
Residual Replacement Strategies for Krylov Subspace Iterative

Methods for the Convergence of True Residuals

Henk A. van der Vorst � Qiang Ye y

March 1, 1999

Abstract

In this paper, a strategy is proposed for alternative computations of the residual vectors in
Krylov subspace methods, which improves the agreement of the computed residuals and the
true residuals to the level of O(u)kAkkxk. Building on earlier ideas on residual replacement and
on insights in the �nite precision behaviour of the Krylov subspace methods, computable error
bounds are derived for iterations that involve occasionally replacing the computed residuals by
the true residuals, and they are used to monitor the deviation of the two residuals and hence to
select residual replacement steps, so that the recurrence relations for the computed residuals,
which control the convergence of the method, are perturbed within safe bounds. Numerical
examples are presented to demonstrate the e�ectiveness of this new residual replacement scheme.

1 Introduction

Krylov subspace iterative methods for solving a large linear system Ax = b typically consist of
iterations that recursively update approximate solutions xn and the corresponding residual vectors
rn (= b� Axn). They can be written in a general form as follows.

Algorithm 1. Template for Krylov subspace Method:

Input: an initial approximation x0; r0 = b� Ax0;
For n = 1; 2; � � � until convergence

Generate a correction vector qn by the method;
xn = xn�1 + qn
(the vector xn does not occur in other statements)
rn = rn�1 �Aqn

End for

�Department of Mathematics, Utrecht University, P.O. Box 80010, NL-3508 TA Utrecht, The Netherlands E-mail:

vorst@math.uu.nl
yDepartment of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2. E-mail:

ye@gauss.amath.umanitoba.ca Research supported by grants from University of Manitoba Research Development

Fund and from Natural Sciences and Engineering Research Council of Canada

1

Most Krylov subspace iterative methods, including the conjugate gradient method (CG) [12], the
bi-conjugate gradient method (Bi-CG) [4, 13], CGS [19], and BiCGSTAB [22], �t in this framework
(see [2, 11, 16] for other methods).

In exact arithmetic, the recursively de�ned rn in Algorithm 1 is exactly the residual for the
approximate solution xn, because b�Axn�rn = b�Axn�1�rn�1 = b�Ax0�r0 = 0. In a
oating
point arithmetic, however, the round-o� patterns for xn and rn will be di�erent. It is important
to note that any error made in the computation of xn is not re
ected by a corresponding error
in rn, or in other words, computational errors to xn do not force the method to correct, since xn
has no in
uence on the iteration process. This leads to the well known situation that b�Axn and
rn may di�er signi�cantly. This phenomenon has been extensively discussed in the literature, see
[10, 11, 18] and the references cited there. Indeed, if we denote the computed results of xn; rn by
x̂n; r̂n, respectively (but we still use qn to denote the computed update vector of the algorithm),
then we have

x̂n = fl(x̂n�1 + qn) = x̂n�1 + qn + n; j nj � ujx̂nj+O(u2) (1)

r̂n = fl(r̂n�1 �Aqn) = r̂n�1 �Aqn + �n; j�nj � u(jr̂nj+N jAjjqnj) + O(u2); (2)

where fl(z) denotes the computed result of z in �nite arithmetic, the absolute value and inequalities
on vectors are componentwise, and u is the machine roundo� unit. The vectors n and �n represent
rounding error terms, and they can be bounded by a straightforward error analysis (see Section
3 for details). In particular, the relations (1) and (2) show that n and �n depend only on the
iteration vectors x̂n, r̂n, and qn.

We will call b � Ax̂n the true residual for the approximation x̂n and call r̂n, as obtained by
recurrence formula (2), the computed residual (or the updated residual). Then the di�erence between
the two satis�es (using the �nite precision recurrences (1) and (2))

b�Ax̂n � r̂n = b�Ax̂n�1 � r̂n�1 � A n � �n
= ��n

i=1(A i + �i);

where we assume for now that b � Ax0 � r0 = 0. Hence, the di�erence between the true and the
updated residuals is a result of accumulated rounding errors. In particular, a signi�cant deviation
of b� Ax̂n from r̂n may be expected, if there is a x̂i or r̂i with large norm during the iteration (a
not uncommon situation for Bi-CG and CGS). On the other hand, even when all i or �i are small
(as is common for CG), but if it takes a relatively large number of iterations for convergence, the
sheer accumulation of i and �i could also lead to a nontrivial deviation.

What makes all this so important is that, in a �nite precision implementation, the sequence r̂n
satis�es, almost to machine precision u, its de�ning recurrence relation, and as was observed for
many Krylov subspace methods, this is the driving force behind convergence of r̂n [10, 15, 18, 20].
Indeed, residual bounds have been obtained in [20] for CG and Bi-CG, which show that even
a signi�cantly perturbed recurrence relation (with perturbations much larger than the machine
precision) usually still leads to eventual convergence of the computed residuals. This theoretical
insight has been our motivation and justi�cation for the residual replacement scheme to be presented
in Section 2.1. On the other hand, the true residual b�Ax̂n itself has no self-correcting mechanism
for convergence, mainly because any perturbation made to x̂n does not have an e�ect on the
iteration parameters, whereas errors in r̂n immediately lead to other iteration parameters.

2

Thus, in a typical convergent iteration process, r̂n converges to a level much smaller than u
eventually, but the true residual b�Ax̂n can only converge to the level dictated by �n

i=1(A i+ �i),
since

b� Ax̂n = r̂n � �n
i=1(A i + �i):

Usually, when r̂n is still bigger than the accumulated error �n
i=1(A i + �i), b � Ax̂n agrees well

with r̂n in magnitude, but when r̂n has converged to a level that is smaller than the accumulated
error, then b � Ax̂n � �n

i=1(A i + �i) is just the accumulated error and has no agreement at all
with r̂n. In summary, a straightforward implementation would reduce the true residuals at best to
�n
i=1(A i+ �i). A bound for this has been obtained in [10] and it is called the attainable accuracy.

We note that this term could be signi�cant even if only one of i or �i is large, or if n is large.
The above problems become most serious in methods such as CGS and Bi-CG where interme-

diate x̂n and r̂n can have very large norm, and this may result in a large n or �n. Several popular
methods, such as BiCGSTAB [22], BiCGSTAB(`) [17], QMR [7], TFQMR [5], and composite step
BiCG [1], have been developed to reduce the norm of r̂n (see [6] for details). We note that control-
ling the size of kr̂nk only does not solve the deviation problem in all situations, as, for instance,
the accumulation of tiny errors over a long iteration may still result in a nontrivial deviation.

