due to power-related issues, because one limitation of our study is the small 

size of the Hamlet population. Since, however, a reduced relative carbohydrate uptake 

must be compensated for by increased fat, protein and alcohol intake, we cannot 

exclude the possibility that the selective pressure was in fact due to an increased use 

of fat and proteins rather than reduced (simple) sugar consumption.  

Thrifty genes, favoring the economical use and storage of energy, confer a 

survival advantage in times of food scarcity [15]. Currently, these thrifty genes are 

maladapted to our ‘Westernized’ diet and lifestyle and may nowadays be contributing 

to the occurrence of obesity and T2D worldwide. However, it is possible that 

Europeans had already started adapting genetically to a ‘Westernized’ diet with high 

fat and protein intake after the rise of Mediterranean agriculture. The lower frequency 

of T2D in Europeans compared to other ethnic groups that are now adopting a 

‘Westernized’ diet and lifestyle supports this hypothesis [16].  

An alternative hypothesis is that new food sources may have helped 

Europeans to adapt to colder climates with less sunlight [17]. Ultraviolet radiation 

(UVR) can damage the bare human skin, but it is also important for the synthesis of 

vitamin D. This vitamin plays an essential role in the mineralization and normal 

growth of bone during infancy and childhood. Apart from the lighter skin 

pigmentation, a demand for adequate vitamin D synthesis in the less sunny northern 

European climate may therefore have favored adaptation to vitamin D deficiency with 

more consumption of high fat and high protein products like liver, fish, oils, eggs and 

milk products (these products contain vitamin D) [17]. Caucasians living in Western 

Europe may have required efficient thermogenesis to cope with cold climates. Lipids 

from fat, but not glucose, contribute to thermogenesis during exposure to cold [18]. 

However, a recent study that investigated the Y chromosome and mitochondrial DNA 

(both parts of the DNA which do not show recombination) in 2000 Dutch men 

showed that 80% originated from hunter-gatherers that already populated Western 

Europe 25,000 year ago 

(http://www.nrcnext.nl/nieuws/wetenschap/article2030713.ece, article in Dutch). The 

ancestors of modern residents of the Netherlands had already lived in Europe long 
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before the agriculture revolution began and had probably already adapted to colder 

climates with less sunlight. 

Another possibility is that instead of a survival advantage for high fat and high 

protein intake, the selective pressure may have been due to a survival advantage for 

low-carbohydrate and/or low GI/GL diets. Many studies have assessed the 

effectiveness and safety of different weight-loss diets, including the low-carbohydrate 

diet without calorie restriction.[19-21] After 12 to 48 months, the participants who 

were on the low-carbohydrate diet not only showed significantly more weight-loss 

compared to participants in other diet groups, but also experienced positive changes in 

overall metabolic effects and lipid profiles. They also experienced a decrease in C-

reactive protein levels and in blood pressure. Thus, reducing carbohydrate intake as a 

percentage of total energy intake results in overall health benefits, even though the 

total energy intake is not restricted.  

All dietary carbohydrates can be digested or converted into glucose. However, 

there are several types of carbohydrates (like monosaccharides, disaccharides, 

oligosaccharides, and starch and non-starch polysaccharides) and people’s 

physiological glycemic and insulinemic responses to these different carbohydrates 

vary substantially [22] A high GI meal is followed by rapid absorption of glucose and 

rapid stimulation of insulin secretion and other hormones. Within the first 2 hours of 

consuming a high GI meal, plasma glucose levels can become twice as high as after 

consuming a low GI meal containing identical nutrition and energy. This rapid 

response after ingestion of a high GI meal challenges the mechanism of energy 

homeostasis; acute metabolic effects follow a high GI meal [22]. 

A meta-analysis of observational studies on the effects of dietary GI and GL 

on the risk of chronic diseases showed an association of high-GI and/or high-GL with 

an increased risk of chronic diseases, such as type 2 diabetes, coronary heart disease, 

gall bladder disease, and breast cancer [23]. 

Finally, as we also found an increased alcohol intake for the derived allele 

carriers, we cannot exclude the possibility that increased alcohol consumption had a 

survival advantage. Rodent studies indicate that ethanol consumption and resistance 

are inversely related to NPY signaling. Both the NPY- and NPY1R-deficient mice 

showed increased ethanol consumption and reduced sensitivity to ethanol-induced 

sedation [24]. Multiple studies in humans show that moderate alcohol consumption 

has a protective effect for T2D possibly due to increased insulin sensitivity [25-26].  
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Also, anti-inflammatory effects of moderate alcohol consumption may be involved in 

this risk reduction. [27] 

 

NPY1R/NPY5R - The Hypothalamus Pathway and Nutrient-Specific Food 

Intake 

To our knowledge this is the first report of variants in the NPY1R/NPY5R genes being 

associated with nutrient-specific food intake. Our findings correspond with rodent 

studies in which NPY evoked feeding behavior, inducing particularly carbohydrate 

intake.  

Two other genes from the hypothalamus pathway also have been found to be 

associated with nutrient-specific food intake, but not with total energy intake. The 

Ala67Thr SNP in the agouti-related protein (AGRP) gene was associated with lower 

fat intake and higher carbohydrate intake [28] and the rs2272382 SNP in the TUB 

gene was shown to be associated with an increased energy intake from carbohydrates, 

mainly because of consuming more mono- and disaccharides. The same SNP was 

shown to be associated with a higher daily GL food intake [29]. This implies that the 

hypothalamus pathway plays an important role in controlling nutrient-specific food 

intake. 

 

Correcting for multiple testing 

In this study the p-values of the results of the association analysis are presented 

without correction for multiple testing. We justify this firstly, because we do not test 

hypothesis-free. Secondly, both the macronutrient intake (in percentage of total 

energy intake) and the tagging SNPs are not independent measurements.  

 In the first stage of the analyses we tested 5 SNPs in NPY2R and 5 SNPs in 

NPY1R/NPY5R region for association with macro-nutrient intake (as percentage of 

total energy intake). In the second stage of the analyses we continued with the most 

interesting findings and therefore we tested 5 SNPs and 12 haplotypes in the 

NPY1R/NPY5R region for association with subgroups of carbohydrate intake (mono- 

and disaccharides, polysaccharides, GI and GL). 

In the first stage, after controlling for testing 10 SNPs for association with 

macronutrient intake by the False Discovery Rate (FRD) procedure none of the 

associations remain statistically significant at a threshold (q) of 0.10. However in the 

second stage, after controlling for testing 5 SNPs together with 12 haplotypes in the 
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NPY1R/NPY5R region for association with subgroups of carbohydrate intake the 

association of haplotype TTTGT with carbohydrate intake, the associations of 

haplotype TTTGT and rs12507653 with mono- and disaccharides and the associations 

of haplotypes TTTGT, TCTGT and TCAGA and GL remain statistically significant at 

a threshold (q) of 0.10. 

Further studies should be done to confirm these associations in other 

populations. 

 

Conclusion 
We show that derived alleles in NPY1R and NPY5R are associated with lower 

carbohydrate intake, mainly because of a lower consumption of mono- and 

disaccharides. We also show that carriers of these derived alleles, on average, 

consume meals with a lower glycemic index and glycemic load and have higher 

alcohol consumption. One of these variants shows the hallmark of recent selection in 

Europe. 

Our data suggest that lower carbohydrate intake, consuming meals with a low 

glycemic index and glycemic load, and/or higher alcohol consumption, gave a 

survival advantage in Europeans since the agricultural revolution. This advantage 

could lie in overall health benefits, because lower carbohydrate intake, consuming 

meals with a low GI and GL, and/or higher alcohol consumption, are known to be 

associated with a lower risk of chronic diseases. 

 

Methods 
 

Hamlet study 

The Hamlet study is a cross-sectional, single-center study in 400 men aged 40 to 80 

years living independently. The recruitment of the participants has been described 

elsewhere.[30] In brief, participants visited the study center twice for physical 

examinations, including drawing of blood, and filled in a validated food frequency 

questionnaire (FFQ) on their dietary intake, which is designed to estimate regular 

intake of 178 food items in the year before enrolment.[31,32] We calculated and 

assigned the values (grams/day) for total energy, fat, carbohydrates, protein and 
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alcohol for each food item in the FFQ (described in detail by de Kleijn et al. [33]). 

Energy-adjusted intake was calculated using the nutrient-density method.[34] 

 We calculated glycemic load (GL) by multiplying the glycemic index (GI) of 

a food item with its carbohydrate content, then multiplied this value with its 

frequency of consumption and summed the values over all food items.[35,36] 

Glycemic load thus represented both quality and quantity of carbohydrates, and 

interaction between the two. Each unit of dietary glycemic load represented the 

equivalent of 1 g carbohydrate from glucose. The overall glycemic index of a man’s 

diet was calculated by dividing the dietary glycemic load by the total amount of 

carbohydrate consumed. Such expression of dietary glycemic index per gram of 

carbohydrate thus reflects the overall quality of the daily carbohydrate intake. 

The Pearson correlation coefficient between the FFQ and twelve monthly 

recall questionnaires (each for a 24-hour period) ranged from 0.61 to 0.85 for the 

macronutrients, energy intake and alcohol intake.  

 All participants gave written informed consent before enrolment and the study 

was approved by the institutional review board of the University Medical Center 

Utrecht. Data collection took place between March 2001 and April 2002. 

 

HapMap 

A total of 270 people are included in the HapMap database (Phase II) [36]: 30 trios of 

US residents with Northern and Western European ancestry (CEU), 30 trios of 

Yoruba people from Ibadan, Nigeria (YRI), 45 unrelated Japanese individuals from 

the Tokyo area (ASN), and 45 unrelated Chinese individuals from Beijing (ASN).  

 

GWAS data  

We used a genome-wide dataset of 846 Dutch blood bank controls. More details on 

this study are described elsewhere [37]. All individuals gave their informed consent. 

This study was approved by the Medical Ethical Committee of the University Medical 

Center Utrecht. 

 

Genotyping in Hamlet  

Information about SNPs in the NPY1R, NPY2R, NPY5R genes was obtained from the 

HapMap project (www.hapmap.org, HapMap data Rel#21/phase II Jul 06). Tagging 

SNPs (tSNPs) were selected using Haploview version 3.2, which is based on Tagger 
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software (www.broad.mit.edu/mpg/tagger/) [38]. so that all SNPs with a minor allele 

frequency (MAF) of ≥  0.10 were captured with r2 ≥  0.8. We selected five tSNPs 

(rs6849115, rs1021868, rs12507396, rs1047214, rs9990860) for the NPY2R gene and 

five more (rs9764, rs11100489, rs12507653, rs4234955 and rs17724320) for the 

NPY1R and NPY5R genes, as these two genes are located together in the human 

genome (Figure 1). 

These SNPs were genotyped in the Hamlet study using Taqman assays-on-

demand (Applied Biosystems, Nieuwerkerk a/d IJssel, the Netherlands), performed 

according to the manufacturer’s specifications. The sequence information for all 

primers and probes is available upon request. The genotypes were analyzed using a 

TaqMan 7900HT (Applied Biosystems, Nieuwerkerk a/d IJssel, the Netherlands). The 

DNA samples were processed in 384-well plates. Each plate contained 8 negative 

controls and 16 genotyping controls, which consisted of four duplicates of four 

different samples obtained from the Centre d’Etude du Polymorphisme Humain 

(CEPH).  

 

Data Analysis in Hamlet  

The genotype frequencies were tested for Hardy–Weinberg equilibrium by χ  2 

analysis. Association between genotypes (as the independent variable) and 

macronutrient intake (as dependent variables) was determined using linear regression 

analysis. We studied single SNP associations with total energy intake and 

macronutrient-specific energy intake using the ancestral allele as reference in the 

linear regression model, although it was not always the most frequent allele. The 

ancestral allele was based on alignment to the chimpanzee sequence. As we wished to 

study the effect on macronutrient intake independent of total energy intake, this total 

intake was included in the models as an explanatory variable. We also performed 

trend analyses to test a dose-response effect for the derived alleles.  

The False Discovery Rate (FDR) method from Benjamini and Hochberg was 

used to control for multiple testing [39]. 

All statistical analyses were performed using SPSS, version 15.0 for Windows 

(SPSS, Chicago, IL, USA). Haplotype analyses in Hamlet were performed using the 

haplo.stats package of R (version 2.7.1). The ancestral haplotype had an allele 

frequency of 0.03 in the Hamlet population and we therefore included all allele 

frequencies > 0.02 for analysis. The TCAAC haplotype was the most common, with 
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an allele frequency of 0.33, and this haplotype was used as a reference in the linear 

regression model. We did not use the ancestral haplotype as a reference because of its 

low frequency in the Hamlet population. 

 

Integrated Haplotype Score (iHS) Analysis 

We used the web-based tool haplotter to calculate extended haploblocks around our 

SNPs in HapMap and the online available software to calculate extended haploblocks 

around SNPs in our genome wide dataset, using the iHS method.[12] iHS is a statistic 

that was developed to detect evidence of recent positive selection (< 30,000 years 

ago) at a locus, and is based on the differential levels of linkage disequilibrium 

surrounding a positively selected allele compared to the background allele at the same 

position. An extremely positive iHS score (> 2) means that haplotypes on the 

ancestral allele background are longer than the derived allele background, while an 

extremely negative iHS score (< –2) means that the haplotypes on the derived allele 

background are longer than the haplotypes associated with the ancestral allele.  

 

Extended Haplotype Homozygosity Analysis in the GWAS Data 

A region of 1 Mb around NPY1R/NPY5R was extracted from the imputed GWAS 

dataset. We used the Beagle software program to infer haplotypes from genotypes of 

the Dutch subjects [40]. Then we calculated haplotype decay around the SNPs in the 

NPY1R/NPY5R region by performing extended haplotype homozygosity (EHH) 

analysis, using R (version 2.7.1). An EHH value stands for the probability that all 

haplotypes are homozygote at a recombination distance r from the selected site. We 

started by choosing the ancestral allele of the core SNP; at this point EHH = 1 for that 

allele. Next we compared the ancestral allele of the core SNP with the first proximate 

SNP upstream and looked for the most frequent haplotype between the ancestral allele 

of the core SNP and each of the alleles of the first proximate SNP. This meant that all 

individuals with the most frequent haplotype remained for analysis; all individuals 

with the other haplotype were excluded forever. If, for example, 80% of the 

individuals showed the most frequent haplotype between the ancestral allele and the 

first proximate SNP upstream, then EHH = 0.80 at that point. Subsequently, the first 

proximate allele upstream was compared with the second one and the same 

comparison and inclusion was done. We repeated this analysis with all proximate 

alleles on the upstream side of the ancestral allele of the core SNP until all subjects 
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were excluded (EHH = 0) and we performed the same procedure with all alleles 

located downstream from the core SNP. We then repeated this whole procedure for 

the derived allele of the core SNP. 

 

Age Estimation  

We used the data from the EHH analysis of the 864 Dutch individuals to obtain a 

crude estimate of the age of expansion of the derived variant as a result of recent 

selection, the so-called selective sweep. For this analysis we assumed a star 

phylogeny of the haplotypes. The recombination distance r is the distance in cM/Mbp 

between EHH = x to the left of the core SNP and EHH = x to the right of the core 

SNP. For a chosen x, r can be obtained from the data. As both x and r are then known, 

the generation time g can be calculated as: g = (ln x / –2r) * 100. Assuming an 

average generation length of 25 years, the age of the selective sweep equals 25g. For 

this study, we calculated r at EHH = 0.25 (support interval EHH = 0.15 – EHH = 

0.35). 
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Abstract 

Background: New genetic loci, most of which are expressed in the brain, have 

recently been reported to contribute to the development of obesity. The brain, 

especially the hypothalamus, is strongly involved in regulating weight and food 

intake.  

Objectives: We investigated whether the recently reported obesity loci are associated 

with measures of abdominal adiposity and whether these variants affect dietary 

energy or macronutrient intake.  

Design: We studied 1700 female Dutch participants in the European Prospective 

Investigation into Cancer and Nutrition (EPIC). Their anthropometric measurements 

and intake of macronutrients were available. Genotyping was performed by using 

KASPar chemistry. A linear regression model, with an assumption of an additive 

effect, was used to analyze the association between genotypes of 12 single nucleotide 

polymorphisms (SNPs) and adiposity measures and dietary intake.  

Results: Seven SNPs were associated (P < 0.05) with weight, body mass index (BMI), 

and waist circumference (unadjusted for BMI). They were in or near to 6 loci: FTO, 

MC4R, KCTD15, MTCH2, NEGR1, and BDNF. Five SNPs were associated with 

dietary intake (P < 0.05) and were in or near 5 loci: SH2B1 (particularly with 

increased fat), KCTD15 (particularly with carbohydrate intake), MTCH2, NEGR1, 

and BDNF.  

Conclusions: We confirmed some of the findings for the newly identified obesity loci 

that are associated with general adiposity in a healthy Dutch female population. Our 

results suggest that these loci are not specifically associated with abdominal adiposity 

but more generally with obesity. We also found that some of the SNPs were 

associated with macronutrient-specific food intake. 
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Introduction 

Obesity is a risk factor for developing several diseases, including type 2 diabetes and 

certain types of cancer [1]. Obesity, defined as a body mass index (BMI; in kg/m2) of 

30, results from an imbalance in energy intake and energy expenditure [2]. However, 

the underlying mechanisms are largely unknown and are being intensively studied. 

Recently, it has become clear that not only the amount of body fat but also its 

distribution is important in determining disease risk: an increasing waist 

circumference as a measure of abdominal obesity is related to increased chronic 

disease risk and mortality, independent of BMI as a measure of general obesity [3].  

Although environmental factors play an important role in the development of 

obesity, multiple twin and family studies have indicated that genetic factors make a 

significant contribution to its aetiology [4]. Many genetic loci have been identified as 

being associated with obesity; however, these loci only explain a small part of the 

genetic variance underlying the development of obesity [5, 6]. Recently, genome-

wide association studies (GWAS) have expanded the number of genetic susceptibility 

loci for obesity by identifying several new single nucleotide polymorphisms (SNPs) 

consistently associated with both BMI and weight, and thus, contributing to obesity 

risk [7, 8]. The loci identified are located in or near the genes FTO, MC4R, TMEM18, 

GNPDA2, SH2B1, KCTD15, MTCH2, NEGR1, BDNF, and ETV5 [7, 8].  

These loci are likely to be involved in many biological pathways because they 

are expressed in numerous tissues. Notably, some of the new obesity genes (FTO, 

MC4R, TMEM18, GNPDA2, SH2B1, KCTD15, and BDNF) are expressed particularly 

in the hypothalamus, a crucial centre for energy balance and regulation of food intake 

[2, 9–13]. Whereas total energy intake is a vital aspect of food intake, the 

macronutrient composition of food or dietary patterns may be equally important as 

factors underlying the development of obesity. However, the long-term risks and 

benefits of high-fat, low-carbohydrate diets or high-protein diets are a matter of lively 

scientific debate [14–16].  

We set out first to investigate whether the recently reported obesity loci are 

more specifically associated with abdominal obesity—an important contributor to 

increased morbidity and mortality, independent of the total amount of body fat. 

Second, we explored the effect of variation in the loci implicated with obesity on 
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dietary energy and macronutrient intakes in 1700 healthy Dutch women to investigate 

whether food intake is involved in the development of obesity. 

 

Methods 

 

Study population 

The study population consisted of Dutch female participants in the European 

Prospective Investigation into Cancer and Nutrition (EPIC), conducted in Utrecht, 

Netherlands (Prospect-EPIC) [17]. Between 1993 and 1997, 17,357 women aged 49–

70 y and residing in or near Utrecht were recruited through a regional, population-

based, breast cancer screening program. All of the women gave written informed 

consent, and the study was approved by the University Medical Center Utrecht 

Review Board. At recruitment, each participant filled in a general questionnaire on 

lifestyle factors, gynaecologic and obstetric history, and past and current morbidity as 

well as a validated, semi quantitative, food-frequency questionnaire (FFQ) with the 

aim of capturing the habitual diet during the year preceding enrolment. In addition, 

pulse rate, blood pressure, and anthropometric measurements were recorded, a blood 

sample was taken, and serum, plasma, erythrocytes, and buffy coat samples were 

stored at –196°C. A random sample of 1736 (10%) women was selected for 

biochemical analyses. Buffy coat samples were missing for 36 women; therefore, our 

study population comprised 1700 women. For the analyses of energy and 

macronutrient intakes, we excluded women who did not fill in the dietary 

questionnaire (n = 11). In addition, we excluded women with an implausibly low total 

energy intake of <800 kcal/d (n = 9). 

 

Adiposity measures 

Body height was measured to the nearest 0.5 cm with a wall-mounted stadiometer 

(Lameris, Utrecht, Netherlands). Body weight was measured with the subjects 

wearing light indoor clothing and no shoes to the nearest 0.5 kg with a floor scale 

(Seca, Atlanta, GA). Body mass index was calculated as weight divided by height 

squared (kg/m2). Waist circumference was measured to the nearest 0.5 cm with a 

standard household tape measure. We considered BMI to be a measure of general 

adiposity and waist circumference of abdominal adiposity.  
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Food-frequency questionnaire 

The FFQ contained questions on the usual frequency of consumption of 77 main food 

items during the year preceding enrolment. Further information was sought on 

consumption frequency for different sub items, preparation methods, and additions. 

Colour photographs were used to estimate portion size for 28 food items. Overall, the 

questionnaire allows the estimation of the average daily consumption of 178 foods by 

asking about sub items for several foods, such as fruit and vegetables, in additional 

questions. Food consumption data were converted into macro- and micronutrients by 

using an updated version of the computerized Dutch food composition table 1996 

[18]. The FFQ was validated in pilot studies before the start of our study [19]. 

Energy-adjusted intake was calculated by using the nutrient-density method [20].  

 

DNA extraction and genotyping 

Genomic DNA was extracted from buffy coats with the use of the QIAamp Blood Kit 

(Qiagen Inc, Valencia, CA). The following 13 SNPs were selected for genotyping in 

the random sample of the Prospect-EPIC study from the SNPs previously reported to 

be associated with BMI [7, 8] or from SNPs reported to be in linkage disequilibrium 

(LD) with the associated SNPs (see Supplementary Table 1 under "Supplemental 

data" in the online issue): rs1121980 (FTO) (proxy for rs9939609; r2 = 0.84), 

rs17700633 (MC4R), rs17782313 (MC4R), rs6548238 (TMEM18), rs10938397 

(GNDAP2), rs7498665 (SH2B1), rs368794 (KCTD15) (proxy for rs11084753; r2 = 1), 

rs10838738 (MTCH2), rs2568958 (NEGR1) (proxy for rs2815752; r2 = 1), rs1488830 

(BDNF), rs925946 (BDNF), rs7647305 (ETV5), and r2844479 (locus at 16p21). 

Genotyping of the 13 SNPs was performed by Kbioscience (Hoddesdon Herts, United 

Kingdom) by using KASPar chemistry, which is a competitive allele-specific PCR 

SNP genotyping system that uses FRET quencher cassette oligos 

(http://www.kbioscience.co.uk/genotyping/genotyping_chemistry.html, last accessed 

9 February 2009). Blind duplicates, plate-identifying blank wells, and Hardy-

Weinberg equilibrium tests were used as quality-control tests. Typing of the 13 SNPs 

resulted in genotype success rates >95%, except for rs368794 (93.5%) and rs2844479 

(88.4%). We included 12 SNPs with a genotype success rate 93.5% for data analysis. 

None of the genotype distributions of the SNPs deviated significantly from Hardy-

Weinberg equilibrium (P > 0.01). The SNPs located in the MC4R and BDNF loci 
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were not in LD in our study population: r2 = 0.13 (rs17700633, rs17782131) and r2 = 

0.12 (rs1488830, rs925946), respectively.  

 

Data analysis 

Population characteristics are expressed as means ± SDs for continuous, normally 

distributed traits, and frequencies are expressed as percentages for categorical 

variables. The genotype frequencies were tested for Hardy-Weinberg equilibrium by 

using a chi-square test with 1 df. A linear regression model was used to analyze the 

association between the 12 SNP genotypes and adiposity measures and dietary energy 

and macronutrient intakes (energy-adjusted). We assessed this association under an 

additive genetic model, which assumes that there is a linear gradient in risk of each 

additional risk allele. Individuals homozygous for the risk allele, previously defined 

as the risk rising effect allele associated with BMI [7, 8], served as a reference group.  

We adjusted our analyses of waist circumference for BMI. The estimates of 

dietary energy and macronutrient intakes did not differ after BMI was adjusted for. 

The false discovery rate (FDR) method from Benjamini and Hochberg was used to 

control for multiple testing [21]. All statistical analyses were performed by using 

SPSS, version 14.0 for Windows (SPSS Inc, Chicago, IL). 

 

Table 1. Anthropometric and food intake characteristics of 1700 healthy Dutch 

women from the Prospect–European Prospective Investigation into Cancer and 

Nutrition (EPIC) study 

 
Characteristic Mean ± SD 

Age (y) 57.22 ± 6.06 

Height (cm) 164.20 ± 6.01 

Weight (kg) 69.84 ± 11.48 

BMI (kg/m
2
) 25.90 ± 4.02 

Waist (cm) 83.32 ± 10.05 

Total energy intake (kcal/d) 1797.71 ± 430.65 

Protein intake (g/d)
1
 70.53 ± 9.08 

Fat intake (g/d)
1
 68.56 ± 10.27 

Carbohydrate intake (g/d)
1
 195.31 ± 27.98 

Alcohol (g/d)
1
 9.08 ± 12.73 

1
 Energy-adjusted 
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Results 

Population and genotype characteristics of the random sample of the Prospect-EPIC 

study are shown in Table 1 and Table 2. The 80% power we had in Prospect-EPIC to 

detect effect sizes with the lowest minor allele frequency of 0.22 of all typed SNPs is 

shown in Table 3. 

 

Table 2. Genotypic information for 1700 healthy Dutch women from the Prospect–

European Prospective Investigation into Cancer and Nutrition (EPIC) study
1
 

SNP (locus) Tested 

allele 

MAF HWE LD 

rs1121980 (FTO) A 0.42 0.04   

rs17700633 (MC4R) A 0.3 0.98   

rs17782313 (MC4R) C 0.26 0.94 r
2
 = 0.13 

rs6548238 (TMEM18) C 0.84 0.49   

rs10938397 (GNPDA2) G 0.42 0.76   

rs7498665 (SH2B1) G 0.42 0.38   

rs368794 (KCTD15) T 0.67 0.95   

rs10838738 (MTCH2) G 0.33 0.22   

rs2568958 (NEGR1) A 0.58 0.11   

rs1488830 (BDNF) T 0.78 0.33   

rs925946 (BDNF) T 0.29 0.47 r
2
 = 0.12 

rs7647305 (ETV5) C 0.8 0.69   
1
 SNP, single nucleotide polymorphism; HWE, Hardy-Weinberg equilibrium; LD, linkage 

disequilibrium; MAF, minor allele frequency. 

