Bicyclobutanes

DOI: 10.1002/anie. 200502248

Valence Isomerization of 2-Phosphabicyclo[1.1.0]butanes**

J. Chris Slootweg, Steffen Krill, Frans J. J. de Kanter, Marius Schakel, Andreas W. Ehlers, Martin Lutz, Anthony L. Spek, and Koop Lammertsma*

The unique electronic properties of the strained bicyclo[1.1.0]butanes ${ }^{[1]}$ are enhanced by the heteroatoms in the molecular frame. Illustrative is the bond-stretch isomerization of the $\mathrm{P}_{2} \mathrm{C}_{2}$ and $\mathrm{P}_{2} \mathrm{~B}_{2}$ bicycles. ${ }^{[2]}$ However, very few systems are known with a single heteroatom, ${ }^{[3]}$ probably because of their high reactivity, which is only moderated when the heteroatom occupies a bridgehead position as in the 1 -aza derivatives. ${ }^{[4]}$ The increased reactivity of the hetero systems is due to the valence isomerization to which the bicyclo[1.1.0]butanes are prone. We now report on the first 2-phospha derivatives.

The carbene-like phosphinidene $\mathrm{Ph}-\mathrm{P}=\mathrm{W}(\mathrm{CO})_{5}{ }^{[5]}$ was generated in situ by cheletropic elimination from $\mathbf{1}$ at $110^{\circ} \mathrm{C}$ in toluene and then allowed to react with cyclopropene $\mathbf{2} \mathbf{a}^{[6]}$ (Scheme 1). This led to the desired $\mathrm{W}(\mathrm{CO})_{5}$-complexed 2phosphabicyclo[1.1.0]butanes exo-3a ($\delta^{31} \mathrm{P}=-85.1 \mathrm{ppm}$) and endo-3a ($\left.\delta^{31} \mathrm{P}=-36.7 \mathrm{ppm}\right)^{[7]}$ in a $10: 9$ ratio, which were isolated in 69% yield as colorless solids. The remarkably

1

2a: $\mathrm{R}=\mathrm{Me}$
2b: $\mathrm{R}=\mathrm{Ph}$

3a,b

Scheme 1. Synthesis of the 2-phosphabicyclo[1.1.0]butanes 3. $\mathrm{M}=\mathrm{W}(\mathrm{CO})_{5}$.
[*] J. C. Slootweg, Dr. F. J. J. de Kanter, Dr. M. Schakel, Dr. A. W. Ehlers, Prof. Dr. K. Lammertsma
Department of Organic and Inorganic Chemistry
Faculty of Sciences
Vrije Universiteit
De Boelelaan 1083, 1081 HV, Amsterdam (The Netherlands)
Fax: (+31) 20-598-7488
E-mail: lammert@chem.vu.nl
Dr. S. Krill, Prof. Dr. K. Lammertsma
Formerly associated with the Department of Chemistry
University of Alabama at Birmingham
Birmingham, AL 35294 (USA)
Dr. M. Lutz, Prof. Dr. A. L. Spek
Bijvoet Center for Biomolecular Research
Crystal and Structural Chemistry
Utrecht University
Padualaan 8, 3584 CH, Utrecht (The Netherlands)
[**] This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO/CW).
(1) Supporting information for this article is available on the WWWW under http://www.angewandte.org or from the author.
stable products were characterized by single-crystal X-ray analyses, which showed puckered geometries with P1-C1-C2C3 folding angles of $-114.66(15)^{\circ}$ for exo-3a and $-120.65(14)^{\circ}$ for endo-3a, and transannular $\mathrm{C} 1-\mathrm{C} 2$ bonds of 1.516 (3) and $1.550(3) \AA$, respectively (Figure 1). The flatter

