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Introduction 

ACP, Algebra of Communicating Processes 

In [2] we have introduced ACP (Algebra of Communicating Processes). ACP is 
an equational specification of process cooperation, aiming at an algebraic theory 
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of processes; more specifically, ACP gives an equational framework for asyn- 
chronous process cooperation via synchronous communication. As an axiom system, 
it consists of the left column of Table 2 below. For a more extensive motivation of 
ACP as well as a discussion of related approaches, we refer to [2]. Here we will 

only mention that ACP is derived from Milner's Calculus of Communicating Systems 
(CCS); a discussion of the differences, both in the technical sence, as regards the 
signature, and in the methodological sense, is again contained in [2]. We will discuss 

two of these differences here: CCS has prefix multiplication (atomic process "a '"  
and process q yield a .  q) whereas ACP admits general multiplication (processes 
p, q yield p- q, the sequential composition). This is important for the expressive 
power: it is not hard to prove that several recursively defined processes have finite 

recursive definitions in terms of general multiplication, but not in terms of prefix 
multiplication. Now this adoption of general multiplication brings with it the 
introduction of a constant t5 for deadlock: namely consider the process p .  q where 
P = 0{a,b}( a II b), that is: the communication of steps a, b (encapsulated by 0~a,b}). 
NOW if a, b cannot communicate, execution of p .  q will not reach q. So p is a 
process which 'blocks' q. Indeed, in the ACP formalism the consequence of a I b = 8 
(a, b do not communicate)  is tha tp  -- 8 and n o w p -  q -- 8.  q = 8. In prefix multiplica- 

tion, C3{a,b}(a 1[ b) • q would not be a well-formed expression. 
One of the aims of ACP is to keep track of the various models ('process algebras') 

which this axiomatisation has, rather than fixing a model right away as is done in 
CCS or related work in Hoare 's  CSP. Models of ACP can be given as projective 
limits of process algebras consisting of finite processes (see [4]), or as metrical 
completions of such process algebras (see [1]), or via process graphs. The latter 
method starts with a suitable domain of process graphs, i.e., rooted multidigraphs 

with edges labeled by atomic actions. Already here, there is a great variety of 
possibilities, as to the choice of an upper bound for the branching degrees, the 
cardinality of the node sets, etc. For instance, one may restrict the attention to 
regular process graphs, or, as is done below, to finite process graphs without cyclic 
paths. Having such a domain of process algebras, a suitable equivalence relation is 
divided out, e.g., bisimulation ( o ) .  This notion derives from Milner's notion of 
strong equivalence on synchronisation trees (see [12]). For a proof-theoretical 

analysis of ACP, yielding results such as consistency of the axioms and an elimination 

property, we refer to [2]. 

ACP~, Algebra of Communicating Processes with abstraction 

ACP as briefly discussed above does not address the problem of abstraction 
( 'hiding'),  i.e., it does not deal with the so-called r-steps (invisible or silent steps) 
of Milner. Now, ACP,  is an extension of ACP which does take the presence of 

r-steps into account. As an axiom system, ACPT is displayed in Table 2 below; it 
consists of  ACP, in the left column, together with Milner's well-known 'z-laws' 
T1-3. What is new in ACP,  as compared with CCS is that A C P ,  also specifies the 
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behaviour  of  r-steps in relat ion with the communica t ion  merge opera tor  "1", an 
opera tor  which is not present  in CCS but which is vital for giving a finite axiomatisa-  
tion of  merge "11" as A C P  does. (This is ra ther  sensitive: e.g., ralb must.yield the 
same process as (ra + a ) l b ,  obtained by applicat ion of  the r - law ra = ra + a. Indeed 

it does: ( ra + a) ] b = ra [ b + a [ b = a [ b + a l b = a l b = ra l b. Also,  care had  to be taken  

that  the r- laws are ' compat ib le '  with the other  auxiliary opera tor  ~_; see similar 
Examples  2.22.) 

