On Rectangular Visibility

Mark H. Overmars and Derick Wood

RUU-CS-86-20

november 1986

‘Rijksuniversiteit Utrecht |

Vakgroep informatica

Budapestieen€ 3584 CD Utrecht

Corr. adres: Postbue 80.012 3508 TA Utecht
Teletoon 030-83 1454
Thq_: Netherlands

On Rectangular Visibility *

Mark H. Overmarst Derick Wood?
October 31, 1986

Abstract

Given a set of n points in the plane, two points are said to be
rectangular visible if the orthogonal rectangle with the two points as
opposite vertices has no other point of the set in its interior. In this
paper it is shown that all pairs of rectangular visible points in a set
of sise n can be determined in O(nlogn + k) time, where k is the
number of reported pairs, using O(n) space. Also, we consider the
query problem: Given a set V and an arbitrary point p, determine
those points in V that are rectangular visible from p. A dynamic data
structure is described that uses O(nlogn) space, has a query time of
O(k+1og® n) and an update time of O(log n). Additionally, we extend
the results to the 3-dimensional case.

Keywords and phrases: rectangular visibility; interval tree; mini-
mal elements; stabbing problem.

1 Introduction

We introduce the following notion of visibility.

Definition 1.1 Given a set of points V in the plane, o point p is said to be
rectangular visible from a point q with respect to V if and only if there ezists

an orthogonal rectangle R that contains both p and q, but no other point of
V.

*This work was carried out while the first author visited the University of Water-
loo. The first author was partially supported by The Netherlands Organisation for the
Advancement of Pure Research (ZWO). The second author was supported by a Natural
Sciences and Research Council of Canada Grant No. A-5692.

tDepartment of Computer Science, University of Utrecht, P.O. Box 80.012, 3508 TA
UTRECHT, The Netherlands.

#Department of Computer Science, University of Waterloo, WATERLOO, Ontario,
Canada N2L 3G1.

2 Overmars and Wood

PO, -8
: 1
po---- ,.-.?q !
: v ! '
b.-----t.-l H
...... -
P r

’ Fandiats B
RS 6-s .
. ¢ lr.b b"l . *
[[
....... ¥ . [S
........ e P goesee-e-

Figure 2: All points visible from p.

It is easy to see that p is rectangular visible from ¢ if and only if the
orthogonal rectangle with p and ¢ as opposite vertices does not contain any
other point from the set V. We will from now on use the term “see” when
we mean “is rectangular visible from”. See Figure 1 for an example in which
p sees ¢ but r does not see s. In Figure 2 all points in a set visible from
p are shown. The notion of rectangular visibility has been used before, for
example, (1] refer to rectangular visible as point separated. They prove that
the maximal number of separated pairs of points is n?/4+ n — 2, where n is
the size of the point set. Also, in the art gallery problem, Keil [4] has used
the notion of rectangular visibility.

In this paper we address the problem of computing pairs of points that
can see each other. We consider two different problems:

1. The all pairs problem. Given a set of points V', determine all pairs of
points in V' that can see each other.

2. The query problem. Given a set of points V', how should it be rep-
resented such that, for a given point p, we can efficiently determine
which points (in V') p can see.

Note that the query problem is equivalent to finding the largest empty
orthogonal-convex orthogonal polygon containing p.

In Section 2 we consider the all pairs problem. We give an optimal
solution to the problem, that is, a solution that runs in O(k + logn) time

Rectangular Visibility 3

using O(n) space, where n is the number of points in the set and k is the
number of reported pairs. For this purpose we use a plane sweep algorithm.
In Section 3 we consider the query problem. A dynamic data structure is
given, based on a structure for maintaining maximal elements by (7], that
uses O(nlogn) space, has a query time of O(k + log? n), and has an update
time of O(log® n).

Next we consider the problem in three-dimensional space. Hence, we are
given a set of points in 3-dimensional space and we say two points p and
q are rectangular visible if there exists an orthogonal hyper-rectangle that
contains both points, but no other points of the set. Again, we consider
both the all pairs problem and the query problem.