Figure 1. The displacement ellipsoid plot of exo-3 a (top) and endo-3 a (bottom) with ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\AA \AA]$, angles [${ }^{\circ}$], and torsion angles [${ }^{\circ}$] for exo-3 a: W1-P1 2.5013(6), P1-C1 1.808(2), P1-C2 $1.811(2), \mathrm{Pl}-\mathrm{C} 61.820(2), \mathrm{Cl}-\mathrm{C} 21.516(3), \mathrm{Cl}-\mathrm{C} 31.515(3), \mathrm{Cl}-\mathrm{C} 4$ 1.500(3), C2-C3 1.512(3), C2-C5 1.505(3), C3-C12 1.488(3); C1-P1-C2 49.52(10), P1-C1-C2 65.35(12), P1-C1-C3 96.79(15), C2-C1-C3 59.83(15), C2-C1-C4 139.6(2), P1-C2-C1 65.13(12), P1-C2-C3 96.78(15), C1-C2-C3 60.06(15), C1-C2-C5 141.4(2), C1-C3-C2 60.11(15); P1-C1-C2-C3 -114.66(15). endo-3a: W1-P1 2.4851 (5), P1-C1 1.801 (2), P1-C2 $1.792(2), \mathrm{P} 1-\mathrm{C} 61.823(2), \mathrm{C} 1-\mathrm{C} 2$ $1.550(3), \mathrm{C} 1-\mathrm{C} 31.511(3), \mathrm{C} 1-\mathrm{C} 41.502(3), \mathrm{C} 2-\mathrm{C} 3$ 1.521 (3), C2-C5 1.500(3), C3-C12 1.495(3); C1-P1-C2 $51.11(9)$, P1-C1-C2 64.13(11), P1-C1-C3 100.05(14), C2-C1-C3 59.57(14), C2-C1-C4 135.80(19), P1-C2-C1 64.76(11), P1-C2-C3 100.08(13), C1-C2-C3 58.94(13), C1-C2-C5 136.7(2), C1-C3-C2 61.49(13); P1-C1-C2-C3 -120.65(14).

Figure 2. The relative BP86/6-31G* (LANL2DZ for W) energies (ZPE corrected, in kcal mol^{-1}) for the rearrangement of exo-3' into $\mathbf{5}^{\prime}$. Selected bond lengths [\AA], angles [${ }^{\circ}$], and torsion angles [${ }^{\circ}$] of exo-3' (C5): W1-P1 2.536, P1-C1 1.833, P1-C6 1.846, C1-C2 1.527, C1-C3 1.506; C1-P1-C2 49.2, C1-C3-C2 60.9, P1-C1-C2-C3 120.2; TSexo-3'-trans-4': W1-P1 2.541, P1-C1 2.709, P1-C2 1.801, P1-C6 1.820, C1-C2 1.474, C1-C3 1.446, C2-C3 1.595; trans-4' (C) : W1-P1 2.515, P1-C2 1.703, P1-C6 1.830, C1-C2 1.441, C1-C3 1.359; TStrans-4'-gauche-4': P1-C2-C1-C3 95.2; gauche-4': P1-C2-C1-C3 31.0; TSgauche-4'-5': W1-P1 2.568, P1-C2 1.774, P1-C3 2.558, C1-C2 1.391, C1-C3 1.419, P1-C2-C1-C3 26.4; 5': W1-P1 2.539, P1-C2 1.838, P1-C3 1.915, P1-C6 1.848, C1-C2 1.355, C1-C3 1.518.

