
Designing a BSP version of ScaLAPACK�

Guy Horvitzy Rob H� Bisselingz

Abstract

The ScaLAPACK library for parallel dense matrix computations is built on top of
the BLACS communications layer� In this work� we investigate the use of BSPlib as the
basis for a communications layer� We examine the LU decomposition from ScaLAPACK
and develop a bulk synchronous parallel �BSP� version� For small problems� where
communication dominates� the BSP version is about ��� faster compared to the native
BLACS version and ��� compared to the MPI BLACS version� For large problems�
where computation dominates� the di	erences are less pronounced� but the BSP version
is still slightly faster� We present the main features of a new library� BSP
D� which we
propose to develop for porting the whole of ScaLAPACK�

� Introduction

To obtain the highest performance in parallel computation both computation and commu�
nication must be optimised� LAPACK ��� has provided us with highly optimised implemen�
tations of state�of�the�art algorithms in the �eld of numerical linear algebra� in particular
for the solution of dense linear systems and eigensystems� Many years of e�ort have gone
into optimising LAPACK� and much of its success is due to the encapsulation of system�
dependent optimisations into the Basic Linear Algebra Subprograms 	BLAS
� LAPACK
is available for sequential computers� vector supercomputers� and parallel computers with
shared memory�

The ScaLAPACK ��� project aims to provide a scalable version of LAPACK for parallel
computers with distributed memory� Portability is ensured by building ScaLAPACK on top
of the Basic Linear Algebra Communication Subprograms 	BLACS
� The parallel e�ciency
depends critically on the communication performance achieved by this library and thus it
is natural to ask whether the performance can be further improved�

The bulk synchronous parallel 	BSP
 model �� views a parallel algorithm as a sequence
of supersteps� each containing computation and�or communication� followed by a global
synchronisation of all the processors� This imposes a discipline on the user� thus making
parallel programming simpler� but it also provides possibilities for system�level optimisation
such as combining and rescheduling of messages� This can be done because the superstep
provides a natural context for communication optimisation by the system� the user need
not be concerned about this�

�This work was supported in part by NCF� which provided computer time on the Cray T�E of the High

Performance Applied Computing centre at the Technical University of Delft�
yFritz Haber Research Center for Molecular Dynamics� Hebrew University� Jerusalem ������ Israel�

guyh�fh�huji�ac�il
zDepartment of Mathematics� Utrecht University� P�O� Box ������ �	�� TA Utrecht� The Netherlands�

Rob�Bisseling�math�uu�nl

�



�

A BSP computer can be characterised by four global parameters� p� the number of
processors� s� the computing speed in �op�s� g� the communication time per data element
sent or received� measured in �op time units� and l� the synchronisation time� also measured
in �ops� Algorithms can be analysed by using the parameters p� g� and l� the parameter s
just scales the time� The time of a superstep with both computation and communication
is w � hg � l� where w denotes the maximum amount of work 	in �ops
 of a processor�
and h is the maximum number of data elements sent or received by a processor� The total
execution time of an algorithm 	in �ops
 can be obtained by adding the times of the separate
supersteps� This yields an expression of the form a� bg� cl� In the following presentation�
we consider the architecture as an abstract BSP computer� and therefore we use the term
�processes� instead of �processors�� In our experiments� only one process executes on each
processor� so these terms may be used interchangeably�

BSPlib ��� is a proposed standard which makes it possible to program directly in BSP
style� BSPlib is an alternative to PVM ��� and MPI ���� It provides both direct remote
memory access 	i�e�� one�sided communications such as put and get
� and bulk synchronous
message passing�

BSPPACK ��� is a prototype application package built on top of BSPlib� It is a research
and educational library which contains parallel implementations of algorithms for sparse
and dense linear system solution� fast Fourier transforms� and other scienti�c computations�

The aim of the present work is to answer the question� can ScaLAPACK be ported
to BSPlib and does this improve performance� This may indeed be the case� because we
expect ScaLAPACK to bene�t from ideas developed within the context of BSPPACK and
from the excellent implementation of BSPlib available as the Oxford BSP toolset ���� Here�
we limit ourselves to investigating the ScaLAPACK LU decomposition subroutine PSGETRF�

The design philosophy of ScaLAPACK is to use a hierarchy of software layers� The
top of the pyramid is ScaLAPACK itself� which calls the Parallel BLAS 	PBLAS
� The
PBLAS use the BLAS for single�process linear algebra computations and the BLACS for
communication� The BLACS can be built on top of a basic communications layer such as
MPI or PVM� The BLACS perform communication at a higher level� they send complete
matrices of all types and they allow us to view the processes as a two�dimensional grid and
to perform operations within the scope of a process row or column� or the complete grid�

The data distribution of ScaLAPACK is the two�dimensional block�cyclic distribution
with a user determined block size nb� Another parameter is the algorithmic block size
nb�� The algorithms in the sequential package LAPACK handle complete blocks of size nb��
ScaLAPACK structures its algorithms in the same way� but it imposes nb� � nb� We make
the same choice for reasons of convenience� but in our case it is straightforward to relax
this constraint to nb� � nb� we shall discuss this later�

Since the communication in ScaLAPACK is isolated in the BLACS it would be the
most natural choice to construct a BLACS version based on BSPlib� A straightforward
BSPlib implementation of the BLACS� however� would be impossible for di�erent reasons�
one important reason is the following� The BLACS include pair�wise message passing for
communication where the receiver has to wait for the data to arrive in order to continue�
The sender can continue as soon as the message is sent o�� In BSPlib� a message transfer is
completed only after the next global synchronisation� Suppose there is exactly one message
to be communicated and hence in the program there is one call to a BLACS send and
one to a BLACS receive� The processes that do not send or receive are not aware of
this communication and hence do not synchronise� thus violating the principle of global
synchronisation�



�

Forcing the user to synchronise globally between a send and a receive requires drastic
changes in both the syntax and the semantics of the BLACS subroutines� This would turn
the BLACS into a di�erent library� which could be called BSP�D� section � outlines how
such a library could be constructed in the future� The present work simply removes the
BLACS and adapts ScaLAPACK and the PBLAS using direct calls to BSPlib� This alone
is not su�cient� it is also necessary to restructure ScaLAPACK and the PBLAS on the
basis of supersteps�

� BSP version of ScaLAPACK LU decomposition

Programming in BSPlib requires global synchronisation� For this reason� every process
should know when a global synchronisation is needed to perform a certain task� Sometimes�
a process also needs to know about resources 	such as bu�ers
 provided by remote processes�
Such knowledge can be transferred by communication� but this would be ine�cient�

Another approach would be to let all the processes call subroutines together and with
the same values for the scalar input parameters� This way� each process can deduce the
behaviour of the other processes� We adopted this approach for the PBLAS� For example�
consider the PBLAS subroutine PSSWAP which swaps two rows or columns of distributed
matrices� If the swap is local and no communication is needed� the processes do not
synchronise� Otherwise� all the processes perform one synchronisation� even if they do not
hold any of the related data and do not actively participate in the operation� All processes
can distinguish between the two situations� because they have the necessary information�

��� Unblocked LU decomposition and pivot search subroutines

An example of how a ScaLAPACK subroutine and a PBLAS should be altered� is shown in
the case of the ScaLAPACK subroutine PSGETF�� which performs an unblocked parallel LU
decomposition on a block of consecutive columns� it is called by the main LU decomposition
subroutine PSGETRF� The main part of the PSGETF� code is given in Fig� ��

In the original subroutine� the main loop 	DO �� � � � �� CONTINUE
 is executed only by
the process column IACOL that holds the block to be decomposed� After the decomposition�
the pivot indices IPIV�IIA��IIA�MN��� of that block are broadcast to the other process
columns by the sending subroutine IGEBS�D and the receiving subroutine IGEBR�D� This
structure is inherited from the PBLAS� Since the PBLAS subroutine PSAMAX� which �nds
the pivot of matrix column J� returns the result only to the processes of the process column
IACOL that holds J� the other processes cannot evaluate the singularity test GMAX�NE�ZERO�

We mentioned earlier that BSP based PBLAS should be called by all processes with
the same values for the scalar input parameters� The example of PSGETF� makes it clear
that scalar output parameters must be returned to all processes too� This way� GMAX and
the pivot index become available to all the processes so they can participate in the main
loop� and can call subsequent PBLAS together� as required� Inevitably� sending the output
scalars to all processes costs extra communication and synchronisation time�

An advantage of the changes in PSAMAX and PSGETF� is the ability to choose an
algorithmic block size that di�ers from the distribution block size� This is impossible
in the current version of ScaLAPACK� e�g� if nb� � �nb� then two process columns should
participate in the decomposition of one algorithmic block of columns� The subroutine
PSAMAX� however� returns its results only to the process column that holds matrix column J�



�

IF� MYCOL�EQ�IACOL � THEN DEL

DO �� J � JA� JA�MN	�

I � IA � J 	 JA





 Find pivot and test for singularity�

CALL PSAMAX� M	J�JA� GMAX� IPIV� IIA�J	JA �� A� I� J�

� DESCA� � �

IF� GMAX�NE�ZERO � THEN





 Apply the row interchanges to columns JA�JA�N	�

CALL PSSWAP� N� A� I� JA� DESCA� DESCA� M �� A�

� IPIV� IIA�J	JA �� JA� DESCA� DESCA� M � �





 Compute elements I���IA�M	� of J	th column�

IF� J	JA���LT�M �

� CALL PSSCAL� M	J�JA	�� ONE � GMAX� A� I��� J�

� DESCA� � �

ELSE IF� INFO�EQ�� � THEN

INFO � J 	 JA � �

END IF





 Update trailing submatrix

IF� J	JA���LT�MN � THEN

CALL PSGER� M	J�JA	�� N	J�JA	�� 	ONE� A� I��� J� DESCA�

� �� A� I� J��� DESCA� DESCA� M �� A� I���

� J��� DESCA �

END IF

�� CONTINUE




CALL IGEBS�D� ICTXT� �Rowwise�� ROWBTOP� MN� �� IPIV� IIA �� DEL

� MN � DEL

ELSE DEL

CALL IGEBR�D� ICTXT� �Rowwise�� ROWBTOP� MN� �� IPIV� IIA �� DEL

� MN� MYROW� IACOL � DEL

END IF DEL

Fig� �� Main part of PSGETF� source code� Lines marked by DEL are deleted in the BSP version�

��� Collective communication subroutines

Sometimes� we need subroutines to perform collective communications such as broadcasts
or reductions� In our case� we need to broadcast data within a process row 	or column
�
and perform this operation for all process rows simultaneously� The method adopted for
the PBLAS� global replication of scalar parameters� is not suitable here� The reason is that
the size of the broadcast may di�er between the process rows� We must allow di�erent
sizes� but the number of synchronisations should not depend on them�

The simplest solution is always to use a broadcast with two synchronisations� except
when the broadcast is in the scope of one or two processes� For one process no
synchronisation is needed� and for two processes a single synchronisation su�ces� All
processes can take the same decision because the number of participants in the broadcast
is the same and known to all of them� The choice of performing two synchronisations in
the general case is based on the e�ciency of the so�called two�phase broadcast� which �rst



�

scatters the elements of a data vector across all the processes� and then lets each process
broadcast the data it received� This was shown to be e�cient in the LU decomposition
program from BSPPACK� see ����

��� Multiple row swap subroutine

The ScaLAPACK subroutine PSLASWP applies a series of row exchanges in a matrix
prescribed by a given vector of pivoting indices� This is originally done by pairwise row
swaps� each time using the PBLAS subroutine PSSWAP� A direct translation into BSP would
imply one superstep for each swap� We change the method so that all the swaps are done
in one superstep� in good BSP style� The changes are as follows�

First we translate the representation of the permutation from swaps into cycles� For
example� suppose the swap vector is 	�� ��
 	�� ��
 	�� ��
 	�� ��
� which means� �rst swap
rows � and ��� then � and ��� etc� In this example� rows �� �� �� � are on the same process
A and row �� resides on a di�erent process B� The cycle representation of this permutation
is 	��� �� �� �� �
� which means� � goes to �� � goes to �� � � �� �� goes to �� The operations
performed by A and B in this case are�

Process A Process B

Put row � in bu�er on process B Put row �� in bu�er on process A
For i � � to � step ��
copy row i into row i� �

Sync Sync
Copy bu�er into row � Copy bu�er into row ��

In this way� only one row is exchanged between A and B� In the original algorithm� which
performs the swaps sequentially� four rows are exchanged� In the general case� the di�erent
cycles are handled separately� but with one global synchronisation for all of them�

��� Registered bu�ers

Often� we have to communicate noncontiguous data like e�g� a matrix row� which in
ScaLAPACK is stored as a strided subarray� The data elements can of course be sent
separately� but even though BSPlib automatically combines small messages� there is still a
notable overhead for extremely small messages such as single words� If the access pattern
is based on a stride� the overhead can be avoided by packing messages in bu�ers�

Put operations are the most e�cient means of communication on many architectures�
including our test machine� When we use puts for communications� the locations of the
bu�ers in which we put the packed data must have been registered previously� The purpose
of registration is to link the name of a remote variable with its local address� this enables
putting into dynamically allocated memory� Since registration incurs communication and
synchronisation costs� it is more e�cient to register the locations only once� at the beginning
of the computation� The locations should then be passed to the PBLAS�

For this purpose� we implemented a management system for registered bu�ers� At
the start of the program� we allocate and register bu�ers of appropriate sizes� When a
PBLAS requests a bu�er of a certain size� it calls a subroutine which returns a pointer to
the smallest bu�er of at least the requested size� Similar to the registration procedure of
BSPlib� bu�ers are requested in lock step� All processes participate in all requests� and
they ask for a bu�er of the same size�

To achieve the ultimate in e�ciency� we use the high performance put primitive
bsp hpput which is unbu�ered on source and unbu�ered on destination� instead of bsp put



�

Table �

Computing rate in G�op�s of LU decomposition on a CRAY T�E for three di�erent communi�

cation layers� The process grid has size �� �� the block size is ���

Size BSPlib native MPI
BLACS BLACS

��� ���� ���� ����
���� ���� ���� ����
���� ��� ���� ����
���� ���� ��� ����
���� ��� ���� ����
���� ��� ��� ����
���� ����� ����� �����
����� ����� ����� �����

which is doubly bu�ered� In the case of the high performance primitives� responsibility for
bu�ering rests on the user instead of on the BSPlib system� On our test machine� we found
that the improvement in performance was signi�cant�

� Experimental results

We performed numerical experiments on a CRAY T�E computer with p � �� processors�
each with a theoretical peak performance of ��� M�op�s� We measured a sequential speed
of s � ��� M�op�s for the matrix multiplication part of the LU decomposition� Normalised
for this value of s� we found g � �� and l ������������� 	We measured these values within
the context of the program� not in a separate benchmark� This explains the variation in
l�
 The aim was to compare the ScaLAPACK performance of three communication layers�
BSPlib� a Cray�speci�c native version of the BLACS� and an MPI version� We ran tests
for three di�erent process grids 	with size � � �� �� � �� � � ��
 and four di�erent block
sizes 	nb � ��� ��� ��� ��
� The optimal grid size for all three communication layers was
�� �� and the optimal block size was ��� We used single precision� which is �� bits on this
machine� We ran a test program which generates a square matrix with random elements�

The measured computing rate is given in Table �� The rate is based on the overall
execution time� including all overheads� For small problems� where communication
dominates� the table shows a considerable gain in speed obtained by using BSPlib� about
��� compared to the native BLACS and ��� compared to the MPI BLACS� for n � �����
For large problems� where computation dominates� the di�erences are less pronounced�
about �� compared to the native BLACS and �� compared to the MPI BLACS� for
n � ������ The BSPlib version is faster than the others� except for n � �����

To understand the savings in execution time� we measured the time used by each part
of the program� Using BSPlib we can measure the communication�synchronisation time
separately from the local computation time� We then separated the communication time
from the synchronisation time by using a BSP�provided estimate of the synchronisation
time� We also measured the packing time� which includes the time spent in packing and
unpacking data� and in local swaps� Finally� we could estimate the idle time of each
process� which we de�ne as the average time a process waits for the others to �nish their
computation� The resulting breakdown of the costs is presented in Fig� �� As expected�



�

0 2000 4000 6000 8000 10000
matrix size

0

20

40

60

se
co

nd
s

idle

comp

pack
comm
sync

Fig� �� Breakdown of the total execution time for BSP based LU decomposition� The

components are	 synchronisation
 communication
 packing
 computation
 and idling� The process

grid has size �� �� the block size is ���

0 2000 4000 6000 8000 10000
matrix size

0

2

4

6

8

10

se
co

nd
s

BSP

MPI
BLACS

BSP

comm
+ sync
+ pack

comm
+ sync

native
BLACS

Fig� �� Communication time �including packing and synchronisation� during LU decompo�

sition for three communication layers	 BSPlib
 native BLACS and MPI BLACS� For BSPlib
 the

time without packing is also given� The process grid has size �� �� the block size is ���

the computation time of �n���p �ops dominates for large n� Note that the synchronisation
time� although only linear in n� is still signi�cant compared to the computation time�

The computation and idling time is identical for all three versions� because they di�er
only in the communication part� By subtracting the computation and idling time from the
measured total time� we can obtain the time of the communication part� which is presented
in Fig� �� It is clear that the communication time for BSP is signi�cantly less than for the



