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Abstract
An overview is given of the isotropic and nematic phase behaviour in binary
mixtures of hard rods or plates with different lengths or diameters within the
framework of the Onsager theory. On the basis of Gaussian trial functions the
relative importance of different entropic contributions in the demixing of the
isotropic and nematic phases is explained for different mixtures. Modifications
of this theory are discussed and new results are given for mixtures of plates
differing only in diameter or thickness.

1. Introduction

The phase behaviour of anisometric particles (rods or plates) is richer than that of their spherical
counterparts due to their inherent orientational degrees of freedom. Apart from a disordered,
isotropic (I) fluid at low densities and a fully crystalline state at high densities, these systems
may form liquid crystals at intermediate densities. These states are characterized by a fair
degree of orientational order, whereas long-range positional order is either absent (such as in
the nematic (N) state) or only partially present in one or two dimensions of the system, such
as in the quasi-crystalline smectic and columnar phases, respectively.

A theoretical explanation for the formation of a nematic phase upon densification of an
isotropic fluid of anisometric colloids at low densities was first provided by Onsager [1].
Although his theory focuses on monodisperse systems of thin rod-like particles, Onsager
already indicated that the basic mechanism also applies essentially to thin plate-like species.
The transition is a consequence of hard-core repulsions only and results directly from a
competition between orientational entropy (favouring the isotropic state) and the entropy effect
associated with the orientation-dependent excluded volume of two particles (which favours
the nematic state).

Mixing particles with different sizes or shapes leads to an additional mixing entropy and
the subtle interplay of the three entropic contributions may give rise to a rich phase behaviour.
Generalizations of the Onsager theory to binary mixtures have indeed revealed aspects that are

0953-8984/04/192015+13$30.00 © 2004 IOP Publishing Ltd Printed in the UK S2015

http://stacks.iop.org/JPhysCM/16/S2015


S2016 H H Wensink and G J Vroege

not encountered in the monodisperse cases, such as a fractionation effect (redistributing the
species among the coexisting phases) and reentrant phenomena [2–4].

The most important characteristic of these mixtures, however, is the possibility of demixing
transitions in both the isotropic and nematic phases. Depending on the concentration and size
ratio of the species, a homogeneous isotropic or nematic phase may split into two phases
with the same symmetry but different densities and compositions. Moreover, the system may
display associated triphasic equilibria, involving I–N–N or I–I–N coexistences. The demixing
phenomenon was first encountered in nematic phases of rods differing only in length [5].
Later on, similar calculations based upon a generalized Onsager theory [6] revealed that the
rod lengths should differ at least by a factor 3.167 in order to have a demixing of the nematic
state.

In the last decade, a number of papers have appeared in which several other binary mixtures
of hard anisometric colloids were treated within the Onsager approach, including mixtures of
rods or plates differing only in thickness [2, 7], rods differing both in length and thickness
[4, 8, 9] and rod–plate mixtures [3, 10–12]. In this paper we review existing theoretical work
along with new results (mainly for plate–plate mixtures) to present an overview of the isotropic
and nematic phase stability in binary mixtures of rod- and plate-like species. Here, we restrict
ourselves to binary mixtures for which only one of the particle dimensions is unequal to both
species while the other is common to all particles. In particular, we shall focus on the possibility
of demixing transitions within the homogeneous isotropic and nematic phases and provide a
theoretical underpinning for the associated demixing mechanisms.

2. Theoretical background

2.1. Generalized Onsager theory

To treat polydisperse systems of hard anisometric particles with total number density ρ and
mole fractions xi of species i within the second virial approximation, we start from the following
expression for the Helmholtz free energy:

F

NkBT
� cst + ln ρ − 1 +

∑
i

xi ln xi −
∑

i

xi
�Sor,i

NkB
+

1

2
ρg(φ)