Scheme 3. The CuCl-catalyzed formation of 5 a and $9 . \mathrm{M}=\mathrm{W}(\mathrm{CO})_{5}$
reaction, that is, exo- and endo-3a (4:1 ratio, 16%) and cisand trans-5a ($7: 8$ ratio, 30%). Additionally, the vinylphosphirane complexes anti-9 ($\left.\delta^{31} \mathrm{P}=-157.1 \mathrm{ppm}\right)$ and syn$9\left(\delta^{31} \mathrm{P}=-150.2 \mathrm{ppm}\right)$ were also produced in a $3: 1$ ratio (6%). The vinyl-phosphiranes formed in this milder process $\left(55^{\circ} \mathrm{C}\right.$ vs. $\left.110^{\circ} \mathrm{C}\right)$ corroborates the role of phosphabutadienes as reaction intermediates. Heating of isolated anti-9 at $110^{\circ} \mathrm{C}$ effected epimerization of the phosphorus center to give the syn- 9 isomer, which underwent the established [1,3]-sigmatropic shift ${ }^{[15]}$ to phospholene complex 6. The presumed reagent, the $\left[\mathrm{PhP}(\mathrm{Cl}) \mathrm{W}(\mathrm{CO})_{5}\right]-\mathrm{Cu}$-alkene complex, ${ }^{[14]}$ is more sensitive than $\mathrm{Ph}-\mathrm{P}=\mathrm{W}(\mathrm{CO})_{5}$ to steric congestion in the $1,2-$ cycloaddition, which is reflected in the lower yield of the 2phosphabicyclobutanes 3a. The competitive reaction is, in our opinion, the formation of zwitterion 7, for which there is computational support on related systems. ${ }^{[16]}$ Compound 7 can also rearrange to phosphabutadiene $\mathbf{4 a}$ in analogy to the addition of dichlorocarbene to cyclopropenes. ${ }^{[17]}$ Ring closure then gives $\mathbf{5 a}{ }^{[8]}$ while two known hydride shifts ${ }^{[18]}$ lead, via the secondary vinylphosphane complex 8 , to vinyl-phosphirane 9 (Scheme 3). The $\mathbf{4}^{\prime} \rightarrow \mathbf{9}^{\prime}$ process is exothermic by $-1.8 \mathrm{kcal}-$ mol^{-1} for the parent system (no phenyl substituent on the diene). ${ }^{[9]}$

Valence isomerization is sensitive to the nature of the bridgehead substituents, and this also applies to $\mathbf{3} \rightarrow \mathbf{4} \rightarrow \mathbf{5}$. Reaction of cyclopropene $\mathbf{2 b}$, which has phenyl instead of methyl substituents, with the phosphinidene precursor 1 at $110^{\circ} \mathrm{C}$ gave as sole products the 3-phosphacyclobutene complexes cis-5b ($\delta^{31} \mathrm{P}=43.8 \mathrm{ppm},{ }^{2} J(\mathrm{H}, \mathrm{P})=6.2 \mathrm{~Hz}$) and trans-5b $\left(\delta^{31} \mathrm{P}=53.4 \mathrm{ppm},{ }^{2} J(\mathrm{H}, \mathrm{P})=9.6 \mathrm{~Hz}\right)^{[8]}$ (5:1 ratio, 95%); cis-5b was characterized by X-ray crystallography. Apparently, 3b isomerizes faster than 3a. In this case, phospholene 6 cannot be formed because the phenyl substituents render a hydride shift (to give $\mathbf{8}$) impossible.

2-Phosphabicyclo[1.1.0]butanes exo-3b $\quad\left(\delta^{31} \mathrm{P}=\right.$ $-70.5 \mathrm{ppm})$ and endo-3b $\left(\delta^{31} \mathrm{P}=3.8 \mathrm{ppm}\right)^{[7]}$ could be obtained ($4: 1$ ratio, 33%) by the milder CuCl -catalyzed reaction (2 equiv of $\mathbf{1}, 55^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$). The X-ray crystal structure of the exo isomer revealed two different triclinic polymorphs with $Z=2$ and $Z=6$, respectively, and very similar molecular structures. Polymorph I shows a folding angle $\left(113.27(10)^{\circ}\right)$ and a transannular bond length (1.510(2) \AA) that are similar to those of exo-3a. Heating of isolated 3b (exo +endo, 4:1) in toluene at $50^{\circ} \mathrm{C}$ for 60 h gave the favored phosphacyclobutene cis-5b, indicating that
valence isomerization of the novel 2-phosphabicyclo[1.1.0]butanes is indeed directed by the bridgehead substituents (3b $50^{\circ} \mathrm{C}$; 3a $130^{\circ} \mathrm{C}$). This behavior parallels that observed for the all-carbon analogue 2,2-dimethyl-bicyclo[1.1.0]butane, where the 1,3-diphenyl derivative isomerizes at $130^{\circ} \mathrm{C}$ and the 1,3-dimethyl derivative at temperatures above $280^{\circ} \mathrm{C} .{ }^{[19]}$

