
CONAN: TEXT MINING IN THE BIOMED-

ICAL DOMAIN

RAINER MALIK

SIKS Dissertation Series No. 2006-15 The research reported in this thesis has
been carried out under the auspices of SIKS, the Dutch Research School for
Information and Knowledge Systems.

Copyright c©2006 Rainer Malik
ISBN-10: 90-393-4288-1
ISBN-13: 978-90-393-4288-6

CONAN
Text Mining in the Biomedical Domain

CONAN
Tekst Mining in het Biomedische Domein
(met een samenvatting in het Nederlands)

CONAN
Text Mining in der Biomedizinischen Domäne

(mit einer Zusammenfassung in deutscher Sprache)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag
van de rector magnificus prof. dr. W.H. Gispen, ingevolge het besluit van
het college voor promoties in het openbaar te verdedigen op woensdag 11

oktober 2006 des ochtends te 10.30 uur

door

Rainer Malik
geboren op 19 Juni 1978 te Linz, Oostenrijk

Promotor: Prof. dr. A.P.J.M. Siebes

Contents

List of Figures xi

List of Tables xiii

Acknowledgments xv

Part I Introduction

1. INTRODUCTION 3

2. EXISTING TEXT MINING SYSTEMS 5

2.1 Information Retrieval (IR) 5

2.2 Natural Language Processing 6

2.3 SDI Services 7

2.4 Biological Named Entity Recognition (NER) 8

2.4.1 Problems in NER 8

2.5 Information Extraction (IE) and Text Mining 10

2.5.1 Systems 10

2.5.2 Text Mining 10

2.6 Microarray Analysis 11

2.7 Knowledge Discovery 12

2.8 Conclusions 12

3. PROBLEMS WITH EXISTING SYSTEMS 13

4. RESULTS OF THIS THESIS 15

4.1 Overview of this thesis 16

References 19

Part II Components

5. BIOLOGICAL DATABASES 27

5.1 PubMed/MEDLINE 27

5.1.1 PubMed 27

5.1.2 MeSH 28

5.2 Ensembl 29

5.3 UniProt 31

5.4 Gene Ontology 32

5.5 UMLS Services 33

5.6 iProLink 34

5.7 SwissProt 35

5.8 Other Services 36

5.8.1 GOA 36

5.8.2 IPI 37

6. CONAN PROGRAM COMPONENTS 39

6.1 BLAST 39

6.2 AbGene 42

6.3 NLProt 43

6.4 MuText 44

6.5 PreBIND 45

7. TECHNICAL COMPONENTS 49

7.1 XML 49

7.2 XPath 51

7.3 Script Languages 52

7.4 Classification Technqiues 54

7.4.1 Support Vector Machines 54

7.4.2 Boosting 55

Contents vii

References 59

Part III CONAN

8. CONAN 65

8.1 Input 65

8.1.1 MEDLINE XML Files 66

8.1.2 GOA 68

8.1.3 IPI 68

8.2 Pre-Processing 69

8.3 Processing 69

8.3.1 Data Integration 70

8.4 Output 71

8.4.1 General 71

8.4.2 BLAST 72

8.4.3 AbGene 73

8.4.4 MuText 73

8.4.5 NLProt 73

8.4.6 PreBIND 75

8.4.7 MeSH 75

8.5 Boosting 75

References 77

Part IV Experiments

9. MEASURES IN TEXT MINING 81

9.1 Precision and Recall 81

9.2 F-measure 83

9.3 Inter Annotator Agreement 84

10. RESULTS 87

10.1 Experimental Setup 87

10.2 Evaluation 88

10.2.1 Corpora 89

viii CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

10.2.2 Prodisen 89

10.2.3 BioCreative Corpus 93

10.2.4 YAPEX Corpus 95

10.2.5 LLL Challenge Corpus 95

10.2.6 LDD Corpus 96

10.2.7 Boosting Evaluation 100

10.2.8 Other Corpora 101

10.3 Interesting Results and Usefulness 103

10.3.1 Protein Names 103

10.3.2 Mutations 104

10.3.3 Interactions 104

10.3.4 Keywords 106

References 107

11. APPLICATIONS 109

11.1 Command Line 109

11.2 Web Server 112

11.2.1 System Architecture 112

11.3 Queries 113

11.3.1 PMID 113

11.3.2 Keyword 116

11.3.3 Protein 116

11.3.4 Mutation 117

11.3.5 Interaction 119

11.3.6 Ensembl, UniProt, Gene Ontology 122

11.4 Gene Interaction Networks 123

11.4.1 Constructing the Network 124

11.4.2 How Literature Can Help 126

References 131

Contents ix

Part V Discussion

12. DISCUSSION AND CONCLUSIONS 135

12.1 Summary of the Results 135

12.2 Conclusions 135

12.3 Further Research 137

References 139

Part VI Appendix

13. APPENDIX 143

13.1 Definitions 143

13.2 Example Queries 145

13.3 DTD 146

13.3.1 Medline DTD 146

13.3.2 CONAN DTD 149

13.3.3 Regular Expressions used in Protein-Protein Interaction
Extraction 150

13.3.4 Databases used in BLAST search 153

Index 155

List of Figures

5.1 Screenshot of the MeSH browser 28

5.2 Screenshot of the Ensembl website 30

5.3 Screenshot of Gene Ontology 32

5.4 Screenshot of UMLS Metathesaurus 34

5.5 Screenshot of SwissProt 35

5.6 Screenshot of the IPI service 38

7.1 Support Vector Machine 55

7.2 Overview of the Boosting classifier 57

8.1 Flow Diagram of CONAN 66

9.1 Definition of Recall and Precision 82

9.2 Recall-Precision Graph 83

11.1 CONAN Website Layout 112

11.2 CONAN Input Form 113

11.3 CONAN Webserver Communication 114

11.4 CONAN Result: PMID Search 115

11.5 PMID List 118

11.6 Interaction / All 120

11.7 Interaction / PMID 121

11.8 Gene Interaction Graph 123

11.9 www.genenetwork.nl 126

List of Tables

6.1 Sample of Databases used in keyword search 40

6.2 Translational Table used in the BLAST search 41

6.3 Parameters used in BLAST-search 42

9.1 Example for Inter-Annotator Agreement 84

9.2 Guideline for the Strength of the kappa-value 85

10.1 Prodisen corpus in numbers 91

10.2 PubMed article usage overlap between different biologi-
cal databases. 92

10.3 Agreement indices of the polytomous ratings of the two
Prodisen data sets. 92

10.4 Overview of Results on BioCreative Corpus 94

10.5 Quartile Segments in BioCreative 94

10.6 Overview of Results on YAPEX-Corpus-SLOPPY 95

10.7 Overview of Results on YAPEX-Corpus-STRICT 95

10.8 Overview of Results on LLL-Challenge Corpus as re-
ported in [14] 96

10.9 Inter-Annotator Agreement Results 98

10.10 Evaluation of CONAN on LDD Corpus 99

11.1 Accuracy of the Gene Interaction Networks 125

11.2 Likelihood Ratios for PubMed Bins 128

11.3 Extracted Interactions 129

13.1 Databases used in BLAST search 153

Acknowledgments

As the Acknowledgments of every Ph.D. thesis start with some self-pity,
here is mine: Moving to a different country at a relatively young age is not
easy. Conducting research and writing a Ph.D. thesis is definitely even harder.
So here’s to the people without whom this thesis would not have been written.

First and foremost, I want to thank my supervisor Arno Siebes for the
courage of employing an unknown Austrian biologist as a Ph.D. student in
computer science. Without his enthusiasm and his support, nothing could
have been done. Even when times were rough, he always understood to boost
my confidence.

Secondly, I want to thank my family back in Austria who (although never
quite understanding what I’m doing exactly), always supported me in every
situation possible.

Thirdly, the LDD (Large and Distributed Databases) group at the Univer-
sity of Utrecht became sort of a second family for me over time. My thanks go
to Ad Feelders, Hans Phillipi and Lennart Herlaar for being (most of the time)
the best colleagues one can ask for. Carsten Riggelsen, Ronnie Bathoorn and
Jeroen de Knijf, my fellow Ph.D. students, always shared my vision of sup-
porting each other and discussing (not only) research. A special thanks goes
out to Arno Knobbe, who has been invaluable in giving tips and hints how to
make a good thesis. Last, but not least, the three “Benjamins” of our group,
Matthijs, Arne and Jilles, who had not only the pleasure to share a room with
me for the last weeks/months, but also had the (arguable) pleasure of being
the first ones to proof-read this thesis.

Special thanks go out to the people without whom this research would have
been impossible: Edwin Cuppen, Victor Guryev, Lude Franke, Philip Lijnzaad
and coworkers. Edwin has been supportive of my project from the start, even
when it did not really fit into the project description. Victor has been a good
source of advice and helped a great deal in implementing and setting up the
CONAN webserver. Lude Franke, also a fellow Ph.D. student, has been a

great source of discussions and ideas and has helped me not only throughout
this theses. Philip Lijnzaad and coworkers from the UMC Utrecht have to
be thanked because they let me use their CPU power without any problems
whatsoever.

A greatly appreciated effort was done by Martin Krallinger (Madrid), who
is a fellow Text Miner. He always provided me with news about papers and
conferences and always was ready to start a new project or a discussion.

What would be an Acknowledgments section without the shout-outs to
friends. Big thanks to Ercole, Marcella, Nathalie and Robert for showing me
some good times in Utrecht. Christof van Nimwegen, Marco Wiering and Wim
de Jonge also showed me that Dutch people are not that bad after all ;-)

Finally, my friends back in Austria always were of big support: Jochen,
Gregor, Michl, Iris, Opa, Michelle, Georgia, Petra, Mike, Hupsi, Thomas and
Claus. All the trips back to the mothership were invaluable and helped me a
great deal in retaining my sanity.

This study was financially supported by the Dutch Ministry of Economic Af-
fairs through the Innovation Oriented Research Program (IOP) on Genomics,
grant IGE01017.

PART I

INTRODUCTION

Chapter 1

INTRODUCTION

This thesis is concerned with text mining; extracting useful information
from text data. When conducting research, there are always many problems
to think about. Research problems can be categorized in two different fields:
World Problems and Knowledge Problems [27].

World Problems consist of a difference between how the world is and the
way we think it should be. We solve world problems by changing the state of
the world itself.

Knowledge Problems are considered to be caused by lack of knowledge of
the world. When solving a knowledge problem, we try to change the state of
our knowledge and not try to change the world itself. We want to solve the
problem by following a sound research method.

When we keep the definition of those problems, we can formulate research
questions specific to text and literature mining.

Over the last decades, the use of large-scale experimental techniques has
led to an increased pace at which scientific information is produced. Hence,
the biomedical text presenting this information and the text databases storing
this information, namely PubMed/MEDLINE, are growing at an equal rate.
This often quoted fact [21] poses a big problem for every experimentalist.
Interesting and useful information, like interaction data and mutation data,
could appear in papers they have not read. In this way, important facts might
get overlooked and scientific work might be affected.

So we can specify the definition of our world problem and knowledge prob-
lem in the following way:

The world problem is that there are too many scientific papers published
in the biomedical field at the moment and a researcher has to read too many
papers to perform quality research. At another level, there is a problem that

4 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

biological entity names (e.g. protein names) are not unified in the community.
Later on, we will see how this affects literature and text mining.

The knowledge problem we are confronted with is that important informa-
tion is often not clearly visible and biological information might be completely
lost in the text. Although there are many other ways to gather informa-
tion (conferences, books, etc.), scientific publications and papers are still the
foremost way of getting the newest information available in the field. When
not having enough knowledge about the world, experimental biological and
medical research might be hindered or even made impossible.

It has to be said that regarding these problems, research can only solve
the knowledge problems. It will take many years to solve the world problems
that were stated above. From my own point of view, things like the entity
nomenclature and the highlighting or tagging of biomedical entities in text
could be achieved in the course of time, but an enormous effort has to be
taken by publishers, editors, reviewers and authors to solve those problems in
the future.

In other words, the research question that is fundamental to this thesis is

Is it possible to construct a system which is suited to extract hid-
den information out of text while being as complete as possible?

In this part of the thesis, I firstly describe which text mining systems ex-
ist and also give examples of the different text mining categories. Secondly, I
give an overview of what the main problems in text mining are at the moment.
Finally, I provide a solution to these problems: CONAN, a system developed
by me, which forms the main part of this thesis. Moreover, I give an overview
of the whole thesis.

Chapter 2

EXISTING TEXT MINING SYSTEMS

In this chapter, I give an overview of the methods used in text mining and
information extraction in the biomedical field nowadays and also what the
problems with these systems are.

In the last years, several text analysis systems and algorithms have been
developed for the biomedical community. Although the principal goal of each
of those services is to serve the biological community with information, the
way how information is extracted and presented and the type of information
is quite different from system to system.

As Martin Krallinger writes in his review of Text mining and Natural Lan-
guage Processing (NLP) services [14], we can distinguish several different types
of Text Mining/NLP systems with regard to what information is extracted.
These types include Information Retrieval (IR), Information Extraction (IE)
and Knowledge Discovery (KD). More or less the same structure is given in
the review of Lars Juhl Jensen [10].

2.1. Information Retrieval (IR)

In IR, relevant articles have to be retrieved from large collections of data.
This form of analysis is also known as Article Retrieval. IR in the biomedical
field wants to provide a Google-like service for biomedical articles. The user
queries the database either with a set of keywords or with a document. Inter-
esting articles that contain the keywords or articles which are similar to the
given article are retrieved by the system. Although many services (like Entrez
[23, 26]) are already heavily used by scientists, they need lots of database and
program updates to keep the content up-to-date. IR methods are not the same
as text mining methods, although they share the same tools and techniques,
Natural Language Processing (NLP) being one of the most important.

6 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

2.2. Natural Language Processing

Natural Language Processing (NLP) is a range of computational techniques
for analyzing and representing naturally occurring text (free text) at one or
more levels of linguistic analysis (e.g., morphological, syntactical, semantical,
pragmatic). The ultimate goal is to achieve human-like language processing
for knowledge-intensive applications. This goal is still far from reached, the
higher the level of analysis, the more difficult the problem is. Moreover, the
different levels of analysis are not disjunct. For instance, semantics plays
an important role in the syntactic analysis. NLP is a subfield of artificial
intelligence and linguistics. In IR, NLP is often used as a pre-processing step.
When a system wants to find the most important information in text and
then wants to retrieve the information found, it first has to define the most
important parts. The two primary aspects of natural language are syntax (or
grammar) and the lexicon.

Syntax, or the patterns of language, defines structures such as the sentence
(S) made up of noun phrases (NPs) and verb phrases (VPs). These structures
include a variety of modifiers such as adjectives, adverbs and prepositional
phrases.

A noun phrase consists of a pronoun or a noun with any associated modifiers,
including adjectives, adjective phrases, adjective clauses, and other nouns in
the possessive case. A verb phrase consists of a verb, its direct and/or indirect
objects, and any adverb, adverb phrases, or adverb clauses which happen to
modify it. An example for a noun phrase is:

the membrane-bound protein

In this phrase, “protein” is the noun and “membrane-bound” is the adjective
describing the noun. An example for a verb phrase is:

is ubiquitously expressed

In this phrase, “is expressed” is the verb and “ubiquitously” is the adverb
connected to it.

A lexicon is a machine-readable dictionary which may contain a good deal
of additional information about the properties of the words, notated in a form
that parsers can utilize. It shows what terminal symbol a word in the language
belongs to e.g. eat = verb, duck = noun and duck = verb.

The determination of the syntactical structure of a sentence is done by a
parser. A parser is an algorithm that uses the grammar and lexicon to find
the structure in a language fragment (usually a sentence). The input would

Existing Systems 7

be the sentence (for example) and the output would be some representation
of the structure.

Modern parsers perform reasonably well in determining the syntactic struc-
ture of a sentence. Unfortunately, in any real sentence there are notorious
ambiguity problems, often caused by the fact that a word can have different
meanings and syntactic roles. There are two main kinds of ambiguity:

- Global ambiguity: the whole sentence can have more than 1 interpretation.

- Local ambiguity: part of a sentence can have more than 1 interpretation.

Consider the simple sentence,

”Voltage-gated sodium and potassium channels are involved in the generation
of action potentials in neurons.” (Science, v219, p1337, Human Genome issue).

To a biologist, this sentence is clear and unambiguous. It means that both
sodium and potassium channels are voltage-gated, meaning that they are ac-
tivated by the surrounding electric potential difference near the channel. A
parser faces many difficulties when analyzing the sentence. For example, a
parser may group the constituents to form the noun phrase ”Voltage-gated
sodium”, when it is the channels that are voltage-gated. There is also the
issue of whether there are single channels for both sodium and potassium or
separate channels for the two ions - the structure of the English in the sen-
tence leaves this open. These ambiguities are classic ones in parsing and there
are no simple ways to resolve them on the basis of sentence syntax alone. In
biomedical text analysis, and especially in CONAN, these ambiguities do not
pose a big problem, because mostly simple noun phrases have to be extracted.

It is important to note that text mining, IR and NLP are different fields. So-
phisticated NLP techniques are frequently used in IR to represent the content
of text in an exact way (e.g. noun and verb phrases being the most important
ones), extracting the main points of interest, depending on the domain of the
IR service. However, NLP is not only used in parsing the documents, but also
for handling the user queries. The important information has to be parsed
from the user queries in a similar way. NLP techniques are used in almost
every aspect of the text mining process, namely in Named Entity Recognition
(see Section 2.4), Information Extraction (see Section 2.5) and Knowledge
Discovery (see Section 2.7).

2.3. SDI Services

SDI services (selective dissemination information services, like Pubcrawler
([9, 24])) are related to IR services. They retrieve relevant articles and notify
the user when these articles are available. The big advantage of SDI systems
is that they are fully automated and the user only has to specify the area

8 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

of interest once. These SDI Services can be seen as a “news service” for the
subscriber.

2.4. Biological Named Entity Recognition (NER)
NER (named entity recognition) describes the identification of entities in

free text. Entities in the biomedical domain include genes, protein names
and drugs. NER is the most common form of text analysis in the biomedical
domain. Over 50 different information extraction and text mining tools have
been developed in recent years for this specific task (e.g. AbGene[25], NLProt
[17] and GAPSCORE[1]). NER often forms the starting point of a text mining
system, meaning that when the correct entities are identified, the search for
patterns or relations between entities can begin. As Krallinger describes in
his review, NER tools normally reach a level of accuracy which is about 80%,
whereas similar tools for other domains, e.g. economy, reach a much higher
accuracy. This points out that protein names are of a more complex nature
than “normal” free text. The reasons for this lack of accuracy are explained
below.

2.4.1 Problems in NER
As mentioned above, NER is often the starting point for text mining sys-

tems. Hence, its performance is critical for these text mining systems. How-
ever, there are three major problems in NER which form big difficulties in the
process. These problems are very specific for the biomedical domain.

Anaphora. Anaphora are by definition instances of an expression referring
to another. This can best be explained by an example:

Sentence 1: CasL/HEF1 belongs to the p130(Cas) family.
Sentence 2: It is tyrosine-phosphorylated following beta(1) integrin and/or T
cell receptor stimulation and is thus considered to be important for immuno-
logical reactions.

The “It” in Sentence 2 refers to “CasL/HEF1” in Sentence 1. This struc-
ture is often seen in biomedical abstracts, especially when a new protein
is characterized. This problem is not only a problem for NER methods,
but also subsequently for Information Extraction (IE) methods, where re-
lationships (e.g. protein-protein Interactions) between protein names are
extracted.

Few systems attempt to resolve anaphoric relationships, so most systems
are therefore unable to extract relationships that span multiple sentences.

Existing Systems 9

This is not as big a limitation as it might seem, because most relationships
are normally mentioned within a single sentence.

Ambiguous Protein Names. The ambiguity problem occurs when one name
refers to different entities, meaning that one protein symbol (e.g. VIP)
refers to multiple gene products (e.g. vasoactive intestinal peptide and
alpha-2 macroglobulin family protein VIP).

Liu et. al [15] report that ambiguity often occurs between species but
also in one species. In an experiment, they show that the intra-species
ambiguity is only 0.02%, but inter-species ambiguity can be as high as
14.2%. Another interesting statistic is that only 17.7% of protein names
used in abstracts are the official protein names, 7.6% were the full names
and 74.7% were gene synonyms.

Another problem in ambiguity is that gene/protein names often resemble
“normal” English words. For example, the English words “was” and “if”
occur, of course, in almost every publication. However, they are also the
names of mouse genes. The same is true for drosophila genes like “kruppel”
or “dachshund” which are also “normal” English words.

Although some strategies to resolve this ambiguity have been proposed (see
also [15]), it still remains part of the “world problem” described in the first
section of this thesis. Inter-species ambiguity can, however, be resolved by
mining not only for protein names but also for organism names, which is
performed by systems like NLProt [17].

Partial Matches. In text mining and especially in NER, we can distin-
guish between full matches and partial matches. This is best explained by
an example. The protein ”protein kinase C”, or short ”PKC”, transduces
the cellular signals that promote lipid hydrolysis. In text mining, protein
names like that are very hard to understand and to extract. The reason
is simple: ”Protein kinase” as such is a protein name on its own, while
”Protein kinase C” would be the correct protein name in this case. So
the question is if ”Protein Kinase” should be counted as a True Positive
(TP) when evaluating a NER method or not. In recent publications, sci-
entists delivered two different types of evaluation, one being the so-called
“SLOPPY”-mode, where partial protein matches (e.g. ” Protein Kinase”)
are considered to be TP. The other is called “STRICT”-mode, where only
the whole correct protein (e.g. ”Protein kinase C”) name is considered to
be a TP. The partial protein names might irritate or mislead the user when
querying the extracted data. This problem is not easily solved and poses
a complication in the evaluation of methods.

10 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

2.5. Information Extraction (IE) and Text Mining

2.5.1 Systems

Information Extraction (IE) in the biomedical domain is the extraction of
associations between biological entities in text. The most interesting infor-
mation that can be extracted is either Protein-Protein Interactions (PPIs) or
functional protein annotation. This field is very diverse, reaching from ex-
traction of kinase pathways to extracting SwissProt keywords for functional
annotation.

In IE two sub-fields can be distinguished: Co-occurrence and NLP. In Co-
occurrence, relationships of entities are identified when they co-occur within
the same abstract or sentence. With sophisticated frequency-based scoring
schemes, these systems can rank extracted relationships. NLP methods com-
bine the analysis of syntax and semantics. When applied in IE, they extract
the noun phrases in a sentence and represent their interrelationship. NER
methods are used subsequently to semantically label the relevant biological
entities. Finally, a rule set is used to extract relationships on the basis of the
syntax and the semantic labels. Normally, this is done via a test and a training-
set. Co-occurrence methods (PreBIND[4], iHOP[7] and PubGene[11]) tend to
give better recall, but worse precision than NLP methods(MedScan, MedLEE
and GeneWays[3, 6, 22]). Precision and recall are extensively described in
Chapter 9. A negative aspect of these methods is the large number of rules
that have to be used to extract relationships. Moreover, parsers are usually
written for “normal” English text and not for text in the biomedical domain.
In this very recent field, efforts have been made to construct ontologies, dic-
tionaries and functional keywords which define relevant biological aspects of
proteins. NLP is most prominent in the organization of events like BioCre-
ative and TREC, which are important for comparative analysis of evaluation
results.

Although some experts consider the finding of “novel and new” information
as the only real text mining (see Section 2.5.2), others group IE methods and
text mining together in one group. For clarity, I introduce a definition of Text
Mining in the next section.

2.5.2 Text Mining

Text mining, in one definition, is the in-silico discovery of new, previously
unknown information, by automatically extracting information from one or
more written resources. Text mining is a new and exciting research area
that tries to solve the information overload problem by using techniques from
data mining, machine learning, Natural Language Processing and Information
Retrieval.

Text mining is a variation on a field called data mining, that tries to find
interesting patterns and relationships in large databases. A typical example in

Existing Systems 11

data mining is using consumer purchasing patterns to predict which products
to place close together on shelves. For example, if you buy diapers, you are
likely to buy beer along with it.

The difference between regular data mining and text mining is that in text
mining the patterns are extracted from natural language text rather than from
structured databases of facts. It has to be said that the boundaries between
text mining and data mining are fuzzy.

Text mining occurs, of course, not only in the biomedical domain which is
the focus of this thesis, but in other domains as well. In the upcoming TREC
(trec.nist.gov) conference, a conference concerned with evaluating all dif-
ferent kinds of text mining tools, several fields are distinguished (see Section
10.2.8.2 for details). The definition of text mining in the biomedical domain
is quite vague. Some people define text mining as searching the literature
for overlooked connections and interpreting the results to obtain “novel” facts
that cannot be derived by just reading the text. In this definition, literature
mining is defined as the general term for Information Extraction (IE) from
text.

In some publications, literature mining and text mining are equivalent
terms, meaning that text mining is the science of extracting specific asso-
ciations, such as protein-protein interactions and protein functions from text.
Following this definition, text mining is equivalent to IE.

In this thesis, literature mining and text mining will be both used in the
same way, following the latter definition. The text mining from the first defi-
nition, meaning that “novel” facts (that cannot be derived from just reading
the text) should occur in the results, is called Knowledge Discovery (KD) in
this thesis. This is done because text mining is related to data mining, and
data mining is a sub-field of Knowledge Discovery in Databases (KDD) [5].
The Knowledge discovery process includes producing the raw results by data
mining and accurately transforming them into useful and ”novel” information.
The same is true for text mining and KD. Therefore also text mining should
be distinguished from Knowledge Discovery (KD), as it is a sub-field of KD.

2.6. Microarray Analysis

Lately, methods have been developed which link results of microarray exper-
iments to biomedical information found in text databases. Either single genes
or groups of genes can be annotated, the text can be mined for functional terms
which are associated with the gene or gene groups. Although these systems
(microGENIE [13] and a yet unnamed system[20]) can link functional infor-
mation to the entities of interest, they cannot provide automated summaries
of biologically relevant information yet.

12 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

2.7. Knowledge Discovery
This type of system focuses on the construction of networks and interac-

tions to discover new relationships. These relationships, which most of the
times include either diseases or chemical substances, are found by discovering
indirect relationships between entities that are not directly connected in text.
First attempts tried to do that via MeSH terms([2, 16]). Some scientists still
consider only this set of methods as real “text mining”. One application which
can be grouped in the KD process will be presented in Section 11.4.

2.8. Conclusions
So, we can come to the conclusion that the field of text analysis consists

of many different sub-fields, that all require different approaches. Neverthe-
less, there are some problems in text and literature analysis systems that are
universal to all approaches. These problems are described in-detail in the
following chapter.

Chapter 3

PROBLEMS WITH EXISTING SYSTEMS

In this section, I describe the most common problems of modern text mining
systems. Some of these problems are specific for the biomedical domain, while
others are general problems which appear in every text mining application.
Some of the problems are solved by CONAN, the system we created and
which I introduce later in this thesis (see Chapter 4).

1 Small Datasets. This was particularly a problem in the early stages of
this (relatively) young field. Researchers either did not have the resources
to handle lots of data (limited CPU power and memory) or wanted to
concentrate their research on a very limited set of molecules. Also, the
number of resources the researchers could rely upon was very small in the
early days (e.g. pre-genomics era). A good example is the Kinase Pathway
DB [12], which is a high quality database, but solely focuses on protein
kinases.

2 Restricted List of Organisms. An additional problem is that some systems
exclusively handle certain organisms and do not generate data which is
valid for several species. A very important feature of data derived from
text, whether PPIs or protein annotation, is cross-referencing and cross-
validation over multiple species. Information about homologous proteins
can help experimentalists in their research and can provide more insight
into the way proteins work. One example for such a restricted list of or-
ganisms is the “Textpresso”-system [18], which focuses only on C.elegans
data.

3 Incomplete Sets of MEDLINE. Systems that were developed over the last
years often limit their data extraction to the newest articles or to a specific
subset of articles. Experimentalists, however, want to get their information
as complete as possible. When limiting a search to a subset of articles, im-

14 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

portant facts might get overlooked. When inferring relationships between
proteins, “older” information is as useful as “new” information. PPIs have
been established and published from the middle of the 1990’s, so the infor-
mation wanted might be in an article that most systems do not process.
This problem is common in all text mining systems. Some systems like
iHOP [8] are trying to be complete, other systems on the other hand only
use a very small subset of MEDLINE and stop there.

4 Achieving High Precision and High Recall Rates. It is a main goal of all IE
systems to obtain high recall and precision rates (for definition see Chap-
ter 9). Scientists and especially experimentalists do not want to work with
data that is neither complete nor precise enough. Often text mining sys-
tems have the problem that one measure is much higher than the other
(depending on the system), which leads to data that either is not repre-
sentative for the text processed or has a very high amount of either false
positives (FP) or false negatives (FN). The main goal of a text mining sys-
tem is of course to keep the numbers of FP and FN as small as possible.
Common solutions are extra filtering steps or by manual post-processing
of the data. Nowadays, the F-measure (also see Section 9.2) is used. This
was introduced because systems often have either a high recall or a high
precision. The F-measure, which is the harmonic mean of those two, gives
a nice balance of precision and recall in a system so that other scientists
can see rather quickly whether a system provides good results or not. One
good example is a group that took part in the LLL challenge (also see
Section 10.2.5). It is reported ([19]) that one (unnamed) group achieved
a recall of 98.1%, which is really high. However, their precision was only
10.6%, resulting in an F-measure of only 19.1%. It is crucial for text mining
systems to obtain both high recall and high precision.

Chapter 4

RESULTS OF THIS THESIS

In Chapter 3, the most emergent problems in biomedical text mining sys-
tems have been identified. We can now specify the research problem and raise
the following technical challenges:

1 Does the combination of text-mining classifiers and algorithm increase the
performance?

2 Can such a system still reach high precision and recall rates, resulting in a
good F-measure?

3 Is it possible to include the information extracted by such a system in other
systems?

4 Can the extracted information be presented in such a way that the infor-
mation is helpful for experimentalists?

After the problems with state-of-the-art text mining Systems have been
identified and the technical problems have been identified as well, a solution is
provided: CONAN, a text mining system that was developed by the author
and which forms the main part of this thesis. CONAN is developed as a
full-scale approach that will ultimately cover all of PubMed/MEDLINE. An
in-depth description of CONAN can be found in Chapter 8 of this thesis.

