
Theoretical Computer Science 37 (1985) 77-121
North-Holland

77

A L G E B R A OF C O M M U N I C A T I N G P R O C E S S E S
WITH A B S T R A C T I O N

J.A. BERGSTRA and J.W. KLOP
Centre for Mathematics and Computer Science, P. O. Box 4079, 1009 AB Amsterdam, The Netherlands

Communicated by E. Engeler
Received February 1984
Revised October 1984

Abstract. We present an axiom system ACP, for communicating processes with silent actions
('z-steps'). The system is an extension o f ACP, Algebra of Communicating Processes, with Milner's
z-laws and an explicit abstraction operator. By means of a model of finite acyclic process graphs
for A C P , syntactic properties such as consistency and conservativity over ACP are proved.
Furthermore, the Expansion Theorem for ACP is shown to carry over to ACP~. Finally, termination
of rewriting terms according to the ACP~ axioms is proved using the method of recursive path
orderings.

Keywords. Concurrency, communicating processes, internal actions, process algebra, bisimulation,
process graph, handshaking, terminating rewrite rules, recursive path ordering.

1980 Mathematics Subject Classification. 68B10, 68C01, 68D25, 68F20.

1982 C.R. Categories. F.I.1, F.1.2, F.3.2, F.4.3.

Contents

Introduction . 77
ACP, Algebra of Communicating Processes . 77
A C P , Algebra o f Communicating Processes with abstraction 78
Summary of results 79
Related literature . 81

1. The axiom system ACP~ . 81
2. The model of finite acyclic process graphs for ACPT 82
3. The Expansion Theorem for ACPT . 100

Appendix A. Terminat ion of ACP, reductions proved by recursive path orderings 105
Appendix B. An inductive proof of associativity of merge in ACP~ 115
References . 121

Introduction

ACP, Algebra of Communicating Processes

In [2] we have introduced ACP (Algebra of Communicating Processes). ACP is
an equational specification of process cooperation, aiming at an algebraic theory

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

78 J.A. Bergstra, J.W. Klop

of processes; more specifically, ACP gives an equational framework for asyn-
chronous process cooperation via synchronous communication. As an axiom system,
it consists of the left column of Table 2 below. For a more extensive motivation of
ACP as well as a discussion of related approaches, we refer to [2]. Here we will

only mention that ACP is derived from Milner's Calculus of Communicating Systems
(CCS); a discussion of the differences, both in the technical sence, as regards the
signature, and in the methodological sense, is again contained in [2]. We will discuss

two of these differences here: CCS has prefix multiplication (atomic process "a '"
and process q yield a . q) whereas ACP admits general multiplication (processes
p, q yield p- q, the sequential composition). This is important for the expressive
power: it is not hard to prove that several recursively defined processes have finite

recursive definitions in terms of general multiplication, but not in terms of prefix
multiplication. Now this adoption of general multiplication brings with it the
introduction of a constant t5 for deadlock: namely consider the process p . q where
P = 0{a,b}(a II b), that is: the communication of steps a, b (encapsulated by 0~a,b}).
NOW if a, b cannot communicate, execution of p . q will not reach q. So p is a
process which 'blocks' q. Indeed, in the ACP formalism the consequence of a I b = 8
(a, b do not communicate) is tha tp -- 8 and n o w p - q -- 8. q = 8. In prefix multiplica-

tion, C3{a,b}(a 1[b) • q would not be a well-formed expression.
One of the aims of ACP is to keep track of the various models ('process algebras')

which this axiomatisation has, rather than fixing a model right away as is done in
CCS or related work in Hoare 's CSP. Models of ACP can be given as projective
limits of process algebras consisting of finite processes (see [4]), or as metrical
completions of such process algebras (see [1]), or via process graphs. The latter
method starts with a suitable domain of process graphs, i.e., rooted multidigraphs

with edges labeled by atomic actions. Already here, there is a great variety of
possibilities, as to the choice of an upper bound for the branching degrees, the
cardinality of the node sets, etc. For instance, one may restrict the attention to
regular process graphs, or, as is done below, to finite process graphs without cyclic
paths. Having such a domain of process algebras, a suitable equivalence relation is
divided out, e.g., bisimulation (o) . This notion derives from Milner's notion of
strong equivalence on synchronisation trees (see [12]). For a proof-theoretical

analysis of ACP, yielding results such as consistency of the axioms and an elimination

property, we refer to [2].

ACP~, Algebra of Communicating Processes with abstraction

ACP as briefly discussed above does not address the problem of abstraction
('hiding'), i.e., it does not deal with the so-called r-steps (invisible or silent steps)
of Milner. Now, ACP, is an extension of ACP which does take the presence of

r-steps into account. As an axiom system, ACPT is displayed in Table 2 below; it
consists of ACP, in the left column, together with Milner's well-known 'z-laws'
T1-3. What is new in ACP, as compared with CCS is that A C P , also specifies the

Algebra of communicating processes with abstraction 79

behaviour of r-steps in relat ion with the communica t ion merge opera tor "1", an
opera tor which is not present in CCS but which is vital for giving a finite axiomatisa-
tion of merge "11" as A C P does. (This is ra ther sensitive: e.g., ralb must.yield the
same process as (ra + a) l b , obtained by applicat ion of the r - law ra = ra + a. Indeed

it does: (ra + a)] b = ra [b + a [b = a [b + a l b = a l b = ra l b. Also, care had to be taken

that the r- laws are ' compat ib le ' with the other auxiliary opera tor ~_; see similar
Examples 2.22.)

Another new feature in the t rea tment of r-s teps in ACP~ is that in C C S communica-
tion between two atomic steps a, b yields a r -s tep at once (if a, b are communica t ion
'par tners ') . In ACP~ the abstract ion act is separated from the communicat ion:
abstract ion is executed by a special opera tor r,. So a [b is not r right away, but first

yields an internal (but still 'visible') step, say i, which later can be abstracted, i.e.,
r enamed into r : r{ i}(a [b) = r{ i}(i) = r. This separat ion of communica t ion and abstrac-
tion turns out to be vital since recursion and abstraction do not commute. E.g., if
processes X, Y are defined by recursion equat ions X = aX, Y = b Y, then with a [b = r

we would get, for the parallel process Z = O~,,.br(X [[Y), the recursion equat ion
Z = rZ. Th e problem is that in the presence of the r- laws T1-3, such ' r -gua rded '
recursion equations have no unique solution, i.e., Z is underspecif ied; indeed, every

_Z = rp is a solution of Z = r Z for arbi trary p. Using the r r o p e r a t o r , the intended
Z (i.e., the process " r '° ' ') is easily defined, namely by putting a[b = i and

z = II Y).

This mat ter is not pursued in the present paper , but these remarks may serve as a
motivat ion for r,. In the present paper we are not concerned with explorat ions of
the expressive power of ACP~ but simply with introducing this system and proving

some fundamenta l theorems about it so that it can serve as a firm basis for further
explorations.

S u m m a r y o f results

In Section 1, the s ignature of ACP~ and the axioms of ACP~ are given. This
signature extends that o f A C P by the presence of rx and r ; all axioms involving
them are in the right co lumn of Table 2.

In Section 2 we give a simple model for A C P , consisting of finite process graphs
without cycles, modulo an equivalence relation "-~r~ called rooted r-bisimulation.

Here, ' r -b is imula t ion ' (---~ in our notat ion) coincides with Milner 's well-known
notion of observat ional equivalence, at least for finite processes. A problem with
observational equivalence, or r -bis imulat ion, is that it is not a congruence w.r.t, the
operat ions + and [l (the typical example is that while ra ~-% a, b ~-% b, one has
r a + b ~ , a + b) . Therefore , we consider a mild variant of it, "-%, which is a
congruence w.r.t, all operators . For an algebraic approach i t seems essential to work
with congruences; thus we can take the quotient algebra of the domain of finite
acyclic processes modulo ,--%, and this algebra is proved in Theorem 2.23 to be

80 J.A. Bergstra, J.W.. Klop

isomorphic to the initial algebra of ACP~. Otherwise said, ACP~ is a complete
axiomatisation for this process algebra. (The completeness of the r-laws for finite
processes was first proved by Milner, as stated in [12], for the smaller signature as
favoured by CCS.) This proof, which also entails the conservativity of ACP~ over
ACP (i.e., no unwanted identifications are caused by the extension from ACP to
ACP~), makes a typical use of the underlying graph domain. An important ingredient
in the proof is the use of some very simple transformations of process graphs. These

transformations tend to normalize a process graph; a key fact (Theorem 2.12) states
that each rr-bisimulation equivalence class contains a unique normal graph. Another
important fact, of independent interest, used in the proof is the Elimination Theorem
2.20 stating that the 'defined' operators 11, [l, [, all, r1 can all be eliminated (in a
finite process) in favour of the 'basic constructors' + and -. Since the proof of the
Elimination Theorem requires quite some work, it is contained in Appendix A. The
method used to prove the termination of the rewrite rules, which tend to eliminate
the defined operators, is that of the 'recursive path ordering' as described by
Dershowitz, based on Kruskal 's Tree Theorem. In proofs like this termination proof,
it is important to have an axiomatisation as ACP~ gives, which lends itself to simple
rewrite rules. Appendix A gives next to the actual application of the recursive path
ordering method to the ACP~-termination problem, a (mostly notational) restatement
of the r.p.o, method which we find helpful when we actually use it for a rather
complicated rewrite system as the one under consideration.

Section 3 proves the Expansion Theorem for ACP~ (Theorem 3.9). This theorem,
first proved by Milner [12] for CCS, was proved in [5] for ACP. The extension to
ACP~ turns out to be nontrivial, but the theorem, which is indispensable for breaking
down merge expressions x~ [1... [1Xk, fortunately holds in exactly the same form as
for ACP:

x, II II x, II x ' . . . = r . (x lxj)ll x F ,
l ~ i ~ k l < ~ i < j ~ k

where X~ stands for the merge of x~ , . . . , x k except x~, and X~ j is the merge of
X l , . . . , Xk except x~, xj. (Note that the auxiliary operators [1, I make a succinct
formulation possible.)

Finally, in Appendix B we prove by a straightforward induction on term formation
the associativity of merge "11"; by a different, indirect, method this is also done in
Section 3 (Corollary 3.8) but we have preferred also to include the proof in Appendix
B because it is entirely algebraical, using the axioms of A C P , thus demonstrating

their ease in computations (the second half of the proof in Appendix B uses a
complicated simultaneous induction, though), and because it proves more, viz.
several identities which are of independent interest,

We conclude this introduction with some remarks about related literature (for a
more comprehensive comparison, see [2]).

Algebra of communicating processes with abstraction 81

Related literature

ACP~ was defined in [4]; the subsystem ACP was defined in [2]. Abstract ion was

studied in [3]. The formula t ion of the Expans ion Theorem is taken f rom [5].

Both ACP and ACP~ have been derived from Milner 's CCS [12]. In part icular ,

CCS contains the operators +, II, a- each a tom a and derives as laws: A1, A2, A3

and T1, T2, T3. The axioms C1, C2 are from Hennessy [10]; Winskel [13] surveys
communica t ion formats of .atomic actions. The operator • is present in Hoa te ' s CSP

[11] as " ; " and in [1] as "o". We refer to Graf and Sifakis [9] for a proof- theore t ic

discussion of the r-laws. Brookes and Rounds [6] give an explicit descr ip t ion of
bis imulat ion modulo z on finite graphs.

1. The axiom system ACP~

Let A be a finite set o f atomic actions, containing a constant 3, and let- 1. : A x A --> A

be a communica t ion funct ion which is commutat ive and associative and for which

a la = a. A communica t ion a lb = c is said to be proper if c ~ 3. Further, we consider

the constant z, for the silent act ion; we write A~ = A u { r}. Silent actions are obta ined

from appl icat ions of the abstract ion operator rl which renames atoms e I g A into z.