Another  new feature in the t rea tment  of  r-s teps in ACP~ is that  in C C S  communica-  
tion between two atomic steps a, b yields a r -s tep at once (if a, b are communica t ion  
'par tners ' ) .  In ACP~ the abstract ion act is separated from the communicat ion:  
abstract ion is executed by a special opera tor  r,. So a [b is not r right away,  but first 

yields an internal (but still 'visible') step, say i, which later can be abstracted,  i.e., 
r enamed  into r :  r{ i}(a [ b) = r{ i}(i) = r. This separat ion of  communica t ion  and  abstrac- 
tion turns out to be vital since recursion and  abstraction do not commute.  E.g., if 
processes X, Y are defined by recursion equat ions X = aX, Y = b Y, then with a [ b = r 

we would get, for the parallel  process Z = O~,,.br(X [[ Y), the recursion equat ion 
Z = rZ. Th e  problem is that  in the presence of  the r- laws T1-3,  such ' r -gua rded '  
recursion equations have no unique solution, i.e., Z is underspecif ied;  indeed, every 

_Z = rp is a solution of  Z = r Z  for arbi trary p. Using the r r o p e r a t o r ,  the intended 
Z (i.e., the process " r  '° ' ') is easily defined, namely by putting a[b  = i and 

z =  II Y). 

This mat ter  is not pursued  in the present paper ,  but these remarks  may  serve as a 
motivat ion for r,. In the present  paper  we are not concerned with explorat ions of  
the expressive power  of  ACP~ but simply with introducing this system and proving 

some fundamenta l  theorems about  it so that  it can serve as a firm basis for further  
explorations.  

S u m m a r y  o f  results 

In Section 1, the s ignature  of  ACP~ and the axioms of  ACP~ are given. This 
signature extends that  o f  A C P  by the presence of rx and r ;  all axioms involving 
them are in the right co lumn of  Table 2. 

In Section 2 we give a simple model  for A C P ,  consisting of  finite process graphs 
without  cycles, modulo  an equivalence relation "-~r~ called rooted r-bisimulation. 

Here, ' r -b is imula t ion '  (---~ in our  notat ion) coincides with Milner 's  well-known 
notion of  observat ional  equivalence,  at least for finite processes. A problem with 
observational  equivalence,  or  r -bis imulat ion,  is that  it is not a congruence  w.r.t, the 
operat ions + and [l ( the typical example is that  while ra ~-% a, b ~-% b, one has 
r a + b  ~ , a + b ) .  Therefore ,  we consider a mild variant  of  it, "-%, which is a 
congruence w.r.t, all operators .  For an algebraic approach i t seems  essential to work 
with congruences;  thus we can take the quotient  algebra of  the domain  of  finite 
acyclic processes modulo  ,--%, and this algebra is proved in Theorem 2.23 to be 
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isomorphic to the initial algebra of ACP~. Otherwise said, ACP~ is a complete 
axiomatisation for this process algebra. (The completeness of the r-laws for finite 
processes was first proved by Milner, as stated in [12], for the smaller signature as 
favoured by CCS.) This proof, which also entails the conservativity of ACP~ over 
ACP (i.e., no unwanted identifications are caused by the extension from ACP to 
ACP~), makes a typical use of the underlying graph domain. An important ingredient 
in the proof is the use of some very simple transformations of process graphs. These 

transformations tend to normalize a process graph; a key fact (Theorem 2.12) states 
that each rr-bisimulation equivalence class contains a unique normal graph. Another 
important fact, of  independent  interest, used in the proof is the Elimination Theorem 
2.20 stating that the 'defined'  operators 11, [l, [, all, r1 can all be eliminated (in a 
finite process) in favour of the 'basic constructors' + and -. Since the proof of the 
Elimination Theorem requires quite some work, it is contained in Appendix A. The 
method used to prove the termination of the rewrite rules, which tend to eliminate 
the defined operators, is that of the 'recursive path ordering' as described by 
Dershowitz, based on Kruskal 's  Tree Theorem. In proofs like this termination proof, 
it is important to have an axiomatisation as ACP~ gives, which lends itself to simple 
rewrite rules. Appendix A gives next to the actual application of the recursive path 
ordering method to the ACP~-termination problem, a (mostly notational) restatement 
of the r.p.o, method which we find helpful when we actually use it for a rather 
complicated rewrite system as the one under consideration. 

