
Program Transformation with Stratego/XT:
Rules, Strategies, Tools, and Systems

in StrategoXT 0.9

Eelco Visser

Technical Report UU-CS-2004-011
Institute of Information and Computing Sciences

Utrecht University

February 2004



To appear as
E. Visser. Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Sys-
tems in Stratego/XT 0.9. In Lengauer et al., editors, Domain-Specific Program Genera-
tion, Lecture Notes in Computer Science. Spinger-Verlag, 2004.

See also
http://www.stratego-language.org/Stratego/ProgramTransformationWithStrategoXT

Copyright c© 2004 Eelco Visser

Address:
Institute of Information and Computing Sciences
Utrecht University
P.O.Box 80089
3508 TB Utrecht

Eelco Visser<visser@acm.org>
http://www.cs.uu.nl/people/visser

http://www.stratego-language.org/Stratego/ProgramTransformationWithStrategoXT
mailto:visser@acm.org
http://www.cs.uu.nl/people/visser


Program Transformation with Stratego/XT
Rules, Strategies, Tools, and Systems in Stratego/XT 0.9

Eelco Visser

Institute of Information and Computing Sciences, Utrecht University
P.O. Box 80089 3508 TB, Utrecht, The Netherlands

visser@acm.org, http://www.stratego-language.org

Abstract. Stratego/XT is a framework for the development of transformation
systems aiming to support a wide range of program transformations. The frame-
work consists of the transformation language Stratego and the XT collection of
transformation tools. Stratego is based on the paradigm of rewriting under the
control of programmable rewriting strategies. The XT tools provide facilities
for the infrastructure of transformation systems including parsing and pretty-
printing. The framework addresses the entire range of the development process;
from the specification of transformations to their composition into transformation
systems. This chapter gives an overview of the main ingredients involved in the
composition of transformation systems with Stratego/XT, where we distinguish
the abstraction levels of rules, strategies, tools, and systems.

1 Introduction

Program transformation, the automatic manipulation of source programs, emerged in
the context of compilation for the implementation of components such as optimiz-
ers [28]. While compilers are rather specialized tools developed by few, transformation
systems are becoming widespread. In the paradigm of generative programming [13],
the generation of programs from specifications forms a key part of the software engi-
neering process. In refactoring [21], transformations are used to restructure a program
in order to improve its design. Other applications of program transformation include
migration and reverse engineering. The common goal of these transformations is to
increase programmer productivity by automating programming tasks.

With the advent of XML, transformation techniques are spreading beyond the area
of programming language processing, making transformation a necessary operation in
any scenario where structured data play a role. Techniques from program transformation
are applicable in document processing. In turn, applications such as Active Server Pages
(ASP) for the generation of web-pages in dynamic HTML has inspired the creation
of program generators such as Jostraca [31], where code templates specified in the
concrete syntax of the object language are instantiated with application data.

Stratego/XT is a framework for the development of transformation systems aiming
to support a wide range of program transformations. The framework consists of the
transformation language Stratego and the XT collection of transformation tools. Strat-
ego is based on the paradigm of rewriting under the control of programmable rewrit-
ing strategies. The XT tools provide facilities for the infrastructure of transformation
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systems including parsing and pretty-printing. The framework addresses all aspects of
the construction of transformation systems; from the specification of transformations
to their composition into transformation systems. This chapter gives an overview of
the main ingredients involved in the composition of transformation systems with Strat-
ego/XT, where we distinguish the abstraction levels of rules, strategies, tools, and sys-
tems.

A transformation ruleencodes a basic transformation step as a rewrite on an abstract
syntax tree (Section 3). Abstract syntax trees are represented by first-order prefix terms
(Section 2). To decrease the gap between the meta-program and the object program that
it transforms, syntax tree fragments can be described using the concrete syntax of the
object language (Section 4).

A transformation strategycombines a set of rules into a complete transformation
by ordering their application using control and traversal combinators (Section 5). An
essential element is the capability of defining traversals generically in order to avoid
the overhead of spelling out traversals for specific data types. The expressive set of
strategy combinators allows programmers to encode a wide range of transformation
idioms (Section 6). Rewrite rules are not the actual primitive actions of program trans-
formations. Rather these can be broken down into the more basic actions of matching,
building, and variable scope (Section 7). Standard rewrite rules are context-free, which
makes it difficult to propagate context information in a transformation. Scoped dynamic
rewrite rules allow the run-time generation of rewrite rules encapsulating context infor-
mation (Section 8).

A transformation toolwraps a composition of rules and strategies into a stand-alone,
deployable component, which can be called from the command-line or from other tools
to transform terms into terms (Section 10). The use of the ATerm format makes ex-
change of abstract syntax trees between tools transparent.

A transformation systemis a composition of such tools performing a complete
source-to-source transformation. Such a system typically consists of a parser and a
pretty-printer combined with a number of transformation tools. Figure 1 illustrates
such a composition. The XTC transformation tool composition framework supports
the transparent construction of such systems (Section 10).

Stratego/XT is designed such that artifacts at each of these levels of abstraction can
be named and reused in several applications, making the construction of transforma-
tion systems an accumulative process. The chapter concludes with a brief overview of
typical applications created using the framework (Section 12). Throughout the chap-
ter relevant Stratego/XT publications are cited, thus providing a bibliography of the
project.

2 Program Representation

Program transformation systems require a representation for programs that allows easy
and correct manipulation. Programmers write programs as texts using text editors. Some
programming environments provide more graphical (visual) interfaces for programmers
to specify certain domain-specific ingredients (e.g., user interface components). But
ultimately, such environments have a textual interface for specifying the details. Even if
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Fig. 1.Composition of a transformation system from tools.

programs are written in a ‘structured format’ such as XML, the representation used by
programmers generally is text. So a program transformation system needs to manipulate
programs in text format.