∑
i

∑
j

xi x j〈〈vexcl〉〉i j (1)

where ln ρ − 1 is the ideal translational entropy and
∑

i xi ln xi the entropy of mixing. The
last two terms are the orientational entropy and the (packing) entropy related to the excluded
volume (the function g(φ) is introduced for later use, but should be taken g(φ) = 1 within
the second virial approximation). Triangular brackets indicate (orientational) averages with
respect to the distribution of species indicated by the subscript. In the remainder of this paper
we will often implicitly use Gaussian trial functions [13] to describe the sharply peaked angular
distributions of the particles in the nematic state. However, it will suffice to refer to these in
terms of the width of the distribution for particle type i , characterized by the typical angle
θ̃i = 〈θ2〉1/2

i with the nematic director. For the orientational entropy the isotropic phase is
taken as the reference state. To estimate the orientational entropy for the nematic phase just
consider the number of orientational states accessible to the particles. In the isotropic phase
this is proportional to the surface of the full unit sphere, 4π , whereas in the nematic phase the
particles have to remain within the typical angle θ̃i around 0 or π . For small θ̃i these are just
two circular surfaces on the unit sphere with each an approximate surface of πθ̃2

i . This leads
to the following entropy difference �Sor

�Sor,i � NkB
[
ln(# nematic states) − ln(# isotropic states)

]
� NkB

[
ln(2 × πθ̃2

i ) − ln(4π)
]

(2)
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�Sor,i

NkB
∼ ln(θ̃2

i /2) + 1. (3)

The term +1 follows from a full calculation within the Gaussian approximation. Note that for
the small widths θ̃i of the distributions we shall encounter, �Sor,i is negative, which ought to
be the case going from the random isotropic state to the more ordered nematic state. For two
thin particles at mutual angle γ , we may only consider the leading order term for the excluded
volume

〈〈vexcl〉〉i j ∼ ṽi j 〈〈sin γ 〉〉i j (4)

where ṽi j = Li L j (Di + D j ) for thin rods while the corresponding expression for platelets
reads ṽi j = π

4 Di D j (Di + D j ) in terms of the particle lengths Li and L j and diameters Di and
D j . Equation (4) involves a two-particle average of sin γ , which is always π/4 in the isotropic
state, whereas in a highly ordered nematic state it is simply related to the typical angular widths
of the distributions [13]:

〈〈sin γ 〉〉i j ∼ 〈〈γ 〉〉i j ∼ 1
2

√
π(θ̃2

i + θ̃2
j )

1/2. (5)

2.1.1. Monodisperse systems. For monodisperse systems all this taken together results in a
very simple expression for the Helmholtz free energy in the isotropic state:

F iso

NkBT
� cst + ln ρ − 1 + (π/4)L2 Dρg(φ) � cst′ + ln c − 1 + cg(φ) (6)

where Onsager defined a dimensionless concentration c ≡ 1
2 〈〈vexcl〉〉ρ related to the volume

fraction φ via c = lφ (rods) and l π
4 φ (plates). Here, l is the aspect ratio, defined as the

ratio of the largest to the smallest dimension of the particle (i.e. for rods l = L/D, plates
have l = D/L). The corresponding expression for the nematic state is found using the same
ingredients:

Fnem

NkBT
∼ cst′ + ln c − 1 − ln(θ̃2/2) − 1 + cg(φ)

√
8

π
θ̃ (7)

but this expression should still be minimized with respect to the unknown parameter θ̃ giving

θ̃ ∼
√

π

2

1

cg(φ)
∝ 1

lφg(φ)
. (8)

Here we see that the angular distribution adapts itself such that its width is inversely proportional
to the volume fraction and also inversely proportional to the aspect ratio l. If we substitute this
form back into equation (7) and also refer to equation (1) a remarkable phenomenon appears
for the interaction term: the excluded volume contribution per particle, 1

2 〈〈vexcl〉〉ρ, in the
nematic state equals the constant value of two irrespective of concentration. This behaviour
indicates that the narrowing of the distribution equation (8) exactly compensates the increasing
probability of meeting other particles with increasing concentration. The final result for the
free energy in the nematic state is now extremely simple:

Fnem

NkBT
∼ cst′ + 3 ln c[+2 ln(g(φ))] + ln(4/π). (9)