A simple approach for solving the deviation problem is to replace the computed residuals by the
true residuals at some iteration step to restore the agreement. Then the deviation at subsequent
steps will be the error accumulation after that iteration only. This includes a complete replacement
strategy that simply computes rn by b�Axn at every iteration, and a periodic replacement strategy
that updates rn by b�Axn only at intervals of the iteration count. While such a strategy maintains
agreement of the two kinds of residuals, it turns out that the convergence of the rn may deteri-
orate (as we will see, it may result in unacceptably large perturbations to the lanczos recurrence
relation for the residual vectors that steers the convergence, see Section 2.3). Recently, Sleijpen
and van der Vorst [18], motivated by suggestions made by Neumaier (see [11, 18]), introduced a
very sophisticated replacement scheme that includes a so-called
ying-restart procedure. It was
demonstrated that this new residual replacement strategy can be very e�ective in the sense that
it can improve the convergence of the true residuals by several orders of magnitude. For practical
implementations, such a strategy is very useful because it leads to meaningful residuals and this is
important for stopping the iteration process at the right point. Of course, one could, after termi-
nation of the classical process, simply test the true residual, but the risk is that the true residual
stagnated already long before termination, so that much work has been done in vain.

The present paper will follow the very same idea of replacing the computed residual by the true
residual at selected steps, in order to maintain close agreement between the two residuals, but we
propose a simpler strategy so that the replacement is done only when it is necessary and at phases
in the iteration where it is harmless, that is that convergence mechanism for r̂n is not destroyed.
Speci�cally, we shall present a rigorous error analysis for iterations with residual replacement and
we will propose computable bounds for the deviation between the computed and true residuals.
This will be used to select the replacement phases in the iteration in such a way that the Lanczos
recurrence among r̂n is su�ciently well maintained. For the resulting strategy, it will be shown
that, provided that the computed residuals converge, the true residual will converge to the level
O(u)kAkkxk, the smallest level that one can expect for an approximation.

The paper has been organized as follows. In Section 2, we develop a re�ned residual replacement
strategy and we discuss some strategies that have been reported by others. We give an error analysis
in Section 3, and we derive some bounds for the deviation to be used in the replacement condition.

3

We present a complete implementation in Section 4. It turns out that the residual replacement
strategy can easily be incorporated in existing codes. Some numerical examples are reported in
Section 5, and we �nish with remarks in Section 6.

The vector norm used in this paper is one of the 1, 2, or 1-norm.

2 Residual Replacement Strategy

In this section, we develop a replacement strategy that maintains the convergence of the true
residuals. A formal analysis is postponed to the next section. The speci�c iterative method can
be any of those that �t in the general framework of Algorithm 1. Throughout this paper, we shall
consider only iteration processes for which the computed residual r̂n converges to a su�ciently
small level.

As mentioned in Section 1, we follow the basic idea to replace the computed residual r̂m by
the true residual fl(b� Ax̂m) at some selected steps m = m1; m2; � � � ; mk. We will refer to such
an iteration step as one where residual replacement occurs. Hence, the residual generated at an
arbitrary step n could be either the usual updated residual r̂n = fl(r̂n�1 � Aqn�1) or the true
residual fl(b�Ax̂n), depending on whether replacement has taken place or not at step n. In order
to distinguish the two possible formulations, we denote by rn the residual obtained at step n of the
process with the replacement strategy, that is

rn =

(
fl(b� Ax̂n); if n = m1; m2; � � � ; mk

r̂n = fl(rn�1 � Aqn�1); otherwise

With the residual replacement at step m (m = m1; m2; � � � ; mk), the residual deviation is im-
mediately reduced to

�m � b�Ax̂m � rm = b� Ax̂m � fl(b�Ax̂m) = ��m;

and it can be shown (see Lemma 1 of Section 2.2) that j�mj � u(jrmj+N jAjjx̂mj)+O(u2): For the
subsequent iterations n > m, but before the next replacement step, we clearly have that

�n = b�Ax̂n � rn = b� Ax̂m � rm � �n
i=m+1(A i + �i)

= ��m � �n
i=m+1(A i + �i): (3)

Therefore, the accumulated deviation before step m has no e�ect to the deviation after updating
(n > m). However, in order for such a strategy to succeed, two conditions must be met, namely,

� the computed residual rn should preserve the convergence mechanism of the original process
that has been steered by the r̂n vectors;

� from the last updating stepm to the termination stepK, the accumulated error �K
i=m+1(A i+

�i) should be small relative to u(jrmj+N jAjjx̂mj), which is the upperbound for j�mj.
We discuss in the next two subsections how to satisfy these two objectives.

4

2.1 Maintaining convergence of computed residuals

In order that rn maintains the convergence mechanism of the original updated residuals, it should
preserve the property that gives rise to the convergence of the original r̂n. We therefore need to
identify the properties that lead to convergence of the iterative method in �nite precision arithmetic.
While this may be di�erent for each individual method, it has been observed for several Krylov
subspace methods (including CG [10, 20], Bi-CG [20], CGS, BiCGSTAB, and BiCGSTAB(`) [18]),
that the recurrence rn = rn�1 � Aqn and a similar one for qn is satis�ed almost to machine
precision and this small local error is one of the properties behind the convergence of the computed
residuals. Furthermore, the analysis of [20] suggests that convergence is well maintained even when
the recurrence equations are perturbed with perturbations that are signi�cantly greater than the
machine precision. This latter property is the basis for our residual replacement strategy. Therefore,
we brie
y discuss this perturbation phenomenon for Bi-CG (or CG), as presented in [20].

Consider the Bi-CG iteration which contains rn = rn�1��n�1Apn�1 and pn = rn+�npn�1. In
�nite arithmetic, r̂n and p̂n, which denote the computed results of rn and pn, respectively, satisfy
the perturbed recurrence

r̂n = r̂n�1 � �n�1Ap̂n�1 + �n and p̂n = r̂n + �np̂n�1 + �n;

where �n and �n are rounding error terms that can be bounded in terms of u. Combining these
two equations, we obtain the following perturbed matrix equation in a normalized form

AZn = ZnTn � 1

�0n

r̂n+1
kr̂1k e

T
n + Fn with Zn = [

r̂1
kr̂1k ; � � � ;

r̂n
kr̂nk]; (4)

where Tn is an invertible tridiagonal matrix1, �0n = kr̂nk�n=kr1k = eTnT
�1
n e1 and Fn = [f1; � � � ; fn]

with

fn =
A�n
kr̂nk +

1

�n

�n+1
kr̂nk �

�n
�n�1

�n
kr̂nk : (5)

We note that (4) is just an equation satis�ed by an exact Bi-CG iteration under a perturbation Fn.
In particular, detailed bounds on �n and �n will, under some mild assumptions, lead to Fn � O(u).