However, for all but the most trivial transformations, a structured rather than a tex-
tual representation is needed. Bridging the gap between textual and structured repre-
sentation requires parsers and unparsers. XT provides formal syntax definition with the
syntax definition formalism SDF, parsing with the scannerless generalized-LR parser
SGLR, representation of trees as ATerms, mapping of parse trees to abstract syntax
trees, and pretty-printing using the target-independent Box language.

2.1 Architecture of Transformation Systems

Program transformation systems built with Stratego/XT are organized as data-flow sys-
tems as illustrated by the data-flow diagram in Figure 1 which depicts the architecture of
an interpreter and a partial evaluator for Appel’s Tiger language. A program text is first
parsed bysglr, a generic scannerless generalized-LR parser taking a parse table and a
program as input, producing a parse tree. The parse tree is turned into an abstract syntax
tree byimplode-asfix. The abstract syntax tree is then transformed by one or more
transformation tools. In the example,tiger-desugar removes andtiger-ensugar
reconstructs syntactic sugar in a program,tiger-typecheck verifies the type correct-
ness of a program and annotates its variables with type information,tiger-eval is
an interpreter, andtiger-partial-eval is a partial evaluator. If the application of
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these transformations results in a program, as is the case with partial evaluation, it is
pretty-printed to a program text again bypp-tiger in the example.

2.2 Concrete Syntax Definition

Parsers, pretty-printers and signatures can be derived automatically from a syntax defi-
nition, a formal description of the syntax of a programming language. Stratego/XT uses
the syntax definition formalism SDF [22,34] and associated generators. An SDF defini-
tion is a declarative, integrated, and modular description ofall aspects of the syntax of
a language, including its lexical syntax. The following fragment of the syntax definition
for Tiger illustrates some aspects of SDF.

module Tiger-Statements

imports Tiger-Lexical

exports

lexical syntax

[a-zA-Z][a-zA-Z0-9]* -> Var

context-free syntax

Var ":=" Exp -> Exp {cons("Assign")}

"if" Exp "then" Exp "else" Exp -> Exp {cons("If")}

"while" Exp "do" Exp -> Exp {cons("While")}

Var -> Exp {cons("Var")}

Exp "+" Exp -> Exp {left,cons("Plus")}

Exp "-" Exp -> Exp {left,cons("Minus")}

The lexical and context-free syntax of a language are described using context-free pro-
ductions of the forms1 ... sn -> s0 declaring that the concatenation of phrases of
sorts1 to sn forms a phrase of sorts0. Since SDF is modular it is easy to make exten-
sions of a language.

2.3 Terms and Signatures

Parse trees contain all the details of a program including literals, whitespace, and com-
ments. This is usually not necessary for performing transformations. A parse tree is
reduced to anabstract syntax treeby eliminating irrelevant information such as lit-
eral symbols and layout. Furthermore, instead of using sort names as node labels,
constructorsencode the production from which a node is derived. For this purpose,
the productions in a syntax definition containconstructor annotations. For example,
the abstract syntax tree corresponding to the expressionf(a + 10) - 3 is shown in
Fig. 2. Abstract syntax trees can be represented by means ofterms. Terms are applica-
tionsC(t1,...,tn), of a constructorC to termsti, lists [t1,...,tn], strings"...",
or integersn. Thus, the abstract syntax tree in the example, corresponds to the term
Minus(Call(Var("f"), [Plus(Var("a"), Int("10"))]), Int("3")).

The abstract syntax of a programming language or data format can be described by
means of analgebraic signature. A signature declares for each constructor its aritym,
the sorts of its argumentsS1*...*Sm, and the sort of the resulting termS0 by means
of a constructor declarationc : S1*...*Sm → S0. A term can be validated against a
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module Tiger-Statements

signature

constructors

Assign : Var * Exp -> Exp

If : Exp * Exp * Exp -> Exp

While : Exp * Exp -> Exp

Var : String -> Exp

Call : String * List(Exp) -> Exp

Plus : Exp * Exp -> Exp

Minus : Exp * Exp -> Exp

Fig. 2.Signature and abstract syntax tree

Minus

Call Int

Var [] "3"

"f" Plus

Var Int

"a" "10"

signature by aformat checker[35].
Signatures can be derived automatically from syntax definitions. For each produc-

tion A1...An → A0{cons(c)} in a syntax definition, the corresponding constructor
declaration isc : S1*...*Sm → S0, where theSi are the sorts corresponding to the
symbolsAj after leaving out literals and layout sorts. Thus, the signature in Figure 2
describes the abstract syntax trees derived from parse trees over the syntax definition
above.

2.4 Pretty-Printing

After transformation, an abstract syntax tree should be turned into text again to be use-
ful as a program. Mapping a tree into text is the inverse of parsing, and is thus called
unparsing. When an unparser makes an attempt at producing human readable, instead
of just compiler parsable, program text, an unparser is called apretty-printer. Strat-
ego/XT uses the pretty-printing model as provided by the Generic Pretty-Printing pack-
age GPP [14]. In this model a tree is unparsed to a Box expression, which contains
text with markup for pretty-printing. A Box expression can be interpreted by different
back-ends to produce formatted output for different displaying devices such as plain
text, HTML, and LATEX.

3 Transformation Rules

After parsing produces the abstract syntax tree of a program, the actual transformation
can be applied to it. The Stratego language is used to define transformations on terms.
In Stratego, rewrite rules express basic transformations on terms.