In conclusion, $\mathrm{W}(\mathrm{CO})_{5}$-complexed 2 -phosphabicyclo[1.1.0]butanes are remarkably stable compounds that valence-isomerize to 3 -phosphacyclobutenes via 1-phosphabutadienes at elevated temperatures. In contrast to the hydrocarbon analogues, the diene can be trapped as a phospholene due to rearrangements that are specific for the phosphorus compounds.

Experimental Section

3a and 6: Compounds $\mathbf{1}^{[5]}(591 \mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathbf{2 a}{ }^{[6]}(156 \mathrm{mg}$, 1.08 mmol) were heated in toluene (3 mL) at reflux for 17 h . Removal of the solvents under vacuum and chromatography of the residue over silica with pentane/toluene (9:1) as eluent gave endo-3a (155 mg , 30%) and exo-3a ($200 \mathrm{mg}, 39 \%$) as colorless solids as well as 6 $(20 \mathrm{mg}, 4 \%)$ as a pale yellow solid together with minor amounts of cis-5a ($10 \mathrm{mg}, 2 \%$) and trans-5a ($5 \mathrm{mg}, 1 \%$). exo-3a: m.p.: 115$116^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-85.1 \quad\left({ }^{1} J(\mathrm{P}, \mathrm{W})=\right.$ 263.7 Hz). endo-3a: m.p.: $79-82{ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-36.7 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{W})=260.3 \mathrm{~Hz}\right) ;$ HRMS (EI, 70 eV$)$: m / z (\%): 576 (9) $[M]^{+}$; calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PW}: 576.0323$; found: 576.0325. 6: m.p.: $107{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=$ $37.9 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{W})=240.4 \mathrm{~Hz}\right)$; HRMS (EI, 70 eV$): m / z(\%): 576$ (30) $[M]^{+}$; calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PW}$: 576.0323; found: 576.0329.

3b: Compounds $\mathbf{2 b}(122.6 \mathrm{mg}, \quad 0.46 \mathrm{mmol}), \quad 1 \quad(598 \mathrm{mg}$, $0.91 \mathrm{mmol})$, and $\mathrm{CuCl}(10 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ were heated at $55^{\circ} \mathrm{C}$ for 30 min . The reaction was stopped at incomplete conversion to ensure maximum yield of $\mathbf{3 b}$. Removal of the solvents under vacuum and chromatography of the residue over silica with pentane/toluene (9:1) as eluent gave a $4: 1$ mixture of exo-3b and endo-3b ($107 \mathrm{mg}, 33 \%$) as a pale yellow solid. exo- $\mathbf{3 b}$: m.p.: $124^{\circ} \mathrm{C}$ (decomp.) ; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.5 \mathrm{ppm}\left({ }^{1} J-\right.$ $(\mathrm{P}, \mathrm{W})=262.0 \mathrm{~Hz}) ;$ HRMS (EI, 70 eV$): m / z(\%): 700(22)[M]^{+}$; calcd for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PW}: 700.0636$; found: 700.0634. endo-3b: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101.3 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=3.8 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{W})=271.8 \mathrm{~Hz}\right)$.