Due to the constancy of the excluded volume no linear contribution in c (as was found
in equation (6)) is obtained. Using the thermodynamic relation � ≡ −(∂ F/∂V )T,N =
kBTρ2(∂(F/NkBT )/∂ρ)T,N then gives three times the ideal (Van’t Hoff) osmotic pressure
(setting g(φ) = 1 for the time being):

�nem

kBT
∼ 3ρ. (10)
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2.1.2. Polydisperse systems. For a polydisperse system the isotropic free energy is a
straightforward extension of equation (6),while the ingredients for the nematic state substituted
in equation (1) give
Fnem

NkBT
∼ cst + ln ρ − 1 +
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∑
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j (11)

where φ = ∑
i φi now represents the total volume fraction. The set of parameters θ̃i is as yet

unknown and has to be determined by simultaneous solution of the following minimization
equations:

−2xi

θ̃i

+ ρg(φ)xi

∑
j

x j ṽi j

√
π

2

θ̃i√
θ̃2

i + θ̃2
j

∼ 0. (12)

Multiplying this equation by θ̃i , summing over i and adding the resulting equation to the one
obtained by interchanging i and j gives

1

2
ρg(φ)

∑
i

∑
j

xi x j ṽi j

√
π

2

√
θ̃2

i + θ̃2
j ∼ 2. (13)

Comparing this result to equation (11) we see that it is just the excluded-volume term within the
free energy, so that we can state: the excluded-volume contribution per particle in the nematic
state equals the constant value of two irrespective of concentration or polydispersity [14].
Although solving equation (12) for the set {θ̃i} is only possible numerically, it can be easily
verified that an inverse proportionality to (ρg(φ)) is retained for every θ̃i [15]. Using this
information in equation (11) reveals the following structure for the free energy in the nematic
state:

Fnem

NkBT
∼ cst + 3 ln ρ[+2 ln(g(φ))] + F({xi}) (14)

where concentration (ρ) and composition ({xi}) dependence are in separate terms. The former
leads again to the quasi-ideal osmotic pressure equation (10) (considering that g(φ) = 1),
completely independent of the composition of the nematic state. The latter also contains a non-
trivial contribution originating from the orientational entropy in equation (11). Consequently
the chemical potentials of species i , obtained from µi = (∂ F/∂ Ni )N j 	=i ,V,T have a non-trivial
composition dependence, which may drive phase separations as described later.

2.2. Parsons–Lee approach

To go beyond the second virial approximation the so-called Parsons–Lee method [16–18] is
often applied, which essentially rescales the total excluded volume of the system to that of a
hard-sphere system and then uses the semi-empirical Carnahan–Starling form for hard spheres
as a volume-fraction dependence. This method works quite well for monodisperse rods [17–
19] and has also been successfully applied to mixtures of rods and plates [3, 11]. In its simplest
form it corresponds to using the following form for the function g(φ) in the considerations
sketched above:

g(φ) ≡ 1 − (3/4)φ

(1 − φ)2
. (15)

For small volume fractions this reduces to g(φ) = 1 and we recover the second virial
approximation. Looking back to the previous section we see that most conclusions remain
valid (except for somewhat more complicated φ dependences).
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2.3. Gaussian approximation versus formal approach

A formal approach to the minimization of the free energy in the nematic state follows
from realizing that there is a continuous spread of angles θi of particle type i with the
director along the interval 0 < θi < π . The orientational averages in the free energy
equation (1) can be rewritten in terms of continuous orientational distribution functions (ODFs).
Thermodynamically consistent solutions for these functions are obtained by performing
functional differentiations with respect to the ODFs and solving the resulting minimization
equations. These equations constitute a coupled set of nonlinear integral equations which
can be solved only by applying appropriate numerical techniques [20]. In the Gaussian
approximation implicitly used above it is assumed that the ODFs obey a prescribed Gaussian
form (∼θ̃−2

i exp[−θ2
i /θ̃2

i ]) and the free energy minimization is then carried out by a simple
differentiation with respect to the typical angle θ̃i . Unlike the formal approach, the Gaussian
approximation allows us to obtain explicit asymptotic expressions for the orientational and
packing entropies in the nematic state, at least for the monodisperse case [21].