3.1 Rewrite Rules

A rewrite rule has the formL : l -> r, whereL is the label of the rule, and the term
patternsl andr are its left-hand side and right-hand side, respectively. A term pattern

5



is either a variable, a nullary constructorC, or the applicationC(p1,...,pn) of an
n-ary constructorC to term patternspi. In other words, a term pattern is a term with
variables. A conditional rewrite rule is a rule of the formL : l -> r where s, with
s a computation that should succeed in order for the rule to apply. An example rule is
the following constant folding rule

EvalPlus : Plus(Int(i), Int(j)) -> Int(k) where <add>(i, j) => k

which reduces the addition of two constants to a constant by calling the library function
add for adding integers. Another example, is the rule

LetSplit : Let([d1, d2 | d*], e*) -> Let([d1], Let([d2 | d*], e*))

which splits a list of let bindings into separate bindings.

3.2 Term Rewriting

A rule L: l -> r applies to a termt when the patternl matchest, i.e., when the
variables ofl can be replaced by terms in such a way that the result is preciselyt.
Applying L to t has the effect of transformingt to the term obtained by replacing the
variables inr with the subterms oft to which they were bound during matching. For
example, applying ruleEvalPlus to the termPlus(Int(1), Int(2)) reduces it to
Int(3)

Term rewriting is the exhaustive application of a set of rewrite rules to a term
until no rule applies anywhere in the term. This process is also called normalization.
For example,Minus(Plus(Int(4), Plus(Int(1), Int(2))), Var("a")) is re-
duced toMinus(Int(7), Var("a")) under repeated application of ruleEvalPlus.

While exhaustive rewriting is the standard way that most rewriting engines apply
rewrite rules, in Stratego one has to define explicitly which rules to apply in a nor-
malization and according to which strategy. For example, a simplifier which applies a
certain set of rules using the standard innermost strategy is defined as:

simplify = innermost(EvalPlus + LetSplit + ...)

The mechanism behind this definition will be explained in Section 5.

4 Concrete Object Syntax

In the previous section we saw that rewrite rules can be used to define transformations
on abstract syntax trees representing the programs to be transformed, rather than on their
text-based representations. But the direct manipulation of abstract syntax trees can be
unwieldy for larger program fragments. Therefore, Stratego supports the specification
of transformation rules using theconcrete syntaxof the object language [40]. In all
places where normally a term can be written, a code fragment in the concrete syntax
of the object language can be written. For example, using concrete syntax, the constant
folding rule for addition can be expressed as:

EvalPlus : |[ i + j ]| -> |[ k ]| where <add>(i, j) => k
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instead of the equivalent transformation on abstract syntax trees on the previous page.
The use of concrete syntax is indicated by quotation delimiters, e.g.,. the|[ and]|
delimiters above. Note that not only the right-hand side of the rule, but also its matching
left-hand side can be written using concrete syntax.

In particular for larger program fragments the use of concrete syntax makes a big
difference. For example, consider the instrumentation rule

TraceFunction :

|[ function f(x*) : tid = e ]| ->

|[ function f(x*) : tid =

(enterfun(f); let var x : tid in x := e; exitfun(f); x end) ]|

where new => x

which adds calls toenterfun at the entry andexitfun at the exit of functions. Writ-
ing this rule using abstract syntax requires a thorough knowledge of the abstract syntax
and is likely to make the rule unreadable. Using concrete syntax the right-hand side can
be written as a normal program fragment with holes. Thus, specification of transforma-
tion rules in theconcrete syntaxof the object language closes the conceptual distance
between the programs that we write and their representation in a transformation system.

The implementation of concrete syntax for Stratego is completely generic; all as-
pects of the embedding of an object syntax in Stratego are user-definable including the
quotation and anti-quotation delimiters and the object language itself, of course. In-
deed in [40] a general schema is given for extending arbitrary languages with concrete
syntax, and in [20] the application of this schema to Prolog is discussed.

5 Transformation Strategies

In the normal interpretation of term rewriting, terms are normalized by exhaustively ap-
plying rewrite rules to it and its subterms until no further applications are possible. But
because normalizing a term with respect toall rules in a specification is not always de-
sirable, and because rewrite systems need not be confluent or terminating, more careful
control is often necessary. A common solution is to introduce additional constructors
and use them to encode control by means of additional rules which specify where and
in what order the original rules are to be applied. The underlying problem is that the
rewriting strategy used by rewriting systems is fixed and implicit. In order to provide
full control over the application of rewrite rules, Stratego makes the rewriting strategy
explicitandprogrammable[27,42,41]. Therefore, the specification of a simplifier using
innermost normalization in Section 3 required explicit indication of the rulesand the
strategy to be used in this transformation.

5.1 Strategy Combinators

There are many strategies that could potentially be used in program transformations,
including exhaustive innermost or outermost normalization, and single pass bottom-up
or topdown transformation. Instead of providing built-in implementations for each of
these strategies, Stratego provides basic combinators for the composition of strategies.
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Such strategies can be defined in a highly generic manner. Strategies can be param-
eterized with the set of rules, or in general, the transformation, to be applied by the
strategy. Thus, the specification of rules can remain separate from the specification of
the strategy, and rules can be reused in many different transformations.

Formally, astrategyis an algorithm that transforms a term into another term or
fails at doing so. Strategies are composed using the following strategy combinators:
sequential composition (s1 ; s2), determistic choice (s1 <+ s2; first try s1, only if
that failss2), non-deterministic choice (s1 + s2; same as<+, but the order of trying
is not defined1), guarded choice (s1 < s2 + s3; if s1 succeeds then commit tos2
elses3), testing (where(s); ignores the transformation achieved), negation (not(s);
succeeds ifs fails), and recursion (rec x(s)).

Strategies composed using these combinators can be named using strategy defini-
tions. A strategy definition of the formf(x1,...,xn) = s introduces a user-defined
operatorf with n strategy arguments, which can be called by providing itn argument
strategies asf(s1,...,sn). For example, the definition

try(s) = s <+ id

defines the combinatortry, which appliess to the current subject term. If that fails it
appliesid, the identity strategy, to the term, which always succeeds with the original
term as result. Similarly therepeat strategy

repeat(s) = try(s; repeat(s))

repeats transformations until it fails. Note that strategy definitions do not explicitly
mention the term to which they are applied; strategies combine term transformations,
i.e., functions from terms to terms, into term transformations.