The signature of the equat ional theory ACP~ is given in Table 1. Here the first

five operators are binary, aH and zl are unary. The opera t ion aH renames the a toms

in H into 3, and ~'1 renames the atoms in ! into ~-. Here, H and ! are subsets o f

A~; in fact, H ~ _ A and I c _ A - { 3 } (since we do not want to rename z into 8 or

conversely).

Table 1.

4-

II
U_
I
an
rl
3
T

alternative composition (sum)
sequential composition (product)
parallel composition (merge)
left-merge
communication merge
encapsulation
abstraction
deadlock/failure
silent action

The communica t ion funct ion] is extended to the communica t ion merge, having

the same nota t ion, between processes (i.e., elements of a model of ACP,) .

The left co lumn in Table 2 is the axiom system ACP (without ~'). In Table 2, " a "
varies over A.

The axioms T1, T2, T3 are the ' r - laws ' from Milner [12].
Notation: Often we will write xy instead of x- y.

The initial algebra of the equat ional theory ACP, in Table 2 is called AT.

82 J.A. Bergstra, J. W. Klop

Table 2. ACP~.

x + y = y + x A1
x + (y + z) = (x + y)+ z A2
x + x = x A3

(x + y)z = xz + yz A 4

(xy)z = x (yz) A5

x + 8 = x A 6

8x = 8 A7

alb=bla El
(alb)lc=al(blc) C2
81a=8 C3

xlly=xll y+yU x+xty C M I
a l l x = a x C M 2

(ax)ll y = a (x II y) C M 3
(x+y)l l z - - x ~ z+yl l z C M 4

(ax) lb = (a I b)x C M 5

a l(bx) = (a I b)x C M 6

(a x) I (b y) = (a]b)(x II y) C M 7
(x+ y) l z = x l z + y l z C M 8
x l (y + z) = x l y + x[z C M 9

O n (a) = a i f a ~ H D I

O n (a) = 8 i f a ~ H D 2

O , (x + y) =On(X) + On(y) D3

OH(Xy) = OIl(X)" On(Y) D 4

xr = x T1
rx + x = 7"x T2
a(rx + y) = a(rx + y) + ax T3

"rll x = rx TM1

(r x) ~_ y = r (x IlY) T M 2
¢1 x = 8 TC1
x[r = 8 T C 2

(Tx) l y = x l y TC3

xl(1"y)= x l y T C 4

'~n (r) = r D T
Tz(r) = • T I I

r ~ (a) = a i f a ~ I TI2
• / (a) = r i f a e l TI3

"h(x + y) = r i (x)+ zi(y) T I 4
Cz(xy) = ¢ , (x) • r , (y) TI5

2. The model of finite acyclic process graphs for ACP~

A process graph over A~ is a rooted, directed multigraph such that every node is
accessible from the root and whose edges are labeled by elements from A~. A process
graph is finite i f it has finitely many edges and nodes; it is acyclic when it contains
no cyclic path, i.e., there are no edges hi = si L.> si+l (i < k, li~ A~) and nodes sj (j ~< k)
such that

l o 11 Ik_ 1
So ~sj > ' ' " ~Sk=So (k~> 1).

ho hi hk-i

Let G be the collection of finite acyclic process graphs over A~. In order to define
the notion o f bisimulation on (3, we will first introduce the notion of &normal
process graph. A process graph g ~ G is 8-normal if whenever an edge

6

occurs in g, then the node s as outdegree 1 and the node t has outdegree 0. In

Algebra of communicating process.es with abstraction 83

an th ropomorph ic terminology, let us say that an edge

(~)---~ (~) is an ancestor o f s(s(Q ~ t(t(Q

if it is possible to move along edges f rom t to s'; likewise, the latter edge will be
called a descendant of the former. Edges having the same begin node are brothers.
So, a process graph g is 8-normal if all its 8-edges have no brothers and no
descendants .

Note that for g ~ G the ancestor relation is a partial order on the set of edges of g.
We will now associate to a process g raph g c G a unique g ' in 8-normal form,

by the following procedure:
(1) nondeterministic 8-removal is the el imination of a B-edge having at least one

brother ,
(2) 8-shift of a 8-edge

B

in g consists of deleting this edge, creating a fresh node t' and adding the edge

8

N o w it is not hard to see that the procedure of repeatedly applying (in arbi t rary
order) (1), (2) in g will lead to a unique g raph g' which is 8-normal ; this g ' is the
8-normal form of g. It is unders tood that pieces of the graph which have become
disconnected from the root, are discarded.

Example

g = ' - " -- = g ' "
a (2) - a (1) a

Fig. 1.

We can now define bisimulat ion between process graphs g~, g2 ~ G. First some
pre l iminary notions: a trace tr is a possibly empty finite string over A~; thus, or e A*.
With e(o') we denote the trace tr where all r-steps are erased, e.g., e(arrbrcr) = abc.

I f g ~ G, a path ~r: So"~ Sk in g is a sequence of edges of the form

10 ! 1 lk_ l
(~) ~ (~) , ' ' " , (~) (k ~>0)

ho hi hk-i

where the si are nodes of g, the hi are edges between si and si+~, and each li ~ A~

84 J.A. Bergstra, J. IV. Klop

is the label of edge hi. (The hi are needed because we work with multigraphs.) The

trace trace(Tr) associated to this path 7r is jus t lol~ . . . Ik-~.

2.1. Definition. A bisimulation modulo 7- (or ~'-bisimulation) between finite acyclic

process graphs g~ and g2 is a relation R on NODES(g t)×NODES(g2) satisfying the
fol lowing condit ions:

(i) (RooT(gl) , ROOT(g2)) C R.

(ii) For each pair (st, s2) ~ R and for each pa th 7r1: st -~ tl in gt there is a path

7r2:s2 --~ t2 in g2 such that (tt, rE) ~ R and e(trace(Trl)) = e(trace(Tr2)) (see Fig. 2(a)).

(iii) Likewise for each pair (s~, s2)~ R and for each path ~r2: s2--~ t2 in g2 there

is a path 7rl :sl -~ tt in gt such that (h, t2) ~ R and e(trace(~rl)) = e(trace(Tr2)) (see
Fig. 2(b)).

(a)

Fig. 2.

(b)

Let g~, g2 be in 8-normal form. Then gt, g2 are bisimilar modulo ~" (or ~'-bisimilar)
if there is a ~'-bisimulation between gl, g2.

Notat ion: gt ~% g2.

Note that for a ~--bisimulation R between gt, g2 we have: Doma in (R) = NODES(gt)

and C o d o m a i n (R) = NODES(g2). Also note that an equivalent definit ion is obtained
by letting rrt in Defini t ion 2.1(ii) consist of one edge, likewise ~r2 in (iii).

Strictly speaking we should say that R as in Definit ion 2.1 is a ~-bisimulation

f rom g~ to g2 ra ther than between g~, g2. Note that if R is a ~'-bisimulation from gl
to g2, the converse relat ion R -~ (defined by (s, t) ~ R-tC:>(t, s) ~ R) is a r-bisimula-)
t ion from g2 to gl.

2.2. Definition. Let gl, g2 E G be in 8-normal form. A rooted bisimulation modulo r

between gl, g2 is a b is imulat ion modulo ~- between gt, g2 such that the root of gt is
not related to a non-root node of g2, and vice versa.

Notat ion: gl *--~r~ g2.

2.3. Definition. Let gl, g2 E G with 8-normal forms g~,g~ respectively. Then

gl ~---r, g2 if g~ ---'~r* g~-

Algebra of communicating processes with abstraction 85

2.4. Examples

arb8 ~">r-~ ab~

ab ~-'%, ar(rb + rrb)

a (rb + b) ~-%~ ab

c(a + b) mr . c (r (a + b)+ a)

(Fig. 3(a)),

(Fig. 3(b)),

(Fig. 3(c)),

(Fig. 3(d)).

For a negative example, see Fig. 3(e). The heavy line denotes where it is not possible
to continue a construction of the bisimulation.

(a)

a a

" t ' , f b

6i '~;

a a

br ~ "t
jc-<:

-,.-..__, p

(b)

I ' J ' I
a ; a

b

b

(c)

C, C

(d)

b 'K~.- / " c

(e)

Fig. 3.

Since we intend to construct from G a model for ACP~, we will now define
operations + , - , II, U_, I, a,,, on G. (Cf. [31 where + , - , II, 11 were defined in the
context of the axiom system PA.)

(1) The sum g~ + g2 is the result of identifying the roots of g,, g2.

(2) The product g~ • g2 is the result of appending g2 at all end nodes of g~.
(3) The merge gl]l g2 1~ the 'cartesian product graph" of g~, g2, enriched by

'diagonal ' edges for nontriviai communication steps, as follows: if
a

a

86 J.A. Bergstra, J.W. Klop

is a subgraph of the cartesian product graph, then the ar row ~ (where c = a lb)
is inserted; result:

a

Q

(Here r has only trivial communicat ions: z I a = r I z = 8.)
Example. Let A, ={a , b, c, z, 6}, where the only nontrivial communicat ion is:

a lb = c. Then, writing ab for the graph

~ O.__.~_~b.~) b ~ 0 ,

we have: ab I[babr is the process graph as in Fig. 4(a).

a b

b '

T T 7"

a b

b b
a b

a a

c b

(a) (b) (c)

Fig. 4.

(4) The left merge g, 11 g2 is like g, [[g2 but omitt ing all steps which are not a first
step from g, or the descendant of such a first step.

Example: I n the situation of the previous example we have ab ~_ babz as the graph
in Fig. 4(b) and babr Lab as in Fig. 4(c).

(Note that we have omitted the diagonal edges labeled with 8, resulting from
trivial communicat ions . This is al lowed in view of our preference of 6-normal graphs.
Indeed, a 'd iagonal ' 8-edge can always be omitted by (1) of the 6-normalization
procedure.)

(5) The communication merge gt[g2 is harder to define since it is in general not,
as g~ 11 g2 is, a subgraph of g, [[g2. The reason behind the definition can be unders tood
by considering, e.g., zzaxlzzzby and evaluating this term according to the axioms
of ACP~.: zrax l r z zby= a x l b y = (a] b) . (x Ily).

We define:

g, Ug2=E { (t ~ s) . (g, llg2)s]t~ s is a maximal communicat ion in g, llg2
such that t can be reached f rom the root via a sequence of
r-steps}.

Algebra of communicating processes with abstraction 87

Here, 'maximal ' refers to the p.o. given by the ancestor relation. The sequence of

~--steps may be empty. Further , (g)s denotes the subgraph of g with root s.

Example. (i) Let g~ = ~'ard, g2 = rTbd. Let a I b = c be the only nontrivial communi-

cation. Then g~ IIg2 is as in Fig. 5(a) and g, Ig2 as in Fig. 5(b):

"• T a T d

(

(a)

Fig. 5.

r d
(b)

Here the heavi ly drawn edge ~ is an edge t - s as in the definition o f gllg2.

(ii) Let
b a a b

g~" :--a:::::::~ ~ and g2" ~._'F----~- ~-O,

where the, on ly nontr ivia l communicat ions are a l a = a ° and bib = b °. Then gl II g2
and g, lg2 are as in Fig. 6(a), (b) respectively:

IT 'o °
a "r a! " r ~ - r

r a

(a)
Fig. 6.

a

(b)

Using ACP~ we calculate with terms corresponding to g~, g2:

(ba + ~'a)l(ab+ rb)= balab+ ba I rb+ ralab+ ra I zb

= (b l a) - (a II b) + balb+ a lab+ alb = 8 + b°a + a°b+ ~ = boa + a°b.

(6) The def ini t ion of the operators On, ~'t on process graphs g e G is easy: they
merely rename some atoms (labels at the edges) into 8, ~" respectively.