The novelty that CONAN brings to this field and its added value can be
summarized in two main points:

Combining Data Sources

While all systems mentioned above are relying on a single data source,
CONAN is designed to integrate as many data sources as possible. This is
done to guarantee the user a large amount of data that is also cross-linked

16 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

between several data resources and databases. This ensures that CONAN
users are provided complete overviews of the information included in text.

Moreover, CONAN is designed in such a way that the addition of new
data sources is very easy and quick and the integration of CONAN data
into other systems is easy in equal measure. This directly solves the third
challenge posed above.

Combining Techniques

The main goal of most researchers in the text mining area is to produce
new techniques or new algorithms. In contrast to these methods, CONAN
combines already published and well-known techniques and classifiers. So
it is ensured that the best techniques and their outcome are combined to
achieve the best possible scores and results. As I will show later on in this
thesis, especially in Section 10.2, the combination of classifiers definitely
improves the performance of the system, directly addressing challenge one.

Similar to the previous point about combining data sources, the addition
of new techniques and algorithms to the system is very easy.

When looking at the two points above, it becomes clear that by combining
many data sources and techniques, the user is presented with lots of infor-
mation. This information is presented in an easy and understandable way in
CONAN, solving challenge four of the technical challenges above. The means
how this data is presented to the user can be seen in Chapter 11. Moreover,
as will be presented in Part IV of this thesis, the information is of very high
quality, solving challenges one and two.

However, there are some aims that CONAN, while being a complete system,
cannot achieve. When a user is searching for specific information, the amount
of results that is returned might still be very big and the user has to filter
out the significant information manually. Moreover, CONAN is still under
construction, meaning that not all of MEDLINE has been processed so far.

4.1. Overview of this thesis
In this section, I give an outlook over the whole thesis. The thesis is con-

structed of six parts. The first part is the Introduction, which you are currently
reading.

The second part describes the several components that were used in building
CONAN and is named “Components”. It consists of four distinct chapters:
Firstly, the biological databases used in constructing CONAN are introduced.
Secondly, the program components of CONAN are explained. Finally, I de-
scribe the technical components used in the construction of CONAN.

The third part is about CONAN itself. Here it is explained how CONAN
works and how the different parts described in the “Components” part work
together to produce output.

CONAN 17

The fourth part describes the Results obtained by CONAN. The first chap-
ter of this part describes the most frequently used measures in text mining,
namely precision, recall and the F-Measure. Moreover, the Inter-annotator
agreement scores, which are important when constructing a corpus, are intro-
duced. The second chapter of this part describes the experiments that were
performed with CONAN. This chapter includes all evaluations performed on
different corpora (YAPEX, BioCreative, LLL and LDD). Not only CONAN,
the system, itself is evaluated, but also the Boosting classifier which was con-
structed as a post-processing step (see Section 7.4.2.1). Moreover, the chapter
includes how such a corpus is constructed with two examples, the Prodisen
corpus and the LDD corpus. The final section of this chapter is concerned
with interesting results that were produced by CONAN. There we give an
overview on why CONAN is so useful for biologists. The third chapter of
this part is about the Applications that were implemented using CONAN.
Three main applications can be found: the CONAN command line interface,
the CONAN webserver and the application of CONAN in constructing gene
interaction networks.

The fifth part contains the Discussion and an outlook on future work. I
also give an overview in which applications CONAN could be a part of in the
future. The Appendix, which forms the sixth part, gives more information on
specific concepts explained in the thesis. In the main text, there is always a
reference to the Appendix where applicable. Moreover, the Appendix includes
a Glossary of terms that are frequently used in this thesis.

At this point, I want to point out a very important aspect of this thesis.
This thesis is written for biologists as well as for computer scientists. Some
concepts introduced might seem trivial for one group, but will be appreciated
by the other group for the sake of clarity. Please note that, as gene and protein
names cannot automatically be distinguished from each other in text, the term
Gene Name / Protein Name is interchangeable in this thesis.

References

[1] J.T. Chang, H. Schutze, and R.B. Altman. GAPSCORE: finding gene and protein
names one word at a time. Bioinformatics., 20(2):216–225, 2004.

[2] D. Chaussabel and A. Sher. Mining microarray expression data by literature profiling.
Genome Biol, 3(10):RESEARCH0055, 2002.

[3] N. Daraselia, A. Yuryev, S. Egorov, S. Novichkova, A. Nikitin, and I. Mazo. Extracting
human protein interactions from MEDLINE using a full-sentence parser. Bioinformat-
ics., 20(5):604–611, 2004.

[4] I. Donaldson, J. Martin, B. de Bruijn, C. Wolting, V. Lay, B. Tuekam, S. Zhang,
B. Baskin, G.D. Bader, K. Michalickova, T. Pawson, and C.W. Hogue. PreBIND
and Textomy–mining the biomedical literature for protein-protein interactions using a
support vector machine. BMC Bioinformatics., 4:11, 2003.

[5] U.M. Fayyad, G. Piatetsky-Shapiro, and P.Smyth. From Data Mining To Knowledge
Discovery: An Overview. AAAI Press/The MIT Press, 1996.

[6] C. Friedman. A broad-coverage natural language processing system. Proc AMIA Symp,
pages 270–274, 2000.

[7] R. Hoffmann and A. Valencia. Protein interaction: same network, different hubs. Trends
Genet., 19(12):681–683, 2003.

[8] R. Hoffmann and A. Valencia. Implementing the iHOP concept for navigation of
biomedical literature. Bioinformatics, 21(Suppl2):ii252–ii258, 2005.

[9] K. Hokamp and K. H. Wolfe. Pubcrawler: keeping up comfortably with pubmed and
genbank. Nucleic Acids Res., 32(Web Server issue):W16–9., Jul 2004.

[10] L. J. Jensen, J. Saric, and P. Bork. Literature mining for the biologist: from information
retrieval to biological discovery. Nat Rev Genet., 7(2):119–129, 2006.

[11] T. K. Jenssen, A. Laegreid, J. Komorowski, and E. Hovig. A literature network of
human genes for high-throughput analysis of gene expression. Nat Genet., 28(1):21–8.,
May 2001.

20 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

[12] A. Koike, Y. Kobayashi, and T. Takagi. Kinase pathway database: an integrated
protein-kinase and-based protein-interaction resource. Genome Res., 13(6A):1231–
1243., 2003.

[13] M. Korotkiy, R. Middelburg, H. Dekker, van F. Harmelen, and J. Lankelma. A tool for
gene expression based pubmed search through combining data sources. Bioinformatics.,
20(12):1980–2. Epub 2004 Mar 25., Aug 12 2004.

[14] M. Krallinger and A. Valencia. Text-mining and information-retrieval services for
molecular biology. Genome Biol., 6(7):224, 2005.

[15] H. Liu, S.B. Johnson, and C. Friedman. Automatic resolution of ambiguous terms
based on machine learning and conceptual relations in the UMLS. J Am Med Inform
Assoc, 9(6):621–636, 2002.

[16] D. R. Masys, J. B. Welsh, Lynn J. Fink, M. Gribskov, I. Klacansky, and J. Corbeil.
Use of keyword hierarchies to interpret gene expression patterns. Bioinformatics.,
17(4):319–326, Apr 2001.

[17] S. Mika and B. Rost. Protein names precisely peeled off free text. Bioinformatics.,
20(Suppl 1):I241–I247, 2004.

[18] H.M. Muller, E.E. Kenny, and P.W. Sternberg. Textpresso: an ontology-based infor-
mation retrieval and extraction system for biological literature. PLoS Biol., 2(11):e309,
2004.

[19] C. Nedellec. Learning language in logic - genic interaction extraction challenge. In
Learning Language in Logic Workshop (LLL’05) at ICML 2005, 2005.

[20] J.C. Oliveros, C. Blaschke, J. Herrero, J. Dopazo, and A. Valencia. Expression profiles
and biological function. Genome Inform Ser Workshop Genome Inform, 11:106–117,
2000.

[21] D. Rebholz-Schuhmann, H. Kirsch, and F. Couto. Facts from text–is text mining ready
to deliver? PLoS Biol., 3(2):e65, 2005.

[22] A. Rzhetsky, I. Iossifov, T. Koike, M. Krauthammer, P. Kra, M. Morris, H. Yu, P. A.
Duboue, W. Weng, W. J. Wilbur, V. Hatzivassiloglou, and C. Friedman. Geneways: a
system for extracting, analyzing, visualizing, and integrating molecular pathway data.
J Biomed Inform., 37(1):43–53., Feb 2004.

[23] G.D. Schuler, J.A. Epstein, H. Ohkawa, and J.A. Kans. Entrez: molecular biology
database and retrieval system. Methods Enzymol., 266:141–162, 1996.

[24] M. Shultz and De S. L. Groote. Medline sdi services: how do they compare? J Med
Libr Assoc., 91(4):460–7., Oct 2003.

[25] L. Tanabe and W.J. Wilbur. Tagging gene and protein names in biomedical text.
Bioinformatics, 18(8):1124–1132, 2002.

[26] D.L. Wheeler, D.M. Church, A.E. Lash, D.D. Leipe, T.L. Madden, J.U. Pontius, G.D.
Schuler, L.M. Schriml, T.A. Tatusova, L. Wagner, and B.A. Rapp. Database resources
of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res,
30:13–16, 2002.

REFERENCES 21

[27] R. Wieringa. Requirements Engineering: Frameworks for Understanding. John Wiley
& Sons., 1996.

PART II

COMPONENTS

In the course of the development of CONAN, which this thesis is based
on, several methods for protein tagging and interaction extraction have been
implemented. Moreover, several biological databases are used in CONAN.
The following chapters are dedicated to an in-depth description of those parts
of the system. In most cases, please refer to the original publication for a
complete analysis, although I will explain how the parts work as complete as
possible.

Firstly, I give an overview of the biological databases used in CONAN,
explaining which data is contained in these databases. Secondly, I explain
how the different parts of CONAN work, and in which text mining categories
(e.g. IR, IE, NER) these components can be categorized. Finally, I give an
overview of which technical bits and pieces were used in the construction of
CONAN.

Chapter 5

BIOLOGICAL DATABASES

5.1. PubMed/MEDLINE
The most important database for CONAN is MEDLINE, as it contains the

bibliographical information needed to perform text mining research. MED-
LINE (Medical Literature Analysis and Retrieval System Online) is the U.S.
National Library of Medicine’s (NLM) premier bibliographic database that
contains approximately 13 million references to journal articles in life sciences
with a concentration on biomedicine.

5.1.1 PubMed
MEDLINE is the largest component of PubMed, the U.S. National Library

of Medicine’s (NLM) database of biomedical citations and abstracts that is
freely searchable on the Web (http://pubmed.gov). MEDLINE covers over
4,800 journals published in the United States and more than 70 other countries
primarily from 1966 to the present. MEDLINE includes references to articles
indexed with terms from NLM’s controlled vocabulary, MeSH. Citations in
MEDLINE are from journals selected for inclusion in the database.

In addition to MEDLINE citations, PubMed also contains

OLDMEDLINE for pre-1966citations

Citations to articles that are out-of-scope (e.g., covering plate tectonics
or astrophysics) from certain MEDLINE journals, primarily general sci-
ence and general chemistry journals, for which the life sciences articles are
indexed for MEDLINE

In-process citations which provide a record for an article before it is indexed
with MeSH and added to MEDLINE or converted to out-of-scope status,
Citations that precede the date that a journal was selected for MEDLINE
indexing (when supplied electronically by the publisher).

28 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Some life science journals that submit full text to PubMedCentral and may
not have been recommended for inclusion in MEDLINE although they have
undergone a review by NLM, and some physics journals that were part of
a prototype PubMed in the early to mid-1990’s.

MEDLINE is the main source of input for CONAN. It is used in CONAN
as the starting point, as it contains the abstracts of the articles that we want
to analyze using CONAN. One of the features inside the MEDLINE service
which is heavily used are the MeSH terms.

5.1.2 MeSH

Figure 5.1. Screenshot of the MeSH browser

MeSH (short for Medical Subject Headings), is a service provided by the
National Library of Medicine (NLM). It is a controlled vocabulary, consist-
ing of a set of terms (=descriptors) in a hierarchical structure. Searching is
possible in all level of the hierarchy. At the upper levels of the hierarchy are
very broad terms like ”Anatomy” or ”Mental Disorders”. Specific headings are
found at deeper levels of the eleven-level hierarchy, such as ”Ankle” and ”Con-
duct Disorder”. Moreover, MeSH descriptors are organized in 16 categories:
category A for anatomic terms, category B for organisms, C for diseases, D
for drugs and chemicals, etc. One example of such a broad descriptor would
be “Neoplasms”(MeSH code: [C04]). As we go further down the tree, another

Biological Databases 29

MeSH term is “Neoplasms by Site”([C04.588]), which also has sub-headings,
for instance “Abdominal Neoplasms” ([C04.588.033]).

Each abstract is assigned a set of MeSH terms that describe the content of
the item. There are 22,997 descriptors in MeSH. In addition to these headings,
there are more than 150,000 headings called Supplementary Concept Records
within a separate thesaurus. These do not belong to the controlled vocabulary
as such, instead they enlarge the thesaurus and provide the user with links to
the best fitting descriptor to be used in a MEDLINE search. There are also
cross-references between the terms. As in the biomedical field concepts and
trends are changing all the time, descriptors also are updated and changed all
the time.

The MeSH terms are extracted for each PubMed ID (PMID) by CONAN.
These extracted MeSH terms are used in the keyword search by CONAN as
well as in the Data Integration Step (see Section 8.3.1), when the MeSH terms
are queried to verify mutations in proteins.

MeSH terms are frequently used in IR systems, but only since recently they
are also used for Information Extraction (IE) and Knowledge Discovery (KD)
purposes. A screenshot of MeSH can be seen in Figure 5.1. In this picture,
the tree-like structure of MeSH becomes visible. The category “C” (Diseases)
is expanded and the different descriptors can be seen.

5.2. Ensembl
Ensembl [21] is a joint project between EMBL - European Bioinformatics

Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a
software system that produces and maintains automatic annotation on selected
eukaryotic genomes. The Ensembl project aims to provide:

Accurate, automatic analysis of genome data

Analysis and annotation maintained on the current data

Public presentation of the analysis via the Web

Distribution of the analysis to other bioinformatics laboratories

Ensembl concentrates on vertebrate genomes, but other groups have adapted
the system for use with plant and fungal genomes. The genomes that are
collected at Ensembl at this point in time are:

Human (Homo sapiens)

Chimpanzee (Pan troglodytes)

Rhesus monkey (Macaca mulatta)

Mouse (Mus musculus)

30 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 5.2. Screenshot of the Ensembl website

Rat (Rattus norvegicus)

Domestic Dog (Canis Familiaris)

Domestic Cow (Bos Taurus)

African Elephant (Loxodonta africana)

Gray Short-tailed Opossum (Monodelphis domestica)

Chicken (Gallus gallus)

Clawed Frog (Xenoups tropicalis)

Zebrafish (Denio Rerio)

and some other non-eukaryote organisms like Caenorhabditis elegans (Ne-
matode) or Drosophila melanogaster (Fruit fly).

The Ensembl project provides data sets resulting from an automated genome
analysis and annotation process. In addition to Ensembl and EST gene sets,
the project also provides other data sets on a genome-wide scale. The Ensembl
project releases approximately ten updates a year. Ensembl also offers many
software tools that can be used to further analyze or annotate the data.

Biological Databases 31

The most important entry point to Ensembl data is the so called Ensembl
Gene. For every gene name currently known, there is a unique Ensembl iden-
tifier (will be referred to as Ensembl code throughout this thesis). This code
consists of the letters ENS followed by 1-4 letters, providing information about
the organism the gene is derived from, and 11 numbers, identifying the gene.

As can be seen in the screenshot (Figure 5.2) for the Gene Bax (Bcl2-
associated X protein), the human Ensembl code is ENSG00000087088. The
mouse-homologue of this gene would be ENSMUSG00000003873 and the rat-
homologue ENSRNOG00000020876. In the information about those genes,
thus in the Ensembl files about the gene itself, there is much information
about cross-linking the gene to other databases (RGD, UniProt/Swiss-Prot,
EntrezGene, IPI, UniGene, etc.), gene ontology annotation (see Section 5.4),
orthologue genes/proteins (from other organisms), protein families/motifs and
all proteins encoded by this gene.

In other words, Ensembl is an important resource for biologists that gives
lots of information about genes and proteins and is an ideal place to cross-
link information together. This is also the reason why Ensembl identifiers are
included in CONAN. Each protein name is assigned an Ensembl identifier and
this identifier is used to link the information together. As experimentalists
often use Ensembl, they are also used for disambiguation (see Section 2.2).
While a gene or protein name is often not unique, the Ensembl identifier is.

5.3. UniProt
UniProt (Universal Protein Resource) [8] is a comprehensive catalog of in-

formation on proteins. It is a central repository of protein sequence and func-
tion created by joining the information contained in Swiss-Prot, TrEMBL, and
PIR. This makes UniProt a good resource for protein information with a wide
range of information offered. Through the possibility to cross-link to other
databases via UniProt (see Section 5.8.2), it is a very important starting point
for bioinformaticians. While Ensembl is produced automatically, UniProt is
manually curated. This means that Ensembl provides information about more
genes/proteins, but the annotation of UniProt is more precise.

The UniProt consortium aims to support biological research by maintaining
a high quality database that serves as a stable, comprehensive, fully classified,
richly and accurately annotated protein sequence knowledge base, with exten-
sive cross-references and querying interfaces freely accessible to the scientific
community.

The UniProt databases consist of three database layers:

The UniProt Archive (UniParc) provides a non-redundant sequence collec-
tion by storing the complete body of publicly available protein sequence
data.

32 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

The UniProt Knowledgebase (UniProtKB) is the central database of pro-
tein sequences with sequence and functional annotation.

The UniProt Reference Clusters (UniRef) databases provide non-redundant
reference data collections based on UniProtKB in order to obtain complete
coverage of sequence space at several resolutions.

Similar to the Ensembl identifiers, UniProt terms are used in CONAN to link
information together and to assign unique terms to the Protein names.

5.4. Gene Ontology

Figure 5.3. Screenshot of Gene Ontology

The Gene Ontology (GO) project [9] provides a controlled vocabulary to de-
scribe gene and gene product attributes in any organism. The three organizing
principles of GO are:

Molecular Function

Biological Process

Cellular Component

A gene product has one or more molecular functions and is used in one or
more biological processes; it might be associated with one or more cellular

Biological Databases 33

components. Molecular function describes activities, such as catalytic or
binding activities, at the molecular level. GO molecular function terms rep-
resent activities that perform the actions. Information on where or when this
activity takes place, is not given. Moreover, information about the entities
(e.g. protein, gene) that perform the actions, is not given. Molecular func-
tions generally correspond to activities that can be performed by individual
genes/proteins, but some activities are performed by protein complexes. Ex-
amples of broad functional terms are catalytic activity, transporter activity, or
binding; examples of narrower functional terms are adenylate cyclase activity
or Toll receptor binding.

A biological process is a series of events accomplished by one or more ordered
assemblies of molecular functions. It can be difficult to distinguish between a
biological process and a molecular function, but it can be said that a process
has to contain more than one distinct step. A biological process is not equiv-
alent to a pathway. Examples of broad biological process terms are cellular
physiological process or signal transduction. Examples of more specific terms
are pyrimidine metabolism or alpha-glucoside transport.

A cellular component is a component of a cell but with the condition that it
is part of some larger object, which may be an anatomical structure (e.g. rough
endoplasmic reticulum or nucleus) or a gene product group (e.g. ribosome,
proteasome or a protein dimer).

A screenshot of the GO consortium website can be seen in Figure 5.3. Here
you can see the GO descriptions for different BAX proteins. The term is
given as well as the principle (M,P,C) it is associated with. GO annotation
is used in CONAN to further annotate a protein. For each protein name, the
corresponding GO categories are extracted (when applicable) using the GOA
files (see Section 5.8.1), providing searchable information for the user.

5.5. UMLS Services

The UMLS Metathesaurus [11] is a very large vocabulary that contains in-
formation about biomedical and health related concepts, their various names,
and the relationships among them. The Metathesaurus is built from the elec-
tronic versions of many different thesauri, classifications, code sets, and lists
of controlled terms used in different biomedical fields. These are referred to
as the ”source vocabularies” of the Metathesaurus. It contains information
about more than one million biomedical concepts and five million concept
names from more than 100 controlled source vocabularies and classifications.
The UMLS Metathesaurus is enhanced by the UMLS Semantic Network. The
Semantic Network consists of a set of broad subject categories, or Semantic
Types, that provide a consistent categorization of all concepts represented
in the UMLS Metathesaurus. Each concept has a Semantic Type assigned
to it. For example, the concept “Acromegaly” contains a definition in the

34 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 5.4. Screenshot of UMLS Metathesaurus

Metathesaurus. The Metathesaurus also holds information about synonyms
of this concept (Acromegalia, Anterior pituitary adenoma syndrome, etc.). It
also shows that the Semantic Network assigns the Semantic Type “Disease or
Syndrome” to the concept. This information can also be seen in Figure 5.4.
The tree structure of both the UMLS Metathesaurus and the Gene Ontology
reveal that both services are biological ontologies. The main difference be-
tween GO and the UMLS Metathesaurus is that GO only annotates genes and
proteins, while the UMLS Metathesaurus includes more information about
diseases, tissues, organisms and other concepts.

The UMLS Metathesaurus and the Semantic Network are used in CONAN
for the databases used in the BLAST search (see Section 6.1), where they are
used to extract keywords and protein names from text. The databases are
derived from the semantic types stored in the semantic network.

5.6. iProLink
iProLink (short for integrated Protein Literature, Information and Knowl-

edge)[20] is a resource for text mining in the area of literature-based database
curation, named entity recognition, and protein ontology development. They
provide users with a collection of data sources that can be used to explore
text information on proteins and their features or properties. For CONAN,
the dictionary of protein name abbreviations (pir.georgetown.edu/pirwww/

Biological Databases 35

iprolink/Dictionary.gz) was used to train the Boosting classifier (see Sec-
tion 7.4.2.1). This dictionary is derived from the iProClass integrated protein
knowledgebase. The iProClass database provides information for UniProt pro-
teins, with links to over 90 biological databases, including databases for pro-
tein families, functions and pathways, interactions, structures and structural
classifications, genes and genomes, ontologies, literature, and taxonomy.

5.7. SwissProt

Figure 5.5. Screenshot of SwissProt

SwissProt[12] is a manually annotated protein knowledgebase. TrEMBL, its
counterpart, is computer-annotated. Together they form the UniProt Knowl-
edgebase (see Section 5.3). The main point of SwissProt, and the reason why
SwissProt is so popular, is the manual annotation. Each SwissProt entry con-
tains core data (sequence data; bibliographical references and taxonomic data
(description of the biological source of the protein)) and annotation, which
consists of the description of the following items:

Function(s) of the protein

Post-translational modification(s).

Domains and sites.

36 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Secondary structure

Quaternary structure.

Similarities to other proteins

Disease(s) associated with deficiencie(s) in the protein

Sequence conflicts, variants, etc.

Other advantages of SwissProt with regard to other protein sequence databases
are the minimum of redundancy in the data and the integration with other
databases. In order to have minimal redundancy and to improve sequence
reliability, all protein sequences encoded by one gene are merged into a sin-
gle SwissProt entry. It has to be said, however, that SwissProt annotation is
not perfect. Even with manual annotation, there are misannotations found in
SwissProt. These misannotations might influence the quality of the results of
every text mining method.

SwissProt is used in CONAN via the UniProt terms (see Section 5.3) and as
a part of a dictionary used in NLProt and the Boosting classifier (see Sections
6.3 and 7.4.2.1). For this dictionary, especially the Description (DE) lines of
the SwissProt output are important. In Figure 5.5, you can see that the DE
line holds the full name of the protein, in this case “Apoptosis regulator BAX,
membrane isoform alpha”.

5.8. Other Services
In this section, I describe other database services which are related to

databases mentioned before. These database services are used to link in-
formation together and to enrich the data by adding more information to the
already extracted data.

5.8.1 GOA
The goal of the Gene Ontology Consortium is to produce a dynamic con-

trolled vocabulary that can be applied to all organisms. In the GOA project
[15], this vocabulary is applied to a non-redundant set of proteins described
in the UniProt Resource (UniProtKB/Swiss-Prot, UniProtKB/TrEMBL and
PIR-PSD) and Ensembl databases that collectively provide complete pro-
teomes for Homo sapiens and other organisms.

In the first stage of this project, GO assignments have been applied to
the human proteome by electronic mapping and manual curation. Subse-
quently, GO assignments for all complete and incomplete proteomes that exist
in UniProt have been provided. In practice, the GOA-distribution consists of
two main files.

Biological Databases 37

The first file is a general mapping of GO identifiers to GO terms and GO
processes. For example, the GO number 0000001 would be associated with mi-
tochondrion inheritance, which is a biological process, thus assigned the letter
P. Special numbers are 0000004, 0005554 and 0008372, which stand for bio-
logical process unknown, molecular function unknown and cellular component
unknown, respectively.

The second file needed is the association of Uniprot terms to GO-identifiers.
This file contains all GO assignments for the UniProt database, as well as other
information:

Database from which annotated entry has been taken.

The GO identifier for the term attributed to the unique identifier in the
DB.

Reference cited to support the attribution.

Identifier for the species being annotated.

The UniProt identifier with which the GO id is associates

In CONAN, the information from the GOA files is used to link a protein
name together with the GO categories. The UniProt identifier is the linking
point that links the information together.

5.8.2 IPI
IPI [22] (International Protein Index) provides a top level guide to the main

databases that describe the proteomes of higher eukaryotic organisms. IPI:

effectively maintains a database of cross references between the primary
data sources

provides minimally redundant yet maximally complete sets of proteins for
featured species (one sequence per transcript)

maintains stable identifiers (with incremental versioning) to allow the track-
ing of sequences in IPI between IPI releases.

IPI protein sets are made for a limited number of higher eukaryotic species
whose genomic sequence has been completely determined but where there are
a large number of predicted protein sequences that are not yet in UniProt.
IPI takes data from UniProt and also from sources of such predictions, and
combines them non-redundantly into a comprehensive proteome set for each
species.

The species currently included are: Human, Mouse, Rat, Arabidopsis, Ze-
brafish and Chicken. As these organisms are the most interesting and impor-
tant ones for biologists, IPI is the perfect cross-reference-reference-point for

38 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 5.6. Screenshot of the IPI service

our system. A screenshot can be seen in Figure 5.6. Here, the information for
the “BCL2-ASSOCIATED X PROTEIN ISOFORM EPSILON” is displayed.
The most important information is the “ Database cross-references” which are
also used in CONAN to assign an Ensembl identifier to each UniProt identifier
and therefore to each protein name found in text.

Chapter 6

CONAN PROGRAM COMPONENTS

In this chapter, I describe the components that are used in building CO-
NAN. These components are already published methods and classifiers, as
mentioned in the Introduction. In some cases, the original method has been
used without changing the code, in other cases the code has been changed sig-
nificantly by us. An in depth description of how the methods work together
in CONAN can be seen in Chapter 8.

6.1. BLAST

The BLAST programs (short for Basic Local Alignment Search Tools) are a
set of sequence comparison algorithms introduced in 1990 [7] that are used to
search sequence databases for optimal local alignments for a query. BLAST is a
word based heuristic similar to that of FASTA to approximate a simplification
of the Smith-Waterman algorithm [24] known as the maximal segment pairs
algorithm. BLAST can be used to perform a similarity search between two
sequences (DNA or protein) or do a database search with a given DNA or
protein sequence (query sequence). In the following description, I will focus
on the database-scan function of the algorithm, because this function is used
in CONAN. Firstly, the query sequence is broken into words with a fixed word
size W , the size usually being between two and five letters. Then, the database
is scanned for occurrences of these small words. When two non-overlapping
words (within a certain distance in the query sequence) are matched against
a database entry, and when no gap is opened inside the words, this pair is
called a segment pair. This pair is extended to the left and right until the
score drops below a certain cutoff score E. For each database entry, the same
procedure is done, until there are no more resulting pairs (=hits) that satisfy
the cutoff. All significant database hits are then shown in the results.

40 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Table 6.1. Sample of Databases used in keyword search

Database No. of Terms included

Gene 737,801
Protein 41,733
Organic Chemical 38,258
Disease or Syndrome 36,999
Therapeutic or Preventive Procedure 8,328
Neoplastic Process 7,791
Species 14,121
Body Part, Organ or Organ Component 6,555
Cell Component 818
Cell Function 456

In CONAN, the first method implemented is a BLAST-searching method
first published by Krauthammer et al. [23]. It uses the BLAST-algorithm to
discover relevant biological information in text. In the original method, only
gene and protein names were used. In our approach, the original method was
improved to extract even more information from an abstract.

We used the UMLS Metathesaurus [11] and the Semantic Network to re-
trieve lists of biological relevant terms. For a description of the UMLS
Metathesaurus and the Semantic Network, please refer to Section 5.5.

For example, the term “Cell Migration” is assigned to the semantic type
“Cell Function”, but the term “Cell Migration Inhibition” is placed in the
semantic type “Laboratory Procedure”. It is important to know that the
terms assigned to the semantic types are not overlapping.

The semantic types were chosen as names for the databases in which the
concepts are stored. We chose the 91 semantic types that best suited the
needs of the system, selecting the ones which are most practical for biomedical
abstracts. Some of the semantic types chosen, together with the number of
terms included, can be seen in Table 6.1. A complete overview of the databases
used can be found in the Appendix. Other ones were deleted from the list,
because the information included would be misleading or would yield a lot of
false positives. Also, semantic types not related to the biomedical field were
omitted. With this information, 91 databases ready for BLAST indexing were
constructed.