Section 3 proves the Expansion Theorem for ACP~ (Theorem 3.9). This theorem, 
first proved by Milner [12] for CCS, was proved in [5] for ACP. The extension to 
ACP~ turns out to be nontrivial, but the theorem, which is indispensable for breaking 
down merge expressions x~ [1... [1Xk, fortunately holds in exactly the same form as 
for ACP: 

x, II II x, II x '  . . .  = r .  (x lxj)ll x F ,  
l ~ i ~ k  l < ~ i < j ~ k  

where X~ stands for the merge of x~ , . . . ,  x k except x~, and X~ j is the merge of 
X l , . . . ,  Xk except x~, xj. (Note that the auxiliary operators [1, I make a succinct 
formulation possible.) 

Finally, in Appendix B we prove by a straightforward induction on term formation 
the associativity of merge "11"; by a different, indirect, method this is also done in 
Section 3 (Corollary 3.8) but we have preferred also to include the proof in Appendix 
B because it is entirely algebraical, using the axioms of A C P ,  thus demonstrating 

their ease in computations (the second half  of the proof in Appendix B uses a 
complicated simultaneous induction, though), and because it proves more, viz. 
several identities which are of independent  interest, 

We conclude this introduction with some remarks about related literature (for a 
more comprehensive comparison, see [2]). 
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Related literature 

ACP~ was defined in [4]; the subsystem ACP was defined in [2]. Abstract ion was 

studied in [3]. The formula t ion  of  the Expans ion  Theorem is taken f rom [5]. 

Both ACP and ACP~ have been derived from Milner 's  CCS [12]. In part icular ,  

CCS contains  the operators +, II, a- each a tom a and  derives as laws: A1, A2, A3 

and T1, T2, T3. The axioms C1, C2 are from Hennessy [10]; Winskel [13] surveys 
communica t ion  formats of .atomic actions. The operator  • is present in Hoa te ' s  CSP 

[ 11 ] as " ; "  and  in [ 1 ] as "o". We refer to Graf  and Sifakis [9] for a proof- theore t ic  

discussion of  the r-laws. Brookes and  Rounds  [6] give an explicit descr ip t ion of  
bis imulat ion modulo  z on finite graphs. 

1. The axiom system ACP~ 

Let A be a finite set o f  atomic actions,  containing a constant  3, and let- 1. : A x A --> A 

be a communica t ion  funct ion which  is commutat ive and  associative and  for which 

a la = a. A communica t ion  a lb = c is said to be proper if  c ~ 3. Further, we consider  

the constant  z, for the silent act ion;  we write A~ = A u { r}. Silent actions are obta ined  

from appl icat ions  of  the abstract ion operator  rl  which renames atoms e I g A into z. 

The signature of the equat ional  theory ACP~ is given in Table 1. Here the first 

five operators  are binary,  aH and zl are unary. The opera t ion  aH renames the a toms 

in H into 3, and ~'1 renames the atoms in ! into ~-. Here, H and ! are subsets o f  

A~; in fact, H ~ _ A  and I c _ A - { 3 }  (since we do not  want  to rename z into 8 or 

conversely).  

Table 1. 

4- 

II 
U_ 
I 
an 
rl 
3 
T 

alternative composition (sum) 
sequential composition (product) 
parallel composition (merge) 
left-merge 
communication merge 
encapsulation 
abstraction 
deadlock/failure 
silent action 

The communica t ion  funct ion ] is extended to the communica t ion  merge, having 

the same nota t ion,  between processes (i.e., elements of  a model of  ACP, ) .  

The left co lumn in Table 2 is the axiom system ACP (without ~'). In Table  2, " a "  
varies over A. 

The axioms T1, T2, T3 are the ' r - laws '  from Milner  [12]. 
Notation: Often we will write xy  instead of  x- y. 