This ends the defini t ion of the structure ~ = G (+ , . , II, II, I, ~-, ~,). The domain

of process g raphs (g i tself is not yet a model of ACP~ (e.g., ~d ~ x + x = x). However ,

we have the fo l lowing theorem.

88 J.A. Bergstra, J.W. Klop

2.5. Theorem
(i) Rooted r-bisimulation (~">r~') is a congruence on ~.

(ii) ~/--~r~ is a mode l o f ACP~.

Proof. (i) Let g, g' , h, h '~ G. We want to show that

' - - h' - - g' h' g--r~g &h~r~ ~ gllh~r~ II

and likewise for the other operators. Only the cases II, I1, I are interesting and we

start with II.
Suppose, then, that S is an r~--bisimulation between g, g ' and T is an rr-bisimula-

tion between h, h'. Let s be a typical node of g, s' of g' , t of h, and t' of h'. Then

we define the fol lowing relation S x T between the node sets of g II h and g' II h':

((s , t) , (s ' , t ')) ~ S x T ¢:~ (s , s ') ~ S & (t , t ') ~ T .

We claim that S x T is an r r -b is imulat ion between g II h and g' II h'.
Proof o f the claim. (1) Let (sl, tl) -% (sl, t2) be a 'horizontal s tep ' in g H h, where

u c A~. Let ((s~, tl), (s~, t~)) ~ S x T. Then tl -~ t2 in h and (h , t~) c T. Hence, a pa th
as in the definition of bisimulat ion can be found whose trace is external ly equivalent

to u and whose end point bisimulates with t2. This path can be ' l ifted' to g II h.
(2) Likewise for a 'vertical step' in g II h.
(3) (sl, t~)-~(s2, t2) is a 'd iagonal step' (a communicat ion step) in gl lh , and

((s~, h), (s~, t~)) ~ S × T. Now a path as required can be found f rom the data (s~, s'~)

S and (t~, t'l) ~ T and an inspection of Fig. 7.

SxT

),

'I"

Fig. 7.

The case of [L is easy since g ~_ h is a subgraph of g 1[h.
For the case of [we use the same nota t ion as above. We have to prove

g l h ~ r ~ g ' l h ' .

Algebra of communicating processes with abstraction 89

An rz-bis imulat ion be tween g [h and g'[h' can now be constructed as follows from

S x T. The graph g[h is now the sum of the ci- (g I[h)(s,,t,) (i = 1, 2) as in the definition
o f [and as indicated in Fig. 8(a).

gllh g g'l lh' g'

(a)

c 2

h

(b)

Fig. 8.

For the sake of clarity, we will formally distinguish the 'd iagonal ' edges from the
other ones; this can be done by a suitable renaming of the a lphabe t and adapt ing
the communica t ion function. Thus, if a lb =c, we adopt a fresh symbol c and
postulate a lb =_c. N o w the under l ined symbols do not occur in g, h which makes
it possible to speak in a formal way about 'd iagonal ' steps. Note that the bisimulation

S x T is also a bis imulat ion when diagonal steps are marked as such.
Now given a s u m m a n d p = c i - (g [[h)(s,,t,) of glh, we can find via S × T a corre-

sponding summand p ' = ci" (g' [I h')(s;,,;). It is easy to see that the step c, in g' [I h' is
also maximal in the sense of the definition of [. Clearly, p bis imulates with p ' via
the restriction of S × T to the appropr ia te area. In this way we find that g lh
bisimulates with g' [h'.

(ii) The p roof that ~/~"~r~ is a model of ACP~ is tedious and routine. We will

sketch some of it: the soundness of the axioms A1-7 is easy; e.g., associativity of
+, • and commutat ivi ty of + follow at once from properties of g raphs ; soundness
of A3, x + x =x, is a s imple consequence of properties of bis imulat ion and A6, 7
follow because the graphs in qd are in ~-normal form. The axiom groups for 0~ and
z1 are trivially sound. The r - laws T1-3 are proved sound by constructing the
appropr ia te rz-bisimulat ion. For an axiom as CM 1 an rz-bis imulat ion between the
graphs g [1 h and g [1 h + h ~_ g + g [h is constructed by connectix~g nodes in g ~ h,

h Jig, g [h to corresponding nodes in g [[h, where 'corresponding ' refers to the way
in which g~h, h llg, g[h are directly constructed from g [[h. Finally, axioms as
CM2-9 , TM1, 2, TC1-4 are easily dealt with. []

We will now analyse -"~--~r~" into an equivalence generated by cer tain elementary
graph reductions. This is done in [3] for z-bisimulation (without the condition
' rooted ') and in the absence of 8; these results will be the basis for the sequel. We

repeat f rom [3] the ma in definitions.

90 J.A. Bergstra, J.W. Klop

2.6. Definition. Let g e G
(i) A subgraph g' of g consists of an arbi t rary subset of the set o f edges of g

(plus their labels eAr) together with the nodes belonging to these edges.
(ii) Let s e NODES(g) . Then (g)~ is the subgraph of g consist ing of all nodes

and edges which are accessible from s (including s, the root of (g)~). We will call

(g)s a full subgraph.
(iii) An arc in g is a subgraph of the form as in Fig. 9(a), where u e A~. The

u-edge at the left is called the primary edge of the arc. If, in Fig. 9(a), n = m = 0,

the arc has the form as in Fig. 9(b) and is called of type I. I f n + m = 1, the arc has

the form as in Fig. 9(c) or (d) and is called of type II, I I I respectively. Arcs of type

I, II, III are called elementary arcs.

U ld ld

T

U

/ /

U

(a) (b) (c) (d)

Fig. 9.

2.7. Definition. On G we define the following reduct ion procedures:

[i] Sharing. Let g e G conta in nodes sl, s2 such that (g)s, is i somorph ic to (g)s2.

Then g reduces to g' where Sl, s2 are identified.
[ii] Removal of a non-initial deterministic r-step. I f sl ~ s2 occurs in g and the

outdegree of sl is one (so the displayed z-step has no brothers), and if, moreover,

s~ is not the root of g, then the nodes sl, s2 may be identified after removal of the

z-step. <

[iii] Arc reduction. In an arc, the primary edg~ may be deleted. The arc reduct ion

is called of type I, II, I I I i f the arc is of that type. Such arc reduct ions are also

called elementary.
So the subgraph as in Fig. lO(a) may be replaced by that in Fig. lO(b):

T 9" T T T T

~O ~ ~' O ~O ~O - • - ~ ~."

r

T T T T T

(a) (b)
Fig. 10.

Algebra of communicating processes with abstraction 91

[iv] Nondeterministic &removal, as explained in the beginning of this section.
Iv] &shift; also defined above.

If none of the reduct ion possibilities in [i]-[v] applies to g, then we call g a normal
process graph.

Notation. I f g reduces to g' by one application of [i]-[v], we write g o g'. The

transitive reflexive closure of ~ is denoted by --~.

2.8. Example
(i)

[i] [i]

C

[iii]
D

a
[iii]

a

|1

[i]

b• [iii]
a

I

C

\
Fig. 11.

(ii)

T

7"

T

b ~ r a
T

r r ~ ' ~ b

Fig. 12.

(iii)

[iii]

b z

a r /

92 J . A . B e r g s t r a , J . W . K l o p

[iii] ///

Fig. 13.

2.8.1. Remark. As the last example suggests, the process graph reduction --~ is in
fact confluent (has the Church-Rosser property). A proof of the confluency can be
obtained by the following trivial proposition (2.9) together with an analysis of the
'elementary diagrams' as in Example 2.8(iii) above, showing the weak confluency

property: if gl ~ g2 and gl "~ g3, then there is a g4 such that g2"~ g4 and g3-~ g4.
Establishing this weak confluency directly, is rather complicated though; much
easier is the following way, indicated in Remark 2.14. We will not need the confluency
of the graph reductions in the sequel.

The following fact is trivial.

2.9. Proposition. Every process graph reduction g~ ~ g2 ~ " " " must terminate event-

ually.

Without the routine proof we state the 'soundness" of the reduction pro-
cedure -~ w.r.t. <-"~rT"

Algebra of communicating processes with abstraction 93

2.10. Lemma. Let gl, g2 E G. Then gl "~g2 implies gt ~->r, g2.

2.11. Definition. (i) Let g s G be in 6-normal form. Let R be an r r -bis imulat ion
between g and itself. Then R is called an autobisimulation of g.

(ii) g is rigid if it can only be in autobis imula t ion with itself via the identi ty
relation.

2.11.1. Example. The process graph depicted in Fig. 14 is not rigid since it admits
the displayed nontr ivial autobis imulat ion:

T I / / "

b
/

/
f

f
J • j

b

Fig. 14.

Here R = { (S l , st) , (s2, s3) , (s3, s2) , (s4, S3), (s3, s4) , (Ss, s6), (s6, Ss) }.

2.11.2. Proposition. I f g, h are rigid and R is an rr-bisimulation from g to h, then R

is in fact a bijection f rom NODES(g) to NODES(h).

Proof. Suppose there are s~, $ 2 E NODES(g), t S NODES(h) such that (s~, t) ~ R,

(s2, t) s R. Now if R is a bis imulat ion from g to h, the converse of R, R -t, is a

bis imulat ion from h to g and the compos i t ion R -t o R is a bis imulat ion from g to

g, i.e., an au tobis imula t ion of g. Since. (st, s2) s R -~ o R, it follows from the rigidity
o f g that s~ = s2. []

2.12. Theorem. (i) Normal graphs are rigid.

(ii) I f gl, g2 are normal process graphs and gt ~"~rr g2, then gt and g2 must be identicaL

Proof. We will prove (i), (ii) s imul taneously with induct ion on the size of the process
graphs involved. To be precise: Let [g] be the number of edges of g. Consider the
statements:

9 4 J.A. Bergstra, J .W. Ktop

(i), : i f g is a normal process graph, and [g[~< n, then g is rigid.

(ii) .: if g~, gz are normal process graphs such that Ig l, Ig21 <~ n and g~ ~-~r, g2, then

gl = g2.
We will prove (i), & (i i) , with induct ion on n. The basis, (i)~ & (ii)~, is trivial. (Note

here that the one edge graph ----~o--~o is rigid.)

Induction step: suppose as induct ion hypothes is that (i)k & (ii)k holds for k < n.

To prove: (i) , & (ii),. We first prove (i),.

So let g with Ig[= n be normal. Suppose, for a p roof by contradict ion, that g is

not rigid; then there is an r~'-autobisimulation of g relating unequal nodes s, t. By
defini t ion of r~--bisimulation, none of s, t can be the root of g. But then the subgraphs

(g)s ,(g) , have at least two edges less t han g, i.e., [(g)sl ,[(g),l<~n-2. Clearly
(g)~ ~--~ (g), and hence z.(g)~ <"'>r.r "i"(g)t" (Here ~'.(g)~ results f rom prefixing a ~--edge

to (g)~.) Moreover (g)s, (g), are normal since they are subgraphs of a normal graph;

and since s, t are non-root nodes, (g)~, (g)t do not start with a 'determinist ic ' ~'-step

and hence also r(g)s, 7-(g)t are normal.

Now, since Ir(g)sl, I (g),l n - 1 , we may apply the induct ion hypothesis and

conclude that "r(g)~ = ~'(g), and hence (g)s = (g)t. But then g would admit a ---*-step,
[i]

contradic t ing the normali ty. Hence g is rigid and we have proved (i),.

Next we prove (ii)n, using the induct ion hypothesis (i)k & (ii)k (k < n) and (i),,.

So let gl, gz be normal such that gt ~---~:-~--r~- g2 and Ig, I, [g21 = n. By (i),,, the graphs g~, g2
are rigid. Let R be an r~--bisimulation from g~ to g2. By Proposi t ion 2.11.2, R is a

bi ject ion from NODES(gl) to NODES(g2). Fur thermore, we claim that R maps the

edges of gl bijectively to those of g2; more precisely:

Claim. (1) I f s -~ t , u ~ A , is an edge o f g~ and (s , s ')~R , then there is an edge
s' -~ t' in g2 for some t' with (t, t') ~ R.