 

Table 3. Power (80%) to detect effect sizes with the lowest minor allele frequency of 

0.22 of all typed single nucleotide polymorphisms in 1700 healthy Dutch women 

from the Prospect–European Prospective Investigation into Cancer and Nutrition 

(EPIC) study 

 
Genetic model ! (Additive) 

Height (cm) 0.7 

Weight (kg) 1.4 

Waist (cm) 1.2 

Hip (cm) 1 

Waist-to-hip ratio 0.007 

BMI (kg/m
2
) 0.5 

Protein intake (g/d)
1
 1.1 

Fat intake (g/d)
1
 1.2 

Carbohydrate intake (g/d)
1
 3.3 

Alcohol (g/d)
1
 1.5 

1
 Energy-adjusted 
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Analysis of association between SNPs and adiposity measures 

Linear regression analyses of the adiposity measures with the 12 SNPs are shown in 

Table 4 and Table 5. We found statistically significant associations (P < 0.05) with 

different adiposity measures and 7 of the 12 analyzed SNPs located in or near FTO, 

MC4R, KCTD15, MTCH2, NEGR1, and BDNF. An increase in weight, ranging from 

0.90 to 1.36 kg per allele, was shown in the analyzed SNPs in or near FTO, MC4R, 

and BDNF. The SNPs in or near the FTO, MC4R, MTCH2, and BDNF loci were 

associated with an increase in BMI ranging from 0.30 to 0.56 per allele. Women 

carrying the effect allele in only the SNPs in or near the FTO and MC4R loci had an 

increase in waist circumference of 1.23 cm (95% CI: 0.55, 1.91) and 1.38 cm (95% 

CI: 0.63, 2.13) per allele, respectively. However, after BMI was adjusted for, waist 

circumference was no longer associated with the SNPs in or near FTO and MC4R. 

Other SNPs did not show statistically significant associations with adiposity measures 

but did show some trends in the same directions. 

 

Table 4. Relation between new obesity loci and adiposity measures in 1700 healthy 

Dutch women from the Prospect–European Prospective Investigation into Cancer and 

Nutrition (EPIC) study by single nucleotide polymorphism
1
 

  Per A allele change 

 rs1121980 (FTO) rs17700633 (MC4R) 

  ! (95% CI) P value ! (95% CI) P value 

Height (cm) –0.31 (–0.72, 0.10) 0.14 0.11 (–0.34, 0.56) 0.63 

Weight (kg) 1.28 (0.50, 2.06) 0.001 1.36 (0.51, 2.21) 0.002 

BMI (kg/m
2
) 0.56 (0.29, 0.83) 0.0001 0.47 (0.17, 0.77) 0.002 

Waist (cm) 1.23 (0.55, 1.91) 0.0004 1.38 (0.63, 2.13) 0.0003 

Waist adjusted 

for BMI (cm) 

0.001 (–0.33, 0.33) 0.99 0.34 (–0.03, 0.70) 0.07 

  Per C allele change 

 rs17782313 (MC4R) rs6548238 (TMEM18) 

  ! (95% CI) P value ! (95% CI) P value 

Height (cm) 0.52 (0.05, 0.99) 0.03 –0.06 (–0.63, 0.51) 0.85 

Weight (kg) 0.98 (0.08, 1.87) 0.03 0.68 (–0.40, 1.76) 0.22 

BMI (kg/m
2
) 0.22 (–0.10, 0.53) 0.18 0.26 (–0.12, 0.64) 0.17 

Waist (cm) 0.57 (–0.22, 1.35) 0.16 0.62 (–0.32, 1.57) 0.2 

Waist adjusted 

for BMI (cm) 

0.11 (–0.27, 0.49) 0.58 0.07 (–0.39, 0.52) 0.78 

1
 Data were derived from a linear regression model. 
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Table 4. (continued) 
  Per G allele change 

 rs10938397 (GNPDA2) rs7498665 (SH2B1) 

  ! (95% CI) P value ! (95% CI) P value 

Height (cm) 0.01 (–0.41, 0.43) 0.97 0.01 (–0.41, 0.44) 0.95 

Weight (kg) –0.05 (–0.84, 0.74) 0.9 0.61 (–0.19, 1.42) 0.14 

BMI (kg/m
2
) –0.01 (–0.29, 0.27) 0.93 0.20 (–0.09, 0.48) 0.17 

Waist (cm) –0.16 (–0.86, 0.54) 0.66 0.45 (–0.26, 1.15) 0.21 

Waist adjusted 

for BMI (cm) 

–0.13 (–0.46, 0.21) 0.45 0.02 (–0.32, 0.36) 0.91 

1
 Data were derived from a linear regression model. 

 

 

Table 5. Relation between new obesity loci and adiposity measures in 1700 healthy 

Dutch women from the Prospect–European Prospective Investigation into Cancer and 

Nutrition (EPIC) study by single nucleotide polymorphism
1
 

1
 Data were derived from a linear regression model. 

 

 

 

  Per T allele change Per G allele change 

 rs368794 (KCTD15) rs10838738 (MTCH2) 

  ! (95% CI) P value ! (95% CI) P value 

Height (cm) 0.53 (0.08, 0.98) 0.02 –0.06 (–0.49, 0.38) 0.8 

Weight (kg) 0.72 (–0.12, 1.57) 0.09 0.78 (–0.04, 1.61) 0.06 

BMI (kg/m
2
) 0.09 (–0.21, 0.39) 0.55 0.30 (0.01, 0.59) 0.04 

Waist (cm) 0.07 (–0.68, 0.82) 0.85 0.61 (–0.11, 1.33) 0.1 

Waist adjusted 

for BMI (cm) 

–0.10 (–0.47, 0.26) 0.58 –0.07 (–0.42, 0.27) 0.68 

  Per A allele change Per C allele change 

 rs2568958 (NEGR1) rs7647305 (ETV5) 

  ! (95% CI) P value ! (95% CI) P value 

Height (cm) –0.44 (–0.85, –0.03) 0.04 –0.15 (–0.68, 0.37) 0.57 

Weight (kg) –0.34 (–1.12, 0.44) 0.39 0.72 (–0.27, 1.70) 0.15 

BMI (kg/m
2
) 0.01 (–0.27, 0.28) 0.97 0.32 (–0.03, 0.66) 0.07 

Waist (cm) –0.42 (–1.10, 0.27) 0.23 0.44 (–0.43, 1.30) 0.33 

Waist adjusted 

for BMI (cm) 

–0.43 (–0.76, –0.10) 0.01 –0.25 (–0.67, 0.17) 0.24 

  Per T allele change 

 rs1488830 (BDNF) rs925946 (BDNF) 

  ! (95% CI) P value ! (95% CI) P value 

Height (cm) –0.14 (–0.64, 0.37) 0.59 –0.03 (–0.49, 0.44) 0.91 

Weight (kg) –0.04 (–1.00, 0.92) 0.94 0.90 (0.02, 1.77) 0.05 

BMI (kg/m
2
) 0.04 (–0.30, 0.38) 0.81 0.32 (0.02, 0.63) 0.04 

Waist (cm) –0.11 (–0.95, 0.73) 0.8 0.70 (–0.07,1.46) 0.08 

Waist adjusted 

for BMI (cm) 

–0.19 (–0.59, 0.22) 0.37 0.03 (–0.34, 0.40) 0.87 



!"#$%&'()*+#%&*+%*,-#").%'/0%).1-%2%0"',-)-#%

 

  129 

Analysis of association between SNPs and dietary energy and macronutrient 

intakes 

Linear regression analyses of dietary energy and macronutrient intakes with the 12 

SNPs are shown in Table 6 and Table 7. We found statistically significant 

associations (P < 0.05) between 5 of the 12 SNPs and macronutrient intake located in 

or near SH2B1, KCTD15, MTCH2, NEGR1, and BDNF. The risk allele at rs7498665 

(SH2B1) was associated with increased total fat (per allele effect: 1.08 g/d energy-

adjusted; 95% CI: 0.36, 1.81), saturated fat (per allele effect: 0.60 g/d energy-

adjusted; 95% CI: 0.22, 0.97), and monounsaturated fat intake (per allele effect: 0.37 

g/d energy-adjusted; 95% CI: 0.04, 0.69). A decrease in monounsaturated fat intake 

was shown for the risk alleles of the SNPs in or near KCTD15 and NEGR1, whereas 

carriers of the risk allele for NEGR1 also had lower saturated fat intakes. Carriers of 

the risk allele in or near KCTD15 consumed less monounsaturated fat (per allele 

effect: –0.37; 95% CI: –0.72, –0.02), and for NEGR1 they consumed less saturated fat 

(per allele effect: –0.40 g/d energy-adjusted; 95% CI: –0.77, –0.04) and 

monounsaturated fat (per allele effect: –0.34 g/d energy-adjusted; 95% CI: –0.65, –

0.03). 

In addition to the association of carriers with the risk allele of the SNP in or 

near KCTD15 consuming less fat, carriers of this risk allele ate more total 

carbohydrate (per allele effect: 2.50 g/d energy-adjusted; 95% CI: 0.39, 4.60) and 

mono- and disaccharides (per allele effect: 2.62 g/d energy-adjusted; 95% CI: 0.69, 

4.55).  

Carriers with the risk allele of the SNP rs10838738 (MTCH2) consumed less 

polysaccharides (per allele effect: –1.33 g/d energy-adjusted; 95% CI: –2.61, –0.05). 

Women with the risk allele at rs925946 (BDNF) consumed less alcohol (per allele 

effect: –1.15 g/d energy-adjusted; 95% CI: –2.14, –0.17).  

After multiple testing using FDR was controlled for, the associations between 

rs1121980 (FTO) and BMI and waist and the association between rs17700633 

(MC4R) and waist remained statistically significant at an FDR threshold of 0.05, 

whereas the associations between rs1121980 (FTO) and weight, rs17700633 (MC4R) 

and weight and BMI and rs7498665 (SH2B1) and fat and saturated fat intakes 

remained statistically significant at an FDR threshold of 0.10. 
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Table 6. Relation between new obesity loci and dietary energy and macronutrient 

intakes in 1700 healthy Dutch women from the Prospect–European Prospective 

Investigation into Cancer and Nutrition (EPIC) study by single nucleotide 

polymorphism
1
 

  Per A allele change 

 rs1121980 (FTO) rs17700633 (MC4R) 

  ! (95% CI) P value ! (95% CI) P value 

Energy (kcal) –19.0 (–48.1, 10.1) 0.2 3.4 (–28.5, 35.6) 0.83 

Fat (g/d)
2
 0.55 (–0.15, 1.26) 0.12 –0.09 (–0.86, 0.68) 0.83 

Saturated fat (g/d)
2
 0.25 (–0.12, 0.61) 0.19 0.12 (–0.28, 0.52) 0.56 

Monounsaturated fat (g/d)
2
 0.22 (–0.10, 0.53) 0.17 –0.10 (–0.44, 0.24) 0.57 

Polyunsaturated fat (g/d)
2
 0.08 (–0.16, 0.32) 0.51 –0.11 (–0.37, 0.15) 0.42 

Carbohydrate (g/d)
2
 –1.74 (–3.65, 0.18) 0.08 –0.08 (–2.17, 2.02) 0.94 

Mono- and disaccharides 

(g/d)
2
 

–1.38 (–3.14, 0.38) 0.12 0.59 (–1.34, 2.52) 0.55 

Polysaccharide (g/d)
2
 –0.31 (–1.51, 0.90) 0.62 0.68 (–2.10, 0.66) 0.32 

Protein (g/d)
2
 0.25 (–0.45, 0.95) 0.49 0.36 (–0.41, 1.12) 0.37 

Vegetable protein (g/d)
2
 0.01 (–0.27, 0.29) 0.97 –0.19 (–0.50, 0.12) 0.22 

Animal protein (g/d)
2
 0.25 (–0.51, 1.02) 0.52 0.54 (–0.30, 1.38) 0.21 

Alcohol (g/d)
2
 0.33 (–0.55, 1.21) 0.47 –0.16 (–1.12, 0.81) 0.75 

  Per C allele change 

 rs17782313 (MC4R) rs6548238 (TMEM18) 

  ! (95% CI) P value ! (95% CI) P value 

Energy (kcal) 12.0 (–21.4, 45.5) 0.48 8.9 (–31.4, 49.1) 0.67 

Fat (g/d)
2
 –0.12 (–0.93, 0.69) 0.78 0.50 (–0.47, 1.48) 0.31 

Saturated fat (g/d)
2
 –0.14 (–0.56, 0.28) 0.5 0.44 (–0.07, 0.94) 0.09 

Monounsaturated fat (g/d)
2
 0.00 (–0.36, 0.36) 1 0.02 (–0.41, 0.45) 0.94 

Polyunsaturated fat (g/d)
2
 0.03 (–0.25, 0.30) 0.84 0.05 (–0.28,0.38) 0.77 

Carbohydrate (g/d)
2
 –0.98 (–3.18, 1.23) 0.39 0.47 (–2.17, 3.10) 0.73 

Mono- and disaccharides 

(g/d)
2
 

–0.57 (–2.60, 1.46) 0.58 0.00 (–2.42, 2.42) 1 

Polysaccharide (g/d)
2
 –0.42 (–1.80, 0.96) 0.55 0.45 (–1.21, 2.11) 0.59 

Protein (g/d)
2
 0.04 (–0.77, 0.84) 0.93 –0.11 (–1.07, 0.86) 0.83 

Vegetable protein (g/d)
2
 –0.16 (–0.48, 0.16) 0.33 0.21 (–0.17, 0.60) 0.28 

Animal protein (g/d)
2
 0.18 (–0.70, 1.06) 0.69 –0.32 (–1.38, 0.74) 0.55 

Alcohol (g/d)
2
 0.76 (–0.26, 1.77) 0.14 –1.01 (–2.22, 0.19) 0.1 

1
 Data were derived from a linear regression model. 

2
 Energy-adjusted. 
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Table 6. (continued) 

  Per G allele change 

 rs10938397 (GNPDA2) rs7498665 (SH2B1) 

  ! (95% CI) P value ! (95% CI) P value 

Energy (kcal) –13.5 (–43.3, 16.3) 0.37 –9.2 (–39.2, 20.9) 0.55 

Fat (g/d)
2
 0.18 (–0.54, 0.90) 0.63 1.08 (0.36, 1.81) 0.003 

Saturated fat (g/d)
2
 –0.08 (–0.45, 0.30) 0.68 0.60 (0.22, 0.97) 0.002 

Monounsaturated fat (g/d)
2
 0.11 (–0.21, 0.43) 0.49 0.37 (0.04, 0.69) 0.03 

Polyunsaturated fat (g/d)
2
 0.14 (–0.10, 0.39) 0.25 0.12 (–0.13, 0.37) 0.34 

Carbohydrate (g/d)
2
 –0.26 (–2.22, 1.69) 0.79 –0.96 (–2.94, 1.02) 0.34 

Mono- and disaccharides 

(g/d)
2
 

–0.35 (–2.14, 1.45) 0.71 –1.03 (–2.85, 0.78) 0.26 

Polysaccharide (g/d)
2
 0.13 (–1.11, 1.36) 0.84 0.11 (–1.14, 1.36) 0.86 

Protein (g/d)
2
 –0.47 (–1.18, 0.24) 0.19 –0.33 (–1.05, 0.40) 0.38 

Vegetable protein (g/d)
2
 0.13 (–0.16, 0.41) 0.39 –0.07 (–0.36, 0.22) 0.66 

Animal protein (g/d)
2
 –0.59 (–1.37, 0.19) 0.14 –0.25 (–1.03, 0.54) 0.54 

Alcohol (g/d)
2
 0.17 (–0.72, 1.06) 0.7 –0.70 (–1.60, 0.21) 0.13 

1
 Data were derived from a linear regression model. 

2
 Energy-adjusted. 

 

Table 7. Relation between new obesity loci and dietary energy and macronutrient 

intake in 1700 healthy Dutch women from the Prospect–European Prospective 

Investigation into Cancer and Nutrition (EPIC) study by single nucleotide 

polymorphism
1
 

  Per T allele change Per G allele change 

 rs368794 (KCTD15) rs10838738 (MTCH2) 

  

! (95% CI) 

P 

value ! (95% CI) 

P 

value 

Energy (kcal) –7.60 (–39.6, 24.3) 0.64 2.21 (–28.3, 32.8) 0.89 

Fat (g/d)
2
 –0.64 (–1.42, 0.14) 0.11 –0.34 (–1.08, 0.41) 0.38 

Saturated fat (g/d)
2
 –0.32 (–0.72, 0.09) 0.12 –0.12 (–0.51, 0.27) 0.54 

Monounsaturated fat (g/d)
2
 –0.37 (–0.72; –0.02) 0.04 –0.08 (–0.41, 0.26) 0.66 

Polyunsaturated fat (g/d)
2
 0.06 (–0.20, 0.33) 0.63 –0.15 (–0.41, 0.10) 0.23 

Carbohydrate (g/d)
2
 2.50 (0.39, 4.60) 0.02 0.35 (–1.68, 2.37) 0.74 

Mono- and disaccharide 

(g/d)
2
 

2.62 (0.69, 4.55) 0.008 1.66 (–0.19, 3.52) 0.08 

Polysaccharide (g/d)
2
 –0.11 (–1.43, 1.22) 0.87 –1.33 (–2.61, –0.05) 0.04 

Protein (g/d)
2
 –0.42 (–1.19, 0.35) 0.28 0.57 (–0.17, 1.31) 0.13 

Vegetable protein (g/d)
2
 0.01 (–0.30, 0.32) 0.97 –0.05 (–0.34, 0.25) 0.76 

Animal protein (g/d)
2
 –0.42 (–1.26, 0.42) 0.32 0.61 (–0.20, 1.41) 0.14 

Alcohol (g/d)
2
 –0.42 (–1.39, 0.55) 0.39 –0.19 (–1.12, 0.74) 0.69 

1
 Data were derived from a linear regression model. 

2
 Energy-adjusted. 
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Table 7. (continued) 

  Per A allele change Per T allele change 

 rs2568958 (NEGR1) rs1488830 (BDNF) 

  

! (95% CI) P 

value 

! (95% CI) P 

value 

Energy (kcal) –1.80 (–30.8 27.2) 0.9 –10.1 (–45.8, 25.6) 0.58 

Fat (g/d)
2
 –0.56 (–1.26, 0.14) 0.12 0.25 (–0.62, 1.11) 0.58 

Saturated fat (g/d)
2
 –0.40 (–0.77, –0.04) 0.03 0.11 (–0.34, 0.56) 0.64 

Monounsaturated fat (g/d)
2
 –0.34 (–0.65, –0.03) 0.03 –0.03 (–0.41, 0.36) 0.89 

Polyunsaturated fat (g/d)
2
 0.19 (–0.05, 0.43) 0.11 0.15 (–0.14, 0.45) 0.31 

Carbohydrate (g/d)
2
 0.67 (–1.25, 2.58) 0.49 –0.14 (–2.49, 2.21) 0.91 

Mono- and disaccharides 

(g/d)
2
 

0.52 (–1.24, 2.27) 0.57 0.56 (–1.59, 2.72) 0.61 

Polysaccharide (g/d)
2
 0.14 (–1.07, 1.35) 0.82 –0.70 (–2.19, 0.79) 0.35 

Protein (g/d)
2
 –0.19 (–0.89, 0.51) 0.59 0.35 (–0.51, 1.21) 0.42 

Vegetable protein (g/d)
2
 0.28 (0.00, 0.56) 0.05 –0.22 (–0.57, 0.12) 0.21 

Animal protein (g/d)
2
 –0.47 (–1.23, 0.30) 0.23 0.57 (–0.36, 1.51) 0.23 

Alcohol (g/d)
2
 0.45 (–0.42, 1.33) 0.31 0.35 (–1.42, 0.73) 0.53 

  Per T allele change Per C allele change 

 rs925946 (BDNF) rs7647305 (ETV5) 

  

! (95% CI) P 

value 

! (95% CI) P 

value 

Energy (kcal) 1.26 (–31.2, 33.74) 0.94 –4.18 (–41.0, 32.7) 0.82 

Fat (g/d)
2
 0.24 (–0.55, 1.03) 0.55 0.02 (–0.88, 0.91) 0.97 

Saturated fat (g/d)
2
 0.16 (–0.26, 0.57) 0.46 0.15 (–0.32, 0.61) 0.54 

Monounsaturated fat (g/d)
2
 0.10 (–0.25, 0.45) 0.57 –0.09 (–0.49, 0.31) 0.65 

Polyunsaturated fat (g/d)
2
 –0.04 (–0.30, 0.23) 0.79 –0.04 (–0.34, 0.27) 0.81 

Carbohydrate (g/d)
2
 0.59 (–1.55, 2.74) 0.59 0.80 (–1.64, 3.24) 0.52 

Mono- and disaccharides 

(g/d)
2
 

0.54 (–1.43, 2.50) 0.59 0.34 (–1.91, 2.58) 0.78 

Polysaccharide (g/d)
2
 0.04 (–1.32, 1.40) 0.95 0.48 (–1.06, 2.02) 0.54 

Protein (g/d)
2
 0.64 (–0.14, 1.42) 0.11 –0.11 (–1.00, 0.78) 0.81 

Vegetable protein (g/d)
2
 –0.01 (–0.33, 0.30) 0.94 0.17 (–0.19, 0.52) 0.36 

Animal protein (g/d)
2
 0.65 (–0.21, 1.50) 0.14 –0.28 (–1.25, 0.69) 0.57 

Alcohol (g/d)
2
 –1.15 (–2.14, –0.17) 0.02 –0.30 (–1.42, 0.82) 0.6 

1
 Data were derived from a linear regression model. 

2
 Energy-adjusted. 

 

Discussion 

Two large-scale GWA studies recently identified new genetic loci associated with 

measures of obesity [7, 8]. In this study we evaluated 12 common variants from these 

loci and confirmed the effect of the FTO, MC4R, MTCH2, and BDNF genes on 

weight and on BMI in a healthy Dutch female population. In addition to finding an 

association with general adiposity, we also found evidence of an association between 
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these new loci and macronutrient-specific food intake. In our population, only 4 SNPs 

in or near FTO (rs1121980), MC4R (rs17700633), MTCH2 (rs10838738), and BDNF 

(rs925946) were statistically significantly associated with BMI. Although the size of 

our study limited our power (6–67%) [22] to identify the previously reported effect 

sizes of BMI, the trends we observed for the associations of the SNPs with BMI were 

all in the same direction, as previously reported [7, 8]. Also, for the MC4R SNP 

rs17782313 that was previously associated with dietary fat intake [23], we had 96% 

power to detect the same effect size.  

Notably, almost all the new loci have an effect on BMI. Because visceral fat 

accumulation in particular is related to health risk, we chose to use waist 

circumference as a measure specific for the amount of intra-abdominal (visceral) fat, 

because this might be a more specific measure of obesity than a general adiposity 

measure, such as BMI [24, 25]. In this study, we had detailed information on both 

general and abdominal adiposity measures. We observed that the associations and 

trends between the new analyzed loci and BMI agreed with the associations and 

trends with other adiposity measures, such as weight and waist circumference. 

However, when we adjusted waist circumference for BMI, it was no longer 

associated. These results suggest that the identified loci are not specifically associated 

with abdominal adiposity, but merely represent loci associated with general obesity. 

This suggests that these loci are important in determining fat gain in general, but not 

in the distribution of fat in the body.  

The development of obesity is due to various possible mechanisms, in which 

food intake also plays a role. Our results suggest that the new obesity loci might also 

play a role in the choice and preference of specific macronutrient intake. For the 

SH2B1, KCTD15, MTCH2, and NEGR1 loci, the obesity-risk alleles were associated 

with dietary intake of saturated fat, carbohydrates, mono- and disaccharides, and 

polysaccharides. These results agree with previous associations found between intake 

of fat and carbohydrates and adiposity measures [26–29]. In this study of 1700 

females, we had detailed dietary information obtained through a validated instrument, 

the FFQ. The Pearson correlation coefficient between the FFQ and 12 monthly 24-h 

recall questionnaires ranged from 0.61 to 0.85 for intake of dietary energy and 

macronutrients, including alcohol intake [19]. Despite observations that people who 

are overweight tend to underestimate their food intake [30–32], we did find 

associations between some SNPs and fat, carbohydrate, and alcohol intakes. With a 
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minor allele frequency of 0.22, we had 80% power to detect differences in energy-

adjusted nutrient intakes ranging from 1.10 to 3.30 g/d at a significance level of 0.05, 

assuming an additive model of inheritance. We cannot exclude the possibility that we 

may have missed even smaller effects of dietary energy and macronutrient intakes.  

Many of the new genes are highly expressed in the brain, and several are 

particularly evident in the hypothalamus, which is consistent with central neural 

system processes playing an important role in regulating body weight. The 

hypothalamus plays a key role in regulating energy homeostasis and food intake. 

Disturbances in the hypothalamic region can lead to deregulation of body weight 

because of changes in eating behaviour [11]. Interestingly, a few candidate genes for 

obesity in the hypothalamic pathway, such as AGRP and TUB, were reported to be 

associated with macronutrient intake. AGRP polymorphisms were associated with 

total energy, fat, and carbohydrate intakes [33], whereas variants in the TUB gene, 

associated with body weight and BMI, were also shown to be associated with eating 

behaviour: carriers of the risk alleles for obesity had a diet high in carbohydrates and 

low in fats [34]. Recently, common variants in FTO and MC4R, also related to the 

hypothalamic pathway, were associated with energy intake [23, 35–37], where 

rs17782313 near MC4R was also associated with dietary fat intake [23]. However, we 

could not confirm these findings. This may have been due to differences in the SNPs 

studied, the type of participants (e.g., mainly children), a smaller number of subjects, 

and differences in dietary intake measurement not comparable with our FFQ. 

However, the association with dietary fat intake and MC4R might also be a chance 

finding, because we had 96% power to find at least this same effect.  

We found associations with dietary macronutrient intake and the new SH2B1, 

KCTD15, MTCH2, NEGR1, and BDNF loci. SNPs in or near SH2B1, KCTD15, and 

NEGR1 were associated with total fat, saturated, and monounsaturated fat intakes. 

SNPs in or near KCTD15 and MTCH2 were associated with total carbohydrate, mono- 

and disaccharide, and polysaccharide intakes. To understand whether these 

associations can be implicated in the energy balance and food intake via a role in the 

hypothalamus, it is necessary to know the underlying function of the new loci. 

Unfortunately, little is known about these loci as yet. For SH2B1, there is a possible 

role in regulating body weight via its role in enhancing leptin signalling [38, 39]. The 

function of KCTD15 is unknown. MTCH2 may function in cellular apoptosis [40, 41], 

and NEGR1 may affect neural outgrowth [42, 43]. BDNF is a neurotrophic factor that 
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promotes the differentiation and survival of developing neurons and their 

maintenance in the adult nervous system [44, 45]. Thus, the precise functions need to 

be determined to reveal the possible mechanisms in food intake of these new genes.  

Because obesity is a result of an imbalance between food intake and energy 

expenditure (e.g., because of limited physical activity), we examined whether the new 

obesity genes also have an effect on physical activity. In our population we found no 

evidence of a relation between the novel loci and physical activity, as measured with a 

questionnaire validated in elderly people [46] (data not shown). We had no data on 

basal metabolic rate or thermogenesis, so we cannot exclude the possibility that the 

reported loci have an effect on obesity through energy expenditure. It is also 

important to note that not only genes play a role in weight regulation. Genes might 

interact with each other or with environmental factors such as food nutrients to play a 

role in the development of adiposity, but further research is necessary to investigate 

these mechanisms.  

In conclusion, our study showed that the new loci are associated with obesity 

phenotypes through general adiposity. Our results further suggest that these loci play 

a role in nutrient-specific choice and dietary preference. These results need to be 

confirmed.  
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Abstract 

Background Multiparty is found to be associated with increased type 2 diabetes (T2D) 

risk in previous studies. However, it remains unclear whether body mass mediate the 

observed association. Also it is unknown whether variation in age at first full-term 

pregnancy influences T2D risk.  

Methods We assessed the association between parity and age at first full-term 

pregnancy in a cohort of 17,357 Dutch women, aged 49-70 at baseline using Cox 

proportional hazards models. Analyses were adjusted for multiple confounders. To 

investigate whether BMI, waist and gestational diabetes mediate the observed 

associations, analyses were additionally adjusted for these variables.  