For a normal BLAST search (blastn), it is obligatory to translate the query
as well as the databases into a nucleic acids alphabet. This was done using
the translation table also used in the original publication (see Figure 6.2). For
each character, a four-letter code was used, each code starting with an A. Four
letters have a major advantage over three letters in this application, because
frame-shifts are averted. Moreover, each special character has the same four-
letter-code, meaning that all special characters (like “-”,”(“ or “)”) are treated
in the same way.

CONAN Components 41

Table 6.2. Translational Table used in the BLAST search

Character Code Character Code

A AAAC S ACGC
B AAAG T ACGG
C AAAT U ACGT
D AACC V ACTC
E AACG W ACTG
F AACT X ACTT
G AAGC Y AGAG
H AAGG Z AGAT
I AAGT 0 AGCC
J AATC 1 AGCG
K AATG 2 AGCT
L AATT 3 AGGC
M ACAC 4 AGGG
N ACAG 5 AGGT
O ACAT 6 AGTC
P ACCC 7 AGTG
Q ACCG 8 AGTT
R ACCT 9 ATAT

Special Characters ATCC

Moreover, the terms belonging to one semantic type were split up according
to size. This is because BLAST handles different sizes of queries differently
and the BLAST parameters have to be tuned accordingly. The sizes used are
3 characters, 4-5 character, 6-10 characters, 11-20 characters and 20+ charac-
ters. An overview of the BLAST parameters used can be seen in Table 6.3.
Please note that the most important differences are in the word size. A strict
e-value cutoff was chosen to guarantee a high precision. These parameters
were derived from the original publication, but altered slightly to ensure high
precision. The settings were determined by running several experiments with
different parameters. The best parameter set was selected.

So for each BLAST run, the abstract is converted into the query which is
BLASTed against the databases constructed from the UMLS Metathesaurus.

The hits delivered by the BLAST algorithm are found back and parsed using
the “BlastParser” library from Biopython (see Section 7.3), which is included
in the “NCBIStandalone” module. Each hit is then read back to original text
and the hit is expanded until the next special character or space.

Moreover, a stop-word list was compiled to filter out commonly appearing
words in text that do not add any value in the biomedical domain. These list
of stop-words contains the 500 most common words in the English language,
downloaded from www.world-english.org/english500.htm.

42 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Table 6.3. Parameters used in BLAST-search

Term length (characters) e-value Word Size mismatch penalty

3 1e−15 12 6
4-5 1e−15 16 6
6-10 1e−20 20 3
11-20 1e−25 40 3
20 or more 1e−25 80 3

An evaluation of the protein-tagging part of this method can be found in
Section 10.2.6. The BLAST method can be categorized in the NER category,
but also may be useful for IR. This means that the BLAST method can be used
to find Protein/Gene Names in text as well as other important information.

6.2. AbGene
The second method implemented is a Gene/Protein-tagging method called

AbGene first published by Tanabe [31]. This program is used without any
modifications to the original program, so I only report here how this method
was implemented originally. AbGene can be placed in the NER category of
Literature Mining. It extracts Protein and Gene Names from text.

It uses a combination of statistical and knowledge-based strategies to ex-
tract gene and protein names from unstructured text. Firstly, the BRILL Pos
Tagger [14] is used to assign each word of the text its most likely tag. Tags in-
clude Nouns, Adjectives, Adverbs and Verbs. A set of 7000 sentences was used
to train the Brill tagger to recognize gene and protein names. For this rea-
son, the new tag “GENE” was used. Moreover, new entries from the UMLS
Specialist Lexicon were introduced to the training lexicon. New rules were
extracted from this lexicon to ensure high quality of extracted gene and pro-
tein names. These rules are applied to text, resulting in a newly Brill-tagged
output file.

This Brill output file is subsequently filtered, eliminating as much false
positives and false negatives as possible. The false positive filtering is done
through a list of 1505 precompiled terms, including terms that are not part
of Protein names. The list includes amino acid names, restriction enzymes,
cell line and organism names as well as general biological terms. Additionally,
non-biological terms are filtered out through a list on terms compiled from the
Wall Street Journal.

False negative names are tried to recover via a compilation of Gene/Protein
names from LocusLink [28] and the Gene Ontology (see also Section 5.4)[9],
which also forms the golden standard for this method.

For protein and gene names which might be overlooked by the Brill Tagger,
the method uses tri-gram matching to identify terms that occur at least three
times in MEDLINE. If a term contains one of 20172 low frequency trigrams

CONAN Components 43

(i.e. tri-grams that do not occur often in the list of trigrams), it becomes a
candidate for a “NEWGENE”-tag. In the final output, the “NEWGENE”-tag
is converted to a “GENE”-tag.

False negatives are also corrected via a lexical look-up and a subsequent
scoring mechanism. As this scoring mechanism is quite complex, please refer
to the original publication [31] for details. Additional to the “NEWGENE”-
tag, a “MULTIGENE”-tag is introduced for false-negative compound names.
This tag is given to multi-word-gene/protein names. These multi-word en-
tries are discovered by manually generated rules that are extracted from the
gold standard of this method. The false negatives recovered with non-specific
contextual rules, are tagged with the “CONTEXTGENE”-tag throughout the
document.

For an extensive description of the filtering methods, please refer to the
original publication [31].

This leaves a final output file where gene and protein names are tagged with
the “GENE”- or the “MULTIGENE”- or the “CONTEXTGENE”-tag. These
gene and protein names can then be extracted easily from the output file.

A typical output file of AbGene looks like this:

We/PRP conclude/VBP that/IN a/DT series/NN of/IN sites/NNS
(NF-kappaB/GENE, IRF/GENE, GRE/CONTEXTGENE and/CC
the/DT E/MULTIGENE box/MULTIGENE) are/VBP not/RP re-
quired/VBN for/IN efficient/JJ viral/JJ spread/NN in/IN the/DT
sheep/NN model/NN, although/IN mutation/NN of/IN some/DT of/IN
these/DT motifs/NNS might/MD induce/VB a/DT minor/JJ pheno-
type/NN during/IN transient/JJ transfection/NN assays/NNS in/IN
vitro/FW.

Here we see that NF-kappaB and IRF receive the “GENE”-tag, whereas GRE
has the “CONTEXTGENE”-tag, meaning that it was recovered from the false
negatives. The protein “E box” is tagged as a “MULTIGENE”, because it
represents a protein name that is split up in different words (=tokens) not
connected to each other. The other tags are results of the Brill-tagger, repre-
senting different tags like proper noun (NNP), adjective (JJ) or verb/gerund
(VBG). An evaluation of this method can be found in Section 10.2.6.

6.3. NLProt

Another method to find protein names and information about these proteins
in text is the so called NLProt method [26, 25]. In this method, mostly Support
Vector Machines (SVMs) are used to extract protein names from free text. For
a description of SVMs, please refer to Section 7.4.1. This method belongs to
the NER part of literature mining, although through the extraction of species

44 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

and tissue, it might also be placed in the Information Extraction (IE) category.
In CONAN, NLProt is used for both purposes. Protein names are extracted
(NER) and through the extraction of species and tissue, the UniProt code is
determined (IE).

For NLProt, Protein and Gene name lists were compiled from different
sources (SwissProt, TrEMBL) to derive a lexicon used as input for the SVMs.
For this reason, the Description (DE) lines of the SwissProt entries have been
parsed (see Section 5.7). Also a common dictionary was compiled as a negative
list.

The input text is broken up into so-called tokens, every word in the text
being a single token. Since protein names are never longer than five tokens,
the token length was chosen accordingly, producing sample phrases from five
tokens. Different sample phrases are compiled to serve as input for the SVMs.
This input consists of two environment phrases and one center, the center
being the phrase which is currently processed and the environment being the
phrase before and the phrase after the center.

Four different SVMs are used to get the final output. Each of the first three
SVMs concentrates on a specific input (center, environment, overlap between
those two). The fourth SVM combines the output of the other three with a
score derived from the protein-name dictionary, resulting in a final output and
a score.

The major advantage of NLProt is its possibility to extract not only the
protein name, but also the species, the tissue and the corresponding UniProt
term from the text. NLProt scans each name found for surrounding words
indicating a certain organism and gives only the protein identifier that fits
both the protein and the species.

This is done via a list compiled from SwissProt terms (us.expasy.org/
cgi-bin/speclist). If a protein name is surrounded (read: if a species name
is part of the environment phrase, see above) by a term from the species list,
it is assumed that the protein is part of that species and the species name and
the UniProt term are changed accordingly. An evaluation of this method can
be found in Section 10.2.6 and Section 10.2.4.

6.4. MuText

The fourth method implemented in CONAN is based on the MuText ap-
plication [19]. This method can be categorized in the Information Extraction
(IE) category of the Literature Mining process. It takes several regular ex-
pressions to detect mutations mentioned in an abstract. The pattern usually
starts with an amino-acid in one- or three-letter-code, followed by a number
(the residue where the mutation takes place) and another amino-acid. This
code reveals that a certain amino-acid substitution occurs at a specific place

CONAN Components 45

in a protein, also giving information about which amino-acid is substituted.
The regular expressions used are:

[ARDNCEQGHILKMFPSTWYV][1-9][0-9]+

[ARDNCEQGHILKMFPSTWYV][1-9][0-9]*[ARDNCEQGHILKMFPSTWYV]

[ARDNCEQGHILKMFPSTWYV][ardnceqghilkmfpstwyv][ardnceqghilkmfpstwyv][1-9][0-9]*

[ARDNCEQGHILKMFPSTWYV][ardnceqghilkmfpstwyv][ardnceqghilkmfpstwyv][1-9][0-

9]*[ARDNCEQGHILKMFPSTWYV][ardnceqghilkmfpstwyv][ardnceqghilkmfpstwyv]

An Example for a true-positive mutation would be:

We identified the NOS activated by the peptide as the neuronal isoform:
the expression of the C415A neuronal NOS mutant inhibited both CCK-
induced stimulation of NOS activity and cell proliferation. These two
effects were also inhibited after expression of the C459S tyrosine phos-
phatase SHP-2 mutant and the betaARK1 (495-689) sequestrant pep-
tide, indicating the requirement of activated SHP-2 and G-betagamma
subunit.

In this example (PMID 10544187), both the mutation C415A and C459S are
correctly extracted as mutations.

One very important thing to mention is that when applying these regular
expressions, the false positive rate is very high. Very often cell-lines or other
biologically interesting objects like receptors share a similar structure, also
having one or more letters followed by a number and another letter. An
example for text that fits the pattern but is not a true mutation is:

On the other hand, suppression of CBP/p300 function by the adenoviral
protein E1A abolishes TORU promoter activation by p68.

Here (PMID 12527917), part of a protein name (adenoviral protein E1A) fits
the regular expression. E1A is of course no mutation in the text, so it has to
be filtered out.

This is why I invented special filtering methods that can distinguish between
such a true positive (TP) and a false positive (FP). This is done via mapping
of so-called “mutational terms” in the abstract by the Data Integrator. A
further description can be found in Section 8.3.1.

6.5. PreBIND
The last method implemented in CONAN is used to extract interaction

data from text. The basis of this method are again regular expressions as
used in the PreBIND and BIND system [17, 10]. Some regular expressions

46 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

have been deleted by us from the set due to redundant results. PreBIND
is one of the most prominent examples for Information Extraction (IE) in
Literature Mining. There are several categories of possible interactions:

positive interactions

negative interactions (inhibitions)

positive/negative complex building / subunit / association

positive binding

negative binding

activation

(de-)phosphorylation

(co)precipitation

conjugation

mutation

It is very important to notice that not only positive interactions are found
by this method. As inhibitions and complex-binding are also very important
regulatory processes, they are also included in our results.

Basis of the extraction of PPIs are the Protein names extracted by the
aforementioned NER methods. As interactions can only appear between two
proteins, the protein names themselves are the key to extracting those inter-
actions. So, for every abstract, a list of extracted protein names is passed on
to the set of regular expressions, via which interactions between those proteins
are found. A typical example of such a general regular expression would be:

”(A.*interacting.*B)” a

aA list of all regular expressions used to find protein-protein interactions can be found in the
Appendix

So, A and B are the proteins that should fit the regular expression. In be-
tween those two proteins, the word “interacting” should appear. An example
sentence would be: The Bcl-interacting protein Bax......This regular expres-
sion is quite general, when comparing it to one of the more specific regular
expressions:

”(A(\S*\s+){0,3}and(\S*\s+){0,6}\S*B(\S*\s+){0,6}\S*interact(?!ion))”

CONAN Components 47

Again, A and B represent the two protein names. Here we see that not only
the protein names and the word that hints at the interaction are mentioned,
but also the space which should be between A, and, B and interact(?!ion). At
most 6 characters are allowed between those terms, limiting the search results
significantly. An example sentence would be: Bcl and Bax are interacting......

We see two different examples of regular expressions that are equally im-
portant for the system. More general regular expressions give the system a
higher recall, whilst specific regular expressions are more designed to improve
the precision of the system. To find a good balance between those two kinds
of regular expressions is important.

An evaluation of this method can be found in Section 10.2.6 and Section
10.2.5.

Chapter 7

TECHNICAL COMPONENTS

7.1. XML

Extensible Markup Language (XML) [1] is a simple, very flexible text format
derived from SGML (ISO 8879). As SGML is originally designed to meet
the challenges of large-scale electronic publishing, XML is also playing an
increasingly important role in the exchange of a wide variety of data on the
Web and elsewhere.

The reason why XML is so popular at the moment is that the language is
very simple and platform independent. Also, there is a large number of tools
available. XML can be used to encode lots of different kinds of data, ranging
from the Bible to technical manuals.

XML documents have a hierarchical and ordered tree structure. The struc-
ture is defined by elements. Elements are encoded in documents with tags, or
words that are included in ’<’ and ’>’ brackets.

XML also supports schemas. The most important schema types are DTD
and XML Schema. A DTD (Document Type Definition) is an external docu-
ment which has to be declared in the XML file. It specifies the allowed values
(see below) for each value of an element, e.g. character, decimal, string and
the allowed length for each element. XML Schema is quite similar to DTD
but it offers more functionalities, like the validation resulting in a collection
of information adhering to specific datatypes.

A typical XML document looks like this:

50 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<PubmedArticle>
<MedlineCitation Owner=”NLM” Status=”MEDLINE”>
<PMID>15231757</PMID>
<DateCreated>
<Year>2004</Year>
<Month>07</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2004</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2004</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel=”Print”>
<Journal>
<ISSN IssnType=”Print”>1088-9051</ISSN>
<JournalIssue CitedMedium=”Print”>
<Volume>14</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Genome research. </Title>
<ISOAbbreviation>Genome Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Single nucleotide polymorphisms associated with rat
expressed sequences.</ArticleTitle>
<Pagination>
<MedlinePgn>1438-43</MedlinePgn>
</Pagination>

</Article>
</MedlineCitation>
</PubmedArticle>

Technical Components 51

The physical composition of an XML file consists of several building blocks:

Entities. The main entity is the XML document as such. Other entities
can be included as entity references (references to other XML documents).

Declarations. An XML declaration explaining the version of XML used, the
character coding and the entity definition is optional. In the example, the
line “<?xml version=”1.0” encoding=”ISO-8859-1”?>” is the declaration
of the XML-version used.

Elements. As mentioned before, elements are encoded with tags or words.
An example of an element would be “<PMID>15231757</PMID>”, with
“<PMID>” being the opening tag, “15231757” being the element content
and “</PMID>” being the closing tag.

Attributes. Can be added for additional information about an element.
Represented by an Attribute-Value-Pair. An example for an attribute is
“<MedlineCitation Owner=”NLM” Status=”MEDLINE”>”. “MedlineCita-
tion” is the element, “Owner=”NLM” and Status=”MEDLINE” are the
attributes which belong to the element.

Comments. Comments for the XML file.

For an XML document to be correct, it must be well-formed and valid. Well-
formed means that it conforms to all XML syntax rules. An element that has
an opening tag, but no closing tag, does not conform with these rules. Valid
means that the document conforms to the user-defined rules (XML Schema).
This means that if a certain element or attribute only can contain text (by
user definition) and it contains numbers, it is not valid.

7.2. XPath
XPath (XML Path Language) [2] is a W3C recommendation for selecting

and addressing nodes in an XML document. Initially, XPath started as a sub-
set of the eXtensible Stylesheet Language (XSL) but became an independent
language in an early stage of development of XSL. XSL consists of three parts:

XSL Transformations (XSLT): a language for transforming XML.

XML Path Language (XPath): an expression language used by XSLT to
access or refer to parts of an XML document.

XSL Formatting Objects (XSL-FO): an XML vocabulary for specifying
formatting semantics.

XPath is used in XSLT, Xlink and Xpointer. In addition, several query
languages used the Xpath syntax for the selection of XML nodes, e.g. XQL,
Quilt, XQuery and SQL/XML.

52 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

The current version is Xpath2.0 which includes important changes with re-
gard to version 1.0., e.g. the support for XML Schema Data Types and the
possibility to use variables. The most common kind of XPath expression
is a path expression. A path is a sequence of commands to traverse through
the nodes, starting with the root node. The steps are separated by “slash”
commands. The simplest kind of XPath expression would be “/A/B/C”. This
expressions selects the nodes C which are children of nodes B, which are chil-
dren of node(s) A. This is called an “Axis specifier”, because it queries specific
points over the axis of the XML document. The axes available are: child,
attribute, descendant, descendant-or-self, parent, ancestor, ancestor-or-self,
following, preceding, following-sibling, preceding-sibling, self, and namespace.

An XPath statement can have more components: A Node Test can be
carried out, which means that a certain Node Name is identified within an
axis and is true if (and only if) the type of the node is the type specified in the
XPath Query. A Predicate query can be done, searching for specific values in
all elements. Also a combination of those three types is possible. XPath also
offers many different operators and standard functions. All those components
can be best described with an example. Going back to our XML example,
some interesting XPath queries would be:

/PubmedArticle/MedlineCitation/PMID/.

This query would give back the PubMed ID (PMID) of this article.

/PubmedArticle/MedlineCitation/PMID[contains(.,15231757)]/DateCreated/Year/.

This query says that it should get the value of the element year, for every
PubMed Article with the PubMed ID 15231757. The result would be “2004”.

/PubmedArticle/MedlineCitation/PMID/DateCreated/Year[contains(.,”2004”)]/../../*

This query looks for every article published in the year 2004 and displays the
PMIDs associated with those articles.

So we see that when using XPath queries in a normal XML document, those
queries are quite intuitive. While the query syntax is quite simple, it offers a
lot of functionality.

7.3. Script Languages

Script Languages are computer programming languages initially designed
for ”scripting” the operations of a computer. Though in early times, scripting
languages were only used for simple tasks, like automating computer com-
mands, nowadays they are used in nearly all fields of computer programming.

Technical Components 53

Scripting normally means only “connecting pre-existing components” to de-
liver a certain task, but these days they are also used to program components
of a systems. Programs written in such a Scripting Language are often not
compiled (like in C or C++), but interpreted. The biggest advantages of
Scripting Languages are that they are faster to program. For some script-
languages, the code is more easily human-readable and the files are much
smaller. On the downside, Scripts sometimes perform slower and use more
memory than a comparable C or C++ program.

Here I introduce two important Scripting languages in the bioinformatics
world, namely Python and Perl. Python [3] is an interpreted, interactive,
object-oriented programming language. It is often compared to Tcl, Perl,
Scheme or Java.

Python combines power with very clear syntax. It has modules, classes,
exceptions, very high level dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, as well as to various windowing
systems (X11, Motif, Tk, Mac, MFC, wxWidgets). New built-in modules are
easily written in C or C++. Python is also usable as an extension language
for applications that need a programmable interface.

One feature that makes Python one of the most important programming
languages for biologists and bioinformaticians is the fact that Biopython [4],
a project by an international association of developers, provides free-to-use
Python tools for molecular biologists.

Biopython includes modules for handling and transforming sequences, con-
necting to all biological important databases, dealing with alignments and
putting biologically interesting information in local databases. Moreover,
Python is very good in processing strings, which is one of the reasons why
Python is often used in the text mining community. Perl [5], short for Prac-
tical Extraction and Report Language, is an interpreted procedural program-
ming language designed by Larry Wall. Perl has a unique set of features
partly borrowed from C, shell scripting (sh), awk, sed, and (to a lesser extent)
many other programming languages (even Lisp). Perl is commonly used in
the bioinformatics world, maybe even more than Python. Similar to Python,
Perl provides additional programs and tools for bioinformaticians. BioPerl [6]
is provided by the Open Bioinformatics Foundation and the scripts and tools
provided are freely downloadable and usable.

The main differences between BioPerl and BioPython are the packages they
provide to the user. While both languages provide basic packages (e.g. Se-
quence Alignment, Database Retrieval, Basic Statistics), BioPython also pro-
vides many packages that provide code for storing and retrieving biological
objects from relational database systems (e.g. the BioSQL packages). BioP-
erl, on the other hand, provides a large package for the analysis Microarray
experiments (Microarray package) and for the construction of graphical user
interfaces (GUI package). Since the latest release, however, BioPerl also offers

54 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

a database package. As often, the choice between BioPerl and BioPython is
as much a choice of convenience as a matter of taste.

7.4. Classification Technqiues

In text mining, classification techniques are heavily used. Classification
questions asked range from IR (Does this document belong to the biomedical
domain ?) to NER (Is this name really a Protein name ?). Classification is
defined as a statistical procedure in which individual items are assigned to
categories based on quantitative information on one or more characteristics
inherent in the items (referred to as variables) and based on a training set of
previously labeled items. The labelled cases are the training or learning set,
in most cases the parameters for the whole classifier are estimated using this
training set. Two important terms here are Predictor Variable and Target
Variable. A predictor variable is a variable whose categories identify class
or group membership, which is used to predict responses on one or more
dependent variables. A target variable is a variable for which the right class
has to be found using the classifier. This class is derived from the predictor
variables. The problems that occur very often when using Classification
techniques are: finding the optimal parameters and overfitting. Overfitting is
fitting a statistical model that has too many parameters. Overfitting occurs
in cases where learning was performed too long or where training examples
(predictor variables) are rare. To avoid overfitting, cross-validation is used
to evaluate the fitting provided by each parameter value set tried during the
grid or pattern search process. In the next sections I present two of the
most modern and frequently used Classification Techniques, Support Vector
Machines (SVMs) and Boosting.

7.4.1 Support Vector Machines

Support Vector Machines (SVMs) [13] are supervised learning methods used
for classification. An overview can be seen in Figure 7.1.

In a linear classification case, a maximum-margin hyperplane is constructed
by the SVM to split the data into two distinct classes. Maximum margin means
that the distance of the closest example(s) to the hyperplane is maximized.
The parameters of the maximum-margin hyperplane are derived by solving
a quadratic programming (QP) optimization problem with linear constraints.
There are several possibilities to solve the QP problem, one of the most promi-
nent being the Sequential Minimal Optimization (SMO) algorithm [27]. A
predictor variable is called an attribute. A transformed attribute that is used
to define the hyperplane is called a feature. The task of choosing the most
suitable representation is known as feature selection. A set of features that
describes one case (i.e., a row of predictor values) is called a vector. So the
goal of SVM modeling is to find the optimal hyperplane that separates clusters

Technical Components 55

Figure 7.1. Support Vector Machine

of vectors in such a way that cases with one category of the target variable are
on one side of the plane and cases with the other category are on the other
size of the plane. The vectors near the hyperplane are the support vectors.

In a non-linear classification case, the classifiers are constructed using a
kernel-function to map the data into a different space (N-dimensional) where
a hyperplane can be used to do the separation. The default and recommended
kernel function is the Radial Basis Function (RBF).

There is a modified maximum margin idea that allows for mislabeled exam-
ples [16], called “Soft Margins”. If there exists no hyperplane that can split
the ”yes” and ”no” examples, the Soft Margin method will choose a hyper-
plane that splits the examples as cleanly as possible, while still maximizing
the distance to the nearest cleanly split examples. In CONAN, SVMs are used
by NLProt to find protein names in text.

7.4.2 Boosting
Boosting (or boosted regression) [29] is a machine learning meta-algorithm

for performing supervised learning. Boosting is based on probably approxi-
mately correct learning (PAC learning [32]), which is a branch of computa-

56 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

tional learning theory. The underlying idea of Boosting is to combine simple
rules to form an ensemble such that the performance of the single ensemble
member is improved, i.e. “boosted”.

f(x) =
∑T

t=1 atht(x)

In this equation, at denotes the weight of the ensemble member ht. Both
at and the learner ht are learned within the Boosting procedure. f(x) is the
composite ensemble hypothesis. At every stage of the learning process, a “weak
learner” (ht) is trained with the data. The job of the “weak learner” is to find
a hypothesis appropriate for the data. The quality of such a weak learner is
measured by the error with respect to the distribution of the training data.
The output of such a learner is added to the output function, examples which
are classified wrongly, get a boost (=weight is increased, i.e. at is increased) for
the next round of learning, giving another “weak learner” a chance to fix the
error. So the weight is fixed in a way that the “weak learners” concentrate on
hard examples that are difficult to classify. Subsequently, examples identified
correctly are weighted less. After some rounds of boosting, the algorithm
delivers a final hypothesis (f(x)) over the training set. The number of boosting
rounds is normally a parameter. The final function can be used to classify other
examples than the training examples. Problems that can occur in Boosting
are: insufficient data, overly complex weak hypotheses and weak hypotheses
that are “too weak”. Important Boosting algorithms include AdaBoost [18]
and C5.0 (http://www.rulequest.com). AdaBoost is quite sensitive to noisy
data and outliers, as is reported in the original publication. An algorithm that
focuses on text categorization and is built using the AdaBoost algorithm, is
BoosTexter [30].

An example how boosting (and especially BoosTexter) was implemented in
our system is described in the next section.

7.4.2.1 BoosTexter

A Boosting implementation called BoosTexter [30] was used that is designed
to work with text. BoosTexter is an extension of the AdaBoost Algorithm
[29]. It uses so-called n-grams to classify a given document. n-Grams are
sub-sequences of n items from a given sequence. In the NLProt method, such
n-grams are called tokens. Each word is considered a “gram”. An n-gram of
size 1 is a ”unigram”; size 2 is a ”bigram”. So for a bigram, every sentence
would be split up in two-word-snippets. This can of course also be applied
not to full texts but also to words like protein names, because protein names
often contain more than one word. In this approach, we used a specific kind
of n-grams, called s-grams (for sparse n-gram). An example of a sparse ngram
is the pattern ”the ? boy” which matches any three word sequence beginning
with the word ”the” and ending with the word ”boy”. An example from
the biomedical world would be “protein kinase ?”, where every protein kinase

Technical Components 57

Figure 7.2. Overview of the Boosting classifier

like “protein kinase C” or “protein kinase A” would match the s-gram. The
weak learners in the BoosTexter implementation are the “s-grams” in the text.
Subsequently, the training data is weighted by checking how often a certain
“s-gram” is mentioned in the dictionary.

In our case, we trained the classifier on a large dictionary containing protein
names derived from SwissProt/TrEMBL (see Section 5.7) [12]. and a dictio-
nary consisting of protein name abbreviations which is published by iProLINK
(see Section 5.6) [20] as positive cases. This approach can be seen in Figure
7.2. So every positive case for a protein name will be classified as a positive
and every example that does not contain a protein name, will be unclassified.
When using Boosting, normally a list of negative examples is given. It is un-
clear what a “negative example” for protein detection should look like, given
that protein names such as the Drosophila “dachshund” gene, which is also a
normal English word, exist. Moreover, a negative list in this case would have
to consist of all English words that are not part of any protein name. This
seems an impossible task. Therefore we only used positive examples and a
minimal threshold on the output weights. This threshold was determined by
looking at different test sets and is set at +0.15. This threshold ensures that
the Boosting Classifier produces very high precision results.

One important step is the pre-processing of the dictionary. First of all, all
special characters like parentheses or commas were converted into spaces, and
everything was converted to lower case. After that, digits were separated from
characters. This means that for instance the protein name “transcriptional
regulator atf3” was split to “transcriptional regulator atf 3”. This was done

58 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

because of the s-gram matching. The principle behind the matching is that
there is more than one “transcriptional regulator atf” and not all of them
might be part of the training set.

So the BoosTexter algorithm will make an s-gram saying:
“transcriptional#regulator#atf# ?”
,meaning that the classifier will recognize all the transcriptional regulator atf
proteins, no matter what digit is behind it and will classify them as a true
protein name. For the BoosTexter training phase we used 50 rounds of boost-
ing. We used sgrams of size five, because no protein name is longer than five
snippets or tokens. As a result, the BoosTexter algorithm came up with 74467
strong hypotheses (SHYPS). These hypotheses include a lot of unigrams (e.g.
protein) and a lot of bigrams (e.g. tumor#suppressor).

Longer SHYPS that were found include “low#density#lipoprotein# ?”.
For the resulting final hypothesis, we see that a term like “protein”, which

appears very often in protein names, gets a large weight of +3.41. An interest-
ing result is that the s-gram ”cytochrome#b5” gets a weight of +0.45 whereas
the single word “cytochrome” gets a weight of +1.48. This shows the strength
of the s-grams. “cytochrome” as such is a perfect protein name, “b5” is not,
so the weight is decreased. It is still above the threshold, so “cytochrome b5”
is classified as “correct”.

For a given test set, BoosTexter compares those SHYPS with the input of
the test set and gives back weights whether the input belongs to the class
”protein” or not. Although BoosTexter can also be used for multi-class prob-
lems, we focussed on the specific classification “protein” or “no-protein”. The
outcome is that, when a name is classified as a protein, it gets a positive
weight above 0.15, when it is classified as being no protein, it gets the weight
0 to 0.15. Those weights could be converted to probabilities, but for a binary
classification problem, this is not really necessary.