In Section 4 we show that the all pairs problem in 3-dimensional space
can be solved in time O((n + k) log? n) time using O((n + k) log n) space. In
Section 5 we give a dynamic data structure for the query problem that uses
O(nlog? n) space, has a query time of O((k+ 1) log? n) and an insertion and
deletion time of O(log® n). '

Finally, in Section 6 we give some conclusions, extensions and open prob-
lems.

Throughout this paper we will assume that no two points lie on a hor-
izontal or vertical line. At the appropriate places, it is indicated how the
general case can be treated.

2 Solutions to the All Pairs Problem

To solve the all pairs problem we use a plane sweep approach. We move a
sweep line from left to right over the set of points. With the sweep line we
keep an interval tree (see [2,5,9]) that stores for each point that lies to the
left of the sweep line its so-called “visibility interval”. For a point p = (z, y)
its visibility interval at position ' of the sweep line (z' > z) is defined as
the interval [y;..ys] such that p can see each point (2, y’) with y) < ¢/ < yo.
See Figure 3 for an example.

It is obvious that for 2’ = z the visibility interval of p is [—oo.. + o0].
We will denote the visibility interval of p by V I,,.

We will now describe the algorithm in detail. The interval tree, associ-
ated with the sweep line will be denoted as T'.

1. Sort all points by z-coordinate, in this way creating the list of z-
positions, where the sweep line should stop.

2. Initialize an empty interval tree T'.

3. For each point p = (z,y) where the sweep line has to stop, do:

4 Overmars and Wood

0-----r'-|/- the visibility interval of p

P]

sweepline

Figure 3: The visibility interval of p.

re®¢oco=- r‘O' ----
i P "
' :
'
' [}
v
[PSP bocccnn@ = 4
VIg before Vig, after VIq before Vig after
passing p possing p possing p ' PSSP

Figure 4: How the visibilty intervals can be blocked.

(a) Search in T for all intervals VI, = [y14..y3,] that contain y. Re-
port all the pairs (p, q).

(b) For each of these points ¢, change VI, in the following way. If
y > y, (the y-value of ¢) V I := [y14..y], otherwise VI, := [y..yz,].

(c) Insert the interval VI, = [—o0.. + o0).

Let us first give an intuitive understanding why this algorithm is correct.
Clearly, all points ¢ with y € V I, can see p. This follows from the definition
of VI,. When the sweep line passes p, p will block the visible area for these
points ¢g. Figure 4 shows the two possible cases.

Theorem 2.1 The above algorithm correctly reports all pairs (p, q) sn which
p can see ¢, once and only once.

Rectangular Visibility 5

Proof: Note first that only pairs (p, q) with z; > z, are reported. Hence,
each pair is reported at most once.

i) If p can see g, (p, g) is reported (or (g,p)). Assume z, > z,. Because
p can see ¢, y, must be in V' I, when the sweep line stops at z,. Hence, the
query on the interval tree will report VI, and (g, p) is reported.

ii) i (p,) is reported, p can see ¢. Again, assume z, > z,. As (p,q) is
reported, yp, must be in V I, when the sweep line is at z,. From the definition
of V I, it follows that p can see g.

Both proofs assume that the intervals V I; are maintained correctly. This
immediately follows from the method; see also Figure 4. O

Theorem 2.2 Given a set of n points V, all pairs of points that can see
each other can be computed in O(n + k) logn) time using O(n) space, where
k is the number of reported pairs.

Proof: The sorting takes O(n logn) time. For each point we have to perform
a query and an insertion in the interval tree and for each answer we have
to change some interval, that is, insert an interval and delete one. The time
bound follows. '

The amount of space follows from the fact that the interval tree uses
linear space. OJ

When more points are allowed to lie on one horizontal or vertical line we
have to change the algorithm slightly. We again sort points by increasing z-
coordinate. All points with the same z-coordinate we treat simultaneously.
We first do Steps 8a and 3c for each of these points and next do Step 3b,
for all the intervals found. This does not affect the time and space bounds.

When k is small this solution is good, unfortunately k can be f(n?).
Hence, it is interesting to look at solutions in which the time complexity is
linear in the output size. To this end we design a new, in fact optimal, but
much more complicated solution to the problem. This solution is based on
the following lemma.

Lemma 2.3 Two vistbility intervals tn the interval tree either do not inter-
sect or one contains the other.

Proof: Assume not. Hence one interval contains only one endpoint of the
other; see Figure 5 for the situation.

There must have been some point ¢’ to the right of ¢ with y-value y,1
and there must have been some point p' to the right of p with y-value yps.
Now assume ¢ lies to the right of p. Then, also, ¢’ lies to the right of p.
Hence ¢' can be seen by p. As a result V I, can no longer contain y,; in its

6 Overmars and Wood

Yee
’.l
vrw
. 9
vi °

Figure 5: Visibility intervals cannot be incomparable.

\u “ ﬁ;
B3
ar

%»
Figure 6: y, goes left.

interior but it does. Therefore, we have a contradiction. The other cases
are similar. O

As a result, the intervals in the interval tree have some extra properties. For
example, all intervals stored at some internal node are all contained in one
another.

To make the solution clearer we make two sweeps over the point set
rather than one. In the first sweep we report only pairs (p,q) in which p
can see ¢ and g lies to the right and above p. In the second sweep, which is
completely symmetrical, we report the pairs in which ¢ lies below p.

We will only describe the first sweep. The method is exactly the same
as in our first solution except that in Step 3b we know that y > y, and,
hence, we always reduce the intervals to [yiq..y] and in Step 3c we insert
the interval VI, = [y,.. + oo] rather than [~co.. + co]. In fact, the visibility
intervals will always be bounded below by y,.

To obtain a better time bound we will take a closer look at the interval
tree and how we have to change the intervals. When we search in the tree
with y, (p is the point encountered by the sweep line) these are the possible
cases:

1. y, goes to the left son of an internal node; see Figure 6. As noted above
the intervals stored at a are nested. We store them in a simple list,
the largest element being the first one. Now, walking along the list we

Rectangular Visibility 7

d

| -

»
L
-

\“ o« E—ﬁ
—
]

* %

Figure 7: y, goes right.

report all segments with left endpoint less than or equal to y,. These
segments will have their right endpoint changed to y,. Hence, they can
no longer be stored at a. So we remove them from a and put them in
a list of intervals for which we have to find a new host. Clearly, the
intervals in this list are nested and we keep them in nested order. The
new intervals can be added at the bottom of the list. This can easily
be seen as follows: Assume there is an interval VI, in the list. Then
V1, was stored at a higher node in the tree. Let VI be the largest
segment stored at o that has to be put into the list. As VIy and VI,
have y, in common either V Iy contains V' I, or V I; contains V I;. We
show that the first situation cannot happen. As VI, was stored at a
higher node B, in the tree it contained ys and VI did not contain
ys. Hence, before the sweep line encountered p, V I, contained V I.
This clearly cannot have been changed by reaching p. This shows that
deleting the segments in Case (1) can be done in time proportional to
the number of segments.

2. y, goes to the right son of an internal node; see Figure 7. Again, we
walk along the list and report all intervals that contain yp. In all these
intervals we change the right endpoint to y,. Clearly, in this case, all
segments can stay at a and remain in the same order. Hence, nothing
else remains to be done.

After we have done this using O(#(answers)) time we have reported
all answers and have changed all intervals. We are only left with a list of
intervals, all with right endpoint yp, that have to be inserted in the tree.
To insert these intervals we again walk down the tree. It is easy to see that
all the intervals will have to be stored at nodes on the search path of y, at
which y, turns to the right son. Note also that the further the points are
in the list, the deeper they.will come in the tree. At each node a we walk
simultaneous along the list and the list of intervals stored at o, inserting

8 Overmars and Wood

intervals at the right place. All intervals we look at in the list will be stored
at a (except for one). All intervals in the list of @ we look at must have
been reported at this moment. Hence, the total amount of time needed for
all the insertions adds up to O(logn + #(reported points)).

There is no need to worry about rebalancing, because all points, and,
hence, all endpoints of intervals, are known in advance. Therefore,we can

construct an empty skeleton structure before doing any processing (see
[2,5,9] for this technique).

Theorem 2.4 Given a set of n points in the place, all pairs of points that
can gee each other can be reported in O(nlogn + k) time using O(n) space,
where k is the number of reported pairs.

Proof: Follows from the above discussion. O

It is easy to do both sweeps over the point set simultaneously. Also there
is no need to search in the interval tree twice. As intervals only move down
nodes in the tree we can do the insertions while reporting the answers.

The situation of more points lying on a horizontal or vertical line can be
treated in the same way as stated above.

3 The Searching Problem

In this section we consider the problem of structuring a set of points in such
a way that, given a query point p, we can efficiently determine all points
that are rectangular visible from p. Let the query point p, be (zp,y,). We
describe only how to determine all points ¢ = (z4,y,) with z;, > z, and
Y¢ = yp that p can see. The points in the other quadrants can be treated
in a similar way. Let V' be the subset of points ¢ € V with z; > z, and
Yo 2 Yp. We say that a point r in V' is minimal, with respect to V', if there
is no point s in V' with z, < z, and y, < .

Lemma 3.1 Let V' be the subset of points g €V with z4 > z, and yg > yp.
The points in V visible from p are the points in V' that are minimal with
respect to V'.

Proof: See Figure 8 for an example. When ¢ € V' is minimal, the rectangle
between ¢ and p cannot contain any other point in V'. Hence, ¢ is visi-
ble. On the other hand, when ¢ is not minimal there must be a point from
V' and, hence, from V in this rectangle and, hence, ¢ is not visible from p. O

Because of this lemma, it suffices to determine those points in this quad-
rant that are minimal with respect to the points in the quadrant.

Rectangular Visibility 9

t
(]
]
"} L] L
b—-, *
t e []
-
L 22t
L i
— oo

Figure 8: p sees minimal points.

We will first solve a subproblem. Let V' be a set of points in the plane,
we want to store them such that the following query problem can be solved
efficiently: Given a vertical line L, letting V' be the set of points to the right
of L, determine all points in V' that are minimal (with respect to V). To
solve this problem we store all points in a balanced binary search tree T,
sorted with respect to their z-coordinate. To each internal node a of T we
associate a balanced binary search tree B, storing those points in T, (the
subtree of T' rooted at) that are minimal with respect to the set of points
in To. The points in B, are sorted in the order of their z-coordinate and,
hence, also in the order of their y-coordinate. See Figure 9 for an example.
It is clear that each point in the set is stored in at most O(log n) associated
structures. Hence, the amount of space required is O(nlogn).

To perform a query with a line L with z-coordinate z, search with zy
in T. Let ay,...,; be the nodes that are right sons of nodes on the search
path towards zz, but are not on the search path themselves; see Figure 10
for an example. Clearly, the points in the subtrees Th,,..., T, together
contain each point to the right of z; exactly once. Hence, we can restrict
our attention to them. Moreover, it can easily be seen (see Figure 11) that
each answer to the query must be a minimal element in its own subset.

Hence, we only have to look at the elements in B,,,...,B,,. Let us first
look at By, .

Now, all points in B,; are minimal, since their z-coordinates are less
than the z-coordinates of all points in By, ;) ... Ba,. Hence, they can be
reported. Let g; be the lowest such point. Now look at B,,_,. All points in
By,,_, that are lower than ¢; are minimal and can be reported. This can be
done by a reverse inorder traversal of B, ;_, until a point above g; is reached.
Let g;—1 be the lowest point found in B,,_; (¢:-1 = ¢; if no point is found).
We continue this process in B, _,, etc. In this way all points are found in
the time O(logn + k), where k is the number of answers.

Overmars and Wood

;,{/ﬁ -
-

Rectangular Visibility 11

Figure 11: Answers are minimal elements.

Lemma 3.2 LetV be a set of n points in the plane. We can represent them
tn a structure that requires O(nlogn) space, such that those points in V that
lie to the right of a vertical line L and are also minimal can be reported in
O(logn + k) time.