The main result of [20] states that if a sequence r̂n satis�es (4) and Zn+1 has full rank, then we
have

kr̂n+1k � (1 +Kn) min
p2Pn;p(0)=1

kp(A+ �An)r̂1k; (6)

where Kn = k(AZn � Fn)T
�1
n k kZ+

n+1k and �An = �FnZ+
n . The case Fn = 0 reduces to the

known theoretical bound for the exact BiCG residuals [1]. Therefore, even when r̂n and its exact
counterpart are completely di�erent, their norms are bounded by similar quantities and are usually
comparable. Of course, in both cases, the bounds depend on the quality of the constructed basis.
More importantly, a closer examination of the bound reveals that even if the perturbation Fn
is in magnitude much larger than u, the quantities in the bound, and thus kr̂n+1k, may not be
signi�cantly a�ected. Indeed, in [20] numerical experiments were presented, where relatively large
arti�cial random perturbations had been injected to the recurrence for rn; yet it did not signi�cantly
a�ect the convergence mechanism.

An implication of this analysis is that, regardless of how r̂n is generated but as long as it
satis�es (4), its norm can be bounded by (6). Hence, we can replace r̂n by rn = fl(b � Axn)

1We assume that no breakdowns of the iteration process have occurred

5

when �n = rn � (rn�1 � Aqn) are not too large relative to krnk and krn�1k (see (5)), and we may
still expect it to converge in a similar fashion. Indeed, this criterion explains why the residual
replacement strategies like rn = fl(b�Axn) work sometimes, but do not work always (see Section
2.3). Here, it will be used to determine when it is safe to replace r̂n by rn = fl(b � Axn). We
note that the above discussion is for Bi-CG, but the phenomenon it reveals seems to be valid for
many other methods, especially for those methods that are based on Bi-CG (CGS, BiCGSTAB,
and others).

Now we consider the case that residual replacement is carried out at step m, that is rm =
fl(b�Ax̂m) = b�Ax̂m+ �m. It follows from the de�nition of �m and r̂m that b�Ax̂m = r̂m+ �m =
rm�1 �Aqm�1 + �m + �m. So, the updated residual rm satis�es

rm = rm�1 �Aqm�1 + �0m with �0m = �m + �m + �m: (7)

Thus depending on the magnitude of k�0mk relative to krmk and krm�1k, the use of rm = fl(b�Ax̂m)
may result in large perturbations to the recurrence relation. Therefore, a residual replacement
strategy should ensure that the replacement is only done when k�0mk=minfkrmk; krm�1kg is not
too large.

In a typical iteration, as the iteration proceeds, k�nk, and hence k�0nk, increases while kr̂nk
decreases. Replacement will reduce �n but, in order to maintain the recurrence relation, it should
be carried out before k�0nk becomes too large relative to kr̂nk. For this reason, we propose to set a
threshold � and carry out a replacement when k�0nk=kr̂nk reaches the threshold. To be precise, we
replace the residual at step n by rn = b�Axn, if

k�0n�1k � �kr̂n�1k and k�0nk > �kr̂nk: (8)

We note that, in principle, residual replacement can be carried out for all steps up to where
k�0nk reaches certain point. However, from the stability point of view, it is preferred to generate the
residual by the recurrence as much as possible, since k�0nk is generally bigger than the recurrence
rounding error k�nk (of order u).

2.2 Groupwise solution updating to reduce error accumulations

From the discussions of Section 2.1, we learn that residual replacement should only be carried out
up to certain point. In this subsection, we will discuss how to maintain, after the last replacement,
the deviation at the order of ujAjjxnj, in which case xn is a backward stable solution. Note that,
for any xn, ukAkkxnk is the lowest value one can expect for its residual. This is simply because
even with the exact solution x, both b�A(fl(x)) and fl(b� Ax) � ujAjjxj.

If m = mk is the last updating step, which menas that we are in the �nal phase of the iteration
process, then, because of (3), the deviation at step n > m is

�n = ��m � �n
i=m+1�i � �n

i=m+1A i:

From our updating condition, we have that krnk � k�0nk=� � O(u�): So, if � is chosen not too close
to u, krnk is small and x̂n � x for n � m. We now discuss the three di�erent parts of �n. The
discussion here is only to motivate the groupwise updating strategy; a more rigorous analysis will
be given in the next section.

� j�mj � u(jrmj+N jAjjx̂mj) � O(u)jAjjxj.

6

� Since jr̂ij << jbj � jAjjxj and j�ij � ujr̂ij, we have that �n
i=m+1j�ij << O(u)jAjjxj.

� For the i part, j ij � ujx̂ij � ujxj. Hence, �n
i=m+1jA ij � �n

i=m+1ukAkkxk = (n �
m)ukAkkxk. If n�m is large, the accumulation of errors over n�m steps can be signi�cant.
We note that this is the same type of error accumulation in evaluating a sum S = �1i=1ci
of small numbers by direct recursive additions, which can fortunately be corrected through
appropriately grouping the arithmetic operations as S1 + S2 + � � � = (c1 + � � � + cm1

) +
(cm1+1 + � � �+ cm2

) + � � � � � � with terms of similar order of magnitude in the same group Si
and S1 >> S2 >> � � �. In this way, the rounding errors associated with a large number of
additions inside a group Si is of the magnitude of uSi, which can be much smaller than uS.
The same technique can be adopted for computing xn as

xn = x0 + �n
i=1qi = x0 + (q1 + � � �+ qm1

) + (qm1+1 + � � �+ qm2
) + � � � � � � :

Speci�cally, the recurrence for xn can be carried out in the following equivalent form

Groupwise Solution Update: z = x0; x̂0 = 0;
For n = 1; 2; � � � until convergence

x̂n = fl(x̂n�1 + qn) = x̂n�1 + qn + n
if n = mi (i.e. group update)
z = fl(z + x̂n) = z + x̂n + �n
x̂n = 0

end if
End for

Such a groupwise update scheme has been suggested by Neumaier, and it has been worked
out by Sleijpen and van der Vorst (see [18] for both references). By doing so, the error in the
local recurrence is reduced. Indeed, for i � m, jx̂ij = jz + x̂i � zj � jx � zj << jxj. Then
j ij � ujx̂ij (instead of ujxij). Hence, �n

i=m+1jA ij << (n�m)ujAjjxj.
In summary, with groupwise updating of the approximated solution, all three parts of �n can

be maintained at the level of ujAjjxj. We mention that groupwise updating can also be used to
obtain better performance of a code for modern architectures, because it allows for level-3 BLAS
operations. This has been suggested in [21, page 52, note 5].

2.3 Some other residual replacement strategies

We brie
y comment on some other residual replacement strategies.
For the naive strategy of "replacing always" (the residuals are computed always as b�Axn) or for

"periodic replacement" (update periodically at every ` steps), replacement is carried out throughout
the iteration, even when krnk is very small. This, as we know, may result in large perturbations to
the recurrence equations relative to krnk, since j�0nj is at least j�nj � ujAjjxnj, see (7). In that case,
as krnk decreases, the recurrence relation may be perturbed too much and hence the convergence
property deteriorates. This is the typical behaviour observed in such implementations.

We note that if �n can be made to decrease as krnk does, then replacement can be carried out at
later stages of the iterations. This leads to the strategy of "
ying-restart" of Sleijpen and van der
Vorst [18], which signi�cantly reduces �n, and hence �0n, at a replacement step. In the
ying-restart

7

strategy b is replaced by fl(b� Axm) at some but not all of the residual replacement steps (say
m = n1; n2; � � �nl), in addition to the residual replacement rm = fl(b� Axm). The advantage of
this is that, at the
ying-restart step ni+1, the residual is updated by rni+1 = fl(rni � Ax̂ni+1) =
rni � Ax̂ni+1 + �ni+1 (noting that b rni) and j�ni+1 j � u(jrnij+ jAjjx̂ni+1 j) . Then

jrni �Ax̂ni+1 � rni+1 j = j�ni+1 j � u(jrnij+ jAjjx̂ni+1 j)

which decreases as rni and x̂ni+1 decrease. This is the term that determines the perturbation to
the recurrence and can be kept small relative to rn. However, the deviation satis�es

b�Axni+1 � rni+1 = b�Axni � rni � �ni+1 ;

(assuming xni+1 = xni + x̂ni+1). Namely, the deviation at each
ying-restart step carries forward
to the later steps. Therefore
ying-restart should only be used at carefully selected steps where
�ni � u(kbk + NkAkkxk). However, it is not easy to identify a condition to monitor this. It
is also necessary to have two di�erent conditions for the residual replacement and
ying-restart.
Fortunately, our discussion in the last two subsections shows that carrying out replacement carefully
at some selected steps, in combination with groupwise update, is usually su�cient. We shall not
pursue the
ying-restart idea further in this paper.

3 Error Analysis of the Residual Replacement Scheme

In this section, we formally analyze the residual replacement strategy as developed in Section 2.1
(and presented in Algorithm 2 below). In particular, we develop a computable bound for k�nk and
k�0nk, that can be used for the implementation of the residual replacement condition.

We �rst summarize residual replacement strategy in the following algorithm, written in a form
that identi�es relevant rounding errors for later theoretical analysis.

Algorithm 2: Iterative Method with Residual Replacement:

Given an initial approximation z = x0 (a
oating point vector);
set x̂0 = 0; r0 = fl(b�Ax0) = b�Ax0 + �0;
For n = 1; 2; � � � ; until convergence

Generate a correction vector qn by the method;
x̂n = fl(x̂n�1 + qn) = x̂n�1 + qn + n
r̂n = fl(rn�1 � Aqn) = rn�1 �Aqn + �n
if residual replacement condition (8) holds

z = fl(z + x̂n) = z + x̂n + �n
x̂n = 0
rn = fl(b� Az) = b�Az + �n

else
rn = r̂n

end if
(denote but not compute xn = z + x̂n and �n = b� Axn � rn)

End for
z = fl(z + x̂n) = z + x̂n + �n

8

Note that xn and �n are theoretical quantities as de�ned by the formulas and are not to be
computed. The vectors n; �n; �n; �n represent rounding error terms, due to �nite precision arith-
metic.

At step n of the iterative method, qn is computed in �nite precision arithmetic by the algorithm.
However, the rounding errors involved in the computation of qn are irrelevant for the deviation of
the two residuals, which solely depends on the di�erent treatment of qn in the recurrences for rn
and xn.

Throughout this paper, we assume that A is a
oating point matrix. Our error analysis is
based on the following standard model for roundo� errors in basic matrix computations [8, p.66]
(all inequalities are componentwise).

fl(x+ y) = x+ y + e with jej � u(jx+ yj) (9)

fl(Ax) = Ax + e with jej � uN jAjjxj+ O(u2): (10)

where x; y 2 RN are
oating point vectors, N is a constant associated with the matrix-vector
multiplication (for instance, the maximal number of nonzero entries per row of A).

It is easy to show that

fl(y +Ax) = y +Ax+ e with jej � u(jy +Axj+N jAjjxj)+ O(u2):

Using this, the following lemma, which includes (1) and (2), is obtained.

Lemma 1 The error terms in the computed recurrence of Algorithm 2 are bounded as follows:

j nj � ujx̂nj+O(u2) (11)

j�nj � u(jr̂nj+N jAjjqnj) + O(u2): (12)

For a step at which a residual replacement is carried out:

j�nj � ujxnj+ O(u2); (13)

j�nj � u(jrnj+N jAjjxnj) +O(u2): (14)

Proof From (9), we have that j nj � ujx̂n�1 + qnj � u(jx̂nj+ j nj). This leads to the bound for
j nj: For a residual replacement step, the updated z is xn by de�nition, that is xn = z + x̂n + �n.
Therefore, j�nj � ujxnj+O(u2). The bounds for �n and �n follow similarly.