5.2 Term Traversal

The strategy combinators just described combine strategies which apply transformation
rules at the roots of their subject terms. In order to apply a rule to a subterm of a subject
term, the term must be traversed. Stratego defines several primitive operators which
expose the direct subterms of a constructor application. These can be combined with
the operators described above to define a wide variety of complete term traversals.

Congruence operatorsprovide one mechanism for term traversal in Stratego. For
each constructorC there is a corresponding congruence operator, also denotedC. If C
is ann-ary constructor, then the corresponding congruence operator defines the strat-
egyC(s1,...,sn). Such a strategy applies only to terms of the formC(t1,...,tn).
It results in the termC(t′1,...,t

′
n), provided the application of each strategysi to

each termti succeeds with resultt′i. If the application ofsi to ti fails for anyi, then
the application ofC(s1,...,sn) to C(t1,...,tn) also fails. Congruences allow the
specification of data-type specific traversals such as

1 Using the+ operator amounts to declaring that the order in which the argument strategies are
tried does not matter and that the compiler is allowed to pick any order. This is typically the
case when two rules are mutually exclusive.
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map(s) = [] + [s | map(s)]

which applies a transformations to the elements of a list. Another example of the use
of congruences is the followingcontrol-flow strategy [29]

control-flow(s) = Assign(id, s) + If(s, id, id) + While(s, id)

which applies the argument strategys, typically a (partial) evaluation strategy, only to
selected arguments in order to defer evaluation of the others.

While congruence operators support the definition of traversals that arespecificto
a data type, Stratego also provides combinators for composinggeneric traversals. The
operatorall(s) appliess to each of the direct subtermsti of a constructor application
C(t1,...,tn). It succeeds if and only if the application ofs to each direct subterm
succeeds. In this case the resulting term is the constructor applicationC(t′1,...,t

′
n),

where each termt′i is obtained by applyings to ti. Note thatall(s) is the identity on
constants, i.e., on constructor applications without children. An example of the use of
all is the definition of the strategybottomup(s):

bottomup(s) = all(bottomup(s)); s

The strategy expression(all(bottomup(s)); s) specifies thats is first applied re-
cursively to all direct subterms — and thus to all subterms — of the subject term. If that
succeeds, thens is applied to the resulting term. This definition ofbottomup thus cap-
tures the generic notion of a bottom-up traversal over a term. Variations on this one-pass
traversal are defined by the following strategies:

topdown(s) = s; all(topdown(s))

alltd(s) = s <+ all(alltd(s))

oncetd(s) = s <+ one(oncetd(s))

Topdown(s) appliess throughout a term starting at the top.Alltd(s) appliess along
a frontier of a term. It tries to applys at the root, if that succeeds the transformation
is complete. Otherwise the transformation is applied recursively to all direct subterms.
Oncetd(s) is similar, but uses theone combinator to apply a transformation to ex-
actly one direct subterm. One-pass traversals such as shown above can be used in the
definition offixpoint traversals such asinnermost

innermost(s) = bottomup(try(s; innermost(s)))

which exhaustively applies a transformations starting with innermost terms.

6 Transformation Idioms

The explicit control over the rewriting strategy using strategy combinators admits a
wide variety of transformation idioms. In this section we discuss several such idioms to
illustrate the expressiveness of strategies.
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6.1 Cascading Transformations

The basic idiom of program transformation achieved with term rewriting is that ofcas-
cading transformations. Instead of applying a single complex transformation algorithm
to a program, a number of small, independent transformations are applied in combina-
tion throughout a program or program unit to achieve the desired effect. Although each
individual transformation step achieves little, the cumulative effect can be significant,
since each transformation feeds on the results of the ones that came before it.

One common cascading of transformations is accomplished by exhaustively apply-
ing rewrite rules to a subject term. In Stratego the definition of a cascading normaliza-
tion strategy with respect to rulesR1, ... ,Rn can be formalized using aninnermost
strategy:

simplify =

innermost(R1 <+ ... <+ Rn)

However, other strategies are possible. For example, the GHC simplifier [30] applies
rules in a single traversal over a program tree in which rules are applied both on the
way down and on the way up. This is expressed in Stratego by the strategy

simplify =

downup(repeat(R1 <+ ... <+ Rn))

downup(s) =

s; all(downup(s)); s

6.2 Staged Transformations

In staged computation, transformations are not applied to a subject term all at once,
but rather in stages. In each stage, only rules from some particular subset of the entire
set of available rules are applied. In the TAMPR program transformation system [5,6]
this idiom is calledsequence of normal forms, since a program tree is transformed in a
sequence of steps, each of which performs a normalization with respect to a specified
set of rules. In Stratego this idiom can be expressed directly as

simplify =

innermost(A1 <+ ... <+ Ak)

; innermost(B1 <+ ... <+ Bl)

; ...