Proof: Follows from the above discussion. O

By a simple variation we can restrict our attention to points with z-
coordinate less than or equal to z. To this end we first determine the
subtree T,; that z lies in. In o,...,a;4) we report the answers as we did
above. However, in B, ; We first search with z. We then perform reverse
postordewr traversals of the subtrees hanging to the left of the search path
from the frontier upwards. Again, we report points as long as they lie below
gj+1. The points on the search path are dealt with on a case by case basis.
This solves the problem in the same time bounds.

To solve the original problem, we store all points in a balanced binary
tree S, ordered by y-coordinate. With each internal node a we associate a
structure T as described above, containing all points in the subtree rooted
at a. Clearly, this structure takes O(n log? n) space.

To perform a query with a point p = (z;, y,) we search with y, in S. Let
ai, ..., be those nodes that are right sons of nodes on the search path,
but are not on the search path themselves. Clearly, the subtrees S,,, ..., S,
together contain all points above p. For each a; we determine the leftmost
point gj, in Sy; that lies to the right of p. If z,,_, > zg;, then g;_; := g;.
These points can be determined in O(logn) time for each a; by searching
with z, in the associated structure. It is easy to see that a point ¢ in Sa; is
visible if and only if z; < z,,,, 2, 2 Z,, and ¢ is minimal in the set of points
in S,; that lie to the left of p. To find these points we use the structure

12 Overmars and Wood

described above that performs such a query in time O(log n + #(answers)).
We have to perform O(log n) such queries. Hence, the total amount of time
required is O(log?n + k).

Theorem 8.3 Given a set of n points in the plane, we can represent them
in a structure requiring O(nlog? n) space, such that those points that are
rectangular visible from a gquery point p can be determined in O(k + log? n)
time, where k is the number of reported points.

Proof: Follows from the above discussion. O

This structure is static. We will change it slightly to make it dynamic and
at the same time reduce the amount of space required.

We will, again, first look at the restricted problem of determining all
points that are minimal at the right of a vertical line L. {7] describe a struc-
ture for dynamically maintaining the maximal elements of a set of points
in O(log? n) update time using O(n) space. The structure can, of course,
also be used to store the minimal elements. It is almost the same as the
structure T described above. The only difference is that the root of T', B,
contains all the minimal elements. At each other internal node « only those
minimal elements are stored that are not minimal elements at the father
of . In this way, each point is stored only once and, hence, the space is
linear. In [7] it is shown that it is possible to search in this tree in O(logn)
time, reconstructing the structures B, at each node a bordering the search
path. Moreover, one can insert or delete a point and restructure the tree in
O(log? n) time.

When we want to perform a query on such a tree with a line L at z7 we
search with z, restoring the structures B, bordering the search path. In this
way, the structures B,; that we have to query are all available. We report
the correct points in these structures and, next, walk upwards to restore the
tree to its original shape. As we do not perform an update, this takes only
O(logn) time. Hence, the query time is O(logn + #(answers)). Performing
an insertion or deletion is described in [7] and takes O(log? n) time.

To solve the rectangular visibility problem we build a BB|a]-tree holding
the points sorted by y-coordinate. With each internal node we associate a
structure as described above. Queries are performed in the same way as
in the static case. To perform an update we search with the given point p
in the tree. For each node on the search path we insert or delete p in the
associated structure. Next we insert or delete p in the main tree. Keeping
the tree balanced can be done using the techniques of [10], for example.

Theorem 3.4 Given a set of n points, the rectangular visibility query prob-
lem can be solved dynamically using O(nlog? n) space, with a query time of

Rectangular Visibility 13

O(k + log? n), and an update time of O(log® n), where k is the number of
reported points.

It is possible to reduce the update time at the cost of an increase in the query
time. To this end we use a structure for range queries by [3]. This structure
requiring O(n logn) space has an insertion and deletion time of O(log? n)
and range queries can be performed in O(k + logn) time. The structure
can be used to solve the following query problem in O(logn) time: Given a
vertical line segment, determine the first point to be hit when moving the
line segment to the right.