Although the Gaussian ODF does not qualify as an exact thermodynamic equilibrium ODF
it shows the correct high-density scaling behaviour such that the approximation is expected to be
satisfactory for strongly aligned nematic states [22]. As to the binary mixtures to be considered
in the following we may intuitively expect the Gaussian approach to work particularly well
for mixtures with extreme size ratios where the degree of alignment of both species is usually
very strong (due to their size difference).

2.4. Phase stability in binary mixtures

Let us now focus on binary mixtures of hard particles with total number density ρ and mole
fraction x (usually denoting the fraction of the largest species) and briefly sketch the conditions
for phase equilibria. Two phases (e.g. isotropic I and nematic N) are in equilibrium when the
osmotic pressure and chemical potentials of the components, obtained by taking appropriate
partial derivatives of the free energy, have the same value in both phases. After the coexistence
equations have been solved we can combine the results in a phase diagram. In this paper,
we will use a field-density (�–x) representation in terms of the osmotic coexistence pressure
plotted versus the mole fraction of the coexisting phases. In this representation, coexisting state
points are given by horizontal tie lines. For comparison with experimental phase diagrams,
however, it is often useful to employ a density–density (φ1–φ2) representation involving the
species volume fractions in the separate phases [6, 23]. We will not use this representation
here.

The next step is to verify the thermodynamic stability of the isotropic and nematic
phases with respect to a demixing into two phases with the same symmetry. A convenient
thermodynamic variable to analyse the local stability of a homogeneous phase with respect to
infinitesimal fluctuations in the density and composition (at constant osmotic pressure) is the
Gibbs free energy βG/N which can be obtained from the Helmholtz free energy by a Laplace
transform: G/N = F/N + ρ−1�. The condition for local stability then follows from the
second derivative of the Gibbs free energy with respect to the mole fraction [24, 25]:(

∂2g̃

∂x2

)
T,�

> 0 (16)

at constant temperature T and osmotic pressure �. In practice, it is usually more convenient
to rewrite this explicitly in terms of derivatives of the Helmholtz free energy with respect to
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density and composition:(
∂2 f̃

∂x2

)
T,ρ

− ρ

(
∂2 f̃

∂x∂ρ

)2 [
2
∂ f̃

∂ρ
+ ρ

∂2 f̃

∂ρ2

]−1

T,x

> 0 (17)

where g̃ = G/NkBT and f̃ = F/NkBT denote intensive free energies. The limit of stability of
the mixed state is given by (∂2g̃/∂x2)T,� = 0. The solutions ρs(x) of this equation represent
the so-called spinodal curve. The corresponding spinodal pressure �s can be obtained by
inserting ρ = ρs(x) into the osmotic pressure. The critical point (�∗, x∗) of the demixing
transition is then obtained from the condition d�s(x)/dx = 0. Corresponding demixing
binodals can be computed in the same way as described above by requiring equal osmotic
pressure and chemical potentials of both components in the demixed phases.

3. Isotropic–nematic fractionation phenomena

For the sake of clarity let us now define the following binary mixtures. R-I: rods with different
lengths (L) but equal thickness (D), R-II: rods with different diameters but equal length, and
likewise for the platelets, P-I: platelets with equal thickness (L) differing in diameter (D) and
P-II: platelets with equal diameter but different thickness. To investigate the behaviour of the
latter we need to include the next order (thickness dependent) contribution to the excluded
volume of two platelets equation (4) [7]. The reason for this is that the plate’s thickness does
not enter into the leading order contribution of the excluded volume ṽi j , so that retaining the
leading term only does not allow discrimination between plates differing only in thickness.