A problem that occurs when building this classifier is the plural form of
protein names. If we look at an example “glutathione ? transferase”, ev-
ery glutathione transferase would be classified correctly, but any term saying
“glutathione S transferases” would be classified incorrectly, because the s-gram
does not match. This can be easily overcome by checking if any words in the
test-set have an “s” at the end. If there is any, both the form including the “s”
and without the “s” are added to the test-set (e.g. glutathione S transferases
and glutathione S transferase). If the version including the “s” is considered
as a positive, the version without the “s” is thrown away. If it is considered
a negative and the version without the “s” is a positive, the version with the
“s” is thrown away. This is best described by the protein name “c-Fos”. This
would be added as “c-Fos” and “c-Fo” in the test set. As “c-Fo” is not a
correct protein name, but “c-Fos” is, the “c-Fo” is thrown away.

References

[1] http://www.w3.org/XML.

[2] http://www.w3.org/TR/xpath.

[3] http://www.python.org.

[4] http://www.biopython.org.

[5] http://www.perl.org.

[6] http://bioperl.org.

[7] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. J Mol Biol., 215(3):403–410, 1990.

[8] R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,
R. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,
C. O’Donovan, N. Redaschi, and L. S. Yeh. UniProt: the Universal Protein knowl-
edgebase. Nucleic Acids Res, 32:D115–D119, 2004.

[9] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P.
Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver,
A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and
G. Sherlock. Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet, 25(1):25–29, 2000.

[10] G.D. Bader, D. Betel, and C.W. Hogue. BIND: the Biomolecular Interaction Network
Database. Nucleic Acids Res., 31(1):248–250, 2003.

[11] O. Bodenreider. The Unified Medical Language System (UMLS): integrating biomed-
ical terminology. Nucleic Acids Res., 32:267–270, 2004.

[12] B. Boeckmann, A. Bairoch, R. Apweiler, M.C. Blatter, A. Estreicher, E. Gasteiger,
M.J. Martin, K. Michoud, C. O’Donovan, PhanI., S. Pilbout, and M. Schneider. The
SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic
Acids Res., 31(1):365–370, 2003.

60 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

[13] B.E. Boser, I. M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin
classifiers. Proceedings of the 5th Annual ACM Workshop on COLT, pages 144–152,
1992.

[14] E. Brill. Some Advances in Rule-Based Part of Speech Tagging. Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 722–727, 1994.

[15] E. Camon, M. Magrane, D. Barrell, D. Binns, W. Fleischmann, P. Kersey, N. Mulder,
T. Oinn, J. Maslen, A. Cox, and R. Apweiler. The Gene Ontology Annotation (GOA)
project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome
Res., 13(4):662–672, 2003.

[16] C. Cortes and V.N. Vapnik. Support-vector networks. Machine Learning, (3):273,
1995.

[17] I. Donaldson, J. Martin, B. de Bruijn, C. Wolting, V. Lay, B. Tuekam, S. Zhang,
B. Baskin, G.D. Bader, K. Michalickova, T. Pawson, and C.W. Hogue. PreBIND
and Textomy–mining the biomedical literature for protein-protein interactions using a
support vector machine. BMC Bioinformatics., 4:11, 2003.

[18] Y. Freund and R. Schapire. A decision-theoretic generaliztaion of on-line learning and
an apllication to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

[19] F. Horn, A.L. Lau, and F.E. Cohen. Automated extraction of mutation data from the
literature: application of MuteXt to G protein-coupled receptors and nuclear hormone
receptors. Bioinformatics., 20(4):557–568, 2004.

[20] Z.Z. Hu, Mani I., H. Liu, and C.H. Wu. iProLINK: an integrated protein resource for
literature mining. Comput Biol Chem, 28(5-6):409–416, 2004.

[21] T. Hubbard, D. Andrews, M. Caccamo, G. Cameron, Y. Chen, M. Clamp, L. Clarke,
G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin,
X. M. Fernandez-Suarez, J. Gilbert, M. Hammond, J. Herrero, H. Hotz, K. Howe,
V. Iyer, K. Jekosch, A. Kahari, A. Kasprzyk, D. Keefe, S. Keenan, F. Kokocinsci,
D. London, I. Longden, G. McVicker, C. Melsopp, P. Meidl, S. Potter, G. Proctor,
M. Rae, D. Rios, M. Schuster, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith,
W. Spooner, A. Stabenau, J. Stalker, R. Storey, S. Trevanion, A. Ureta-Vidal, J. Vogel,
S. White, C. Woodwark, and E. Birney. Ensembl 2005. Nucleic Acids Res, 33(Database
Issue):D447–D453, 2005.

[22] P. J. Kersey, J. Duarte, A. William, Y. Karavidopoulou, E. Birney, and R. Apweiler.
The International Protein Index: An integrated database for proteomics experiments.
Proteomics, 4(7):1985–1988, 2004.

[23] M. Krauthammer, A. Rzhetsky, P. Morozov, and C. Friedman. Using BLAST for
identifying gene and protein names in journal articles. Gene, 259(1), 2000.

[24] D.J. Lipman, W.J. Wilbur, T.F. Smith, and M.S. Waterman. On the statistical signif-
icance of nucleic acid similarities. Nucleic Acids Res., 11:215–226, 1984.

[25] S. Mika and B. Rost. NLProt: extracting protein names and sequences from papers.
Nucleic Acids Res., 32, 2004.

REFERENCES 61

[26] S. Mika and B. Rost. Protein names precisely peeled off free text. Bioinformatics.,
20(Suppl 1):I241–I247, 2004.

[27] J. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods
- Support Vector Learning. MIT Press, 1998.

[28] K.D. Pruitt and D.R. Maglott. RefSeq and LocusLink: NCBI gene-centered resources.
Nucleic Acids Res, 29(1):137–140, 2001.

[29] R.E. Schapire. The boosting approach to machine learning: An overview. In MSRI
Workshop on Nonlinear Estimation and Classification, 2002.

[30] R.E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text catego-
rization. Machine Learning, 39(2):153–168, 2000.

[31] L. Tanabe and W.J. Wilbur. Tagging gene and protein names in biomedical text.
Bioinformatics, 18(8):1124–1132, 2002.

[32] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

PART III

CONAN

Chapter 8

CONAN

In this chapter, I introduce CONAN [1, 2], a system that was developed for
systematic text mining. CONAN is the core part of this thesis. It was devel-
oped by me with all components described in Part II of this thesis. All the
Results in Part IV are computed with CONAN and all Applications presented
in Chapter 11 include CONAN in one way or the other. In this Chapter, I
talk about the workflow of this system, giving information about input, pre-
processing, processing the data, filtering the results and finally the output.
The flow-diagram of how CONAN works can be seen in Figure 8.1. The CO-
NAN Process begins with a MEDLINE XML file (see Section 5.1), which also
includes the MeSH terms (see Section 5.1.2). After pre-processing, the several
methods of information extraction are started, namely Mutation Finding (see
Section 6.4), Protein Name Finding (see Sections 6.1, 6.2 and 6.3), Interaction
Finding (see Section 6.5) and the Biological Concept Finding (BLAST search,
see Section 6.1). All of this information is collected in the Data Integrator (see
Section 8.3.1), the Boosting Classifier (see Section 7.4.2.1) is applied and the
output is stored in an XML file (see Section 8.4). This XML file can subse-
quently be queried via a web-server (see Section 11.2) or via a command line
tool (see Section 11.1).

At this point of time, the CONAN webserver is available for testing purposes
at http://h094.niob.knaw.nl/conan. A set of example queries which can
be executed can be found in the Appendix.

8.1. Input

In this section, I describe all files used as input for CONAN. The databases
which these input files are derived from can be seen in Chapter 5.

66 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 8.1. Flow Diagram of CONAN

8.1.1 MEDLINE XML Files
The main input of the whole system consists of MEDLINE files which are

freely downloadable for academic purposes when a license agreement is signed.
The MEDLINE files serve as the only source of input of text data.

These MEDLINE input files are provided in the MEDLINE XML style. The
main structure of such a MEDLINE file can be seen in the Appendix. The
fields needed for analysis are the following:

<MedlineCitation Owner=”NLM” Status=”Completed”>

This entry of the MEDLINE file signals that this specific abstract is Com-
pleted. In later versions (from 2005), “Completed” was changed to “MED-
LINE”. This field is assigned if the abstract is complete and is going to be
in the online version of MEDLINE. Other versions of this field include ”In-
Process”, meaning that this version of the abstract is not the final version
and “In-Data-Review”, meaning that important data parts of this abstract

CONAN 67

are still under review. For the analysis with CONAN, only abstracts that
are “Completed” or “MEDLINE” are taken into account. This minimizes the
risk of processing an entry more than once. It also means that all important
information is stored in the abstract. When the abstract is not “Completed”,
information might still change in time. Hence, the chance of errors is much
smaller when using only “Completed” abstracts.

<PMID>12411390</PMID>

This field gives the PMID of the abstract. The PMID (PubMed ID) is
an unique identifier assigned to every abstract in PubMed/MEDLINE. This
information is needed in CONAN to identify the article when querying the
data, for instance, when querying the interactions, it is important to know to
what article the extracted interactions belong.

<AbstractText>The focal pattern of atherosclerotic lesions in arterial
vessels suggests that local blood flow patterns are important factors in
atherosclerosis. Although disturbed flows in the branches and curved re-
gions are proatherogenic, laminar flows in the straight parts are athero-
protective. Results from in vitro studies on cultured vascular endothelial
cells with the use of flow channels suggest that integrins and the asso-
ciated RhoA small GTPase play important roles in the mechanotrans-
duction mechanism by which shear stress is converted to cascades of
molecular signaling to modulate gene expression. By interacting dynam-
ically with extracellular matrix proteins, the mechanosensitive integrins
activate RhoA and many signaling molecules in the focal adhesions and
cytoplasm. Through such mechanotransduction mechanisms, laminar
shear stress upregulates genes involved in antiapoptosis, cell cycle arrest,
morphological remodeling, and NO production, thus contributing to the
atheroprotective effects. This review summarizes some of the recent find-
ings relevant to these mechanotransduction mechanisms. These studies
show that integrins play an important role in mechanosensing in addition
to their involvement in cell attachment and migration.</AbstractText>

This field gives the text of the abstract. As the abstract is the main point
of processing PubMed/MEDLINE entries, this is the most important field for
our analysis.

<MeshHeading>

<DescriptorName MajorTopicYN=”N”>Animal</DescriptorName>

</MeshHeading>

68 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

MeSH terms (see Section 5.1.2) are used to describe the content of an abstract
and annotate the abstract according to pre-defined fields. MeSH terms are
frequently used to categorize articles by IE and IR systems. As the MeSH
terms form an important part of MEDLINE entries, the values of the MeSH
headings are extracted. As these terms are not further processed, but stored
directly in the CONAN output file, the MeSH terms serve as an input for the
system.

8.1.2 GOA

The description of the GOA service can be found in Section 5.8.1. For the
assignment of Gene Ontology Terms and Identifiers to each protein mentioned
in the abstract, two files have been downloaded from the GOA website (www.
ebi.ac.uk/GOA/). They are converted to an easy queryable format. The
first file (“GO.terms and ids”) provides a mapping between the GO identifiers
(e.g. 0000023), the GO description (e.g. maltose metabolism) and the class it
belongs to (e.g. Process). The version used in all experiments is GOA version
35.0.

The second file (“gene association.goa uniprot”) is needed for the mapping
of UniProt identifiers derived from NLProt (e.g. MYO1F HUMAN) to the GO
identifiers (e.g. for MYO1F HUMAN, these are 0000004, 0000166, 0003774,
0003779, 0005516, 0005524, 0016459, 0016461). It is important to note that
this is a “many-to-many” relationship, meaning that one UniProt term can be
mapped to multiple GO identifiers and one GO identifier can map to multiple
UniProt terms.

As this second file is quite big (683,609,334 bytes or 7,029,958 entities), it
was necessary to index this file for fast processing. This was done via the
freely available software tool Glimpse (webglimpse.net/).

8.1.3 IPI

As described before (see Section 5.8.2), the IPI (International Protein Index)
files provide a mapping from (almost) all available protein identifiers to the
protein names and their synonyms. In this case, we use the mapping from
UniProt terms to Ensembl identifiers. As much of the other information is not
needed by CONAN, we processed the IPI files for several organisms (Human,
Rat, Mouse, Zebrafish, Arabidopsis, Cow) and extracted the UniProt terms
together with the corresponding Ensembl identifiers to form a lookup-table.
This ensures that finding the wanted information is very quick. The IPI file
with version number 3.11 was used throughout all experiments, this file is
based on the NCBI 35 assembly of the human genome, the NCBI m34 mouse
assembly and the 3.4 version of the rat genome.

CONAN 69

8.2. Pre-Processing
Before starting to produce the results with CONAN, the input data has

to undergo several pre-processing steps. This pre-processing is part of the
CONAN workflow, although there is no actual information extracted in these
steps.

Extraction of Abstracts and PMIDs

Storing the information in a temporary file

Translating the Abstracts into DNA Alphabet (see Section 6.1)

Converting PMIDs/Abstracts to the AbGene input format and producing
the AbGene input file

Converting PMIDs/Abstracts to NLProt input format and producing the
NLProt input files

These steps are necessary to ensure that all files are in place before the
processing begins and that the processing works as quickly and as smoothly
as possible. When these steps are finished, the real CONAN processing and
extraction steps are started.

8.3. Processing
In CONAN, each extraction method (see Chapter 6) is started one at a

time. Firstly, the keywords and entities are extracted by the BLAST method,
after that the Mutations in the text are extracted, then the NER takes place
with NLProt and AbGene and finally, the PPIs are extracted by CONAN.
This ensures data integrity. If the processing would take place simultaneously,
wrong information might be entered in the output file or XML entries might
overlap, i.e. if one method is finished before the other, the closing tags might
not be set correctly. Firstly, the BLAST method is run and useful biological
concepts (protein names, gene names, diseases, etc) are extracted and stored.
Secondly, AbGene is run to find protein names in the text. Thirdly, MuText is
run to find mutations in the text. Fourthly, NLProt is run to extract protein
names, the corresponding organism and the UniProt identifier in the text.
Subsequently, via the GOA and IPI files, the Ensembl identifier for a given
protein name and the Gene Ontology classification are extracted and stored.
Following this extraction, the lists of protein names found by the different
methods are passed on to the PreBIND method which extracts protein-protein
interactions. Finally, the MeSH terms are extracted from the original XML
files and are also stored in the output file. At every given stage (see Section
8.3.1), Data Integration occurs.

For each method, the data is extracted in the way that is described in
Chapter 6. The output format is described in Section 8.4.

70 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

8.3.1 Data Integration
The most important aspect of CONAN is the Data Integration. There are

three major stages in which CONAN combines data. Although they are not
all happening at the time the XML file is produced, I describe all three steps
at this time, for the sake of clarity.

Firstly, combination of data is done when storing it in the Output-XML-
file. In this step, the data of the NER methods is combined together with
the regular expressions of the interaction finding methods. So the Data
Integration takes place in the interaction finding method. The protein
names found by the two protein-tagging methods and the BLAST method
(given that the term belongs to the ”Gene” or ”Protein” database) are used
as input for the interaction finding method. The list of protein names found
by the NER methods is passed on to the regular expressions used to find
interactions. This ensures a high precision of interaction finding, because
only protein names which are found before are taken into account. This
also means that protein names which are not found by the NER methods
cannot participate in an interaction. Moreover, when the protein name is
classified as “false” by the Boosting Classifier in the post-processing, the
interactions that contain the specific protein are marked as “false” as well.

Secondly, a case of data integration is the validation of protein names found
by NLProt. In this step, results from all three NER methods are combined.
The lists of all three NER methods are comparable, because they also
contain the position of the protein name in the abstract. NLProt offers
a reliability score for every protein name found in the text. This score
(normally between 0 and 3) is normalized and divided by three so that it is
in the range between 0 and 1. This makes comparison to other scores (e.g.
PreBIND regular expression measure, see below) easier. By comparing
those lists of protein names with the lists produced by the other methods,
namely AbGene and the BLAST-searching, we make sure that high quality
protein names also receive a high score in the interaction finding process
(see below). This is ensured by the fact that the score is increased by 0.5
if the protein name is found by the other methods as well or decreased by
0.5 if the protein name is not found by either of the other methods. This
means that proteins that are found by all methods receive a high score.
The ones that are found by one or two methods receive a lower score, but
stay in the list, and are passed on to the interaction finding method.

Thirdly, data is combined at the time when the Output-XML-file is queried.
One example is the querying for Mutations, the method of extracting these
mutations can be found in Section 6.4. Mutations are found in text by
simple regular expressions, the pattern usually starting with one amino-
acid in one- or three-letter-code, followed by a number and another amino-

CONAN 71

acid abbreviation. This method alone would result in a large number of
false positives, because many other biological concepts like Cell Lines have
these kinds of abbreviations. To solve this problem, the BLAST-searching
method is queried for “mutation-related” terms in text.

Terms as “Mutation”, “Mutational Analysis” or “Amino Acid Substitu-
tion” are examples for those kind of keywords. If one if those keywords
is found by the BLAST-searching method or the MeSH terms describing
this abstract contain one of these terms, then the chance of the mutation
being a true positive is high. The BLAST-searching method also gives the
possibility to compare the positions of the mutation and the mutational
term in the abstract. How closer the two are found together, the higher is
the chance of the mutation being a true positive. In fact, we compute the
distance of the Mutation and the mutational term. We assume, that an
average sentence in an abstract is about 10-20 words long. If the distance is
not longer than 30 words, it is considered a positive. This is due to the fact
that those two facts should ideally be inside one sentence, but also could be
in the next sentence. The other example of this kind of data integration

is the score for the interaction data. Each regular expression has a score
assigned by PreBIND, yielding a measure how good this specific regular
expression performs in the extraction of interaction data. This measure
ranges from 0 to 1. The score for protein 1 included in the interaction (see
above), the score for protein 2 included in the interaction and the score
for the regular expression are combined to one score by taking the mean
of all three scores, giving the user the possibility to see directly whether
this interaction is predicted to be of high quality or not. This is also the
reason why the scores of NLProt are normalized to a rang from 0 to 1. In
this example, data from two different sources (NER methods and PreBIND
data) is integrated to form one single score which provides information on
the quality of the extracted interaction.

8.4. Output
CONAN stores its output as an XML file, as already mentioned in the Intro-

duction. Since the different methods format their output slightly differently, I
briefly describe the typical output for each method and then the output that
is unique for every method. The DTD for the CONAN output file can be
found in the Appendix.

8.4.1 General
The general output of CONAN looks like:

72 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

<abstract>
<abstract header>
<abstract id> </abstract id>
<abstract file> </abstract file>
<abstract file position> </abstract file position>
<PMID> </PMID>
</abstract header>
<method overview>
<method> </method>
<parameters> </parameters>
</method overview>
<abstract body>
. . .
</abstract body>
</abstract>

For each abstract that is processed, an XML Tag “<abstract>” is opened. The
abstract consist of three different sub-tags, namely the “abstract header”, the
“method overview” and the “abstract body”.

In the “abstract header”, the running number of the abstract in the output-
file (“<abstract id>”), the MEDLINE-file from which this abstract is taken
(“<abstract file>”) and the position of the abstract in the MEDLINE file
(“<abstract file position>”) are given. This ensures that every abstract can
be identified via those three identifiers later. As they were included for testing
and debugging, these numbers are not used when querying CONAN.

In the “method overview”, the method used to extract the information
(“<method>”, can be either BLAST, AbGene etc.) and what the parameters
were used in this round of extraction (“<parameters>”). In the files processed
so far, the parameters are all set to “standard”. Different parameters can be
used in the BLAST search.

The “abstract body”, finally, contains all the information extracted. As
this differs from method to method, I describe the layout for every method
separately.

8.4.2 BLAST

A typical BLAST-entry looks like this:

CONAN 73

<term id>0</term id>
<term text>receptor tyrosine kinase family
<term pos start>54</term pos start>
<term pos end>85</term pos end>
<term tag>Protein</term tag>
</term text>

A pattern is repeated for each term that was found by the BLAST method.
It is assigned a “term id”, which is a running identifier in each abstract. The
tag “term text” consists of several sub-tags. Firstly, the extracted term is
stored in “term text” (e.g. receptor tyrosine kinase family). Secondly and
thirdly, the position in the abstract where the term begins and where it
ends are given in “<term pos start>” and “<term pos end>” (e.g. 54 and
85). Finally, the database from which this term was extracted is given in
“<term tag>” (e.g. protein).

8.4.3 AbGene

<term id>0</term id>
<term text>ErbB-4</term text>

Similar to the BLAST entry, an unique identifier is placed in “<term id>”.
For every protein name found in the text, this name is stored in the XML file
as “<term text>”. A typical AbGene-entry looks like this:

8.4.4 MuText

<mutation>T47D
<pos>490</pos>
</mutation>

For every mutation found in text, the mutation itself is stored in the “<mutation>”-
tag, and the position in the abstract where this mutation occurs is stored in
the sub-tag “<pos>”. This enables verification by the Data Integrator (see
Section 8.3.1). A typical MuText-entry looks like this:

8.4.5 NLProt

For NLProt, the structure of the XML document is quite complex. A typical
entry would look like:

74 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

<term text>ErbB-4
<term pos>1</term pos>
<term organism>human</term organism>
<term score>0.950</term score>
<term synonyms>ERB4 HUMAN</term synonyms>
<synonym score>100</synonym score>
<ensembl name>ENSG00000178568</ensembl name>
<goa id>0016740</goa id>
<goa function>transferase activity</goa function>
<goa id>0008283</goa id>
<goa process>cell proliferation</goa process>
<goa id>0005887</goa id>
<goa component>integral to plasma membrane</goa component>
<goa id>0005524</goa id>
<goa function>ATP binding</goa function>
<goa id>0006468</goa id>
<goa process>protein amino acid phosphorylation</goa process>
<goa id>0007169</goa id>
<goa process>transmembrane receptor protein tyrosine kinase signal-
ing pathway</goa process>
<goa id>0004714</goa id>
<goa function>transmembrane receptor protein tyrosine kinase
activity</goa function>
<goa id>0004872</goa id>
<goa function>receptor activity</goa function>
<goa id>0005006</goa id>
<goa function>epidermal growth factor receptor
activity</goa function>

For every term (protein name) found, an extra “<term text>”-tag is opened
in the “abstract body”. There, the protein name found is reported. There are
several sub-tags of the “<term text>”-tag.

“<term pos>” describes the position of the term in the abstract.

“<term organism>” describes the organism of which the protein is thought
to belong to. This is estimated by NLProt.

“<term score>” is the score assigned by NLProt to the protein term.

“<term synonyms>” is the UniProt synonym of the protein name found.
This is estimated by NLProt.

CONAN 75

“<synonym score>” is the score assigned to the UniProt synonym, ranging
from 0 to 100.

“<ensembl name>” is the Ensembl identifier assigned to the term via the
UniProt synonym, using the IPI resource.

For the GO identifiers, which are derived by the UniProt synonym and the
GOA resource, the number of the GO entry is stored under “<goa id>”. The
GO description, depending on which category it belongs to, is described in
“<goa function>”, “<goa process>” or “<goa component>”

8.4.6 PreBIND
For the PreBIND entries, the structure is quite simple:

<interaction>
<Protein1>Cyclin B</Protein1>
<Protein2>p42 MAPK</Protein2>
<Interaction Type>24</Interaction Type>
</interaction>

For each interaction, an “<interaction>”-tag is introduced. Inside this tag, the
names of Protein 1 and Protein 2 are reported (“<Protein1>” and “<Protein2>”).
As additional information, the number of the regular expression that fitted the
pattern is recorded (“<Interaction Type>”). Using this information, the In-
teraction Type can later be displayed.

8.4.7 MeSH
The simplest structure inside the XML document is for the MeSH terms:

<term text> Animals </term text>

In each “<term text>”-entry, one MeSH term extracted from the MEDLINE
input file is saved.

8.5. Boosting
After the XML file is produced, the protein names are checked and filtered

by the Boosting Classifier. This is done at this specific point of time because
of time reasons. The Boosting Classifier takes the same amount of time for
all sizes of lists of protein names, no matter if the list is only 5 names long or
5,000 names long. Therefore, the classifier is more or less a “post-processing”
filtering step.

76 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

All protein names found by all three NER methods (BLAST, AbGene, NL-
Prot) are extracted and stored in a separate file. This file serves as an input
for the classifier. The output of the classifier is exactly the same list, but then
with “correct” and “false” attached to the protein name. From this output
list, the “false” names are changed in the original CONAN-XML-file. The
original text is subsequently changed (e.g. “chaperonins” becomes “chaper-
onins - false”). The same is done for interactions, where this protein name
appears, the interaction is tagged as “false” as well.

This is done because the results should still be visible for the user when
querying for results, but the user also should get the information that this
might be a false positive. In the web-visualization of the results, this is also
done by adding other colors to the output.

After all these steps have been finished, the Output XML file is done and
ready for querying and for user output. This is described in Chapter 11 of
this thesis.

References

[1] R. Malik, L. Franke, and A. Siebes. Combination of text-mining algorithms increases
the performance. Bioinformatics, 2006. In Press.

[2] R. Malik and A. Siebes. Conan: An integrative system for biomedical literature mining.
In C. Bento, A. Cardoso, and G. Dias, editors, LNAI 3808, EPIA05, pages 248–259,
2005.

PART IV

EXPERIMENTS

Chapter 9

MEASURES IN TEXT MINING

In this chapter, I explain the measures which are important when evaluating
a text mining system. These measures will be used throughout the evaluation.

9.1. Precision and Recall
Precision and recall are the basic measures used in evaluating search strate-

gies. These measures assume:

That there is a set of records in the database that is relevant to the search
topic

That records are assumed to be either relevant or irrelevant (these measures
do not allow for degrees of relevancy).

That the actual retrieval set may not perfectly match the set of relevant
records.

In Figure 9.1, the notion of recall and precision becomes clear. There are
four different sets: The records which were retrieved, the records which were
not retrieved, the relevant records and the irrelevant records (as annotated in
the test set). The intersections of these sets (A,B,C,D) represent the following:
A is the number of irrelevant records not retrieved (true negatives), B is the
number of irrelevant records retrieved (false positives), C is the number of
relevant records not retrieved (false negatives) and D is the number of relevant
records retrieved (true positives).

Recall is defined as:

Recall =
TP

TP + FN

When using the Figure, this equation would translate to: Recall = D
D+C

.

82 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 9.1. Definition of Recall and Precision

Precision is defined as:

Precision =
TP

TP + FP

When using the Figure, this equation would translate to: Precision = D
D+B

Recall and precision are often inversely related, meaning that, in an actual
text mining system, the precision often goes down when the recall goes up
and vice versa. This relation is displayed in Figure 9.2.

As noted earlier, records must be considered either relevant or irrelevant
when calculating precision and recall. Obviously, records can exist which
are marginally relevant or somewhat irrelevant. Others may be very relevant
and others completely irrelevant. This problem is complicated by individual
perception: what is relevant to one person may not be relevant to another.
This is also important when considering “partial matches” (also see Chapter
3).

Measuring recall is difficult because it is often difficult to know how many
relevant records exist in a database. As measuring recall is often so difficult,
annotated corpora have been constructed for text mining purposes, making
the estimation of recall easier. Recall is then computed by looking at the
annotated pool of relevant records and then determining what proportion of
the pool the search retrieved.

Measures in Text Mining 83

Figure 9.2. Recall-Precision Graph

9.2. F-measure
An often-used measure in information retrieval and NLP is the so-called F-

measure. This measure was first introduced by Rijsbergen [16] and it combines
Recall (r) and Precision (p) with an equal weight in the following form:

F (r, p) =
2rp

r + p
(9.1)

In fact, the F-measure is the harmonic mean between precision and recall.
The Harmonic Mean H of numbers x1,xn is given by

1

H
=

1

N

n∑

i=1

1

xi

(9.2)

When applying this formula to precision and recall, we get:

H =
1

1
2(1

r
+ 1

p
)

=
2

r
rp

+ p
rp

=
2rp

r + p
(9.3)

So we see that the F-measure is a harmonic mean. If we multiply Equation
9.2 by H on both sides, we get:

84 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

1

N

n∑

i=1

H

xi

= 1 (9.4)

In other words, the average of ratios between the Harmonic mean and the
data points is unity. This means that every data point contributes to the
harmonic mean equally. As the two data points are recall and precision, those
two measures contribute equally to the F-measure, no matter how large those
numbers are.

The F-measure is becoming more and more important in the field of text
mining. As already mentioned in Chapter 3, some text mining systems achieve
a very high recall, others a very high precision. When reporting a high F-
measure in publications about text mining, one can be sure that the system
achieves a high recall as well as a high precision.

9.3. Inter Annotator Agreement
The Inter-Annotator agreement scores are measures that are used when

constructing a corpus. Normally, more than one annotator annotates the
abstracts or sentences when building the corpus. This also leads to the fact
that computing Precision and Recall for a given corpus is not straight-forward,
as the annotators might disagree on a certain term (e.g. a certain protein
name). For this reason, the Inter-Annotator Agreement Scores help to see if
a given corpus is constructed well.

These agreement scores were first used in interpreting medical images (e.g.
X-ray photographs) [11]. In constructing a corpus, such scores are used to
show how good the different annotators agree with each other. There are
some different measures:

ppos, the positive agreement.

po, the overall proportion of agreement.

pneg, the negative agreement.

pe, the agreement expected by chance.

kappa, the measure of agreement corrected by chance.

These measures are best explained by an example: Suppose the annotators
want to find disease names in abstracts. The total number of abstracts is 150.