(2) Likewise vice versa.
With the claim we are through, since R is then an i somorphism between labeled

graphs. (Intuit ively, this can easily be seen by not ing that a process graph g without

double edges can be considered as an algebraic structure, in the sense of model

theory, with universe NODES(g), a constant RooT(g) and binary relations a, b, c , . . . ,
the labels of the edges of g.)

Proof o f the Claim. (1) Let s--~ t be an edge as in (1) of the Claim. Let (s, s ')~ R

(see Fig. 15). Suppose there is not a 'direct ' step s' -~ t', (t, t') e R as we want. Then,

since R is an r~'-bisimulation, there is a path
T n ld T m

S r)~' S ") t " ; ; t r

from s' to t', (t, t ') c R (see Fig. 15) such that n + m # O . Say n # 0 (the other case,
m ~ 0, is similar). Going 'backwards ' from s" with R we find a node s'" in g~ such

" (s",s") that s ~ s , ~ R. Since n # 0 and because R is a bi ject ion between the
node sets o f g~, g2, we have s ~ s", i.e., n ' # 0. Likewise, the pa th s" ~ t" ~'~,~ t' in
g2 is carried via R backwards to gl to yield a pa th

. l-kll.i -1

S m)) t * .

Algebra of communicating processes with abstraction 95

gl g2

t "

Fig. 15.

By the bijectivity of R, t-- t*. But then there is an arc in g~, in contradiction with
the normality of g~. Hence, there is a direct step s' -% t', (t, t') c R.

Part (2) of the Claim is like (1), with g~, g2 interchanged. []

2.13. Corollary. Let gl, g2 ~ G. Then the following are equivalent:

(i) gl <"~rr g2,
(ii) gl, g2 reduce (by [i]-[v]) to the same normal graph,

(iii) g~, g2 are convertible via applications o f [i]-[v].

Proof. Suppose (i). Reduce gl, g2 to normal g'i, g'2; this is possible by Proposition
2.9. Since reduction -~ is sound w.r.t. ~'-~r, also g~ ~-'>r~g~. By Theorem 2.i2(ii) it
follows that g'l and g~ are identical; hence (ii). From (ii) we trivially have (iii).
From (iii), since reduction is sound, we have again (i). []

2.14. Remark. As a further corollary (which we do not need here) one obtains the
confluency of the graph reductions [i]-[v]. This immediately follows from the
termination property of the graph reductions (Proposition 2.9), together with Lemma
2.10 and Theorem 2.12(ii).

2.15. Corollary. Let g~, g2 E ~. Then gt ~--~-r~rg2 i f f g~, g2 are convertible by means o f
the fol lowing reductions:

[i] sharing (as in Definition 2.7);
[ii] removal o f a non-initial deterministic 1--step (as in Definition 2.7);

96 J.A. Bergstra, J.W. Klop

The elementary arc reductions:

[iii]I

[iii]II
T T

[iii]III

flu
Proof. Every arc can be filled up with elementary arcs, e.g.:

u may yield u

T

T T

T

Therefore, every arc reduction gt ------o g2 can be replaced by a conversion consisting
[i i i]

of elementary arc reductions of type [iii]II or [iii]III:

g l ~ [iii] / g2

[iii]lI N / [iii]lI

or [iii]lll N / or [iii]llI steps

s t e p s " V

[]

In the sequel, when closed terms in the signature (+, - , a ~ A,) are mentioned,
we will always mean terms modulo the basic congruence given by the axioms A1, 2, 5
in Table 2 (associativity of +, -, and commutativity of +). To such terms we will
refer as '+, .-terms' or as 'basic terms'.

Algebra of communicating processes with abstraction 97

E.g., a (b + c) d and a (c + b) d are (representat ions of) the same basic term;
a(bd + cd) is (a representat ion of) a different basic term.

2.16. Definition. Let t be a basic term.
(i) Then [t] denotes the interpretat ion of t in ~ ; so It] is a process graph.

(ii) [[t~ denotes the interpretat ion of t in ~/*--~r~ ; SO [[t]] is a process graph modulo

r~--bisimulation.
(iii) Let g ~ G. Let g ' be the process tree obtained f rom g by 'unraveling' the

shared subgraphs . Then ~g~ is the basic term corresponding to the tree g'.
Example. I f g is , then g ' ! [~g~ = dc+a(bc+e) .

d

e

2.17. Proposition. Let gl, g2 E G and suppose gl "~ g2 via an elementary graph reduc-
tion [i], [ii], [iiiI, II, I I I] , [iv], Iv]. Then the basic terms ~g~ and ~g2~ can be proved
equal using the A-axioms (about + , . , 6) in Table 2, A1-7, and the 7-1aws T1-3 (see

the diagram below).

gl :- g2
elementary graph

reduction step

3
t~ t2

AI-7, TI-3

Proof. In case [i], t~ ~ t 2. Case [ii] translates into an appl icat ion of T1 (or several
such). Case [iiiI]: removal of a double edge. This translates into applications of
x+x=x(A3).

Case [ii i lI] t ranslates to terms as an application of ~'(x + y) + x = z(x + y), where
x = uz (see Fig. 16(a)), or, if y is empty, r x + x = zx (T2). The former equation
follows f rom T2 and A3:

7"(x + y)+ x = r(x + y)+ x + y+ x = 1"(x + y)+ x + y = ~'(x + y).

Case [i i i lII] t ranslates to terms as an application of

u (~ ' z + y) = u (~ z + y) + u z (uEA.~)

98 J.A. Bergstra, J.W. Klop

(see Fig. 16(b)). The case that u = ¢ follows from T2; the case that u # ~- is just the

third r-law T3; for z or y empty, an appl ica t ion of T1 is needed. []

(a) (b)

Fig. 16.

Now we can prove an impor tan t fact.

2.18. Lemma. S u p p o s e t, s are basic terms. Then:

~1~-->~ ~ t = s ~ A1-7, T1-3 ~ t = s.

Proof. Suppose ~/<-">r~- ~ t = s. Then [t]--r~-[s]. By Corol lary 2.15, the graphs [t],
[s] are convert ible via e lementary graph reductions:

[t] - - g o m g , g , - - [s] . (H e r e - - i s ~ o r , , - - .)

Now Proposi t ion 2.17 states that

A1-7, T1-3 ~ } [t] } = ~gt} }g.} = }[s]}.

Since A1-7 ~ }[t]~ = t and likewise for s, we have A1-7, T1-3 ~- t = s. []

By a similar me thod (essentially by leaving out all reference to r) one proves the
following lemma.

2.19. Lemma. Suppose t, s are basic terms not conta in ing ~-. Then:

~ / ~--r~ ~ t = s ~ A 1 - 7 F- t = s.

2.20. Elimination Theorem. L e t t be a closed term in the s igna ture o f ACP~. Then,

using the a x i o m s o f ACP~ excep t A1-7 a n d the z - laws T1-3 as rewrite rules f r o m lef t

to right, t can be rewri t ten to a basic term t'.

For the proof , see Appendix A.

Algebra of communicating processes with abstraction 99

Combin ing the previous results we now have, writing AT for the set of axioms
A1-7, T1-3, the fol lowing result.

2.21. Lemma

O)

AC PT - A T

t t~

A C P ~

3
t3 t 4

A T

ACPT - A T

/.e., i f ACP~ F- t I = t2 , then tl and t 2 c a n be reduced by means o f the rewrite rules

(f rom left to right) associated to the axioms in A C P ~ - AT to basic terms t3, t4 which

are convertible via the AT-axioms.

(ii) Every term t can be proved equal in ACP~ to a basic term t'; moreover, t' is

unique modulo AT.

Proof. (i) Suppose ACP~ ~- tl = t2. By the El iminat ion Theorem 2.20 we can rewrite
t l , t 2 to respectively bas ic terms t3, t 4 using the axioms in ACP~ - A T as rewrite rules.
By the fact that qd/~'-~r~ is a model of ACP~ we have ~/~----r~ ~ t3 = t4- Hence (Lemma
2.18) AT ~- t 3 = t 4.

(ii) Immediate f rom (i). []

2.22. Examples. The fol lowing examples illustrate Lemma 2.21(i):

(i) (r a + a) [b ~ ra[b

J r a l b + a] b

alb÷alb alb

(ii) arl] b a L b
$

a (r l l b)
$

a (r ~ _ b + b ~ _ r + r [b)

a (rb + br + 8) = a(Tb + br) = a(rb + b) = arb = ab

100 J.A. Bergstra, J.W. Klop

(iii) (ra+a)ll b

ra~_b+a~_b
$

r(al]b)+all b

r (a[Lb+b[La+alb)+a l [b

r(ab+ ba+ a lb)+ ab
(*)

ra~_b
$

r(a b)

r(ab+ ba+ alb).

Here, (*) is an instance of the (from AT) derivable rule r (x + y) + x = r(x +y).

As a fur ther corol lary we have the following.

2.23. Theorem. (i) ~/~-%~ is isomorphic to A~, the initial algebra of ACP~.

(ii) ACP~ is conservative over ACP (the latter over the alphabet A). Le., for r-less

t e r m s tt, /2:

ACP,. ~- t~ = t 2 ~ ACP ~ t~ = t 2 .

Proof. (i) We have to prove

~/ ~--~-,,. ~ s = t ¢¢, A C P , . ~ s = t .

(~) is Theorem 2.5(ii).
For (~) , suppose ~/~---r~ ~ S = t. Then also ~/*'%~ ~ s ' = t' for some basic terms

s', t' such that ACP~ ~ s = s', t = t'. The result now follows by Lemma 2.18.

(ii) Suppose tl, t2 are closed terms in the signature of ACP (so r-less and r~-less),

and suppose ACP~ ~ t~ = t2. Let t3, t4 be basic terms such that ACP~ ~- tl = t3, t2 = t4.

Since t3, t4 can be ob ta ined by rewrite rules A C P ~ - A T , we have ACP~-t~ = t3,

t2 = t4. Now, by Lemma 2.19, A1-7 ~- t 3 = t 4. Hence, ACP ~- t~ = t2. []

3. The Expansion Theorem for ACP~

The Expans ion Theorem is an impor tan t algebraic tool since it helps in breaking

down a merge expression x~ II x2 II... II xk. For CCS, an Expansion Theorem is proved
in [12]. For ACP (i.e., ACP~ without r) , the analogous theorem is proved in [5]. As

an example we ment ion the Expansion Theorem for ACP in the case k = 3:

xllyll z = xll (yll z) + y l l (z l lx)+ zll (xlly)+(ylz)ll x+(z lx)Ey+(x ly) l l z.

In [5], the Expans ion Theorem is proved by a straightforward induct ion on k starting
from the fol lowing assumptions:

(a) the handshaking axiom xlylz -- 8 (i.e., communicat ions are binary) ,

(b) the axioms of standard concurrency for ACP (see Table 3).

Algebra of communicating processes with abstraction 101

Table 3.

(xll y)U_z=xU (y[Iz)
(xly)ll z= xl(yE z)
x ly=ytx
xlly=yll x
xl(YlZ)=(xlY)lz
x tt (Y tl z) = (x II y)II z

The s tandard concurrency axioms are fulfilled in the main models of ACP, to wit
the term model (initial algebra) A,o of ACP, the projective limit model A ~ and the

graph model A ~ (see [4]).
For ACP~ this is no longer true; all axioms of standard concurrency hold in the

initial algebra A~' of ACP~ except the second one.

Example

(alrb)ll c=(alb)c and al(rbll c)=(alb)c+(alc)b+alblc.