The initial algebra of  the equat ional  theory ACP,  in Table 2 is called AT. 
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Table 2. ACP~.  

x + y  = y + x  A1 
x + ( y +  z) = (x + y )+  z A2 
x + x = x  A3 

(x + y )z  = xz  + yz A 4  

(xy)z  = x (yz )  A5 

x + 8  = x  A 6  

8x = 8 A7 

alb=bla  El 
(alb)lc=al(blc)  C2 
81a=8 C3 

xlly=xll y+yU x+xty C M I  
a l l x = a x  C M 2  

(ax)ll y = a ( x  II y )  C M 3  
(x+y)l l  z - - x ~  z+yl l  z C M 4  

(ax) lb = (a I b)x C M 5  

a l(bx ) = (a I b)x  C M 6  

( a x )  I ( b y )  = (a ]b)(x II y) C M 7  
(x+ y) l z =  x l z +  y l z  C M 8  
x l ( y +  z ) =  x l y +  x[z  C M 9  

O n ( a ) = a  i f a ~ H  D I  

O n ( a ) = 8  i f a ~ H  D 2  

O , ( x  + y) =On(X)  + On(y) D3 

OH(Xy) = OIl(X)" On(Y) D 4  

xr  = x T1 
rx + x = 7"x T2 
a(rx  + y) = a(rx  + y ) +  ax T3 

"rll x = rx TM1 

( r x )  ~_ y = r ( x  IlY) T M 2  
¢1 x = 8 TC1 
x[ r = 8 T C 2  

(Tx) l y = x l y  TC3 

xl(1"y)= x l y  T C 4  

'~n ( r )  = r D T  
Tz(r)  = • T I I  

r ~ ( a )  = a i f a ~ I  TI2  
• / ( a )  = r i f a e l  TI3 

"h(x + y) = r i ( x )+  zi(y)  T I 4  
Cz(xy) = ¢ , ( x )  • r , ( y )  TI5  

2. The model of  finite acyclic process graphs for ACP~ 

A process graph over A~ is a rooted, directed multigraph such that every node  is 
accessible from the root and whose  edges are labeled by elements from A~. A process 
graph is finite i f  it has finitely many edges and nodes; it is acyclic when it contains 
no cyclic path, i.e., there are no edges hi = si L.> si+l (i < k, li~ A~) and nodes sj ( j  ~< k) 
such that 

l o 11 Ik_ 1 
So ~sj > ' ' "  ~Sk=So (k~> 1). 

ho hi hk-i 

Let G be the collection of  finite acyclic process graphs over A~. In order to define 
the notion o f  bisimulation on (3, we will  first introduce the notion of  &normal  
process graph. A process graph g ~ G is 8-normal if  whenever an edge 

6 

occurs in g, then the node  s as outdegree 1 and the node t has outdegree 0. In 
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an th ropomorph ic  terminology,  let us say that  an edge 

(~)---~ (~) is an ancestor o f  s(s(Q ~ t(t(Q 

if it is possible to move along edges f rom t to s'; likewise, the latter edge will be 
called a descendant of  the former.  Edges having the same begin node are brothers. 
So, a process graph g is 8-normal  if all its 8-edges have no brothers and no 
descendants .  

Note  that  for g ~ G the ancestor  relation is a partial order  on the set of  edges of  g. 
We will now associate to a process g raph  g c G a unique g '  in 8-normal form,  

by the following procedure:  
(1) nondeterministic 8-removal is the el imination of  a B-edge having at least one 

brother ,  
(2) 8-shift of  a 8-edge 

B 

in g consists of  deleting this edge, creating a fresh node t' and  adding the edge 

8 

N o w  it is not hard to see that  the procedure  of  repeatedly applying (in arbi t rary 
order)  (1), (2) in g will lead to a unique g raph  g' which is 8-normal ;  this g '  is the 
8-normal form of  g. It is unders tood that  pieces of the graph which have become 
disconnected from the root, are discarded.  

Example 

g =  ' - " --  = g ' "  
a ( 2 ) -  a (1) a 

Fig.  1. 

We can now define bisimulat ion between process graphs g~, g2 ~ G. First some 
pre l iminary  notions: a trace tr is a possibly empty finite string over A~; thus, or e A*. 
With e(o') we denote the trace tr where all r-steps are erased, e.g., e(arrbrcr)  = abc. 

I f  g ~ G, a path ~r: So"~ Sk in g is a sequence of  edges of  the form 

10 ! 1 lk_ l 
( ~ ) ~  (~) , ' ' "  , (~) (k  ~>0) 

ho hi hk-i 

where the si are nodes of  g, the hi are edges between si and si+~, and each li ~ A~ 
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is the label of  edge hi. (The hi are needed because  we work with multigraphs.)  The 

trace trace(Tr) associated to this path 7r is jus t  lol~ . . .  Ik-~. 