Annotator 2

Annotator 1 Positives Negatives Total

Positives 7 10 17
Negatives 12 121 133

Total 19 131 150

Table 9.1. Example for Inter-Annotator Agreement

Measures in Text Mining 85

ppos is the number of positives that both annotators agree on, divided
by the number of all positives for both annotators. In our example, the
calculation is: ppos = 7+7

(10+7)+(12+7) = 0.39

pneg is calculated in a similar way. pneg = 121+121
(10+121)+(12+121) = 0.92

po is calculated by the number of positives both readers agree on plus the
number of negatives both readers agree on, divided by the total number of
abstracts. po = 7+121

150 = 0.85

The joint agreement expected by chance (pe) is calculated for each combi-
nation. pe = (17

150 ∗ 19
150) + (133

150 ∗ 131
150) = 0.79

kappa is calculated by subtracting the portion of the annotations which
are expected to agree by chance from the overall agreement, and dividing
the remainder by the number of cases on which agreement is not expected
to occur by chance.

kappa =
po − pe

1 − pe

(9.5)

In this example, kappa = 0.85−0.79
1−0.79 = 0.31

Normally, only the kappa score is provided. kappa has the big advantage
that it is corrected by chance. In the paper by Landis [12], a guideline for the
strength of the kappa-values is given.

kappa value Strength of Agreement

<0 Poor
0-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect

Table 9.2. Guideline for the Strength of the kappa-value

Dingare et. al describe in their publication [7] that inter-annotator agree-
ment in the biomedical domain is normally in the range of 87% and 89%.
This number corresponds to po . This number normally is higher for corpora
that do not belong to the biomedical domain. This is due to the fact that
the biomedical domain requires a lot of expert knowledge and the language is
quite different from “normal’ text. In my point of view, the kappa value gives
a much stronger insight on how well the corpus is constructed, as it removes
the agreement by chance.

Chapter 10

RESULTS

In this chapter, I present the results obtained by CONAN. I will firstly
present a short overview of how fast the system is performing, then I show
how such a system is evaluated and how CONAN performs in such evaluations.
Finally I present some biologically interesting results.

10.1. Experimental Setup

For a complete system like CONAN, it is important to know how long pro-
cessing the PubMed/MEDLINE files takes. As we ultimately want to cover
the whole MEDLINE, we need to know how long this is going to take. All
experiments that are shown in this thesis, were conducted on an Intel Pen-
tium 4, 2 GHz, 512MB RAM, running SuSE Linux 8.3. In a first test of
the reliability, stability and speed of the system, 100,000 articles published
on PubMed/MEDLINE were processed. These files were medline04n0576.xml
- medline04n0594.xml (from 2004), including articles from every field. The
whole collection of articles is approximately 745 Megabytes; this includes not
only the abstracts, but all other information given in the PubMed/MEDLINE
files. The computation of the results of all those articles took about two weeks.
MEDLINE holds about 13 Million citations at the moment. With this stan-
dard PC, the calculation of the whole MEDLINE would take five years. With
a faster CPU and more memory, however, this number can be set to less than
1 year for processing the whole MEDLINE. On a cluster, this computation
can be done even faster. The size of a CONAN output file is in the range of
15 - 45 MB, depending on the amount of information.

In a second round of testing, we extracted only the protein names and inter-
actions from 160 MEDLINE-input-files(medline05n0565.xml-medline05n0749.xml,
from 2005), consisting of 250,695 abstracts from different fields. This resulted
in a list of 112,546 interactions. Further experiments show that from those

88 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

112,546 interactions, approximately 80,000 interactions are unique. The ex-
traction of this information took five weeks. It has to be said that only in-
teractions were taken into account where both proteins are clearly assigned
an Ensembl code. When adding these interactions with the interactions dis-
covered in Experiment one, we get a total number of approximately 160,000.
These interactions are of high-quality as we will show in Sections 10.2.5 and
10.2.6.

A simple query (e.g. searching for protein p21) on one CONAN output
file takes about 20 seconds on the standard PC. On the webserver we are
currently using, the same query takes only 3 seconds. As the query time for
more CONAN output files is almost linear, querying the whole MEDLINE
would take a very long time. Solutions have to be found in the future to solve
this scalability problem.

10.2. Evaluation
In all scientific fields, a method has to be evaluated. Evaluation means

that a certain procedure or process is tested against certain standards (in this
case: corpora) and the outcome of this testing procedure is later translated
into numeric values (Precision, Recall, F-Measure). This translation is done
by the statistical measures that were already introduced.

As stated in the Introduction, partial matches are a big problem when
evaluating a text mining method. For the following evaluations, we both
evaluated the system in “SLOPPY”-mode (partial matches count as positives)
and “STRICT”-mode (partial matches count as negatives).

The evaluation strategy used in all evaluations is the following:

Pre-Processing: Download abstracts that are part of the corpus. When
needed, extract specific sentences of those abstracts. Some corpora use
single sentences instead of whole abstracts.

Processing: Let CONAN process all abstracts/sentences.

Post-Processing: Convert the output in the right format. For some eval-
uation corpora, automated scripts exist that automatically compute the
evaluation results.

Evaluation: Manually evaluate the results of CONAN by looking through
the abstracts/sentences and comparing the results to the ”true” results.
Sometimes this also can be done automatically. The outcome of this step
will be the number of TP, FP, FN and TN.

Computation of Measures: Compute numbers for Precision, Recall and
F-measure, for both SLOPPY and STRICT modes.

Results 89

10.2.1 Corpora

A corpus is by definition a collection of documents. In linguistics, a corpus
is a large and structured set of texts, now usually electronically stored and
processed.

In the text mining community, a great number of corpora have been devel-
oped over the last years, mainly for testing and evaluation of systems. Most
of the corpora, however, completely focus on the NER element of the text
mining process. At this time, the development of corpora for other steps in
the process (e.g. IE), is ongoing, but there is only one very small corpus for
the evaluation of PPI extraction.

In the next sections I describe firstly how such a corpus is constructed,
using the construction of the Prodisen Corpus as an example. Furthermore,
I introduce other corpora that are interesting in the field of biomedical text
mining. For this thesis, I also constructed a new corpus that covers both the
NER aspect and the IE (i.e. PPI extraction) aspect of text mining that is
called ”LDD Corpus” (see Section 10.2.6). For all those corpora, I present the
evaluation of CONAN.

10.2.2 Prodisen

To complement existing resources and to help in the efforts to bridge the gap
between IR approaches and text mining, we developed the Protein descriptions
in sentences (Prodisen) corpus [10].

10.2.2.1 Construction

The starting point for construction of Prodisen was the selection of the
articles to be included in the corpus. As only a fraction of articles in MEDLINE
have molecular biology or gene descriptions as their topic, those abstracts have
to be found. One possibility would be to take a subset of MEDLINE and use
a NER method to get all articles that have at least one gene/protein name in
them.

This approach proved not to be successful, because many important ar-
ticles are missed, as NER methods are not 100% reliable. Moreover, this
approach takes quite a long time to identify enough abstracts to build a cor-
pus. Another problem in this approach are the so-called ”anaphora”. For a
description of Anaphora, refer to Section 2.4.1. Anaphora are a problem in
the construction of this corpus, because the gene descriptions are associated
to a certain gene/protein. When this gene is not mentioned in the sentence,
but an anaphoric expression is, the NER method puts this sentence into the
wrong category, because it does not find any protein names in the text.

We used another approach to construct this corpus. Firstly, selected MED-
LINE abstracts (see below) were split into sentences. Then, two domain ex-
perts were presented with the different sentences together with the correspond-

90 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

ing abstracts. They had to classify each abstract into three categories: (Y)
the sentence is useful as gene description, independent of whether the gene
name is mentioned or a referential expression is used (based on the abstract
context); (N) the sentence does not correspond to a gene description or (D)
uncertain ambiguous cases, where the expert was in doubt.

The sentences containing gene description information were additionally
classified in groups containing information on relevant aspects of a gene, gene
product, gene group, protein family or protein domain based on the analysis of
the contextual information. Those cases include descriptions where the gene
names appear as well as cases where referring expressions were used or it could
be inferred that the sentence contains a relevant gene description (based on
the context). The classes considered include:

Descriptions related to molecular functions.

Descriptions related to biological processes.

Descriptions which refer to descriptions of cellular location.

Descriptions related to associations to diseases, symptoms or treatments.

Descriptions referring to interactions, e.g. protein interactions and dimer-
ization or protein-compound interactions.

Information related to the gene expression (e.g. in which tissues a given
gene is expressed).

Descriptions related to homology information.

Descriptions of sequence and structural features (including mutations, pro-
tein family, isoforms, post-translational modifications, SNP, chromosome
mapping).

Other useful gene descriptions such as information related to phenotypes,
experimental usage (markers) and enzyme kinetics.

All these basic types of gene descriptions refer to different relevant aspects
that characterize genes, proteins and protein families. They represent the
diversity of annotation information stored in different biological annotation
databases. In practice single gene description sentences are often not limited
to a single description aspect, but provide several characterization types. The
annotators had to categorize the sentences in every category that is applicable,
so categorization of one sentence into multiple classes is possible.

As stated before, only a fraction of abstracts contained in MEDLINE are
related to Molecular Biology and of those only some sentences are related to
gene descriptions. Thus, to address the detection of gene description sen-
tences from the whole PubMed collection and to estimate the total amount of

Results 91

functional description sentences in PubMed, we constructed a set of randomly
selected abstracts.

Table 10.1. Prodisen corpus in numbers

Corpus No. of No. of No. of Positives Negatives Uncertain
Sentences Abstracts Words

Random Corpus 10,039 1,234 224,890 1,704 7,899 436
Enriched Corpus 11,125 1,232 244,549 7,693 2,949 483
All 21,164 2,466 469,439 9,397 10,848 919

We have classified each of those sentences into one of the three previously
described categories. As shown in Table 10.1, the Prodisen random corpus
contains over 10,000 sentences, of which around 15 percent have been clas-
sified as gene description sentences. Taking into account that there are over
7 million PubMed entries that contain abstracts in English, and that their
average length is around 9 sentences, one would expect around 9,5 million
sentences to be in PubMed containing gene description related information.

In order for a text corpus to be useful, for instance as a training/test set
for text classifiers, it is important to have a balanced set of positive and
negative training cases [5]. As the proportion of positive cases, i.e. sentences
corresponding to gene descriptions, is relatively small in the random Prodisen
corpus, we use a strategy to construct an enriched set of abstracts in terms of
gene descriptions. This strategy is based on PubMed article citation overlap
between different biological annotation databases, each of them with a different
focus regarding the gene description type.

To have a collection of abstracts that covers all previously defined relevant
gene description types we first extracted for each database the number of (non-
redundant) PubMed articles used for their annotations. Then we identified
the articles that were used as citations by several different databases. Table
10.2 illustrates the binary overlap between the citations extracted for each
of the biological databases. The core set of the enriched Prodisen corpus
consisted in the articles cited by the following biological databases: Uniprot,
OMIM, GeneRif and GOA. Additional articles cited in GOA and PDB, Pfam
or IntAct were included. The resulting Prodisen enriched corpus contained
over 11 thousand sentences with over 7 thousand gene description sentences
(see Table 10.1). The sentences of this enriched corpus were again classified
and annotated by the domain experts.

92 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Table 10.2. PubMed article usage overlap between different biological databases.

Database GOA GeneRif UniProt OMIM PDB IntAct

GOA 29,248 3,972 15,409 9,465 135 764
GeneRif 3,972 84,380 4,890 6,637 620 283
UniProt 15,409 4,890 112,476 19,859 5,061 764
OMIM 9,465 6,637 19,859 88,766 296 193
PDB 135 620 5,061 296 11,790 35
IntAct 764 283 764 193 35 1184

The construction of such a corpus is not a simple task. However, once such
a corpus is constructed, its usability is large. We can foresee many potential
uses of the Prodisen corpus in the training and testing of information extrac-
tion techniques dedicated to the identification of gene/protein descriptions in
text. It can be a useful resource for both, bag of words based approaches fo-
cusing on word frequencies, as well as for the discovery of description patterns.
Moreover, the corpus can be used to derive contextual word frequencies for
protein mention discovery (disambiguation).

10.2.2.2 Evaluation

To estimate the difficulty of identifying gene description relevant sentences,
the measurement of annotator agreement is useful. Many of the existing eval-
uations of text mining and information extraction strategies in biology were
based upon data sets lacking such agreement measures. Recently carried out
community-wide evaluation efforts, especially the BioCreAtIvE contest ad-
dressed the importance of measuring inter-annotator agreement [4].
This is especially true for domain specific literature, such as the molecular
biology literature. Authors of biomedical articles make presuppositions on the
background knowledge of readers from the targeted scientific community. This
is reflected within their writing style. Also the context of a given sentence is
crucial in order to make inference of its underlying semantics. The agreement
scores for both Prodisen sets, regarding the three classification types are pro-
vided in Table 10.3. The description of the Agreement Scores can be found in
Section 9.3.

Agreement Index Description Random Enriched

P(o) Overall 0.856 0.705
P(pos) Positive 0.656 0.799
P(neg) Negative 0.928 0.306
P(e) Chance 0.662 0.490
Kappa Corrected 0.574 0.421

Table 10.3. Agreement indices of the polytomous ratings of the two Prodisen data sets.

Results 93

The interpretation of how good the kappa-value is, can be seen in Table
9.2. Here we see that the kappa scores of the two corpora are good, but not
overwhelming. This is probably due to the fact the gene description sentences
are highly subjective and even if the annotators have good biological domain
knowledge, their interpretation of the sentence or abstract might be really
different. Better annotations guidelines will be used in the further develop-
ment of the Prodisen Corpus, which should lead to higher agreement scores.
CONAN will be evaluated on the Prodisen Corpus once the final version of
Prodisen is released.

Fortunately, there are already some well-used corpora in the text mining
community that are freely available. Unfortunately though, most of them
do not give scores on inter-annotator agreement. In the next few sections I
describe these corpora and present the evaluation of CONAN on these corpora,
reporting Precision, Recall and F-Measure in the process.

10.2.3 BioCreative Corpus

BioCreative (Critical Assessment of Information Extraction systems in Bi-
ology) [1] is a competition for text mining applications, first held in 2004. As
in other fields in bioinformatics and data mining, like structure prediction,
competitions are common (e.g. CASP [2]). The time was ripe for such a
competition in the text mining field as well. As CONAN was not yet func-
tional when the competition was held, CONAN was evaluated afterwards by
the same standards.

BioCreative consists of two different tasks: Entity Extraction (NER) and
functional annotation of proteins (IE). In the evaluation, I will focus on Task
1, meaning that the NER part of CONAN is evaluated. The task requires the
identification of terms in a biomedical research article that are gene and/or
protein names. The BioCreative corpus consists of training data (7500 sen-
tences) and evaluation (test) data, which consists of 5000 sentences. It was
explicitly stated beforehand that the training data contained approximately
9000 gene/protein name mentions and the test set contained roughly 6000.

Using the common evaluation strategy (see above), we came to the eval-
uation results listed in Table 10.4. The scores of the anonymous groups are
taken from [18]. Please note that we consider the scores of the “open” eval-
uation. Here, the groups were allowed to use external resources. This seems
appropriate when comparing the results to those of CONAN.

94 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Table 10.4. Overview of Results on BioCreative Corpus

Group Precision Recall F-measure

CONAN without Boosting 79.8% 80.1% 79.9%
CONAN with Boosting 82.2% 78.9% 80.5%
A 84.1% 81.4% 82.7%
B 75.1% 81.3% 78.1%
C 86.4% 78.7% 82.4%
D 80.1% 81.8% 80.9%
E 82.3% 74.1% 78.0%
G 73.8% 79.9% 76.7%
H 63.2% 70.5% 66.7%

To further compare the results to other groups, the organizers of BioCreative
support the user with a quartile-system, as can be seen in Table 10.5. A
quartile is by definition a segment of a sample representing a sequential quarter
(25%) of the group.

Table 10.5. Quartile Segments in BioCreative

F-Measure Quartile

0.83-1 Top
0.81-0.83 Q1
0.78-0.81 Median
0.57-0.78 Q3
0.25-0.57 Low

The results achieved by CONAN with Boosting can be placed in the first
quartile (Q1), whereas CONAN without Boosting falls into the Median cate-
gory. This means that CONAN, although three groups perform slightly better,
still performs as well as the top-ranked contenders in this experiment. When
comparing the results to those on other corpora (see below), the results are in
the same range. The exact scores, of course, depend heavily on the data set.

It is also clear from the results in Table 10.4 that the Boosting Classifier
improves the Precision of CONAN, but the Recall goes down. The reason
is that some TPs, although not very many, are categorized wrongly by the
Boosting classifier.

Results 95

10.2.4 YAPEX Corpus

Table 10.6. Overview of Results on YAPEX-Corpus-SLOPPY

Group Precision Recall F-measure

NLProt - - 85%
GAPSCORE 81.5% 83.3% 82.5%
YAPEX-method 83.3% 82.1% 82.9%%
KeX 82.1% 83.5% 82.8%
CONAN without Boosting 88.92% 85.33% 87.08%
CONAN with Boosting 89.65% 85.26% 87.40%

Table 10.7. Overview of Results on YAPEX-Corpus-STRICT

Group Precision Recall F-measure

NLProt - - 75%
GAPSCORE 56.7% 58.5% 57.6%
YAPEX-method 67.8% 66.4% 67.1%%
KeX 40.4% 41.1% 40.7%
CONAN without Boosting 79.1% 77.2% 78.1%
CONAN with Boosting 79.6% 76.9% 78.2%

The YAPEX-corpus, published in the year 2002 [8], consists of 101 MED-
LINE abstracts annotated by domain experts connected to the YAPEX project.
The corpus is divided into two parts, the first part being the result of a PubMed
query, consisting of 48 abstracts, the second part being a randomly chosen
subset of 53 abstracts of the GENIA corpus [6]. The YAPEX corpus focuses
on the extracting of protein names out of text. It contains 1,890 annotated
protein names.

The evaluation results can be seen in Table 10.7 for STRICT evaluation and
in Table 10.6 for SLOPPY evaluation. Here it becomes clear that CONAN
performs very well in both the SLOPPY and the STRICT evaluation. In both,
CONAN outperforms all other groups or methods that were evaluated on the
YAPEX corpus. Two other points are interesting: firstly, the Boosting Clas-
sifier improves the performance of CONAN. Secondly, by combining different
classifiers and integrating several data sources, CONAN performs better in
this task than NLProt alone does.

10.2.5 LLL Challenge Corpus
The LLL-Challenge-Corpus, named after the LLL-challenge which took

place in course of the Learning Language in Logic Workshop (LLL05) in 2005,
focuses on the evaluation of interaction extraction from text. It consists of two

96 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

parts: The training set consisting of 57 sentences derived from MEDLINE-files
and the test set consisting of 87 sentences. Both sets contain only Bacillus
subtilis protein names and interactions, focusing specifically on transcription
in the bacterium. Bacillus subtilis was chosen because it is a model bacterium
and because transcription is both a central phenomenon in functional genomics
involved in gene interaction and a popular IE problem. There are two types
of sets, the so-called “basic data set”, including sentences, word segmentation
and biological target information, and the “enriched data set” which also in-
cludes lemmas and syntactic dependencies. We focused on the “basic data
set”.

The evaluation results can be seen in Table 10.8. This shows that CONAN
outperforms all other systems evaluated on this corpus. However, it has to be
said that the LLL corpus is very small, making the comparison of the results
not significant. Nevertheless, the performance of CONAN on this set and the
results are encouraging.

Table 10.8. Overview of Results on LLL-Challenge Corpus as reported in [14]

Group Precision Recall F-measure

1 50% 53.8% 51.8%
2 10.6% 98.1% 19.1%
3 37.9% 55.5% 45.1%
4 25.0% 81.4% 38.2%
CONAN 53% 52.1% 52.49%

As the LLL corpus is only a very small corpus, the need for another cor-
pus that includes PPIs is big. So I decided to produce another corpus that
includes NER evaluation as well as evaluation of PPIs. I named this corpus
the LDD corpus (for Large Distributed Databases, the group where CONAN
was developed).

10.2.6 LDD Corpus
In order to further analyze interaction data and protein name finding, the

LDD corpus of 1,768 abstracts has been created, all of these containing one or
more interactions. A high percentage of MEDLINE abstracts do not contain
any interactions and protein names at all. This is similar to the problem
in the construction of the Prodisen Corpus in Section 10.2.2.1. In this case,
we solved the problem by selecting these 1,768 abstracts, a combination of
available lists of PMIDs from BIND [3] and DIP [17], which are both databases
holding information about PPIs. This gives us the guarantee that at least one
interaction is in the abstract, which also implies that at least two different
protein names are mentioned in the abstract. This solution is also similar

Results 97

to the construction of Prodisen, but because we wanted to include as many
interactions as possible, other data sets than in the Prodisen construction were
selected.

Because this set is not or only partially annotated, there was a need to anno-
tate these abstracts by hand. One hundred of those 1,768 abstracts have been
selected completely at random by us to ensure that no organism or protein fam-
ily is overrepresented and those interactions have been manually annotated.
100 abstracts might seem quite a small number, but manually annotating over
1,000 abstracts would have been a too-big workload for one person. Also,
manually evaluating the results of our system on 1,768 abstracts would have
taken quite a substantial amount of time.

10.2.6.1 Constructing the LDD Corpus

Two annotators with biological domain knowledge were presented with the
data of the LDD corpus. Their task was to identify Protein/Gene-names
mentioned in the not-annotated LDD Corpus file. The guidelines given to the
annotators are the following:

Protein and/or Gene Names are positives

Protein Family names are positives

Protein Domains or Motifs are negatives and remain untagged

The annotated Proteins had to be tagged with a “<Protein>”-tag in the
empty LDD corpus file.

<Protein>HNF-1alpha</Protein>

After this first round of annotation, the second round of annotation included
the annotation of protein-protein interactions.

The guidelines for this second round were the following:

Direct (physical) interactions are positives

Indirect interactions (e.g. Phosphorylation) are positives

Anaphora are not to be taken into account

Interactions of Proteins with DNA are negatives and remain untagged

For annotating the interactions, I constructed a file containing all binary
relations in the corpus. An example can be seen below. It ensures that every-
body using this corpus for test purposes can easily see what interactions can
be extracted and can use their own format to evaluate.

98 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

>10934475
mPAR-6 Cdc42

10.2.6.2 Results

When calculating the agreement scores, I calculate them per token. This
means that each token was checked separately, e.g. when one annotator tagged
the phrase “KH domain protein MEX-3” as a protein name and the second
annotator tagged only “MEX-3”, it is not counted as a full negative. As this
phrase consists of four tokens, three tokens (KH domain protein) are counted
as negatives and one (MEX-3) as a positive. By this calculation, we also tackle
the problem of Partial Protein Matches.

For the evaluation of constructing the corpus, similar to constructing the
Prodisen corpus (see Section 10.2.2.2), the measure of Inter-annotator agree-
ment (see Section 9.3) is used. Moreover, I give the F-measure for the inter-
annotator agreement as well. For the calculation of the F-measure, one anno-
tator’s results is assigned the gold standard, meaning that the annotation of
one annotator is labelled as completely true. Hachey et al. [9] report that the
F-measure is symmetric in respect to the gold and test set. The F-measure
is symmetric since recall(A,B)=precision(B,A) and the F-measure is the har-
monic mean between those two. The results of this evaluation can be seen in
Table 10.9.

The LDD corpus consists of 17,810 tokens in total. From these, only 951
tokens were categorized differently between the annotators.

Table 10.9. Inter-Annotator Agreement Results

Score Resulting Value of 2 Annotators

ppos 0.8862
po 0.9466
pneg 0.9651
pe 0.6407
kappa 0.8460
Recall 0.9116
Precision 0.8622
F-Measure 0.8862

For the Interaction Tagging, the agreement was almost 100%. Out of the
427 interactions reported in the corpus, only 10 interactions were not tagged
by both annotators, so both annotators agreed on 97.7% of all interactions.
These 10 cases arise because of the different annotation of some protein names
in text. It has to be said that annotating interactions is an easier task than

Results 99

annotating protein names. Interactions are often visible immediately upon
reading the text carefully and therefore the error rate is much smaller.

When looking at the scores, it can be said that the agreement between
the annotators is high, though not perfect. One major source of different
annotation is the protein Actin. As it is normally tagged as a protein name,
the term “actin filaments” is not tagged, although actin filaments are just
polymers of the protein actin. As the name “actin” appears 32 times in the
corpus, this is one major source of different annotation. It is also responsible
for different annotations in the Interaction Tagging.

The kappa score of 0.8460 shows that the annotator agreement is placed
in the category “Almost perfect”. Moreover, the F-measure of 88.62% shows
that the annotator agreement is in the range of the expected results. As the
inter-annotator agreement for NER is normally in the range from 87% to 89%,
our resulting F-measure can be placed in the top range.

In conclusion, the LDD corpus is well-annotated and will become a valuable
resource to the community.

10.2.6.3 Protein Tagging

We used the LDD test-set of 100 manually annotated articles. When ana-
lyzing the three Protein-name-tagging methods (BLAST, AbGene, NLProt),
we see that the Boosting Classifier boosts the performance of those methods.
The results are shown in Table 10.10. We cannot show a comparison to other
systems, because no system except CONAN was evaluated on the LDD corpus
so far.

Table 10.10. Evaluation of CONAN on LDD Corpus

Method Recall Precision F-Measure

CONAN 80.9% 85% 82.90%
CONAN with Boosting 79.5 87.2 83.17%

The LDD data set has a small bias towards yeast-related articles. As re-
ported in [13], text mining methods usually perform better on yeast-related
articles than on other organisms, because protein-naming is much simpler in
yeast than it is in other organisms.

The good result of Protein Tagging by CONAN is also reflected in the PPI
evaluation (see below), because interaction finding is highly dependent on good
protein name finding.

It is also interesting to see that the F-Measure of 83.17% is only slightly
smaller than the F-Measure of 88.62% achieved by the annotators. This means
that CONAN is almost as good as a trained biologist, who has to finish a long
study to achieve this accuracy.

100 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

10.2.6.4 Interactions

Finally, the protein-protein interactions were evaluated. It is important to
say at this point that our method does discriminate between positive inter-
action and negative interactions (inhibitions). In this evaluation, we consider
both positive and negative interactions as true positives.

In the 100 manually-annotated abstracts, a total of 427 interactions are doc-
umented. Those 427 interactions were manually annotated. CONAN found
477 interactions in total, compared to the 427 interactions that were annotated
manually in the abstracts, this yields a number of 50 or more false positives.
Analyzing the abstracts resulted in a precision of 81.55% (389/477) and a
recall of 91.10% (389/427), resulting in an F-Measure of 86.06%. Here we
see that, we get very good results by using our system, detecting almost all
available interactions mentioned in the abstracts.

An important observation is that the missed interactions were missed be-
cause of the performance of the protein tagging methods. As stated before,
the lists produced by these methods are passed on to the interaction-finding
method. If these lists do not contain certain protein names, then of course
interactions containing these proteins can not be found. Moreover, when false
positive protein names are included in the list, false positive interactions are
found. An example from the LDD corpus is the abstract with PMID 10966642.
Here, the term “MODY3” is tagged as a protein name and is passed on to
the interaction finding. Here it is found that is interacts with “DCoH” and
“HNF-1alpha”. MODY3 looks like a protein name, but it is a disease, namely
“Maturity-onset diabetes of the young type 3”. Mutations in HNF-1alpha and
its coactivator DCoH lead to the phenotype. So it becomes clear that wrong
protein names which are passed on to the Interaction Finding method, are a
big source of false positives in the interaction finding.

10.2.7 Boosting Evaluation

The Boosting Classifier was tested separately because I wanted to know
how well the classifier performs on data. We have already seen before that
Boosting improves the performance of CONAN. We also want to know why
Boosting improves the results significantly. We tested the Boosting classifier
on a test set, containing 5113 protein names. This test set was a MEDLINE-
input file that was processed by CONAN. Those 5113 protein names were sent
to the classifier which labeled 4917 protein names correctly (96.17%) and 196
wrongly (3.83%). The classifier was able to filter out 120 false positives (e.g.
motheaten, desmosterolosis).

It is important to know what percentage of protein names that are classified
as “positives” and “negatives” by the Boosting classifier, are in the dictionary.
This gives a rough estimate of how good the classifier performs on “unseen”

Results 101

examples. There are two classes of “unseens”, namely “partial unseens” and
“full unseens”. A protein name is “partial unseen” if parts of the Protein name,
but not the full name, appear in the dictionary. A “full unseen” appears if no
parts of the protein name are listed in the dictionary.

To get insight in this, a second round of evaluation was performed on the
YAPEX Corpus. In the YAPEX corpus, a total of 353 protein names were
“unseen’. From those 353 protein names, 44 were classified as “false” and 309
were classified as “correct”. From the 44 unseen examples that were classified
as false, 36 names are true negatives (e.g. ”chaperonins”) and 8 are false
negatives (e.g. “SWUV39H1 HMTase”,”NOSIP”).

From the 309 protein names that were classified as “correct”, 244 were
“partial unseens” and 65 were “full unseens”. From those 309 protein names,
25 protein names are false positives (e.g. “signal transducers and activators
of transcription” or “endothelial adhesion molecules”). From those 25 false
positives, 8 were “full unseens” and 17 were “partial unseens”.

From the 44 unseen examples classified as false, only two are “partial un-
seen”, the other 42 are “full unseen”.

So we show that when using Boosting for the tagging of protein names, the
results improve significantly. For partial protein names, the score is better
than for full protein names. The classifier not only works well on names that
appear in the training set (“seen” names), but also on those that do not appear
in the training dictionary (“unseen” names).

10.2.8 Other Corpora

In addition to the corpora I presented before, there are also other corpora I
report on, but on which CONAN was not evaluated due to time constraints.
CONAN will be evaluated on these corpora in the near future.

10.2.8.1 GENIA

The GENIA corpus [15] focuses on the NER part of text mining. They
present a very big corpus that is already Part-of-speech-tagged. This means
that they already assigned a (NLP) word category to the single terms. GE-
NIA is a main resource of the NLP community, the current version of their
corpus is GENIA version 3.02 corpus. The training corpus was formed from a
controlled search on MEDLINE using the MeSH terms ’human’, ’blood cells’
and ’transcription factors’.

From this search, 2,000 abstracts were selected and hand annotated ac-
cording to a small taxonomy of 48 classes based on a chemical classification.
Among the classes, 36 terminal classes were used to annotate the GENIA cor-
pus. For the shared task, the 36 classes were simplified and only the classes
protein, DNA, RNA, cell line and cell type were used. For the test set, 404
abstracts were used that were annotated for the same classes of entities.

102 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Due to time reasons, CONAN will be evaluated when the new GENIA
corpus 3.03 is released.

10.2.8.2 TREC

TREC (Text Retrieval Conference) is a competition similar to BioCreative
first carried out in 1989. However, TREC originally did not focus on the
biomedical domain. TREC activity is organized into tracks of common inter-
est, such as question-answering, multi-lingual IR, Web searching, and interac-
tive retrieval. A few years ago, they added a so-called ”Genomics TREC” to
their program, which includes evaluation of IR, NER and IE systems.

For the Genomics TREC,

The task scenario will be that of a user seeking to acquire new knowledge
in a sub-area of biology linked with genomics information.

The databases will be publicly available.

The focus of the task will be on text retrieval.

Evaluation in TREC is based on the “Cranfield paradigm” that measures
system success based on quantities of relevant documents retrieved, in particu-
lar the familiar metrics of recall and precision. In most TREC tracks, the two
are combined into a single measure of performance, mean average precision
(MAP), which measures precision after each relevant document is retrieved
for a given query.

In 2005, the Genomics TREC consisted of the ”Categorization Task” and
the ”Ad Hoc Retrieval Task”. For the ”Ad Hoc Retrieval Task”, the topics
were:

Find articles describing standard methods or protocols for doing some sort
of experiment or procedure.

Find articles describing the role of a gene involved in a given disease.

Find articles describing the role of a gene in a specific biological process.

Find articles describing interactions (e.g., promote, suppress, inhibit, etc.)
between two or more genes in the function of an organ or in a disease.

Find articles describing one or more mutations of a given gene and its
biological impact.

For the ”Categorization Task”, the task was to retrieve containing the follow-
ing:

Tumor biology

Results 103

Embryologic gene expression

Alleles of mutant phenotypes

GO annotation

10.3. Interesting Results and Usefulness
In this section I present interesting results found in the data which gives the

reader a hint of what difficulties exist in the field of text mining and especially
in the biomedical domain. Moreover, I present some results showing how useful
CONAN really is for the experimentalists. The results for “Mutations” and
“Keywords” were found in the first experiment, while the “Protein Names”
and “Interactions” were found in the second experiment (see Section 10.1).

10.3.1 Protein Names
The most common problems with gene/protein names are listed in Section

2.4.1. I now especially concentrate on the Partial Matches and the Ambiguity
of protein names and show how CONAN performs on these problems. Firstly,
short protein Names are very well extracted by CONAN. Protein names like
p72, omtA, HSF1 or Rap1 are all true positives.

Secondly, protein names which are formed by more than one word are
also extracted very well by CONAN. Good examples are:”Heat shock pro-
tein hsp70”, “heat shock cognate protein hsc70” and “protein phosphatase
2A”. It is seen in evaluations of text mining systems that partial matches (e.g.
“hsp70” instead of ”Heat shock protein hsp70” or “protein phosphatase” in-
stead of “protein phosphatase 2A”) appear very often, although they are not
really correct. CONAN can extract full matches very well, which is a big as-
set. One specific example appears in the abstract with PMID 10956549. The
protein names mentioned in this abstract are: “Y-box protein 1” and “Y-box
protein 3”. A method that would extract partial matches, would give only
“Y-box protein” or “protein 1” and “protein 3” as a result, which would be
false positives. CONAN gives the true result “Y-box protein 1”.

CONAN is also able to extract protein names that are difficult to extract,
because their notation is different from abstract to abstract. One example is
the protein “TCR.CD3” which denotes the complex of TCR and CD3. Nor-
mally, a complex is denoted by the “/”-sign, but CONAN is able to detect
this complex as well. A partial match in this example would be if only “TCR”
would be extracted. This shows that CONAN is able to extract full protein
names with very high quality.

The second problem that appears very frequently in NER is ambiguity,
which means that one protein symbol refers to multiple gene products (see
also Section 2.4.1). This problem is solved by NLProt. As it gives information
about the organism this protein belongs to and an UniProt identifier, CONAN

104 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

can assign one single Ensembl identifier to the protein name using IPI (see
Section 5.8.2). With this Ensembl identifier, the protein can be identified
correctly.

10.3.2 Mutations

Some interesting results appear when the Mutation Data was analyzed.
As already mentioned in Section 8.3.1, cell lines or biological molecules often
have names similar to point mutations. In the analysis, we found some false
positives appearing very often: R6K, I3K and H2A.

R6K is an E.coli plasmid vector very often mentioned in literature. I3K
comes from the abbreviation “PI3K” which is short for phosphoinositide-3-
kinase. H2A is the name of a histone protein which also is mentioned quite
often in text. From the data extracted so far it also is clear that most of the
mutations extracted by CONAN are true positives. Especially when applying
the Data Integrator (see Section 8.3.1), almost all of the false positives get
filtered out. This is a big achievement of CONAN, as I do not know any
other system at the moment that can extract mutations over all MEDLINE
abstracts. From the data that is present at the moment, it is visible that most
mutations appear not in the beginning of a protein, as single-digit mutations
are rare, while the false positive results that we see (e.g. R6K, I3K and H2A)
often have a single number. This could be another filtering step in future
versions of CONAN.

When analyzing the output files, I noticed a mutation that fits the regular
expression, but seems strange at first: G20210A. The position 20210 normally
would be the sign of a false positive, because a protein is normally not over
20,000 amino acids long. I found this mutation to appear quite often in text
(PMIDs 14961156, 14977830, 15134466, 15199492, etc.). From these articles
it becomes clear that G20210A is a mutation of the prothrombin protein, but
not on the protein level, as one might think, but on the DNA level, hence
the “G” and “A” that appear in the mutation. This specific mutation in
prothrombin shows up in patients for whom it is seen as a weak risk factor for
VTE (venous thromboembolism). Using this example, we see that CONAN is
able to extract all mutations that appear in text, no matter if they are protein
point mutations or DNA point mutations.

10.3.3 Interactions

When giving examples of extracted interaction data, it first has to be men-
tioned that the interaction data heavily relies on the extraction of protein
names from text. Although the protein name extraction methods work very
well (see Section 10.2.6.3 for Evaluation), still false positives are encountered.
Most of these false positives are drug names (e.g. ambroxol,gemcitabine) or
“real” English words also used as Protein Names (e.g. per, which is short for

Results 105

“period gene”, but also of course the normal English word “per”). Neverthe-
less, it has to be said that CONAN does very well on extracting PPIs from
text.

Moreover, as also mentioned before, some regular expression used for In-
teraction Finding are very general, while some others are very specific. With
the regular expression: ”(A.*interacting.*B)”, which is a very general one,
we nevertheless find very good results. In the abstract with PMID 15328027,
CONAN finds the interaction between “JNK” and “JIP1”. This interaction
is mentioned in text: “A neuroprotective protein, JNK-interacting protein 1
(JIP1).......”.

With the more specific regular expressions, CONAN is also able to find good
interactions. As also mentioned in Section 6.5, one of these specific regular
expressions is ”(A(\S*\s+){0,3}and(\S*\s+){0,6}\S*B(\S*\s+){0,6}\S*interact(?!ion))”. In the
abstract with PMID 12730328, the following sentence: “Moreover, steroido-
genic factor-1 and nuclear factor Y are shown to physically interact with each
other.” is found, which matches the regular expression perfectly.

It is interesting to know which regular expressions contribute most to the
interactions found in the text. I extracted the regular expressions used in
the second experiment (see Section 10.1) from the output XML files and
counted them. The five most used regular expressions are the following:
(A(\S*\s+)0,6\S*activat(?!ion)(\S*\s+)0,6\S*B))
(A .*B association)
(A.*is(\S*\s+)0,3for activation of(\S*\s+)0,3\S*B)
(A associate\w* with B),
(complex of (\S*\s+)0,3proteins(\S*\s+)0,3\S*A(\S*\s+)0,4\S*B)

From this list it is clear that there are two very general regular expressions
(119 and 106) which contribute to the interactions, but also three quite spe-
cific ones. So we can conclude that both the general and the specific regular
expressions are needed to extract high-quality PPIs. It also becomes clear that
the words “activation” and “association” are fundamental to these regular ex-
pressions. Using SL the specific and the general regular expressions, CONAN
is able to extract PPIs with very high quality.

Interesting false positives that I come across quite often are interactions with
“glutathione-S-transferase”. This protein is, of course, a normal protein, but it
is also very often used in the so called “glutathione-S-transferase pull-down as-
say”. This is a method to detect interactions experimentally. Hence, abstracts
quoting this method also often have interactions mentioned. An example from
the abstract with PMID 12388720 : “To better understand the mechanism of
chromosomal tethering, we performed glutathione S-transferase (GST) affinity
and yeast two-hybrid assays to identify LANA-interacting proteins with known
chromosomal association.” Here, CONAN finds an interaction between LANA

106 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

and glutathione S-transferase, which is a false positive to the human reader,
but completely understandable from the automated extraction viewpoint.

Some interactions were extracted that do not form part of the golden stan-
dard for the human gene interaction network (see Section 11.4), but are ex-
cluded as true negatives. These interactions appeared very often (30-90 times)
in the extracted interactions. By analyzing these interactions, we saw that
these interactions are indeed true positives and the golden standard and the
true negative lists used in the construction of the gene interaction network
should be updated. These interactions were: PSEN1-PSEN2, IL4-JAK1, IL2-
JAK1, INSL3-IL2 and INSL3-IL4. This result shows that CONAN produces
high-quality results that offer high reliability to the user.

10.3.4 Keywords
When looking at the results from the keyword extraction method (BLAST),

CONAN displays some very interesting results.
The method is very good in extracting diseases and tissues, like “amy-

otrophic lateral sclerosis” or “skeletal muscle tissue”, which is very useful for
experimentalists. Note that for the extraction of keywords, the extraction of
multi-word terms is very important. This is done almost flawlessly by CO-
NAN.

The extraction of Experimental Techniques is really valuable for the user.
Terms like “Co-immunoprecipitation” or “mass spectrometry” are frequently
found in text. This gives the biologists the chance to search for those spe-
cific terms. This is also one of the strong points of CONAN. Lots of different
information can be displayed and the information is really helpful for exper-
imentalists. In the keyword search, the results of the query can be narrowed
down to the really important and interesting results, which is a big asset for
the experimentalist.

Moreover, Pharmacologic Substances like “aluminum hydroxychloride” are
extracted accurately by CONAN. Terms like “Anticoagulant Drugs” are found
very often.

This information combined gives every experimentalist the chance to find
the articles he is interested in. The combination of all these keywords gives
the experimentalist a good overview of what is mentioned in the abstract and
helps him a great deal in deciding which articles to read.

References

[1] http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html.

[2] http://predictioncenter.org/.

[3] G.D. Bader, D. Betel, and C.W. Hogue. BIND: the Biomolecular Interaction Network
Database. Nucleic Acids Res., 31(1):248–250, 2003.

[4] E.B. Camon, D.G. Barrell, E.C. Dimmer, V. Lee, M. Magrane, J. Maslen, D. Binns,
and R. Apweiler. An evaluation of GO annotation retrieval for BioCreAtIvE and GOA.
BMC Bioinformatics., 6:S17, 2005.

[5] K.B. Cohen, L. Fox, P.V. Ogren, and L. Hunter. Corpus Design for Biomedical Natural
Language Processing. Proc of ACL-ISMB 2005 Workshop, pages 38–45, 2005.

[6] N. Collier, H.S. Park, N. Ogata, Y. Tateishi, C. Nobata, T. Ohta, T. Sekimizu, and
H. Imai. The genia project: corpus-based knowledge acquisition and information ex-
traction from genome research papers. In Proceedings of the ninth Conference of the
European Chapter of the Association for Computational Linguistics (EACL), pages
271–272, 1999.

[7] S. Dingare, M. Nissim, J. Finkel, C. Manning, and C. Groer. A System for Identifying
Named Entities in Biomedical Text: How Results From Two Evaluations Reflect on
Both the System and Evaluations. Comp Funct Genom, 6(1), 2005.

[8] K. Franzen, G. Eriksson, F. Olsson, L. Asker, P. Liden, and J. Coster. Protein names
and how to find them. Int J Med Inf, 67, 2002.

[9] B. Hachey, B. Alex, and M. Becker. Investigating the Effects of Selective Sampling on
the Annotation Task. In Proceedings of the 9th Conference on Computational Natural
Language Learning,, 2005.

[10] M. Krallinger, R. Malik, and A. Valencia. The prodisen corpus: exploring the construc-
tion and applications of a protein description corpus. 2006. Submitted to BioNLP06.

[11] H.L. Kundel and M. Polansky. Measurement of observer agreement. Radiology,
228(2):303–308, 2003.

[12] J.R. Landis and G.G. Koch. The measurement of observer agreement for categorical
data. Biometrics, 33(1):159–174, 1977.

108 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

[13] S. Mika and B. Rost. Protein names precisely peeled off free text. Bioinformatics.,
20(Suppl 1):I241–I247, 2004.

[14] C. Nedellec. Learning language in logic - genic interaction extraction challenge. In
Learning Language in Logic Workshop (LLL’05) at ICML 2005, 2005.

[15] T. Ohta, Y. Tateisi, M. Hideki, and J. Tsujii. GENIA Corpus: an Annotated Research
Abstract Corpus in Molecular Biology Domain. Proceedings of the Human Language
Technology Conference., 2002.

[16] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.

[17] I. Xenarios, L. Salwinski, X.J. Duan, P. Higney, S.M. Kim, and D. Eisenberg. DIP,
the Database of Interacting Proteins: a research tool for studying cellular networks of
protein interactions. Nucleic Acids Res., 30(1):303–305, 2002.

[18] A. Yeh, A. Morgan, M. Colosimo, and L. Hirschman. BioCreAtIvE Task 1A: gene
mention finding evaluation. BMC Bioinformatics, 6, 2005.

Chapter 11

APPLICATIONS

In this chapter I introduce several applications based on CONAN. Firstly I
introduce the CONAN querying systems, both the CONAN Webserver and the
CONAN command line tool. Secondly, I present the human gene interaction
networks approach by Lude Franke, where CONAN forms an integral part of
the system.

11.1. Command Line

The main way to extract data from the Output XML file (see Chapter 8) is
a command line tool programmed in Python. The script is called “findme.py”.

The structure of this script is:

Argument 1: search term, Argument 2: search database
if Search term is one word only then

Leave the term as it is
else if Search term is a multi-word term then

Split the term into single words
end if
Append all terms to WORDS TO FIND
Load Index of CONAN Output file
Search for WORDS TO FIND in index, use search database
if There is a result then

Result contains XML nodes
Load CONAN Output File for “real” text
Extract “real” text from specified XML nodes
Display Results

end if

110 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

For simplicity reasons, there are only two command line parameters for a
CONAN command line search. Firstly, the search term has to be entered.
When the search term is a multi-word term (e.g. “cytochrome P450”), the
term has to be quoted. The second parameter is the category (e.g. Protein,
Mutation) the user wants to search in. So for instance, if the user wants to
search for information about “p53” as a protein, the parameters would be
“p53 Protein”. If the user wants to search for p53 included in any PPI, the
parameters would be “p53 Interaction”.

The script consists of several important parts. Firstly, the input values have
to be determined and processed accordingly. So if the search term includes
a multi-word term, this term has to be first split into the different single-
word terms (e.g. “cytochrome P450” will be split into “cytochrome” and
“P450”). Multi-word terms are not only split by spaces, but also by other
non-alphanumerical characters like ” ”,”-”,”(”,”)”,”/” and ”+”.

This has to be done because of the search method that is included in the
script and which forms the second important part of the command-line tool.

Because the CONAN output XML files are quite big (14-45 MB per file),
there was a need to index the XML files with an XML indexer. Normally,
indexing is done in a database to allow quick finding of specific rows, usually
via a balanced tree. Searching in those index files is much quicker than in the
original database, although the index files might be bigger than the original
files. The same thing can be done for an XML database like the CONAN
output structure. Indexing is done by the package “Gnosis XML Indexer”
[1]. The Gnosis XML indexer stores the XML path of each occurring word
and the number of occurrences of this word in a database. Firstly, a splitter
has to split all the XML entries (i.e. plain text) into single words. It deletes
common stopwords. Then it stores the words, XML paths to the words and
the occurrences of this word in a database, one database for each begin-letter
of the word. The Gnosis XML Indexer source code had to be changed slightly,
because in the original version numbers and short words were not indexed.
In the case of CONAN, numbers (e.g. PMIDs) and short words (e.g. protein
symbols) are an integral part. After the indexing is done, all the indexes are
put in one place and the original files are not modified any further to prevent
incompatibilities. Note that this indexing is the reason why the input fields
of the XML querying tool are split into single words. When going back to
our example, “cytochrome P450” would be split by the indexing method into
“cytochrome”, belonging to the index file for words beginning with “C” and
“P450” would be stored in the file for the letter “P”.

The Gnosis Indexer also includes a method to query files with the words
the user wants to find. After splitting the input fields into single words, these
single words are stored into an array, called “WORDS TO FIND”. The Gnosis
XML Indexer searches for instances of all words included in this array. It

Applications 111

automatically computes the overlap of the sets found for each single word and
gives back this overlap as the result.

So, for every of those words, the indexes are searched and the XML paths
where this specific word(s) are found, are returned. In our example, Gnosis
tells us that the words we are looking for appear in the abstract with number
1090, and in the “term text” tag (which is a child of the “abstract body” tag)
with number 15.

/abstract[1090]/abstract body/term text[15]

From these XML paths, the original XML entries from the original XML file
can be retrieved. The retrieval of the original words cannot be done with
the Gnosis XML indexer, as it only gives back the number of the XML node.
The Python built-in method “libxml2” is used for these purposes. “libxml2”
includes full XPath compatibility. Via XPath statements that include the
XML Paths found by the Gnosis Indexer, we can look for the original content
of this specific abstract. These XPaths statements look like this:

/abstract[1090]/method overview/method/.
/abstract[1090]/abstract header/PMID

Because we already know from the Gnosis XML Indexer results which ab-
stract(s) contain the search term (in this case, the abstract with number 1090),
we can easily query the native XML database by giving it precise XPath di-
rections to the abstract(s) wanted. These XPath statements (see above) will
return the method used in this abstract (e.g. BLAST, AbGene etc.) and the
PMID of this abstract. The output of the command line tool for a simple
protein name search is the following.

>./findme.py p53 Protein
15994823 PreBIND 16
15916963 PreBIND 15
15994771 AbGene 14
15994771 NLProt 13
15640620 AbGene 13
15884108 PreBIND 12
15640620 NLProt 12
15994774 NLProt 9
.
.

112 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Here we see the PMID where the search term is found, the method by which it
was found and the number of occurrences. With this architecture, we can find
the query words in all indexes in a fast and reliable way. The XPath queries
for the CONAN webserver are explained in Section 11.3. The webserver,
explained and shown in the next section, also uses this command line script.

11.2. Web Server
In order to deliver the data produced as completely and concisely as possible

to experimentalists, a web-service was created that provides the user with lots
of possibilities to query the data and get the results they want out of the data
collection. This is also done to address the problem of visualizing the data in
such a way that experimentalists can use the system without any problems.
In Figures 11.1 and 11.2, the overall layout of this website can be seen.

Figure 11.1. CONAN Website Layout

The main part of the website, of course, consists of HTML code. Further-
more, a Perl script was constructed that makes use of the Python command
line tool. This relation can be seen in the Figure 11.3.

11.2.1 System Architecture
As the data presented is stored in XML (see also Chapter 8), the main

concern of the web-server is to extract the data from XML and present it in
HTML as quickly and simply as possible.

The main script of the web-server is a Perl Script programmed by me and
is called ”doitmore.pl”. The main reason why I chose for a Perl script in place

Applications 113

Figure 11.2. CONAN Input Form

of a Python script is that Perl has many built-in functionalities for web-server
programming.

In principle, it takes the data filled in by the user at the CONAN HTML
website. The search term and the goal-database are passed as parameters to
the Python script findme.py. This script performs the search and the results
are handed back to the Perl script.

The Perl script then processes this information and displays the results. As
the display is different from (search) database to database, we had to produce
many different methods for the display of all included extraction methods (e.g.
BLAST, NLProt, etc.).

11.3. Queries
For each query that is possible with the CONAN webserver or command-line

tool, I give information how it is processed and also give an example on how
the HTML output looks like. The queries that can be sent to the web-server or
be made via the command-line interface, include the following functionalities.

11.3.1 PMID
The simplest search using the CONAN webserver is the search for a certain

PMID. The input is simply the number of the MEDLINE abstract the user
wants to see. This input is given to the Perl Script.

114 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 11.3. CONAN Webserver Communication

10532697

In the Perl Script, firstly the information is passed on to the Python Script.

findme.py 10532697 PMID

In the Python script, the information is processed in the following way:

method=”/collection/abstract[number]/method overview/method/.”
result=”/collection/abstract[number]/abstract body/.”
method=ctxt.xpathEval(method)
res1 = ctxt.xpathEval(result)

This means that for each different entry with the same PMID (read: for every
different extraction method that was used on one abstract), the name of the

Applications 115

method (saved in the variable method) and the corresponding entries (saved
in the variable res1) are returned.

The information that is passed back from the Python script to the Perl script
is processed. Because a search for a certain PMID will yield all information
contained in the abstract with the corresponding PMID, the processing step
first has to distinguish between the methods. This is done by the information
stored in the “method” variable.

The information stored in the “results” variable for each method is then
processed accordingly. The result that is given back to the user can be seen
in Figure 11.4.

Figure 11.4. CONAN Result: PMID Search

Please note that for the sake of presentation, the attributes have been col-
lapsed using the java-script. By clicking on the “+” sign, all the information
about a specific term will be displayed. This tree-like structure was chosen
because, as you will see below, some terms have a lot of attributes, which
need a lot of space. Displaying all the results at once would make the system
unusable.

116 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

11.3.2 Keyword

Another search method implemented in the CONAN webserver is the search
for keywords. The keywords search consists of both searching for keywords
found by the BLAST method and searching for MeSH terms. The input for
the Perl script looks like this:

plasma membrane

The Perl script passes this information on to the Python script:

findme.py “plasma membrane” Keyword

The Python script transforms this to:

method=”/collection/abstract[number]/method overview/method/.”
result=”/collection/abstract[number]/abstract body/.”
method=ctxt.xpathEval(method)
res1 = ctxt.xpathEval(result)

It becomes clear that for both methods mentioned so far, the XPath statements
are the same. This is also one of the strong points of the script. For both the
PMID and the Keyword method, only the method itself and the information
stored in the “abstract body” tag are needed.

In contrast to the PMID finding method, a list of PMIDs is compiled that
contains the search-term. The list is made semi-non-redundant by a simple
method in the Python Script. It is “semi-non-redundant” because the user
can see how often a specific search term appears as found by each method. In
Figure 11.5, the list of PMIDs is displayed as well of the number of occurrences
of each query term in the results. For instance, if “plasma membrane” is found
4 times in an abstract by the BLAST method and 1 time in the same abstract
by MeSH, both results are displayed. The user then can simply click on one
PMID and gets the information about the PMID, as explained above.

In this method, no transformation of the data is needed. The Python script
returns a list of PMIDs that contains the wanted search-term and the Perl
script converts this list to HTML.

11.3.3 Protein

For a search for a protein name, the approach is similar to that of the
keyword search.

Applications 117

p53

The Perl script passes this information on to the Python script:

findme.py p53 Protein

The Python script transforms this to:

method=”/collection/abstract[number]/method overview/method/.”
result=”/collection/abstract[number]/abstract body/.”
method=ctxt.xpathEval(method)
res1 = ctxt.xpathEval(result)

As one can see, the XPath statements are again the same as for the other two
methods. Identical to the Keyword Search method, a list of PMIDs containing
the wanted Protein is displayed. Again, the list is made semi-non-redundant
and passed on to the Perl Script.

The Perl Script again transforms the list to HTML and displays the list.
Clicking on one of the PMIDs will yield the information about the article. As
the list of PMIDs is the result also for the Mutation and Keyword Search, I
present a screenshot of such a clickable list in Figure 11.5.

11.3.4 Mutation

The search for a mutation in a specific protein differs quite a lot from the
methods mentioned above. When searching for a mutation, the user has to
give the name of the protein that should show a mutation. So the input looks
like this:

nNOS

The Perl script passes this information on to the Python script:

findme.py nNOS Mutation

The script will first start to look for occurrences of those protein names in the
abstracts, similar to the Protein Search method. When the protein name is
found in certain abstracts, the method starts to look for mutation indicators
in the same abstracts. This is done simply via the PMID.

118 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 11.5. PMID List

If an abstract contains the protein name as well as a mutation, an additional
“mutational term” (see Section 8.3.1) is searched for. This ensures that this
is a real mutation for this specific protein.

As already explained in the Chapter 8, if a “mutational term” is found and
this term is within a certain distance to the protein name and/or the mutation,
it is considered as a true positive. We assume, that an average sentence in
an abstract is about 10-20 words long. If the distance is not longer than 30
words, it is considered as a true positive.

The XPath statements look like this:

PMID=”/collection/abstract[number]/abstract header/PMID/.”
PMID=ctxt.xpathEval(PMID)
result=”./collection/abstract/abstract header/PMID[contains(.,PMID)]

/../../method overview/method[contains(.,’MuText’)]/../../abstract body/*”
result=ctxt.xpathEval(result)
result2=”/collection/abstract/abstract header/PMID[contains(.,PMID)]

/../../method overview/method[contains(.,’BLAST’)]/../../abstract body/*”

Applications 119

In the XPath expression we can see that this query actually consists of three
different queries, first for the protein name itself, then for the MuText mutation
and then for the “mutational term” found by the BLAST method.

Again, the HTML output contains a list of PMID where the protein, a
mutation and a mutational term is found.

11.3.5 Interaction
What might seem strange for a user of the CONAN webserver is that there

are two different ways to query for PPIs. This was actually done due to a
suggestion by the biologists who tested the system.

When searching for interactions, normally only very well-known and well-
documented interactions appear as result because some interactions are simply
overrepresented in MEDLINE. Therefore we decided to construct two different
methods for interaction searching, namely “Interaction / all” and “Interaction
/ PMID”.

11.3.5.1 Interaction / all

The “Interaction / all” method is the conventional method. It takes, again,
a protein name as input.

p53

The Perl Script starts the Python Script by:

./findme.py p53 Interactionall

In this conventional method, all articles are searched through and a list with
the PPI and the number of occurrences of this PPI are displayed (see Figure
11.6).

method=”/collection/abstract[number]/method overview/method/.”
method=ctxt.xpathEval(method)
PMID=”/collection/abstract]number]/abstract header/PMID/.”
PMID= ctxt.xpathEval(PMID)
cmd=”/collection/abstract/abstract header/PMID[contains(.,PMID)]/../../

method overview/method[contains(.,’PreBIND’)]/../../abstract body/*”

The XPath statements tell us that, again, first the Method and the PMID
that contains the wanted protein are looked for. After that, we look at the
PMID where the protein is mentioned and then extract the information stored
in the “abstract body” of the PreBIND method.

The display of this information is also quite different. Instead of a list of
PMIDs, the user is presented a list of all found PPIs. Furthermore, the number

120 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 11.6. Interaction / All

of occurrences of this specific interactions is reported. Moreover, the sort of
interaction (Activation, Inhibition, etc.) is reported. An additional function
is the displaying of Interaction Graphs, which will be explained in detail in
Section 11.3.5.3.

Although this sort of interaction finding can be handy for some biologists,
we propose another strategy for looking for interactions that are not mentioned
very often in text.

11.3.5.2 Interaction / PMID

For this second method, the Input is exactly the same, because the same
information is extracted as in the previous set of queries. The calling of the
Python script is only a little different:

./findme.py p53 InteractionPMID

Applications 121

Instead of displaying the number of occurrences, however, we display every
single interaction for every single abstract. The main point of this method is
to display the interactions that are found in the newest (by date) abstracts
first, because they might be of bigger importance for the researcher. Older
abstracts often contain interactions that are well-known to experimentalists.

The downside of this method is that many interactions could be displayed
more than once (redundancy) and that the list of interactions is quite long
as can be seen in Figure 11.7. Here, the interaction “TNFalpha” with “p53”
appears very often. To compensate for this downside, we offer additional
functionalities for this search method. For each interaction, we display the PPI
itself and the sort of interaction as well as the PMID where this interaction was
found. For each single interaction, also a score of this interaction is displayed
(also see Chapter 8). This score is translated into a color code. Hence, the
“greener” an interaction appears, the more clear the interaction is. In the
black-and-white version of Figure 11.7, a lighter colour represents a “greener”
interaction. The possibility to display the Interaction Graphs is also given in
this method.

Figure 11.7. Interaction / PMID

122 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

11.3.5.3 Interaction Graphs

Displaying interaction graphs is important for biologists. As the two main
search functions only display binary (one-to-one) relationships (e.g. PEBP2
- mMCP-6 in Figure 11.7), the experimentalists might want to display whole
interactions paths. This is why the CONAN webserver gives this possibility.

As you can see in the screenshots (Figures 11.6 and 11.7), we offer the
possibility to add a certain binary interaction to the network. When the
user is done with adding, he can display the whole network at once. All the
selections the user makes are stored for the whole session, meaning that the
user can perform multiple searches without losing the information he added
before.

This method was implemented using the “graphviz” package [2] and espe-
cially the “dotty” library. A dotty file looks like this:

digraph ”” {
”PEBP2” -> ”mMCP-6”
”MITF” -> ”mMCP-6”
”MAZR” -> ”mMCP-6”
}

In this case, the PPIs “PEBP2 with mMCP-6”, “MITF with mMCP-6” and
“MAZR with mMCP-6” were added to the network.

So each time the user adds information to the network, a new line is added
to this “.dot” file. When the user wants to display the whole network, a new
Python Script, called “getgraph.py” is started.

With the program “dot” (also contained in the graphviz package), such a
“.dot” file can be easily converted into a “PNG” graphics file. This graphic
is displayed in the user’s web-browser. This Figure (see Figure 11.8) can be
saved or printed out for later purposes.

11.3.6 Ensembl, UniProt, Gene Ontology
As for these three methods, the way of querying in displaying the data is

exactly the same, I just give an overview. Identical to the search for a protein
name, the system is queried for an Ensembl number (e.g. ENSG00000149591),
an UniProt term (e.g. EPO HUMAN) or a GO number(e.g. 0005125). The
XPaths statements also are identical:

method=”/collection/abstract[number]/method overview/method/.”
result=”/collection/abstract[number]/abstract body/.”
method=ctxt.xpathEval(method)
res1 = ctxt.xpathEval(result)

Applications 123

Figure 11.8. Gene Interaction Graph

Again, lists of PMIDs that contained the wanted search term, are displayed.
This proved to be the most important search for biologists. Biologists often

annotate their data with Ensembl numbers or UniProt terms. Being able to
search for articles that contain those terms or numbers is a very important
step for biologists.

For instance, if a biologist is interested in a certain protein and this protein
is assigned a GO number (e.g. 0005125 = cytokine activity), he can look for
abstracts describing proteins which are assigned the same number, thus being
involved in the same process or pathway. Doing this search without the help of
a text mining system is almost impossible. The same is true for the UniProt
and Ensembl identifiers. Searching with those identifiers with systems like
Entrez would yield no results at all.

So we see that by using rather simple queries, CONAN offers lots of func-
tionality. We also see that the visualizing of the data can be done so that
every experimentalist can find the information he wants really easy. The pic-
tures of interaction networks produced by the server can be easily included in
presentations or publications.

11.4. Gene Interaction Networks
Another application where the data produced by CONAN is used, is the

construction of Gene Interaction Networks (GINs).
Over the last years, the data about proteins and protein-protein interactions

(PPIs) has improved significantly. Especially the information about PPIs are
crucial for understanding fundamental processes taking place in a cell. There-
fore, high-quality PPI networks provide new insights for biologists into the
function of proteins and the function of a cell itself. More specifically, PPI

124 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

networks can be used to discover new candidate genes for diseases or new genes
acting in signalling mechanisms.

An experimental technique for gathering those PPIs is the yeast two-hybrid
screen (Y2H), but also other methods are used to experimentally collect data
about PPIs, like Chromatography, Lethal Assays and Genome Context Meth-
ods. Large-scale interaction experiments with human proteins are still to be
done. In Systems Biology and Bioinformatics, however, the collection of data
from literature and other publicly available databases has provided highly ac-
curate PPIs, but the number of interactions extracted by those methods is
still quite small. With those two different approaches, we attempt to integrate
experimental and theoretical data to construct very detailed PPI networks
that are still comprehensive.

PPI networks have been constructed for different organisms, like Yeast [9],
Drosophila [10] or Bacteria like Plasmodium falciparum [8]. First results of
PPI networks in human [12] have also been presented, mostly as hypothesis-
driven studies or from orthologous interactions.

11.4.1 Constructing the Network

The method where results from CONAN are included in a future release is
extensively described in [4]. Firstly, a “gold standard” has to be derived from
validated direct gene-gene and/or protein-protein relationships from several
resources. “Gold-standard” means that only real true positives are allowed in
this list, so only high quality interactions are part of the gold standard. PPIs
were derived from BIND [3], HPRD [11], Reactome [6] and KEGG [7].

Also a negative set had to be constructed. This is not as straight-forward
as it may seem, because it is impossible to be certain that two proteins do not
interact. However, by using GO, it is possible to construct a list of gene-pairs
that are highly unlikely to interact. The GO Component annotation was used
to yield groups of gene pairs which have exclusive cellular component annota-
tion. If two genes do not appear in the same cell component, they are unlikely
to interact. In order to be able to process this data, the GO, microarray and
PPI data has first to be pre-processed and binned into different bins. Bin-
ning is converting continuous data to discrete data by replacing a value from
a continuous range with a bin identifier. Several measures were defined to
categorize the data into different bins. Especially for the GO data, which is
not continuous, measures of relatedness using the maximal hierarchical depth
in the GO tree had to be defined. For compatibility reasons, each gene pair
was assigned its Ensembl code.

A Bayesian classifier was constructed to integrate the various bins of data.
A Bayesian classifier is a simple probabilistic classifier based on probability
models. An introduction to Bayesian networks can be found in [5].

Applications 125

This classifier has a pre-defined network structure, which was derived from
the gold standard set (training phase). Four different networks were con-
structed, generated on the basis of a Bayesian framework, with interactions
from the aforementioned sources: the GO network, where the data is based on
the GO data, the MA+PPI network, which includes the interactions derived
from microarray data and predicted PPIs, the GO+MA+PPI network, which
includes all of the above and which was complemented with all known true
interactions to form the final network (GO+MA+PPI+TP network). The
bayesian classifier was evaluated on these networks.

First results show, that the network achieves considerable accuracy (see
Table 11.1). Please note that the AUC (Area under the Curve) is 50% when
the classifier is uninformative (random). From this table, it becomes clear that
the GO network performs well and provides good evidence for PPIs . When
the microarray and the predicted PPI data are added, the performance is even
better. The microarray and PPI network does not perform very well, probably
because the microarray dataset does not discriminate between co-expression
and co-regulation.

Table 11.1. Accuracy of the Gene Interaction Networks

Network Area under the Curve (AUC)

GO 88%
MA+PPI 68%
GO+MA+PPI 89%

Moreover, when validating the network on a list of new found interactions
(thus not in the data sources), it was found that the gene network is capable
of inferring unknown interactions. The network can be used for selecting
candidate genes of diseases. This application can be studied in the original
publication [4]. The new found interactions show that these kind of gene
interaction networks are true Knowledge Discovery (KD) tools.

11.4.1.1 www.genenetwork.nl

A web-server was constructed to let the user query the gene interaction
network. This service also includes visualization of the results, as can be seen
in Figure 11.9. In this figure, the interactions of BAX are displayed in a list
and in an interaction graph. Please note that due to the colour scheme of the
website, the black and white screenshot had to be resized and the brightness
had to be reduced.

126 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Figure 11.9. www.genenetwork.nl

11.4.2 How Literature Can Help
MEDLINE data, so “real” extracted interaction data, has been chosen to

complement the data used already. It is another data source that improves
the reliability and stability of the network. For this reason, PPIs extracted by
CONAN are used to build an additional data source. Two different types of
data are used in this experiment, cocitation Data and “real” extracted data.

11.4.2.1 Cocitation vs. Extraction

The two main ways to extract PPI data out of abstracts are: Cocitation
data and “real” extracted interaction data.

Cocitation data solely relies on the fact that if two proteins occur together
in one or (preferably) more abstracts, they probably share a common function
or are integrated in the same process.

Applications 127

Real extracted PPI data has some disadvantages when compared to coci-
tation data, but the advantages are much higher here. The disadvantage lies
in the fact that the recall is much higher in cocitation data, but the precision
is much lower. This is due to the fact that when two proteins are mentioned
together in an abstract, they might not interact with each other. This would
be considered as a false positive, which causes the precision value to decrease.

When two proteins are simply mentioned together in one or more abstracts,
they might be involved in the same process or perform the same action, but
they might not have a direct interaction with each other.

ENSG00000141510,ENSG00000087088,ENSG00000153201,ENSG00000197424 10741712

In this example we see that proteins “p53” (ENSG00000141510) and “Bax”
(ENSG00000087088) are co-cited together. In this article, however, there is
no interaction reported of those two proteins.

“Real” extracted PPIs have very high precision, so the interactions ex-
tracted have a very high reliability. On the other hand, however, some inter-
actions might get missed.

ENSG00000168394 ENSG00000080469 100 10586064

In this example, the interaction found between “TAP1” and “TAP2” is a real
interaction, found in many more articles.

11.4.2.2 (Preliminary) Results

In this first preliminary analysis, we focused on the “real” extracted inter-
action data. We assessed a total number of 288,026 PPIs, from which 173,101
were interactions of two human gene products. 47,361 of those were unique
interactions.

When integrating the interactions found by CONAN, we see an improve-
ment of the Area under the Curve (AUC). The original AUC from GO+MA+PPI
is 89.75%, when adding the PubMed data, this improves to 90.04%. This
means that including extracted interactions from MEDLINE will definitely
improve the performance of the network. This is also reflected by the Likeli-
hood Ratios that are obtained for CONAN. The binning procedure works as
follows: For every bin per cross validation there should be at least one TP and
one TN. Because 10-fold cross validation is performed, each time the training
consists of 9/10 of the data and the subsequent testing on the latter 1/10 of
the data. We wanted to be sure that there were sufficient TPs and TNs per
bin in the training set. When using the above strategy there are at least 10
TPs and 10 TNs per bin when training, resulting in an accurate likelihood
ratio that does not have a big variance. This approach works out well in the

128 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

cross validation: the AUCs per cross validation are highly comparable, thus
indicating there are no major overfitting issues. The resulting likelihood ratios
for the different bins of MEDLINE data can be seen in Table 11.2.

Table 11.2. Likelihood Ratios for PubMed Bins

Bin Likelihood Scores

0 0.968
1 17.607
2 27.813
3 40.379
4 70.615
5 120.524
6 119.221
7 155.723

The reason why the improvement is not that big is that the overlap between
the extracted data by CONAN and the gold standard is quite small. This is
due to the fact that only 4 years of MEDLINE (2003,2004,2005 and 2006) have
been processed so far. Interactions that are present in the gold standard might
have been published before these years. When extracting more interactions
from previous years, the overlap and thus also the AUC will improve.

We see that when more CONAN interactions are added to the network,
the AUC increases. This means that when more interactions are extracted
in the near future, the performance of the network will improve significantly.
The quality of the interactions is also very high. This is reflected in the fact
that only 415 interactions extracted by CONAN were in the true negative list
of the Gene Interaction Network. We also see that TP interaction pairs are
significantly (P < 0.05) underrepresented in the set of TN interaction pairs.
The results we obtained at this time are encouraging.

For a second experiment with the same data, we tried to correlate the PPIs
to the journal impact factors. The impact factors were extracted from a list
provided by sciencegateway (www.sciencegateway.org/impact). The impact
factors are from the year 2003, but given that the impact factor does not
change dramatically over time, the analysis is also valid for the most recent
impact factors. The first results show, that the likelihood scores improve
with the impact factor. The likelihood ratio for interactions extracted from
journals with an impact factor below five is 85.74 (for the highest bin), while
the likelihood ratio for interactions extracted from journals with an impact
factor above five is 156.14. For interactions extracted from journals that have
no impact factor assigned, the likelihood score is 81.47. So it can easily be seen
that the impact factor of a journal definitely influences the quality of PPIs.
This can have several reasons: Editors in high impact journals might demand
from the authors to put down known gene/protein symbols and might demand

Applications 129

clearer writing from the authors. Another reason might be that authors in
high-impact journals tend to write clearer articles and the interactions are
therefore easier extractable. A completely different explanation is that the
quality of the experiments is higher in high-impact journals, leading to better
quality of the data. Another reason for this observed influence could be that
most of the interactions of the gold standard set are also derived from high-
impact journals and therefore the increase in likelihood ratios could be biased.
In Table 11.3, the distribution of the extracted interactions with regard to the
impact factors can be seen.

Table 11.3. Extracted Interactions

ImpactFactor UniquePairs TotalPairs

<5 25,602 77,261
>5 20,154 68,709
unknown 11,411 27,131

For future analysis, we also want to see how the “real” extracted interaction
data compares to the cocitation data mentioned earlier. This will give good
conclusions on what method is preferable and how these interactions can be
further refined using the impact factor of the journals.

References

[1] http://gnosis.cx/download/gnosis.

[2] http://www.research.att.com/sw/tools/graphviz.

[3] G.D. Bader, D. Betel, and C.W. Hogue. BIND: the Biomolecular Interaction Network
Database. Nucleic Acids Res., 31(1):248–250, 2003.

[4] L. Franke, H. van Bakel, L. Fokkens, E. D. de Jong, M. Egmont-Petersen, and C. Wi-
jmenga. Reconstruction of a functional human gene networkm with an application for
prioritizing positional candidate genes. Am J Hum Genet, 78(6):77–85, 2005.

[5] D. Heckerman. A tutorial on learning with bayesian networks. In Michael Jordan,
editor, Learning in Graphical Models. MIT Press, 1997.

[6] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono, B. Jas-
sal, GR. Gopinath, G. R. Wu, L. Matthews, S. Lewis, E. Birney, and L. Stein. Re-
actome: a knowledgebase of biological pathways. Nucleic Acids Res., 33(Database
Issue):D428–D432, 2005.

[7] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res., 28(1):27–30, 2000.

[8] D.J. LaCount, M. Vignali, R. Chettier, A. Phansalkar, R. Bell, J. R. Hesselberth,
L. W. Schoenfeld, I. Ota, S. Sahasrabudhe, C. Kurschner, S. Fields, and R.E. Hughes.
A protein interaction network of the malaria parasite plasmodium falciparum. Nature,
438(7064):103–107, 2005.

[9] I. Lee, S.V. Date, A.T. Adai, and E.M. Marcotte. A probabilistic functional network
of yeast genes. Science, 306(5701):1555–1558, 2004.

[10] M. Middendorf, E. Ziv, and C.H. Wiggins. Inferring network mechanisms: the
drosophila melanogaster protein interaction network. Proc Natl Acad Sci USA,
102(9):3192–3197, 2005.

[11] S. Peri, J.D. Navarro, T.Z. Kristiansen, R. Amanchy, V. Surendranath, B. Muthusamy,
T.K. Gandhi, K.N. Chandrika, N. Deshpande, S. Suresh, B.P. Rashmi, K. Shanker,
N. Padma, V. Niranjan, H.C. Harsha, N. Talreja, B.M. Vrushabendra, M.A. Ramya,
A.J. Yatish, M. Joy, H.N. Shivashankar, M.P. Kavitha, M. Menezes, D.R. Choudhury,

132 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

N. Ghosh, R. Saravana, S. Chandran, S. Mohan, C.K. Jonnalagadda, C.K. Prasad,
C. Kumar-Sinha, K.S. Deshpande, and A. Pandey. Human protein reference database
as a discovery resource for proteomics. Nucleic Acids Res., 32(Database Issue):D497–
D501, 2004.

[12] J.F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G.F. Berriz,
F.D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, N. Klitgord, C. Simon, M. Boxem,
S. Milstein, J. Rosenberg, D.S. Goldberg, L.V. Zhang, S.L. Wong, G. Franklin, S. Li,
J.S. Albala, J. Lim, C. Fraughton, E. Llamosas, S. Cevik, C. Bex, P. Lamesch, R.S.
Sikorski, J. Vandenhaute, H.Y. Zoghbi, A. Smolyar, S. Bosak, R. Sequerra, L. Doucette-
Stamm, M.E. Cusick, DE. Hill, F.P. Roth, and M. Vidal. Towards a proteome-scale
map of the human protein-protein interaction network. Nature, 437(7062):1173–1178,
2005.

PART V

DISCUSSION

Chapter 12

DISCUSSION AND CONCLUSIONS

In this chapter, I present a summary of the results. I conclude and provide
directions for further research.

12.1. Summary of the Results

In this thesis, I presented CONAN, a text mining system that can auto-
matically extract and display the following information: protein/gene names,
protein point mutations, protein-protein interactions and biologically inter-
esting keywords. I presented the applications where CONAN is integrated:
a command-line tool to query CONAN, a webserver and the integration of
protein-protein interaction data in a human gene interaction network. With
the integration into a human gene interaction network, also ”hidden” informa-
tion can be extracted. CONAN was developed integrating some of the newest
and most interesting algorithms and methods into one framework. When eval-
uating CONAN, we see that CONAN is one of the top-performing text mining
systems at the moment. A broad range of data can be extracted in a reason-
able amount of time. This data proves to be of high-quality. CONAN will be
expanded so that it covers ultimately the whole MEDLINE. For the future,
new techniques and methods can be easily integrated in CONAN.

12.2. Conclusions

Let us go back to the initial research question that was posed in the begin-
ning. Is it possible to construct a system which is suited to extract
hidden information out of text while being as complete as possible
?

CONAN shows that the answer is: Yes! CONAN belongs to the top-
performing text mining Systems at the moment, while providing more in-
formation than most other systems. The main advantages of CONAN are:

136 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

CONAN, while being a complete system, can still extract hidden informa-
tion and this approach does not harm the quality of the data produced.

With the evaluation of the results (see Part IV of this thesis), we show that
CONAN belongs to the top systems, when looking on real-world data.

With the large number of articles already processed, we also show that
CONAN is able to cover the complete MEDLINE, given enough CPU and
memory power.

The information extraction part is, in my personal opinion, the big strength
of CONAN. No other system so far can extract interactions accurately
while being this quick and producing so much useful data. This is also
reflected in the Gene Interaction Network Application (see Section 11.4),
where CONAN will play an important part in the future. The next steps
in this project include the use of CONAN to curate and update the Gold
Standard for the network.

So we can definitely state that CONAN is a complete system that produces
large amounts of high-quality data.

In the Introduction, several technical challenges were raised:

1 Does the combination of text-mining classifiers and algorithm increase the
performance?

2 Can such a system still reach high Precision and Recall rates, resulting in
a good F-measure?

3 Is it possible to include the information extracted by such a system in other
systems?

4 Can the extracted information be presented in such a way that the infor-
mation is helpful for experimentalists?

Now we can answer these questions:

1 In Part IV we show that the combination of classifiers in CONAN really
improves the performance. This can be seen in the evaluations performed
on CONAN. We also show that by adding classifiers (e.g. Boosting Clas-
sifier), the performance still improves and the addition of more classifiers
could be useful. However, it also has to be said that with the introduction
of a new classifier, the Recall of CONAN decreases, the Precision increases
and the overall F-Measure increases as well.

2 Throughout Part IV, we show that the Recall and Precision rates of CO-
NAN are in the top of state-of-the-art text mining systems. Though the
Precision and Recall rates are not perfect, almost no Text Mining system

Discussion 137

performs better than CONAN at the moment. We also show in Section
10.2.6 that the performance of such a text mining System is not far behind
a human reader, the difference in the F-Measure is just about 5 %. Text
mining Systems in the future could automatically produce corpora with
high accuracy.

3 We show throughout this thesis, that the combination of different data
sources makes it really easy to link information together. Good examples
are the Ensembl and UniProt identifiers. The results of CONAN can easily
be integrated in other systems, using these identifiers. Moreover, CONAN
is constructed in a way that new identifiers and/or methods can be intro-
duced very easily.

4 In Chapter 11, we show that the display of text mining results is not an easy
task. This is caused by the fact that experimentalists often have their own
preferences on how data should be presented. However, we tried to make
our applications intuitive and easy-to-use. We hope that experimentalists
will use CONAN in the future and that it will be a useful tool for the
community.

At this point of time, the CONAN webserver is available for testing purposes
at http://h094.niob.knaw.nl/conan. A set of example queries which can
be executed can be found in the Appendix.

12.3. Further Research
In my personal opinion, text mining in the biomedical domain will become

more and more important over the coming years. As new algorithms and new
techniques for the extraction of information out of text will become available,
the performance of these text mining systems will definitely improve.

At this point I present some application areas, where text mining Data could
be used in the future. A list of existing text mining systems can be found in
Chapter 2. I pick up some challenges Hirschman et al. and Krallinger et al.
raise in their reviews [2, 3].

The first challenge that text mining faces is the extraction of biological path-
ways. A biological pathway consists not only of interactions between proteins
(as this problem has already been solved), but also of interactions between
drugs, proteins and other molecules. First, the protein, drug and molecule
names have to be identified with refined NER methods, which should also be
able to detect the other molecule names. Next, the interactions between the
different molecules have to be recognized. Finally, the relationships between
the different interaction events have to be recorded. Especially the last point
is not very clear, as there are no good methods to relate different interactions
to each other.

138 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

Krallinger et al. [3] state that the text mining systems of the future should
not work on abstracts alone, but on full-text collections. They also state, sim-
ilar to Hirschman, that the future development in text mining will be most
likely concerned with the construction of networks and interactions through in-
termediate entities, followed by the proposal of new functions. This could also
be termed “Text Mining KD”. Although some applications like SUISEKI [1]
have been developed, they are not yet ready for practical use. Moreover, these
applications should also be able to extract indirect relations (e.g. protein-
disease, protein-other molecule) automatically. This is also what is mentioned
in the review by Hirschman.

The biggest challenge of text mining lies in genomic data: results from text
analysis should be combined with evidence from experiments and genome anal-
ysis to improve the accuracy of results and to generate additional knowledge
beyond what is known solely from literature. The Gene Interaction Network
presented in Section 11.4 is only the first step in this process.

Another big challenge in the future will be how new data is to be integrated
in existing systems. For example, a system like the Gene Network presented in
Section 11.4, needs updating whenever new data becomes available. Making
these updates automated will definitely be a major point in the future.

For the development of biomedical articles and abstracts in general, I hope
that the approach of authors, publishers and editors will change in the fu-
ture. Together with database curators, they should be eager to unify Pro-
tein/Gene Name Nomenclature. Moreover, authors should be urged to put
protein names in a special format in their publications. I envision a meta-
file that is distributed with each publication, holding the information about
protein names and their position in the text. This would revolutionize text
mining, as Named Entity Recognition would become needless. Then, Text
Miners could concentrate on the bigger problems: how to combine data and
how to represent extracted data.

Finally, I want to end with a comment made by Bill Hersh (Oregon Health &
Science University) while discussing the measures which should be used in the
upcoming TREC: “To me, this (the endless discussion about scoring schemes,
author’s comment) is a very short-sighted view to take of the research we are
doing. I recognize that we all need to publish papers and get grant funding
based on successful work, but I also think we need to keep our target on what
we really want to do, which is build information systems that will improve the
work of real people.”

References

[1] C. Blaschke and A. Valencia. The potential use of SUISEKI as a protein interaction
discovery tool. Genome Inform Ser Workshop Genome Inform., 12:123–134, 2001.

[2] L. Hirschman, J.C. Park, J. Tsujii, L. Wong, and C.H. Wu. Accomplishments and
challenges in literature data mining for biology. Bioinformatics, 18(12):1553–1561, 2002.

[3] M. Krallinger and A. Valencia. Text-mining and information-retrieval services for molec-
ular biology. Genome Biol., 6(7):224, 2005.

PART VI

APPENDIX

Chapter 13

APPENDIX

13.1. Definitions
Gene: The fundamental physical and functional unit of heredity. A gene
is an ordered sequence of nucleotides located in a particular position on
a particular chromosome that encodes a specific functional product (ie, a
protein or RNA molecule).

Protein: Building blocks of life. Proteins make up living material but also
hormones or enzymes. Proteins are molecules composed of one or more
chains of amino acids in a specific order. This order is determined by
the base sequence of nucleotides in the gene coding for the protein. The
three-dimensional structure of a protein is critical for its function.

Mutation: A permanent change, a structural alteration, in the DNA or
RNA. Mutations can be caused by many factors including environmental
insults such as radiation and mutagenic chemicals. Mutations are some-
times attributed to random chance events.

Protein-Protein Interaction (PPI): affect all processes in a cell. Proteins
rarely function in isolation. It has been proposed that all proteins in a
given cell are connected through an extensive network, where non-covalent
interactions are continuously forming and dissociating. These interactions
are mostly physical interactions.

Database: A collection of information stored in a computer in a systematic
way, such that a computer program can consult it to answer questions. The
software used to manage and query a database is known as a database man-
agement system (DBMS). The properties of database systems are studied
in computer science.

144 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

MEDLINE: bibliographical information database, forms the largest subset
of PubMed. MEDLINE contains approximately 13 million citations at this
moment.

Abstract: An abbreviated summary of a research article, review, or any
in-depth analysis of a particular subject or discipline, and is often used
to help the reader quickly ascertain the papers purpose. When used, an
abstract always appears at the beginning of a manuscript, acting as the
point-of-entry for any given scientific paper or patent application.

Literature: In this thesis, literature is not synonymous with the original
definition of literature. The original definition states that the term liter-
ature is only valid when the character of the text in purely fictional. In
the biomedical world, however, the term literature is used for the whole of
biomedical abstracts and articles which are available.

Text Mining: Process of extracting interesting and non-trivial information
and knowledge from unstructured text. Text mining is a young interdisci-
plinary field which draws on information retrieval, data mining, machine
learning, statistics and computational linguistics. In some definitions, Text
Mining describes the finding of overlooked connections in text (see also
Section 2.5.2).

Literature Mining: Literature Mining is the generic term for all methods
which extract any information out of literature.

Information Retrieval: Searching for information in documents or searching
for documents themselves.

Information Extraction: Automated Methods for extracting facts from
text.

Natural Language Processing: Natural language processing (NLP) is a sub-
field of artificial intelligence and linguistics. It studies the problems inher-
ent in the processing and manipulation of natural language. NLP also
addresses the problem of natural language understanding devoted to mak-
ing computers ”understand” statements written in human languages. NLP
techniques are used very often in literature mining.

Corpus: A collection of texts, either full-text or abstracts.

Impact factor: Is a statistical measure on how often an article published
in a certain journal, is cited in other journals. A high impact factor means
that this journal is often cited and is thus “high standard”.

Likelihood: The likelihood (or sampling distribution) quantifies the likeli-
hood of the data given the unknown model parameters.

Appendix 145

Likelihood Ratio Test: Is a statistical test relying on a test statistic com-
puted by taking the ratio of the maximum value of the likelihood function
under the constraint of the null hypothesis to the maximum with that con-
straint relaxed. Given a Model H0 (assumed to be true) and a Model H1,
the ratio of l1/l0 is called the likelihood ratio and it amounts to the odds
that H1 indeed is correct as opposed to H0.

Regular Expression: Often called a pattern, is an expression that describes
a set of strings. They are usually used to give a concise description of a
set, without having to list all elements. For example, regular expression
”gray|grey” matches gray or grey.

Recall: number of relevant and found documents/terms, divided by the
number of all relevant documents/terms.

Precision: number of relevant and found documents/terms, divided by the
number of all found documents/terms.

F-Measure: Harmonic Mean of Recall and Precision, computed by (2rp)/(r+p)).

Note: As Gene and Protein names cannot autmotatically be distinguished
from each other, the term Gene Name / Protein Name is interchangeable in
this thesis.

13.2. Example Queries
This section contains example queries which can be executed using the test-

version of the CONAN webserver. To perform those searches, please use the
“Advanced Searching” in CONAN.

Protein Name: p53, TNFalpha, p38

Keyword: “Binding Sites”, “Molecular Structure” (please note that the
quotes are compulsory for multi-word terms).

PMID: 14871385, 14730436, 15367858

Interaction / PMID and Interaction / All: p53, TNFalpha, p38

Mutation: Rab21, alpha-synuclein, dnaA

Gene Ontology: 0005694, 0003676, 0008151

Ensembl ID: ENSG00000197822, ENSG00000173402, ENSG00000183091

Synonym: CAD1 HUMAN, IL4 HUMAN

MeSH: “Cell Line”, “Rats”

146 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

13.3. DTD

13.3.1 Medline DTD

<!ELEMENT Article ((Journal — Book),

%ArticleTitle.Ref;,
Pagination,
Abstract?,
Affiliation?,
AuthorList?,
Language+,
DataBankList?,
GrantList?,
PublicationTypeList,
VernacularTitle?,
DateOfElectronicPublication?)