3a, 5a, and 9: Compounds $\mathbf{1}(1.24 \mathrm{~g}, 1.90 \mathrm{mmol})$, $\mathbf{2 a}(410 \mathrm{mg}$, $2.84 \mathrm{mmol})$, and $\mathrm{CuCl}(10 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(8 \mathrm{~mL})$ were heated at $55^{\circ} \mathrm{C}$ for 15 h . Removal of the solvents under vacuum and chromatography of the residue (an insoluble black residue remains) over silica with pentane/toluene (9:1) as eluent gave endo-3a (40 mg , 4%), cis-5a ($160 \mathrm{mg}, 14 \%$), exo-3a, and trans-5a in a 10:8 ratio ($310 \mathrm{mg}, 28 \%$), and syn- and anti-9 in a $3: 1$ ratio ($65 \mathrm{mg}, 6 \%$) as colorless oils. cis-5 a: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, CDCl_{3}) : $\delta=46.3 \mathrm{ppm}$ $\left({ }^{1} J(\mathrm{P}, \mathrm{W})=221.4 \mathrm{~Hz}\right)$. Crystallization of the mixture of exo-3a and trans-5a from pentane at $-80^{\circ} \mathrm{C}$ afforded the pale yellow crystals of trans-5a: M.p. $111{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, CDCl_{3}): $\delta=$ $55.2 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{W})=237.5 \mathrm{~Hz}\right)$; HRMS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%): 576$ (39) $[M]^{+}$; calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PW}$: 576.0323; found: 576.0318. syn-9: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\quad\left(101.3 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=-157.1 \mathrm{ppm} \quad\left({ }^{1} J(\mathrm{P}, \mathrm{W})=\right.$ 255.2 Hz); HRMS (EI, 70 eV): $m / z(\%): 576(20)[M]^{+}$; calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PW}$: 576.0323; found: 576.0318. anti-9: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, CDCl_{3}): $\delta=-150.2 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{W})=263.3 \mathrm{~Hz}\right)$.

5b: Compounds $\mathbf{1}$ ($261 \mathrm{mg}, 0.40 \mathrm{mmol}$), 2b ($118 \mathrm{mg}, 0.44 \mathrm{mmol}$), and $\mathrm{CuCl}(10 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ were heated at $55^{\circ} \mathrm{C}$ for 38 h or, alternatively (without CuCl), at reflux for 16 h . Removal of the solvents under vacuum and chromatography of the residue over silica with pentane/toluene (4:1) as eluent gave cis-5b ($215 \mathrm{mg}, 77 \%$) as a pale yellow solid together with a trace of trans-5b ($\approx 2 \%$).

Removal of the solvents under vacuum and chromatography of the residue over silica with pentane/toluene (4:1) as eluent gave a 5:1 mixture of cis-5b and trans-5b ($300 \mathrm{mg}, 95 \%$) as a pale yellow oil. Crystallization from pentane at $-20^{\circ} \mathrm{C}$ afforded colourless crystals of cis-5b: m.p.: $117-118^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, CDCl_{3}): $\delta=$ $43.8 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{W})=230.9 \mathrm{~Hz}\right)$; HRMS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%): 700$ (23) $[M]^{+}$; calcd for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PW}$: 700.0636; found: 700.06486. trans5b: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.3 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=53.4 \mathrm{ppm} \quad\left({ }^{1} J(\mathrm{P}, \mathrm{W})=\right.$ 247.0 Hz).