Lemma 2 Let m be the number of step at which a residual replacement is carried out and let
n > m denote a later step, but still before the next replacement step. Then, we have that

�n
i=m+1j ij � u�n

i=m+1jx̂ij+O(u2);

�n
i=m+1jqij � (2 + u)�n

i=m+1jx̂ij
and

�n
i=m+1j�ij � u�n

i=m+1jr̂ij+ 2uN jAj�n
i=m+1jx̂ij+ O(u2):

9

Proof The �rst bound follows directly from Lemma 1. For i � m + 1 we have that qi = x̂i �
x̂i�1 � i. Noting that x̂m = 0, it follows

�n
i=m+1jqij � �n

i=m+1(jx̂ij+ jx̂i�1j+ j ij) � (2 + u)�n
i=m+1jx̂ij:

Similarly,

�n
i=m+1j�ij � u�n

i=m+1(jr̂ij+N jAjjqij) +O(u2)

� u�n
i=m+1jr̂ij+ 2uN jAj�n

i=m+1jx̂ij+ O(u2):

We now consider the deviation of the two residuals.

Lemma 3 Let m be the number of an iteration step at which residual replacement is carried out
and let n > m denote a later iteration step, still before the next replacement step. Then, we have
that �m = ��m and

�n = �n�1 � (A n + �n) = ��m � �n
i=m+1(A i + �i):

Proof At step m, by the de�nition of xm in Algorithm 2, xm = z + x̂m = z with z being the
updated z-vector and x̂m = 0. Furthermore, rm = fl(b � Az) = fl(b � Axm) = b � Axm + �m.
Therefore �m = ��m. Hence, for the range of n > m, and before the next residual replacement
step:

�n = b� Axn � rn = b�A(z + x̂n)� r̂n
= b� A(z + x̂n�1 + qn + n)� (r̂n�1 �Aqn + �n)

= �n�1 �A n � �n
= �m � �n

i=m+1(A i + �i):

With Lemma 2, we obtain the following computable bound on �n.

Lemma 4 Let m be the number of an iteration step at which residual replacement is carried out
and let n > m denote a later iteration step, still before the next replacement step. Then, we have
k�mk � u(krmk+NkAkkxmk) +O(u2) and

k�nk � uNkAkkxmk+ u(1 + 2N)kAk�n
i=m+1kx̂ik+ u�n

i=mkrik+ O(u2):

Proof The bound for k�mk follows from that for �m, see (14). From Lemma 2 and Lemma 3, it
follows that

j�nj � j�mj+�n
i=m+1(jAjj ij+ j�ij)

� u(jrmj+N jAjjxmj) + jAju�n
i=m+1jx̂ij

+u�n
i=m+1jr̂ij+ 2uN jAj�n

i=m+1jx̂ij+ O(u2)

= uN jAjjxmj+ u(1 + 2N)jAj�n
i=m+1jx̂ij+ u�n

i=mjrij+O(u2);

which leads to the bound for �n in terms of norms.

10

We note that it is possible to obtain a sharper bound by accumulating the vectors in the bound
for j�nj. Our experiments do not show any signi�cant advantage of such an approach. We next
consider the perturbation to the recurrence.

Theorem 1 Consider step n of the iteration and let m < n be the last step before n, at which a
residual replacement is carried out. If replacement is also done at step n, then let x0n = fl(xm +
x̂n) = xm + x̂n + �n be the computed approximate solution and r0n = fl(b�Ax0n) = b�Ax0n + �n be
the residual. Then the residual r0n satis�es the following approximate recurrence

r0n = rn�1 � Aqn + �0n; (15)

where �0n = �n + �n � A�n + �n and

k�0nk � ukAk(1 + 2N)(kxmk+�n
i=m+1kx̂ik) + u�n

i=mkrik+ O(u2): (16)

Proof First, in the notation of Alg. 2, x0n = xm + x̂n + �n = xn + �n . Then,

r0n = b� Axn � A�n + �n

= rn + �n �A�n + �n

= rn�1 �Aqn + �n + �n �A�n + �n

= rn�1 �Aqn + �0n;

where we have used that b � Axn = rn + �n and rn = r̂n = rn�1 � Aqn + �n. Furthermore, by
Lemma 3,

�n + �n = �m � �n
i=m+1A i � �n�1

i=m+1�i:

Also, kA�nk � ukAk(kxmk + kx̂nk), and k�nk � u(kr0nk + NkAkkx0nk) + O(u2) � u(kr0nk +
NkAkkxmk + NkAkkx̂nk) + O(u2). Combining these three, and using that r0n = rn + O(u), the
bound on k�0nk is obtained as in Lemma 4.

Note that bound (16) is computable at each iteration step. Therefore, we can implement the
residual replacement criterion (8) with this bound instead of k�0nk. We note that the factor 2 in
the bound comes from the bound for qi in Lemma 2, which is pessimistic since qi � x̂i. Therefore,
we can use the following dn as an estimate for k�0nk:

dn � uNkAk(kxmk+ �n
i=m+1kx̂ik) + u�n

i=mkrik: (17)

Hence, we shall use the following residual replacement criterion, that is residual replacement is
done if

dn�1 � �kr̂n�1k; and dn > �kr̂nk: (18)

With this strategy, the replaced residual vector rn satis�es the recurrence equation (15) with
k�0nk � O(�)kr̂nk. With this property, we consider situations where rn converges. We now discuss
convergence of the true residual.

Theorem 2 Consider Algorithm 2 with the residual replacement criterion (18), and assume that
the algorithm terminates at step n = K with krKk < ukAk kxKk. Let m be the number of the last
residual replacement iteration step before termination. If

L = (K �m+ 1)(1 + 2N)kAkkA�1k(1 + 3=�) < 1=u; (19)

11

then

kb� AxKk � krKk+ uNkAkkxKk=(1� uL) +O(u2)

� uNkAkkxKk:
Proof From (17), we have dK > uNkAk(kxmk + kx̂Kk) � ukAk kxKk. Furthermore, at the
termination step, we have krKk < ukAk kxKk and hence dK > krKk > �krKk. Since m is the
last updating step, we have for n � m, dn > �krnk as otherwise there would be another residual
replacement after m. That implies krnk < dn=� � dK=�. De�ne

~dn � uNkAkkxmk+ ukAk(1 + 2N)�n
i=m+1kx̂ik+ u�n

i=mkr̂ik;
which is an upper bound for k�nk (Lemma 4) and ~dn � dn. Then

kx̂nk = kxn � xmk = kA�1((b� Axm)� (b� Axn))k
= kA�1(rm + �m � rn � �n)k
� kA�1k(krmk+ krnk+ k�n � �mk)
� kA�1k(1 + 2=�) ~dK +O(u2);

where k�n � �mk � ~dn + O(u2) � ~dK +O(u2). Thus,

~dK = uNkAkkxK � x̂Kk+ u(1 + 2N)kAk�K
i=m+1kx̂ik+ u�K

i=mkr̂ik
� uNkAkkxKk+ uNkAkkx̂Kk+ u(1 + 2N)kAk�K

i=m+1kx̂ik+ u�K
i=mkr̂ik

� uNkAkkxKk+ u(K �m+ 1)(1 + 2N)kAkkA�1k(1 + 2=�) ~dK

+u(K �m+ 1) ~dK=�+O(u2)

� uNkAkkxKk+ u(K �m+ 1)(1 + 2N)kAkkA�1k(1 + 3=�) ~dK + O(u2)

� uNkAkkxKk+ uL ~dK +O(u2);

which implies
~dK � uNkAkkxKk=(1� uL) + O(u2):

Thus the bound follows from

kb�AxKk � krKk+ k�Kk � krKk+ ~dK +O(u2):

We add two remarks with respect to this theorem.
Remark 1: If the main condition (19) is satis�ed, then the deviation, and hence the true residual,
will remain at the level of uNkAkkxKk at termination. Such an approximate solution is backward
stable and it is best one can expect. The condition suggests that � should not be chosen too small.
Otherwise, the replacement strategy will be terminated too early so that the accumulation after the
last replacement might become signi�cant. As can be expected, however, the theoretical condition
is more restrictive than practically necessary and our numerical experience suggests that � can be
much smaller than what (19) dictates, without destroying the conclusion of the theorem.
Remark 2: On the other hand, in Section 2.1 we have seen that � controls perturbations to
the recurrence of rn, and for this reason it is desirable to choose it as small as possible. In our
experience, there is a large range of � around

p
u that balances the two needs.

12

4 Reliable Implementation of Iterative Methods

In this section, we summarize the main results of the previous sections into a complete implemen-
tation. We also address some implementation issues.

It is easy to see from the de�nition of dn (see (17)) that it increases except at the residual
replacement steps when it is reset to u(NkAkkxmk + krmk). Our residual replacement strategy
is to reduce dn whenever necessary (as determined by the replacement criterion) so as to keep it
at the level of uNkAkkxKk at termination. With the use of criterion (18), however, there are
situations where the residual replacement is carried out in consecutive steps while dn remains
virtually unchanged, namely when krnk stays around dn=� � uNkAkkxnk=�. >From the stability
point of view, it is preferred not to replace the residuals in such situations. To avoid unnecessary
replacement in such cases, we impose as an additional condition that residual replacement is carried
out only when dn has a nontrivial increase from the dm of the previous replacement step m.

Therefore, we propose dn > 1:1dm as a condition in addition to (18) for the residual replacement.
The following scheme sketches a complete implementation.

Algorithm 3: Reliable Implementation of Algorithm 1.
Input an initial approximation z = x0; a residual replacement threshold �; an estimate of NkAk;
Set r0 = b�Ax0; x̂0 = 0; dinit = d0 = u(kr0k+NkAkkx0k),
For n = 1; 2; � � � ; until convergence

Generate a correction vector qn by the Iterative Method;
x̂n = x̂n�1 + qn
rn = rn�1 �Aqn
dn = dn�1 + uNkAk kx̂nk+ ukrnk
if dn�1 � �krn�1k; dn > �krnk and dn > 1:1dinit

z = z + x̂n
x̂n = 0
rn = b�Az
dinit = dn = u(krnk+NkAkkzk)

end if
End for
z = z + x̂n

Remark: In this reliable implementation, we need estimates for N (the maximal number of
nonzero entries per row of A) and kAk. In our experience with sparse matrices, the simple choice
N = 1, still leads to a practical estimate dn for k�nk. In any case, we note that precise estimates
are not essential, because the replacement threshold � can be adjusted. We also need to choose
this �. Our extensive numerical testing (see section 5) suggests that � � pu is a practical criterion.
However, there are examples where this choice leads to stagnating residuals at some unacceptable
level. In such cases, choosing a smaller � will regain the convergence to O(u).

The presented implementation requires one extra matrix-vector multiplication when an replace-
ment is carried out. Since only a few steps with replacement are required, this extra cost is marginal
relative to the other costs. However, some savings can be made by selecting a slightly smaller � and
carrying out residual replacement at the step next to the one for which the residual replacement
criterion is satis�ed (cf [18]). It also requires one extra vector storage for the groupwise solution up-

13

date (for z) and computation of a vector norm kx̂nk for the update of dn (krnk is usually computed
in the algorithm for stopping criteria).

5 Numerical Examples

In this section, we present some numerical examples to show how Algorithm 3 works and to demon-
strate its e�ectiveness. We present our testing results for CG, Bi-CG and CGS. All tests are carried
out in MATLAB on a SUN Sparc-20 workstation, with u � 10�16.

In all examples, unless otherwise speci�ed, the replacement threshold � is chosen to be 10�8.
kAk1 is explicitly computed and N is set to 1. In Examples 1 and 2, we also compare dn and the
deviation k�nk.

Example 1: The matrix is a �nite-di�erence discretization on a 64� 64 grid for

�r(a(x; y)ru) = f(x; y) on R = (0; 1)� (0; 1);

with a homogeneous Dirichlet boundary condition. a(x; y) = exp(y2) and f(x; y) = x2y. We apply
CG and Reliable CG (i.e. Alg. 3) to solve this linear system and the convergence results are given
in Figure 1.

In Figure 1 (and similarly in Figures 2 and 3 for the next example), we give in (a) the convergence
history of the (normalized) computed residual for CG (solid line), the (normalized) true residuals
for CG (dashed line) and for reliable CG (dotted line). In (b), we also give the (normalized)
deviations of the two residuals k�nk = kb� Axn � rnk for CG (dash-dotted line) and for reliable
CG (dotted line) and the bound dn for reliable CG (in x-mark).

Example 2: The matrix is a �nite-di�erence discretization on a 64� 64 grid for the following
convection di�usion equation

�4 u+
(xux + yuy) + �u = f(x; y) on (0; 1)2;

with a homogeneous Dirichlet boundary condition. The function f is a constant. We consider Bi-
CG and CGS for solving the linear systems with
 = �50; � = 0, and
 = �10; � = 1, respectively.
The results are shown in Figure 2 for Bi-CG, and in Figure 3 for CGS.