2.1. Definition. A bisimulation modulo 7- (or ~'-bisimulation) between finite acyclic 

process graphs g~ and g2 is a relation R on  NODES(g t )×NODES(g2)  satisfying the 
fol lowing condit ions:  

(i) (RooT(gl ) ,  ROOT(g2)) C R. 

(ii) For each pair  (st, s2) ~ R and for each pa th  7r1: st -~ tl in gt there is a path 

7r2:s2 --~ t2 in g2 such that  (tt, rE) ~ R and e(trace(Trl))  = e(trace(Tr2)) (see Fig. 2(a)). 

(iii) Likewise for each pair  (s~, s2)~ R and  for each path ~r2: s2--~ t2 in g2 there 

is a path 7rl :sl -~  tt in gt such that  (h,  t2) ~ R and  e(trace(~rl))  = e(trace(Tr2)) (see 
Fig. 2(b)). 

(a) 

Fig. 2. 

(b) 

Let g~, g2 be in 8-normal  form. Then gt, g2 are bisimilar modulo ~" (or ~'-bisimilar) 
if  there is a ~'-bisimulation between gl, g2. 

Notat ion:  gt ~% g2. 

Note  that  for a ~--bisimulation R between gt, g2 we have: Doma in (R)  = NODES(gt) 

and C o d o m a i n ( R )  = NODES(g2). Also note that  an equivalent  definit ion is obtained 
by letting rrt in Defini t ion 2.1(ii) consist of  one edge, likewise ~r2 in (iii). 

Strictly speaking we should  say that R as in Definit ion 2.1 is a ~-bisimulation 

f rom g~ to g2 ra ther  than between g~, g2. Note  that  if  R is a ~'-bisimulation from gl 
to g2, the converse relat ion R -~ (defined by (s, t) ~ R-tC:>(t,  s) ~ R )  is a r-bisimula- ) 
t ion from g2 to gl. 

2.2. Definition. Let gl, g2 E G be in 8-normal  form. A rooted bisimulation modulo r 

between gl, g2 is a b is imulat ion modulo  ~- between gt, g2 such that  the root of  gt is 
not  related to a non-root  node  of  g2, and  vice versa. 

Notat ion:  gl *--~r~ g2. 

2.3. Definition. Let gl,  g2 E G with 8-normal  forms g~,g~ respectively. Then 

gl ~---r, g2 if  g~ ---'~r* g~- 
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2.4. Examples 

arb8 ~">r-~ ab~ 

ab ~-'%, ar( rb + rrb ) 

a ( rb  + b) ~-%~ ab 

c( a + b) mr .  c ( r (a  + b)+ a) 

(Fig. 3(a)), 

(Fig. 3(b)), 

(Fig. 3(c)), 

(Fig. 3(d)). 

For a negative example, see Fig. 3(e). The heavy line denotes where it is not possible 
to continue a construction of the bisimulation. 

(a) 

a a 

" t ' , f  b 

6i '~; 

a a 

br ~ "t 
jc-<: 

-,.-..__, p 

(b) 

I ' J ' I  
a ;  a 

b 

b 

(c) 

C,  C 

(d) 

b 'K~.- / "  c 

(e) 

Fig. 3. 

Since we intend to construct from G a model for ACP~, we will now define 
operations + , - ,  II, U_, I, a,,, on G. (Cf. [31 where + , - ,  II, 11 were defined in the 
context of the axiom system PA.) 

(1) The sum g~ + g2 is the result of identifying the roots of g,, g2. 

(2) The product g~ • g2 is the result of appending g2 at all end nodes of g~. 
(3) The merge gl ]l g2 1~ the 'cartesian product graph" of g~, g2, enriched by 

'diagonal '  edges for nontriviai communication steps, as follows: if  
a 

a 
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is a subgraph of  the cartesian product  graph,  then the ar row ~ (where c = a lb ) 
is inserted; result: 

a 

Q 

(Here r has only trivial communicat ions:  z I a = r I z = 8.) 
Example. Let A,  ={a ,  b, c, z, 6}, where the only nontrivial  communicat ion is: 

a lb = c. Then,  writing ab for the graph 

~ O.__.~_~b.~ ) b ~ 0 ,  

we have: ab I[ babr is the process graph as in Fig. 4(a).  

a b 

b ' 

T T 7" 

a b 

b b 
a b 

a a 

c b 

(a) (b) (c) 

Fig. 4. 

(4) The left merge g, 11 g2 is like g, [[ g2 but omitt ing all steps which are not a first 
step from g, or the descendant  of  such a first step. 

Example: I n  the situation of  the previous example  we have ab ~_ babz as the graph 
in Fig. 4(b) and  babr Lab  as in Fig. 4(c). 

(Note that  we have omitted the diagonal edges labeled with 8, resulting from 
trivial communicat ions .  This is al lowed in view of  our  preference of  6-normal graphs.  
Indeed,  a 'd iagonal '  8-edge can always be omitted by (1) of  the 6-normalization 
procedure.)  

(5) The communication merge gt[g2 is harder  to define since it is in general not, 
as g~ 11 g2 is, a subgraph of  g, [[ g2. The reason behind the definition can be unders tood 
by considering,  e.g., zzaxlzzzby and evaluating this term according to the axioms 
of  ACP~.: zrax l r z zby= a x l b y = ( a ] b ) .  (x Ily). 

We define: 

g, Ug2=E { ( t ~  s ) .  (g, llg2)s]t~ s is a maximal  communicat ion in g, llg2 
such that  t can be reached f rom the root via a sequence of  
r-steps}. 
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Here,  'maximal '  refers to the p.o. given by the ancestor  relation. The sequence of  

~--steps may be empty.  Further ,  (g)s denotes  the subgraph of  g with root s. 

Example. (i) Let g~ = ~'ard, g2 = rTbd. Let a I b = c be the only nontrivial communi-  

cation. Then g~ IIg2 is as in Fig. 5(a) and g, Ig2 as in Fig. 5(b): 

"• T a T d 

( 

(a) 

Fig. 5. 

r d 
(b) 

Here the heavi ly  drawn edge ~ is an edge t -  s as in the definition o f  gllg2. 

(ii) Let 
b a a b 

g~" :--a:::::::~ ~ and g2" ~._'F----~- ~-O, 

where the, on ly  nontr ivia l  communicat ions  are a l a = a ° and  bib = b °. Then gl II g2 
and  g, lg2 are as in Fig. 6(a), (b) respectively: 

IT 'o ° 
a "r a! " r ~ -  r 

r a 

(a) 
Fig. 6. 

a 

(b) 

Using ACP~ we calculate with terms corresponding to g~, g2: 

( ba + ~'a)l(ab+ rb)= balab+ ba I rb+ ralab+ ra I zb 

= (b l a ) - ( a  II b ) +  balb+ a lab+ alb = 8 + b°a + a°b+ ~ = boa + a°b. 

(6) The def ini t ion of  the operators On, ~'t on process graphs  g e G is easy: they 
merely rename some atoms (labels at the edges) into 8, ~" respectively. 

This ends the defini t ion of  the structure ~ = G ( + , . ,  II, II, I, ~-, ~,). The domain  

of  process g raphs  (g i tself  is not yet a model  of  ACP~ (e.g., ~d ~ x + x  = x). However ,  

we have the fo l lowing theorem. 
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2.5. Theorem 
(i) Rooted  r-bisimulation (~">r~') is a congruence on ~. 

(ii) ~/--~r~ is a mode l  o f  ACP~. 

Proof.  (i) Let g, g' ,  h, h '~  G. We want  to show that  

' - -  h' - -  g' h' g--r~g &h~r~  ~ gllh~r~ II 

and likewise for the other  operators.  Only the cases II, I1, I are interesting and we 

start with II. 
Suppose,  then, that  S is an r~--bisimulation between g, g '  and T is an rr-bisimula-  

tion between h, h'. Let s be a typical node  of  g, s' of  g' ,  t of  h, and  t' of h'. Then 

we define the fol lowing relation S x T between the node sets of  g II h and g' II h': 

( ( s , t ) , ( s ' , t ' ) ) ~ S x T  ¢:~ ( s , s ' ) ~ S & ( t , t ' ) ~ T .  

We claim that  S x T is an r r -b is imulat ion between g II h and g'  II h'. 
Proof  o f  the claim. (1) Let (sl, tl) -% (sl,  t2) be a 'horizontal  s tep '  in g H h, where 

u c A~. Let ((s~, tl), (s~, t~)) ~ S x T. Then tl -~ t2 in h and (h ,  t~) c T. Hence, a pa th  
as in the definition of  bisimulat ion can be found whose trace is external ly equivalent 

to u and whose end point  bisimulates with t2. This path can be ' l ifted'  to g II h. 
(2) Likewise for a 'vertical step' in g II h. 
(3) (sl, t~)-~(s2, t2) is a 'd iagonal  step'  (a communicat ion  step) in gl lh ,  and  

((s~, h),  (s~, t~)) ~ S × T. Now a path  as required can be found f rom the data  (s~, s'~) 

S and (t~, t'l) ~ T and  an inspection of  Fig. 7. 

SxT 

), 

'I" 

Fig. 7. 

The case of  [L is easy since g ~_ h is a subgraph of  g 1[ h. 
For the case of  [ we use the same nota t ion as above. We have to prove 

g l h ~ r ~ g ' l h ' .  
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An rz-bis imulat ion be tween g [ h and  g'[ h'  can now be constructed as follows from 

S x T. The graph g[h is now the sum of  the ci- (g I[ h)(s,,t,) (i = 1, 2) as in the definition 
o f [  and as indicated in Fig. 8(a). 

gllh g g'l lh'  g' 

(a) 

c 2 

h 

(b) 

Fig. 8. 

For the sake of  clarity, we will formally distinguish the 'd iagonal '  edges from the 
other  ones;  this can be done by a suitable renaming of the a lphabe t  and adapt ing 
the communica t ion  function.  Thus,  if a lb =c, we adopt  a fresh symbol c and 
postulate a lb =_c. N o w  the under l ined symbols do not occur in g, h which makes 
it possible to speak in a formal  way about  'd iagonal '  steps. Note that  the bisimulation 

S x T is also a bis imulat ion when diagonal  steps are marked as such. 
Now given a s u m m a n d  p = c i - ( g  [[ h)(s,,t,) of  glh, we can find via S × T a corre- 

sponding summand  p ' =  ci" (g'  [I h')(s;,,;). It is easy to see that the step c, in g'  [I h' is 
also maximal  in the sense of  the definition of  [. Clearly, p bis imulates  with p '  via 
the restriction of  S × T to the appropr ia te  area. In this way we find that g lh 
bisimulates with g' [ h'. 

(ii) The p roof  that  ~/~"~r~ is a model  of  ACP~ is tedious and  routine. We will 

sketch some of it: the soundness  of  the axioms A1-7 is easy; e.g., associativity of  
+,  • and commutat ivi ty  of  + follow at once from properties of  g raphs ;  soundness 
of  A3, x + x  =x, is a s imple consequence of  properties of bis imulat ion and A6, 7 
follow because  the graphs  in qd are in ~-normal form. The axiom groups  for 0~ and 
z1 are trivially sound.  The r - laws T1-3 are proved sound by constructing the 
appropr ia te  rz-bisimulat ion.  For an axiom as CM 1 an rz-bis imulat ion between the 
graphs g [1 h and g [1 h + h ~_ g + g [ h is constructed by connectix~g nodes in g ~ h, 

h Jig, g [h to corresponding nodes in g [[ h, where 'corresponding '  refers to the way 
in which g~h, h llg, g[h are directly constructed from g [[ h. Finally,  axioms as 
CM2-9 ,  TM1,  2, TC1-4  are easily dealt with. []  

We will now analyse -"~--~r~" into an equivalence generated by cer tain elementary 
graph reductions.  This is done in [3] for z-bisimulation (without  the condition 
' rooted ' )  and  in the absence  of  8; these results will be the basis for  the sequel. We 

repeat  f rom [3] the ma in  definitions. 
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2.6. Definition. Let g e G 
(i) A subgraph g' of g consists of  an arbi t rary subset of  the set o f  edges of  g 

(plus their  labels eAr)  together  with the nodes  belonging to these edges. 
(ii) Let s e NODES(g) .  Then  (g)~ is the subgraph of  g consist ing of  all nodes 

and edges which are accessible from s ( including s, the root of  (g)~). We will call 

(g)s a full subgraph. 
(iii) An arc in g is a subgraph of  the form as in Fig. 9(a), where u e A~. The 

u-edge at the left is called the primary edge of  the arc. If, in Fig. 9(a), n = m = 0, 

the arc has the form as in Fig. 9(b) and is called of  type I. I f  n + m = 1, the arc has 

the form as in Fig. 9(c) or (d) and  is called of  type II,  I I I  respectively. Arcs of type 

I, II, III  are called elementary arcs. 

