

Thermochimica Acta 391 (2002) 185-196

thermochimica acta

www.elsevier.com/locate/tca

# Specific heat capacities and thermal properties of a homogeneous ethylene-1-butene copolymer by adiabatic calorimetry

P.J. van Ekeren<sup>a,\*</sup>, L.D. Ionescu<sup>a</sup>, V.B.F. Mathot<sup>b</sup>, J.C. van Miltenburg<sup>a</sup>

<sup>a</sup>Chemical Thermodynamics Group, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands <sup>b</sup>DSM Research, P.O. Box 18, 6160 MD Geleen, The Netherlands

Received 21 September 2001; accepted 23 October 2001

#### Abstract

Specific heat capacities of a homogeneous ethylene-1-butene copolymer were measured by adiabatic calorimetry in the temperature range from 7 to 406 K (stepwise heating after cooling at rates in the range from 6 to 25 K h<sup>-1</sup>, averaged heating rates 5-34 K h<sup>-1</sup>). The glass transition is centred around 224 K. With devitrification also melting sets in. The crystallinity of the polymer was calculated (within the two-phase model) as a function of temperature using two sets of reference data (one for linear and branched polyethylenes (BPEs), and the other for strictly linear polyethylene (LPE)) for completely crystalline and for completely amorphous material. On heating, the mass fraction crystallinity decreased from 0.30 to 0 in the temperature range from 220 to 360 K, confirming earlier differential scanning calorimetry (DSC) heat capacity measurements. During the stabilisation periods in the melting region negative temperature drifts, related to endothermic effects caused by melting, were observed below 325 K. However, in the temperature range from 325 K up to the end melting temperature, 360 K, positive drifts were measured, reflecting exothermic effects which are attributed to recrystallisation phenomena. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Adiabatic calorimetry; Crystallinity; Ethylene-1-butene copolymer; Heat capacity; Polyethylene; Recrystallisation; Relaxation

#### 1. Introduction

To support studies on the thermal behaviour of polymers, which are usually performed using differential scanning calorimetry (DSC) [1], it was decided to measure the heat capacity of some ethylene-1-alkene copolymers very accurately over a wide temperature range using adiabatic calorimetry. The results for a heterogeneous ethylene-1-octene very low density

\*Corresponding author. Tel.: +31-30-2533509;

fax: +31-30-2533947.

polyethylene (VLDPE) with a comonomer content of 6.2 mol% and a density of 902 kg m<sup>-3</sup> and for a homogeneous ethylene-1-octene copolymer with a comonomer content of 13.6 mol% and a density of 870 kg m<sup>-3</sup> have been published previously [2,3]. In this paper, data are presented for a homogeneous ethylene-1-butene copolymer with a comonomer content of 12.9 mol% and a density of 878 kg m<sup>-3</sup>. With this contribution we would like to express our appreciation to Dr. M. Richardson and to Dr. G. Höhne for their pioneering research in developing techniques and methods for calorimetry and for their commitment to perform quantitative calorimetry for better understanding of the thermal behaviour of polymers.

0040-6031/02/\$ – see front matter 2002 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(02)00176-4

E-mail address: ekeren@chem.uu.nl (P.J. van Ekeren).

# 2. Experimental

# 2.1. The sample

The sample, EB 5, is a homogeneous ethylene-1butene copolymer [4,5] which was produced using metallocene based catalysis. The molar percentage of 1-butene is 12.9% (i.e. the mass percentage of 1-butene is 22.9% by NMR). Its meltindex,  $I_2$ , is 9.76 dg/min and the density of the material (at 298 K, after compression moulding) is 878 kg m<sup>-3</sup>.

# 2.2. The adiabatic calorimeter

The measurements were performed using one of our home-built adiabatic calorimeters [6,7]. The temperature is measured using a 27  $\Omega$  rhodium–iron resistance, which has been calibrated by Oxford Instruments at 33 points between 1.5 and 300 K. The calibration was extended to 430 K using the melting temperatures of naphthalene and indium. Conversion to the ITS-90 scale [8] is based on the article of Goldberg and Weir [9].

After filling and successive evacuation of the calorimeter vessel, helium gas is admitted to the vessel until the pressure is about 1000 Pa. Measurements are made in the intermittent mode. This implies that stabilisation periods are followed by input periods under automatic control. During the stabilisation periods, the temperature is recorded as a function of time. Between two stabilisation periods, an input period is used to raise the temperature of the sample (and vessel). The amount of heat added to the calorimeter vessel is measured very accurately. The temperature increase, which is caused

| Table 1  |        |           |           |         |        |       |      |   |        |
|----------|--------|-----------|-----------|---------|--------|-------|------|---|--------|
| Overview | of the | series of | measureme | nts per | formed | on th | e EB | 5 | sample |

by the heat input, follows from extrapolation of the temperature-time curves of both stabilisation periods. These data allow for the accurate calculation of the heat capacity. The heat capacity of the sample is obtained by subtracting the heat capacity of the empty calorimeter vessel. In the transition regions thermal equilibrium is not reached within a practical time limit because of various kinds of temperature-time dependent processes. Therefore, in these regions another method was applied. The known heat transfer to the surroundings (from an empty vessel experiment) and the amount of heat added to the calorimeter vessel were used to calculate the enthalpy increment between (the midpoints of) two successive stabilisation periods. This results in the actual enthalpy path of the vessel and its content.

Due to the adiabatic construction the heat exchange with the surroundings is very small. Therefore, temperature drifts observed in the stabilisation periods may be used to investigate the temperature–time dependent processes. According to measurements of standard materials, the inaccuracy is approximately 0.2% of the absolute heat capacity.

# 2.3. The measurements

The calorimeter vessel was filled with an amount of 5.52958 g of the polymer. Eight series of measurements were performed with this sample in the temperature range from 7 to 406 K. An overview of the performed measurements (temperature ranges, duration of stabilisation and input periods and averaged heating rates) is given in Table 1. The sample was cooled after series 1 and 3 by switching off the temperature control of the shields. This resulted in

| Series no. | $T_1$ (K) | $T_2$ (K) | t (stabilisation) (s) | <i>t</i> (input) (s) | $\langle \beta \rangle ~({\rm K}~{\rm h}^{-1})$ |
|------------|-----------|-----------|-----------------------|----------------------|-------------------------------------------------|
| 1          | 298       | 389       | 600                   | 708                  | 5                                               |
| 2          | 85        | 113       | 600                   | 708                  | 7                                               |
| 3          | 116       | 385       | 600                   | 708                  | 6                                               |
| 4          | 7         | 31        | 100                   | 100                  | 34                                              |
| 5          | 7         | 29        | 200                   | 100                  | 20                                              |
| 6          | 9         | 100       | 600                   | 608                  | 8                                               |
| 7          | 98        | 279       | 800                   | 808                  | 5                                               |
| 8          | 280       | 406       | 800                   | 808                  | 4                                               |

For each measurement series the temperature range in which measurements were performed is given together with the duration of the stabilisation and input periods and the averaged heating rates  $\langle \beta \rangle$ .



Fig. 1. Cooling curve, recorded after measurement series 3.

Table 2

a (slow) exponential decrease of the temperature: at 360 K the cooling rate was approximately 25 K h<sup>-1</sup> and at 220 K the cooling rate was approximately 6 K h<sup>-1</sup>. To have an impression of the thermal history of the sample the cooling curve which was recorded after series 3 is plotted in Fig. 1.

#### 3. Results and discussion

#### 3.1. Specific heat capacity

The specific heat capacities that were evaluated from the measurements are given in Table 2 and graphically presented in Fig. 2. For temperatures below 315 K the heat capacities measured in series 1 are considerably lower than those measured in series 3 and 8 at the same temperatures. In the temperature range from 315 to 370 K, on the other hand, the heat capacities measured during series 1 are significantly higher than those measured during series 3 and 8. This is caused by the different thermal history of the sample for these measurements. Series 1 was performed on the polymer as received, i.e. on material that had been stored for a long time (years) at room temperature. During the storage the material had obviously relaxed to a more stable state. The first measurements of series Measured specific heat capacity of EB 5 as a function of temperature

| $\frac{C_p}{J K^{-1} g^{-1}}$ |
|-------------------------------|
|                               |
| 2.384                         |
| 2.417                         |
| 2.442                         |
| 2.480                         |
| 2.519                         |
| 2.562                         |
| 2.613                         |
| 2.674                         |
| 2.756                         |
| 2.882                         |
| 3.023                         |
| 3.119                         |
| 3.170                         |
| 3.198                         |
| 3.221                         |
| 3.244                         |
| 3.270                         |
| 3.298                         |
| 3.330                         |
| 3.358                         |
| 3.384                         |
| 3.403                         |
| 3.416                         |
| 3.422                         |
| 3.419                         |
|                               |

Table 2 (Continued)