; innermost(C1 <+ ... <+ Cm)

Staged transformations can be applied fruitfully in combination with cascading
transformations: a transformation is expresssed as a sequence of stages, where each
stage is a cascading transformation. On the other hand, the steps in a staged transfor-
mation can use quite different idioms from one another, and can even involve complex
monolithic computations. The advantage of separating rules from strategies is particu-
larly compelling in this case of staged transformations. Since rules are defined indepen-
dently of the particular stages in which they are used, it is easy to reuse them in many
different stages.
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6.3 ‘Local’ Transformations

In conventional program optimization, transformations are applied throughout a pro-
gram. In optimizing imperative programs, for example, complex transformations are
applied to entire programs [28]. In GHC-style compilation-by-transformation, small
transformation steps are applied throughout programs. Local transformation is a style of
transformation that is a mixture of these ideas. Instead of applying a complex transfor-
mation algorithm to a program we use staged, cascading transformations to accumulate
small transformation steps for large effect. However, instead of applying transforma-
tions throughout the subject program, we often wish to apply them locally, i.e., only
to selected parts of the subject program. This allows us to use transformations rules
that would not be beneficial if applied everywhere. A typical strategy achieving such a
transformation follows the pattern

transformation =

alltd(

trigger-transformation

; innermost(A1 <+ ... <+ An)

)

The strategyalltd(s) descends into a term until a subterm is encountered for which
the transformations succeeds. In this case the strategytrigger-transformation
recognizes a program fragment that should be transformed. Thus, cascading transfor-
mations are applied locally to terms for which the transformation is triggered. Of course
more sophisticated strategies can be used for finding application locations, as well as
for applying the rules locally. Nevertheless, the key observation underlying this idiom
remains: Because the transformations to be applied are local, special knowledge about
the subject program at the point of application can be used. This allows the application
of rules that would not be otherwise applicable.

7 First-Class Pattern Matching

So far it was implied that the basic actions applied by strategies are rewrite rules. How-
ever, the distinction between rules and strategies is methodological rather than semantic.
Rewrite rules are just syntactic sugar for strategies composed from more basic transfor-
mation actions, i.e., matching and building terms, and delimiting the scope of pattern
variables [42,41]. Making these actions first-class citizens makes many interesting id-
ioms involving matching directly expressible.

To understand the idea, consider what happens when the following rewrite rule is
applied:

EvalPlus : Plus(Int(i), Int(j)) -> Int(k) where <add> (i, j) => k

First it matches the subject term against the patternPlus(Int(i), Int(j)) in the
left-hand side. This means that a substitution for the variablesi, andj is sought, that
makes the pattern equal to the subject term. If the match fails, the rule fails. If the match
succeeds, the condition strategy is evaluated and the result bound to the variablek. This
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binding is then used to instantiate the right-hand side patternInt(k). The instantiated
term then replaces the original subject term. Furthermore, the rule limits the scope of
the variables occurring in the rule. That is, the variablesi, j, andk are local to this rule.
After the rule is applied the bindings to these variables are invisible again.

Using the primitive actions match (?pat), build (!pat) and scope ({x1,...,xn:s}),
this sequence of events can be expressed as

EvalPlus =

{i,j,k: ?Plus(Int(i), Int(j)); where(!(i,j); add; ?k); !Int(k)}

The action?pat matchesthe current subject term against the patternpat, binding all its
variables. The action!pat builds the instantiation of the patternpat, using the current
bindings of variables in the pattern. The scope{x1,...,xn:s} delimits the scope of
the term variablesxi to the strategys. In fact, the Stratego compiler desugars rule
definitions in this way. In general, a labeled conditional rewrite rule

R : p1 -> p2 where s

is equivalent to a strategy definition

R = {x1,...,xn : ?p1; where(s); !p2}

with x1,...,xn the free variables of the patternsp1 andp2. Similarly, the strategy ap-
plication<s> pat1 => pat2 is desugared to the sequence!pat1; s; ?pat2. Many
other constructs such as anonymous (unlabeled) rules\ p1 -> p2 where s \, applica-
tion of strategies in buildInt(<add>(i,j)), contextual rules [35], and many others
can be expressed using these basic actions.

7.1 Generic Term Deconstruction

Another generalization of pattern matching isgeneric term deconstruction[36]. Nor-
mally patterns are composed offixedconstructor applicationsC(p1,...,pn), where
the constructor name and its arity are fixed. This precludes generic transformations
where the specific name of the constructor is irrelevant. Generic traversals provide a
way to transform subterms without spelling out the traversal for each constructor. How-
ever, with generic traversal the structure of the term remains intact. For analysis prob-
lems, an abstract syntax tree should be turned into a value with a different structure.
The term deconstructionpat1#(pat2) allows accessing the constructor and subterms
of a term generically.

As an example, consider the strategyexp-vars, which collects from an expression
all its variable occurrences:

exp-vars =

\ Var(x) -> [x] \

<+ \ _#(xs) -> <foldr(![], union, exp-vars)> xs \

foldr(z, c, f) =

[]; z

<+ \ [h | t] -> <c>(<f>h, <foldr(z, c, f)>t) \
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If the term is a variable, a singleton list containing the variable namex is produced.
Otherwise the list of subtermsxs is obtained using generic term deconstruction (the
underscore in the pattern is a wildcard matching with any term); the variables for each
subterm are collected recursively; and the union of the resulting lists is produced. Since
this is a frequently occuring pattern, thecollect-om strategy generically defines the
notion of collecting outermost occurrences of subterms:

exp-vars =

collect-om(?Var(_))

collect-om(s) =

s; \ x -> [x] \

<+ crush(![], union, collect-om(s))

crush(nul, sum, s) :

_#(xs) -> <foldr(nul, sum, s)> xs

Note howexp-vars is redefined by passing a pattern match tocollect-om.

8 Scoped Dynamic Rewrite Rules

Programmable rewriting strategies provide control over the application of rewrite rules.
But a limitation of pure rewriting is that rewrite rules are context-free. That is, a rewrite
rule can only use information obtained by pattern matching on the subject term or, in
the case of conditional rewriting, from the subterms of the subject term. Yet, for many
transformations, information from the context of a program fragment is needed. The
extension of strategies withscoped dynamic rewrite rules[37] makes it possible to
access this information.