�

ScaLAPACK

PBLASLAPACK

BLAS BSP2D

BSPlib

Fig� �� Hierarchical view of a possible BSP based ScaLAPACK
 adapted from ��� The double

boxes contain the parts a�ected by moving to BSP� Solid arrows represent major dependencies and

dashed ones minor dependencies� The solid bold arrows represent the main structure of ScaLAPACK�

other two versions� For large n� the typical savings compared to the native BLACS are
������� The exception is again the case n � ����� for which the native BLACS are slightly
faster� We found that the cause of this exception is the poor performance on the Cray T�E
of the vendor�provided BLAS SCOPY and SSWAP� which we used for packing and local swaps
in PSSWAP and PSLASWP� They reduced the performance of our program considerably� and
more than that of the native and MPI BLACS versions� Improving the copying would
reduce the communication time for BSPlib to that depicted in the lower line of Fig� ��

� Proposal for a BSP�D library

When developing a BSP implementation of the whole ScaLAPACK� it would be most
convenient to have available a high level BSP based communication layer� called BSP�D�
This would save much e�ort and would also improve modularity� The position of the BSP�D
layer in the ScaLAPACK hierarchy is shown in Fig� �� BSP�D has the functionality of the
BLACS� i�e�� communicating complete matrices 	or vectors
 of di�erent types� Like the
BLACS it views the processes as a two�dimensional grid� It can be built on top of BSPlib
or another suitable BSP library�

There are two types of communication operation in BSP�D� pair�wise communications
and collective communications� Pair�wise communications should be done by bulk
synchronous message passing 	using bsp send
 and not by direct remote memory access
	using bsp put� bsp get� or their high performance equivalents
�

Direct remote memory access cannot be used for the following reason� The communi�
cation of noncontiguous data structures involves packing of the data in bu�ers� Communi�
cating by direct remote memory access requires previous registration of these bu�ers� Since
the size of data each process sends is not always known to the other processes we cannot
use the global management system for registered bu�ers described in Subsection ���� 	For
a general library such as BSP�D we cannot adopt the same solution as for the PBLAS�
namely calling each subroutine with the same global parameters� This would render the
library hard to use�
 An alternative would be to register a bu�er for each put operation� but
this would be ine�cient� A third possibility would be to use static pre�registered bu�ers�
where each process makes p� � bu�ers available for use by the other processes� this wastes
too much memory� Therefore� none of these methods is satisfactory�





As a consequence� pair�wise communication should be done by bulk synchronous
message passing� This means that data are sent� and after global synchronisation the
destination process moves the data from its receive queue� Messages consist of a payload
and a tag� The payload contains the matrix to be communicated� packed in a suitable
form� The tag consists of type information� the identity of the sending process� and the
number of messages that were already sent by that process to the receiving process in the
current superstep� This number represents the order in which the send operations occur
in the program text� and not the actual order in which BSPlib sends them� BSPlib is still
allowed to optimise communication by rescheduling messages within a superstep� 	This is
the main advantage over traditional message passing�


In BSP�D� messages originating in the same process must be moved in the order those
messages were sent� this is similar to the requirement for receives in the BLACS� The
messages of the receive queue of BSPlib� however� are in arbitrary order and the queue can
only be accessed in this order� Still� this poses no problem since the high performance move
operation bsp hpmove can be used to create a list of the message positions in the queue� This
operation is done as part of the BSP�D synchronisation subroutine� In an implementation�
the list can be sorted in linear time by source process and message number� The use of
bsp hpmove instead of bsp move also enables BSP�D to unpack data straight from the
receive bu�er� thus saving the time of local copying� 	Performance could be improved even
more if a high performance send bsp hpsend were available� so the data could be sent
straight from the source memory�


Collective communications such as broadcasts and reductions involve synchronisation�
so they should be called by all processes at the same time� They can be performed in the
scope of a process row� a process column� or the whole process grid� To ensure that all the
processes perform the same number of synchronisations� these subroutines always have two
supersteps� except when the number of processes in the scope is one or two� As already
observed in our study of LU decomposition� the decision on the number of synchronisations
cannot rely on the number of data to be communicated� since it may vary between di�erent
process rows or columns�

We already described the two�phase broadcast in Subsection ���� Two�phase reduction
is similar� Suppose the scope of the operation has q processes� In the reduction� each process
has a vector of the same size n� Associative and commutative component�wise operations
such as additions have to be performed on these q vectors� This is done as follows� The
data on each process are divided into q blocks of size n�q� numbered �� � � � � q� �� and each
block is sent to a di�erent process� so that process i gets all the blocks numbered i� Then
each process performs a local reduction of the blocks� and sends the result to all the other
processes� The total communication�synchronisation cost is about �ng � �l�

In summary� BSP�D will include subroutines for pair�wise and collective communica�
tions� for global synchronisation with additional housekeeping� for the creation� initialisa�
tion� and destruction of the process grid� and for retrieving the grid dimensions and process
coordinates�

� Conclusions and future work

In this work� we have demonstrated that it is feasible to produce� with a relatively
minor e�ort� an e�cient bulk synchronous parallel version of an important ScaLAPACK
subroutine� We expect that the same can be done for most subroutines from ScaLAPACK�
The BSP version outperforms two other versions� one based on a vendor�built BLACS



��

communication layer� and the other on MPI BLACS� The performance gains were entirely
due to a reduction of the communication time� the computation part was left unchanged�

For large problems� e�g� n � ������ communication time was reduced by up to ���
compared to the vendor�built BLACS version and even more compared to the MPI version�
Because our test machine has relatively fast communications the reduction in total execution
time is less pronounced� For machines with slower communication relative to computation�
the in�uence of communication on the total time will be larger� and hence the gain we
expect to achieve by using BSPlib would be proportionally larger� Of course� in future
work this prediction should be tested in practice� For small problems� communication is
dominant and the savings in total time are considerable� These results demonstrate that a
public�domain software layer such as BSPlib can outperform a vendor�supplied layer� 	We
would expect a vendor�supplied version of BSPlib to improve performance even more�


Our practical experience in porting one major ScaLAPACK subroutine led to the
formulation of the BSP�D library� Whereas we could build one single routine 	and the
required PBLAS
 directly on top of BSPlib and we could manage the registered bu�ers
within the subroutine� this would not be a feasible solution for the whole of ScaLAPACK�
Instead� using an intermediate BSP�D layer would increase modularity and software reuse�
at only a slight increase in cost due to copying and other overheads�

The approach of BSPlib� based on global synchronisation� can be carried over to the
PBLAS� and this gives the additional advantage that the algorithmic and distribution
block sizes can be decoupled� This enables a better trade�o� between load balance� speed
of BLAS operations in the unblocked part of the algorithm� and speed in the blocked part�
thus providing further opportunities for improving the performance of ScaLAPACK�

References

�� E� Anderson� Z� Bai� C� Bischof� J� Demmel� J� Dongarra� J� Du Croz� A� Greenbaum�
S� Hammarling� A� McKenney� S� Ostrouchov� and D� Sorensen� LAPACK Users� Guide

Release ���� SIAM� Philadelphia� PA� second ed�� �����

�
 R� H� Bisseling� Basic techniques for numerical linear algebra on bulk synchronous parallel
computers� in vol� ���� of Lecture Notes in Computer Science� Springer�Verlag� Berlin� �����
pp� ������

�� L� S� Blackford� J� Choi� A� Cleary� E� D�Azevedo� J� Demmel� I� Dhillon� J� Dongarra�
S� Hammarling� G� Henry� A� Petitet� K� Stanley� D� Walker� and R� C� Whaley� ScaLAPACK
Users� Guide� SIAM� Philadelphia� PA� �����

�� J� Choi� J� J� Dongarra� L� S� Ostrouchov� A� P� Petitet� D� W� Walker� and R� C� Whaley� The
design and implementation of the ScaLAPACK LU
 QR
 and Cholesky factorization routines�
Scienti�c Programming� � ������� pp� ��������

�� W� Gropp� E� Lusk� and A� Skjellum� Using MPI	 Portable programming with the Message�
Passing Interface� MIT Press� Cambridge� MA� �����

�� J� M� D� Hill� S� R� Donaldson� and A� McEwan� Installation and user guide for the Oxford
BSP toolset �v���� implementation of BSPlib� technical report� Oxford University Computing
Laboratory� Oxford� UK� Nov� �����

�� J� M� D� Hill� B� McColl� D� C� Stefanescu� M� W� Goudreau� K� Lang� S� B� Rao� T� Suel�
T� Tsantilas� and R� H� Bisseling� BSPlib	 The BSP programming library� Parallel Computing�

� ������� pp� ����������

�� V� S� Sunderam� PVM	 A framework for parallel distributed computing� Concurrency� Practice
and Experience� 
 ������� pp� ��������

�� L� G� Valiant� A bridging model for parallel computation� Communications of the ACM� ��
������� pp� ��������


