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Abstract

We consider the problem of decomposing a semisimple Lie algebra
defined over a field of characteristic zero as a direct sum of its simple
ideals. The method is based on the decomposition of the action of a
Cartan subalgebra. An implementation of the algorithm in the system
ELIAS is discussed at the end of the paper.
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1 Introduction

In this paper we describe an algorithm that helps to determine the structure
of a semisimple Lie algebra. It is implemented in a general library of Lie
algebra algorithms, called ELIAS (for Eindhoven Lle Algebra System) which
will be part of the computer algebra system GAP4. The library ELIAS is
part of a bigger project, called ACELA, which aims at an interactive book
on Lie algebras (cf. [1]).

One of the fundamental structure theorems on semisimple Lie algebras
over a field of characteristic zero characterizes these Lie algebras as direct
sums of simple Lie algebras (see [4], p. 71). In this paper we address the
algorithmic problem of computing such a direct sum decomposition.

All simple Lie algebras (and hence all semisimple Lie algebras) have
been classified (see [3], [4]). A simple Lie algebra over an algebraically
closed field of characteristic zero is isomorphic either to an element of one
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of the “great” classes of simple Lie algebras (A,, B, C,, D,) or to one
of the exceptional Lie algebras (G, Fi, Fs, E7, Fs). The proof of this
classification uses a distinguished subalgebra, called Cartan subalgebra. This
is a nilpotent subalgebra that equals its own normalizer in the Lie algebra L.
It can be shown that Cartan subalgebras exist if the field is of characteristic
zero. Via the adjoint representation (sending an element z € L to the
transformation corresponding to the left multiplication with # in L) these
Cartan subalgebras are viewed as Lie algebras of linear transformations in
L. And if the Lie algebra is semisimple, then these subalgebras are toral
(i.e., the induced transformations are simultaneously diagonalisable). As a
consequence, L can be decomposed into a direct sum of common eigenspaces
called root spaces. Furthermore, it can be shown that these root spaces are
all one dimensional.

In order to arrive at a “splitting” of the Cartan subalgebra (i.e., a simul-
taneous diagonalisation), in general the gound field needs to be algebraically
closed. On a computer however, such fields are not feasible. So we have to
restrict our attention to the field Q of rational numbers and algebraic ex-
tensions (of low degree) of that field. In particular we are not able to use
a root space decomposition of our semisimple Lie algebra. In Section 2, we
therefore describe a near root space decomposition with respect to a Car-
tan subalgebra and use it to decompose the Lie algebra into a direct sum
of simple ideals. We note that there exist effective methods to compute a
Cartan subalgebra (see [2]).

In Section 3 we illustrate the algorithm in two examples. Finally in
Section 4 we compare our algorithm to a more general one described in [5].

2 The algorithm
First we transcribe a result from Jacobson’s book ([4]).

Lemma 2.1 Let A, B be linear transformations in a finite dimensional vec-
tor space V' satisfying

A"B =[A,[A,...,[A,B]...]]=0 (n factors A)

for some n. Let p be a polynomial and let V4 = {v € V | p(A)"v =
0 for some m >0 }. Then V4 is invariant under B.

Proof. See [4], p. 40.



Let L be a semisimple Lie algebra with Cartan subalgebra /. Since the
adh for h € H are semisimple transformations they all have a squarefree
minimum polynomial. Therefore, using Lemma 2.1 (H is nilpotent) we can
compute a decompositon

L=011%---®L; & H

of I such that the restriction of every basis element of H to L; has an
irreducible minimum polynomial (1 < ¢ < s). (The Cartan subalgebra H
itself is an invariant subspace corresponding to the polynomial X.)

Proposition 2.2 Let L be a semisimple Lie algebra over a field k of char-
acteristic 0. Let H be a Cartan subalgebra of L with basis {hy,... , h,}.
Suppose that we have a decomposition

L=011%---®L; & H

of L such that the minimum polynomial of every adh; restricted to L; is ir-
reducible. Then for every h € H, the minimum polynomial of adh restricted
to L; is wrreducible.

Proof. Suppose that there is an A € H such that the minimum polyno-
mial of adh restricted to L; is reducible. Then it is the product of two
distinct polynomials because adh is semisimple. Since H is a nilpotent Lie
algebra, we can apply Lemma 2.1. It follows that there is a decomposition
L; =V & W where V and W are invariant under adh; for 1 < < n. But
if we tensor with the algebraic closure of k£, then L splits into a direct sum
of common eigenspaces for the action of H. These eigenspaces are already
determined by the common action of the basis elements h; and they are one-
dimensional (see [3], Proposition 8.4). But since the restriction of every adh;
to V has the same minimum polynomial as the restriction to W, this is not
possible (for every eigenvalue there is an eigenvector in V', but also in W). O

The next theorem states that the decomposition of Proposition 2.2 is
compatible with the direct sum decomposition of L.
Theorem 2.3 Let I and H be the same as in Proposition 2.2 and let
L=0I1& &L DH

be a decomposition of L as in Proposition 2.2. Suppose that L decomposes
as a direct sum of ideals, L = Iy ® 1. Then every L; is contained in Iy or
n IQ.



Proof. First we note that H decomposes as H = H{ ¢ H, where H; is a
Cartan subalgebra of I;. By Proposition 2.2 there is an element h € Hy U H,
such that adh is nonsingular on L;. (Else the minimum polynomial of every
element of Hy U Hy is X, forcing L; C H, since Np(H) = H.)

Now, without loss of generality we may assume that h € Hy. In that
case we also have that h is an element of Iy, and hence adh maps L; into
L; N 1. The conclusion is that L; = adhl; C L;Nn1;. O

This theorem leads to the following algorithm.

Algorithm Decompose
Input: A semisimple Lie algebra L.
Output: A list of bases of the ideals of L.

Step 1 Compute a Cartan subalgebra H of L (see [2]).

Step 2 Let {hy,...,h,} be a basis of H. Compute a decomposition
L=011&--Ls D H

of L such that the restriction of adh; to L; has an irreducible minimum
polynomial (for 1 <¢<mnand1<j<s).

Step 3 For 1 < j < s compute a basis of the ideal generated by L; and delete
multiple instances from the list.

Remark. If L is a Lie algebra arising “in nature”, then it is easy to check
whether L is semisimple. Let {zy,...,2,} be a basis of L and let K be the
matrix (Tr(adz; - adz;)). Then L is semisimple if and only if det K # 0 ([4],
p. 69).

3 Examples

In this section we show how the method works in two examples. For the in-
put we suppose that a Lie algebra L of dimension n is given by an array of n3
structure constants (cfj) for 1 <4,j5,k < n such that the Lie multiplication
is described by

n

[z, 2;] = Z ki,

k=1

where {21,...,2,} is a basis of L.



Example 1. Let L be a 6 dimensional Lie algebra with basis

{hlv T, Y1, ho, 2o, 3/2}-

The structure constants of L are specified in Table 1.

[hl,l‘l] = 2l‘1 [hz,l‘l] = 2l‘1
hi, ;1] = =2y [ha, ] = =2y
[hl, 1‘2] = 21‘2 [hz, 1‘2] = —2l‘2
(hi,y2] = —2yo  [ho,ys] = 2y2
[z1,1] = %h1 + %hz [£2,42] = %h1 - %hz

Table 1: Nonzero products of the basis elements of a 6 dimensional Lie algebra.

Brackets that are not present are assumed to be 0. The determinant of
the matrix K (remark at the end of Section 2) is 2!, hence I is semisimple.
As is easily verified, H = (hq, hy) is a Cartan subalgebra. The minimum
polynomial of adhy is X (X —2)(X +2). The decomposition of L relative to
adhq is

L = (21,22) & (y1,92) & (h1, ha).

These subspaces are stable under adhy. The minimum polynomial of adhs
restricted to (z1, z2) is (X — 2)(X 4 2). So this subspace decomposes under
the action of adhg as (21)@(x3). We have a similar decomposition for (y;, y2).
Hence the decomposition (as discussed in Section 2) of L is

L= (z1) & (x2) B (y1) B (y2) P (h1, ha).

Now the ideal generated by z; is spanned by {z1, y1, (h1+hg)/2}. Similarly,
the ideal generated by x3 is spanned by {22, y2, (h1 — hg)/2}. It follows that
we have found the decomposition of L into simple ideals.
Example 2. Let L be a Lie algebra with basis {x1,..., 26} and multipli-
cation table as shown in Table 2.

The determinant of the matrix K is —
A Cartan subalgebra of L is spanned by {x1,25}. The transformations ada
and adx have minimum polynomials X (X?44) and X (X?%—4) respectively.
The decomposition of Section 2 is

220 and therefore L is semisimple.

L=134® Ls6® L1,

where L;; is the subspace spanned by {z;,z;}. From the multiplication
table it follows that the ideals generated by L34 and Lsg are both equal to
L. Hence, by Theorem 2.3 we have that L is a simple Lie algebra.



L1 L2 L3 L4 5 Le
1 0 0 21‘4 —2l‘3 —2l‘6 21‘5
9 0 0 21‘3 21‘4 —2l‘5 —2l‘6
xr3 —2l‘4 —2l‘3 0 0 9 1
T4 21‘3 —2l‘4 0 0 1 —I2
s 21‘6 21‘5 —I2 —] 0 0
e —2l‘5 21‘6 —] 9 0 0

Table 2: Multiplication table of a 6 dimensional Lie algebra.

4 Evaluation

In [5] a more general method for decomposing a Lie algebra as a direct
sum of ideals is described. This method consists of finding idempotents in
the centralizer of adl in the full matrix algebra Mgim (k). Here we com-
pare this general method with the special method that we propose. The
general method has of course the advantage of being more general. Fur-
thermore, with this method it can also be decided whether L is “absolutely
indecomposable” (i.e., whether L decomposes over the algebraic closure of
k). However, a disadvantage of this method is the fact that it computes the
centralizer of adL in the matrix algebra Maim 1,(k). From the computational
point of view this is a very difficult task.

We have tested ! both methods on some direct sums of sly, sls and sly
over the field Q. First we take the standard Chevalley basis to produce the
structure constants of L. The results are shown in Table 3. From this table
we see that the general method is faster for the small examples. However,
the running times of this method increase rapidly as the dimension grows.

Lie algebra | dimension | general method | special method
5[2 © 5[2 6 12 19
sly & sl 11 35 52
sls & sl 16 127 84
sly & sly 18 205 109

Table 3: Running times (in seconds) of the general and the special method.

In this example the structure constants are all “nice” numbers (i.e., small
integers). For the next test example we take L to be sly@sl; and we increase

!The computations were performed on a SUN SPARC workstation



the complexity of the input by taking a a random 6 x 6 matrix M and then
computing a basis of L corresponding to M* for ¢ = 1,2,...,5. The results
are diplayed in Table 4.

basis | general method | special method
M 32 12

M?* 78 15

M3 123 15

M1 173 16

MP 253 20

Table 4: Running times (in seconds) of the general and the special method

applied to structure constants of sly @ sly of increasing complexity.

It is seen that the special method has almost no problems dealing with

the increase of complexity. The general method, however, experiences con-
siderable difficulties.

The conclusion is that the special method is better behaved in practice

whereas the general method is theoretically more interesting (it can be ap-
plied in all cases, and it can decide whether L is absolutely indecomposable).
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