Unlike standard rewrite rules in Stratego, dynamic rules are generated at run-time,
and can access information available from their generation contexts. For example, in
the following strategy, the transformation ruleInlineFun defines the replacement of a
function callf(a*) by the appropriate instantiation of the bodye1 of its definition:

DeclareFun =

?fdec@|[ function f(x1*) ta = e1 ]|;

rules(

InlineFun :

|[ f(a*) ]| -> |[ let d* in e2 end ]|

where <rename>fdec => |[ function f(x2*) ta = e2 ]|

; <zip(BindVar)>(x2*, a*) => d*

)

BindVar :

(FArg |[ x ta ]|, e) -> |[ var x ta := e ]|

The ruleInlineFun is generated byDeclareFun in the context of thedefinitionof the
functionf, but applied at thecall sitesf(a*). This is achieved by declaringInlineFun
in the scope of the match to the function definitionfdec (second line); the variables
bound in that match, i.e.,fdec andf, are inherited by theInlineFun rule declared

13



within therules(...) construct. Thus, the use off in the left-hand side of the rule
andfdec in the condition refer to inherited bindings to these variables.

Dynamic rules are first-class entities and can be applied as part of a global term
traversal. It is possible to restrict the application of dynamic rules to certain parts
of subject terms using rule scopes, which limit the live range of rules. For example,
DeclareFun andInlineFun as defined above, could be used in the following simple
inlining strategy:

inline = {| InlineFun

: try(DeclareFun)

; repeat(InlineFun + Simplify)

; all(inline)

; repeat(Simplify)

|}

This transformation performs a single traversal over an abstract syntax tree. First in-
lining functions are generated for all functions encountered byDeclareFun, function
calls are inlined usingInlineFun, and expressions are simplified using some set of
Simplify rules. Then the tree is traversed usingall with a recursive call of the in-
liner. Finally, on the way up, the simplification rules are applied again. The dynamic
rule scope{|L : s|} restricts the scope of a generated ruleL to the strategys. Of
course an actual inliner will be more sophisticated than the strategy shown above; most
importantly an inlining criterium should be added toDeclareFun and/orInlineFun
to determine whether a function should be inlined at all. However, the main idea will
be the same.

After generic traversal, dynamic rules constituted a key innovation of Stratego that
allow many more transformation problems to be addressed with the idiom of strategic
rewriting. Other applications of dynamic rules include bound variable renaming [37],
dead-code elimination [37], constant-propagation [29] and other data-flow optimiza-
tions, instruction selection [9], type checking, partial evaluation, and interpretation [19].

9 Term Annotations

Stratego uses terms to represent the abstract syntax of programs or documents. A term
consists of a constructor and a list of argument terms. Sometimes it is useful to record
additional information about a term without adapting its structure, i.e., creating a con-
structor with additional arguments. For this purpose terms can be annotated. Thus, the
results of a program analysis can be stored directly in the nodes of the tree.

In Stratego a term always has a list of annotations. This is the empty list if a term
does not have any annotations. A term with annotations has the formt{a1,...,am},
wheret is a term as defined in Section 2, theai are terms used as annotations, and
m ≥ 0. A termt{}with an empty list of annotations is equivalent tot. Since annotations
are terms, any transformations defined by rules and strategies can be applied to them.

The annotations of a term can be retrieved in a pattern match and attached in a
build. For example the build!Plus(1, 2){Int} will create a termPlus(1, 2) with
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the termInt as the only annotation. Naturally, the annotation syntax can also be used
in a match:?Plus(1, 2){Int}. Note however that this match only acceptsPlus(1,
2) terms with just one annotation, which should be the empty constructor application
Int. This match will thus not allow other annotations. Because a rewrite rule is just
sugar for a strategy definition, the usage of annotations in rules is just as expected. For
example, the rule

TypeCheck : Plus(e1{Int}, e2{Int}) -> Plus(e1, e2){Int}

checks that the two subterms of thePlus have annotationInt and then attaches the
annotationInt to the whole term. Such a rule is typically part of a typechecker which
checks type correctness of the expressions in a programandannotates them with their
types. Similarly many other program analyses can be expressed as program transfor-
mation problems. Actual examples in which annotations were used include escaping
variables analysis in a compiler for an imperative language, strictness analysis for lazy
functional programs, and bound-unbound variables analysis for Stratego itself.

Annotations are useful to store information in trees without changing their signa-
ture. Since this information is part of the tree structure it is easily made persistent for
exchange with other transformation tools (Section 10). However, annotations also bring
their own problems. First of all, transformations are expected to preserve annotations
produced by different transformations. This requires that traversals preserve annota-
tions, which is the case for Stratego’s traversal operators. However, when transforming
a term it is difficult to preserve the annotations on the original term since this should be
done according to the semantics of the annotations. Secondly, it is no longer straightfor-
ward to determine the equality relation between terms. Equality can be computed with
or without (certain) annotations. These issues are inherent in any annotation framework
and preclude smooth integration of annotations with the other features discussed; fur-
ther research is needed in this area.

10 Transformation Tools and Systems

A transformation defined using rewrite rules and strategies needs to be applied to actual
programs. That is, it needs to read an input program, transform it, and write an output
program. In addition, it needs to take care of command-line options such as the level
of optimization. The Stratego Standard Library provides facilities for turning a trans-
formation on terms into a transformation on files containing programs or intermediate
representations of programs.

ATerm Exchange FormatThe terms Stratego uses internally correspond exactly with
terms in the ATerm exchange format [7]. The Stratego run-time system is based on the
ATerm Library which provides support for internal term representation as well as their
persistent representation in files, making it trivial to provide input and output for terms
in Stratego, and to exchange terms between transformation tools. Thus, transformation
systems can be divided into small, reusable tools
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Foreign Function InterfaceStratego has a foreign function interface which makes it
possible to call C functions from Stratego functions. The operatorprim(f, t1, ..., tn)
calls the C functionf with term argumentsti. Via this mechanism functionality such as
arithmetic, string manipulation, hash tables, I/O, and process control are incorporated
in the library without having to include them as built-ins in the language. For example,
the definition

read-from-stream =

?Stream(stream)

; prim("SSL_read_term_from_stream", stream)

introduces an alias for a primitive reading a term from an input stream. In fact several
language features started their live as a collection of primitives before being elevated to
the level of language construct; examples are dynamic rules and annotations.