In the above examples, we have observed the following typical convergence behaviour. For
the original implementations, the deviation increases and �nally stagnates at some level, which
is exactly where the true residual stagnates, while the computed residual continues to converge.
With the reliable implementations, when the deviation increases to a certain level relative to rn, a
residual replacement is carried out and this reduces the error level. Eventually, the deviation and
hence the true residual arrive at the level of ukAkkxk. We also note that the bound dn captures
the behaviour of k�nk very closely, although it may be an overestimate for �n by a few orders of
magnitude. In all three cases, the �nal residual norms for the reliable implementation are smaller
than the ones as obtained by the MATLAB function Anb.

Example 3: In this case, we have tested the algorithm for Bi-CG (or CG if symmetric de�nite)
and CGS, on the Harwell-Boeing collection of sparse matrices [3]. We compare the original imple-
mentations, the reliable implementations and the implementations of Sleijpen and van der Vorst
[18] (based on their replacement criteria (16) and (18)). In Table 1, we give the results for those
matrices for which the computed residuals converge to a level smaller than ukAkkxk so that there
is a deviation of the two residuals. For those cases where b is not given, we choose it such that a

14

Figure 1: Example 1 (CG) (a): solid - computed residual of CG; dashed - true residual of CG; dotted
- true residual of reliable CG; (b): dash-dotted - kb�Axn� rnk of CG, dotted - kb�Axn� rnk of reliable
CG; x - dn of reliable CG

0 100 200 300 400 500

10
−20

10
−15

10
−10

10
−5

(a) Convergence History

iteration number

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

0 100 200 300 400 500
10

−19

10
−18

10
−17

10
−16

10
−15

10
−14

10
−13

(b) Residual Deviation and Bound

iteration number

de
vi

at
io

n

given random vector is the solution. We note that for some matrices, it may take 10n iterations
to achieve that, which is not practical. However, we have included these results in order to show
that even with excessive numbers of iterations, we still arrive at small true residuals eventually. We
list the normalized residuals res = kb� Axnk=(kAkkxnk) attained by the three implementations
and by Gaussian elimination with partial pivoting (MATLAB Anb). We also list the number of
residual replacements (nr) for our reliable implementations and the number of
ying-restart (nf)
and the number of residual replacements (nr) for the implementations of Sleijpen and van der Vorst
(SvdV). There are two cases for which the computed residuals do not converge to O(u)kbk with the
choice of � = 1e� 8. For those cases, a slightly smaller � will recover the stability and the results
are listed in the last row of the table.

We see that in all cases, the reliable implementation reduces the normalized residual to O(u)
and res2 is the smallest among the three implementations, even smaller than MATLAB Anb. The
improvement on the true residual is more apparent in CGS than in Bi-CG (or CG). Except in a
few cases, both the reliable implementation presented here and the implementation of Sleijpen and
van der Vorst work well and are comparable. So the main advantage of the new approach is its
simplicity and an occasional improvement in accuracy.

15

Figure 2: Example 2 (Bi-CG) (a): solid - computed residual of Bi-CG; dashed - true residual of Bi-
CG; dotted - true residual of reliable Bi-CG; (b): dashed - kb�Axn� rnk of Bi-CG, dotted - kb�Axn� rnk
of reliable Bi-CG; x - dn of reliable Bi-CG

0 200 400 600 800

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

(a) Convergence History

iteration number

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

0 200 400 600 800
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

(b) Residual Deviation and Bound

iteration number

de
vi

at
io

n

6 Concluding Remarks

We have presented a new residual replacement scheme for improving the convergence of the true
residuals in �nite precision implementations of Krylog subspace iterative methods. By carefully
monitoring the deviation of the computed residual and the true residual and incorporating the
earlier ideas on residual replacement, we obtain a reliable implementation that preserves the con-
vergence mechanism of the computed residuals, as well as su�ciently small deviations. An error
analysis shows that this approach works under certain conditions, and numerical tests demonstrate
its e�ectiveness. Comparison with an earlier approach shows that the new scheme is simpler and
easier to implement as an add-on to existing implementations for iterative methods.

We point out that the basis for the present work is the understanding that the convergence
behaviour (of computed residuals) in �nite precision arithmetic is preserved under small pertur-
bations to the recurrence relations. Such a supporting analysis is available for Bi-CG (and CG)
[20], but it is still an empirical observation for most other Krylov subspace methods. It would be
interesting to derive a theoretical analysis con�rming this phenomenon for those methods as well.

Acknowledgements: We would like to thank Ms. Lorrita McKnight for assistance in carrying
out the tests on Harwell-Boeing matrices.

16

Figure 3: Example 2 (CGS) (a): solid - computed residual of CGS; dashed - true residual of CGS;
dotted - true residual of reliable CGS; (b): dashed - kb � Axn � rnk of CGS, dotted - kb � Axn � rnk of
reliable CGS; x - dn of reliable CGS

0 100 200 300

10
−20

10
−15

10
−10

10
−5

10
0

10
5

(a) Convergence History

iteration number

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

0 100 200 300
10

−18

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

(b) Residual Deviation and Bound

iteration number

de
vi

at
io

n

References

[1] R. E. Bank and T. F. Chan, An Analysis of the Composite Step Biconjugate Gradient Algorithm
for Solving nonsymmetric Systems, Numer. Math., 66:295-319 (1993).

[2] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, V. Pozo,
Romime C., and H. van der Vorst, Templates for the solution of linear systems: Building blocks
for iterative methods, SIAM, Philadelphia, PA, 1994.

[3] I. S. Du�, R. G. Grimes, and J. G. Lewis, Sparse Matrix Test Problems, ACM Trans. Math.
Softw., 15 (1989), pp.1-14.

[4] R. Fletcher, Conjugate Gradient Methods for Inde�nite Systems, in Proc. Dundee Conference
on Numerical Analysis, 1975, Lecture Notes in Mathematics 506, G. A. Watson, ed., Springer-
Verlag, Berlin, 1976, pp. 73-89.

[5] R. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
SIAM J. Sci. Stat. Comput. 14, pp. 470-482 (1993).

[6] R. Freund, G. Golub and N. Nachtigal, Iterative solutions of linear systems Acta Numerica
1(1992):57-100.

17

[7] R. W. Freund and N. M. Nachtigal, QMR : a Quasi-minimal Residual Method for non-
Hermitian Linear Systems, Numer. Math., 60:315-339 (1991).

[8] G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, 1983.