>
<!ELEMENT DataBankList (DataBank+)>
<!ELEMENT DataBank (DataBankName, AccessionNumberList?)>
<!ELEMENT DataBankName (#PCDATA)>
<!ELEMENT AccessionNumberList (AccessionNumber+)>
<!ELEMENT AccessionNumber (#PCDATA)>
<!ATTLIST DataBankList

CompleteYN (Y | N) ”Y”
>
<!ELEMENT GrantList (Grant+)>
<!ELEMENT Grant (%GrantID.Ref;, %Acronym.Ref;, %Agency.Ref;)>
<!ELEMENT GrantID (#PCDATA)>
<!ELEMENT Acronym (#PCDATA)>
<!ELEMENT Agency (#PCDATA)>
<!ELEMENT Abstract (%Abstract;)>
<!ATTLIST GrantList

CompleteYN (Y | N) ”Y”
> <!ELEMENT Journal (%ISSN.Ref;

JournalIssue,
Coden?,
Title?,
ISOAbbreviation?)>

<!ELEMENT ISSN (#PCDATA)>
<!ELEMENT JournalIssue (Volume?, Issue?, %PubDate.Ref;)>

Appendix 147

<!ELEMENT Volume (#PCDATA)>
<!ELEMENT Issue (#PCDATA)>
<!ELEMENT PubDate (%pub.date;)>
<!ELEMENT Coden (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT ISOAbbreviation (#PCDATA)>
<!ELEMENT DateOfElectronicPublication (#PCDATA)>
<!ELEMENT MedlineJournalInfo (Country?,

MedlineTA,
MedlineCode?,
NlmUniqueID?)>

<!ELEMENT Country (#PCDATA)>
<!ELEMENT MedlineTA (#PCDATA)>
<!ELEMENT MedlineCode (#PCDATA)>
<!– Sometime in the future, MedlineCode will change to

NLMUniqueID –>
<!ELEMENT Book (%PubDate.Ref;
, Publisher,

Title,
AuthorList?,
CollectionTitle?,
Volume?)>

<!ELEMENT Publisher (#PCDATA)>
<!ELEMENT ArticleTitle (#PCDATA)>
<!ELEMENT CollectionTitle (#PCDATA)>
<!ELEMENT VernacularTitle (#PCDATA)>
<!ELEMENT PublicationTypeList (PublicationType+)>
<!ELEMENT PublicationType (#PCDATA)>
<!ELEMENT Language (#PCDATA)>
<!ELEMENT AuthorList (Author+)>
<!ELEMENT Author ((%author.name;), Affiliation?)>
<!ELEMENT Affiliation (#PCDATA)>
<!ATTLIST AuthorList

CompleteYN (Y | N) ”Y”
>
<!ELEMENT Pagination ((StartPage, EndPage?, MedlinePgn?))>
<!ELEMENT StartPage (#PCDATA)>
<!ELEMENT EndPage (#PCDATA)>
<!ELEMENT MedlinePgn (#PCDATA)>

148 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

<!ELEMENT MeshHeadingList (MeshHeading+)>
<!ELEMENT MeshHeading (Descriptor, SubHeading*)>
<!ELEMENT Descriptor (#PCDATA)>
<!ATTLIST Descriptor

MajorTopicYN (Y | N) ”N”
>
<!ELEMENT SubHeading (#PCDATA)>
<!ATTLIST SubHeading

MajorTopicYN (Y | N) ”N”
>
<!ELEMENT PMID (#PCDATA)>
<!ELEMENT NlmUniqueID (#PCDATA)>

Appendix 149

13.3.2 CONAN DTD

<!DOCTYPE collection >
<!ELEMENT abstract>

<!ELEMENT abstract header>
<!ELEMENT abstract id (abstract+)>
<!ELEMENT abstract file (#PCDATA) >
<!ELEMENT abstract file position (#PCDATA) >
<!ELEMENT PMID (#PCDATA) >

<!ELEMENT method overview >
<!ELEMENT method (#PCDATA) >
<!ELEMENT parameters (#PCDATA) >

<!ELEMENT abstract body >
<!ELEMENT term id (term+)>
<!ELEMENT term text (#PCDATA) >
<!ELEMENT term pos start (#PCDATA) >
<!ELEMENT term pos end (#PCDATA) >
<!ELEMENT term tag (#PCDATA) >
<!ELEMENT mutation (#PCDATA) >
<!ELEMENT term organism(#PCDATA) >
<!ELEMENT term score (#PCDATA) >
<!ELEMENT term synonyms(#PCDATA) >
<!ELEMENT synonym score(#PCDATA) >
<!ELEMENT goa id (#PCDATA) >
<!ELEMENT goa function (#PCDATA) >
<!ELEMENT goa process (#PCDATA) >
<!ELEMENT goa component(#PCDATA) >
<!ELEMENT interaction(#PCDATA) >
<!ELEMENT Protein1 (#PCDATA) >
<!ELEMENT Protein2 (#PCDATA) >
<!ELEMENT Interaction Type (#PCDATA) >

150 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

13.3.3 Regular Expressions used in Protein-Protein
Interaction Extraction

Note: A and B denote the respective protein names which are parsed to the
interaction finding method.

”(A.*(fail | unable).*to.*(interact|associate|bind|bound|complex|precipitat|phosphorylat).*B)”
”(A(\S*\s+){0,3}\S*(n\’t|not)(\S*\s+){0,3}interact(\S*\s+){0,3}with(\S*\s+){0,3}B)”
”(A(\S*\s+){0,4}\S*interact(\S*\s+){0,3}\S*with.*but not with(\S*\s+){0,3}\S*B)”
”(no .*interaction (between|among) \w*A(\S*\s+){0,6}\S*B)”
”(no (\S*\s+){0,3}\S*B(\S*\s+){0,6}\S*A.*interaction)”
”(A.*(n\’t|not).{0,18}complex.*B)”
”(A.*(n\’t|not)(\S*\s+){0,6}\S*complex.*B)”
”(A.*(n\’t|not)(\S*\s+){0,6}\S*associat.*with.*B)”
”(A.*(n\’t|not) \S*associat.* with \S*sB)”
”(A.*(n\’t|not)(\S*\s+){0,6}(bind|bound).*B)”
”(A(\S*\s+){0,6}(bind|bound)\S* to.*but not(\S*\s+){0,3}to(\S*\s+){0,4}\S*B)”
”(via.{0,9}A.*and.*B)”
”(A.{0,9}a.{0,9}B.{0,9}homologue)”
”(A\S* mutant.*B)”
”(require(\S*\s+){0,4}\S*A.*and.*B(\S*\s+){0,3}in)”
”((neither|nor) (\S*\s+){0,3}\S*A(\S*\s+){0,5} nor (\S*\s+){0,3}\S*B)”
”(heterodimer(\S*\s+){0,4}\S*A(\S*\s+){0,4}\S*B)”
”(link.{0,24}A.{0,24}to.{0,24}B)”
”(A.{0,24}attach.*to.* B)”
”(A.*dock.*with.*B)”
”(A(\S*\s+){0,4}B(\S*\s+){0,6}\S*are(\S*\s+){0,3}\S*component)”
”(A(\S*\s+){0,6}B(\S*\s+){0,6}two(\S*\s+){0,6}\S*component)”
”(A(\S*\s+){0,6}target of B)”
”(A(\S*\s+){0,3}B(\S*\s+){0,4}\S*subunit)”
”(A(\S*\s+){0,6}proteolysis(\S*\s+){0,6}\S*B)”
”(A(\S*\s+){0,6}required for the proteolysis of(\S*\s+){0,6}\S*B)”
”(A(\S*\s+){0,4}regulatory subunit\S* of(\S*\s+){0,4}\S*B)”
”(A(\S*\s+){0,4}\S*B(\S*\s+){0,4}\S*heterodimer)”
”(A.*recruit.*B.*for.*pathway)”
”(A(\S*\s+){0,6}\S*regulate(\S*\s+){0,6}\S*B)”
”(A(\S*\s+){0,3}encode(\S*\s+){0,6}\S*B)”
”(A(\S*\s+){0,3}inhibit(\S*\s+){0,6}\S*B)”
”(A(\S*\s+){0,3}\S*B(\S*\s+){0,6}components of)”
”(components of (\S*\s+){0,5}A(\S*\s+){0,3}\S*B)”
”(A\S*-\S*B)”
”(\b\w*A\w*-\w*B\w*\b)”
”(\b\w*A\w*-\w*B\w*-\w*)”
”(A\w*-\w*B\w*-)”
”(-\w*A\w*-\w*B)”
”(\b\w*A\w*/\w*B\w*\b)”
”(A.*interact.*B)”
”(A.*interact.*with.*B)”
”(A\S* mutant.*interact.*with.*B)”
”(A.*interact.*with.*(whereas|while|but).*B.*not)”
”(A interact(|s|ed) with B)”
”(A.*cannot.*only.*interact.*with.*B)”
”(A.*interacting.*B)”
”(A\S*interacting.{0,24}B)”
”(A.*interacting(\S*\s+){0,6}\S*B)”
”(A(\S*\s+){0,9}\S*interact(\S*\s+){0,9}\S*B)”
”(A.*interaction.*B)”
”(interact.*A.*B)”
”(interaction.*A.*B)”
”(interaction.*of.*A.*(with|and).*B)”
”(interaction of A(,| with| and) B)”
”(interaction.*(between|among).*A.*and.*B)”
”(interaction (between|among) A and B)”
”(interact(\S*\s+){0,3} both with \S*A\S* and \S*B)”

Appendix 151

”(A.*B.*interact)”
”(A.*B.*interaction)”
”(A(\S*\s+){0,9}\S*B(\S*\s+){0,6}\S*interaction)”
”(A(\S*\s+){0,3}and(\S*\s+){0,6}\S*B(\S*\s+){0,6}\S*interact(?!ion))”
”(A\S* and B\S* interact(?!(\S*\s+){0,4}with))”
”(A.*B.*interact.*in.*complex.*with)”
”(interact.*with.*A.*with B)”
”(protein.*interact.*with.*A.*B)”
”(A.*complex.*B)”
”(A.{0,24}complex(|es) with.* \w*B)”
”(A\w* complex(|es) with \w*B)”
”(A.* form.* complex.* with.* B)”
”(A complex.*contain.*B)”
”(A.*(has|have).*activity.*in.*complex.*contain.*B)”
”(A.*B.*complex)”
”(neither.*A.*nor.*B.*complex.*formation)”
”(A(\S*\s+){0,9}\S*B(\S*\s+){0,9}\S*complex)”
”(A(\S*\s+){0,3}\S*B(\S*\s+){0,3}\S*complex)”
”(A(\S*\s+){0,6}\S*B \S*complex)”
”(A.*B.* form.* \w*complex)”
”(A.*B.*each.*form.*complex.*with)”
”(A.*component.*of.*B.*complex)”
”(A.*and.*B.*part.*of.*complex)”
”(A.*B.*subunit.*of.*complex)”
”(A.*B.*reconstitute.*complex)”
”(A.*B.*comprise.*complex)”
”(A.*function.*with.*B.*in.*complex)”
”(A(\S*\s+){0,4}require(\S*\s+){0,5}\S*B.*complex)”
”(A.{0,12}B.{0,12}complex)”
”(complex.*A.*B)”
”(complex(\S*\s+){0,4}contain(?!ing)(\S*\s+){0,3}A(\S*\s+){0,3}B)”
”(form.*complex with.*A.*B)”
”(complex.*A .*and .*B)”
”(complex.* form.* between \w*A and .*B)”
”(complex.*contain.*A.*B)”
”(complex A.*B)”
”(complex.*in.*which.*A.*B)”
”(complexes.*containing.*A.*B)”
”(complex of.*A\w*/\S*B)”
”(complex.{0,12}A\w*/\S*B)”
”(complex with(\S*\s+){0,3}A(\S*\s+){0,6}by(\S*\s+){0,3}B)”
”(complex of (\S*\s+){0,3}proteins(\S*\s+){0,3}\S*A(\S*\s+){0,4}\S*B)”
”(complex(\S*\s+){0,4}A(\S*\s+){0,4}\S*B)”
”(A.*associat.*B)”
”(A.* associat\w* with .*B)”
”(A associate\w* with .*B)”
”(A associate\w* with B)”
”(A.* is .*associated.* with .*B)”
”(associat.*A.*B)”
”(association(\S*\s+){0,3}(between|among|of)(\S*\s+){0,3}\S*A(\S*\s+){0,3}B)”
”(association between A and .*B)”
”(association between(\S*\s+){0,3}\S*A\S* and\S*B)”
”(association of(\S*\s+){0,3}\S*A\S* with .*B)”
”(association of(\S*\s+){0,3}\S*A\S* and .*B)”
”(A.*B.*associat)”
”(A(\S*\s+){0,6}\S*B(\S*\s+){0,6}\S*association)”
”(A(\S*\s+){0,3}\S*B\w*-associated protein)”
”(A .*B association)”
”(A.{0,24}B association)”
”(A.* its.* association .*with .*B)”
”(A.* and .*associated .*B)”
”(A.*activat(?!ion).*B)”
”(A\w*-dependent.*activation.*of.*B)”
”(A.*for.*activation.*of.*B)”
”(A.*is(\S*\s+){0,3}for activation of(\S*\s+){0,3}\S*B)”
”(A(\S*\s+){0,6}\S*activat(?!ion)(\S*\s+){0,6}\S*B)”
”(activation of.*A.*by.*B)”
”(A.*B.*activat)”
”(A.*phosphorylat.*B)”

152 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

”(A\S*(\S*\s+){0,6}(|de|de-)phosphorylat(e|ion|es|ed) .*B)”

”(A\S* (|de|de-)phosphorylate(|s|d) \S*B)”

”(A.*modulat.*B.*phosphorylation)”

”(A\w*-dependent.*phosphorylation.*of.*B)”

”(phosphorylat.*A.*B)”

”(phosphorylation.*of \S*A.* by .*B)”

”(phosphorylation\S*(\S*\s+){0,4}A.*convert.*B.*into)”

”(A.*B.*phosphorylat)”

”((co|)(|-)(|immuno)(|-)precipitat.*A.*B)”

”(precipitation.*A.*B)”

”(precipitat(?!ion).*A.*B)”

”(A.*(co|)(|-)(|immuno)(|-)precipitat\w* with.*B)”

”(A.*(co|)(|-)(|immuno)(|-)precipitat\w*.*B)”

”(A.*B.*(co|)(|-)(|immuno)(|-)precipitat)”

”(A.*conjugat.*B)”

”(A(\S*\s+){0,3}conjugate.*with.*B)”

”(A(\S*\s+){0,6}conjugate(\S*\s+){0,6}\S*B)”

”(conjugat.*A.*B)”

”(conjugat(\S*\s+){0,6}A(\S*\s+){0,6}\S*B)”

”(A.*B.*conjugat)”

”(A\w*-B\w* conjugat)”

Appendix 153

13.3.4 Databases used in BLAST search

Table 13.1. Databases used in BLAST search

Database Database

Acquired Abnormality Laboratory Procedure
Alga Laboratory or Test Result
Amino Acid Sequence Lipid
Amphibian Mammal
Anatomical Abnormality Mental or Behavioral Dysfunction
Anatomical Structure Molecular Biology Research Technique
Animal Molecular Function
Antibiotic Molecular Sequence
Archaeon Natural Phenomenon or Process
Bacterium Neoplastic Process
Biologically Active Substance Neuroreactive Substance or Biogenic Amine
Bird Nucleic Acid, Nucleoside, or Nucleotide
Body Location or Region Nucleotide Sequence
Body Part, Organ, or Organ Component Organ or Tissue Function
Body Space or Junction Organic Chemical
Body Substance Organism
Body System Organism Attribute
Carbohydrate Organism Function
Cell Organophosphorus Compound
Cell Component Pathologic Function
Cell Function Pharmacologic Substance
Cell or Molecular Dysfunction Invertebrate
Chemical Physiologic Function
Chemical Viewed Functionally Plant
Chemical Viewed Structurally Protein
Clinical Drug Qualitative Concept
Congenital Abnormality Quantitative Concept
Disease or Syndrome Receptor
Eicosanoid Reptile
Element, Ion, or Isotope Research Activity
Embryonic Structure Research Device
Enzyme Rickettsia or Chlamydia
Experimental Model of Disease Sign or Symptom
Finding Spatial Concept
Fish Species
Functional Concept Steroid
Fungus Substance
Gene or Genome Temporal Concept
Genetic Function Therapeutic or Preventive Procedure
Hazardous or Poisonous Substance Tissue
Hormone Vertebrate
Human Virus
Immunologic Factor Vitamin
Indicator, Reagent, or Diagnostic Aid genedata
Injury or Poisoning

Index

Abbreviation, 57
AbGene, 8
Abstract, 67, 143
AdaBoost, 56
Agreement Scores, 84, 92, 98
Ambiguity, 7, 9
Anaphora, 8
Anaphoric Expressions, 8
Annotator Agreement, 84, 92, 98
Area under the Curve, 125, 127
Attribute, 54
AUC, 125, 127

Bayesian Classifier, 124
Bayesian Network, 124
bigram, 56
Binning, 124, 127
BioCreative, 93
Biological Process, 33
BioPerl, 53
Biopython, 41, 53
BLAST, 39, 69
BLAST Extraction, 40
BLAST parameters, 41
boosted Regression, 55
BoosTexter, 56
Boosting, 55, 75

C4.5, 56
Cellular Component, 33
Classification, 54
Co-occurrence, 10, 126
Cocitation, 126
Command Line Tool, 109
CONAN, 109
CONAN Output, 71
Corpus, 89, 93, 95, 96, 143
Corpus Construction, 89, 96
Cross References, 68
Cross-references, 31, 32, 36, 38
Cross-Validation, 128

Data Integration, 70
Data Integrator, 70
Database, 143
Definitions, 143
Dictionary, 57

ENSEMBL, 29, 38, 68
ENSEMBL Identifier, 31
Entrez, 5
Evaluation, 88

F-Measure, 14, 83, 85, 143
Feature, 54

GAPSCORE, 8
Gene, 143
Gene Interaction Network, 123
Gene Ontology, 32, 36, 68
GO, 32
GO codes, 33
GOA, 68
Gold Standard, 124
Graphs, 122

Harmonic Mean, 83

IE, 10
iHop, 10
Impact Factor, 128, 143
Indexing, 110
Information Extraction, 10, 43–45, 143
Information Retrieval, 5
Inter Annotator Agreement, 84, 92, 98
Inter-Species Ambiguity, 9
Interaction, 45, 95, 96, 104, 119, 120
Interaction Network, 123
International Protein Index, 68
Intra-species Ambiguity, 9
IPI, 38, 68

156 CONAN: TEXT MINING IN THE BIOMEDICAL DOMAIN

IR, 5

kappa value, 84
KDD, 11
Keyword Extraction, 40
Keyword Search, 116
Keywords, 116
Kinase Pathway, 13
Knowledge Discovery, 11, 125
Knowledge Problem, 3

Lexicon, 6
Likelihood, 143
Likelihood Ratio, 128
Likelihood Ratios, 128, 143
Likelihood Scores, 128
Literature Mining, 143

Medical Subject Headings, 28
MEDLINE, 27, 66
MeSH, 28, 67, 75
Metathesaurus, 33
Molecular Function, 33
Mutation, 44, 71, 73, 104, 117, 143
Mutations, 69

n-Gram, 56
Named Entity Recognition, 8, 42, 43
Natural Language Processing, 6, 10
NER, 8, 42, 43
NLP, 6, 10, 42
NLProt, 8, 73
Noun Phrase, 6

Ontology, 32, 33
Overfitting, 54, 128

Parser, 7, 42
Partial Matches, 9
Perl, 53
Perl Script, 110, 112
PPI, 143
Pre-Processing, 69
PreBIND, 10
Precision, 14, 81, 143
Predictor Variable, 54
Prodisen Corpus, 89
Protein, 143
Protein annotation, 35
Protein Interactions, 12
Protein Name Abbreviations, 35
Protein Tagging, 42, 43, 69, 73, 99, 116
Protein-Protein Interaction, 45, 75, 95, 96,

104, 119, 120
PubCrawler, 8
PubGene, 10
PubMed, 27
Python, 53

Python Script, 110, 112

Queries, 113

Recall, 14, 81, 143
Regular Expression, 44, 45, 143
Research Question, 4
Retrieval, 5

s-Gram, 56
SDI Services, 7
Semantic Network, 34, 40
Semantic Types, 40
SLOPPY, 9, 95
Small Datasets, 13
Species Extraction, 44
STRICT, 9, 95
Strong Hypothesis, 58
Support Vector Machines, 43
SwissProt, 35, 44
Syntax, 6

Tags, 49
Target Variable, 54
Test Set, 54
Text Mining, 4, 10, 143
Text Mining Definition, 11
Text Mining Problems, 13
Text Mining Systems, 5
Textpresso, 13
Tissue Extraction, 44
Tokens, 44
Training Set, 54

UMLS, 33
UMLS Metathesaurus, 40
UniParc, 32
UniProt, 31, 35, 38
UniRef, 32

Variable, 54
Verb Phrase, 6
Vocabulary, 33

Weak Learner, 56
World Problem, 3

XML, 49, 71, 72, 110
XML Attributes, 51
XML Delcarations, 51
XML Elements, 51
XML Entities, 51
XML Nodes, 52
XML Path, 52
XML Tag, 72
XPath, 112
XPath Expression, 52

Curriculum Vitae
Rainer Malik was born on June 19th, 1978 in Linz, Austria. He grew

up in Traun, Austria, where he attended elementary school and high school.
Traun is still the place where his parents live. After high school, in 1996, the
author started studying biology with the special subject of molecular biology
in Salzburg, at the University of Salzburg, Austria. In 2000, he started writing
his master’s thesis in the group of Prof. Dr. Manfred J. Sippl at the Center
for Applied Molecular Engineering at the University of Salzburg. The title of
the thesis is ”Protein Structure Comparison and the Application in the CASP
experiment”. In June 2002, the author obtained the master’s degree under the
supervision of Prof. Dr. Peter Lackner from the University of Salzburg. In
September 2002, Rainer Malik started his Ph.D. studies at the University of
Utrecht in the group and under the supervision of prof. dr. A.P.J.M. Siebes
(Large and Distributed Databases).

Publications in the Ph.D period:

Guryev V, Berezikov E, Malik R, Plasterk RH, Cuppen E.(2004) Single nu-
cleotide polymorphisms associated with rat expressed sequences., Genome
Res. 2004 Jul;14(7):1438-43.

Knobbe A, Ho E, Malik R (2005). ILP Challenge 2005: The Safarii MRDM
environment. ILP05, LNAI 3625, 2005

Malik R, Siebes A (2005). CONAN: An Integrative System for Biomedical
Literature Mining. EPIA05, LNAI 3808, 248-259, 2005.

Malik R, Siebes A (2006). Combination of Text-Mining Algorithms in-
creases the performance. Bioinformatics. In Press.

Krallinger M, Malik R, Valencia A (2006). The Prodisen corpus: exploring
the construction and applications of a protein description corpus. Proceed-
ings of ISMB SIG on biomedical text data mining.Submitted.

Zusammenfassung in deutscher Sprache

Text Mining ist ein neues und aufregendes Forschungsgebiet, das in den
letzten Jahren einen überraschenden Boom erfuhr. Ziel ist, interessante und
wichtige Information aus Text zu holen (= zu extrahieren) und diese gut und
deutlich darzustellen. Text Mining findet Verwendung in vielen verschiedenen
Gebieten, wie zum Beispiel der SPAM-Filterforschung, im Gesetzestextbereich
und auch in der biomedizinischen Domäne. In dieser Dissertation beschränke
ich mich ausschliesslich auf dieses letzgenannte Gebiet.

In den letzten Jahren hat die Anzahl der wissenschaftlichen Publikationen
und der Fachmagazine stark zugenommen. Es ist ein exponentieller Anstieg
zu verzeichnen. Mittlerweile geht man von ca. 20 Millionen Artikeln in
PubMed/MEDLINE aus. PubMed/MEDLINE ist die primäre Datenbank für
biologische und biomedizinische Fachartikel. Diese enorme Masse an Infor-
mation ist für einen Wissenschaftler, der diese Information benötigt, kaum zu
überblicken. Text Mining Systeme sind daher von hoher Relevanz, um die
Vielfalt der Information in überschaubare Bahnen zu lenken.

Das Ziel ist, ein System zu erstellen, das die für (Molekular-)Biologen und
Mediziner wichtigste Information automatisch aus Text extrahiert. Zu dieser
Information zählt das Erfassen von Protein- und Gennamen, das Erfassen von
Mutationen, das Extrahieren von Protein-Protein-Wechselwirkungen und das
Erfassen von biologisch wichtigen Schlüsselwörtern wie zum Beispiel Krankheiten
oder Gewebsformen. Diese Information soll so gut wie möglich dargestellt
werden, um experimentell arbeitenden Forschern die Arbeit zu erleichtern.
Ausserdem soll so ein System so komplett wie möglich sein und alle verfügbaren
Artikel prozessieren können.

Zum heutigen Zeitpunkt bestehen viele Text Mining Systeme, die aber en-
tweder zuwenig Information aus den Texten holen oder aber zuwenig Texte
prozessieren. Deshalb wurde von mir ein System entwickelt, das sowohl so
komplett wie nur möglich ist, als auch hochqualitative Information liefert.
Darüber hinaus sollten die Resultate einfach dargestellt werden, sodass jeder
Wissenschaftler die gewünschte Information ohne Probleme finden kann. Dieses
System nennen wir CONAN.

In dieser Dissertation zeige ich, wie so ein System konstruiert wird. Weiter-
hin enthält diese Dissertation Evaluierungen dieses Systems. Diese Evaluierun-
gen werden mithilfe sogenannter Corpora (=Testsysteme) bewerkstelligt. Im
Laufe dieser Evaluierung zeige ich zudem, wie so ein Corpus entwickelt wird.
Schlussendlich lege ich dar, in welchen Anwendungen CONAN seinen Ein-
satz findet. Diese Anwendungen sind: ein Kommandozeilenprogramm, ein
Webserver und die Integration von Interaktionsdaten in ein menschliches In-
teraktionsnetzwerk.

Die Resultate, die CONAN erreicht sind sehr gut. In allen Evaluierungen,
die durchgeführt wurden, ist CONAN im Spitzenfeld zu finden. Dies zeigt,

dass CONAN gut konstruiert wurde und die Resultate eine hohe Qualität
zeigen.

In Kapitel 1 gebe ich eine Einleitung in das Text Mining Feld. Viele wichtige
Begriffe und Definitionen wie Natural Language Processing oder Information
Extraction werden hier erklärt. Weiter gebe ich einen genauen Überblick, was
alles in dieser Dissertation enthalten ist.

In Kapitel 2 erkläre ich viele Methoden und Datenbanken, die bei CO-
NAN zum Einsatz kommen. Diese Methoden sind die Bausteine von CONAN
(BLAST, AbGene, NLProt, PreBIND und MuText) und die Techniken, die
im Laufe von CONAN implementiert wurden (Support Vector Machines und
Boosting). Darüberhinaus erkläre ich alle Datenbanken, die in CONAN ver-
wendet werden (Ensembl, UniProt, etc.).

In Kapitel 3 erkläre ich, wie CONAN aufgebaut ist. Ich erkläre, wie die
Eingabe und die Ausgabe des Programmes genau aussehen.

Kapitel 4 beschäftigt sich mit der Evaluierung des Systems und dem Auf-
bau dieser Testsysteme. Ferner werden interessante Ergebnisse von CONAN
dargestellt.

In Kapitel 5 zeige ich, in welchen Anwendungen CONAN zur Zeit im Einsatz
ist. Eine Konklusio und ein Ausblick auf das Gebiet des Text Mining bilden
Abschluss meiner vorliegenden Arbeit.

Samenvatting in het Nederlands

Tekst Mining is een nieuw en interessant onderzoeksgebied, dat de laatste
jaren steeds meer in de belangstelling staat. Het doel van tekst mining is om
interessante en belangrijke informatie uit tekst te halen (=extraheren) en deze
informatie correct en helder weer te geven. Tekst Mining wordt toegepast in
verschillende domeinen, zoals bijvoorbeeld voor het bouwen van SPAM filters,
in het juridische domein en voor biomedische toepassingen. In dit proefschrift
wordt alleen het laatste onderdeel behandeld.

De laatste jaren is zowel in het aantal wetenschappelijke publicaties als in
het aantal wetenschappelijke tijdschriften een exponentiële groei te zien. In-
middels gaat men uit van ongeveer 20 milioen artikelen in PubMed/MEDLINE.
PubMed/MEDLINE is de belangrijkste bron voor biologische en biomedicinis-
che artikelen. Door de enorme hoeveelheid aan informatie is het voor weten-
schappers bijna onmogelijk om een overzicht te krijgen van relevante infor-
matie. Daarom zijn tekst mining systemen belangrijk; voor een overzicht van
de aanwezige informatie.

Het doel is, een systeem te construeren, dat de belangrijkste informatie
automatisch uit de tekst haalt. Dit omvat het extraheren van: gen- en
protëınenamen, van mutaties, van protëıne-protëıne interacties en van biol-
ogisch belangrijke sleutelworden zoals namen van ziektes of weefsel. Deze
informatie moet zo goed als mogelijk weergegeven worden, om het werk van

experimenteele wetenschappers makkelijker te maken. Bovendien moet een
tekst mining systeem so compleet als mogelijk zijn en alle beschikbaare artice-
len kunnen verwerken.

Op het huidige tijdstip bestaan vele text mining systemen, maar die halen of
te weinig informatie uit de tekst of baseren de weergegeven informatie op een
te klein deel van de collectie. Daarom is door mij een systeem ontwikkelt, dat
naast hoog kwalitatieve informatie tevens zo compleet als mogelijk is. Boven-
dien zijn de resultaten heel overzichtelijk weergegeven zodat elke wetenschap-
per de gewenste informatie kan vinden. Dit systeem noemen wij CONAN.

In dit proefschrift laat ik zien, hoe CONAN is opgebouwd. Tevens bevat dit
proefschrift verschillende experimentele evaluaties van CONAN op diverse cor-
pora. Bovendien beschrijven we hoe een corpus (=test systeem) wordt opge-
bouwd. Vervolgens bespreek ik de toepassingen van CONAN, deze bestaan
ondermeer uit: een command-line interface, een webserver een de integratie
van interactie data in een interactie netwerk.

De met CONAN bereikte resultaten zijn uitstekend. In alle experimentele
evaluaties behoort CONAN tot de top. Dit betekent dat CONAN goed ont-
worpen is en de resultaten van hoge kwaliteit zijn.

Hoofdstuk 1 is een inleiding in tekst mining. Veel belangrijke termen en
definities zoals Natural Language Processing of Information Extraction worden
in dit hoofdstuk beschreven. Verder geef ik een precies overzicht over de
verdere inhoud van dit proefschrift.

In hoofdstuk 2 beschrijf ik de methodes en databases waaruit CONAN is
opgebouwd. Dit zijn naast de bouwstenen van CONAN zoals BLAST, Ab-
Gene, NLProt, PreBIND en MuText tevens de methodes die in CONAN geim-
plementeerd zijn zoals Support Vector Machines und Boosting. Daarnaast
worden ook de databases beschreven die gebrtuikt worden door CONAN zoals
Ensembl, UniProt, etc.

In hoofdstuk3 bespreek ik het ontwerp van CONAN. De in- en uitvoer van
CONAN wordt hierbij uitgebreid besproken.

Hoofdstuk 4 bevat de experimentele evaluatie van CONAN, teven wordt de
constructie van testsystemen (corpora) behandeld en interessante resultaten
getoond.

In hoofdstuk 5 worden de mogelijke toepassingen van CONAN beschreven.
Ten slotte trek ik conclusies en geef een overzicht van verdere ontwikkelingen
in het onderzoeksgebied, tekst mining.

SIKS Dissertatiereeks

====
1998
====

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

====
1999
====

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

====
2000
====

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

====
2001
====

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

====
2002
====

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

====
2003
====

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

====
2004
====

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

====
2005
====

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by
Exploiting Application Semantics

====
2006
====

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