In figure 1 we show two phase diagrams which are representative for binary mixtures of
platelets differing in thickness or diameter (i.e. cases P-I and P-II). From the osmotic pressure
representations we can immediately infer a strong repartitioning of the species among the
coexisting isotropic and nematic phases, i.e. the different phases are markedly enriched in
either the large or the small species. However, the two scenarios depicted in figure 1 are quite
distinct. For mixture P-I the largest species appear to preferentially occupy the nematic phase
whereas in the other case the large platelets accumulate in the isotropic phase. Fractionation
in binary mixtures of rods (both R-I and R-II) occurs in a way similar to that of plates with
different diameters (P-I) as sketched in figure 1(a) with a preference of the longer/thicker rods
for the nematic phase [2, 26].

The anomalous fractionation behaviour of platelet mixture P-II may lead to an inversion
of densities of the isotropic and nematic phases. Consequently this may give an isotropic
lower phase in coexistence with a nematic upper phase in a test tube as recently observed
experimentally [27]. This behaviour can easily be rationalized from figure 1(a). Although the
isotropic phase always has a lower number density than the nematic phase, its mass density,
which also depends upon the average particle size in the phase, may become higher than that of
the nematic phase due to fractionation, the biggest particles migrating into the isotropic phase.

4. Demixing of the isotropic and nematic phases

4.1. Symmetry-conserved nematic–nematic demixing

As we can see from the phase diagrams depicted in figure 1, a homogeneous nematic system
may under certain conditions demix into two nematic phases with the same uniaxial nematic
symmetry but with different number densities and compositions. For all four mixtures
considered in this paper, this demixing transition can occur if the corresponding length or
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(a)

(b)

Figure 1. Phase diagrams in terms of osmotic pressure �̃ = (1/2)〈〈vexcl〉〉iso
11 �/kBT plotted versus

the mole fraction of the largest species x = x2 obtained from the Onsager theory using Parsons–Lee
rescaling. (a) Case P-I: mixture of platelets with equal thickness but different diameters (L1 = L2,
l1 = 10, l2 = 20). The dotted line represents an I–NI–NII triple line. (b) Case P-II: binary mixture
of thin and thick hard platelets with equal diameter (D1 = D2, l1 = 9, l2 = 4).

thickness ratio exceeds some threshold value. However, the interplay of the different entropic
contributions involved can lead to distinctly different demixing mechanisms for these mixtures.

Judging from the structure of the nematic free energy equation (11), it is obvious that
the demixing must be driven by a competition between mixing, orientation and packing
(i.e. excluded-volume) entropy. However, since the latter contribution is a constant independent
of the composition for all cases (except for the plates with bidisperse thickness, P-II) it is
clear that the excluded-volume effect plays no role and that the demixing involves a balance
between mixing and orientational entropy. In the case of rods with length bidispersity (R-I)
the orientational entropy of the short rods favours demixing because of the strong alignment
the long rods impose on the short in the mixed nematic phase [6]. Demixing occurs when the
gain of orientational entropy outweighs the simultaneous loss of mixing entropy. A similar
scenario applies to the other mixtures R-II and P-I, while case P-II is an exception because there
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the demixing is essentially driven by a competition between mixing and the excess packing
entropy due to the plates’ thickness (rather than their orientational entropy, as shown explicitly
in [7]).

The underlying mechanism may also have important implications for the topology of
the nematic–nematic coexistence region. In particular, if the packing entropy is irrelevant all
binodals can be shown to be completely independent of concentration and osmotic pressure1.
This is easily understood by considering the Gibbs free energy of the nematic phase. Applying
the appropriate Laplace transform of equation (14) and using the osmotic pressure equation (10)
gives

g̃nem(�, x) ∼ cst + 3 ln(�/3) + F(x, q). (18)

Since the first terms are trivial contributions independent of the mole fraction, it is clear that the
last contribution is solely responsible for the demixing and that the presence of an instability
is only determined by the size ratio q . This means that the demixing binodals do not depend
upon the concentration or the osmotic pressure of the nematic phase. Consequently, in a �–x
representation, all binodals must be straight vertical lines [6]. The threshold value for q above
which an instability occurs was found at q = 3.167 for rods of type R-I [6], whereas the
platelets of type P-I demix at considerably lower size ratios q > 1.753. Based on similar
calculations, Hemmer [8] found that for the case R-II a diameter ratio larger than 4.258 is
required.