Results At baseline, 332 women had T2D. During a mean follow-up of 9.1 ± 3.6 

years, 535 T2D cases occurred. Compared to women with no children, women with 4 

or more children had an increased risk for T2D with a multivariate adjusted HR of 

1.27 (95% CI 0.99-1.63). This association was mediated by adiposity, as adjustment 

for BMI and waist attenuated the association to null (HR for women with ! 4 

children=1.04; 95% CI: 0.81–1.33). 

An older age at first delivery reduced the risk of T2D, with a multivariate adjusted 

HR of 0.60 (95% CI 0.44–0.83) for women !31 years compared to those " 20 years at 

first childbirth (p for linear trend = 2.93x10-4). Adjustment for BMI and waist 

attenuated this association as well (HR !31 years versus " 20 years 0.70 (0.50-0.99)), 

although not completely.  

Conclusion The association of parity and T2D risk was found to be mediated by 

increased body mass. Furthermore, age at first full-term pregnancy was inversely 

associated with the subsequent development of T2D. In this case body mass 

attenuated the association, but could not fully account for it. 
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Introduction 

Previous studies showed a link between multiparity and future T2D risk [1,2,3], but 

other studies could not confirm this [4,5,6]. It has been suggested that the observed 

associations are in fact a result of the increase in body mass associated with child 

bearing [5,6]. Parity has been associated with larger waist circumference many years 

after childbearing [7,8] and prospective studies have observed substantial increases in 

waist circumference with multiple pregnancies [9]. Pregnancy promotes abdominal 

obesity, which is an increased risk factor for developing insulin resistance [10] that 

can subsequently lead to T2D [11]. However, the degree to which potential 

intermediates such as waist and BMI affect the association between parity and T2D 

remains partly unclear. 

Apart from the association through body mass with T2D, another possible 

biological mechanism for the association between parity and T2D risk in women 

could be through reduced estrogen exposure. It has been hypothesized that pregnancy 

permanently resets ovarian function, leading to a reduced lifetime exposure to 

estrogen [12]. Previously, it was shown that estrogen levels were significantly lower 

in premenopausal parous women compared to nulliparous women [12,13]. As it has 

been suggested that high levels of endogenous estrogen protect against T2D in 

premenopausal women [14], this reduced exposure to estrogen in parous women 

could affect future T2D risk. Also, it can be argued that the duration of this exposure 

is important. We therefore hypothesize that the longer the reduced estrogen exposure, 

due to early childbirth, the higher the risk for T2D may be. As parity is the start of 

this change in level of exposure to estrogens, age at first full-term pregnancy 

(AFFTP) is a good marker for the duration of this reduced exposure. Therefore, we 

assessed the association between both parity and age at first full-term pregnancy with 

the risk of T2D in the large Prospect-EPIC cohort comprising of 17,357 Dutch 

women. 

 

Methods 

 

Subjects 

The Prospect-EPIC cohort is one of the two Dutch contributions to the European 

Prospective Investigation into Cancer and Nutrition (EPIC) [15]. It is a prospective 
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cohort study in 17,357 women aged 49–70 who lived in Utrecht and vicinity and who 

participated in the breast cancer screening program between 1993 and 1997 [16]. All 

participants gave their written informed consent and the study was approved by the 

Institutional Review Board. The design, sampling strategies, and examination 

techniques of the cohort have been described previously [16].  

 

Data collection 

 

Baseline measurements 

At baseline, all participants filled out detailed questionnaires on usual diet, 

reproductive history, presence of chronic diseases and related potential risk factors. 

They underwent a brief medical examination and a blood sample was drawn.  

 

Parity and age at first childbirth 

Parity was assessed from the question: “how many live born children do you have and 

what were their birthdays?” The age at first full-term pregnancy was calculated as the 

interval between the birthday of the mother and the birthday of her first live born 

child. For analyses, we categorized subjects into five categories for parity (no 

children, 1 child, 2 children, 3 children and ! 4 children) and four categories for age 

at first full-term pregnancy (" 20, 21-25, 26-30, !31). 

 

Covariates 

Body weight was measured in light indoor clothing without shoes to the nearest 0.5 

kg with a floor scale (Seca, Atlanta, GA, USA). Additionally, height, waist and hip 

circumference were measured. Body mass index (BMI) was calculated as weight 

divided by height squared (kg/m2). 

Alcohol consumption was assessed by a validated food frequency 

questionnaire (FFQ) [17]. Baseline alcohol intake was determined by multiplying the 

consumption of each beverage by its ethanol content and was calculated to grams per 

week (g/week). Subsequently, we categorized subject into four alcohol consumption 

categories: <0.05 g/week, 0.05-5.5 g/week, 5.5-10.5 g/week, >10.5 g/week. 

Duration and types of physical activity during the year preceding study 

recruitment were assessed by a set of questions that was used in all EPIC cohorts. By 

combining occupational physical activity with time spent on cycling and sporting in 
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summer and winter, the validated Cambridge Physical Activity Index (CPAI) was 

calculated [18]. Based on this index participants were divided in four physical activity 

categories: inactive, moderately inactive, moderately active and active.  

Smoking behaviour was categorized as never, former or current smoking.  

To define the socio-economical status, the highest attained level of education 

of the participants was used and classified into three categories: low (primary 

education up to completing intermediate vocational education), middle (up to higher 

secondary education) and high (those with higher vocational education and 

university).  

 The number of years of oral contraception use was self reported, and 

participants were divided into four groups: never, 1-4 years, 4-10 years, >10 years. 

Self reported gestational diabetes status during pregnancy was indicated as yes or no. 

 

Missing value analyses 

Missing values for BMI, waist, alcohol intake, CPAI, smoking, gestational diabetes, 

socio-economical status, number of years of oral contraceptives use and number of 

life born children were imputed using multiple imputation [19], which we repeated 5 

times to account for uncertainties in imputed data. None of the variables had > 5% 

missing values; the percentage of missing values ranged from 0.1% for BMI to 2.9% 

for years of oral contraceptives use.  

 

Morbidity and mortality follow-up 

Occurrence of T2D during follow-up was obtained via self-report in two follow-up 

questionnaires sent to the participants with intervals of three to five years, linkage to 

the Dutch register of hospital discharge diagnoses (HDD) and a mailed urinary 

glucose strip test (part of the cohort) (I. Sluijs, Neth J Med, under revision). Potential 

cases of incident T2D were verified against information from the participants’ general 

practitioner or pharmacist through mailed questionnaires. T2D was defined present 

when the general practitioner or pharmacist confirmed the diagnosis. Information on 

vital status was obtained through linkage with the municipal administration registries 

[20]. Causes of death were obtained from the Dutch Central Bureau of Statistics, 

coded according to the International Classification of Diseases, Tenth Revision, 

Clinical Modification (ICD-10). For our analyses, T2D was the endpoint of interest 
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and follow up ended at the date of diagnosis or at the date of death. All others were 

censored on January 1st 2006.  

 

Data analysis 

Means and standard deviations (for normally distributed variables) and numbers and 

frequencies (for categorical variables) were presented.  

The person-time for each woman was calculated from birth to the month of 

diagnosis of the endpoint (T2D), the month of death from other causes, or the end of 

follow-up (January 1, 2006). Cox proportional hazards regression models were used 

to estimate the Hazards ratio’s (HRs) for the T2D event with 95% confidence 

intervals (CIs). Age adjusted analysis (model 1) was performed to identify the relation 

between parity, AFFTP and T2D. Additionally, four multivariate models were used: 

model 2, including the potential confounders age, alcohol intake, physical activity, 

smoking, socio-economic status and oral contraceptives use; model 3, including all 

confounders from model 2 and BMI; model 4, including all confounders from model 

2 and waist; model 5, including all confounders from model 2 and gestational 

diabetes. As BMI, waist and gestational diabetes could be potential intermediates, we 

studied these variables in separate models. As maternal age at first childbirth could 

influence parity and therefore possibly affect T2D risk, we additionally adjusted the 

models containing BMI or waist for parity.  

 We also performed trend analyses with categorical variables as continuous in 

the model to test a dose-response effect for parity and AFFTP and the risk for T2D. 

Results were considered statistically significant at 2-sided P ! 0.05. All statistical 

analyses were performed using SPSS (PASW Statistics 18). 
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Results 

Table 1 shows the baseline characteristics of the population included in this study. 

The study had a mean follow-up of 9.1 ± 3.6 years and comprised 157,964 person-

years. The mean age of the study group at baseline was 57.1 ± 6.0 years. In total, the 

study contained 867 verified T2D patients; 332 prevalent cases and 535 incident cases 

that occurred during the period of follow-up. When calculating follow-up time from 

birth, this resulted in a mean follow-up of 66.9 ± 6.7 years with a corresponding 

1,160,428 person-years.   

 

Table 1, Baseline characteristics of 17,357 women from the PROSPECT cohort 

 

  Mean ± SD 

Follow-up time (yr) 9.1 ± 3.5 

Follow-up time from birth (yr) 66.9 ± 6.7 

Age at intake (yr) 57.1 ± 6.0 

BMI (kg/m2) 26.0 ± 4.1 

Waist (cm) 83.8 ± 10.2 

Alcohol intake (g/week) 9.1 ± 12.6 

Pill use (yr) 5.4  ± 6.8 

Live born children 2.4 ± 1.5 

Age at first full-term pregnancy (yr) 25.1 ± 4.0 

  N (%) 

Smoking  

   Current smoker 3783 (20.0) 

   Former smoker 5982 (34.7) 

   Never smoker 7466 (43.3) 

Physical activity  

   Inactive 1301 (7.5) 

   Moderate inactive 4612 (26.6) 

   Moderate active 4437 (25.6) 

   Active 7007 (40.4) 

Educational level  

   Low 13311 (76.7) 

   Medium 1249 (7.2) 

   High 2270 (13.1) 

Gestational diabetes  

   No 16714 (96.3) 

   Yes 643 (3.7) 
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On average, women had 2.4 (± 1.5) live born children (table 1). Compared to 

women with no children, women with 4 or more children had an increased risk for 

T2D (HR=1.27; 95% CI 0.99-1.63; ptrend=0.05; table 2, model 2). Adding BMI or 

waist to the model (table 2, model 3 and model 4) attenuated the association between 

parity and T2D risk (HR=1.04; 95% CI: 0.81-1.33). Adding gestational diabetes to the 

multivariate model also diminished the risk for T2D and resulted in a HR of 1.16 

[95% CI 0.91-1.49] for women with ! 4 children compared to women without 

children (table 2, model 5). 

The mean maternal age at first delivery was 25.1 (± 4.0) years (table 1). In the 

multivariate adjusted analysis, increasing maternal age was significantly associated 

with a reduced T2D risk (HR AFFTP !31 vs. " 20 years= 0.60; 95% CI 0.44–0.83; 

ptrend=2.93x10-4, table 3). After additional adjustment for BMI or waist (table 3, 

model 3 and model 4 respectively) the association attenuated but remained 

statistically significant. The BMI adjusted HR of maternal age !31 years versus " 20 

years was 0.74 [95% CI 0.54-1.03; ptrend=0.04] and the waist adjusted HR of 

maternal age !31 years versus " 20 years was 0.72 [95% CI 0.52-0.99; ptrend=0.03]. 

Adding gestational diabetes did not change these results (HR=0.56 [95% CI 0.40-

0.78; table 3, model 5). 

As maternal age at first childbirth could influence parity and therefore 

possibly affect T2D risk, we additionally adjusted the analyses for AFFTP for parity 

(table 3, model 6 and model 7). This did not substantially influence the results.  
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Discussion 

 In this large cohort of 17,357 Dutch women, multivariate adjusted parity and 

age at first full-term pregnancy were statistical significantly associated with the risk 

of T2D. The increased risk of T2D associated with higher parity was found to be 

mediated by increased body fat, as adjusting for BMI as well as for waist completely 

attenuated the association. Age at first full-term pregnancy was inversely associated 

with the subsequent development of T2D. In this case body fat did attenuate the 

association, but could not fully account for it. To our knowledge, this is the first study 

to report that having your first child at a later age decreases the risk for T2D. 

 Before interpreting the data, some strengths and limitations need to be 

discussed. The main advantages of this study are its prospective nature, the long 

follow-up time and the large sample size. Furthermore, potential cases of T2D were 

verified by the participants’ general practitioner or pharmacist and T2D was only 

defined present when one of them confirmed the diagnosis. In this study, the person-

time for each woman was calculated from birth to the month of T2D diagnosis, to the 

month of death from other causes, or the end of follow-up. In studies with prospective 

cohorts, the person-time is usually calculated from baseline, therefore only including 

incident T2D cases. As our outcome variables ‘parity’ and ‘age at first childbirth’ 

were almost always established before T2D disease onset, we choose to calculate 

person-time from birth. This allowed us to include an extra 332 prevalent T2D cases 

for analyses, which would otherwise have been excluded. We additionally studied the 

association of parity and age at first childbirth and T2D risk with person-time 

calculated from baseline, to explore the effect of using a person-time from baseline 

versus from birth. The results were comparable (data not shown) with similar HR, but 

wider 95% CI. 

The increased risk for T2D due to the number of children appears to be 

mediated by increased body fat associated with past child bearing, a finding which is 

corroborated by other studies [5,6]. Most of the previous studies that did find an 

association between multiparity and T2D risk did not adjust for potential confounding 

by body fat [5]. However, the Atherosclerosis Risk in Communities study reported 

that grandmultiparity (having ! 5 children) increases the risk for T2D, even after 

adjustment for BMI and waist [3].  
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Figure 1. Body mass in 17,357 Dutch women aged 49-70 by number of live born 

children; age-adjusted weight (1A), age-adjusted waist (1B) and age-adjusted BMI 

(1C) 
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In our study we found an increased weight, BMI and waist circumference with 

each additional child, as is shown in figure 1. Pregnancy is a time in most women’s 

lifes where substantial weight is gained. The incidence of major weight gain in adult 

life is highest in persons aged 25 to 34 years and is twice as high in women (men, 

3.9%; women, 8.4%) [21]. Several long-term prospective studies show that 

gestational weight gain is associated with increased maternal weight decades after 

pregnancy [22,23]. In another perspective study it was found that childbearing women 

showed a threefold greater increase in visceral fat deposition from preconception to 

postpartum compared to women not bearing children [24]. This extra adipose tissue 

deposition during pregnancy serves as a nutritional reserve to ensure an adequate 

energy supply to the newborn. This is supported by findings that breastfeeding 

reduces postpartum weight retention [25]. Anthropological studies on weaning age of 

infants suggest a mean weaning period of 2.8 years in hunter-gatherer population 

[26,27]. Among 14,929 Prospect women, the average period for breastfeeding their 

first child was 10.66 (± 11.51) weeks. This is a 13-fold decrease compared to hunter 

gather women. Possibly the body mass increase per child is in part caused by the 

difference between adipose tissue that is prepared for by the human body for long-

term breastfeeding, and the adipose tissue that is actually used for breastfeeding.  This 

extra abdominal fat is nowadays an increased risk factor for developing insulin 

resistance and subsequently T2D [10,11]. 

This is the first study to show that having the first child at a later age decreases 

the risk for T2D. In 1992, Manson et al. studied the association of AFFTP and T2D 

risk in the Nurses Health Study (NHS) [5]. The authors did not find an age- and BMI-

adjusted association between AFFTP and T2D risk. These results are in discordance 

with our study. This discrepancy could be due to age at baseline differences as women 

from the NHS were between the age of 30 and 55 years at baseline compared to the 

women of the Prospect-EPIC cohort who were aged 49 to 70 at baseline. It is known 

that older women have the highest prevalence of T2D and are more likely to be post-

menopausal and therefore less protected from T2D by ovarian estrogens [28].  

It has been suggested that high levels of endogenous estrogens protect against 

T2D in humans, although evidence is thus far conflicting. The overall prevalence of 

T2D is lower in premenopausal women compared to men, a trend that is reversed 

after menopause [14]. Additionally, results from previous oral estrogen therapy trials 

showed a lower risk for T2D among post-menopausal women who used estrogen 
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treatment [29,30,31]. On the contrary, studies on endogenous postmenopausal 

estrogen levels have found that higher levels are associated with increased T2D risk 

[32,33]. However, postmenopausal estrogen levels depend on peripheral 

aromatization of androgens, and do likely not reflect premenopausal ovarian 

production.  

One of the possible biological mechanisms for the association between young 

age at first childbirth and T2D in women could be that pregnancy permanently resets 

ovarian function, leading to a reduced lifetime exposure to estrogens [12]. As a late 

age at first full-term pregnancy results in a shorter period of the reduced exposure to 

estrogens, this could then relatively protect against the development of T2D. Data 

from animal studies suggest that the ovarian estrogen 17 !-estradiol maintains !-cell 

function, by protecting !-cells from apoptosis, as (i) females from T2D mouse models 

are protected from !-cell death and hyperglycemia [34] and (ii) it was shown that 

estrogens protect pancreatic !-cells from apoptosis and thus preventing insulin-

deficient diabetes in mice [35].  

Although it has often been assumed that !-cell deterioration occurs only late in 

the course of development of T2D with insulin resistance occurring long before the 

onset of beta cell function, recent studies conclude otherwise. In studies in which 

hyperglycaemic clamps were performed in nondiabetic subjects it was found that !-

cell function is lower in first-degree relatives of diabetes patients, even before the 

onset of impairments in glucose tolerance [36,37,38]. However, whether long-term 

reduced oestrogen exposure in women may relate to alterations in !-cell function of 

women with a young AFFTP before menopause is unknown and should be studied 

further. 

The hypothesis that young age at first full-term pregnancy leads to long-term 

reduced estrogens exposure, assumes that pregnancy leads to permanent changes in 

the hormonal profile of parous women. However, although we know that pregnancy 

exposes the body to an altered hormone profile, it is unclear whether this indeed leads 

to permanent changes [39]. Estradiol levels were decreased in parous versus non-

parous women in two studies [12,13] but unchanged in another small study [40]. The 

problem of assessing different hormones at different stages of the reproductive cycle 

makes it difficult to define a specific altered hormone profile for parous women.  
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Conclusion 

In women, parity and a younger AFFTP increased the risk of T2D. The association of 

parity and T2D risk was found to be mediated by increased body fat. We show an 

increased weight, BMI and waist with each additional child. Adjustment for body 

mass attenuated the inverse association of AFFTP and T2D but could not fully 

account for it. A possible underlying mechanism could be that young age at first full-

term pregnancy leads to long-term reduced estrogen exposure subsequently leading to 

reduced !-cell function. However, this mechanism should be further studied in future 

research.  
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Abstract 

Type 2 diabetes (T2D) and obesity have a strong genetic basis and they are quite 

common despite their negative effects on human health. Like all species, Homo 

sapiens has been shaped by evolutionary processes and the worldwide incidence of 

T2D and obesity suggests that genes underlying these traits may have been favored by 

the process of natural selection. In trying to explain this observation, James Neel 

proposed the ‘thrifty genotype theory’, according to which our early ancestors 

frequently suffered periods of prolonged famine, during which a survival advantage 

would have been conferred by genes favouring the economical use and storage of 

energy, the so-called thrifty genes. 

Genome-wide association studies have identified 19 T2D and 17 obesity 

susceptibility alleles. In combination with genome-wide single nucleotide 

polymorphism data, this allows us to test the thrifty genes hypothesis. We examined 

whether these susceptibility variants have been under positive selection in 3,657 

Dutch and UK individuals and 1,301 HapMap III samples. 

Our results do not support the thrifty gene hypothesis as we found no signs of positive 

selection around the known T2D and obesity risk alleles. However, some protective 

variants for T2D and obesity do show suggestive signs of positive selection in our 

European data and it can be argued that Europeans have already adapted genetically 

to a Western diet. The lower frequency of T2D in Europeans compared to other ethnic 

groups which are now adopting a ‘Westernized’ diet and lifestyle supports this 

hypothesis. 
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Introduction 

Although type 2 diabetes (T2D) is a severe medical condition, it is quite common, 

with a prevalence of 2.8% worldwide and a prevalence of 8% in the USA (according 

to the American Diabetes Association). The concordance rate of T2D in monozygotic 

twins is 76% compared to 40% in dizygotic twins, providing convincing evidence that 

genetic factors contribute to the development of T2D. One interesting question is why 

the phenotypes of T2D and obesity, the main risk factor for T2D, are so common 

despite their negative effects on human health. Like all species, Homo sapiens has 

been shaped by evolutionary processes and the fact that so many people are 

susceptible to developing T2D and obesity suggests that genes underlying these traits 

may have been favored by the process of natural selection. In trying to explain this 

observation, James Neel proposed the ‘thrifty genotype theory’ in 1962 [1], according 

to  which our early ancestors frequently suffered periods of prolonged famine, during 

which a survival and/or reproductive advantage would have been conferred by genes 

favouring the economical use and storage of energy, the so-called thrifty genes. The 

theory focuses on the efficient use of glucose as a biological fuel and suggests that 

evolutionary pressure to preserve glucose for use by the brain during starvation led to 

a genetic propensity towards insulin resistance in peripheral tissue. In the Western 

world, food is, in general, easily available and plentiful, so these thrifty genes are 

maladaptive in modern society and may now contribute to the widespread 

susceptibility for T2D and obesity [1].  

Although the thrifty genes hypothesis is popular and frequently cited, it is also 

controversial and has been discussed for decades in many scientific papers [2]. The 

most powerful argument against the theory came from anthropological studies that 

suggested that during the past 2.5 million years of human history, famines were not 

sufficiently frequent and severe to cause evolutionary pressure [3-4]. There are 

several alternative theories explaining the genetic basis of T2D and obesity [2]. Till 

now, all these hypotheses have been speculative and there was no consensus in the 

field.  

However, the 19 T2D susceptibility alleles [5-11] and 17 obesity susceptibility 

alleles [12-16], in combination with genome-wide single nucleotide polymorphism 

(SNP) data, now allows us to investigate whether genetic variants underlying the traits 

have been favored by positive natural selection. When a genetic variant is under 
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positive selection, it increases in frequency in a population and this leaves a 

‘signature’ or pattern in the human genome. These signatures can be identified by 

comparison with the background distribution of genetic variation in humans, which is 

generally argued to have evolved largely under neutrality [17-18].  

We tested the thrifty gene hypothesis by investigating whether recently 

identified T2D and obesity risk alleles have been under recent positive selection in 

four large study populations and 11 HapMap III populations. We did this by studying 

haplotype lengths and allele frequency differences between populations in multiple 

genome-wide SNP data sets, encompassing 3,657 individuals for the UK and the 

Netherlands, and 1,301HapMap III individuals.  

 

Results 

 

We studied all the T2D and obesity susceptibility loci known up to March 2009 for 

signs of recent selection. The 19 T2D and 17 obesity variants are SNPs that were 

found to be associated with genome-wide significance and were replicated in other 

independent populations (within the original study). For the analysis we used 3,657 

individuals from UK and Dutch populations. We investigated signatures of selection 

by studying haplotype lengths and allele frequency differences between populations. 

The results were highly reproducible across all the populations tested for both alleles 

with unusually long haplotypes (table 3) as well as other haplotypes (data not shown). 

 

iHS analysis 

In the first stage of the study we analysed a region of 1 Mb around the susceptibility 

loci in the 1958BC and in the second stage we replicated the most promising results 

(p<0.1) in multiple data sets encompassing 2,215 individuals from Europe. The p-

values presented are empirical (2-sided) p-values. A locus with a p-value below 0.05 

means that the locus is a 5% outlier compared to a set of 8,500 randomly chosen 

background SNPs. We excluded a susceptibility SNP near to the NOTCH2 gene from 

the analysis because the locus was located too close to the centromere to calculate a 

reliable iHS value. Another SNP, near the PTER gene, was excluded from analysis, 

because its major allele frequency was above 95% and the iHs method has low power 

to detect selective sweeps that have reached a frequency above 95%. 
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Of the 19 studied T2D susceptibility loci, the non-risk alleles near THADA, 

PPARG, JAZF1, SLC30A8, and the risk allele near CDC123-CAMK1D, were 

positioned on an unusually long haploblock compared to the background allele at the 

same position (p < 0.1) in the 1958BC data set (table 1). This suggests that the 

protective alleles of rs7578597 near THADA, rs17036101 near PPARG and rs864745 

near JAZF1, and the risk allele near CDC123-CAMK1D, show signatures of positive 

selection.  

 

Table 1. Recent selection for T2D susceptibility loci in 1,442 individuals from the 

1958 Birth Cohort 

SNP ID Chr 

Closest 

gene(s) 

Risk 

allele 

Derived 

allele 

freq 

iHScorr 

1958BC 

p 

value 

Allele under 

(suggestive) 

selection 

rs10923931 1 NOTCH2 T 0.88 NA
 a
 NA

 a
  

rs7578597 2 THADA T* 0.10 -1.46 0.10 non-risk allele 

rs17036101 3 SYNC-

PPARG 

G 0.94 3.54 0.002 non-risk allele 

rs4402960 3 IGF2BP2 T 0.33 1.60 0.14  

rs4607103 3 ADAMTS9 C* 0.22 -0.16 0.89  

rs10010131 4 WFS1 G* 0.41 1.05 0.35  

rs10946398 6 CDKAL1 C* 0.46 -0.18 0.87  

rs864745 7 JAZF1 T* 0.47 -1.60 0.07 non-risk allele 

rs13266634 8 SLC30A8 C* 0.31 -1.85 0.04 non-risk allele 

rs10811661 9 CDKN2A-

2B 

T 0.84 -0.22 0.85  

rs1111875 10 HHEX-

IDE 

T* 0.59 0.74 0.49  

rs12779790 10 CDC123-

CAMK1D 

G 0.17 -1.62 0.06 risk allele 

rs7901695 10 TCF7L2 C* 0.67 0.06 0.98  

rs10830963 11 MTNR1B G 0.29 -0.04 0.98  

rs2237892 11 KCNQ1 C* 0.08 -0.50 0.65  

rs5215 11 KCNJ11 C 0.36 -0.86 0.38  

rs1153188 12 DCD A* 0.75 -0.14 0.90  

rs7961581 12 TSPAN8 C 0.28 -0.85 0.40  

rs4430796 17 TCF2 A 0.57 0.83 0.45  

 

iHScorr, corrected iHs value; 1958BC, 1958 Birth Cohort; * ancestral allele. 
a
 SNP rs10923931 near to the NOTCH2 gene was located too close to the centromere 

to calculate a reliable iHS value. 
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Of the 17 studied obesity susceptibility loci, three non-risk alleles near the 

genes SEC16B, TMEM18 and BDNF were surrounded by an extended haplotype 

(p<0.1, table 2), implying that the protective alleles showed signs of selection.  

Finding 5 out of the 19 SNPs in the p<0.10 region (instead of the expected 2) has a 

probability of 0.008, while finding 3 out of 17 in this region has a probability of 0.08. 

Combined (8 out of 36) has a probability of 0.008. This indicates that we can 

reasonably assume a selection pressure for at least some of these alleles. 

In the replication stage, we observed similar iHS values across three different 

European study populations (table 3), indicating that the findings in the 1958BC were 

unlikely to be due to sampling oddities. 