For a proof of the validity of some of the axioms of standard concurrency in A~',

see Appendix B.
Fortunately, the Expansion Theorem carries over from ACP to A C P , in exactly

the same form. This is what we will prove in this section. The underlying intuition
is that II and I1 behave in ACP, just like in ACP, with the convention that r cannot
communicate. For "[" the same is true if its arguments x, y are 'saturated' in the
sense that they have been maximally exposed to the rewrite rule associated to
T2: zx -> rx + x. As an example, consider ra I b. Evaluated according to ACP, we have

r a l b = (r l b) a = a a = &

However, according to ACP~:

 alb=alb,

which may be different from 8. Now suppose that za is made 'saturated' in the
above sense, i.e., replaced by ra + a. Then, also by ACP,

(ra+ a)lb= zalb+ alb=(rlb)a+ alb= a+ alb=alb,

just as in ACP~.
Below, the proof of the Expansion Theorem will also entail the associativity of

I[. Nevertheless, we have given in Appendix B a totally different proof of the
associativity of II in A~', by means of an induction to term complexity. This is done,
because the latter proof yields some useful identities (some of the axioms of standard
concurrency) and for the curious fact that the proof requires an application of the
third z-law (T3). (In computations with and applications of ACP~ the first two
r-laws turn up frequently; this seems not to be the case for the third z-law.)

102 J.A. Bergstra, J.W. Klop

3.1. Definition. T is the set of basic terms in normal form w.r.t, the rewrite rule

associated to A 4 : (x + y) z ~ xz + yz. (This means that if t ~ T, then [t], the interpreta-

tion of t in the domain of process graphs G in Section 2, is a process tree.)

3.2 . N o t a t i o n . Let s, t ~ T. We write s__= t, if s is a summand of s, i .e. , i f t = s or

t = s + r for some r.

Example. a (r b + c) E a (r b + c) + ab.

3.3. Definition. Let x e T. Then x is saturated if

r y E x ~ y~_x.

Example. (i) b + ra is not sa tura ted but becomes so after an appl icat ion of the

r- law T2 : b + ra + a.

(ii) b + r (a + re) + a + re + c is saturated.

3.4. Proposition. Let x ~ T. Then there exists a saturated y c Tsuch that ACP~ ~- x = y
(in fact, even T2 F- x = y) .

3.5. Notation. We will denote by ~ a saturated y as in Proposi t ion 3.4. For definite-

ness, we take y of minimal length. So, e.g., b + ra = b + ra + a.

The next proposi t ion says that a merge in ACP~ (anyway in its initial algebra

AT) can be carried out by t reat ing the atom r as if it were an 'ordinary ' , noncom-

municat ing atom. Formally, this can be expressed by extending the a lphabet with

a fresh symbol t (acting as a s tand- in for r) which does not communicate , replacing

all r 's in a merge by t and after evaluat ing the merge restoring the r ' s by means of

the operator ~{,}. The same is t rue for 4 ; for I it is true under the condit ion tha t the

arguments are saturated. Thus, we have the following proposi t ion.

3.6. Proposition. Let x, y ~ T be terms over the alphabet A,. Le t t ~ AT and ex tend the

communicat ion funct ion on AT to (A t3 {t})~ such that t does not communicate. Further,

let xt be t h e term "resulting f r o m replacing all occurrences o f r by t. Then:
(i) ACP~ ~- x l l y = r { , } (x t l l y ') ,

(ii) A C P , ~ xll y = r{,}(x'[[_y'),

(iii) ACP~ ~- ly=

P r o o f . (i) Let

x = (r) + ~ a , + ~ bjx~+~ rx'~ a n d Y = (r) + E c t + E amy" + ~ "r.v~

Algebra of communicating processes with abstraction 103

where a~, bj, ct, dm ~ A. Then

xlly=xll y+yll x+xly =

(ry) + E a~y

(~x) +X c,x

(,Ir) +(2 ,Ic,)
(Y a, lr) +X a,[c,

(Z bjxjlr) +Y~ b~lc,

=zl) +ly c,

+E bj(xSlly) +E r(xZlly)

+E dm(y" llx) +E r(ygllx)

+Z a, l d~" +[Y a, lryg

+E bjx~ld~" +[E bjx~lzyg
+Y. rxZld~" + E rxZlry~

+

+

+

+

+

Here the five enclosed summands can be skipped, in view of the following claim.

Claim. x'~_x& y'~_y ~ x' ly '~xlyEr(xl ly) .
Proof of the Claim. If x 'Ex, y'~_y, then by the linearity laws CM8, 9 for "'1" at

once: x'ly'Exly. Further, xly~_ r(xlly) follows since

ACP, ~- r(x Ily)= r(x~_y+ y l x + xly)-- r(x~_y+ yll x + xly)+ xly.

So, e.g., the summand ~ a,l~y;;--Y~ a, ly~-Y, r(ygllx) (since a, Ex); likewise, the
other four enclosed summands can be shown to be summands of non-enclosed
summands. On the other hand, the give corresponding summands in ro}(x' II y ') are
equal to 8, since t does not communicate. The remaining summands pose no problem,

e.g.:

Y~ bAx'lly)= r{,~ Y~ bj(x~'llY')

follows by

r{,~ ~, bj(x~' ll y ') = Z bjrt,~(x~' li y')

and the induction hypothesis

x~ ll y = r~,~(xj' ll y ')

(induction on the sum of the term complexities).
(ii) The case of 11 is similar to that of II.

(iii) It is easy to show that a saturated term ~ e T can be decomposed as follows:

n m l

~ = (r) + Y. a , + E bye+ Y'. "r2k,
i = 1 j = l k = l

where ai, bj ~ A, n, m, 1 I> 0, and the ~k are again saturated. Note that the length of

2k is less than that o f 2. We will use this for an induct ion on the lengths o f ~,)7 in
the s tatement to prove.

104 J.A. Bergstra, J.W. Klop

We consider a typical example; the general proof involves only greater notational
complexity. Let

"2 = a + bXl + 7~2 + x2,

)7 = 7+ c+ dyl + 7372+)72.

Then

 1)7 =

a17 +alc +aldy,

bx,[7 +bx,[c +bx, ldy,

+ al~=

+ bx,[~2
"4- '/'X2 1 7y2

+al)7 +

+ bx, I)72 +

Note that the enclosed summands can be skipped, since (by virtue of the saturation
requirement) they are equal to other summands: e.g., a]D72 = a [)72 (by axiom TC4),
bx~[~'fi2 = bx~ I)72. Now these are just the terms which are 'lost' when evaluating
7~,~(~' I)7') (since t does not communicate). Namely:

~, ly '=

aJt +alc +aldy; +8 +a[)7~ +

bx',lt +bx',lc-i-bx~ldY'~ + 8 +bx~lfi~ -4-

6 + 6 + 8 + 6 +8 +

- - t - - t t ~]t +x2lc +x2ldy, +8 +~[)7~

To see that 7~,~(~'[)7 t) =~[)7 we can inspect the summands separately (since 7~0
distributes over +). Indeed, a i r = 7~t~(alt)=6; and, e.g., ~2]dy~= 7~o(~'2[dyt~) fol-
lows by the induction hypothesis, using the fact that dy't =-@'~. []

In the same way one can prove the following proposition which generalises
Proposition 3.6(i) and is of independent interest.

3.7. Proposition. (i) Let I ~_ A be
{ c [3 i e I, a ~ A , ila - - c } .) Then, in A'~,

7,(x II y)= 7,(7,(x)II 7,(7)).

(ii) Moreover, let (AIA) n I = 0. Then,

71(x [[y) = 7,(x)[I 7,(y).

3.8. Corollary. A~' ~ x II (y II z) = (x Ily)II z

such that I [A = { 8 }. (Here I [A =

in A~,

Algebra of communicating processes with abstraction 105

Proof. Let t be as in Proposition 3.6. Note that Proposition 3.6(i) entails (x]] y) t =

x' Ily'. Now:

xll(yllz)= ..~(x'll(yllz)')= ..~(x'll(y'llz')) (% ..~((x'lly')llz')=(xlly)llz.

Here, (*) follows from the associativity of II in ACP (see [2]). []

3.9. Expansion Theorem for ACP, . L e t c o m m u n i c a t i o n be binary. Then, in A ~ ,

x, ll...llx~= X x, llx~,+ y~ (x, lxj)llx'L
l~ i~k l<~i<j<~k

where X ~ is the merge o f x l , . . . , Xk except xi, a n d X~k j is the merge o f x , , . . . , Xk except

xi, xj (k ~> 3).

Proof

x, I I II xk = ~, II--II ~k = ~.~(~', I I II ~L)

= g ~.~(~IE (£~:)') +g ~.~((~; I~j) E (£~J) ')

~-~,~xj) E ~-~a(xk) (2.)Z ('.~,~(~3E~-~,~(x~,)')+Z (',-~,~;I - ' -"J '

- - i - I - - =Yx, EXk X(~,l~j)ll g~ j

= X x, II x L + X (x, I xj)ll x~J.

Here, (*) is the Expansion Theorem for ACP (see [5]) and (**) is by Proposition
3.6. []

Appendix A. Termination of ACP. reductions proved by recursive path orderings

In this appendix We will prove the termination result in the Elimination Theorem
2.20 by the method of recursive pa th orderings as in [7]. Since we will give a slightly
different presentation of recursive path orderings, a short account of this method
will be given. Our presentation replaces Dershowitz's inductive definition of the
recursive path ordering by a reduction procedure (which may be seen as an 'opera-

tionalisation' of that inductive definition). This reduction procedure provides a
somewhat easier notation in applications.

We start with the basis of the recursive path ordering method, the Kruskal Tree
Theorem. First we need a definition.

A.1. Definition. (i) Let D be the domain of finite commutative rooted trees whose
nodes are labeled with natural numbers; alternatively one may consider an element

106 J.A. Bergstra, J.W. Klop

t of D as a part ial ly ordered multiset of natura l numbers such that t has a least

element.

Example

t = 3

/ 1 \
5 7 8

I I
9 0

/ \
I 5

We will use the sel f -explaining notat ion t = 3(5, 7(9), 8(0(1, 5))). This notat ion is

ambiguous since the ' a rguments ' of the 'opera tors ' may be permuted, e.g., also

t = 3(8(0(5, 1)), 5, 7(9)).

(ii) Let t, s s D. We say tha t s is covered by t, nota t ion s E t, if there is an injection

¢: NODES(S)~ NODES(t) which is an order-preserving i somorphism and such that

for all nodes a ~ NODES(S) we have: l abe l (a) ~< l a b e l (~ (a)) where <~ is the ordering

on •.

Example. s = 2(9, 7(4, 0)) E t as in (i):

s = 2 --- ~ _ _ - ~ 3 = t

/ \ /1\
9.. 7 ~ 5__ 7-.~8

" % \ _ I I
4 0 "~9 0

, . / \
~ "~5 1

Clearly, E is a p.o. on D. N o w there is the fol lowing beaut i ful theorem.

A.2. Kruskal Xree Theorem. Let fi, t2, t 3 , . . , be a sequence in D. Then for some

i < j : t i ~ tj.

In fact, this is not the most general formula t ion of the theorem (see [7]). The

fo rmula t ion there is s t ronger in two respects: the l inear ordering of the labels (in

our case 1~1) can be taken to be a partial order which is wel l - founded; and secondly,

Kruskal ' s original fo rmula t ion concerns noncommuta t ive trees and an embedding

as above must also respect the ' left-to-right' ordering. Clearly, that version implies

immedia te ly the above s ta tement of the Tree Theorem. For a short proof, see [8].

The next definit ion is f rom [7].