#### Table 2 (Continued)

| T/K      | $\frac{C_p}{J K^{-1} g^{-1}}$ | T/K    | $\frac{C_p}{J K^{-1} g^{-1}}$ |
|----------|-------------------------------|--------|-------------------------------|
| 339.23   | 3.407                         | 152.28 | 0.971                         |
| 340.87   | 3.387                         | 155.21 | 0.987                         |
| 342.52   | 3.351                         | 158.14 | 1.002                         |
| 344.19   | 3.298                         | 161.07 | 1.020                         |
| 345.88   | 3.222                         | 163.99 | 1.036                         |
| 347.62   | 3.114                         | 166.91 | 1.052                         |
| 349.42   | 2.979                         | 169.83 | 1.069                         |
| 351.27   | 2.831                         | 172.76 | 1.087                         |
| 353.19   | 2.693                         | 175.68 | 1.104                         |
| 355.15   | 2.580                         | 178.60 | 1.122                         |
| 357.16   | 2.507                         | 181.52 | 1.139                         |
| 359.18   | 2.462                         | 184.44 | 1.159                         |
| 361.22   | 2.439                         | 187.36 | 1.176                         |
| 363.24   | 2.428                         | 190.29 | 1.195                         |
| 365.25   | 2.423                         | 193.21 | 1.213                         |
| 367.26   | 2.424                         | 196.13 | 1.232                         |
| 369.25   | 2.428                         | 199.04 | 1.252                         |
| 371.25   | 2.433                         | 201.95 | 1.274                         |
| 373.24   | 2.439                         | 204.87 | 1.294                         |
| 375.23   | 2.445                         | 207.76 | 1.329                         |
| 377.22   | 2.452                         | 210.65 | 1.370                         |
| 379.21   | 2.454                         | 213.50 | 1.411                         |
| 381.20   | 2.452                         | 216.29 | 1.459                         |
| 383.20   | 2.460                         | 219.02 | 1.517                         |
| 385.21   | 2.464                         | 221.69 | 1.586                         |
| 387.21   | 2.467                         | 224.30 | 1.653                         |
| 389.21   | 2.472                         | 226.85 | 1.709                         |
| Series 2 |                               | 229.36 | 1.762                         |
| 85.31    | 0.605                         | 231.84 | 1.805                         |
| 87.75    | 0.621                         | 234.27 | 1.850                         |
| 90.39    | 0.637                         | 236.68 | 1.890                         |
| 93.25    | 0.654                         | 239.06 | 1.927                         |
| 96.11    | 0.670                         | 241.41 | 1.964                         |
| 98.97    | 0.686                         | 243.73 | 2.000                         |
| 101.83   | 0.706                         | 246.03 | 2.034                         |
| 104.71   | 0.720                         | 248.32 | 2.067                         |
| 107.59   | 0.734                         | 250.57 | 2.100                         |
| 110.48   | 0.751                         | 252.81 | 2.132                         |
| 113.44   | 0.683                         | 255.03 | 2.156                         |
| Series 3 |                               | 257.23 | 2.186                         |
| 115.78   | 0.777                         | 259.41 | 2.216                         |
| 117.70   | 0.788                         | 261.58 | 2.247                         |
| 120.13   | 0.801                         | 263.72 | 2.278                         |
| 123.05   | 0.817                         | 265.85 | 2.307                         |
| 125.97   | 0.833                         | 267.95 | 2.338                         |
| 128.89   | 0.848                         | 270.04 | 2.369                         |
| 131.81   | 0.863                         | 272.11 | 2.397                         |
| 134.73   | 0.878                         | 274.16 | 2.427                         |
| 137.66   | 0.893                         | 276.20 | 2.459                         |
| 140.58   | 0.910                         | 278.22 | 2.490                         |
| 143.50   | 0.925                         | 280.22 | 2.519                         |
| 146.42   | 0.940                         | 282.21 | 2.550                         |
| 149.35   | 0.955                         | 284.19 | 2.575                         |