 

Table 2. Recent selection for obesity susceptibility loci in 1,442 individuals from the 

1958 Birth Cohort. 

SNP ID Chr 

Closest 

gene(s) 

Risk 

allele 

Derived 

allele 

frq  

iHScorr 

1958BC 

p 

value 

Allele under 

(suggestive) 

selection 

rs10913469 1 SEC16B A 0.79 1.99 0.06 non-risk allele 

rs2815752 1 NEGR1 A 0.60 -0.23 0.54  

rs6548238 2 TMEM18 C* 0.09 -1.46 0.09 non-risk allele 

rs7647305 3 ETV5 C 0.80 0.19 0.84  

rs10938397 4 GNPDA2 G 0.43 -0.87 0.38  

rs2844479 6 NCR3 T* 0.48 -0.40 0.72  

rs4712652 6 PRL A* 0.43 0.73 0.50  

rs10508503 10 PTER C* <0.05 NA
 a
 NA

 a
  

rs10838738 11 MTCH2 G 0.31 0.20 0.84  

rs6265 11 BDNF G* 0.91 -1.95 0.03 non-risk allele 

rs7138803 12 BCDIN3D A 0.36 -0.35 0.76  

rs1424233 16 MAF A* 0.54 -0.61 0.56  

rs7498665 16 SH2B1 G* 0.60 0.90 0.39  

rs9939609 16 FTO A* 0.60 1.64 0.13  

rs17782313 18 MC4R C 0.23 -0.29 0.80  

rs1805081 18 NPC1 A* 0.41 -0.47 0.68  

rs11084753 19 KCTD15 G* 0.31 -0.39 0.72   

 

iHScorr, corrected iHs value; 1958BC, 1958 Birth Cohort; * ancestral allele. 
a
The derived allele frequency of SNP rs10508503 near to the PTER gene was too low 

(<0.05) to calculate a reliable iHS value. 
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Fst analysis 

We studied whether the Fst values of the susceptibility alleles between the HapMap 

III population were outliers in contrast to an empirical genome-wide distribution of 

Fst (figures 1 and 2) [19]. An Fst value of 0 means that different populations are 

identical in allele frequency, whereas an Fst value of 1 means that different 

populations are fixed for different alleles.  

 

 

 Figure 1. Genome-wide distribution of Fst values between HapMap III populations. 

Fst values for T2D susceptibility alleles are indicated in the relevant bars. For SYNC-

PPARG, CDC123-CAMK1D and MTNR1B, the susceptibility alleles were not 

available for all HapMap III populations and therefore the Fst value could not be 

calculated globally. 

 

None of the studied SNPs had an Fst value that was a significant outlier 

compared to a genome-wide distribution. Only rs6265 nearby the BDNF gene had an 

Fst value of 0.645 that was located in the 10% outlier region of the genome-wide Fst 

distribution. The population of African origin all had ancestral risk-allele frequencies 

of rs6265 above 95%, the Native American populations both had an ancestral allele 

frequency of 83%, European populations showed allele frequencies between 75% and 

80% and the Eastern Asia populations all had allele frequencies of the ancestral allele 

below 65% (figure 3). Furthermore, we observed no significant allele frequency 
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differences across different populations for the associated tagSNPs that would have 

indicated any signs of differential selection. 

For TMEM18, GNPDA2, PRL, FTO, SYNC-PPARG, CDC123-CAMK1D, 

MTNR1B, the susceptibility alleles were not available for all HapMap III populations. 

Therefore, the global Fst could not be calculated for these SNPs. However, Fst values 

between separate population groups could be calculated for these SNPs and showed 

no significant differential allele frequency (data not shown).  

 

 

 

 

 

 

 

Figure 2. Genome-wide distribution of global Fst values between HapMap III 

populations. 

Fst values for obesity susceptibility alleles are indicated in the relevant bars. For 

TMEM18, GNPDA2, PRL, FTO the susceptibility alleles were not available for all 

HapMap III populations and therefore the Fst value could not be calculated globally. 
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Figure 3. Allele frequency differences for rs6265 nearby the BDNF gene of the 

ancestral risk allele G and the derived non-risk allele A in 10 HapMap III populations. 

ASW, African ancestry from Southwest USA; YRI, Yoruba from Ibadan, Nigeria; 

MKK,  Maasai in Kinyawa, Kenya; GIH, Gujarati Indians from Houston; MEX, 

Mexican ancestry from Los Angeles; JPT, Japanese from the Tokyo area; CHD, 

Chinese from Denver; CHB, Han Chinese from Beijing; CEU, Northern and Western 

European ancestry; TSI,  Toscans from Italy. Frequency data of rs6265 was not 

available for Luhya in Webuye, Kenya (LWK). 

 

Discussion 

This paper describes a comprehensive analysis of signatures for recent selection on 

T2D and obesity susceptibility loci in four large study populations. The majority of 

the variants do not show any signature of selection, although some protective variants 

for T2D and obesity show signs of positive selection in our European data. Our results 

therefore do not support the thrifty gene hypothesis, as we found no signs of positive 

selection around the known T2D and obesity risk alleles.  

However, for the T2D susceptibility loci in or near THADA, PPARG, JAZF1, 

SLC30A8, and the obesity susceptibility loci in or near SEC16B, TMEM18 and 

BDNF, we did find (suggestive) signatures of selection, not for the risk allele but for 

the protective allele. This suggests that the risk allele was, in fact, the subject of 

recent negative selection in the European populations. In addition, we show that the 

T2D and obesity risk alleles are no more differentiated in the HapMap phase III 

population than random SNPs in the genome. All these findings argue against the 
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thrifty genes hypothesis [20-21]. Only one risk allele for T2D, nearby CDC123-

CAMK1D, was found to be suggestive for being under positive selection.  

Although the evolutionary analyses performed in this study argue against the 

thrifty genes hypothesis, our data is not complete enough to reject the theory entirely. 

Firstly, although the GWA studies have improved our understanding of the genetic 

basis of T2D and obesity, we can still only explain around 10% of the genetic risk for 

these traits [22]. Thus, the majority of T2D and obesity loci are still unknown and 

cannot be tested for signatures of selection. It is worth remembering that GWAS 

studies do not capture information about rare SNPs or other genetic variants, like 

copy number variations and inversion/deletion variants.  

Secondly, ‘thrifty genes’ that cause susceptibility for T2D and obesity could 

have reached fixation in the population (i.e. all individuals of the population carry the 

same risk allele), and they therefore cannot be picked up by genome-wide association 

studies using case and control data. Older selection pressure could also have acted on 

these variants so that their signature is no longer visible in the genome. 

Thirdly, if an associated tag SNPs does not shown a signature of selection, it 

does not necessarily mean that that the causal variant will not show a signature of 

selection. Although it is likely that the tag SNP and the causal SNP are located on the 

same haplotype (and therefore show similar iHs values), the fact that the allele 

frequencies of the associated tag SNPs are not differentially distributed among 

different populations does not mean that the causal variants are not significantly 

differentially distributed. The recent GWA studies were mainly focussed on 

populations of European ancestry and there are large differences in correlation 

between SNPs among populations. Although the causal variant is likely to be in LD 

with the associated SNP in the European populations, the LD of causal variants with 

the associated SNP in other populations might be much weaker. Therefore, a 

difference in allele frequency distribution of tag SNPs does not necessarily reflect the 

allele frequency distribution of the causal SNP. To deal with this problem, instead of 

studying the Fst of associated SNPs, Pickrell et al. calculated the maximum Fst in a 

100 kb window surrounding the susceptibility loci for T2D in the Human Genome 

Diversity CEPH Panel (HGPD) [23]. They observed that regions encompassing T2D 

susceptibility alleles can significantly differentiate Europeans and East Asians from 

Africans, with the regions surrounding TCF7L2, TSPAN8, JAZF1 and ADAMTS9 as 

strong outliers. These findings suggest that these regions have experienced recent 
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positive selection, but how this relates to the thrifty genes hypothesis is unclear. 

Therefore, in our study, we chose to analyse only tag SNPs instead of a broader 

genomic region for population allele frequency differentiation. In order to test the 

thrifty genes hypothesis, we were especially interested in whether the risk allele or the 

protective allele showed signatures of selection. The direction of the selection is very 

important in this case and when the causal variant is unknown and the tag SNP is not 

an outlier in allele frequency distribution, it is impossible to interpret the data with 

respect to the thrifty genes hypothesis.  

The known T2D and obesity risk alleles do not show signs of recent positive 

selection in this study and therefore cannot be considered as ‘thrifty genes’. Although 

the thrifty gene hypothesis is well known and attractive, it might be that the theory is 

a bit too simple. Therefore we here discuss the effect of malnutrition and famine on 

mortality to see whether these could have been major drivers of selection. Periods of 

food insecurity are relatively common and historically have occurred about once in 

every ten years [24]. It is likely that privileged groups, like the aristocrats or other 

elites, did not have problems of food shortage. If we add that the elite probably 

enjoyed better-than-average environmental conditions, a significantly lower-than-

average mortality should be expected. Past experiences do not support this. 

Hollingsworth [25] studied the British elite in cohorts born in each quarter century 

between 1550 and 1750. They exhibited a life expectancy at birth (e0) of between 30–

38.8 for males and 33.7–38.3 for females. The estimates of e0 for the same historical 

interval and the normal population are between 33.1–38.7 [26]. They almost exactly 

match the elite population and it can therefore be concluded that differential mortality 

in the past – with nutrition as the discriminating variable – seems to have been 

modest. The majority of the episodes of extraordinary and catastrophic mortality in 

the past were caused by infectious diseases. 

In this study we find signatures of recent selection (<30,000 years ago) for 

protective alleles for T2D and obesity in several European study populations. This 

could have had something to do with diet in Europe. The agricultural revolution 

started around 11,000 years ago in the Middle East and gradually spread towards 

north-west Europe around 6,000 years ago; it was accompanied by major changes in 

diet for many human populations [27]. The Mediterranean-type agriculture that 

developed in Europe comprised livestock that supplied much more protein and fat 

than the agricultures that developed in warmer parts of the world [27]. Data on diet in 
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these times are scarce, but historical sources from medieval times from the 

Netherlands show that, in addition to grain products of wheat and rye, middle-class 

people ate large amounts of meat and, at least in the Netherlands, the poorer classes 

generally consumed cheese and milk as their main food source [28]. On the contrary, 

the average citizen in pre-revolutionary France lived on a poor quality diet containing 

less than 1400 calories per day [29]. What additionally sets Europeans apart from 

other ethnicities is that the ‘escape from hunger’, a dramatic change of event in 

humans, occurred 200 years in European populations before it did anywhere else in 

the world [30]. 

 According to the thrifty genes theory, T2D and obesity susceptibility genes 

conferred a survival advantage in times of food scarcity, but are nowadays 

maladaptive to a ‘Westernized’ diet and lifestyle [1]. However, it can be suggested 

that from the Mediterranean agriculture onwards, Europeans already started to adapt 

genetically to a ‘Westernized’ diet with high fat and protein intake. Therefore, natural 

positive selection possibly already reduced the European frequencies of those thrifty 

genotypes in previous centuries. The lower frequency of T2D in Europeans compared 

to other ethnic groups which are now adopting a ‘Westernized’ diet and lifestyle 

supports this hypothesis. In the USA, the T2D frequencies are 6.6% in European-

Americans, 7.5% in Asian-Americans, 10.4% in Hispanics, and 11.8% in African 

Americans. Although T2D is a late-onset disease in Europe, it is an early-onset 

disease in some parts of the world, with the extreme example of the Nauru Islanders 

and the Pima Indians [31]. Humans with early-onset T2D have a reduced fitness and 

if we argue that, in Europe, T2D used to be a disease that occurred much earlier in life 

than nowadays, there might have been a selective pressure against T2D and obesity 

risk alleles. Some studies also suggest that late-onset T2D patients might have had 

reduced fertility earlier in life, which represents further reduced fitness [32].  This is 

also proposed in the ‘fertility first’ hypothesis by Corbett et al [33]. 

 It is possible that studying unusually long haploblocks is much less suitable 

for susceptibility variants of complex traits than monogenetic traits. The selective 

pressure is divided among multiple loci, or eventually there may be a balance in 

fitness [34]. An alternative explanation for the high frequency of individuals 

susceptible to T2D and obesity could be that obesity and T2D risk alleles rose in 

allele frequency in the population due to mutation and random drift. Speakman 

proposed the ‘predator release theory’ [35] where he postulates a stabilizing selection 
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for body fatness. Carrying around large fat reserves may enhance the probability of 

surviving a period of food shortage, but could in the meantime increase the 

probability of being killed by a predator. During the early period of human evolution 

(6-2 million years ago), humans were preyed on by large predatory animals. Absence 

of predation in more recent times led to a change in the population distribution of 

body fatness due to random mutation and drift. 

 

Conclusion  

Our results do not support the thrifty gene hypothesis, because we found no signs of 

positive selection around T2D and obesity risk alleles. However, some protective 

variants for T2D and obesity do show (suggestive) signs of positive selection in our 

European data and it can be argued that Europeans are already adapting genetically to 

a Western diet by purging genetic variants leading to type 2 diabetes and obesity. 

 

Methods 

 

T2D and obesity susceptibility alleles 

We studied all 19 T2D and 17 obesity susceptibility loci indentified up to March 2009 

for signs of natural selection. All the variants are single nucleotide polymorphisms 

(SNPs) that were found to be associated with genome-wide significance and were 

replicated in other independent populations (within the original study). The T2D and 

obesity susceptibility loci are described in tables 1 and 2, giving SNPs, the nearest 

gene, the risk and non-risk alleles, and the ancestral state per allele.  

 

Study populations 

In the first stage of the analysis to study haplotype length we used 1,442 individuals 

from the 1958 UK Birth Cohort (1958BC), genotyped on Illumina HumanHap300 

BeadChips for the celiac disease GWA project [36]. In the second stage we tried to 

replicate our most promising findings in three other genome-wide SNP data sets 

comprising 2,215 individuals in total: a population of 929 healthy Dutch blood bank 

controls, a UK study population of 778 celiac disease cases and a Dutch population of 

508 cases. We also studied the distribution of the T2D and obesity risk alleles in 

HapMap phase III. These study populations are described in more detail below. 
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Dutch subjects 

The 929 Dutch controls were unrelated individuals who were blood bank donors 

selected at random. The 508 cases were unrelated Dutch children and adults with 

celiac disease. All the cases and controls were from the Netherlands and of European 

descent, with at least three grandparents born in the Netherlands. Use of the data was 

approved by the Medical Ethics Committee of the University Medical Center Utrecht. 

These populations are described in more detail elsewhere [37]. 

UK subjects 

We recruited 778 adult celiac disease patients from outpatient clinics at seven UK 

hospital sites. They were all of Northern European origin. Ethics committee approval 

(Oxfordshire REC B) and local approval were obtained for all these study populations 

[36]. 

 

HapMap phase III subjects 

Because large allele frequency differences between populations may be the result of 

differential selection pressures, we studied the allele frequency distribution of the 

T2D and obesity risk alleles in HapMap phase III data. A total of 1,301 samples from 

11 populations are included in the HapMap III database [38]: 90 individuals of 

African ancestry from Southwest USA (ASW), 180 US residents with Northern and 

Western European ancestry (CEU), 90 Han Chinese individuals from Beijing (CHB), 

100 Gujarati Indians from Houston, Texas (GIH), 100 Chinese from Denver, 

Colorado (CHD),  91 Japanese individuals from the Tokyo area (JPT), 100 Luhya in 

Webuye, Kenya (LWK), 90 individuals with Mexican ancestry from Los Angeles 

(MEX), 180 Maasai in Kinyawa, Kenya (MKK), 100 Toscans from Italy (TSI) and 

180 Yoruba people from Ibadan, Nigeria (YRI).  

According to their continental origin, samples were divided into four 

geographical groups: CHB, CHD and JPT were grouped as Eastern Asian ancestry, 

YRI, ASW, LWK and MKK as African ancestry, GIH and MEX as Native American 

ancestry and CEU and TSI as European ancestry. 

 

Data analysis 

Because not all the SNPs were genotyped directly in the genome-wide data sets, we 

imputed some genotypes using PLINK (v1.04) with the phase II HapMap CEU data 

as a reference panel [39]. Only genotypes that could be accurately imputed with a call 
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rate of above 80% per SNP were used for analyses. To check the effect of imputation 

on our results, we analysed several regions with and without imputation and found the 

results to be largely comparable.  

Regions of 1 Mb around the T2D or obesity susceptibility alleles were 

extracted from the imputed data sets and we used the Beagle software program to 

estimate phased haplotypes from genotypes [40]. Based on chimpanzee alignment, we 

assigned the ancestral state of all the SNPs in the data files. All the T2D and obesity 

susceptibility alleles had known ancestral states.  

 

Integrated Haplotype Score (iHS)  

We used the freely available, online iHS software to calculate extended haploblocks 

around the T2D and obesity susceptibility loci in the genome-wide SNP data sets. 

Briefly, the iHS is a statistic developed to detect evidence of recent positive selection 

(< 30,000 years ago) at a locus. It is based on the differential levels of linkage 

disequilibrium (LD) surrounding a positively selected allele compared to the 

background allele at the same position. Under neutral selection, the LD around 

variants in the genome will decay over time due to recombination. Hence, older 

(common) alleles typically have short-range LD and younger (rare) alleles have long-

range LD. Without positive selection, new alleles need considerable time to become 

common. Thus, alleles with a high frequency are typically old, and are therefore 

expected to have short-range LD: they sit on short haplotypes. However, when an 

allele is under positive selection, its frequency rises rapidly in the population over a 

short time span and the haplotype carrying the advantageous allele will be longer 

relative to haplotypes around equally frequent alleles that have become common 

purely by random genetic drift. The iHS software has been described in detail 

elsewhere [18]. 

An extremely positive iHS score means that haplotypes on the ancestral allele 

background are longer than the derived allele background (thus suggesting a recent 

selection on the ancestral allele), while an extremely negative iHS score means that 

the haplotypes on the derived allele background are longer than the haplotypes 

associated with the ancestral allele.  

We standardized the iHS values using derived frequency bins in a set of 8,500 

randomly chosen SNPs surrounding the T2D and obesity susceptibility regions. After 
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standardization, the iHS was normally distributed. We calculated the p-value with a 2-

sided test based on the empirical distribution of the iHS values. 

 

Fixation index (Fst)  

When a genetic variation is under positive selection, it increases in prevalence in a 

population. Because diet, climate and pathogen load vary across the world, there are 

population differences in selective pressure resulting in global allele frequency 

variations. Therefore, allele frequency differences between populations could indicate 

that the alleles were under selection in a certain population (although it could also 

point towards a population bottleneck). The Fst is a measure of population 

differentiation based on data of genetic variation and the statistic compares the 

genetic variability within and between populations [41].  

 Under neutral selection, Fst is determined by genetic drift and will therefore 

affect all loci in the genome in a similar way. We study the global Fst values of the 

T2D and obesity susceptibility loci in the HapMap III populations and compared 

these values with an empirical genome-wide distribution. We used computed Fst 

values from the SNP@Evolution database [19].  
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Abstract 

Background Fertility problems are frequently followed by early menopause and early 

menopause has been associated with diabetes. Thus far, it is unknown whether sub- or 

infertility is independently associated with future type 2 diabetes risk.  

Methods We assessed the association between measures of sub- and infertility in a 

cohort of 17,357 Dutch women, aged 49-70 at baseline using Cox proportional 

hazards models. Analyses were adjusted for various confounders. To investigate 

whether BMI, waist and gestational diabetes mediate the observed associations, 

analyses were additionally adjusted for these variables.  

Results At baseline, 332 women had T2D. During a mean follow-up of 9.1 ± 3.6 

years, 535 T2D cases occurred. Compared to women with a regular cycle length of 

27-29 days, women with irregular menstrual cycles had an increased, albeit non-

significant risk for T2D, with a multivariate adjusted HR of 1.20 (95% CI 0.97-1.49). 

The association strengthened after adjusting for BMI (HR for irregular cycle=1.25; 

95% CI 1.00-1.54) and waist (HR for irregular cycle=1.22; 95% CI 0.98-1.51).  None 

of the other measures of sub- or infertility were associated with increased risk for 

T2D. 

Conclusion Generally, measures of sub- and infertility did not independently predict 

subsequent development of T2D. However, most T2D patients were diagnosed after 

menopause. Therefore, future studies should further investigate the association 

between reduced fertility and premenopausal T2D, especially as the developing 

epidemic of obesity has shown a substantial reduction in the age of onset of T2D and 

is starting to emerge in women of childbearing age. 
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Introduction 

Compared to all other populations with a modern lifestyle, the age-adjusted type 2 

diabetes (T2D) prevalence in populations of European ancestry is relatively low [1]; 

T2D prevalence in U.S. Europeans, U.S. Africans, U.S. Hispanics and U.S. Pima 

Indians is respectively 7.6%, 13%, 17% and 50%  [1]. It has been proposed that these 

differences in T2D susceptibility between European and non-European populations 

are the genetic and evolutionary consequences of geographical differences in food 

history [2,3].  

The ‘thrifty genes theory’ hypothesized that the T2D phenotype gives a 

survival advantage during periods of famine, but is maladaptive in societies with high 

food abundance [4]. Historical data show that starting from about 1600, European 

societies became capable to efficiently intervene famine, by redistributing over-

abundance grain to areas of food scarcity [5]. Diamond [2] suggested that as a result, 

Europeans should have undergone an epidemic in T2D starting several centuries 

before present as a result of the new reliability of sufficient food supplies, and 

eliminated the most T2D-prone genotypes by processes of natural selection [2].  

 Natural selection works through differential reproductive success rather than 

simple differential survival. Because fertility is a driving force behind evolution, 

infertility could be one of the underlying causes that decreases the T2D genotype 

frequencies in Europeans, especially since T2D is a late-onset disease and therefore 

not directly acting on survival.  However, it is unknown whether T2D is associated 

with earlier in life reproductive problems, although there is some indirect evidence 

suggesting a link. Fertility problems are frequently followed by early menopause [6], 

and early menopause has been associated with type 1 diabetes and premenopausally 

diagnosed T2D [7]. An earlier decline in the ovarian follicle pool has been suggested 

as a cause of early menopause in women with type 1 diabetes [7,8]. Also obesity, the 

most important risk factor for T2D, is associated with reduced fertility. Previously, a 

U-shaped association between BMI and relative risk of ovarian infertility was 

observed in the Nurses’ Health Study II, with increased risk for ovarian infertility for 

women with a BMI below 20 and above 24 kg/m2 [9].  

Thus far, it is unknown whether sub- or infertility is independently associated 

with future risk of developing T2D. Therefore, we assessed the association between 
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measures of sub- and infertility and T2D risk in the Prospect cohort comprising 

17,357 Dutch women.  

 

Methods 

 

Subjects 

The Prospect-EPIC cohort is one of the two Dutch contributions to the European 

Prospective Investigation into Cancer and Nutrition (EPIC) [10]. It is a prospective 

cohort study among 17,357 women aged 49–70 who lived in Utrecht and vicinity and 

who participated in the breast cancer screening program between 1993 and 1997 [11]. 

All participants gave their written informed consent and the study was approved by 

the Institutional Review Board. The design, sampling strategies, and examination 

techniques of the cohort have been described previously [11].  

 

Data collection 

 

Baseline measurements 

At baseline, all participants filled out detailed questionnaires on usual diet, 

reproductive history, presence of chronic diseases and related potential risk factors. 

They underwent a brief medical examination and a blood sample was drawn.  

 

Measures of reduced fertility 

To define reduced, sub- or infertility, we used the following variables: (I) having had 

an irregular menstrual cycle pattern between age 30-40 years, (II) having consulted a 

physician for fertility problems, (III) nulliparity, (IV) uniparity (V) having had a 

miscarriage (VI), a long time interval between the birth of the first and the second 

child (VII) a short reproductive time between the age of menarche and the age of 

menopause.  

For each analysis, an appropriate subpopulation was defined: (I) menstrual 

cycle irregularity, in all women reporting on menstrual cycle pattern. The information 

on menstrual cycle pattern concerned the period between age 30 and 40 years and 

irregularity of the menstrual cycle pattern was self-defined; (II) subfertility, by 

studying ever consulting a medical doctor for fertility problems in all women who 
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reported that they have tried to achieve pregnancy; (III) nulliparity , in women who 

reported that they have tried to achieve pregnancy; (IV) having only one child, in all 

parous women; (V) at least one miscarriage, in all women who were ever pregnant; 

(VI) time interval >5 years between birth of first and second child, in women with at 

least two live born children; (VII) reproductive time, in all women who reached a 

natural menopause at baseline.  

 

Potential covariates 

Because of the potential for confounding, we adjusted our analyses for BMI, waist, 

gestational diabetes, age, alcohol intake, physical activity, smoking, socio-economic 

status and oral contraceptives use.   

Body weight was measured in light indoor clothing without shoes to the 

nearest 0.5 kg with a floor scale (Seca, Atlanta, GA, USA). Additionally, height, 

waist and hip circumference were measured. Body mass index (BMI) was calculated 

as weight divided by height squared (kg/m2). 

 Alcohol consumption was assessed by a validated food frequency 

questionnaire (FFQ). Baseline alcohol intake was determined by multiplying the 

consumption of each beverage by its ethanol content and was calculated to grams per 

week (g/week). Subsequently, we categorized subject into four alcohol consumption 

categories: <0.05 g/week, 0.05-5.5 g/week, 5.5-10.5 g/week, >10.5 g/week. 

Duration and types of physical activity during the year preceding study 

recruitment were assessed by a set of questions that was used in all EPIC cohorts. By 

combining occupational physical activity with time spent on cycling and sporting in 

summer and winter, the validated Cambridge Physical Activity Index (CPAI) [12] 

was calculated. Based on this Index participants were divided in four physical activity 

categories: inactive, moderately inactive, moderately active and active.  

Smoking behaviour was categorized as no, former or current smokers.  

To define the socio-economical status, the highest attained level of education 

of the participants was used and classified into three categories: low (primary 

education up to completing intermediate vocational education), middle (up to higher 

secondary education) and high (those with higher vocational education and 

university).  

 The number of years of oral contraception use was self reported, and 

participants were divided into four groups: never, 1-4 years, 4-10 years, >10 years. 
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Self reported gestational diabetes status during pregnancy was indicated as yes or no. 

   

Missing value analyses 

Missing values for BMI, waist, alcohol intake, physical activity, CPAI, smoking, 

gestational diabetes, socio-economical status, years of oral contraceptives use, 

number of miscarriages and age of menarche were imputed using multiple imputation 

[13], repeated 5 times to account for uncertainties in imputed data. None of the 

variables had > 5% missing values; the percentage of missing values ranged from 

0.1% for BMI to 2.9% for years of oral contraceptives use.  

 

Morbidity and mortality follow-up 

Occurrence of T2D during follow-up was obtained via self-report in two follow-up 

questionnaires sent to the participants within intervals of three to five years, linkage to 

the Dutch register of hospital discharge diagnoses (HDD) and a mailed urinary 

glucose strip test (part of the cohort) (I Sluijs Neth J Med, under revision). Potential 

cases of T2D were verified against information from the participants’ general 

practitioner or pharmacist through mailed questionnaires. T2D was defined present 

when the general practitioner or pharmacist confirmed the diagnosis. Information on 

vital status was obtained through linkage with the municipal administration registries 

[14]. Causes of death were obtained from the Dutch Central Bureau of Statistics, 

coded according to the International Classification of Diseases, Tenth Revision, 

clinical Modification (ICD-10). For our analyses, T2D was the endpoints of interest 

and follow up ended at the date of diagnosis or at the date of death. All others were 

censored on January 1st 2006.  

 

Data analysis 

Population characteristics are described using means and standard deviations (for 

normally distributed variables) and numbers and frequencies (for categorical 

variables).  

The person-time for each woman was calculated from birth to the month of 

diagnosis of the endpoint (T2D), the month of death from other causes, or the end of 

follow-up (January 1, 2006). Hazard ratio’s (HRs) and 95% confidence intervals (CIs) 

for risk on T2D were estimated using Cox regression analysis. We used a stepwise 

approach to adjust for potential confounders and study the role of the potential 
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intermediate factors BMI, waist and gestational diabetes, using five multivariate 

models: model 1, including age at baseline; model 2, including potential confounders 

age, alcohol intake, physical activity, smoking, socio-economic status and oral 

contraceptives use; model 3, including all confounders from model 2 and BMI; model 

4, including all confounders from model 2 and waist; model 5, including all 

confounders from model 2 and gestational diabetes.  