A.3. Definition. The p.o. ~ on D is defined induct ively as follows: t = n (h , . . . , tk) l:>

m (s l , . . . , s t) = s (k, l>~O) iff

Algebra of communicating processes with abstraction 107

(i) n > m a n d t ~,. si for all i = 1 , . . . , l, or

(ii) n = m a n d { t l , . . . , tk} t:>t> { S l , . . . , St} where t:>t> is the p.o. on mul t ise ts o f

e lements o f D i n d u c e d by t:>, or
(iii) n < m a n d t i ~ s for s o m e i ~ { 1 , . . . , k } .

It is imp l i c i t in [7] tha t an equ iva len t def in i t ion o f t> is the fo l lowing.

A.4. Defini t ion. T h e p.o. t:> on D is def ined induc t ive ly as fol lows:

(a) t = n (t l , . . . , t k) ~ > m (s l , . . . , St)=S (k, l~O) iff
(i) as above , or

(ii) as above , or

(i i i) ' s = t~ for some i ~ { 1 , . . . , k}.
(b) t> is t rans i t ive .

(Here the cases (i), (ii), (i i i) ' may over lap. The t rans i t iv i ty has to be requ i red

explici t ly now.)

A.5. Example

t =

/
6

5 t:> 4 = s

\ / \
7 6 5 4

! / \ I \
8 6 8 6 6

/1\
8 8 8 8

Proof. By (i) f r o m Def in i t ion A.3, t t> s if
(a) t t > 6 a n d (b) t t> 5 and

/ \
6 8

(a) fo l lows by (iii) o f Def in i t ion A.3;

(c) t t> 4

/ \
6 6

8 8 8 8

(b) fo l lows by (ii) and 7 t > 8 (by (iii)).
I
8

(c) fo l lows f r o m (d) t t>6 and (e) t t> 6

8 8 8 8

108 J.A. Bergstra, J.W. Klop

(d) is by (iii) and (e) is so by (iii) since

7 t> 6 (by (i), (iii)). []

I / 1 \ \
8 8 8 8 8

So establishing that t t> s requires a miniature proof. Another presentat ion may
be more convenient: instead of by the inductive definition above we can also define
t> by an auxil iary reduction procedure as follows.

Let D* be D where some nodes of t ~ D may be marked with *. E.g.,

3" (1 ,2*(4)) = 3* 6 D*.

/ \
1 2*

I
4

Notation. I f t = n (t l , . . . , t k) or t = n * (t i , . . . , t k) , t h e n t * = n * (t ~ , . . , t k) .
(The marker * can be unders tood as a command to replace the marked term by

a lesser term.)

A.6. Definition. On D* a reduction relat ion =* is defined as follows:
(0) n (h , . . . , tk)=* n * (h , . . . , tk) (k>-O),
(1) if n > m, then n * (h , . . . , tk) =*" m (n * (/ ') , . . . , n * (t))

(k~>0, s~>0 copies of n* (f)) ,

(2) n * (t l , . . . , t k) = * n (t * , . . . , t * , t E , . . . , t k) (k >>- l, s ~> O copies o f t*),
(3) n * (t i , . . . , t k) = * t , (i e { 1 , . . . , k } , k > ~ l) ,
(4) if t =* s, then n (- - , t, - -) =* n (- - , s, - -) .

Furthermore, =*7 is the transitive reflexive closure of =*.

(In fact, (4) is superfluous for the definition o f=* , ; wi thout it one easily derives:
if t =* s, then n (- - , t, - -) =,.~ n (- - , s, - -) .)

We are only interested in *-free t ~ D ~_ D*. Now we have, by a tedious but routine

proof which is omitted, the following proposition.

A.7. Proposition. Let t, s ~ D (i.e., not containing *). Then"

t=~> S i f f t ~ S.

A.8. Example. (i) 4=,-4* =~ 3(4", 4*)=* 3(2(4"), 4*)=* 3(2(1), 4*)=,*. 3(2(1), 0).

Algebra of communicating processes with abstraction 1 0 9

6

(ii) (Cf. Example A.5):

t = 5

/ \
6 7

I
8

5 •

/ \
6 7

8

4

5* 5* 5*

/ \ / \ / \
6 7 6 7 6 7

I I I
8 8 8

=:=p-~

5

/ \
6 7*

I
8

::=:::t~'~

4 6 / \
5* 5*

/ \ / \
6 7 6 7

I I
8 8

4

/ 7 \
5 4

/ \ / \
6 8 6 7

I
8

=z~l>

6

4

/ 7 \
5 4

/ \ / \
6 8 6

=~,,

/ 7 \
6 5 4 6

/ \ / \
6 8 6 6

/ \ ~ .
7* 7* 7* 7*

I I
8 8 8 8

/ / \
5

/ \
6 8

4

/ \
6 6

8 8 8 8

7 •

I
8

In [7], the following facts about r> are proved.

A.9. Proposition. t~ is a partial order.

The proof requires a simple induction to show the irreflexivity.

A.10. Proposition
(i) n (t l , . . . , t k) t>n(t2 , . . . , tk),

(ii) n (t l , . . . , t k) t ~ t i (1 ~< i<~k),
(iii) t > s =:> n (. . , t , . .) t > n (. . , s , . .) ,
(iv) i fn > m then n (t l , . . . , tk) t> m (t l , . . . , tk).

110 J.A. Bergstra, J. W. Klop

Proof. Using Proposit ion A.7, (i)-(iii) are immedia te ; e.g., (ii): n (f) =*, n*(/')=*-ti
and (i): n (tl , . . . , tk) =*" n * (t l , . . . , tk) =t, n(t2, . . . , tk).

As to (iv): n(i') =~ n * (l') =~ m (n * (i ') , . . . , n * (r)) =,,> m (t l , . . . , tk). []

Using Proposit ion A.IO one easily shows the following.

A.11. Proposition. s e t ===> t ~ s.

From this we have the following theorem.

A.12. Theorem (Dershowitz) (The terminat ion property for the recursive path order-

ing t>). t> is a w e l l - f o u n d e d par t i a l order.

Proof. Suppose to t> tl t > t 2 t> • • • is an infinite descending chain w.r.t, t>. Then, by
the Kruskal Tree Theorem A.2, ti---tj for some i < j . So by Proposit ion A.1 l, t~ ~ h.
However, since t> is a p.o., this contradicts t~ t> tj. []

A.13. Application to ACP~.. We want to prove that the rewrite rules (from left to
right) associated to the axioms of ACP~ except A1,2, 5, C1 ,2 and T1,2, 3 are
terminating. These rewrite rules have, in tree notation, the form as shown in Table
4 below.

Note that the occurrence of II in the RHS of the rules CM3, CM7 prevents us to
order the operators directly in a way suitable for an applicat ion of the terminat ion
property of recursive pa th orderings.

Therefore, we will rank the operators II, [L, [in the following way. Define the
weigh t [TI of a term T as follows:

l a l = I~1 = 1 ,

[x [] y[= Ixl +]yl for [] = -, II, II, l,

Ix + Y l--max{Ixl, lYl},

la . (x) l = I~,(x)l = Ixl.

Now the r a n k of an operator II, [l, I is the weight of the subterm of which it is the
leading operator. Operators other than It, ~l, I need no rank.

The ranked operators II,, ~_,, I,, +, ", all, ~'i are partially ordered as follows:

II.>ll . .I . II., I . > II+-, II.,ll + , l . > ' > + a,,, ~ , > -

(see Fig. 17).
Now consider a closed ACP,- te rm T and obtain the ranked term Tr by assigning

to all operators in T their rank.
E x a m p l e

T = (ab[l cd)~_ (Tq I (r+ u v))

Algebra of communicating processes with abstraction 111

°°. °°°
\ /

/ \
113 13 \ /

/ \
L2 [:

I
+

Fig. 17.

will be ranked as

Tr=(ab 114 cd) 118 (~'q 14(r+ uv)).

To Tr we associate an e lement t s D by writing down the formation tree of T~:

L8

114 ~ I,
/ \ /

/ \
a b

/ \ / \
c d T q

\
+

/ \
r

/ \
U /)

(In fact, we must assign to the a, ~', II~, lln, In, +, ", all, ~, natural numbers correspond-
ing to the p.o. in Fig. 17 above. To all atoms we assign, say, 0.)

It is impor tan t to note that the definition of the rank of II, 11, I is such that a

rewriting in term T does not cause the rank of operators 'higher ' in the format ion
tree of T to increase (it may decrease). This is effectuated by the clause for + in

the def ini t ion of 'weight ' . Indeed, if T--> T' is a rewriting by one of the rewrite rules

in Table 4, then I TI t> I T'[, i.e., the weight cannot increase in a rewriting. Moreover,

if ITI~>IT'[, then for each context C[]: IC[T]I~IC[T'][.

Now we have the fol lowing theorem.

A.13.1. Theorem. The rewrite rules in Table 4 have the termination property.

112 J.A. Bergstra, J. W. Klop

Table 4. Rewri te rules assoc ia ted to the ax ioms o f A C P , - - { A 1 , 2, 5; C1, 2; T1, 2, 3}.

A3. +

/ \
X X

A4.

/ \
+ z

/ \
x y

+

/ \
/ x / \

x z y z

CM5, 6.

CM7.

r / \ / \
b I x

/ X / \
a x a b

/ \ i / \ ,
/ N / N / \ / N

a x b y a b x y

A6.

/ \
x 6

A7.
. . - - . ~ ~

/ \
x

C3. I
/ \

6 a

6

C M l . II
/ \

x y

CM2. ~_

/ \
a x

Likewise TM I.

CM8, 9.

D I , 2 .

D3.

+ D4.

/ \ / \ / X
x y y x x y

/ \
a x

T I I - 5 :

/ \
+ z

/ \
x y

OH

I
Q

Likewise DT.

o3 H

I
+

/ \
x y

+

/ N

/N / N
x z y z

C3H I~

I
/ \

x y

ana logous to DT, D I-4.

a, 8

/ + \
OH OH

I I
x y

/ \
aH OH

I I
x y

CM3.
I1

/ \
Y

/ \
a x

Likewise TM2.

C M 4 . ~_

/ k
+ z

/ \
x y

IX
a I1

IX
x y

;- +

/ \
II II

I\ /\
X Z y 2

T C I , 2.

TC3, 4.

I
/ \

7" X

i
/ \

Y / \
7" X

8

I
/ \

x y

Algebra of communicating processes with abstraction 113

Proof . Let ~ be the recurs ive p a t h o r d e r i n g i n d u c e d by the p.o. on the r a n k e d

operators as d e f i n e d above . We wi l l s h o w that for each c lo sed ins tance t ~ s o f the

rewrite rules , w e h a v e t ~ s. In order to do so, we use the a l ternat ive d e f i n i t i o n o f

t> as +=~> (the trans i t ive c losure o f =*-). W e wi l l treat s o m e typica l cases (see T a b l e s
5 and 6). []

T a b l e 5 .

A 3 . + = ~ + *

/ \ / \
X X X X

==~ X

A4. / \
+ z

/ \
x y

+/\
/ \

x y

+

/ \
IX IX

+ z + z
/ X / \

X y X

=~ +

/ \
/ \
+* z +* /k z

/ \ / \
x y x y

+

/ \
IX IX

x z y z

C M I .
Ilixl+t,j =~ ilj~j+~,~

/\ /\
x y x y

+

II~l+t.,-j I1" ixl+l,.i I1" Ixl+bl

IX IX IX
x y x y x y

11 Ixl+bl II I.~l+l.,r

/< /X
II* * * 1--i+l;l II N+i.,l II l.,~÷b i

/ \ 1\ 1\
x y x y x y

II~!+L,.I

/\
x y

II.~!+!,.I

/X
II~.*,l÷l., t

/ \
x y

I1" I.~1+1.,1

/\
x y

+

11 Ixt+bl U I.,t+1.,-I Ilxl+l,-i

/\ /\ /\
x y x y x y

1 1 4 J.A. Bergstra, J.W. Klop

T a b l e 6.