Table 2 (Continued)

| Т/К    | $\frac{C_p}{J K^{-1} g^{-1}}$ | Τ/Κ      | $\frac{C_p}{JK^{-1}g^{-1}}$ |
|--------|-------------------------------|----------|-----------------------------|
| 286.14 | 2.610                         | 384.81   | 2.458                       |
| 288.08 | 2.640                         | Series 4 |                             |
| 290.01 | 2.669                         | 6.61     | 0.009                       |
| 291.92 | 2.699                         | 7.26     | 0.012                       |
| 293.82 | 2.726                         | 8.59     | 0.017                       |
| 295.70 | 2.754                         | 10.45    | 0.027                       |
| 297.58 | 2.783                         | 12.16    | 0.036                       |
| 299.44 | 2.808                         | 14.07    | 0.049                       |
| 301.29 | 2.832                         | 16.17    | 0.063                       |
| 303.14 | 2.860                         | 18.37    | 0.079                       |
| 304.97 | 2.884                         | 20.67    | 0.097                       |
| 306.80 | 2 910                         | 23.06    | 0.117                       |
| 308.61 | 2.936                         | 25.53    | 0.137                       |
| 310.42 | 2.950                         | 28.09    | 0.154                       |
| 312.22 | 2,990                         | 30.54    | 0.171                       |
| 314.00 | 3.019                         | Series 5 | 0.171                       |
| 315.78 | 3.048                         | 7 14     | 0.011                       |
| 317 55 | 3 080                         | 8 28     | 0.016                       |
| 310.30 | 3.114                         | 0.20     | 0.023                       |
| 321.04 | 3 140                         | 11.49    | 0.023                       |
| 322.04 | 3 182                         | 13.10    | 0.032                       |
| 324.48 | 3 217                         | 1/ 0/    | 0.054                       |
| 326.19 | 3 246                         | 16.80    | 0.054                       |
| 327.89 | 3 271                         | 18.71    | 0.083                       |
| 329.59 | 3 290                         | 20.66    | 0.099                       |
| 331.28 | 3 302                         | 22.66    | 0.115                       |
| 332.08 | 3 309                         | 24.70    | 0.134                       |
| 334.68 | 3 311                         | 26.78    | 0.152                       |
| 336 38 | 3 312                         | 28.94    | 0.168                       |
| 338.09 | 3.311                         | Series 6 | 0.100                       |
| 339.80 | 3 304                         | 9 43     | 0.023                       |
| 341 51 | 3 284                         | 13.23    | 0.042                       |
| 343.24 | 3 246                         | 15.61    | 0.057                       |
| 344.98 | 3.186                         | 17.61    | 0.073                       |
| 346.74 | 3.098                         | 19.72    | 0.091                       |
| 348.55 | 2.982                         | 21.91    | 0.108                       |
| 350.40 | 2.842                         | 24.07    | 0.128                       |
| 352.30 | 2.687                         | 26.22    | 0.147                       |
| 354.26 | 2.545                         | 28.45    | 0.164                       |
| 356.28 | 2.449                         | 30.75    | 0.184                       |
| 358.32 | 2.408                         | 33.06    | 0.209                       |
| 360.37 | 2.398                         | 35.35    | 0.228                       |
| 362.43 | 2.398                         | 37.72    | 0.247                       |
| 364.48 | 2.401                         | 40.15    | 0.268                       |
| 366.53 | 2.407                         | 42.60    | 0.289                       |
| 368.58 | 2.415                         | 45.08    | 0.311                       |
| 370.62 | 2.422                         | 47.58    | 0.332                       |
| 372.65 | 2.430                         | 50.12    | 0.353                       |
| 374.69 | 2.438                         | 52.96    | 0.375                       |
| 376.72 | 2.444                         | 55.29    | 0.396                       |
| 378.74 | 2.448                         | 57.92    | 0.417                       |
| 380.77 | 2.452                         | 60.58    | 0.436                       |
| 382.79 | 2.454                         | 63.26    | 0.456                       |

Table 2 (Continued)