As mentioned already, mixtures of thin and thick platelets (P-II) are governed by a different
demixing scenario. There, the excluded-volume contribution (more precisely, the thickness-
dependent correction term) is responsible for the demixing. The packing contribution of the
Gibbs free energy (which favours demixing) for the case P-II reads

g̃nem
excl = 2 + 8φ = 2 +

32

π
c(�, x)

∑
i=1,2

xi
Li

D
(19)

where the concentration c(�, x) follows from inverting the equation of state [7]. Due to its
concentration dependence the latter term in equation (19) will always outweigh the mixing
contribution at sufficiently high pressures, irrespective of the size ratio. Therefore, there is no
threshold value in these mixtures and demixing occurs at any size ratio. However, in order for
the critical pressure to attain physically acceptable values it is required that the thickness ratio
is larger than three [7].

To assess the effect of Parsons–Lee rescaling on the shape of the demixing binodals we
may analyse its additional contribution to the Gibbs free energy equation (18). The osmotic
pressure of the nematic state within the Parsons–Lee approach becomes

�nem

kBT
∼ c

[
3 + 2

∂ ln g(φ(x, c))

∂ ln φ(x, c)

]
. (20)

Inverting the pressure now yields a non-trivial mole-fraction dependence of the concentration
c(�, x) (compared to a simple c(�) = �/3 for the case g(φ) = 1). This implies that all
binodals become implicitly dependent upon the osmotic pressure so that they no longer form
straight lines in a �–x phase representation, as we see in figure 1. As to the Gibbs free energy,
the trivial second term in equation (18) should now be replaced by the following non-trivial
contribution

g̃P−L(�, x) ∼ 3 ln c [�(x)] + 2 ln g(x, c [�(x)]). (21)

To verify whether this contribution stabilizes or destabilizes the homogeneous nematic state
we must know the sign of its second order derivative with respect to the mole fraction.

1 Formally, this conclusion is only valid within the Gaussian trial function Ansatz we implicitly use here.
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This calculation can only be done in a numerical way since it is not possible to invert the
osmotic pressure equation (20) analytically. It turns out that (∂2g̃P−L/∂x2) is generally
positive indicating that the correction due to the Parson–Lee rescaling always favours the
mixed state. Consequently the critical values mentioned above need to be adapted slightly
due to the rescaling. An interesting manifestation of the stabilizing effect of the Parson–Lee
approach is the possibility of the demixing binodals closing off at a lower critical point. This
would give a scenario similar to the one shown in figure 1(b) for the case P-II; although the size
ratio is larger than the threshold value the nematic–nematic two-phase region only opens up
when the pressure exceeds a certain value. Note that this scenario is not encountered without
the Parsons–Lee rescaling since the binodals then run vertically and therefore cannot meet in a
critical point. At higher size ratios, the critical point shifts to lower values of the pressures and
the nematic–nematic demixing region eventually overlaps with the isotropic–nematic region.
This gives rise to an isotropic–nematic–nematic triple equilibrium, according to the scenario
shown in figure 1(a).

Calculations based upon the formal minimization approach (see section 2.3) reveal the
possibility of an upper critical or consolute point which marks the closing of the nematic–
nematic region at high pressures and the re-entrance of the homogeneous nematic state. These
have been found in mixtures of rods with different lengths (R-I) [28] (albeit in an extremely
small q interval at low size ratios) and in mixtures of thin and thick hard rods (R-II) [2]. The fact
that this phenomenon is not observed in the Gaussian approach is probably related to the fact
that the ODFs are not represented by their true equilibrium form. However, in both cases the
consolute points disappear at higher size ratios such that the high-q scenarios obtained within
the formal approach are consistent with the one sketched for the Gaussian approximation in
figure 1(a).