[9] A. Greenbaum, Behavior of Slightly Perturbed Lanczos and Conjugate-Gradient Recurrences,
Lin. Alg. and its Appl., 113:7-63 (1989).

[10] A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods,
SIAM J. Matrix Anal. Appl. 18(1997):535-551.

[11] M. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta Nu-
merica 6, pp. 271-397 (1997).

[12] M. Hestenes and E. Stiefel, Methods of Conjugate Gradients for solving linear systems, J. Res.
NBS. 49:409-436 (1952).

[13] C. Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl.
Bur. Stand. 49, pp. 33-53 (1952).

[14] Y. Notay, On the convergence rate of the conjugate gradients in presence of rounding errors,
Numer. Math. 65:301-317 (1993).

[15] C. Paige, Accuracy and e�ectiveness of the Lanczos algorithm for the Symmetric eigenproblem,
Linear Alg. Appl. 34(1980):235-258.

[16] Y. Saad, Iterative Methods for Sparse Linear Systems PWS Publishing, Boston, MA, 1996.

[17] G. Sleijpen and D. Fokkema, BICGSTAB(L) for linear equations involving unsymmetric ma-
trices with complex spectrum Electronic Trans. Numer. Anal. 1, pp. 11-32 (1993).

[18] G. Sleijpen and H. van der Vorst, Reliable updated residuals in hybrid Bi-CG methods Com-
puting 56:144-163 (1996).

[19] P. Sonnefeld, CGS, A Fast Lanczos-type Solver for nonsymmetric Linear Systems SIAM J.
Sci. Stat. Comput. 10, p. 36-52 (1989).

[20] C. H. Tong and Q. Ye, Analysis of the Finite Precision Bi-Conjugate Gradient algorithm for
Nonsymmetric Linear Systems, Stanford SCCM Report 95-11, Stanford University, Stanford,
CA, October 1995. Math. Comp. (to appear).

[21] H.A. van der Vorst, The performance of FORTRAN implementations for preconditioned con-
jugate gradients on vector computers, Parallel Computing, 3:49-58 (1986).

[22] H. van der Vorst, BiCGSTAB, A fast and smoothly converging variant of BiCG for the solution
of nonsymmetric linear systems SIAM J. Sci. Stat. Comput. 13, 631-644 (1992).

18

Table 1: Example 3: Comparison of Normalized Residuals res0 - Anb; res1 - original imple-
mentation; res2 - reliable implementation; res3 - implementation of SvdV.

Anb Bi-CG (or CG) CGS

Matrix res0 res1 res2, nr res3, nf (nr) res1 res2, nr res3, nf (nr)

bcspwr06 - 7e-15 1e-20 19 1e-19 5(9) 6e-13 2e-17 14 3e-17 32(48)

bcspwr07 - 1e-15 2e-17 46 9e-17 2(6) 2e-12 2e-17 20 1e-7 220(404)

bcspwr08 - 2e-15 3e-17 9 1e-16 5(7) 7e-14 2e-17 14 4e-16 79(103)

bcspwr09 - 3e-15 2e-20 42 6e-20 5(6) 3e-13 2e-17 13 4e-16 40(70)

jpwh991 1e-16 9e-17 3e-17 1 3e-17 1(1) 7e-17 3e-17 1 3e-17 1(1)

fs6801 1e-17 7e-17 1e-17 2 8e-18 1(1) 2e-16 9e-18 2 1e-17 3(5)

fs6802 8e-18 1e-16 8e-18 3 2e-17 1(1) 4e-16 8e-18 6 2e-17 4(4)

fs6803 6e-18 3e-16 1e-132 11 8e-16 4(5) 4e-14 6e-17 33 1e-17 3(5)

fs7601 7e-18 7e-17 9e-18 1 7e-18 1(1) 5e-15 5e-18 2 6e-18 1(2)

jagmesh1 3e-16 4e-15 5e-17 2 1e-17 3(5) 1e-12 5e-17 5 5e-15 20(26)

nos3 1e-16 3e-16 6e-17 2 7e-17 1(1) 2e-16 6e-17 2 7e-17 1(1)

nos4 8e-17 2e-16 5e-17 1 6e-17 1(1) 2e-16 5e-17 1 8e-17 1(1)

nos5 1e-16 3e-16 5e-17 2 6e-17 1(1) 3e-16 6e-17 2 7e-17 1(1)

nos6 6e-17 4e-16 3e-17 9 8e-17 1(1) 4e-16 2e-17 14 1e-16 1(1)

1138bus 9e-18 2e-16 1e-17 8 9e-17 1(1) 7e-10 4e-123 21 2e-10 17(29)

orsirr1 4e-17 1e-15 1e-17 2 2e-17 5(9) 9e-14 1e-17 6 2e-17 11(18)

orsirr2 7e-17 2e-16 1e-17 2 1e-17 3(4) 5e-14 1e-17 5 2e-16 4(7)

orsreg1 2e-16 8e-16 7e-17 1 4e-16 1(1) 7e-15 8e-17 2 6e-16 3(5)

pores1 3e-17 2e-16 3e-17 2 4e-17 2(3) 5e-15 3e-17 5 9e-17 2(4)

pores3 3e-17 8e-16 2e-17 3 3e-16 4(5) 2e-12 2e-17 11 5e-17 16(28)

saylr3 - 3e-16 3e-17 2 6e-17 1(1) 2e-16 3e-17 2 7e-17 1(1)

saylr4 3e-16 1e-15 8e-17 4 5e-16 1(1) 2e-15 4e-19 27 7e-19 8(15)

sherman1 5e-17 3e-16 3e-17 2 5e-17 1(2) 2e-10 3e-17 3 4e-17 4(41)

sherman3 6e-19 2e-17 4e-19 9 1e-18 23(114) 5e-10 6e-19 30 1e-16 62(407)

sherman4 6e-17 2e-16 3e-17 1 3e-17 1(4) 2e-12 3e-17 2 3e-17 1(11)

sherman5 7e-18 2e-14 3e-18 2 3e-18 2(52) 4e-8 3e-18 17 7e-18 31(215)

watt1 1e-22 2e-16 4e-23 15 3e-22 1(1) 5e-17 1e-22 2 3e-22 1(1)

watt2 5e-18 2e-16 4e-18 26 5e-17 2(2) 3e-15 3e-19 125 5e-14 83(125)

2: res2 = 1e � 17; if � = 1e� 12; 3: res2 = 1e� 17; if � = 1e � 12;

19