#### Table 2 (Continued)

| T/K      | $\frac{C_p}{J K^{-1} g^{-1}}$ | T/K              | $\frac{C_p}{J K^{-1} g^{-1}}$ |
|----------|-------------------------------|------------------|-------------------------------|
| 65.96    | 0.476                         | 205.20           | 1.328                         |
| 68.69    | 0.495                         | 207.75           | 1.351                         |
| 71.43    | 0.514                         | 210.27           | 1.375                         |
| 74.19    | 0.532                         | 212.76           | 1.406                         |
| 76.96    | 0.551                         | 215.21           | 1.444                         |
| 79.75    | 0.568                         | 217.62           | 1.490                         |
| 82.55    | 0.586                         | 219.99           | 1.542                         |
| 85.36    | 0.603                         | 222.31           | 1.599                         |
| 88.18    | 0.620                         | 224.58           | 1.656                         |
| 91.01    | 0.637                         | 226.81           | 1.709                         |
| 93.85    | 0.653                         | 229.00           | 1.758                         |
| 96.71    | 0.669                         | 231.17           | 1.801                         |
| 99.57    | 0.685                         | 233.30           | 1.839                         |
| Series 7 |                               | 235.42           | 1.875                         |
| 98.10    | 0.690                         | 237.51           | 1.908                         |
| 98.20    | 0.675                         | 239.57           | 1.939                         |
| 99.75    | 0.689                         | 241.62           | 1.968                         |
| 102.69   | 0.709                         | 243.65           | 1.994                         |
| 105.57   | 0.724                         | 245.66           | 2.021                         |
| 108.45   | 0.737                         | 247.66           | 2.048                         |
| 111.34   | 0.755                         | 249.63           | 2.077                         |
| 114.23   | 0.771                         | 251.59           | 2 103                         |
| 117.13   | 0.787                         | 253.54           | 2.128                         |
| 120.03   | 0.802                         | 255.47           | 2 150                         |
| 122.94   | 0.818                         | 257.39           | 2.175                         |
| 125.85   | 0.833                         | 259 29           | 2.202                         |
| 128.75   | 0.848                         | 261 19           | 2 228                         |
| 131.66   | 0.863                         | 263.07           | 2 255                         |
| 134 58   | 0.879                         | 264.94           | 2.235                         |
| 137 50   | 0.894                         | 266.79           | 2 309                         |
| 140.41   | 0.910                         | 268.63           | 2 336                         |
| 143.33   | 0.926                         | 270.45           | 2.350                         |
| 146.25   | 0.920                         | 270.45           | 2 390                         |
| 140.25   | 0.942                         | 272.20           | 2.350                         |
| 152.09   | 0.973                         | 275.84           | 2.417                         |
| 155.01   | 0.975                         | 277.61           | 2.445                         |
| 157.03   | 1.004                         | 279.37           | 2.472                         |
| 160.85   | 1.004                         | Series 8         | 2                             |
| 163.77   | 1.022                         | 280.24           | 2 437                         |
| 166.60   | 1.053                         | 280.24           | 2.497                         |
| 160.61   | 1.055                         | 280.95           | 2.551                         |
| 172.52   | 1.070                         | 282.20           | 2.331                         |
| 172.32   | 1.085                         | 284.10           | 2.902                         |
| 173.39   | 1.112                         | 280.01           | 2.805                         |
| 176.20   | 1.099                         | 207.00           | 2.809                         |
| 101.10   | 1.140                         | 209.70           | 2.795                         |
| 105.00   | 1.133                         | 291.71           | 2.795                         |
| 100.04   | 1.170                         | 295.05           | 2.805                         |
| 107.57   | 1.190                         | 293.39<br>207.52 | 2.019                         |
| 192.07   | 1.221                         | 297.35           | 2.040                         |
| 194.73   | 1.242                         | 299.48           | 2.000                         |
| 197.40   | 1.204                         | 202.20           | 2.001                         |
| 200.03   | 1.280                         | 505.39<br>205.25 | 2.902                         |
| 202.03   | 1.307                         | 303.35           | 2.924                         |

Table 2 (Continued)

| T/K               | $\frac{C_p}{J K^{-1} g^{-1}}$ |
|-------------------|-------------------------------|
| 307.31            | 2.946                         |
| 309.27            | 2.971                         |
| 311.24            | 2.995                         |
| 313.20            | 3.023                         |
| 315.16            | 3.054                         |
| 317.13            | 3.087                         |
| 319.09            | 3.124                         |
| 321.06            | 3.163                         |
| 323.02            | 3.200                         |
| 324.99            | 3.236                         |
| 326.97            | 3.262                         |
| 328.95            | 3 281                         |
| 330.94            | 3.282                         |
| 332.92            | 3 275                         |
| 334.91            | 3 265                         |
| 336.91            | 3 253                         |
| 338.91            | 3 241                         |
| 340.91            | 3.221                         |
| 342.93            | 3 185                         |
| 344.96            | 3 119                         |
| 347.03            | 3.017                         |
| 349 15            | 2 883                         |
| 351 30            | 2.005                         |
| 353.47            | 2.576                         |
| 355.62            | 2.570                         |
| 357.73            | 2.402                         |
| 359.79            | 2 305                         |
| 361.81            | 2.395                         |
| 363.81            | 2.373                         |
| 365.80            | 2.403                         |
| 367.70            | 2.400                         |
| 360.78            | 2.417                         |
| 371 77            | 2.417                         |
| 373.76            | 2.424                         |
| 375.76            | 2.432                         |
| 375.70            | 2.438                         |
| 370.75            | 2.442                         |
| 381 75            | 2.440                         |
| 292 75            | 2.440                         |
| 385.75            | 2.449                         |
| 207.75            | 2.450                         |
| 301.13            | 2.400                         |
| 201.74            | 2.470                         |
| 202.74            | 2.477                         |
| 595.74<br>205.74  | 2.483                         |
| 207 75            | 2.491                         |
| 200 75            | 2.490                         |
| ۲۶۲.<br>۱۵<br>۱۹۲ | 2.500                         |
| 401.75            | 2.312                         |
| 405.70            | 2.518                         |
| 405.77            | 2.524                         |
| 3/3./6            | 2.432                         |
| 3/5./6            | 2.438                         |