 We also performed trend analyses with categorical variables entered as 

continuous variables in the model to test a dose-response effect for measures of sub- 

and infertility and the risk for T2D.  

Results were considered statistically significant at 2-sided P ! 0.05. All 

statistical analyses were performed using SPSS. 

 

Results 

Table 1 shows the baseline characteristics of the population included in this study. 

The study had a mean follow-up of 9.1 ± 3.6 years and comprised 157,964 person-

years. During follow-up, 535 new T2D cases occurred. When calculating follow-up 

time from birth, this resulted in a mean follow-up of 66.9 ± 6.7 years with a 

corresponding 1,160,428 person-years. The mean age of the study group at baseline 

was 57.1 ± 6.0 years. In total, the study contained 867 verified T2D patients; 332 

prevalent and 535 incident cases.  
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Table 1. Baseline characteristics of 17,357 women from the PROSPECT cohort 

 

  Mean ± SD 

Follow-up time (yr) 66.86 ± 6.66 

Age at intake (yr) 57.14 ± 6.03 

BMI (kg/m2) 26.03 ± 4.09 

Waist (cm) 83.75 ± 10.17 

Alcohol intake (g/week) 9.11 ± 12.61 

Pill use (yr) 5.38  ± 6.75 

Live born children 2.37 ± 1.51 

  N (%) 

Smoking  

   Current smoker 3783 (20.0) 

   Former smoker 5982 (34.7) 

   Non-smoker 7466 (43.3) 

Physical activity  

  N (%) 

   Inactive 1301 (7.5) 

   Moderate inactive 4612 (26.6) 

   Moderate active 4437 (25.6) 

   Active 7007 (40.4) 

Educational level  

   Low 13311 (76.7) 

   Medium 1249 (7.2) 

   High 2270 (13.1) 

Gestational diabetes  

   No 16714 (96.3) 

   Yes 643 (3.7) 

 

 

A total of 13,991 women reported on regularity of natural menstruation 

between the ages of 30 to 40 years, of whom 14% reported to have an irregular 

menstrual cycle. Compared to women with a regular cycle length of 27-29 days, 

women with irregular menstrual cycles had an increased, but non-significant, risk for 

T2D (model 2, Table 2), with a multivariate adjusted HR of 1.20 [95% CI 0.97-1.49]. 

The association strengthened after adjusting for BMI or waist, with a BMI adjusted 

HR of 1.25 [95% CI 1.00-1.54] and a waist adjusted HR of 1.22 [95% CI 0.98-1.51]. 

Adjustment for gestational diabetes did not alter the results. 
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Table 2. Hazard ratio’s for Type 2 Diabetes risk by menstrual period 

 HR HR (95% CI) HR (95% CI) HR (95% CI) 

Menstrual 

period ! 26 27-29 ! 30 irregular 

Subjects (n) 3,737 6,779 1,528 1,947 

T2D cases (%) 177 (4.7) 312 (4.6) 83 (5.4) 117 (6.0) 

Model 1
a
 1.06 (0.88-1.27) 1 1.19 (0.93-1.51) 1.36 (1.10-1.68) 

Model 2
 b
 1.01 (0.84-1.22) 1 1.19 (0.93-1.52) 1.20 (0.97-1.49) 

Model 3
 c
 1.05 (0.87-1.26) 1 1.20 (0.94-1.53) 1.25 (1.00-1.54) 

Model 4
 d
 1.09 (0.90-1.31) 1 1.13 (0.95-1.54) 1.22 (0.98-1.51) 

Model 5
 e
 1.01 (0.84-1.21) 1 1.17 (0.92-1.50) 1.19 (0.96-1.47) 

a 
Model 1 = Adjusted for age at baseline (continuous) 

b
 Model 2 = Adjusted for age at baseline (continuous), smoking (never, past, current), 

alcohol intake (<0.05 g/w, 0.05-5.5 g/w, 5.5-10.5 g/w, >10.5 g/w), socio-economical 

status (low, middle, high), pill years (never, 1-4 years, 4-10 years, >10 years), and 

physical activity (inactive, moderate inactive, moderate active, active) 
c
 Model 3 = Model 2 plus BMI (continuous) 

d
 Model 4 = Model 2 plus waist (continuous) 

e
 Model 5 = Model 2 plus gestational diabetes (yes/no) 

 

 

Out of the 15,708 Prospect women who wanted to get pregnant, 11.8% 

consulted a physician for fertility problems. Consulting a physician for fertility 

problems was not associated with risk of T2D; multivariate adjusted HR for women 

who consulted a physician for fertility problem versus women who did not was 0.95 

[95% CI 0.76-1.20], a pattern that did not change after BMI, waist or gestational 

diabetes adjustment (Table 3).  

Of the 15,708 women who tried to get pregnant, 700 (4.5%) remained 

childless. No relationship was found between nulliparity and future T2D risk (model 

2, table 4); multivariate adjusted HR for nulliparous women compared to parous 

women was 0.98 [95% CI 0.68-1.41]. This did not change after adjustment for BMI, 

waist and gestational diabetes (Table 4).  
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Table 3. Hazard ratio’s for Type 2 Diabetes risk by fertility consult in 15,708 women 

who tried to get pregnant 

 HR HR (95% CI) 

fertility consult no yes 

Subjects (n) 14,726 1,849 

T2D cases (%) 766 (5.1) 83 (4.3) 

Model 1
a
: age 1 0.90 (0.72-1.13) 

Model 2
 b
: multiple confounders 1 0.95 (0.76-1.20) 

Model 3
 c
: model 2 + BMI 1 1.04 (0.83-1.30) 

Model 4
 d
: model 2 + waist 1 1.02 (0.81-1.28) 

Model 5
 e
: model 2 + gestational diabetes 1 0.93 (0.74-1.17) 

a 
Model 1 = Adjusted for age at baseline (continuous) 

b
 Model 2 = Adjusted for age at baseline (continuous), smoking (never, past, current), 

intake (<0.05 g/w, 0.05-5.5 g/w, 5.5-10.5 g/w, >10.5 g/w), socio-economical status 

(low, middle, high), pill years (never, 1-4 years, 4-10 years, >10 years), and physical 

activity (inactive, moderate inactive, moderate active, active) 
c
 Model 3 = Model 2 plus BMI (continuous) 

d
 Model 4 = Model 2 plus waist (continuous) 

e
 Model 5 = Model 2 plus gestational diabetes (yes/no) 

 

 

Table 4. Hazard ratio’s for Type 2 Diabetes risk by nulliparty in 15,708 women who 

tried to get pregnant 

 HR (95% CI) HR 

Number of children ! 1 0 

Subjects (n) 15,008 700 

T2D cases (%) 762 (5.1) 31 (4.4) 

Model 1
a
: age 1 0.88 (0.62-1.26) 

Model 2
 b
: multiple confounders 1 0.98 (0.68-1.41) 

Model 3
 c
: model 2 + BMI 1 1.04 (0.72-1.49) 

Model 4
 d
: model 2 + waist 1 1.05 (0.73-1.51) 

Model 5
 e
: model 2 + gestational diabetes 1 1.04 (0.73-1.50) 

a 
Model 1 = Adjusted for age at baseline (continuous) 

b
 Model 2 = Adjusted for age at baseline (continuous), smoking (never, past, current), 

intake (<0.05 g/w, 0.05-5.5 g/w, 5.5-10.5 g/w, >10.5 g/w), socio-economical status 

(low, middle, high), pill years (never, 1-4 years, 4-10 years, >10 years), and physical 

activity (inactive, moderate inactive, moderate active, active) 
c
 Model 3 = Model 2 plus BMI (continuous) 

d
 Model 4 = Model 2 plus waist (continuous) 

e
 Model 5 = Model 2 plus gestational diabetes (yes/no) 

 

 

 

 

 

 



!"#$%&'()(

 188 

Of the 15,129 Prospect women who had children, 1,487 (9.8%) women were 

uniparous. Compared to women with two or more children, women with only one 

child had a decreased risk for T2D (model 2, Table 5), with a multivariate adjusted 

HR of 0.77 [95% CI 0.59-1.00]. However, after adjustment for BMI or waist (table 5, 

model 3 and 4 respectively), the association between uniparity and reduced T2D risk 

was no longer statistically significant; BMI and waist adjusted HRs for women with 

one child compared to women with two or more children were 0.82 [95% CI 0.63–

1.08] and 0.81 [95% CI 0.62-1.06], respectively. Adjustment for gestational diabetes 

again did not alter the results. 

 

Table 5. Hazard ratio’s for Type 2 Diabetes risk by uniparity in 15,129 women with 

children 

  HR (95% CI) HR 

Number of children ! 2 1 

Subjects (n) 13,642 1,487 

T2D cases (%) 710 (5.2) 60 (4.0) 

Model 1
a
: age 1 0.81 (0.62-1.06) 

Model 2
 b
: multiple confounders 1 0.77 (0.59-1.00) 

Model 3
 c
: model 2 + BMI 1 0.82 (0.63-1.08) 

Model 4
 d
: model 2 + waist 1 0.81 (0.62-1.06) 

Model 5
 e
: model 2 + gestational diabetes 1 0.77 (0.58-1.01) 

a 
Model 1 = Adjusted for age at baseline (continuous) 

b
 Model 2 = Adjusted for age at baseline (continuous), smoking (never, past, current), 

intake (<0.05 g/w, 0.05-5.5 g/w, 5.5-10.5 g/w, >10.5 g/w), socio-economical status 

(low, middle, high), pill years (never, 1-4 years, 4-10 years, >10 years), and physical 

activity (inactive, moderate inactive, moderate active, active) 
c
 Model 3 = Model 2 plus BMI (continuous) 

d
 Model 4 = Model 2 plus waist (continuous) 

e
 Model 5 = Model 2 plus gestational diabetes (yes/no) 

 

Out of the 15,708 Prospect women who wanted to get pregnant, 3,979 (25.3%) 

had one or miscarriages, with an average of 1.4 (± 0.9) miscarriages and a maximum 

of 10 miscarriages. Women who had one or more miscarriages showed no differential 

risk for T2D compared to women who did not have a miscarriage (table 6), with a 

multivariate adjusted HR of 1.12 [95% CI 0.96-1.31], a BMI adjusted HR of 1.07 

[95% CI 0.91-1.25], a waist adjusted HR of 1.02 [95% CI 0.87-1.19] and a gestational 

diabetes adjusted HR of 1.08 [95% CI 0.93-1.27].  
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Table 6. Hazard ratio’s for Type 2 Diabetes risk by number of miscarriages in 15,708 

women who tried to get pregnant 

  HR HR (95% CI) 

Number of miscarriages none ! 1 

Subjects (n) 11,729 3979 

T2D cases (%) 569 (4.9) 223 (5.6) 

Model 1
a
: age 1 1.12 (0.96-1.31) 

Model 2
 b
: multiple confounders 1 1.12 (0.96-1.31) 

Model 3
 c
: model 2 + BMI 1 1.07 (0.91-1.25) 

Model 4
 d
: model 2 + waist 1 1.02 (0.87-1.19) 

Model 5
 e
: model 2 + gestational diabetes 1 1.08 (0.93-1.27) 

a 
Model 1 = Adjusted for age at baseline (continuous) 

b
 Model 2 = Adjusted for age at baseline (continuous), smoking (never, past, current), 

intake (<0.05 g/w, 0.05-5.5 g/w, 5.5-10.5 g/w, >10.5 g/w), socio-economical status 

(low, middle, high), pill years (never, 1-4 years, 4-10 years, >10 years), and physical 

activity (inactive, moderate inactive, moderate active, active) 
c
 Model 3 = Model 2 plus BMI (continuous) 

d
 Model 4 = Model 2 plus waist (continuous) 

e
 Model 5 = Model 2 plus gestational diabetes (yes/no) 

 

The average time interval between the first and second child of Prospect 

women was 32.7 (± 20.4) months. Time interval between children was not associated 

with future T2D risk (multivariate adjusted p-value for trend 0.40). Again, adjustment 

for BMI, waist and gestational diabetes did not alter the results (p-values for trend 

were 0.36, 0.59 and 0.41 respectively) (table 7).  

In Prospect, 6,292 women reported to have a natural menopause. The average 

time interval between menarche and natural menopause, i.e. the reproductive time, 

was 36.9 (± 4.5) years. Reproductive time was not associated with T2D risk with a 

multivariate adjusted HR of 1.22 [95% CI 0.93-1.61] for women with a reproductive 

time of ! 40 years compared to women with a reproductive time " 35 (multivariate 

adjusted p-value for trend= 0.06; model 2, table 8). After adjustment for both BMI 

and waist separately (model 3 and 4 respectively, table 8) the association between 

reproductive time and reduced T2D risk attenuated. The HR for women with a 

reproductive time of ! 40 years versus women with a reproductive time of " 35 years 

was 1.09 [95% CI 0.83-1.44] for BMI adjusted analysis and 1.15 [95% CI 0.87-1.51] 

for waist adjusted analysis. Again adjustment for gestational diabetes did not change 

the results. 
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Discussion 

In this large cohort of 17,357 women, measures of sub- and infertility did not 

independently predict subsequent development of T2D. To our knowledge, this is the 

first study to investigate the association between various measures of sub- and 

infertility and future T2D risk in a prospective cohort. 

Before interpreting the data, some strengths and limitations need to be 

discussed. The main advantages of this study are its prospective nature, the long 

follow-up time and the large sample size. Furthermore, the women were extensively 

questioned on their reproductive history. Also, potential cases of T2D were verified 

by the participants’ general practitioner or pharmacist and T2D was only defined 

present when one of them confirmed the diagnosis. In this study, the person-time for 

each woman was calculated from birth to the month of T2D diagnosis, to the month 

of death from other causes, or to the end of follow-up. In prospective cohort studies, 

the person-time is usually calculated from baseline, therefore only including incident 

T2D cases. As our variables for measures of sub- or infertility were established long 

before T2D onset in cases, we choose to calculate person-time from birth. This 

allowed us to include an extra 332 prevalent T2D cases for analyses, which were 

otherwise excluded. We additionally studied the association of parity and age at first 

childbirth and T2D risk with person-time calculated from baseline, to explore the 

effect of using a person-time from baseline versus from birth. The results were 

comparable (data not shown) with similar HR, but wider 95% CI. 

In this study we used the variables ‘having had an irregular menstrual cycle’, 

‘having consulted a physician for fertility problems’, ‘nulliparity’, ‘uniparity’, ‘having 

had a miscarriage’, ‘a long time interval between the birth of the first and the second 

child’ and ‘a short reproductive time’ as measures of sub- and infertility. It can be 

discussed whether these variables truly represent sub- or infertility in women. 

‘Having consulted a physician for fertility problems’, ‘nulliparity’, ‘uniparity’ and ‘a 

long time interval between the birth of the first and the second child’ could also have 

been caused by male infertility. Of the 1,849 Prospect women who, together with 

their partners, consulted a physician for fertility problems, eventually 845 (46%) 

couples got a diagnosis of sub- or infertility; in 353 couples (42%) the female was 

diagnosed with sub- or infertility, in 362 couples (43%) the male was diagnosed with 

sub- or infertility and in 130 couples (15%) both female and male were diagnosed 
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with sub- or infertility. However, the associations between measures of sub- and 

infertility and T2D risk did not change, when we excluded women with sub- or 

infertile partners (data not shown). Although some misclassification cannot be 

excluded, this is likely to be non-differential, since misclassification of sub- or 

infertile women occurred independently of T2D.  

The variable ‘time interval between birth of first and second child’ is a 

substitute for time to pregnancy, which is widely used to estimate the degree of 

subfertility [15].  However, we were unable to directly determine time to pregnancy in 

our cohort. Even though the interval between first and second child comprises for a 

major part unintentional waiting time, most likely subfertility in this analysis is of 

relatively minor magnitude, because all women in this studied subpopulation were 

able to conceive at least twice.  

Long or highly irregular menstrual cycles have been associated with insulin 

resistance, higher glucose levels and increased risk of T2D in previous studies 

[16,17,18]. We previously reported that compared to women with a regular cycle 

length of 27-29 days, women with irregular menstrual cycles had a non-significant 

increased risk for T2D, and a significantly increased risk of coronary heart disease 

[18]. Here we showed that the association with T2D slightly strengthened after 

adjusting for both BMI and waist separately. However, the link between irregular 

menstrual cycles and T2D remains unknown. Both the association with T2D and the 

association with coronary heart disease could not be explained by metabolic risk 

factors or altered hormone levels [18].  

In the Prospect cohort, 91.2% of the T2D patients were diagnosed after 

menopause. As the developing epidemic of obesity currently show a substantial 

reduction in the age of onset of T2D and is emerging in women of childbearing age, it 

is important to further investigate the association between reduced infertility and 

premenopausal T2D. Previous studies provide some evidence for the connection 

between infertility and premenopausal T2D. First of all, one common cause of sub- 

and infertility, the polycystic ovary syndrome (PCOS), is already known to be 

associated with impaired glucose tolerance and T2D in adolescent girls and 

premenopausal women [19,20]. The syndrome is a heritable form of ovarian infertility 

that clinically affects 5-10% of reproductive women and is characterized by a long 

history of chronic anovulation in association with insulin resistance and androgen 

excess [21,22]. Secondly, reproductive abnormalities are often part of the metabolic 
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syndrome when it occurs in premenopausal women [23]. The metabolic syndrome is 

recognized as a major risk factor for T2D [24]. Thirdly, pregnancy losses, 

predominantly through stillbirth, are high in women with type 1 and type 2 diabetes 

[25].  However, it is unknown whether T2D associated phenotypes cause sub- or 

infertility or whether sub- and infertility are markers for unknown factors increasing 

T2D risk in menopausal women. As our data show that sub- and infertility do not 

predict subsequent development of T2D, it is tempting to speculate that 

premenopausal T2D is causal for reduced fertility rather then the other way around. 

Unfortunately, we were not able to study the association between infertility and 

premenopausal T2D risk in Prospect, due to the low number of premenopausal T2D 

cases. 

Our data show that general measures of sub- and infertility are not associated 

with T2D later in life. However, most T2D patients were diagnosed after menopause. 

Future studies should investigate the association between reduced infertility and 

premenopausal T2D, especially as the developing epidemic of obesity currently show 

a substantial reduction in the age of onset of T2D and its emergence in women of 

childbearing age. 
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Abstract 

During the last couple of decades, Europeans increased both in length and width.  

Before the 19th century there is very little concrete information on which to base 

conclusions on heights and especially weight. In the Municipal Archives of ‘s-

Hertogenbosch, in the Netherlands, we found a list dated 1766 with 319 names and 

very detailed physical descriptions of a group of people who were all members of a 

criminal gang. Based on these descriptions we were able to obtain information on the 

different body characteristics during this part in time. 

Individuals on the list were all between 16 and 65 years of age, with a mean age of 

32.8 (±10.3). Of the group, 55.8% was male, and the origin of the gang members was 

Northern-European (90%), Jewish (8.8%) and Roma (1.4%). The height of males was 

normally distributed with a mean of 1.58 (±0.05) meters (m) for males. Men from 

Jewish origin were significantly shorter compared to men from Northern-European 

origin (p<0.0001), with an average height of 1.54 (±0.05) m for Jewish versus 1.59 

(±0.05) m for Northern-European men. For body weight we found that the majority of 

the people was described as average of weight, however, more individuals were fatter 

than average compared to thinner than average. Of the study population, 24% was 

described as very fat and additionally, body characteristics concerning fat were 

mentioned, such as ’a huge belly’, ‘fat legs’ or ‘a round and plump face’.  

The short average height of 1.58 m for males suggests a poor biological well-being 

for the individuals of the gang of Calotte. For body weight, a substantial part of the 

study population was described as ‘fat’ (17.2%) or ‘very fat’ (28.8%). This might 

suggest that a part of the Dutch population was overweight long before the current 

obesity epidemic, even in less prosperous time and even among individuals from the 

lowest economical classes. 
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Introduction 

During the last couple of decades, Europeans increased both in length and width [1]. 

In the Netherlands, male height grew from 1.69 in 1900 (based on measurements of 

army recruits) up to 1.81 in 2009 (www.cbs.nl). For body weight, the percentage of 

Dutch adults being overweight increased from 34.9% in 1990 to 46.9% in 2008 

(www.cbs.nl). It is often suggested that the current overweight and obesity epidemic 

in Europe is a trend of the last couple of decades; however this is only an assumption, 

based on little scientific evidence. In the discussion on anthropometric and physical 

characteristics of human population in relation to food and disease, historical data is 

therefore important.   

Before the 19th century there is very little information on which to base 

conclusions on heights and especially weight and other human features. We know 

what the upper-class Europeans looked like, ate and died from, because they left us 

paintings, diaries and letters. Much less though is known about the general 

population. Data on height among the lower classes started to be available from the 

18th century, but is mainly based on measurements of army recruits, and so concerns 

only young and reasonably healthy males [1,2]. As armies usually had a minimum 

standard for height, the data is likely to be biased towards a longer average in soldiers. 

Weight was not measured and other physical characteristics were not usually given.  

In the Municipal Archives of ‘s-Hertogenbosch, in the Netherlands, we found 

a list dated the year 1766 with 319 names and very detailed physical descriptions of a 

group of people who were all members of a criminal gang. Based on these 

descriptions we were able to study relations between different body characteristics in 

this population. We investigated the average height and body weight distribution of 

the gang members to get a historical perspective on body characteristics.  

 

 

 

 

 

 

 

 



!"#$%&#'()*)"#

 

 201 

Box 1. 18th century bandits and criminal gangs in the Netherlands. 

In the 18th century there was a scare all over Europe over bandits and their gangs: 

Cartouche (France), Dick Turpin (England) and Schinderhannes (Germany) were 

known all over Europe [16,17]. In the Netherlands from the late seventeenth century 

on, there were several gangs of robbers active, some of which like the infamous 

Bokkenrijders (Riders of billy goats) or Zwartmakers (Black makers) would enter 

popular folklore for generations [18]. These gangs of robbers did not usually operate 

in the rich province of densely populated and urbanised Holland, but in the poor 

southern provinces of North Brabant and Limburg, where farmers were less protected 

and where they could and did easily skip the borders to other jurisdictions. Members 

of these criminal groups, however, where not strangers to the communities they 

robbed, but usually came from the margins of these societies, including members of 

despised professions like skinners, itinerant workers, showmen at fairs and tinkers, 

former or deserted soldiers, Jews, and gypsies. Women were also members of these 

criminal groups. They specialised in picking pockets at markets and fairs, and fencing 

of stolen goods. As wives, concubines and mothers of the robbers, too, they were an 

integral part of these criminal gangs.  

The authorities took these gangs very seriously. Many dozens of men and women 

ended their lives at the gallows; because of the active prosecution the judicial records 

contain rich material on which the characteristics, lives and networks of these people 

can and have been be reconstructed. 

 

Methods 

 

Study population 

In 1766 in the city of s-Hertogenbosch, the main city of North Brabant in the 

Netherlands, seven members of a gang known as ‘the gang of Calotte’ were arrested, 

including the leader Calotte, the Flemish born 32-years old Jozef de Vriese, who was 

also known as Prince Charles, the Seedy Student, and Captain-of- a-Hundred-Rogues. 

For months, the gang members were questioned, and were pressed to give detailed 

information about the other members of their group. On the 13th of December 1766 

five of the group were broken on the wheel, the other two hung. On the basis of these 

interrogations, a list was put together with the names and descriptions of 319 people 
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that belonged to their gang or were closely connected with it. This ‘List of Ruffians, 

Rogues, Highwaymen and other suspect Persons’ was printed and copies, marked 

‘secret’ were sent to other courts of justice in the country, to help identify vagrant 

undesirables.  

 

Human characteristics 

The list with personal descriptions of gang members was not the only list of its kind, 

but it was unique in the completeness of the physical characteristics provided for each 

person, and the fact that it concerns a group consisting of men and women, and was of 

a large age range. The list includes not only age and the colour of hair and eyes, but 

also height, a typing of body posture and fat distribution, facial condition (smooth-

pockmarked) and a detailed description of body posture and physical deformities by 

which the persons could be identified. For women, the number and age of their 

children was written down. It must be stressed, though, that height and weight are not 

measured but taken from the estimates given by the seven robbers who were snitching 

on accomplishes.  

The age of individuals was often given as ‘around 50’ or ‘between 28 and 30’. 

The informants may not have remembered the precise age of all members; moreover, 

people of the lower classes themselves did not always know the precise date of their 

birth. For analyses, we used the around age of a person or took the average of two 

ages of which a person was described to be in between of. 

The height of males was given in feet and thumbs. We conversed this into 

meters, using the ‘s-Hertogenbosse foot of 0.287 m and the Hondbosche thumb of 

2.87 cm that were used  in the area at the time [3]. Height of females was never 

defined in feet and thumbs, but was described in words, like ‘very tall’ or ‘average of 

height’. We categorized the height of women into 3 groups: short, average and tall.   

Bodyweight in both men and women was circumscribed in words as slender, fragile, 

thin, average weight, reasonably fat, fat and very fat. We categorized individuals into 

5 groups: very thin, thin, average, fat and very fat.  

 A person was pockmarked as its face was described as ‘pockmarked’, 

‘pockpitted’ or ‘pocked’. Eye problems included being squint-eyed, having running 

eyes, having a spot on the eye, being blind and having only one eye. Posture and limb 

deformities included stooping, bent, walking with knees/feet inwards, old fractures 

and lame leg.  
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Data analyses 

Population characteristics are described using means and standard deviations (for age 

and height) and numbers and frequencies (for categorical variables). To study 

differences in height between different ethnicities we used the Student’s t-test. Results 

were considered statistically significant at 2-sided P ! 0.05. All statistical analyses 

were performed using SPSS (version PASW Statistics 18). 

  

Results  

 

Study population 

The  319  people on the ‘list of Ruffians, Rogues, Highwaymen and other suspect 

Persons’  belonging to or closely associated with  the ‘gang of Calotte’ were all 

between 16 and 65 years of age, with a mean age of 32.8 (±10.3). Of the group, 

55.8% was male and age for males and females is presented in table 1 in three age-

groups. The average age was 31.5 (±9.2) for males and 34.7 (±11.2) for females. Of 

the total study population 90% was of Northern-European origin, 8.8% was of Jewish 

origin and 1.3% was Roma. 

 

Table 1. Age and ethnicity in 319 members from the gang of Calotte in 1766. 

 

  Total (%) Men (%) Women (%) 

N 319 178 141 

Age in years    

16-25  88 (27.6) 56 (31.5) 32 (22.7) 

25-35 130 (40.8) 75 (42.1) 55 (39.0) 

35-65 101 (31.7) 47 (26.4) 54 (38.3)  

Ethnicity    

Northern-European 287 (90.0) 156 (87.6) 131 (92.9) 

Jewish 28 (8.8) 21 (11.8) 7 (5.0) 

Roma 4 (1.3) 1 (0.6) 3 (2.1) 
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Height 

Height in men was normally distributed, with a mean of 1.58 (±0.05) meters (figure 

1). Height in women appeared to be normally distributed, but was never defined in 

feet and thumbs, so an average height could not be calculated.  

 Men from Jewish origin were significantly shorter compared to men from Northern-

European origin (p<0.0001), with an average height of 1.54 (±0.05) meters for Jewish 

men versus 1.59 (±0.05) for Northern-European men.  

 

                  Figure 1. Height distribution 152 males of the gang of Calotte in 1766 

 

 

 

Body weight 

Among the members of the gang of Calotte, body weight was not normally 

distributed; 21 individuals were described as very thin (6.6%), 38 as thin (11.9%), 105 

as average (32.9%), 55 as fat (17.2%), 92 as very fat (28.8%)  and for 8 individuals 

(2.5%) weight was not described (figure 2).  
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Figure 2. Categories of posture definitions as used in the 1766 dataset of members of 

the gang of Calotte 

 

 

Discussion 

We studied various body characteristics in a group of 319 individuals of the lowest 

social classes, living in the18th century. The mean age of the population was 32.8 

(±10.3). Height was normally distributed with an average height of 1.58 (±0.05) 

meters. Body weight was not normally distributed and 32.9% was described as 

average of weight.  

Physical stature is a useful measure of biological well-being; malnutrition and 

infectious diseases during childhood are associated with a short height in adulthood 

and a large part of the worldwide variation in height can therefore be attributed to 

socioeconomic status. The average height of the gang members was 1.58 (±0.05) 

meter and is therefore respectively 11 cm and 23 cm shorter than the average height 

of army recruits in 1900 and present-living Dutch males. Therefore, this average 

height suggests a poor biological well-being for the individuals of the study 

population. The people on the 1766 list were born between 1720 and 1750, and they 
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grew up and lived their lives in the middle of the 18th century. In the Netherlands, 

this was a period of economic decline, and also one of a bad food situation for the 

lower classes, with recurring epidemics of cattle plague and high grain prices. 

Additionally, in the mid-18th century smallpox was a major epidemic everywhere in 

the world and the disease was a leading cause of death in Europe, killing an estimated 

400,000 Europeans each year [4]. It is very likely that a substantial part of the gang 

members had been infected by smallpox earlier in life. Smallpox survivors were most 

often badly scarred for the rest of their lives, especially on their faces [5]. One in five 

persons on the list (19.5%), were said to have a pockmarked or poxy face. Also, other 

permanent complications which are associated with smallpox, like eyes problems and 

limb deformities are commonly noted to describe specific features for individuals. 

The smallpox epidemic could have had an effect of the average height in this 

population. The little information that is available about 18th century heights, suggest 

a low point in average height in the middle of the 18th century [2]. However, the 

average height of 1.64 meters in Saxon, German and Scotch military in the same time 

period is still higher than the average height 1.58 of our study population.   

The differences in height between various historical sources could also be due 

to differences in conversion from foot and thumb into meters. Before the introduction 

of the metric system, at the end of the 18th century, weights and measures were not 

standardised; there were numerous differences all over the Netherlands, and also 

differences in its uses. There was a widely accepted standard for feet and thumbs used 

in most official papers, which was the ‘Rijnlandse’ foot of 31.40 cm and a 

‘Rijnlandse’ thumb was 2.61 cm [3]. However, this was used for land surveying, and 

is not likely to have the measure Calotte and his companions had in mind; for one 

thing, it would result in an average height of males of 1.71 (±0.05) m, which surely is 

implausible. Therefore, we think that the average height of 1.58 meters is a valid 

estimation of the true average.  

Men from Jewish origin were significantly shorter compared to men from 

Northern-European origin (p<0.0001), with an average height of 1.54 (±0.05) meters 

for Jewish men versus 1.59 (±0.05) for Northern-European men. The majority of Jews 

were from the lowest socioeconomic classes, but Jews were, more than the other 

robbers, from crowded slums in the cities, mainly from Amsterdam. During 

childhood, they could therefore have been more exposed to infectious diseases and 

malnutrition compared to Northern-Europeans, especially if their choice of food was 
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additionally restricted because of a kosher diet. However, height is also a heritable 

trait with a heritability of ~0.8, meaning that within populations, about 80% of the 

variation in height among individuals is due to genetic factors [6]. Therefore, it is 

reasonable to think that the difference in height between the two ethnicities has in part 

a genetic base. 

 

         Figure 3. Adriaen van Ostade, Dancing Couple. Rijksmuseum Amsterdam 

 

Most people were average of weight, however, many more people (48%) were 

described as being fatter then average compared to thinner then average (figure 2). Of 

course, these body weight definitions cannot be compared to BMI distributions of the 

present-day Dutch population. The BMI of someone being described as ‘fat’ or ‘very 

fat’ in the 18th century is probably not the same as an obese or morbid obese person 

in the 21st century. However, it can be argued that a substantial part of the gang of 

Calotte that was described as ‘fat’ or ‘very fat’, was genuinely overweight. Additional 

evidence comes from the fact that for these individuals, also other body characteristics 

concerning fat were mentioned, such as ’a huge belly’, ‘fat legs’ or ‘a round and 

plump face’. Also, other historical data suggest that the Dutch were not the skinniest 

people. 
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In Dutch art, peasants are often depicted as fat. For example, in the many 

peasants scenes painted by Adriaen van Ostade (1610-1685), the people from the 

countryside are depicted as of sturdy built and are often eating and drinking (figure 3). 

This was an artistic tradition which cannot be directly taken as a depiction of reality. 

In the same period, however, the common people of Holland, especially the farmers, 

are called fat by foreigners. This is connected to their immoderate consumption of 

butter and cheese. Also, they are said to drink heavily. The Englishman Fynes 

Morrison, for example, wrote about the diet of the common people: ‘Butter is the first 

and last dish at the Table ... and thereupon by strangers they are merrily called Butter-

mouths. They are much delighted with white meats, and the Bawers [=farmers] drinke 

milk instead of beer, and [...] passing in boates from city to city for trade, carry with 

them cheese and boxes of butter for their foode, whereupon in like sort strangers call 

them Butter-boxes’ [7]. ‘A Dutch man’, sneers a anti-Dutch pamphlet of 1665, written 

during the times of the Anglo-Dutch naval wars, ‘is a lusty, fat, two legged cheese-

worm: A creature, that is so addicted to eating butter, drinking fat drink and sliding 

[=skating], that all the world knows him for a slippery fellow’ [7].  

It may be questioned whether all common people in the Dutch Republic were 

well fed and fat, but it is certain that in the diet of the Dutch butter, cheese and milk 

were very important; as was fish, especially the (fat) herring [8,9]. From the 

fourteenth century onwards, there was an extensive dairy production in the 

countryside of Holland; around 1500, more than half of the households of the 

countryside and even a third of the rural households were involved in dairy 

production [10]. Most of the butter and cheese was produced for the market and sold 

all over Europe, but the consumption of butter, cheese and milk within the 

Netherlands was also substantial [8,9].  

It should be noted that the citations on the Dutch being fat were from the 17th 

century (the golden age) in the rich and dairy producing province of Holland. The 

members of the gang of Calotte grew up and lived their lives in the middle of the 18th 

century, a period of economic decline, in the poor south of the Republic.  However, it 

is still remarkably that a large part of the study population was described as ‘fat’ or 

‘very fat’. It suggest that a part of the Dutch population was overweight, even in less 

prosperous time and even among individuals from the lowest economical classes. 
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Overweight and obesity is a major risk factor for developing type 2 diabetes (T2D). 

Compared to all other populations with a modern lifestyle, the age-adjusted T2D 

prevalence in populations of European ancestry is relatively low [11]; T2D prevalence 

in U.S. Europeans, U.S. Africans, U.S. Hispanics and U.S. Pima Indians is 

respectively 7.6%, 13%, 17% and 50% [11]. It has been proposed that these 

differences in T2D susceptibility between European and non-European populations 

are the genetic and evolutionary consequences of geographical differences in food 

history [12,13].  

The ‘thrifty genes theory’ hypothesized that the T2D phenotype gives a 

survival advantage during periods of famine, but is maladaptive in societies with high 

food abundance [14]. Historical data show that starting from about 1600, European 

societies became capable to efficiently intervene famine, by redistributing over-

abundance grain to areas of food scarcity [15]. This was especially true for the 

Netherlands, as Amsterdam was the centre and staple market of the international grain 

trade. Diamond [12] suggested that as a result, Europeans should have undergone an 

epidemic in T2D starting several centuries before present as a result of the new 

reliability of sufficient food supplies, and eliminated the most T2D-prone genotypes 

by processes of natural selection [12]. Our data show that such a scenario could have 

been possible, as in our study population a substantial part of the population showed 

characteristics of being overweight and therefore, those individuals were higher at 

risk for developing T2D. 

 

Conclusion 

The average height of 1.58 meters for males suggests a poor biological well-being for 

the individuals of the gang of Calotte. For body weight, a substantial part of the study 

population was described as ‘fat’ (17.2%) or ‘very fat’ (28.8%). Also other body 

characteristics concerning fat were mentioned, such as ’a huge belly’, ‘fat legs’ or ‘a 

round and plump face’. This might suggest that a part of the Dutch population was 

overweight long before the current obesity epidemic, even in less prosperous time and 

even among individuals from the lowest economical classes. 

.   
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General discussion 

The studies described in this thesis aim not only to study how humans are susceptible 

to obesity and T2D but also why. Although why and how may sound similar in the 

perspective of disease risk, they are actually very distinct. By studying the question 

how, the aim is to find the proximate cause of the disease, i.e. factors that are closest 

to or immediately responsible for causing the trait. For obesity and T2D, proximate 

causes could be genetic and lifestyle risk factors or an underlying molecular 

mechanisms of insulin resistance. In contrast, by studying the question why, the aim is 

to find the higher-level ultimate cause of the disease, i.e. the evolutionary explanation 

of the trait.  

A truly full explanation of a complex disease needs both a proximate 

explanation of how things work and a complementary evolutionary explanation of 

why it got that way. However, only very few researchers systematically apply 

evolutionary biology into medical science [1,2]. Scientists in the field of evolutionary 

medicine, like Randolph Nesse and George Williams, advocate the application of the 

evolutionary theory to understand health and disease, which they name Darwinian 

medicine [3]. Darwinian medicine provides a complementary approach to the present 

mechanistic explanations that dominate medical science and education [4].  

In this chapter I will discuss human obesity and T2D from an evolutionary 

perspective. 

 

Natural selection 

Natural selection is the key mechanism of evolution. The theory of evolution, as 

proposed by Charles Darwin in 1859 [5], has some basic principles:  

1. There is variation in traits among individuals within a species; 

2. Traits are heritable; 

3. There is differential reproduction; i.e. those individuals who best fit their 

environment are likely to survive, reproduce, and pass the traits to the next 

generation. 

The process of natural selections makes heritable traits become more common 

in a population over successive generations when these traits make it more likely for 

an organism to survive and successfully reproduce.  
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Darwin never found out exactly how organisms pass traits to their offspring. He died 

in 1882 and only in the mid-twentieth century, after the discovery of chromosomes by 

Theodor Boveri, genes by Gregor Mendel and the DNA double helix by Watson and 

Crick (using x-ray diffusion data collected by Rosalind Franklin) [6], the importance 

of genetic variation to evolution was revealed.  

Natural selection acts on phenotypes, but this selection is recorded in 

genotypes and genomic regions. It is the main driver resulting in the diversity of 

species and their genomes. Because of genetic variation, individuals have varying 

capacities to survive and reproduce in different environments. Genetic variation that 

reduces the fitness of the carrier is subject to negative selection, whereas genetic 

variation that increases fitness undergoes positive selection. 

 

Clash between our genes and modern life  

Evolution is the foundation for biology and biology is the basis for medicine. Seeing 

human organisms as machines that are optimally designed and engineered is 

misleading. Instead, human traits are full of compromises, which are shaped by 

natural selection to maximize reproduction and not to maximize health. There are 

many unavoidable tradeoffs and constraints in human biology [3]. 

Therefore, the idea that common complex traits are caused by a few defective 

genes is incorrect. The recent findings from genome-wide association studies 

(GWAS) have made it clear that complex diseases are much more heterogeneous and 

polygenic than previously believed [7-11]. An evolutionary view suggests that many 

genetic variants interact with environmental factors and other genes during 

development to influence disease phenotypes. Human genetic variation that increase 

disease resistance can have costs and some variants that increase disease vulnerability 

can have benefits at some stages in life. This view can in general help to explain why 

complex diseases are so prevalent and difficult to prevent. 

Because biological evolution is much slower than cultural changes, many 

diseases arise from a clash between our genes and modern life. For instance, the 

increase in human obesity and T2D is largely due to a mismatch between adaptive 

biological characteristics of our species and the modern environment, which has 

changed dramatically over a relatively short period of time from the environment 

under which we evolved. This concept is very important in understanding obesity and 
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T2D [12]. We carry our human past with us in our genes and this affects how the 

body reacts to the environment.   

 

Theories on the genetic basis of obesity and type 2 diabetes 

Although T2D is a severe medical condition, it is quite common, with a prevalence of 

2.8% worldwide and a prevalence of 7.8% in the USA in 2007 

(http://www.diabetes.org) The concordance rate of T2D in monozygotic twins is 76% 

compared to 40% in dizygotic twins, providing convincing evidence that genetic 

factors contribute to the development of T2D. One interesting question is why the 

phenotypes of T2D and obesity, the main risk factor for T2D, are so common despite 

their negative effects on human health. Like all species, Homo sapiens has been 

shaped by evolutionary processes and the fact that so many people are susceptible to 

developing T2D and obesity suggests that genes underlying these traits may have 

been favored by the process of natural selection. In trying to explain this observation, 

James Neel proposed the ‘thrifty genotype theory’ in 1962 [13], according to which 

our early ancestors frequently suffered periods of prolonged famine, during which a 

survival and/or reproductive advantage would have been conferred by genes 

favouring the economical use and storage of energy, the so-called thrifty genes. The 

theory focuses on the efficient use of glucose as a biological fuel and suggests that 

evolutionary pressure to preserve glucose for use by the brain during starvation led to 

a genetic propensity towards insulin resistance in peripheral tissue. In the Western 

world, food is, in general, easily available and plentiful, so these thrifty genes are 

maladaptive in modern society and may now contribute to the widespread 

susceptibility for T2D and obesity [14].  

Although the thrifty genes hypothesis is popular, it is also controversial and 

has been discussed for decades in many scientific papers [15-25]. The most powerful 

argument against the theory came from anthropological studies that suggested that 

during the past 2.5 million years of human history, famines were not sufficiently 

frequent and severe to cause evolutionary pressure [26]. Also paleoanthropologists 

questioned whether ancient foraging people were truly subject to cycles of 'feast and 

famine' [19]. There is now abundant evidence that primitive foraging populations had 

access to a wider range of foods and were taller, had better dentition and less 

infectious disease than the agricultural populations, which started to develop around 
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10,000 years ago [27]. Neel himself revised his hypothesis after the distinction 

between type 1 and type 2 diabetes became clear; it was tissue-specific resistance to 

the action of insulin, particularly by skeletal muscle, rather than a rapid insulin 

response, which was the hallmark of his 'thrifty genotype' [28]. Neel then 

hypothesized that when calorie intake was low, muscle insulin resistance would 

enable the economic use of metabolic fuel by reducing insulin-stimulated uptake of 

glucose in skeletal muscle, disturbing the suppression of hepatic glucose synthesis 

from lipid precursors. By 1998 Neel admitted that his hypothesis, even as revised, 

entailed an oversimplification of the impacts of modern nutrition on the "fine old 

genes" involved in energy homeostasis [14]. Despite the doubts of Neel himself 

regarding the theory, the thrifty gene hypothesis remained very popular and is cited 

frequently, even today (Figure 1).  

Another popular explanation for the high frequency of individuals susceptible 

to T2D and obesity is the ‘predator release theory’, proposed by Speakman [22]. 

According to his hypothesis, obesity and T2D risk alleles rose in allele frequency in 

the population due to mutation and random drift. Carrying around large fat reserves 

may enhance the probability of surviving a period of food shortage, but could in the 

meantime increase the probability of being killed by a predator. Therefore, Speakman 

postulates a stabilizing selection for body fatness. During the early period of human 

evolution (6-2 million years ago), humans were preyed on by large predatory animals. 

Absence of predation in more recent times led to a change in the population 

distribution of body fatness due to random mutation and drift. This hypothesis fits in 

the idea that common variants may only explain a fraction of the genetic risk for 

complex traits like obesity and T2D, while the remainder of the risk alleles are rare. 

There are several alternative theories that try to explain the genetic basis of T2D and 

obesity [15-25]. Till now, all these hypotheses have been speculative and there was no 

consensus in the field. Box 1 summarizes various theories on obesity and T2D.  
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Box 1. Hypothesis on the origin and the current epidemic of obesity and T2D 

The thrifty gene hypothesis 

James Neel proposed the ‘thrifty genotype theory’ in 1962 [13], according to  which 

our early ancestors frequently suffered periods of prolonged famine, during which a 

survival and/or reproductive advantage would have been conferred by genes 

favouring the economical use and storage of energy, the so-called thrifty genes. The 

 theory focuses on the efficient use of glucose as a biological fuel and suggests that 

evolutionary pressure to preserve glucose for use by the brain during starvation led to 

a genetic propensity towards insulin resistance in peripheral tissue. In the Western 

world, food is, in general, easily available and plentiful, so these thrifty genes are 

maladaptive in modern society and may now contribute to the widespread 

susceptibility for T2D and obesity. 

The drifty gene hypothesis 

Obesity and T2D risk alleles rose in allele frequency in the population due to 

mutation and random drift. Speakman proposed the ‘predator release theory’ where he 

postulates a stabilizing selection for body fatness [22]. Carrying around large fat 

reserves may enhance the probability of surviving a period of food shortage, but could 

in the meantime increase the probability of being killed by a predator. During the 

early period of human evolution (6-2 million years ago), humans were preyed on by 

large predatory animals. Absence of predation in more recent times led to a change in 

the population distribution of body fatness due to random mutation and drift. 

The thrifty phenotype 

Malnutrition in the environment within the womb during development induces thrifty 

mechanisms, because it predicts a future of starvation. This hypothesis is based on the 

finding that low birth weight is associated with an increased risk of T2D. 

The behavioral switch hypothesis 

Insulin resistance evolved as a socio-ecological and socio-nutritional adaptation rather 

than thriftiness. Insulin resistance is an adaptation to (i) a transition in reproductive 

strategy from ‘a large number of offspring with little investment per individual’ to ‘a 

smaller number of offspring with more investment per individual’ and (ii) a transition 

from a muscle dependent lifestyle to a brain dependent lifestyle [23]. 

The thrifty epigenotype hypothesis 

The capacity for efficient storage and use of energy is an ancient and complex trait 
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and has become robust against genetic mutations. Genetic variants play a minor role 

in the etiology of obesity and T2D. Instead, disease susceptibility is predominantly 

determined by epigenetic variation and corresponding epigenotypes have the potential 

to be inherited across generations [21]. 

The ‘genetically unknown foods’ hypothesis 

Theoretically, it can be expected that thrifty genes are more common in Europeans, as 

Europe has low abundant vegetation due to long harsh winters and has almost 

continuously been devastated by wars, characterized by famine and starvation. In real, 

the prevalence of T2D in Europeans is low. According to the ‘genetically unknown 

foods’ hypothesis, proposed by Baschetti (1998) [15,26], humans are genetically still 

unequipped for some foods that were unavailable to our hunter-gatherer ancestors. 

These foods, that are currently commonly available in western diets, may be 

responsible for common complex traits, like obesity and T2D. The low T2D 

prevalence in Europeans reflects their moderate adaptation to those foods, which has 

been achieved through natural selection in the last millennium. 

Cryoprotective evolutionary adaptation 

Previous animal research showed that high concentrations of glucose, glycerol and 

other sugar derivatives depress the freezing point of body fluids and prevent the 

formation of ice crystals in cells through cooling, thus acting as a cryoprotectant for 

vital organs as well as muscle tissue. Moalem et al. hypothesize that factors 

predisposing to elevated levels of glucose may have been selected for as adaptive 

measures in exceedingly cold climates [49]. However, critics of this theory argue that 

humans are unable to allow their body temperatures to cool much below 30oC before 

they experience heart failure and death. Hence, the importance of elevated blood 

glucose levels for cryoprotection as the climate cools seems at best marginal. 

The ‘fertility first’ hypothesis 

Polycystic ovary syndrome (PCOS) is a heritable form of ovarian infertility and is 

characterized by a long history of chronic anovulation in association with insulin 

resistance and androgen excess. Women with PCOS have a four times increased 

prevalence of T2D. Corbett et al. introduced the ‘fertility first’ hypothesis, proposing 

that the PCOS, T2D and the metabolic syndrome are modern phenotypic expressions 

of a metabolic genotype attuned to the dietary and energetic conditions of our early 

ancestors [18]. This metabolic ‘fertility first’ genotype, rather then the ‘thrifty’ 
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genotype persisted at high prevalence because it conferred a fertility advantage in 

periods of food shortage. The hypothesis predicts that the increasing rate of T2D will 

be tempered by natural selection against the underlying genes, driven by sub- or 

infertility. 

The unbalanced ‘autonomic nervous system’ hypothesis 

During the last century, life has changed dramatically in industrialized countries. 

Food has become abundant and the necessity for physical effort became considerably 

reduced. Additionally, physical activity does not need to coincide with a day and 

night rhythm. As a result, the environment, sensed by the brain, has become 

metabolically flattened and arrhythmic. Kreier et al. hypothesize that in such 

conditions the human brain loses its feeling for internal and external rhythms and 

propose an unbalanced and arrhythmic autonomic nervous system as a major cause of 

the metabolic syndrome [50]. 

 

Although the theories on the origin of obesity and T2D differ, most theories 

assume that the high prevalence of the disorders must be sustained by some 

compensating advantage that outweighs the morbidity and mortality. In this thesis 

(Chapter 8) we investigated whether the known genetic variants underlying obesity 

and T2D [8-11,29] have indeed been favoured by positive natural selection, as is 

suggested in the ‘thrifty gene hypothesis’ and other theories. When a genetic variant 

is under positive selection, it increases in frequency in a population and this leaves a 

‘signature’ or pattern in the human genome [30]. These signatures can be identified 

by comparison with the background distribution of genetic variation in humans, 

which is generally argued to have evolved largely under neutrality [30-32]. In 

genome-wide genetic data from Europeans, we did not find signs of positive selection 

around the currently known T2D and obesity risk alleles and our findings therefore do 

not support the theory that these alleles had a survival advantage in the recent 

(<30,000 years ago) past. However, as we discussed in chapter 8, our data was not 

complete enough to reject the theory either. First of all, ‘thrifty genes’ that cause 

susceptibility for T2D and obesity could have reached fixation in the population (i.e. 

all individuals of the population carry the same risk allele), and they therefore cannot 

be picked up by GWAS using case and control data. Older selection pressure could 

also have acted on these variants so that their signature is no longer visible in the 
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genome. Secondly, although the GWAS have improved our understanding of the 

genetic basis of T2D and obesity, we can still only explain around 10% of the genetic 

risk for these traits [33]. Thus, the majority of T2D and obesity loci are still unknown 

and cannot be tested for signatures of selection.  

However, what we did find was that some risk variants for T2D and obesity 

show suggestive signs of negative selection in our European data, indicating that the 

risk allele for the traits had a survival disadvantage in Europeans. 

 

Worldwide T2D prevalence 

King et al. estimated the age-adjusted prevalence of T2D in all countries in the world 

[34]. Table 1 shows the standardized T2D prevalence in several human populations, 

taking differences in age distributions of the various populations into account. [34]. 

For developing countries, T2D prevalence was calculated separately for urban, rural 

and/or traditional living populations, as these populations have distinct lifestyle and 

dietary habits. 

 

       Table 1. T2D prevalence in different human populations 

Population Region % T2D prevalence 

Europeans The Netherlands 2 

 U.K. 2.1 

 U.S. 7.6 

  Australia 8 

Native Americans Chile Mapuche 1 

 U.S. Hispanics 17 

  U.S. Pima Indians 50 

Aboriginals Australia Traditional 0 

  Westernized 23 

Africans Rural Tanzania 1 

 Urban South Africa 8 

  U.S. Africans 13 

Asia Rural China 0 

 Urban Singapore 9 

 Rural India 0 

  Urban India 12 
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Prevalence of diabetes in the world was estimated to be 4% in 1995 and to rise 

to 5.4% by the year 2025. However, age-adjusted T2D prevalence differs enormously 

among human populations. The explosion in T2D prevalence is occurring especially 

in developing countries, at about 50% per decade. The epidemic is just beginning in 

the world's two most populated countries, India and China, and therefore by the year 

2025 more than half of the world's diabetics will be Asians. Furthermore, table 1 

shows that traditionally living human populations have a much lower T2D prevalence 

compared to populations with the same ethnic background that live in urban 

environments.  

 Compared to all other populations with a modern lifestyle, the T2D prevalence 

in European populations is relatively low, even though Europeans are the richest and 

best-fed humans in the world. Indeed, Europeans (living in Europe and through the 

rest of the world) are the ‘inventors’ of the Western lifestyle [26]. Although the 

number of European individuals with T2D is rising, as it is in all population, the 

prevalence of the disease is still lower in Europeans than in any other non-European 

population [34]. In chapter 8 we show that some protective variants for T2D and 

obesity do show suggestive signs of positive selection in European genetic data, 

suggesting an advantage for the obesity and T2D for the protective allele. It can be 

argued that Europeans are already adapting genetically to a Western diet by purging 

genetic variants leading to type 2 diabetes and obesity. The lower frequency of T2D 

in Europeans compared to other ethnic groups which are now adopting a 

‘Westernized’ diet and lifestyle supports this hypothesis. 

Jared Diamond proposed that the genetic and evolutionary consequences of 

geographical differences in food history may provide the answer [35]. One interesting 

theory is that starting from about 1600, European societies became capable to 

efficiently intervene famine, by redistributing over-abundance grain to areas of food 

scarcity. This was possible because of well-organized state polities and the 

increasingly efficient food transport by land and by sea. Therefore prolonged famines 

gradually disappeared in Europe, starting from about 1650 in the Netherlands and in 

Great Britain and proceeding in the late 1800s in southern France and Italy. 

Furthermore, increasingly diversified agriculture broadened the base of European 

agriculture, thereby reducing the risk of starvation from failure of a single crop. As a 

result, the view of Jared Diamond on European food history is that several centuries 

before present, Europeans should have undergone an epidemic in T2D that resulted 
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from the new reliability of sufficient food supplies and eliminated most diabetes-

prone bearers of the thrifty genotype [35]. Therefore, Europe’s food abundance would 

have increased gradually over the course of several centuries and the result, between 

the 1400s and 1700s, would have been a slow rise in T2D prevalence. 

The increase in food availability in previous centuries is also shown by 

Wansink and Wansink [36]. They recently demonstrated that the portion size in 

painted meals of Jesus Christ’s last supper, generally increased with time. Over the 

last millennium, the relative sizes of the main dish, bread and plates have linearly 

increased. This supports that the production, availability, abundance and affordability 

of food in Europe has been increased. In chapter 10 from this thesis, we showed 

weight distribution in an 18th century cohort population. Many of the people were 

estimated to have a normal weight, however significantly more individuals are 

described heavier than average compared to lighter than average. People were often 

described to have a huge stomach or fat legs. Also, weight was increased with age, 

just as it is in modern populations.  

Therefore, it can be suggested that adaptation to dietary habits resulted in 

purging genetic variants leading to T2D and obesity in European populations. 

 

Adaptation to diet 

A major selective force during human evolution has been diet. Modern humans 

originated in Africa within the past ~200,000 years and then spread across the rest of 

the earth within the past 100,000 years [37,38,39]. Our early ancestors were hunter-

gatherers and only in the relatively recent past (< 10,000 years ago) have humans 

developed plant and animal domestication (e.g. agriculture and pastoralism); this 

transition was accompanied by major changes in diet for most human populations 

[40]. Analysis of the diets of modern hunter-gatherer populations indicates they 

obtain 19-35% of their energy from protein, 22-40% from carbohydrate and 28-58% 

from fat [41]. In comparison, adults in the western world obtain some 16% of their 

energy from protein, nearly 50% from carbohydrates, approx. 34% from fat and about 

3% from alcohol.  

Large variations in caloric and macronutrient intake and preference between 

individuals have been reported and these food intake patterns show a strong 

heritability, indicating a genetic basis [42]. There are also large differences in food 
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intake and percentage of nutrient-specific energy intake among different ethnic 

groups [35]. These ethnic differences in total and nutrient-specific energy intake 

might be caused by natural selection of mutations providing an advantage for a 

particular environment or type of diet. Diet as a driver of selection can be a condition 

beyond human control, like availability of a particular food source in the 

environment, but also culture is increasingly considered to be a strong driver of 

selection in humans [43]. One famous example how diet shaped the human genome is 

the co-evolution of diary farming and adult lactose tolerance. The ability to digest 

lactose disappears after early childhood in most humans; however in some 

populations the lactase enzyme that is essential to break down lactose stays active in 

adulthood. Different regulatory variants nearby the lactase gene are responsible for 

the lactose tolerance in northern Europe and African pastoralist populations, 

demonstrating convergent adaptation to drinking milk. Dairying created the selection 

pressure that drove alleles for lactose tolerance to high frequency in these populations 

[44]. In chapter 5 we show that derived alleles in NPY1R and NPY5R are associated 

with lower carbohydrate intake. One of these variants shows the hallmark of recent 

selection in Europe [45]. Our data suggest that lower carbohydrate intake gave a 

survival advantage in Europeans since the agricultural revolution. This advantage 

could lie in overall health benefits, because lower carbohydrate intake, consuming 

meals with a low GI and GL, and/or moderate alcohol consumption, are known to be 

associated with a lower risk of chronic diseases. 

It is likely that there are many more dietary habits that caused allele frequency 

shifts in populations, yet to be identified. Recent genome-wide scans for signatures of 

selection in several human populations pinpointed towards multiple genes that have 

been favored by recent natural selection [31,32]. The great challenge is now to find 

the connection between genotype, phenotype and drivers of selection like diet and 

other mechanisms underlying obesity and T2D [43]. 

 

Polygenic adaptation 

As I stated earlier, obesity and T2D are traits that are affected by a large number of 

loci [33]. Most methods to find signatures of selection focus on models of selection at 

one locus. This is in contrast to classical models of natural and quantitative genetics, 

where it is assumed that most traits are influenced by variation at many loci [46]. If 
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the environment shifts so that there is a new phenotypic optimum, then the population 

will adapt by allele frequency shifts at many loci. Once the phenotype in the 

population matches the new optimum, selection will weaken. This means that it may 

be very common for selection to push alleles upwards in frequency but generally not 

to fixation [47]. In principle, this type of process could allow very rapid adaptation, 

yet be difficult to detect using most current population genetic methods. If there was a 

sudden onset of strong selection for or against obesity and/or T2D, a rapid shift in 

average BMI or T2D prevalence could be expected. However, the response to 

selection would be generated by modest allele frequency shifts at many loci. Even 

with strong selection and a strong phenotypic response, standard methods for detected 

selective sweeps would have limited power. This mechanism of polygenic adaptation 

would allow rapid phenotypic adaptation, without necessarily generating any large 

differences in allele frequencies between populations. 

The challenge for the future is to develop methods for studying polygenic 

adaptation, to be able to study whether complex diseases as obesity and T2D truly 

were subjects of selection in the human history. 

 

Future perspective 

How should we study complex diseases, like obesity and T2D from an evolutionary 

point of view? Which research questions should we make and how could we test this. 

For obesity and T2D, I propose the following research questions and approaches: 

1.  Could obesity and T2D characteristics influence reproductive success? In 

chapter 9, we studied whether T2D patients have earlier in life reproductive 

success. Generally, measures of sub- and infertility did not independently 

predict subsequent development of T2D. However, most T2D patients were 

diagnosed after menopause. Therefore, future studies should further 

investigate the association between reduced fertility and premenopausal T2D. 

2. Do T2D and obesity risk alleles have yet-to-be-identified advantageous that 

outweigh their costs?  

3. Do historical legacies account for disease susceptibility in humans? Or do 

novel environmental factors mainly contribute to the traits? 

4. Did different human societies adapt to different diets? And if different human 

populations are genetically adapted to different dietary patterns; can the food 
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guide pyramid and the food balance wheel, which suggests optimal daily 

nutrition guidelines for each food category, be applied to all human 

populations? The African continent contains the highest amount of genetic, 

phenotypic, cultural, and linguistic diversity in the world [37,48]. African 

populations have distinct diets and lifestyle, including hunter-gatherers, 

pastoralists, agriculturalists, and agro-pastoralists. They likely have 

experienced local adaptation and have population or region-specific genetic 

variation. Therefore, African populations are very suitable for studying how 

the human genome has been shaped by evolutionary processes, like diet. More 

research on diet and human evolution should be done in Africans population. 
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The incidence of type 2 diabetes (T2D) is rising rapidly worldwide and there are 

already more than 180 million diabetic subjects. T2D risk factors include ethnic 

background, age, hypertension, overweight, increased abdominal fat, and lack of 

physical exercise. Obesity is considered to be the most important risk factor for T2D 

and the main one driving the current epidemic as 90% of T2D patients are obese. 

Worldwide obesity has also reached epidemic proportions, with 300 million adults 

classified as clinically obese. T2D and obesity are multifactorial disorders in which 

both genetic and non-genetic (environmental and lifestyle) factors play a role. In the 

present thesis we focused on (I) evaluating alternative methods to find candidate 

genes for T2D and obesity, (II) studying genetic and environmental risk factors for 

T2D and obesity, and (III) studying the origin of the high prevalence of T2D and 

obesity in modern societies. 

Chapter 2 is a review that explores the genes recently identified for T2D and 

obesity by genome-wide association (GWA) studies and evaluates their functions in 

an effort to determine whether there is any support for the hypothesis that T2D and 

obesity share some underlying mechanisms. By evaluating the function of currently 

known risk alleles it seems that the susceptibility genes for obesity are involved at the 

start of the trait (energy imbalance) and those for T2D at a later stage of the disease 

(beta-cell defect). It is suggested that the shared genetic effect may be smaller than we 

thought or obesity could simply be a non-genetic risk factor for T2D because it 

provokes insulin resistance. Discovering more obesity and T2D genes will provide a 

broader insight into the shared disease pathology.  

Part I of the thesis discusses alternative gene-hunting strategies for T2D and 

obesity. Data from linkage studies do not directly indicate the gene of interest and 

identifying a potential gene is usually rather difficult as linkage intervals can contain 

dozens to hundreds of candidate genes. To identify the gene of interest, a dense map 

of single nucleotide polymorphisms (SNPs) encompassing the candidate region needs 

to be tested for genetic association in very large case-control studies. An attractive 

alternative strategy is to first prioritize the positional candidate genes based on the 

function of the individual genes using bioinformatics tools. In chapter 3, all 

published genome scans for T2D and obesity (till 2006) were compared and five 

overlapping chromosomal regions for both diseases (encompassing 612 candidate 

genes) were identified. By analyzing these five susceptibility loci for T2D and obesity 

using six freely available bioinformatics tools for disease gene identification, 27 
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functional candidate genes were pinpointed that are involved in eating behaviour, 

metabolism and inflammation. These genes may reveal a molecular link between the 

two disorders. Although these bioinformatics tools for disease gene prioritisation are 

attractive, they still suffer from several limitations. As network and pathway tools 

make use of functional information from gene and protein databases, they are biased 

towards the well-studied genes, interactions and pathways. This is clearly shown in 

chapter 4.1, where we evaluated whether pathway classification analysis can help 

prioritize the biological pathways most likely to be involved in the disease etiology. 

Instead of focusing on SNPs with the highest statistical significance, we took 

advantage of prior biological information and tried to detect overrepresented 

pathways in genome-wide association (GWA) data. We show multiple differences in 

outcome between pathway tools analyzing the same dataset. Furthermore, analyzing 

randomly selected SNPs always results in significantly overrepresented pathways, 

large pathways have a higher chance of becoming statistically significant and the 

bioinformatics tools used in this study are biased towards detecting well-defined 

pathways. In chapter 4.2, we additionally describe several problems that we 

encountered using these pathway methods.  We would like to emphasize that the 

limitations of pathway-based analyses in GWA data should be kept in mind when 

drawing conclusions based on overrepresented pathways. 

Part II of the thesis investigates genetic and lifestyle risk factors for obesity 

and T2D. Obesity is the result of an imbalance between energy intake and energy 

expenditure. There is a large variation in caloric intake and macronutrient preference 

between individuals and between ethnic groups, and these food intake patterns show a 

strong heritability. One major player in energy homeostasis is the appetite-stimulating 

hormone neuropeptide Y, in which the stimulatory capacity may be mediated by the 

neuropeptide Y receptors 1, 2 and 5 (NPY1R, NPY2R and NPY5R). In chapter 5 we 

assessed the association between variants in the NPY1R, NPY2R and NPY5R genes 

and nutrient intake in a cross-sectional, single-centre study of 400 older men. Our data 

show that derived alleles in NPY1R and NPY5R are associated with lower 

carbohydrate intake, mainly because of a lower consumption of mono- and 

disaccharides. We also show that carriers of these derived alleles, on average, 

consume meals with a lower glycaemia index and glycaemia load and have higher 

alcohol consumption. One of these variants shows the hallmark of recent selection in 

Europe. Our data suggest that lower carbohydrate intake, consuming meals with a low 
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glycaemia index and glycaemia load, and/or higher alcohol consumption, gave a 

survival advantage in Europeans since the agricultural revolution. This advantage 

could lie in overall health benefits, because lower carbohydrate intake, consuming 

meals with a low glycaemia index and glycaemia load, and/or higher alcohol 

consumption, are known to be associated with a lower risk of chronic diseases.  

Recently, GWA studies have identified several common loci for obesity. In 

chapter 6 we investigated whether the recently reported obesity loci are more 

specifically associated with abdominal obesity—an important contributor to increased 

morbidity and mortality, independent of the total amount of body fat. Additionally, 

we explored the effect of variation in the obesity susceptibility loci on dietary energy 

and macronutrient intakes in 1700 healthy Dutch women. Our data show that the 

obesity susceptibility loci are not specifically associated with abdominal adiposity, 

but merely represent loci associated with general obesity. We did find an association 

with dietary macronutrient intake and several obesity susceptibility loci. SNPs in or 

near SH2B1, KCTD15, and NEGR1 were associated with total fat, saturated, and 

monounsaturated fat intakes. SNPs in or near KCTD15 and MTCH2 were associated 

with total carbohydrate, mono- and disaccharide, and polysaccharide intakes. These 

results suggest that the new obesity loci might play a role in the choice and preference 

of specific macronutrients.  

Another lifestyle factor that is linked to T2D risk is parity. Having 4 or more 

children is found to be associated with increased T2D risk in women. It has been 

suggested that the observed associations are mediated by body mass as child bearing 

is associated with the increase in body mass. However, the degree to which waist and 

BMI affect the association between parity and T2D remains unclear. Apart from the 

association with T2D through body mass, another possible biological mechanism for 

the association between parity and T2D risk in women could be through reduced 

oestrogen exposure. It has been hypothesized that pregnancy permanently resets 

ovarian function, leading to a reduced lifetime exposure to oestrogen. As the first 

pregnancy is the start of this change in level of exposure to estrogens, age at first full-

term pregnancy is a good marker for the duration of this reduced exposure. Therefore, 

in chapter 7, we assessed the association between both parity and age at first full-

term pregnancy with the risk of T2D in the large Prospect-EPIC cohort comprising of 

17,357 Dutch women. Our results show that the association of parity and T2D risk 

was found to be mediated by increased body mass. We show an increased weight, 
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BMI and waist with each additional child. Furthermore, age at first full-term 

pregnancy was inversely associated with the subsequent development of T2D. Body 

mass attenuate the association, but could not fully account for it. We argue that a 

possible underlying mechanism could be that young age at first full-term pregnancy 

leads to long-term reduced estrogens exposure subsequently leading to reduced !-cell 

function. 

Part III of the thesis studies the origin of the high prevalence of T2D and 

obesity in modern societies. Although T2D is a severe medical condition, it is quite 

common. One interesting question is why the phenotypes of T2D and obesity, the 

main risk factor for T2D, are so common despite their negative effects on human 

health. Like all species, Homo sapiens has been shaped by evolutionary processes and 

the fact that so many people are susceptible to developing T2D and obesity suggests 

that genes underlying these traits may have been favoured by the process of natural 

selection. There are several theories that try to explain the genetic basis of T2D and 

obesity of which ‘the thrifty gene hypothesis’ is most known. In brief, in this theory it 

is hypothesized that the T2D phenotype gives a survival advantage during periods of 

famine, but is maladaptive in societies with high food abundance. In chapter 8 we 

investigated whether the known genetic variants underlying obesity and T2D have 

indeed been favoured by positive natural selection using genome-wide SNP data from 

several European populations, as is suggested in the ‘thrifty gene hypothesis’ and 

other theories. When a genetic variant is under positive selection, it increases in 

frequency in a population and this leaves a ‘signature’ or pattern in the human 

genome. These signatures can be identified by comparison with the background 

distribution of genetic variation in humans, which is generally argued to have evolved 

largely under neutrality. In genome-wide genetic data from Europeans, we did not 

find signs of positive selection around the currently known T2D and obesity risk 

alleles and our findings therefore do not support the theory that these alleles had a 

survival advantage in the recent (<30,000 years ago) past. However, our data was not 

complete enough to reject the theory either. First of all, ‘thrifty genes’ that cause 

susceptibility for T2D and obesity could have reached fixation in the population (i.e. 

all individuals of the population carry the same risk allele), and they therefore cannot 

be picked up by GWAS using case and control data. Older selection pressure could 

also have acted on these variants so that their signature is no longer visible in the 

genome. Secondly, although the GWAS have improved our understanding of the 
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genetic basis of T2D and obesity, we can still only explain around 10% of the genetic 

risk for these traits. Thus, the majority of T2D and obesity loci are still unknown and 

cannot be tested for signatures of selection. However, what we did find was that some 

risk variants for T2D and obesity show suggestive signs of negative selection in our 

European data, indicating that the risk allele for the traits had a survival disadvantage 

in Europeans. 

Compared to all other populations with a modern lifestyle, the age-adjusted 

T2D prevalence in populations of European ancestry is relatively low. It has been 

proposed that these differences in T2D susceptibility between European and non-

European populations are the genetic and evolutionary consequences of geographical 

differences in food history.  Historical data show that, starting from about 1600, 

European societies became capable to efficiently intervene famine, by redistributing 

over-abundance grain to areas of food scarcity. Jared Diamond suggested that as a 

result, Europeans should have undergone an epidemic in T2D starting several 

centuries before present as a result of the new reliability of sufficient food supplies, 

and eliminated the most T2D-prone genotypes by processes of natural selection. 

Natural selection works through differential reproductive success rather than simple 

differential survival. Because fertility is a driving force behind evolution, reduced 

fertility or infertility could be one of the underlying causes that decreased the T2D 

genotype frequencies in Europeans, especially because T2D is a late-onset disease 

and therefore not directly acting on survival. Thus far, it is unknown whether sub- or 

infertility is associated with future T2D risk. Therefore, in chapter 9, we assessed the 

association between measures of sub- and infertility and T2D risk in the Prospect 

cohort comprising 17,357 Dutch women. Our data show that general measures of sub- 

and infertility are not associated with T2D later in life. However, most T2D patients 

were diagnosed after menopause. Future studies should further investigate the 

association between reduced infertility and premenopausal T2D, especially as the 

developing epidemic of obesity has seen a substantial reduction in the age of onset of 

T2D and its emergence in women of childbearing age.  

In the discussion on anthropometric and physical characteristics of human 

population in relation to food and disease, historical data is important. However, 

before the 19th century there is very little concrete information on which to base 

conclusions on heights and especially weight and other human features. In chapter 10 

we investigated a list, that was put together in 1766 in ‘s-Hertogenbosch, with names 
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and descriptions of 319 men and women that belonged to the gang of Calotte. This list 

is unique in respect of the physical characteristics provided for each person on the list, 

which included height, descriptions of body posture and fat distribution, facial 

condition (smooth-pockmarked) and a detailed description of physical deformities by 

which the persons could be identified. Based on descriptions of these gang members 

we could do multiple interesting observations and study relations between different 

body characteristics. Among the members of the gang of Calotte, body weight was 

not normally distributed (just as it is nowadays). Although, the majority of the people 

was described as average of weight, more individuals were fatter then average 

compared to thinner then average. It is remarkably that a part of the study population 

was described as ‘fat’ (17.2%) or ‘very fat’ (28.8%). Also other body characteristics 

concerning fat were mentioned, such as ’a huge belly’, ‘fat legs’ or ‘a round and 

plump face’. It suggest that a part of the Dutch population was overweight long before 

the current obesity epidemic, even in less prosperous time and even among 

individuals from the lowest economical classes. 

Chapter 11 discusses human obesity and T2D from an evolutionary 

perspective as a truly full explanation of a complex disease needs both a proximate 

explanation of how things work and a complementary evolutionary explanation of 

why it got that way. 
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In de hele wereld stijgt het aantal mensen met type 2 diabetes (T2D) snel en 

op dit moment zijn er al meer dan 180 miljoen mensen met dit type suikerziekte. 

Risicofactoren voor T2D zijn onder meer een bepaalde etnische achtergrond, leeftijd 

(vandaar de traditionele naam ‘ouderdomssuiker’), hoge bloeddruk, overgewicht, 

abdominaal vet (buikvet), en te weinig lichaamsbeweging. Van deze risicofactoren is 

obesitas de belangrijkste:  90% van de T2D patiënten is zwaarlijvig. Ook obesitas 

heeft wereldwijd epidemische proporties aangenomen. Op dit moment zijn er 300 

miljoen volwassenen die als klinisch zwaarlijvig kunnen worden beschouwd. T2D en 

obesitas zijn multifactoriële aandoeningen waarbij zowel genetische en niet-

genetische (milieu-en leefstijl) factoren een rol spelen. In dit proefschrift richten we 

ons op de evaluatie van alternatieve methoden om kandidaatgenen te vinden voor 

T2D en obesitas (deel I, hoofdstuk 3-4), onderzoek naar genetische en niet-genetische 

risicofactoren voor T2D en obesitas (deel II, hoofdstuk 5-7), en de vraag naar de 

oorsprong van de hoge prevalentie van T2D en obesitas in de moderne maatschappij 

(deel III, hoofdstuk 8-11). 

Hoofdstuk 2 is een overzichtsartikel waarin we alle genen beschrijven die zijn 

geassocieerd met T2D en obesitas in genoomwijde associatie studies. We evalueren 

de biologische functie van deze genen om te kijken of er onderliggende biologische 

mechanismen zijn die zowel bij het ontstaan van obesitas als van T2D een rol spelen. 

Bij de evaluatie van de functie van de nu bekende risico-allelen lijkt het erop dat de 

reeds bekende obesitasgenen betrokken zijn bij het begin van de aandoening 

(verstoring van de energiebalans) en T2D genen in een later stadium (! cel defect). 

Dit doet vermoeden dat het gedeelde genetische effect kleiner is dan oorspronkelijk 

werd gedacht. Het kan ook zijn dat obesitas een niet-genetische risicofactor voor T2D 

is omdat het insulineresistentie veroorzaakt. De identificatie van een groter aantal 

obesitas en T2D genen kan dus een beter inzicht geven in de gedeelde ziekte 

pathologie. 

In deel I van dit proefschrift (hoofdstuk 3 en 4) onderzoeken en evalueren we 

alternatieve strategieën om genen voor obesitas en type 2 diabetes te identificeren. 

Data van linkage studies wijzen niet direct naar kandidaatgenen en de identificatie 

van een mogelijk gen is meestal erg moeilijk omdat linkage intervallen wel honderden 

kandidaatgenen kunnen bevatten. Om een kandidaatgen te identificeren moeten er 

veel SNPs (genetische variaties met een basepaar verschil) worden getest voor 

associatie met een ziekte in een groot aantal patiënten en controles. Een interessante 
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alternatieve strategie is om kandidaatgenen te identificeren op basis van biologische 

functie met behulp van diverse bioinformatica programma’s.  

In hoofdstuk 3 hebben we alle tot en met 2006 gepubliceerde genoomscans 

voor obesitas en T2D met elkaar vergeleken en konden zo vijf regio’s identificeren 

die voor beide ziekten overlappen. Deze vijf regio’s bevatten samen 612 

kandidaatgenen. Door deze regio’s nader te bestuderen door middel van programma’s 

om kandidaatgenen te vinden, konden we 27 genen in deze regio’s prioriteren die 

betrokken zijn bij eetgedrag, metabolisme en inflammatie. Deze genen kunnen ons 

meer vertellen over de moleculaire link tussen de twee aandoeningen.  

Het gebruik van netwerk- en pathway programma’s om kandidaatgenen te vinden is 

een goede, maar helaas ook beperkte methode, omdat deze programma’s gebruik 

maken van functionele informatie over genen en eiwitdatabases en daarom vooral 

betrekking hebben op reeds uitvoerig bestudeerde genen, interacties en netwerken.  

  Dit wordt verder uitgewerkt in hoofdstuk 4.1, waarin we onderzoeken of en 

zo ja welke netwerkclassificatie-analyses kunnen helpen bij het vinden van 

biologische interacties die mogelijk betrokken zijn bij de etiologie van een ziekte. In 

plaats van ons te concentreren op de SNPs met de meest significante associaties, 

maakten we gebruik van al bekende biologische informatie en probeerden we de 

biologische netwerken te vinden die relatief het meest voorkomen in genoomwijde 

associatie-data. We laten zien dat het gebruik van verschillende netwerkclassificatie 

programma’s verschillende uitkomsten geven. Bovendien blijkt dat random 

geselecteerde SNPs altijd in een overgerepresenteerd netwerk resulteren, en dat 

grotere netwerken een grotere kans hebben om significant overgerepresenteerd te zijn. 

De bioinformaticaprogramma’s die we gebruikten in ons onderzoek bleken de neiging 

te hebben om goed gedefinieerde netwerken te detecteren. Verdere problemen die we 

tegenkwamen toen we deze netwerkprogramma’s gebruikten worden beschreven in 

hoofdstuk 4.2. We willen benadrukken dat bij het trekken van conclusies op basis 

van deze netwerkprogramma’s rekening gehouden moet worden met de beperkingen 

ervan. 

In deel II van dit proefschrift onderzoeken we de genetische en de niet-

genetische risicofactoren voor obesitas en T2D. Obesitas wordt veroorzaakt door een 

verstoorde balans tussen energie-inname en energieverbruik. Er is een grote variatie 

in de calorie-inname en macronutriënten-inname tussen individuen en tussen 

verschillende etnische groepen. Deze patronen van voedingsinname hebben een grote 
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erfelijke component. Het hormoon neuropeptide Y speelt een belangrijke rol in de 

energiebalans omdat dit hormoon het hongergevoel stimuleert. Dit stimulerende effect 

gaat waarschijnlijk via de Neuropeptide receptor 1, 2 en 5 (NPY1R, NPY2R en 

NPY5R).  

In hoofdstuk 5 onderzoeken we de associatie tussen variaties in deze NPYR 

genen en nutriënt inname in een populatie van 400 oudere mannen. Onze data laat 

zien dat recentelijk ontstane allelen in NPY1R en NPY5R geassocieerd zijn met een 

lagere kolydrateninname, met name met een lagere mono- en disaccharide-inname. 

We laten ook zien dat dragers van deze genvariaties over het algemeen maaltijden 

consumeren met een lagere glycemische index. Ze hebben wel een hogere 

alcoholconsumptie. Een van deze variaties bevat een patroon van natuurlijke selectie 

in Europa. Onze data suggereren dat voor Europeanen vanaf de ontwikkeling van de 

landbouw het eten van minder koolhydraten en het drinken van meer alcohol een 

overlevingsvoordeel kan hebben opgeleverd, omdat dit consumptiepatroon is 

geassocieerd is met een lager risico op bepaalde chronische ziekten, zoals uit eerdere 

studies blijkt. 

In de afgelopen tijd hebben genoomwijde associatiestudies onlangs meerdere 

veelvoorkomende genetische variaties gevonden die geassocieerd zijn met obesitas. In 

hoofdstuk 6 onderzoeken we of deze variaties ook specifiek geassocieerd zijn met 

abdominaal vet (buikvet). Onafhankelijk van iemands totale lichaamsvet, geeft 

buikvet een verhoogd risico op ziekte en voortijdige sterfte. Ook bestuderen we het 

effect van deze genetische variaties op de totale voedingsinname en op de 

macronutriënteninname in 1700 gezonde Nederlandse vrouwen. Onze data laten zien 

dat de obesitasgenen niet specifiek geassocieerd zijn met abdominaal vet, maar wel 

met obesitas in het algemeen. We vonden een verband tussen macronutriënteninname 

en genetische variaties in obesitasgenen. Variaties in de genen SH2B1, KCTD15 en 

NEGR1 waren geassocieerd met respectievelijk de inname van vet algemeen, van 

verzadigd vet en van enkelvoudig verzadigd vet. Genetische variaties in KCTD15 en 

MTCH2 waren geassocieerd met respectievelijk de inname van koolhydraten, van 

enkelvoudige suikers en van meervoudige suikers. Dit resultaat geeft aan dat de recent 

gevonden obesitasgenen een rol kunnen spelen bij de keuze en voorkeur van 

specifieke macronutriënten.  

Een van de andere leefstijlfactoren die worden gelinkt aan T2D is pariteit, dat 

wil zeggen het aantal kinderen dat iemand krijgt. Vrouwen met vier of meer kinderen 
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hebben een verhoogde kans op T2D. Omdat het baren van kinderen is geassocieerd 

met gewichtstoename, is er geopperd dat hier de oorzaak ligt, maar in hoeverre BMI 

en tailleomtrek de associatie tussen pariteit en T2D beïnvloeden is tot nu toe 

onduidelijk. Een andere theorie die deze associatie mogelijk verklaart is dat bij de 

eerste zwangerschap de ovarium functie permanent wordt ‘gereset’, hetgeen kan 

leiden tot een levenslang verlaagde blootstelling aan oestrogeen. De leeftijd van een 

vrouw bij de geboorte van haar eerste kind is dan een goede marker van de duur van 

deze verlaagde blootstelling. 

Uitgaande van deze hypothese onderzoeken we in hoofdstuk 7 de associatie 

met zowel pariteit als de leeftijd van de eerste voldragen zwangerschap met het risico 

op T2D in 17.357 Nederlandse vrouwen van het Prospect-EPIC cohort. Onze 

resultaten laten zien dat de associatie van pariteit met T2D gemedieerd wordt door 

verhoogd lichaamsgewicht. Elk extra kind zorgt voor een toename in gewicht, BMI 

en tailleomtrek. Ook vonden we dat de leeftijd van de eerste zwangerschap 

omgekeerd geassocieerd was met het risico op T2D. Deze associatie was deels 

gemedieerd door lichaamsgewicht, maar het effect kon hier niet volledig door 

verklaard worden. Een mogelijk mechanisme kan zijn dat een jonge leeftijd van de 

eerste zwangerschap leidt tot een langdurig verminderde blootstelling aan oestrogeen 

en dat dit weer een verlaagde !-cel functie veroorzaakt. 