Wrapping Transformations in ToolsTo make a transformation into a tool, the Stratego
Standard Library provides abstractions that take care of all I/O issues. The following
example illustrates how asimplify strategy is turned into a tool:

module simplify

imports lib Tiger-Simplify

strategies

main = io-wrap(simplify-options, simplify)

simplify-options =

ArgOption("-O", where(<set-config> ("-O", <id>)),

!"-O n Set optimization level (1 default)")

Themain strategy represents the tool. It is defined using theio-wrap strategy, which
takes as arguments the non-default command-line options and the strategy to apply.
The wrapper strategy parses the command-line options, providing a standardized tool
interface with options such as-i for the input and-o for the output file. Furthermore,
it reads the input term, applies the transformation to it, and writes the resulting term to
output. Thus, all I/O complexities are hidden from the programmer.

Tool Collections Stratego’s usage of the ATerm exchange format and its support for
interface implementation makes it very easy to make small reusable tools. In the spirit
of the Unix pipes and filters model, these tools can be mixed and matched in many dif-
ferent transformation systems. However, instead of transforming text files, these tools
transform structured data. This approach has enabled and encouraged the construction
of a large library of reusable tools. The core library is the XT bundle of transformation
tools [17], which provides some 100 more or less generic tools useful in the construction
and generation of transformation systems. This includes the implementation of pretty-
printing formatters of the generic pretty-printing package GPP [14], coupling of Strat-
ego transformation components with SDF parsers, tools for parsing and pretty-printing,
and generators for deriving components of transformation systems from a syntax defi-
nition. A collection of application-specific transformation components based on the XT
library is emerging (see Section 12).
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io-tiger-pe =

xtc-io-wrap(tiger-pe-options,

parse-tiger

; tiger-desugar

; tiger-partial-eval

; if-switch(!"elim-dead", tiger-elim-dead)

; if-switch(!"ensugar", tiger-ensugar)

; if-switch(!"pp", pp-tiger)

)

tiger-partial-eval =

xtc-transform(!"Tiger-Partial-Eval", pass-verbose)

...

Fig. 3.Example transformation tool composition.

Transformation Tool CompositionA transformation system implements a complete
source-to-source transformation, while tools just implement an aspect. Construction of
complete transformation systems requires the composition of transformation tools. For
a long time composition of transformation tools in XT was done using conventional
means such as makefiles and shell scripts. However, these turn out to cause problems
with determining the installation location of a tool requiring extensive configuration,
transforming terms at the level of the composition, and poor abstraction and control
facilities.

The XTC model for transformation tool composition was designed in order to al-
leviate these problems. Central in the XTC model is a repository which registers the
locations of specific versions of tools. This allows a much more fine-grained search
than is possible with directory-based searches. A library of abstractions implemented
in Stratego supports transparently calling tools. Using the library a tool can be applied
just like a basic transformation step. All the control facilities of Stratego can be used
in their composition. Figure 3 illustrates the use of XTC in the composition of a par-
tial evaluator from transformation components, corresponding to the right branch of the
data-flow diagram in Figure 1.

11 Stratego/XT in Practice

The Stratego language is implemented by means of a compiler that translates Strat-
ego programs to C programs. Generated programs depend on the ATerm library and
a small Stratego-specific, run-time system. The Stratego Standard Library provides a
large number of generic and data-type specific reusable rules and strategies. The com-
piler and the library, as well as number of other packages from the XT collection
are bundled in the Stratego/XT distribution, which is available from www.stratego-
language.org [43] under the LGPL license. The website also provides user documenta-
tion, pointers to publications and applications, and mailinglists for users and developers.
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12 Applications

The original application area of Stratego is the specification of optimizers, in particular
for functional compilers [42]. Since then, Stratego has been applied in many areas of
language processing:

– Compilers: typechecking, translation, desugaring, instruction selection
– Optimization: data-flow optimizations, vectorization, ghc-style simplification, de-

forestation, domain-specific optimization, partial evaluation, specialization of dy-
namic typing

– Program generators: pretty-printer and signature generation from syntax defini-
tions, application generation from DSLs, language extension preprocessors

– Program migration: grammar conversion
– Program understanding: documentation generation
– Document generation and transformation: XML processing, web services

The rest of this section gives an overview of applications categorized by the type of the
source language.

Functional LanguagesSimplification in the style of the Glasgow Haskell Compiler [30]
was the first target application for Stratego [42], and has been further explored for the
language Mondrian and recently in an optimizer for the Helium compiler. Other opti-
mizations for functional programs include an implemenation of the warm fusion algo-
rithm for deforestation of lazy functional programs [23], and a partial evaluator for a
subset of Scheme (similix) [32].

Imperative LanguagesTiger is the example language of Andrew Appel’s text book on
compiler construction. It has proven a fruitful basis for experimentation with all kinds
of transformations and for use in teaching [43]. Results include techniques for building
interpreters [19], implementing instruction selection (maximal munch and burg-style
dynamic programming) [9], and specifying optimizations such as function inlining [37]
and constant propagation [29].

These techniques are being applied to real imperative languages. CodeBoost [2] is a
transformation framework for the domain-specific optimization of C++ programs devel-
oped for the optimization of programs written in the Sophus style. Several application
generators have been developed for the generation of Java and C++ programs.

Transformation ToolsThe Stratego compiler is bootstrapped, i.e., implemented in Strat-
ego, and includes desugaring, implementation of concrete syntax, semantic checks, pat-
tern match compilation, translation to C, and various optimizations [24].