Crystal structure data (see Supporting Information): exo-3a $\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PW}\right): P 2_{1} / c$ (no. 14); $a=6.8439(1), b=21.3415(2), c=$ 14.4400(1) $\AA, \quad \beta=95.2844(3)^{\circ}, \quad V=2100.13(4) \AA^{3} ; \quad Z=4 ; \quad R \quad[I>$ $2 \sigma(I)]: R 1=0.0178, w R 2=0.0406$. endo-3a $\quad\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PW}\right): P 2_{1} / c$ (no. 14); $\quad a=8.2108(1), \quad b=15.0945(1), \quad c=17.8628(2) \AA, \quad \beta=$ $99.0907(3)^{\circ}, \quad V=2186.07(4) \AA^{3} ; \quad Z=4 ; R \quad[I>2 \sigma(I)]: \quad R 1=0.0175$, $w R 2=0.0403 .6\left(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PW}\right): C 2 / c$ (no. 15$) ; a=37.996(3), b=$ 8.9553(4), $c=26.4314(15) \AA, \beta=110.813(5)^{\circ}, V=8406.9(9) \AA^{3} ; Z=$ $16 ; R[I>2 \sigma(I)]: R 1=0.0213, w R 2=0.0462$. cis-5b $\left(\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PW}\right)$: $P 2_{1} / c$ (no. 14); $a=10.9428(1), b=22.9359(2), c=15.0824(1) \AA, \beta=$ 133.2674(4) ${ }^{\circ}, V=2756.40(4) \AA^{3} ; Z=4 ; R[I>2 \sigma(I)]: R 1=0.0192$, $w R 2=0.0474$. exo-3b (polymorph I, $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PW}$): $P \overline{1}$ (no. 2); $a=$ $10.4005(8), \quad b=10.7789(8), \quad c=14.4436(12) \AA, \quad \alpha=83.618(6), \quad \beta=$ $78.886(6), \quad \gamma=61.670(5)^{\circ}, \quad V=1398.2(2) \AA^{3} ; \quad Z=2 ; \quad R \quad[I>2 \sigma(I)]$: $R 1=0.0163$, wR2 $=0.0332$. exo-3b (polymorph II, $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PW}$): $P \overline{1}$ (no. 2); $a=10.4176(8), \quad b=17.1058(17), \quad c=23.9196(19) \AA, \quad \alpha=$ 96.436(6), $\beta=92.693(7), \gamma=97.143(8)^{\circ}, V=4194.7(6) \AA^{3} ; Z=6 ; R$ $[I>2 \sigma(I)]: R 1=0.0246, w R 2=0.0444$. CCDC 275002-275007 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: June 27, 2005
Published online: September 13, 2005