In deel III van dit proefschrift bestuderen we de oorsprong van de hoge 

prevalentie van obesitas en T2D in de moderne maatschappij. Waarom komen deze 

aandoeningen zo veel voor, terwijl ze een negatieve effect hebben op de algemene 

gezondheid?  De mens is immers gevormd via evolutionaire processen en het feit dat 

zo veel mensen een natuurlijke aanleg hebben om obesitas en T2D te krijgen lijkt 

daarom op te wijzen dat de genen die daarbij betrokken zijn begunstigd zijn door 

processen van natuurlijke selectie. Er zijn verschillende theorieën die de sterke 

genetische basis van obesitas en T2D proberen te verklaren en de bekendste daarvan 

is de ‘zuinige genen theorie’ (in het Engels: ‘thrifty genes hypothesis’). De theorie 

houdt in het kort in dat het T2D fenotype in tijden van ontberingen en hongersnood 

een overlevingsvoordeel geeft, maar dat het fenotype nadelig is in een samenleving 

met een overvloed aan voedsel. 

  In hoofdstuk 8 kijken we of bekende genen voor obesitas en T2D zijn 

bevoordeeld door positieve natuurlijk selectie, zoals met name gesuggereerd in the 

‘zuinige genen theorie’. We onderzochten dit in genoomwijde SNP data sets van 
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verschillende Europese populaties. Als een genetische variatie onder positieve selectie 

staat, dan stijgt de frequentie van deze variant in de populatie en dit laat een specifiek 

patroon achter in het genoom van de mens. Deze patronen kunnen worden 

geïdentificeerd door ze te vergelijken met de distributie van genetische variatie in de 

mens, omdat over het algemeen wordt aangenomen dat dit voornamelijk is 

geëvolueerd onder een neutraal model.  

In genoomwijde genetische data van Europeanen konden we geen bewijs 

vinden van positieve natuurlijke selectie op obesitas en T2D risicogenen. Dit laat zien 

dat in de afgelopen 30.000 jaar deze allelen geen substantieel overlevingsvoordeel 

hebben gehad. Onze data waren echter niet compleet genoeg om de theorieën die 

uitgaan van evolutionair voordeel te verwerpen. Het is mogelijk dat de ‘zuinige 

genen’ al gefixeerd zijn in de populatie (dit betekent dat alle individuen uit een 

populatie hetzelfde risico-allel hebben), waardoor ze niet kunnen worden gevonden 

door het vergelijken van patiënten met een controle groep van niet-patiënten. Daar 

komt bij dat de nu bekende obesitas en T2D genen slechts 10% van het genetische 

risico op deze aandoeningen verklaren. Het merendeel van de obesitas en T2D genen 

is dus onbekend en kan niet getest worden voor signalen van selectie. Wat we wel 

zagen is dat een aantal risico genen een (zwak) signaal van negatieve selectie laten 

zien in Europeanen. Dit kan betekenen dat risicovarianten voor obesitas en T2D wel 

een negatief effect hebben gehad op de overleving van Europeanen.  

In vergelijking met andere populaties met een moderne levensstijl, is de 

leeftijdsgecorrigeerde prevalentie van T2D in Europeanen relatief laag. Er wordt 

geopperd dat dit veroorzaakt wordt door de genetische en evolutionaire gevolgen van 

historische verschillen in de voedselvoorziening tussen Europeanen en andere 

populaties. Historische gegevens laten zien dat in de Europese samenlevingen vanaf 

ongeveer 1600 langdurige hongersnoden zeldzaam waren. Jared Diamond heeft de 

hypothese geformuleerd dat daardoor de epidemie van T2D in Europa al enkele 

eeuwen geleden is begonnen, en dat hierdoor de sterkste T2D genen in Europa door 

natuurlijke selectie zijn geëlimineerd.  

Natuurlijke selectie werkt via verschillen in overleving, maar nog meer via 

verschillen in voortplantingssucces. Het zou dus  mogelijk kunnen zijn dat 

verminderde vruchtbaarheid of onvruchtbaarheid de onderliggende oorzaak is voor de 

vermindering van T2D fenotypes in Europeanen, vooral omdat T2D een ziekte is pas 

later in het leven opspeelt en daarom niet direct een effect heeft op iemands 
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voortplantingssucces. Het is nog onbekend of verminderde vruchtbaarheid of 

onvruchtbaarheid geassocieerd is met het risico op T2D op latere leeftijd. 

Daarom onderzoeken we in hoofdstuk 9 of we een associatie konden vinden 

tussen vruchtbaarheid en een later risico op T2D in 17.357 Nederlandse vrouwen. 

Onze data laten een dergelijke associatie niet zien, maar daarbij moet aangetekend 

worden dat meeste vrouwen met T2D in ons onderzoeksbestand de diagnose T2D pas 

kregen na de menopauze. In vervolgstudies zou beter gekeken moeten worden naar de 

associatie van verminderde vruchtbaarheid met voor de menopauze gediagnosticeerde 

T2D. 

Voor de discussie over de ontwikkeling van antropometrische en fysieke 

kenmerken van menselijke populatie in relatie tot voeding en ziektes zijn historische 

gegevens belangrijk. Vóór de negentiende eeuw is er echter weinig concrete 

informatie voorhanden die geschikt is om conclusies over lengte, gewicht en andere 

menselijke uiterlijke kenmerken op te baseren. Voor eerdere tijden moeten we 

genoegen nemen met toevallige vondsten.  

In hoofdstuk 10 bestuderen we een dergelijke vondst, een lijst van 317 

mannen en vrouwen, die behoorden tot de zogenaamde ‘bende van Calotte’, een 

criminele groepering afkomstig uit de armste bevolking, waarvan de leiders in 1766 

berecht werden in ‘s-Hertogenbosch, De lijst is bijzonder omdat het voor elke persoon 

behalve naam en leeftijd ook de lengte en een typering van het postuur gegeven 

wordt, aangevuld met andere uiterlijke kenmerken. Aan de hand daarvan  konden we 

verschillende interessante observaties doen en relaties tussen verschillende 

lichamelijke kenmerken binnen deze groep vaststellen. 

Opvallend was dat de statistische verdeling van lichaamsgewicht niet normaal 

was, evenmin als dat het geval is in de moderne tijd. Het grootste deel van de 

personen werd  omschreven als ‘gemiddeld van gewicht’, maar van de overigen 

waren er veel  meer dik dan dun. Het is opmerkelijk dat 17,2 % van deze mensen 

werd getypeerd als ‘dik’ en 28,8% zelfs als ‘heel dik’, en dat er kenmerken gegeven 

werden als ‘een enorme buik’, ‘dikke benen’ of ‘een rond en pafferig gezicht’. Dit 

kan erop duiden dat een deel van de Nederlandse populatie al kampte met 

overgewicht lang voor de huidige obesitasepidemie, zelfs onder mensen van de 

laagste economische klasse en in een economisch moeilijke tijd. 

In hoofdstuk 11, tenslotte, worden obesitas en T2D besproken vanuit een 

evolutionair perspectief. Een volledige verklaring van complexe ziektes vergt immers 
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zowel een uitleg van de directe oorzaak, die de vraag beantwoordt hoe iets in zijn 

werk gaat, als een aanvullende evolutionaire verklaring, die ingaat op de vraag 

waarom het zo in zijn werk in kan zijn gegaan. 

 



 

 

 

 

 

Dankwoord  
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Als kind van ouders die altijd maar bezig waren met hun proefschrift schrijven, 

begreep ik dat promoveren wel iets heel erg verschrikkelijks moest zijn. Ik nam me 

destijds dus voor om maar zo vroeg mogelijk met mijn proefschrift te beginnen: dan 

was ik er maar alvast vanaf. Later kwam ik erachter dat promoveren een keuze is, dus 

dat was een grote opluchting. Helaas kon ik na mijn afstuderen de verleiding toch niet 

weerstaan om verder te gaan in het onderzoek en ook een proefschrift te schrijven. 

Hier is-ie dan. En uiteindelijk viel het toch allemaal best wel mee. Ik ben heel blij met 

het resultaat!  Dit boekje was er natuurlijk niet gekomen zonder de hulp van collega’s 

en steun (en afleiding) van vrienden en familie.  

 

Cisca en Yvonne, ik ben heel blij dat ik mijn promotieonderzoek onder jullie vleugels 

heb kunnen doen. Jullie zijn (allebei op jullie eigen manier) een voorbeeld voor me 

hoe je succesvol kan zijn in de wetenschap. Bedankt, ik heb heel veel van jullie 

geleerd! 

 

Beste Cisca, dankjewel voor al je commentaar en goede ideeën voor mijn onderzoek. 

Je nuchtere houding maakte dat problemen waar ik tegenaan liep na een gesprek met 

jou opeens veel minder erg leken. Dat kon ik altijd goed gebruiken. Ook de fijne 

gesprekken over het vervolg van mijn carrière en je goede raad hierover zijn heel 

belangrijk voor me geweest. Bedankt dat ik een tijdje bij jou en Marten op zolder 

mochten ‘wonen’ in jullie prachtige huis. Ik vond het heel gezellig, vooral de leuke en 

lekkere etentjes en alle gesprekken ’s ochtends aan de keukentafel! 

 

Beste Yvonne, bedankt voor je enthousiasme en het meedenken met alle studies in dit 

proefschrift. Te gek dat je me op het laatste moment toch nog hebt weten te 

overtuigen dat epidemiologie leuk is! Heel erg bedankt ook voor de laatste weken 

waarin je er altijd voor me was en je dag en nacht naast je computer zat te wachten op 

nieuwe hoofdstukken van mijn proefschrift (althans, zo leek het tenminste;)). Zonder 

jou was dit proefschrift vast een stuk dunner geworden! Tenslotte wil ik je graag 

bedanken voor de gesprekken en je interesse toen het allemaal wat minder ging. Dat 

heeft me erg geholpen. 

 

Beste Charlotte de wekelijkse werkbesprekingen waren altijd heel leerzaam en 

gezellig! Je hebt me geleerd om altijd kritisch na te blijven denken over methodologie 
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en dat is erg nuttig gebleken voor mijn onderzoek. Bedankt voor alle leuke 

brainstormsessies over genetica en methodes, je hulp bij het oplossen van de vele 

problemen waar we tijdens dit project tegenaan liepen en de goede gesprekken over 

van alles en nog wat. Je hebt een belangrijke bijdrage geleverd aan de meeste 

hoofdstukken van dit proefschrift. Bedankt, ik heb er heel veel aan gehad! 

 

Het verzamelen, genotyperen en analyseren van de EPIC-NL samples nam een groot 

deel van mijn AIOproject in beslag. Ook al valt er in dit proefschrift helaas niet veel 

te over lezen (maar wordt vervolgd..), toch wil ik iedereen graag heel hartelijk 

bedanken die heeft bijgedragen aan deze enorme kluif. Allereerst Florianne, bedankt 

voor je hulp bij al het monnikenwerk van EPIC-NL! Veel succes nog met de laatste 

loodjes van je eigen proefschrift. Samples lichten en verzamelen is nog niet zo 

gemakkelijk als het lijkt en ik ben daarom erg blij dat ik hulp heb gehad van Joline, 

Ivonne, Anita, Heleen, Jens, José, Marlies, Robert-Jan, Jan, Martijn, Sandra, Bernard 

en Suzanne bij het achterna bellen van huisartsen voor het valideren van de T2D 

patiënten, het lichten van de samples in de krochten van het RIVM en databeheer en 

dataopslag van de samples. Iedereen bedankt!  

Beste Pieter, Elvira en Mathieu, jullie verdienen echt een ereplaats in dit dankwoord! 

Jullie zijn fantastische collega’s en ik ben heel blij dat ik met jullie heb mogen 

werken. Toen we met honderden verprutste DNA samples in Groningen aankwamen, 

durfde ik er bijna niet meer in te geloven dat het nog goed zou komen met de 

experimenten. Gelukkig bleek al gauw dat we bij jullie in goede handen waren: jullie 

hadden heel veel kennis van zaken, dachten mee en hadden voor elk probleem wel 

een oplossing. Bedankt voor jullie waardevolle bijdrage aan het EPIC-NL project! 

Lieve Elvira, je enthousiasme over de Illumina, de Beagle, Hawaï en heel veel andere 

dingen waren aanstekelijk en je stond altijd klaar om ergens mee te helpen. Wat 

ontzettend erg dat je er niet meer bent.  

Beste Soesma en Elinda, ook jullie wil ik graag bedanken voor alle hulp bij de 

Illumina experimenten. Dear Asia and Gosia, thank you for showing me how to 

handle the large Illumina dataset.  Beste Paul, dankjewel voor je hulp en expertise bij 

het opschonen, analyseren en interpreteren van de EPIC-NL data. Heel fijn dat je ik 

mede dankzij jou nu ook betrokken ben bij de T2D meta-analyse. Daar ben ik echt 

heel erg blij mee! Beste Jessica, geweldig dat ik er de laatste maanden zo’n fijne 
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collega bij kreeg om me te helpen bij de EPIC QC en alle analyses. Bas, bedankt voor 

de fijne samenwerking, het was gezellig. 

 

Het onderzoek in dit proefschrift maakte deel uit van het IOP Genomics project en ik 

wil graag iedereen bedanken die hierbij betrokken is geweest. Beste Prof. Gert-Jan 

van Ommen en leden van de begeleidingscommissie, dankjewel voor jullie ideeën en 

suggesties voor het onderzoek. Beste Tonnie en Annelies, bedankt voor alle 

praktische hulp bij het project. Beste Marten, Jana, Marcel, Timon, Sander, Yanti, 

Wim, Anouk, Marcella, Ellen en Veerle, bedankt voor de fijne samenwerking. Beste 

Marten, ook jou wil ik graag bedanken voor de gastvrijheid toen ik een tijdje bij jou 

en Cisca op zolder ‘woonde’. Ik vond het heel gezellig. Beste Timon, zonder jou had 

ik waarschijnlijk 4 jaar lang promotieonderzoek gedaan over obesitas en type 2 

diabetes zonder iets over het ziekte-aspect te weten. Je bent een wandelende 

encyclopedie en ik ben blij dat ik altijd langs mocht komen en dat je dan ook echt de 

tijd voor me nam om projecten en ideeën te bespreken.  Lieve Jana, wat fijn om in 

Groningen een echte vriendin te hebben waarbij ik altijd welkom was. De gezellige 

etentjes bij jou thuis en alle fijne gesprekken over leuke (en minder leuke dingen) van 

onderzoek en het AIO-zijn en van alles en nog wat heb ik erg gewaardeerd. Ik hoop 

dat we in de toekomst nog vaak over genetica, onderzoek en nog meer kunnen praten.  

 

Lieve flexkamergenootjes: Flip, Simone, Sasha, Jelena, Ester, Ruben, Eric, Kristel, 

Linda, Jacobien, Karen, Anette en Jessica. Het was niet altijd gemakkelijk in Utrecht, 

als left-over-AIO van Cisca, maar dat lag zeker niet aan jullie. Als ik het even niet 

meer zag zitten dan hadden jullie altijd een luisterend oor of kwamen jullie aan zetten 

met lieve kadootjes als een ijsbeer met gedicht of de Sabeti-boekenlegger. Ik zal ook 

altijd met veel plezier terug blijven denken aan de wii-, cocktail-, spontane, 

semispontane, stiekeme, the Hoff-, brainstorm-, koek&zopie-borrels en alle 

(kansloze) experimenten met wodka-brain-jelly, aquasaurussen en het 

droogijszwembad. Bedankt! Mede door jullie ging ik elke dag met plezier naar mijn 

werk. Simone, ‘my family’, snel weer gezellig een bustour doen met naamstickers? 

Hier in Amerika zijn ze er dol op! Flip, dankjewel voor al je fijne programmaatjes. Je 

maakte altijd precies het programma wat ik nodig had. Dat zal ik zeker gaan missen 

en ik moet er hier maar aan geloven om zelf hardcore te gaan programmeren. Sasha, 

heel leuk om samen aan het evolutie project te werken! Je bent vol van positieve 
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energie en dat maakt jou zo’n leuke collega. Ik hoop dat we in de toekomst nog veel 

leuke discussie kunnen voeren over genetica en alles wat daarbij komt kijken. 

 

Beste overige collega’s van de biomedische genetica, Harry, Jackie, Carolien, Carla, 

Berooz, Alienke, Albertine, Rian, Erica, Bart, Magdalena, Wigard, Ivo, Bobby, 

Marianna, Edwin, Roel, Dalila, Martin, Marc, Stephan, Judith, Richard, Monique, 

Jacqueline, Noelline Lude, Frederieke, bedankt voor de fijne samenwerking. Beste 

Carolien, jij bent de spil van de afdeling. Fijn dat je me een beetje onder je hoede hebt 

genomen na het vertrek van Cisca. Bedankt voor alle leuke discussies over 

populatiegenetica en voor je waardevolle bijdrage aan hoofdstuk 5 en 8.  Beste Jackie, 

dankjewel voor het nakijken van alle manuscripten en voor al je goede adviezen over 

van alles en nog wat in het leven.   Beste Lude, bedankt voor alle leuke discussies 

over genetica en je belangrijke bijdrage aan hoofdstuk 3 en 4.  

 

Beste studenten Iris, Dirkjan, Renske, Kristel, Sietske, leuk om jullie te mogen 

begeleiden. Ik vond het erg gezellig en heb ook veel van jullie geleerd! 

 

Werken (en ‘wonen’) in Groningen zou niet half zo leuk geweest zijn zonder alle 

gezellige Groningers. Bedankt aan iedereen die me tijdens mijn verblijf in het hoge 

Noorden uitnodigde voor het eten, de bioscoop, een biertje in de kroeg en/of om te 

blijven logeren: Jana & Peter & Marsha, Noortje & Mathieu, Kike & Reinier, Jihane, 

Agatha, Huub, Eva en iedereen die ik nog ben vergeten. Mede dankzij jullie voelde ik 

me helemaal thuis in Groningen! 

 

Lieve Linde, Anne, Kike en Sanne, wat bijzonder om samen op te groeien !  Lieve 

Linde, we zijn al 21 jaar hartsvriendinnen en van jongs af aan bespreek ik al mijn 

problemen en geheimen als eerste met jou. Urenlang (dagenlang?) hebben we met 

elkaar aan de telefoon gehangen en ik vindt het fijn dat je altijd een luisterend oor 

hebt en gewoon je eigen mening geeft. Ook bedankt voor alle leuke concerten, 

onverwachtse activiteiten en gezellige avondjes.   Lieve Anne, in groep 3 zaten we al 

bij elkaar in de klas en de afgelopen jaren hebben we allebei in het Stratenum 

gewerkt. Fijn om met je over onderzoek, promotiestress, mannen en van alles en nog 

wat te kunnen praten. Linde en Anne, fijn dat jullie naast me staan op 7 oktober: 



!"#$%&&'()

)248 

mocht ik een black-out krijgen dat vertrouw ik erop dat jullie de promotiecommissie 

ondertussen zullen afleiden met een spetterende serenade. 

 

Lieve Michèle, dit proefschrift is er ook een beetje dankzij jou, want zonder jou had 

ik het Stedelijk echt niet overleefd (figuurlijk dan;)). Bedankt voor de goede oude 

vriendschap. Friends 4-ever! 

 

Lieve biologievrienden; Martine, Deborah, Emmalie, Maaike, Simone, Kevin en 

Walter, biologie studeren was dubbel zo leuk omdat jullie mijn studiegenootjes 

waren. Ik zal de fantastische/kansloze/hilarische/dramatische (biologie)feesten PUT-

avonden en weekenden nooit vergeten! Lieve Martine, wat hebben we de afgelopen 

jaren een avonturen beleefd: karnaval in Rio, safari door Kakadou National Parc, 

langlauf-huttentocht in Oslo, snowboardvakanties en niet te vergeten alle stap- en 

hangavondjes in Utrecht. Op en buiten mijn werk ging niet altijd alles over rozen, 

maar als mijn beste vriendin heb je me door veel moeilijke tijden heen gesleept! Ik 

ben blij dat je je droomman/baan gevonden hebt in Olso, maar ik mis je wel. Dear 

Knut, you are the very nice and interesting Norseman-friend I always wanted to meet. 

Take good care of Martine and little !! Lieve Deborah, Emmalie, Maaike en Simone, 

bedankt voor het organiseren van mijn gezellige en zonnige afscheidsfeestje! Ik heb 

ervan genoten en ik ben ook erg blij met mijn boek met foto’s om af en toe bij 

heimwee met een doos tissues doorheen te bladeren. Ook al woon ik nu even iets 

verder weg, toch hoop ik dat er in de toekomst nog veel gezellige ladies-nights gaan 

aankomen. Lieve Kevin, bedankt voor alle gezellige hangavondjes toen we nog 

‘buren’ waren en te gek dat jij en Marije onze getuigen wilden zijn op onze Elvis-

wedding in Las Vegas! 

 

Lieve Allegra-vriendinnen; Heleen, Ilse, Sonja, Ruth & Lies, wat was het fijn om 

jarenlang met jullie in het USKO te zingen. Ik heb onvergetelijke herinneringen aan 

USKO- kampen en concertreizen en de Johannes, de Matthäus en de Hohe Messe zijn 

voor mij onlosmakelijk met jullie verbonden. Bedankt voor alle gezellige Allegra-

avondjes en brunches bij ‘Le Journal’ waar we met elkaar de kleine en grote 

problemen van het leven bespraken. Momenteel zien we elkaar minder vaak (en is er 

wel heel veel testosteron bijgekomen in Allegra), maar jullie zijn nog steeds dierbare 
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vriendinnen. Lieve Heleen, heel grappig dat we in de loop der jaren toch nog zulke 

goede vriendinnen zijn geworden. 

 

Lieve Diva’s (Roos, Marijn, Tiffany, Marijke, Meta, Mees, Sophie, Janneke, Merel, 

Mechel, Judith, Miriam, Melynda, Liesbeth, Jitske, Feike, Marjon, Petra, Sanne, 

Lydia) en Pepijn, wat ga ik jullie ontzettend missen! Ik vond het fantastisch om met 

jullie op het podium te staan en naast jullie voelde ik me een echte Diva! Promoveren 

was niet altijd gemakkelijk, maar na een maandagavondje zingen met Divina kon ik 

er altijd weer helemaal tegenaan. Bedankt voor de mooie muziek en de gezelligheid.  

 

Verder nog bedankt aan alle vrienden en familie die me de afgelopen jaren hebben 

gesteund en gezorgd hebben voor afleiding: Oma, de Elbersen (met name Riet en Jos) 

de van de Pollen (in het bijzonder mijn tantes Alice en Batja), Bouke, Martijn, Floor, 

Michiel, Maud, Karlijn, Sicco, Rob, Tim, Sietse, Stefan, Roelinka, de Kochjes, de 

Schinkels, oud-Uskieten, UBV-ers, de PUTcie, oud-huisgenootjes en iedereen die ik 

nog ben vergeten. Lieve Oma, wat fijn dat ik zo goed met je kan praten over alle 

dingen van het leven, ondanks ons leeftijdsverschil. Lieve Steef en Hannie, dankjewel 

voor jullie hartelijkheid! Er valt altijd iets te bleven met jullie. Heel fijn dat ik mijn 

promotiefeestje bij jullie in het Schillertheater mag vieren. Lieve Sietse, dankjewel 

voor het ontwerpen van de voorkant van mijn boekje. Ik ben er ontzettend blij mee! 

Ook bedankt voor al je praktische hulp bij het vervoeren van spullen en de poes 

tijdens onze verhuizingen. Stefan, ook jij bedankt voor alle goede zorgen voor Molly. 

 

Lieve Ferwerda’s, toen ik verliefd werd op Bart kreeg ik jullie er gratis bij. Met zijn 

allen kunnen jullie enorm druk zijn, maar jullie zijn vooral heel erg hartelijk, 

betrokken en lief! Ik voelde me vanaf de eerste dag welkom in jullie gezin en ik 

waardeer het zeer dat jullie altijd met me mee hebben geleefd, in goede en minder 

goede tijden. Ik ben heel blij dat ik bij zo’n grote gezellige familie mag horen! 

 

Lieve Ed en Lotte, bedankt (in volgorde van belangrijkheid;)) voor de genen en de 

omgevingsfactoren! Jullie zijn er altijd voor me en hebben altijd in me geloofd en ik 

kan me geen betere en lievere ouders voorstellen dan jullie. Ik vind het ook heel leuk 

dat we onze passie en interesse voor de wetenschap delen. De ontelbare keren dat 

jullie me hebben geholpen met het oplossen van praktische problemen, dat jullie 



!"#$%&&'()

)250 

meedachten met dilemma’s en adviezen gaven over van alles en nog wat in het leven 

zijn heel belangrijk voor me geweest. Van jongs af aan hebben jullie me geleerd om 

situaties en problemen van meerdere kanten te bekijken. Dit is zeer waardevol 

gebleken in mijn werk en in het leven. Bedankt, ik hou van jullie. Lieve Lotte, te gek 

dat onze ideeën en goede samenwerking hebben geleid tot hoofdstuk 10 in dit 

proefschrift!  

 

Lieve Lies, bedankt dat je altijd voor me klaar staat! Als we samen zijn is het altijd 

gezellig en ik kan nog net zo met je lachen als vroeger, toen we nog twee kleine 

zusjes waren. Je sarcastische ‘van de Pol’ humor is er alleen maar op vooruit gegaan 

(ook al blijft ‘geen jas aan?’ natuurlijk een klassieker;)). Jij bent de avontuurlijkste 

van ons tweeën en het avontuur heeft je dit keer naar Lyon gebracht. Ik bewonder je 

dat je zo stoer bent er altijd helemaal voor gaat om er weer iets moois van te maken. I 

hope that you, Fabien and little ! will be very happy! Thanks for already spreading 

my genes while I am still busy working on my career. 

 

Allerliefste Bart, wat ben ik blij dat ik je heb gevonden! Promoveren (en veel andere 

dingen in het leven) zijn sindsdien alleen maar leuker geworden. Je passie voor 

biologie en je enthousiasme over de wetenschap zijn aanstekelijk en de leukste 

discussies over mijn onderzoek heb ik met jou gevoerd. Ook heel erg bedankt voor je 

steun, voor al je praktische hulp, voor de lol die we samen hebben en voor je lieve en 

rustige karakter als ik weer eens ergens gestrest over was. Ik heb veel zin in alle 

avonturen die we nog samen gaan beleven. Ik hou van je! 
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Clara Elbers werd op 27 februari 1980 geboren te Utrecht. Ze haalde haar middelbare 

school diploma aan het Stedelijk Gymnasium te Utrecht en in 1999 begon ze met haar 

studie Biologie aan de Universiteit Utrecht. Haar stages liep ze bij de afdeling 

Psychiatrie van het Erasmus Medisch Centrum te Rotterdam en het Institute for Risk 

Assessment Sciences (IRAS) te Utrecht.  

Tijdens haar studie speelde ze cello bij strijkorkest Zoroaster en zong ze bij het 

Utrecht Studenten Koor en Orkest (USKO). Met het USKO toerde ze verschillende 
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onder de supervisie van Prof. Cisca Wijmenga en Prof. Yvonne van der Schouw. Het 

onderzoek wat ze daar deed resulteerde in dit proefschrift.  

Naast het promoveren zong ze de afgelopen jaren in close harmony koor Divina. 

Samen met Divina stond ze op het podium met de succesvolle theater-show ‘nieuwe 

collectie’ en won ze diverse publieksprijzen bij nationale korenfestivals. 

Momenteel werkt ze op de afdeling Genetica in het lab van Prof. Sarah Tishkoff aan 

de University of Pennsylvania. In 2010 kreeg Clara Elbers de NWO Rubicon-subsidie 

toegekend om te onderzoeken hoe verschillende voedingspatronen het menselijk 

genoom in Afrika hebben beïnvloed. 

 

Clara Elbers woont in Philadelphia  samen met Bart Ferwerda. 

 
