We can now solve the visibility problem in the following way: store all
the points in such a structure. To perform a query, start with the vertical
line through the query point and move it to the right. In O(logn) time the
first point to be hit can be determined. This shrinks the line on one side.
The obtained line segment is again moved to the right until it hits a point,
etc. In the same way the line is moved to the left. In this way all k points
that can be seen are found in O((1 + k) logn) time.

Theorem 3.5 Give a set of n points, the rectangular visibility query prob-
lem can be solved dynamically using O(nlogn) space and having a guery
time of O((1 + k)logn) and an update time of O(log? n), where k is the
number of reported answers.

When £k is small, this method is better than the one described above.

4 Rectangular Visibility in 3 Dimensions

We will now concentrate on the 3-dimensional case. Hence, we are given a
set V of n points in 3-dimensional space and we ask for all pairs p,ge V
such that the hyper-rectangle with p and ¢ as opposite vertices contains no
other points in V. The technique we use is similar to the one described in
Section 2. We perform a space sweep with a plane in the positive z-direction
over the set of points. For each point p that has been passed, we keep track
of its visibility area, that is, the area on the sweep plane such that any point
in this area is rectangular visible from p. Initially, when the sweep plane is
at p, its visibility area is the whole sweep plane. After passing more points,
the visibility area looks like Figure 12. To simplify the description of the
method we only consider points that lie to the left and above p. The other
points can be found in a similar way. The visibility area of p now looks as
shown in Figure 13. To store the visibility area we split it into a number
of overlapping rectangles: R, is the rectangle with p as bottom left corner
that goes up to infinity, R, is the rectangle that goes to the right to infinity

14 Overmars and Wood

Figure 12: The visibility area of p.

Figure 13: The visibility area of p in the positive quadrant.

T

Figure 14: Storing the visibility area.

Rectangular Visibility 15

It
b

P+

Figure 15: Modifying the visibility area.

(see Figure 14) and Ry, ..., R;, are the rectangles that have p and ¢y,...,¢
as vertices.

We store all these rectangles, for all points passed by the sweep plane,
in one 2-dimensional stabbing tree, that is, a structure that holds a set of
rectangles such that for a given point p we can efficiently determine which
rectangles contain p. Such a tree exists and it uses O(nlogn) space, has a
query time of O(log? n+k), and update time O(log? n) when the set contains
n rectangles. (In our application the set contains up to n + k rectangles,
where k is the total number of answers.)

When the sweep plane reaches a point ¢ we search with g in the stabbing
tree to determine the rectangles it contains. With each rectangle we keep
track of which visibility area it is a part of, so that we can report the correct
pair of visible points. As the rectangles overlap we might report a pair more
than once, but this can be avoided. Next we have to update the visibility
areas. To this end we remove, from the stabbing tree, all rectangles that
have been found. Because they contain g they are no longer completely part
of a visibility area. Instead we insert for each answer two new rectangles;
see Figure 15. These rectangles are, first, the rectangle with p as its leftmost
bottommost point, ¢ on the right boundary, and as top boundary the top
boundary of the highest rectangle found and, second, the rectangle with
p as its leftmost bottommost point, ¢ on the top boundary, and as right
boundary the right boundary of the rightmost rectangle. It is easy to see
that in this way the set of rectangles is maintained correctly.

Theorem 4.1 Given a setV of n points in S-dimensional space, all pairs of
rectangular visible points can be determined in O((n + k) log? n) time using
O((n + k) logn) space.

Proof: With each rectangular visible pair found we insert two rectangles.
Moreover, for each point encountered by the sweep plane we insert a rectan-
gle, perform a query, and remove some rectangles. Hence, the total number
of rectangles that are inserted is O(n + k) and the total insertion time is

16 Overmars and Wood

O((n+k) log? n). The same holds for the total deletion time. The total time
required for queries is O(nlog? n), because there are n queries. The space
bound follows from the maximal number of rectangles. (Of course we have
to execute the algorithm four times, once for each quadrant.) O

Unfortunately, the algorithm does not generalize to multi-dimensional space
in an easy way.