Stratego is used as the implementation language for numerous meta-tools in the
XT bundle of program transformation tools [17]. This includes the implementation of
pretty-printing formatters of the generic pretty-printing package GPP [14] and the cou-
pling of Stratego transformation components with SDF parsers.

Other LanguagesIn a documentation generator for SDL [16], Stratego was used to
extract transition tables from SDL specifications.
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XML and Meta-Data for Software DeploymentThe structured representation of data,
their easy manipulation and external representation, makes Stratego an atractive lan-
guage for processing XML documents and other structured data formats. For example,
the Autobundle system [15] computes compositions (bundles) of source packages by
analyzing the dependencies in package descriptions represented as terms and generates
an online package base from such descriptions. Application in other areas of software
deployment is underway. The generation of XHTML and other XML documents is also
well supported with concrete syntax for XML in Stratego and used for example in xDoc,
a documentation generator for Stratego and other languages.

13 Related Work

Term rewriting [33] is a long established branch of theoretical computer science. Sev-
eral systems for program transformation are based on term rewriting. The motivation
for and the design of Stratego were directly influenced by the ASF+SDF and ELAN lan-
guages. The algebraic specification formalism ASF+SDF [18] is based on pure rewrit-
ing with concrete syntax without strategies. Recently traversal functions were added to
ASF+SDF to reduce the overhead of traversal control [8]. The ELAN system [4] first in-
troduced the ideas of user-definable rewriting strategies in term rewriting systems. How-
ever, generic traversal is not provided in ELAN. The first ideas about programmable
rewriting strategies with generic term traversal were developed with ASF+SDF [27].
These ideas were further developed in the design of Stratego [42,41]. Also the gener-
alization of concrete syntax [40], first-class pattern matching [35], generic term decon-
struction [36], scoped dynamic rewrite rules [37], annotations, and the XTC component
composition model are contributions of Stratego/XT. An earlier paper [38] gives a short
overview of version 0.5 of the Stratego language and system, before the addition of
concrete syntax, dynamic rules, and XTC.

Other systems based on term rewriting include TAMPR [5,6] and Maude [11,10].
There are also a large number of transformation systems not based (directly) on term
rewriting, including TXL [12] and JTS [3]. A more thorough discussion of the common-
alities between Stratego and other transformation systems is beyond the scope of this
paper. The papers about individual language concepts cited throughout this paper dis-
cuss related mechanisms in other languages. In addition, several papers survey aspects
of strategies and related mechanisms in programming languages. A survey of strategies
in program transformation systems is presented in [39], introducing the motivation for
programmable strategies and discussing a number of systems with (some) support for
definition of strategies. The essential ingredients of the paradigm of ‘strategic program-
ming’ and their incarnations in other paradigms, such as object-oriented and functional
programming, are discussed in [25]. A comparison of strategic programming with adap-
tive programming is presented in [26]. Finally, the program transformation wiki [1] lists
a large number of transformation systems.
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14 Conclusion

This paper has presented a broad overview of the concepts and applications of the Strat-
ego/XT framework, a language and toolset supporting the high-level implementation of
program transformation systems. The framework is applicable to many kinds of trans-
formations, including compilation, generation, analysis, and migration. The framework
supports all aspects of program transformation, from the specification of transformation
rules, their composition using strategies, to the encapsulation of strategies in tools, and
composition of tools into systems.

An important design guideline in Stratego/XT is separation of concerns to achieve
reuse at all levels of abstractions. Thus, the separation of rules and strategies allows the
specification of rules separately from the strategy that applies them and a generic strat-
egy can be instantiated with different rules. Similarly a certain strategy can be used in
different tools, and a tool can be used in different transformation systems. This principle
supports reuse of transformations at different levels of granularity.

Another design guideline is that separation of concerns should not draw artificial
boundaries. Thus, there is no strict separation between abstraction levels. Rather the
distinctions between these levels is methodological and idiomatic rather than semantic.
For instance, a rule is really an idiom for a certain type of strategy. Thus, rules and
strategies can be interchanged. Similarly, XTC applies strategic control to tools and
allows calling an external tool as though it were a rule. In general, one can mix rules,
strategies, tools, and systems as is appropriate for the system under consideration, thus
making transformations compositional in practice. Of course one has to consider trade-
offs when doing this, e.g., the overhead of calling an external process versus the reuse
obtained, but there is no technical objection.

Finally, Stratego/XT is designed and developed as an open language and system.
The intial language based on rewriting of abstract syntax trees under the control of
strategies has been extended with first-class pattern matching, dynamic rules, concrete
syntax, and a tool composition model, in order to address new classes of problems. The
library has accumulated many generic transformation solutions. Also the compiler is
component-based, and more and more aspects are under the control of the programmer.

Certain aspects of the language could have been developed as a library in a general
purpose language. Such an approach, although interesting in its own right, meets with
the syntactic and semantic limitations of the host language. Building a domain-specific
language for the domain of program transformation has been fruitful. First of all, the
constructs that matter can be provided without (syntactic) overhead to the programmer.
The separation of concerns (e.g., rules as separately definable entities) that is provided
in Stratego is hard to achieve in general purpose languages. Furthermore, the use of the
ATerm library with its maximal sharing (hash consing) term model and easy persistence
provides a distinct run-time system not available in other languages. Rather than strug-
gling with a host language, the design of Stratego has been guided by the needs of the
transformationdomain, striving to express transformations in a natural way.

Symbolic manipulation and generation of programs is increasingly important in
software engineering, and Stratego/XT is an expressive framework for its implemen-
tation. The ideas developed in the project can also be useful in other settings. For exam-
ple, the approach to generic traversal has been transposed to functional, object-oriented,
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and logic programming [25]. This paper describes Stratego/XT at release 0.9, which is
not the final one. There is a host of ideas for improving and extending the language,
compiler, library, and support packages, and for new applications. For an overview, see
www.stratego-language.org.
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