4.2. Isotropic–isotropic demixing

Contrary to the nematic phase, a demixing of the isotropic phase is less common. So far,
such an instability was only found in binary mixtures of thin and thick rods (R-II) [2, 9, 25].
However, extending the simple spinodal analysis from [25] it can be easily verified that a
similar demixing may take place in mixtures of platelets, both for P-I and P-II. Consider the
free energy in the isotropic state

f̃ iso ∼ cst + ln ρ − 1 +
∑
i=1,2

xi ln xi + 1
2ρg(φ)B iso

2 (22)

with B iso
2 the excluded-volume dependent second virial coefficient:

B iso
2 = π

4

(
(1 − x)2ṽ11 + 2x(1 − x)ṽ12 + x2ṽ22

)
. (23)

Inserting this into equation (17) (setting g(φ) = 1 for simplicity) and some rearrangements
lead to the following stability condition [25]:

1 + ρ
π

4
((1 − x)ṽ11 + x ṽ22) −

(
ρ

π

4

)2
x(1 − x)� > 0. (24)

To arrive at equation (24) it is implicitly used that the system also fulfils the criterion for
mechanical stability (∂2 f̃ /∂v2)x > 0, where v = 1/ρ [24]. A demixing instability is only
possible if � ≡ ṽ2

12 − ṽ11ṽ22 > 0 since only then is the condition equation (24) no longer
satisfied for all ρ > 0. Substituting corresponding expressions for ṽi j (including the thickness
dependent contribution for the case P-II) yields � > 0 for all cases except for R-I, for which
� = 0. Hence, an isotropic–isotropic demixing may in principle be expected in all mixtures,
except in binary systems of rods differing only in length.
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Figure 2. Locus of the isotropic–isotropic critical point, in terms of the critical pressure �̃∗
and mole fraction x∗ (inset), for binary plate mixtures P-I (solid curve, q = D2/D1) and P-II
(dotted curve, q = L2/L1). Results are based on the Onsager–Parsons–Lee free energy using
l1 = L/D1 = L1/D = 0.05.

Explicit results can be obtained by calculating spinodal curves (and their corresponding
critical point) from equation (17) as a function of the size ratio. To illustrate this we have
plotted in figure 2 the evolution of the isotropic–isotropic critical point for the binary plate
mixtures P-I and P-II. Physical solutions are found for size ratios q = D2/D1 > 1.95 (P-I) and
q = L2/L1 > 1.42 (P-II). However, considering the high osmotic pressures at low size ratios
it is evident that the isotropic state (and therefore its demixing) will initially be metastable with
respect to a transition to the nematic state. In order to estimate the minimum size ratio required
for having stable demixing transitions we should compare the critical pressure in figure 2 with
the maximum coexistence pressure pertaining to the isotropic–nematic transition. From this
we obtain that q > 7.4 for P-I and q > 2.85 for P-II. Note that these values represent lower
bounds to the metastable–stable transition and the exact transitions generally occur at higher
size ratios. For the case R-II, the transition was predicted at q > 8 [2]. The fact that a demixing
of the isotropic phase requires a considerably larger size ratio than the nematic phase is not
surprising because the orientation entropy, which usually favours demixing, is not present in
the isotropic state. Consequently, the demixing must be solely accomplished by excluded-
volume effects, in particular the unfavourable excluded volumes between unlike particles, as
we can infer from the condition � > 0.

Finally, we remark that the phase behaviour of platelets (P-I and P-II) can be surprisingly
rich, with a possibility of both N–N and I–I two phase equilibria and their associated I–NI–NII

and II–III–N triple equilibria, without having to go to extreme size ratios.

5. Nematic–nematic demixing in rod–plate mixtures; symmetry-broken demixing

In the systems discussed so far we have restricted ourselves to nematic phases with a common
uniaxial symmetry. However, when mixing particles with distinctly different shapes, e.g. rods
and plates, several nematic phases with different symmetries may come into play and the
phase behaviour of these systems can become considerably more complicated. For rod–plate
mixtures, we may consider three types of nematic phase, two uniaxial ones (usually denoted by
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(a)

(b)

Figure 3. (a) Phase diagram of an asymmetric rod–plate mixture in the osmotic pressure–
composition plane obtained from the Onsager theory (g(φ) = 1). The aspect ratio of the rods
and plates are, lR = 15 and lP = 14, respectively. The rods and plates have equal thickness
(DR = LP). The dotted line indicates a continuous transition from a uniaxial (N−) to the biaxial
(B) nematic symmetry. Thin dotted lines are sketched lines indicating the topology at high pressure.
(b) Same for lR = 15 and lP = 18 and equal thickness.