Keywords: bicyclic compounds • heterocycles • phosphorus • substituent effects • valence isomerization
[1] The Chemistry of the Cyclopropyl Group, Part 2 (Ed.: Z. Rappoport), Wiley, Chichester, 1987, chap. 19.
[2] $\mathrm{P}_{2} \mathrm{C}_{2}$: a) E. Niecke, A. Fuchs, M. Nieger, Angew. Chem. 1999, 111, 3213-3216; Angew. Chem. Int. Ed. 1999, 38, 3028-3031; $\mathrm{P}_{2} \mathrm{~B}_{2}$: b) D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, Angew. Chem. 2004, 116, 595-597; Angew. Chem. Int. Ed. 2004, 43, 585-587; c) A. Rodriguez, R. A. Olsen, N. Ghaderi, D. Scheschkewitz, F. S. Tham, L. J. Mueller, G. Bertrand, Angew. Chem. 2004, 116, 4988-4991; Angew. Chem. Int. Ed. 2004, 43, 4880-4883.
[3] Phosphorus: a) K. Blatter, W. Rösch, U.-J. Vogelbacher, J. Fink, M. Regitz, Angew. Chem. 1987, 99, 67-68; Angew. Chem. Int. Ed. Engl. 1987, 26, 85-86; b) M. Regitz, S. Haber, U. Hees, Phosphorus Sulfur Silicon Relat. Elem. 1990, 51/52, 324; silicon: K. Wakita, N. Tokitoh, R. Okazaki, N. Takagi, S. Nagase, J. Am. Chem. Soc. 2000, 122, 5648-5649.
[4] R. Bartnik, A. P. Marchand, Synlett 1997, 1029-1039.
[5] a) K. Lammertsma, M. J. M. Vlaar, Eur. J. Org. Chem. 2002, 1127-1138; b) F. Mathey, N. H. Tran Huy, A. Marinetti, Helv. Chim. Acta 2001, 84, 2938-2957.
[6] I. N. Domnin, J. Kopf, S. Keyaniyan, A. de Meijere, Tetrahedron 1985, 41, 5377-5382.
[7] exo- and endo-phosphabicyclo[1.1.0]butanes differ significantly in terms of the ${ }^{31}$ P NMR chemical shift; see: a) C. Jones, J. A. Platts, A. F. Richards, Chem. Commun. 2001, 663-664; b) M. White, L. Ricard, F. Mathey, Organometallics 2003, 22, 48254828; c) Ref. [2a].
[8] a) N. H. Tran Huy, L. Ricard, F. Mathey, Organometallics 1988, 7, 1791-1795; b) A. Marinetti, L. Ricard, F. Mathey, Organometallics 1990, 9, 788-793.
[9] Intrinsic reaction coordinate (IRC) calculations were performed on the transition structures to ascertain the connection between reactant and product: Gaussian 98 (Revision A.11.4): M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2002; see also Supporting Information.
[10] a) J. C. Slootweg, A. W. Ehlers, K. Lammertsma, J. Mol. Model. 2005, 11, in press; b) J. C. Slootweg, F. J. J. de Kanter, M. Schakel, A. W. Ehlers, B. Gehrhus, M. Lutz, A. M. Mills, A. L. Spek, K. Lammertsma, Angew. Chem. 2004, 116, 3556-3559; Angew. Chem. Int. Ed. 2004, 43, 3474-3477.
[11] a) N. H. Tran Huy, F. Mathey, Tetrahedron Lett. 1988, 29, 3077 3078.
[12] a) S. Ito, H. Jin, S. Kimura, M. Yoshifuji, J. Org. Chem. 2005, 70, 3537-3541; Stable 1-phosphabutadienes are also reported: b) B. A. Boyd, R. J. Thoma, W. H. Watson, R. H. Nellson, Organometallics 1988, 7, 572-574; c) R. Appel, F. Knoch, H. Kunze, Chem. Ber./Recueil 1984, 117, 3151-3159.
[13] a) K. A. Nguyen, M. S. Gordon, J. Am. Chem. Soc. 1995, 117, 3835-3847; b) L. Deng, T. Ziegler, J. Phys. Chem. 1995, 99, 612618; c) O. Wiest, K. N. Houk, K. A. Black, B. E. Thomas IV, J. Am. Chem. Soc. 1995, 117, 8594-8599.
[14] K. Lammertsma, A. W. Ehlers, M. L. McKee, J. Am. Chem. Soc. 2003, 125, 14750-14759;
[15] R. E. Bulo, A. W. Ehlers, S. Grimme, K. Lammertsma, J. Am. Chem. Soc. 2002, 124, 13903-13910; and references therein.
[16] a) J. C. Slootweg, M. Schakel, F. J. J. de Kanter, A. W. Ehlers, S. I. Kozhushkov, A. de Meijere, M. Lutz, A. L. Spek, K. Lammertsma, J. Am. Chem. Soc. 2004, 126, 3050-3051; b) R. E. Bulo, A. W. Ehlers, F. J. J. de Kanter, M. Schakel, M. Lutz, A. L. Spek, K. Lammertsma, B. Wang, Chem. Eur. J. 2004, 10, 2732-2738.
[17] J. Weber, U. H. Brinker, Angew. Chem. 1997, 109, 1689-1692; Angew. Chem. Int. Ed. Engl. 1997, 36, 1623-1626.
[18] a) F. Mercier, C. Hugel-Le Goff, F. Mathey, Tetrahedron Lett. 1989, 30, 2397-2398; b) S. Haber, P. Le Floch, F. Mathey, J. Chem. Soc. Chem. Commun. 1992, 1799-1800; c) S. Ito, S. Kimura, M. Yoshifuji, Org. Lett. 2003, 5, 1111-1114.
[19] Phenyl: A. Padwa, T. Kumagai, M. Tohidi, J. Org. Chem. 1983, 48, 1834-1840; Methyl: W. R. Moore, K. G. Taylor, P. Müller, S. S. Hall, Z. L. F. Gaibel, Tetrahedron Lett. 1970, 2365-2368.