C M 3 .
~_ I+l-,l÷L.,t =*"

/ \
y

/ \
a x

HI *t.~l+b!

/ \
y

/ \
a x

I + t . ' : t+b ' l

/ \
Y

/ \
a x

~- J*+l.~l+b'l

/ \
Y

/ \
a x

C M 7 .

/ \
~ Illxl÷l.,-I

I1 *l.,-i.i,-j

/ \
y

/ \
a x

] + l . ~ l+ l y l

/ \
Y

/ \
a x

12+[.v]+[.l.[[2+1.': +Iv

/ \ / \
/ \ / \ / \ / \

a x b y a x b y

/ \
a Itl~l+l,-I

/ \
x y

/ \ ,
12*l.~r+l., l J2÷p.,-I+j,.i

/ \ / \
/ \ / X / X / \

a x b y a x b y

2

/ \
a b

/ \
/ \

12~+lxl+lyl I2+l.~l+b'l

/ \ / \
I X . I X I X . i X

a x b y a x b .v

/ \
/ \ / \

b x y

Algebra of communicating processes with abstraction 115

Appendix B. An inductive proof of associativity of merge in ACP~

We will prove that in ACP~ the identities as shown in Table 7 between closed
terms are derivable. These are the axioms of s t andard concurrency as in Table 3
(Section 3), except for (2) which is a special case of the second axiom of s tandard
concurrency. (Alternatively, (2) may be replaced by:

(x[y)~_ z = x[(y~_ z) if y is stable.

Here y is 'stable' , in the terminology of Milner [12], if it does not start with a r-step.)

T a b l e 7.

(1) (x[Ly)ll z=xU_(yllz)
(2) (xlay)ll z=xl(ayll z)
(3) x[y=YlX
(4) xlly=Yllx
(5) x[(Ylz)=(xlY)lz
(6) x II (y II z) = (x II y) II z

In Corol lary 3.8 a different p roof of (6) is given. The present p roof uses an
essential ly s t ra ightforward induction to the lengths of the terms involved; the
induct ion has to be s imultaneously applied to several of (1)-(6). These identities,
however , are interesting in their own right.

The p r o o f has two main par ts ; in the first and easiest part, identities (3), (4), (5)

are proved. The second part takes care of the main identity, (6); the proof is
compl ica ted by the fact that we have in ACP~ only the weak version (2) of the
second axiom of s t andard concurrency.

All identities (1)- (6) are proved for basic terms ~ T (see Definition 3.1). In view
of the Eliminat ion Theorem 2.20 this entails the identities for all closed ACP,- te rms
x , y , z .

B.1. Proposition. L e t x, y , z e T. Then:

(i) A C P , f - x l y = Y l x
(ii) ACP~ v- x [[y = y [l x .

Proof. Let Ix[be the length in symbols of x. The p roo f uses an induction on Ix[+ [y[.
We prove (i), (ii) s imultaneously.

The induction hypothesis is: (i), (ii) are proved for all x' , y ' such that [x'[+ [y'[<

[x[+[y[. First we will prove the induction step of (i), x [y = y [x .

Case 1. x = x, + x2. So Ix, I <lxl , i = 1, 2. Then x l y = (x , + x2) l y = Xl l y + x2 l y
= (i n d u c t i o n hypothesis) ylx , + ylx2 = y l (x , + x2)= ylx.

Case 2. y -- y~ + Y2: similar.
Case 3. x = r : x l y = r l y = 8 = y l r = y l x .
Case 4. y = r: similar.

116 J.A. Bergstra, J.W. Klop

Case 5.

Case 6.

Case 7.

Case 8.

Case 9.

x = rx': xly = rx'ly = x'ly = ylx '= y[rx'= ylx.
x = a , y = b : x l y = a l b = b l a = y l x .
x = ax', y = by': x ly= ax'lby'=(alb)(x'llY')=(bla)(y'llx')= ylx.
x = a , y = b y ' : x l y = (a [b) y ' = (b l a) y ' = y l x.
x = ax', y = b: s imi lar .

(N o t e tha t in Case 7 the i n d u c t i o n hypo the s i s fo r (ii) is used.)

N e x t to s h o w (ii) x l l y = Y l l x :

xlly=xH_y+yU_x+xly=yll x + x l l y + y [x = y l l x. []

B.2. P ropos i t ion . Let x, y, z ~ T. Then A C P ~ - x l (y l z) = (x l y) l z.

Proof. I n d u c t i o n on Ixl + lYl + Izl-
Case 1. x = Xl + x 2. T h e n xl (y lz)=x, l (y lz)+ x21(ylz)=(x, ly)lz+(x2ly)lz

= ((x , ly)+(x21y))lz=((x, + x2)ly)lz=(xly)lz.
Case 2. S imi l a r wi th y a n d z sums of sma l l e r t e rms .

Case 3. x, y, z have one o f the forms a, ~', au, ru. W e m e n t i o n one o f the 4 3 c a s e s :

(~ x ' l a y ') l b = (x ' l a y ') l b = x ' l (a y ' l b) = rx'l(ay'lb). N o t e tha t one o f the cases is jus t

ax iom C2 f r o m ACP~ (Tab le 2). []

Fo r t he s e c o n d h a l f o f the p r o o f we n e e d two p r e p a r a t o r y p ropos i t ions .

B.3. Def in i t ion . Let x, y be c losed ACP~-terms. T h e n we define: ACP~ ~ - x E y if,

for s o m e c lo sed t e r m z, ACP~ ~- y = x + z.

B.3.1. R e m a r k . N o t e the d i f fe rence with ~ as d e f i n e d for T, in Def in i t i on 3.2. The

p resen t ' s u m m a n d inc lus ion ' , ACP~ ~- • - _ . • , is j u s t E m o d u l o ACP~-equa l i ty . In

the seque l , we wil l s o m e t i m e s wri te x E y w h e r e ACP~ ~- x E y is m e a n t , i f it is c lear

tha t we a re w o r k i n g m o d u l o ACP~-equal i ty .

B.4. Example
(i) ACP~ ~- a E ~a (s ince a = a + r a) ,

(ii) ACP,~amallr (sinceallr=ra+ar+alr=ra+a),
(iii) A C P , t-- 8 E x for all x,

(iv) A C P , t- a + za + rb ==_ b + ~-a + ~'b.

B.5. Proposition. Let x, y be closed terms. Then:

A C P , ~ - x E y & A C P , ~ - y E x ~ A C P , ~ x = y .

Proof. W e m a y suppose , by the E l imina t ion T h e o r e m 2.20, that x, y ~ T. Suppose

ACP~ t-- y = x + z for s o m e z ~ T and ACP~ t-- x = y + u for some u ~ T. T h e n

ACP~ ~- x = x + z + u. T h e r e f o r e , the process t rees c o r r e s p o n d i n g to x a n d x + z + u

Algebra of communicating processes with abstraction 117

bis imula te : [x] ~-'~---r~-[Xq-Zq-t/]. (Here , [x] is the i n t e rp r e t a t i on o f x in the g raph

d o m a i n ~ as in Sect ion 2; s ince x ~ T this is a p rocess tree.) Say R is an r r -

b i s imu la t i on b e t w e e n Ix] a n d [x + z + u] = Ix] + [z] + [u] . Let R ' be the restr ic t ion o f

R to (the n o d e sets of) Ix] a n d Ix] + [z]. N o w R ' n e e d no t be a b i s imu la t ion be tween

these t rees ; h o w e v e r , if I is the tr ivial (ident i ty) b i s i m u l a t i o n be tween Ix] wi th itself,

then it is no t h a r d to see tha t R ' u ! is an r z - b i s i m u l a t i o n be tween [x] and Ix] + [z] =

[x + z]. (A l t e rna t ive ly : let R be a b i s imu la t i on as i n d i c a t e d wh ich is max ima l w.r.t.

inc lus ion. T h e n the res t r ic t ion R ' is a b i s i m u l a t i o n as desi red.)

H e n c e A C P ~ - x = x + z = y . []

B.6. P ropos i t ion . Let x be a closed term. Then ACP~ ~ xll z = x.

Proof. We m a y suppose x ~ T, and use i n d u c t i o n on Ixl.

I f x = x~ + x2, t h e n x L ~'= x~ll r + x211 r = x~ + x2= x.

I f x = a, t h e n a[I ~" = a~" = a.

I f x = ax', t h e n

ax'll ~'= a (x ' 11 r)= a(x'~_ r + 7~_ x ' + x ' l r)

= a(x'~_ ~-+ z x ' + 8) = a (x ' + ~'x') = a~-x'= ax'.

The cases x = % x = ~ ' are s imilar . []

We will n o w start the s i m u l t a n e o u s p r o o f o f (1), (2), (6) in Tab le 7.

B.7. Theorem. Let x, y, z be closed ACP~-terms and a ~ A. Then:

(i) ACP~ ~ (x l ly) I I z = xll (y II z),
(ii) mfP~(xlay)U_z=xl(ayll z),

(iii) A C P ~ xll(yllz)=(xlly)llz.

Proof. We m a y a s sume x, y, z ~ T; this makes an i n d u c t i o n to Ix[+ lyl + Izl possible .

We will p r o v e (i) - (i i i) by a s i m u l t a n e o u s induc t ion . Let the i nduc t ion hypo thes i s

be tha t (i) - (i i i) a re p roved for all x' , y ' , z ' ~ T such tha t Ix'l+ly'l+lz'l < Ixl+lyl+lzl.
First we p r o v e the i n d u c t i o n s tep (i): (x l ly) I I z =xU_(y II z).

Case (i) l . x = xl + x2. T h e n (x l l y) l l z = (x l l [y) l l z+(x21ly)~_ z = (induc t ion

h y p o t h e s i s) xl II (y II z) + x2 IL (Y II z) = (x, + x2) I1 (y II z).
Case (i)2. x = ~-. Then : (x l l y) l l z = ~'yll z = z(yl l z) = zll(yllz)=xU_(yllz)-
Case'(i)3. x = rx' . Then: (x~_y)~_z= r(x'lly)ll z = ~ ((x ' l l y) l l z) = r (x ' l l (y l l z))

= ~x'l_ (y II z) = xlL (y II z).
The cases x = a, x = ax ' are s imilar . Th i s ends the p r o o f o f the i n d u c t i o n step (i).

Nex t c o n s i d e r the i n d u c t i o n step (ii): (x l a y) l l z = x l (a y l l z) . This will again be

proved by a case d i s t inc t ion acco rd ing to the f o r m a t i o n o f X ~ T: x = x~ + x2, x = %

rx ' , b, or bx'.

118 J.A. Bergstra, J. W. Klop

Case (i i) l . x = x, + x2. T h e n xl(ayll z) = (x, + x2)l(ayll z) = x,l(ayE z)
+ x21(ayll z)=(x, lay)ll z +(x2lay)ll z=(x, lay+ x21ay)ll z
= ((x, + x2)lay)[L z= (xlay)l[z.

Case (ii)2. x = r. T h e n (xlay)ll z = xl(ayll z)= &
Case(ii)3. x = rx'. T h e n (xlay)ll z=(~x ' lay) l l z = (x ' i a y) l L z = x ' l (a y l L z)

= Tx'l(ayll z)= xl(ayll z).
Case(ii)4. x = b . T h e n (xlay)ll z=(blay)lLz=(bla)yll z=(bla)(Yllz), and also

xl(ayll z) = bl(ayll z)--- bl(a(y II z)) -- (bla)(y II z).
Case (ii)5. x = bx'. T h e n (xlay)[l z=(bx'lay)ll z=(bla)(x'lly)ll z

=(bla)((x'llY)ll z), and xl(ayll z) = bx'l(ayll z) = bx'la(Yllz)
= (b l a) (x ' II (Y II z)). By the" induction hypothesis for statement (iii)
therefore (xlay)ll z= xl(ayll z).

This ends the p r o o f of the i nduc t ion s tep (ii).

N o w c o n s i d e r the i n d u c t i o n step (iii): L = x II (y II z) = (x II y)II z = R. B y t h e ax ioms
in A C P , we h a v e

L = x II (Y II z) = xll (y II z) + (y II z)ll x + x l (y II =)

= xlL (y II ~)+(yll z+y lz+ zlly)ll x+xl(ytL z+ z l ly+y lz)

= xll (y II ~)+ (yIL z)lL x + (y I z)E x + (z Ey)II x + x l (y E z)

+ x l (z l ly)+x l (y lz) .

Likewise, R can be e x p a n d e d . We will use the fo l l owing abbrevia t ions : L =

Ii +" • • + 17 a n d R = rl +" • • + r7 where

l ,=xE(yllz), r,=(xEy)Ez,

&=(yEz)Ex, r~=(xly)Ez,

13=(ylz)ll x, r3=(yEx)ll z,

14=(zll y)ll x, r,=zll (xlly),

Is=xl(yll z), rs=(x[Ly)lz,

16=xl(zll y), r6=(ylLx)lz,

17= xl(ylz), rT=(xly)lz.

Claim. li m__ R, for i = 1 , . . . , 7.

F rom the C l a i m the i nduc t i on step (iii) fol lows at once . N a m e l y , we then have:

xll(yllz)=-(xlly)llz, h e n c e by Propos i t ion B. l (i i) : xll(yllz)=--zll(xlly) (*). Now
z II(x II Y) = z II (Y I1 x) =__ x II(z I1Y) = x II (y II z), w h e r e " E " f o l l o w s f r o m (*). So w e h a v e

xll(ylIz)~(xlly)llz, and, by Proposition B.5: xll(yllz)=(xlly)tlz.
The r e m a i n d e r o f the p r o o f is d e v o t e d to the p r o o f o f the above claim.

Proof o f the Claim
(a) /7 = rTE---R by Propos i t ion B.2.

Algebra of communicating processes with abstraction 119

(b) l~ = r~ER is s t a t emen t (i) o f this t h e o r e m ; this i n d u c t i o n step has a l ready

been p roved . L ikewise for 12 = r3~R a n d /4 = r4ER.
(C) 13_r6ER. Here , 13=(zly)llx and r6=zI (y~_x).
I n d u c t i o n on z:

Case(iii)(c)l. z = z , + z z . Then 13=((z,+z2)ly)ll x=(z~]y)[l x
+ (zz l y) II x _= (i nduc t i on hypo thes i s) Zl I(y II x) + zz I(y U_ x)
=(z~ + z2)l(Yll x) = zl(yll x).

Case (i i i)(c)2. z = ~'. T h e n 13 = r 6 ---- t~.

Case (i i i)(c)3. z = ~-z'. T h e n 13=(rz'ly)ll x=(z'ly)ll x=--z'l(yll x)
= ~z'l(yll x)= zl(yll x).

Case (i i i)(c)4. z = a. S imi lar to the nex t case.

Case (i i i)(c)5. z = az'. To prove (az'ly)[l xEaz ' l (y[L x). We use an i n d u c t i o n on y:

Case (i i i)(c)5.1. y = y, + Y2. Then (az' l(y z + Y2))[I x=(az ' ly ,)[L x
+(az'ly2)[l xEaz'l(yl~_x)+az'[(y2[[x)
= az'I((y, + y2)~_ x) = (az')l(Yll x).

Case(iii)(c)5.2. y = z: (az'lz)U_x=SLx=S=_az'l(zll x).
Case (iii)(c)5.3. y = ry' : (az'Izy')ll x=(az'Iy')ll x=__(az')I(y'll x) ~(az')l(y'llx)

~.~(az')lz(y'llx)=(az')l(ry'llx). (N o t e the cur ious m a n o e u v r e in

s teps (*).)

Case(iii)(c)5.4. y=b" (az'lb)Lx=((alb)z')ll x=(alb)(z ' l lx)=(az')l(bx)
=(az')l(bU_x).

Case (iii)(c)5.5. y = by': (az'lby')ll x=((alb)(z'lly'))ll x=(alb)(z'llY')llx)
= (a I b)(z' II (y'll x)) = (az')lb(y'll x)= az'l((by')U_ x).

(d) F ina l ly we p r o v e 15 E rz + r5 + r7 E R (and by p e r m u t i n g x, y we t h e n have also

/6E r2+ r6+ r 7 ~ R) , i.e.:

xl(yU_z)E(xly)ll z+(xll_y)lz+xl(y[z).]

The p r o o f is aga in by i nduc t i on on Ixl + lYl +[zl . We start wi th an i n d u c t i o n on x:

Case (i i i) (d) l . x = x, + x2. Then xl(yll z) = x,l(Yll z)+ xzl(y[L z)
=--(x, ly)ll z+(x, ll y) lz+ x,l(ylz)+(x2ly)U_ z
+ (x211y)lz + x2l(ylz) = (x ly) U_ z +(xlLy)lz + xl(ylz).

Case(iii)(d)2. x = r . T h e n xl(yll z)=S=-(x[y)ll z+(xU_y)lz+xl(ylz).
Case (i i i) (d)3. x = rx ' . T h e n rx'l(yU_ z)= x'l(yU_ z)

---(x'ly)ll z +(x'U_y)lz + x'l(ylz)
= (~x'[y)ll z+(x ' l ly) lz+ ~x'l(ylz)
=-- (rx ' I y) U_ z +(x'llY) lZ + rx'l(YlZ)
-- (~ ' l y) l l z + ~(x'lly)lz + ~x'l(ylz)
= (~x' I y)IIz +(rx'lly)lz + ~x'l(ylz)
-- (xly)l l z+(xll y)lz+ xl(ylz).
x = a" s imi lar to the nex t case. Case (i i i) (d)4.

Case (i i i) (d)5. x = ax'. To prove:

(*) ax'l(yll z)E(ax'ly)ll z+(ax'l[y)lz+ax'l(ylz).

1 2 0 J.A. Bergstra, J.W. Klop

Subinduc t ion to y: write y=(a ')+~,c i+~,by~+~, ' ry~ ' . Clearly
ax'[(y][z) can be decomposed as a sum analogous to the sum
expression for y. Each of these summands of ax'[(yl[z) will now
be proved to be E the RHS of (*).

Case (iii) (d) 5.1. S u m m a n d s bye: (ax')] (bjy~ [[z) -- (by statement (ii) of this theorem)
r-- t (ax'[by~)[l z _ (a x lY)~_z~-RHS(*).

Case (iii)(d)5.2. S u m m a n d s ci: as the previous case.
Case (iii)(0)5.3. S u m m a n d ~-: ax'l(~-~_ z) = ax ' I ~'z = ax'[z = (ax'[L ~-)[z since ax '=

ax'[L "r by Proposit ion B.6.
Case (iii)(d)5.4. S u m m a n d s "rye' (for convenience we drop the subscript I and write

y = a-y"+ y*):

Now ax'l('ry"l[z) = ax'['r(y"ll z)= ax'l(y"ll z)
= ax'l(y"~_ z + z~_y"+ y'Jz)
= ax'[(y"[L z)+ ax'l(z~_y")+ ax'[(y"lz)E(induction hypothesis)
r-- r _ (a x [y")]] z + (a x ' ~ y ") l z + a x '] (y " l z)
+(ax ' [z)[[y"+(ax ' [[z) l y " + a x ' l (y " [z) + a x ' l (y " l z)
= (Here the first summand equals the fifth by (ii) of this
theorem, and likewise the second equals the fourth.)

= (ax'ly")[[z + (ax '[[y") lz + ax'l(y"lz)
= (ax' ly") I1 z + (a x ' l l y ") l z + a x ' l (~ " l :)
E (a x ' l Y) l l z + (ax ' lLy") l z + ax'l(yl z).
This matches the RHS of (*) except for the second summand. So
it remains to prove:

I f y = ' r y " + y * , t h e n (ax ' [[y")[zE(ax ' [Ly)[z (**)

Proof of (**): induct ion on z.
Case (iii)(d)5.4.1. z = z~ + z2. Then (ax'~_y")[(z, + z2)=(ax'~_y")[z,

+(ax'[Ly")lZ2E(ax'[l y)[zl +(ax'[[y) l z2=(ax ' [Ly)z .
Case (iii)(d)5.4.2. z = ~': (ax ' [[y")[a-=~SERHS(**) .
Case (iii)(d)5.4.3. z = a'z': (ax'lLy")l(~z')=(ax'lly")lz'=_(ax'lly)]z'

=(ax'll y)l(~z').
Case (i i i)(d)5.4.4. z = b: (a x ' ~ y") [b = a(x ' II Y") [b = (a I b)(x ' II Y").

Now x' ll y = x' [l (.ry" + y ,) = x'[L (.ry" + y ,) + (.ry,, + y ,) ~ x,
+ x'[(a-y"+ y*) -- "r(y"llx')+ T.
So: (a x ' [L y) [b = (a] b) (x ' [] y) =
(alb)('r(Y"[[x ')+ T)=(alb)(~(y"llx')+ T)+(aIb)(y"llx').

t

Here " = "' is an appl icat ion of the third ~--law, T3. Therefore,
t

(ax'[Ly")[b=(a[b)(x']ly")E(ax'J[y)lb.
Case (iii)(d)5.4.5. z = bz': similar.

This ends the proof of induct ion step (iii), and thereby of the theorem. []

Algebra of communicating processes with abstraction 121

References

[1] J.W. De Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, Informa-
tion and Control 54 (1/2) (1982) 70-120.

[2] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communication, Information and
Control 60 (1-3) (1984) 109-137.

[3] J.A. Bergstra and J.W. Klop, An abstraction mechanism for process algebras, Report IW 231/83,
Mathematisch Centrum, Amsterdam, 1983.

[4] J.A. Bergstra and J.W. Klop, Algebra of communicating processes, in: J.W. de Bakker, M. Hazewinkel
and J.K. Lenstra, eds., Proc. CWI Symp. Mathematics and Computer Science, CWI Monograph Series
(Centrum voor Wiskunde en Informatica, Amsterdam, 1985) to appear.

[5] J.A. Bergstra and J.V. Tucker, Top-down design and the algebra of communicating processes,
Sci. Comput. Program. 5 (2) (1985) 171-199.

[6] S.D. Brookes and W.C. Rounds, Behavioural equivalence relations induced by programming logics,
in: J. Diaz, ed., Proc. lOth ICALP, Barcelona, Lecture Notes in Computer Science 154 (Springer,
Berlin, 1983) 97-108.

[7] N. Dershowitz, Orderings for term-rewriting systems, Theoret. Comput. Sci. 17 (1982) 279-301.
[8] N. Dershowitz, A note on simplification orderings, Inform. Process. Lett. 9 (5) (1979) 212-215.
[9] S. Graf and J. Sifakis, A modal characterization of observational congruence on finite terms of

CCS, in: J. Paredaens, ed., Proc. llth ICALP, Antwerpen, Lecture Notes in Computer Science 172
(Springer, Berlin, 1984), 222-234

[10] M. Hennessy, A term model for synchronous processes, Information and Control 51 (1) (1981) 58-75.
[11] C.A.R. Hoare, A model for communicating sequential processes, in: R.M. McKeag and A.M.

McNaughton, eds., On the Construction of Programs (Cambridge University Press, 1980) 229-243.
[12] R. Milner, A Calculus for Communicating Systems, Lecture Notes in Computer Science 92 (Springer,

Berlin, 1980).
[13] G. Winskel, Synchronisation trees, in: J. Dfaz, ed., Proc. lOth ICALP, Barcelona, Lecture Notes in

Computer Science 154 (Springer, Berlin, 1983) 695-711; also in: Theoret. Comput. Sci. 34 (1, 2)
(1984) 33-82.