5 The Query Problem in 3-Dimensional Space

We now consider the query problem in 3-dimensional space. Given a point
p = (z,y, 2) we will only show how to determine those points g = («,¢,2)
that are visible from p with 2’ > 2, y > y, and 2’ > 2. The points in the
seven other octants can be found in a similar way. To solve the problem we
need the following theorem.

Theorem 5.1 Given a set of n points in S-dimensional space, we can store
them using O(nlog? n) space, such that, given an orthogonal rectangle, par-
allel to the zy-plane, we can determine in O(log? n) time the first point we
hit when moving the rectangle in the positive z-direction. The structure is
dynamic and has an update time of O(log® n).

Proof: This can be done using the 3-dimensional version of the structure
for range searching in [3]. D

To solve the visibility problem we store all points in this structure. To
perform a query with a point p = (z,y, z) we start with the rectangle given
by [z..+00, y..+00] at position z and move it in the positive z-direction until
it hits a point ¢) = (21, y1, #21). We report this point and “split” the rectangle
into two rectangles: Ry = [z..z5,y..+00] and R; = [z5..+00,y..y1]. Now, we
move these two rectangles until one of them hits a point ¢; = (z3,y3, 23). If
z3 2 z1, then we split R; into [2..23,y..y1] and [z3..+ 00, y..ys]. Otherwise,
that is, z; < z;, we need to modify both R, and R;. R, is replaced by
the rectangle [z..z3,y.. + oo] and R; by the rectangle [z3.. + 00, y..y2]. We
move the remaining rectangles until they hit a point, repeating the process
until no new points are hit. The union of the rectangles always forms the
visibility area of p (in this octant) at the current z-position; see Figure 16.
After some time a newly hit point may cause a drastic modification of the set
of rectangles. For example, consider the before and after pictures of Figure
17 and Figure 18 on hitting point ¢; with z; < z;. The only rectangles that
are not modified are those to the left of ¢; and those to the right of ¢;, that
have y-value less than y;. The rectangle that g; lies in is split and the others
are thrown away.

Rectangular Visibility 17

R
1| R,

R
3| Re| Ry

Figure 16: The union of rectangles is the visibility area.

Figure 17: Before hitting g¢;.

Hence, all points that are visible from p and lie in this octant are correctly
reported.

Theorem 5.2 There exists a structure for storing a set of n points in S-
dimensional space, using O(nlog? n) space, such that rectangular vistbility
gqueries can be solved in time O((1 + k) log® n), where k s the number of
reported answers. The insertion and deletion time is O(log® n).

Proof: The amount of space required and the insertion and deletion time
follow from the preceding theorem. So we only have to prove the bound
on the query time. Note that each time we find an answer, the number of
query rectangles increases by at most two. To estimate the total amount of
time required we have to look at the total number of queries with rectangles.
There is at least a first one. Next, when we find an answer, we split one

18 Overmars and Wood

Figure 18: After hitting g¢;.

rectangle into two and perform a query with each of these two new rect-
angles. Also, we have, perhaps, to modify other rectangles. When we find
another point we again split a rectangle and perform two new queries, etc.
Therefore, to obtain a rapid query time, we have to provide an efficient im-
plementation of the intuitive rectangle-sweep-and-split process introduced
above.

To find the first point that is hit by the set of rectangles, we perform a
separate query for each rectangle and store the answers in a priority queue,
say, with respect to their z-coordinates. Hence, performing 2 min query
produces the sought point. Now, this hit point causes one rectangle to split
and, perhaps, causes the removal of other rectangles. To determine which
rectangle is split and which are removed, we store the “active” hit points
and, hence, the rectangles, in a balanced binary search tree organized by
z-values, and perform suitable queries on it. To remove a rectangle, we
must delete it from the set of rectangles and remove its entry in the priority
queue. Therefore, we link rectangles in the search tree to their hit points in
the priority queue. The split rectangle is also removed and is replaced by
two new rectangles. We must add these to the set of rectangles, find their
hit points, and insert them into the priority queue. Finally, we need eight
such structures rather than one, one for each octant defined by the query
point.