8 (up to about 300 K) are also affected by relaxation because there was a waiting time of several hours under adiabatic conditions (almost constant temperature) between the end of series 7 and the start of series 8: first a lower heat capacity was observed than the heat capacities measured during series 3 and then the heat capacities were higher.

The results obtained in the temperature range from 350 to 406 K are plotted in Fig. 3. This temperature range represents the end of the melting process and the liquid state. Above 362 K the sample appears to be molten (series 3 and 8). During series 1, however, the end of melting was observed at a slightly higher temperature: 368 K. Above 368 K the results of the series 1, 3 and 8 are in almost perfect agreement with each other, although possibly in the temperature range 368-385 K the heat capacities measured during series 1 are slightly higher than those measured during series 3 and 8. Above approximately 380 K, within experimental error, the measurements are in very good agreement with (estimated) specific heat capacity data of (metastable) liquid LPE as given by Wunderlich and Czornyj [10] (and adopted by Mathot [11]):

$$\frac{c_p(\text{LPE}, \text{liq}, T)}{\text{J } \text{K}^{-1} \text{ mol}^{-1}} = 1.426 + 2.401 \times 10^{-3} \left(\frac{T}{\text{K}}\right) + 7.065 \times 10^{-7} \left(\frac{T}{\text{K}}\right)^2$$
(1)

Measurements on VLDPE showed a remarkable progressive increase of the specific heat capacity of the polymer in its liquid state between subsequent series of measurements [2]. This phenomenon was not observed for a homogeneous ethylene-1-octene copolymer [3] and for this EB 5 sample.

At the lowest temperatures, see Fig. 4a–b, the specific heat capacities are found to lie in between those for the reference states for completely amorphous and completely crystalline polyethylenes, as expected for a semi-crystalline polyethylene [11,12].

EB 5 shows a clear-cut glass transition, centred around 224 K, which value marks the point of inflection of the heat capacity heating curve. The glass transition of ethylene-based copolymers is known to depend on the type and amount of comonomer [5] and the transition range for EB 5 is situated at lower temperatures as reported for BPE [13]. As typical for the present amount of comonomer, melting starts immediately on devitrification during heating.



Fig. 2. Specific heat capacity of EB 5 as a function of temperature. Series 1 (sample as received) ( $\bigcirc$ ); series 2 ( $\diamondsuit$ ); series 3 ( $\bigtriangleup$ ); series 5 ( $\bigstar$ ); series 6 ( $\bigstar$ ); series 7 ( $\bigtriangledown$ ); series 8 ( $\square$ ). Dashed line, specific heat capacity of (metastable) liquid linear polyethylene (LPE) according to Eq. (1).

# 3.2. Crystallinity

calculated using the following equation [12]:

The enthalpy-based mass fraction crystallinity of EB 5, as defined within the two-phase model, may be

$$w^{c}(T) = \frac{h_{a}(T) - h(T)}{h_{a}(T) - h_{c}(T)}$$
(2)



Fig. 3. Specific heat capacity of EB 5 in the liquid state. Series 1 (sample as received) ( $\bigcirc$ ); series 3 ( $\triangle$ ); series 8 ( $\square$ ). Dashed line, specific heat capacity of (metastable) liquid linear polyethylene (LPE) according to Eq. (1).



Fig. 4. Low temperature specific heat capacity data for EB 5. Series 2 ( $\diamondsuit$ ); series 3 ( $\triangle$ ); series 4 ( $\bigcirc$ ); series 5 ( $\diamondsuit$ ); series 6 ( $\blacktriangle$ ); series 7 ( $\bigtriangledown$ ). (a) The solid lines represent specific heat capacity data for completely crystalline and completely amorphous polyethylene (BPE) according to the ATHAS data bank [13]; (b) the solid lines represent the data for completely amorphous and completely crystalline LPE according to Mathot [11]. Specific heat capacities for the completely amorphous phase are higher than those for the completely crystalline phase.

In this equation,  $h_a(T)$  is the specific enthalpy of the completely amorphous phase,  $h_c(T)$  the specific enthalpy of the completely crystalline phase and h(T)the specific enthalpy of the semi-crystalline sample. Because the enthalpy function does not have a natural zero-point (see e.g. [14]) a common reference point has to be defined. Here, the specific enthalpy of EB 5 at a temperature of 400 K is selected as the reference point for the enthalpy function. At T = 400 K EB 5 is completely molten; therefore, it may be stated that  $h_a(T = 400 \text{ K}) = h(T = 400 \text{ K}).$ 

The specific enthalpy as a function of temperature is found by integrating the specific heat capacity:

$$h(T = \Theta) - h(T = 400 \text{ K}) = \int_{T=400 \text{ K}}^{T=\Theta} c_p(T) \,\mathrm{d}T$$
 (3)

It is assumed here that the specific enthalpy of the crystalline phase is equal to the specific enthalpy of completely crystalline LPE as given by Mathot [11], corrected for the difference in reference point. The specific enthalpy of the amorphous phase is calculated using Eq. (3) by assuming that:

- the glass transition temperature is  $T_g = 224$  K;
- the specific heat capacity of the amorphous phase above the glass transition temperature is equal to the specific heat capacity of (super-cooled) liquid LPE (given by Eq. (1));
- the specific heat capacity of the amorphous phase below the glass transition temperature is equal to the specific heat capacity of amorphous BPE in its glassy state as given by the ATHAS data bank [13].

The heat capacities used to evaluate the specific enthalpies are plotted in Fig. 5. The Fig. 6 represents a plot of the specific enthalpies thus found together with the enthalpy-based mass fraction crystallinity calculated using Eq. (2). In the temperature range from 220 to 360 K the crystallinity gradually decreases from 0.30 to zero, caused by melting of the crystalline phase. Vanden Eynde [4] calculated the crystallinity of EB 5 from DSC heating curves (after cooling at 10 K min<sup>-1</sup>): she found crystallinities of 0.26 at 233 K, 0.22 at 273 K and 0.17 at 293 K whereas our values at the same temperatures are slightly higher: 0.28, 0.24 and 0.19, respectively. This small difference is probably caused by the much smaller cooling rates in our experiments.



Fig. 5. Specific heat capacity data for EB 5 in the glass transition and melting region. Series 3 ( $\triangle$ ); series 7 ( $\bigtriangledown$ ); series 8 ( $\square$ ). The solid and the dash-dotted lines represent reference data for BPE according to the ATHAS data bank [13] and for LPE according to Mathot [11], respectively. Reference data are given for completely amorphous and for completely crystalline phases. The dashed line represents the specific heat capacity of (metastable) liquid LPE according to Eq. (1). The thick vertical line at T = 224 K represents the assumed heat capacity step for completely amorphous material at the glass transition temperature (see text).



Fig. 6. Specific enthalpy of the semi-crystalline EB 5 sample ( $\diamond$ ), together with the specific enthalpy of the crystalline phase ( $\bigtriangledown$ ) and of the amorphous phase ( $\triangle$ ). The enthalpy-based mass fraction crystallinity (scaling given on the right vertical axis) of the EB 5 sample is also plotted ( $\bullet$ ).

#### 3.3. Base line and excess heat capacities

The so-called specific base-line heat capacity  $(c_{pb})$  [12] of EB 5 may be calculated using the evaluated crystallinity as a function of temperature and the following equation:

$$c_{pb}(T) = w^{c}(T)c_{pc}(T) + [1 - w^{c}(T)]c_{pa}(T)$$

where  $c_{pc}$  and  $c_{pa}$  are the specific heat capacities of the completely crystalline and completely amorphous phases, respectively. Successively, the specific excess heat capacity ( $c_{pe}$ ) [12] can be calculated by subtracting the specific base-line heat capacity from the experimental specific heat capacity:

$$c_{pe}(T) = c_p(T) - c_{pb}(T)$$

A plot of the specific base-line heat capacity and the specific excess heat capacity of EB 5 as a function of temperature is presented in Fig. 7.

# 3.4. Temperature drifts during stabilisation periods in the melting region

Temperature drifts of the sample and calorimeter vessel in the melting region were evaluated from linear fits of the temperature versus time curves in the second half of the stabilisation periods. The temperature drifts of measurement series 1, 3, 7, and 8 are plotted in Fig. 8. In a transition region characterised by an endothermic heat effect, such as melting, negative drifts are usually observed. The negative drifts for series 1 (up to  $-180 \,\mu\text{K s}^{-1}$ ) and series 8 with local minima at approximately 315 and 285 K, respectively, are related to the temperatures at which annealing took place (room temperature and 280 K, respectively) and to the time it took (some years for series 1 and some hours for series 8). During series 1, 3, and 8, however, at higher temperatures (above approximately 340 K for series 1 and above approximately 325 K for series 3 and 8) also positive temperature drifts were detected (see Fig. 8). This implies that in this part of the melting region a relaxation process occurs in the stabilisation periods, which must be intermitted as recrystallisation.

These observations for EB 5 are in agreement with the results that were obtained for a homogeneous ethylene-1-octene copolymer (EOM) [3] as well as for a heterogeneous ethylene-1-octene very low-density polyethylene [2].

Obviously, the longer the time spent in annealing, and/or the slower the cooling rate before subsequent melting, the more stable the material will be for an increasing temperature range above the annealing temperature. In these cases, during heating, possibilities of recrystallisation are decreased or even prohibited; in the latter case only melting is left.



Fig. 7. Experimental specific heat capacity of EB 5 ( $\bigcirc$ ) together with the specific base-line heat capacity (solid line) and the specific excess heat capacity ( $\bullet$ ).



Fig. 8. Temperature drifts observed during the stabilisation periods. Series 1 ( $\bigcirc$ ) (sample as received); series 2 ( $\triangle$ ); series 3 ( $\diamond$ ); series 8 ( $\square$ ).

As stated in our paper presenting the results of measurements on a homogeneous ethylene-1-octene copolymer [3], the observed phenomena link up with temperature-modulated differential scanning calorimetry (TMDSC) experiments in which, depending on the thermal history, also excess phenomena are seen [15–17].

### References

- V.B.F. Mathot (Ed.), Calorimetry and Thermal Analysis of Polymers, Cart Hanser, Munich, 1994.
- [2] J.C. van Miltenburg, V.B.F. Mathot, P.J. van Ekeren, L.D. Ionescu, J. Therm. Anal. Cal. 56 (1999) 1017.
- [3] P.J. van Ekeren, L.D. Ionescu, V.B.F. Mathot, J.C. van Miltenburg, J. Therm. Anal. Cal. 59 (2000) 683.
- [4] S. Vanden Eynde, Homogeneous Ethylene-1-Alkene Copolymers: A Study of the Crystallisation and Melting Behaviour at Ambient and Elevated Pressures, Thesis Katholieke Universiteit Leuven, 1999.
- [5] S. Vanden Eynde, V. Mathot, M.H.J. Koch, H. Reynaers, Polymer 42 (2000) 3437.

- [6] J.C. van Miltenburg, G.J.K. van den Berg, M.J. van Bommel, J. Chem. Thermodyn. 19 (1987) 1129.
- [7] J.C. van Miltenburg, A.C.G. van Genderen, G.J.K. van den Berg, Thermochim. Acta 319 (1998) 151.
- [8] H. Preston-Thomas, Metrologia 27 (1990) 3.
- [9] R.N. Goldberg, R.D. Weir, Pure Appl. Chem. 64 (1992) 1545.
- [10] B. Wunderlich, G. Czornyj, Macromolecules 10 (1977) 906.
- [11] V.B.F. Mathot, Polymer 25 (1984) 579.
- [12] V.B. F. Mathot, Thermal Characterisation of States of Matter, in: V.B.F. Mathot (Ed.), Calorimetry and Thermal Analysis of Polymers, Cart Hanser, Munich, 1994, p. 105 (Chapter 5).
- [13] ATHAS data bank, B. Wundelich, Pure Appl. Chem. 67 (1995) 1019. Detailed information may also be found on the internet: http://web.utk.edu/~athas.
- [14] P.J. van Ekeren, Thermodynamic background to thermal analysis and calorimetry, in: M.E. Brown (Ed.), Handbook of Thermal Analysis and Calorimetry: Principles and Practice, Vol. 1, Elsevier, Amsterdam, 1998, p. 75 (Chapter 2).
- [15] R. Scherrenberg, V. Mathot, A. van Hemelrijck, Thermochim. Acta 330 (1999) 3.
- [16] R. Androsch, Polymer 40 (1999) 2805.
- [17] A. Wurm, M. Merzlyakov, C. Schick, Thermochim. Acta 330 (1999) 121.