N+ and N−) and a biaxial B phase. The uniaxial phases are characterized by polar orientation
of one species (i.e. alignment along the nematic director) while the other is oriented in a planar
fashion (alignment of its symmetry axis in the plane normal to the director). In the biaxial case
both species exhibit polar orientation along mutually perpendicular nematic directors. The
relative stability of the different nematic symmetries was analysed for various mixtures and
approximations within the Onsager theory [3, 10–12, 29, 30]. Special attention was given to
the stability of the biaxial nematic phase with respect to a demixing into the uniaxial nematic
ones (i.e. the rod-rich N+ and plate-rich N− phases).

This issue can be nicely illustrated by considering so-called asymmetric mixtures,
characterized by a large excluded volume ratio between the like particles, such that
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〈〈vexcl〉〉PP � 〈〈vexcl〉〉RR. These mixtures are also interesting because they closely resemble
the colloidal rod–plate mixtures studied experimentally by Van der Kooij et al [31, 32]. An
example of the subtle phase stability in these mixtures is depicted in figure 3. The phase
diagrams are based upon calculations within the second virial approach (g(φ) = 1) employing
formal free energy minimizations [33]. Figure 3(a) shows that all nematic symmetries are
present but their (meta)stability is strongly dependent upon the osmotic pressure. At low
pressures the phase behaviour is dominated by the isotropic phase in coexistence with the
plate-dominated N− phase. When the pressure �̃ exceeds about 12 the symmetry of the
latter changes continuously to a biaxial one. At the triple pressure, a second nematic phase
comes into play, the uniaxial rod-rich nematic phase N+. Finally, the high-density regime is
characterized by coexistence between the uniaxial N+ and biaxial nematic phases. Figure 3(b)
shows a similar diagram for a mixture with enhanced asymmetry (i.e. the aspect ratio of the
plates is increased, while that of the rods is fixed at 15). In this case, the biaxial phase is
metastable with respect to a demixing into the two uniaxial nematic phases. Note that the
phase diagram now resembles the one depicted in figure 1(a).

One of the key issues left open for future investigation is the question how the stability
of the biaxial nematic phase depends upon the effects of multi-particle correlations which are
not taken into account in the Onsager description. Recent calculations by Varga et al [29]
indicate that the stability depends quite sensitively on the effect of Parsons–Lee rescaling and
also on the corrections due to end effects in the excluded volume equation (4) (which correct
for the particles’ finite thicknesses). However, resolving this issue in a correct way requires a
systematic direct inclusion of many-body excluded volume terms into the free energy, rather
than indirectly accounting for these via the Parsons–Lee rescaling of the two-particle excluded
volumes. Since it is impossible to carry this out in a theoretical study, we believe it to be a
future challenge for computer simulators and experimentalists to verify what is really observed
in these mixtures.

6. Final remarks

In this paper we have not treated the possibility of phase transitions from the nematic state
to high-density liquid crystal symmetries with (partial) positional order, such as smectic and
columnar phases. Since these phases are expected to appear in the high-pressure regime of
the phase diagram, instabilities of the nematic state towards smectic/columnar ordering may
interrupt the topology of the nematic–nematic demixing regimes in figures 1 and 3. So far such
instabilities have only been analysed theoretically for a perfectly aligned nematic state of short
and long rods (R-I) and thick and thin rods (R-II) [25]. There it was found that under certain
conditions the demixing of the nematic phase is indeed pre-empted by transitions to smectic or
columnar states. Recent simulations on mixtures of hard rods and plates also indicate that the
nematic phases (and hence their possible demixing transitions) are strongly impeded by phase
transitions to other phases possessing partial long-range order of one of the species [34, 35].
Clearly, further research is required to map the details of the phase behaviour of mixed hard
anisometric particles at high densities.
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