Observe that each hit point introduces at most two new rectangles and
each rectangle determines at most one hit point before it is either split or
removed. We charge a rectangle’s removal to the hit point that created it in
the first place. Now, finding a hit point requires O(log? n) time by Theorem
5.1 and by noting that the other costs mentioned above are O(logn). Hence,

Rectangular Visibility 19

because the total number of queries is 1 + 2k (per octant) and each query
takes O(log? n) time, the total query time follows immediately. O

Unfortunately, the query time is highly dependent on the number of answers.
A structure with a query time that is only linear in the number of answers
would be desirable but is unavailable at present.

6 Conclusions, Extensions, and Open Problems

In this paper we have introduced a new notion of visibility, rectangular iss-
bility, and we have given a number of algorithms and data structures to deal
with it. Although related to many other rectangle problems, rectangular
visibility seems to be harder because the visibility of two points is a global
property of the whole set, rather than a local property of the two points.
Nevertheless, an optimal solution was devised for finding all pairs of visible
points in a set, using a plane sweep approach and some special techniques
for performing updates in an interval tree. Also, an efficient solution for the
query problem was given, based on a structure for maintaining maximal el-
ements in [7]. In the 3-dimensional case the problem really becomes harder.
Again solutions have been given, but their efficiency depends on the number
of visible pairs.

Rectangular visibility can be extended and restricted in many ways. In
[6] the special case in which the rectangle is a square is handled. Rectangular
visibility is a special case of connectivity as introduced in [8]. In [8] a num-
ber of extensions and generalizations are treated, for example, rectangular
visibility in a set of line segments.

A large number of open problems remain. First of all, most of the
bounds stated in this paper are not (proven to be) optimal. Hence, there is
the question of improving the bounds, especially in the 3-dimensional case
it would be interesting to have bounds that are only linearly dependent on
the number of answers. Second, there is the question of solutions in higher
dimensional space. The methods described for 2- and 3-dimensional space do
not generalize to multi-dimensional space. The reason is that encountering
an answer changes the visibility “area” for a point in quite a drastic way,
therefore other techniques have to be developed.

An obvious extension to the notion of rectangular visibility is that three
or more points are said to be rectangular visible if there is a rectangle that
contains all of them and no other points. Many more extensions and open
problems can be found in [8].

20 Overmars and Wood

References

[1] N. Alon, Z. Fiiredi, and M. Katchalski. Separating pairs of points by
standard boxes. European Journal of Combinatorics, 6:205-210, 1985.

[2] J.L. Bentley and D. Wood. An optimal worst case algorithm for re-
porting intersections of rectangles. IEEE Transactions on Computers,
EC-29:571-576, 1980.

[3] H. Edelsbrunner. A note on dynamic range searching. Bulletin of
the European Association for Theoretical Computer Science, 15:34—40,
1981.

[4] 3.M. Keil. Minimally covering a horizontally convex orthogonal poly-
gon. In Proceedings of the Second ACM Symposium on Computational
Geometry, pages 43-51, 1986.

[5] K. Mehlhorn. Data Structures and Algorithms 8: Multi-Dimensional
Searching and Computational Geometry. Springer-Verlag, New York,
1984.

[6] J.I. Munro, M.H. Overmars, and D. Wood. Square Visibility. Technical
Report , Department of Computer Science, University of Waterloo,
1986.

[7] M.H. Overmars and J. van Leeuwen. Maintenance of configurations
in the plane. Journal of Computer and System Sciences, 23:166-204,
1981.

[8] M.H. Overmars and D. Wood. Connectivity and its Generalizations.
Technical Report , Department of Computer Science, University of Wa-
terloo, 1986.

[9] F.P. Preparata and M.1. Shamos. Computational Geometry. Springer-
Verlag, New York, 1985.

(10] D.E. Willard and G.S. Lueker. Adding range restriction capability to
dynamic data structures. Journal of the ACM, 32:597-617, 1985.