U ld ld 

T 

U 

/ /  

U 

(a) (b) (c) (d) 

Fig. 9. 

2.7. Definition. On G we define the following reduct ion  procedures:  

[i] Sharing. Let g e G conta in  nodes sl, s2 such that  (g)s, is i somorph ic  to (g)s2. 

Then g reduces to g' where Sl, s2 are identified. 
[ii] Removal of a non-initial deterministic r-step. I f  sl ~ s2 occurs in g and the 

outdegree of  sl is one (so the displayed z-step has no brothers),  and  if, moreover,  

s~ is not the root of  g, then  the nodes sl, s2 may be identified after  removal  of  the 

z-step. < 

[iii] Arc reduction. In an  arc, the primary edg~ may be deleted. The arc reduct ion 

is called of  type I, II, I I I  i f  the arc is of  that  type. Such arc reduct ions  are also 

called elementary. 
So the subgraph as in Fig. lO(a) may be replaced by that  in Fig. lO(b): 

T 9" T T T T 

~O .... ~ ~' O ~O ~O - • - ~ ~." 

r 

T T T T T 

(a) (b) 
Fig. 10. 
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[iv] Nondeterministic &removal, as explained in the beginning of  this section. 
Iv] &shift; also defined above. 

If  none of  the reduct ion possibilities in [i]-[v] applies to g, then we call g a normal 
process graph.  

Notation. I f  g reduces to g'  by one application of  [i]-[v], we write g o  g'. The 

transitive reflexive closure of  ~ is denoted by --~. 

2.8. Example 
(i) 

[i] [i] 

C 

[iii] 
D 

a 
[iii] 

a 

|1 

[i] 

b• [iii] 
a 

I 

C 

\ 
Fig. 11. 

(ii) 

T 

7" 

T 

b ~ r  a 
T 

r r ~ ' ~ b  

Fig. 12. 



(iii) 

[iii] 

b z 

a r /  

92 J . A .  B e r g s t r a ,  J . W .  K l o p  

[iii] /// 

Fig. 13. 

2.8.1. Remark. As the last example suggests, the process graph reduction --~ is in 
fact confluent (has the Church-Rosser  property). A proof  of the confluency can be 
obtained by the following trivial proposition (2.9) together with an analysis of the 
'elementary diagrams' as in Example 2.8(iii) above, showing the weak confluency 

property: if  gl ~ g2 and gl "~ g3, then there is a g4 such that g2"~ g4 and g3-~ g4. 
Establishing this weak confluency directly, is rather complicated though; much 
easier is the following way, indicated in Remark 2.14. We will not need the confluency 
of the graph reductions in the sequel. 

The following fact is trivial. 

2.9. Proposition. Every  process graph reduction g~ ~ g2 ~ " " " must  terminate event- 

ually. 

Without the routine proof we state the 'soundness" of the reduction pro- 
cedure -~ w.r.t. <-"~rT" 
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2.10. Lemma. Let gl, g2 E G. Then gl "~g2 implies gt ~->r, g2. 

2.11. Definition. (i) Let g s G be in 6-normal  form. Let R be an r r -bis imulat ion 
between g and  itself. Then R is called an autobisimulation of g. 

(ii) g is rigid if  it can only be in autobis imula t ion  with itself via the identi ty 
relation. 

2.11.1. Example. The process graph depicted in Fig. 14 is not  rigid since it admits  
the displayed nontr ivial  autobis imulat ion:  

T I / / "  

b 
/ 

/ 
f 

f 
J • j 

b 

Fig. 14. 

Here R = { ( S l ,  st) ,  (s2, s3) , (s3, s2) , (s4, S3), (s3, s4) , (Ss, s6), (s6, Ss) }. 

2.11.2. Proposition. I f  g, h are rigid and R is an rr-bisimulation from g to h, then R 

is in fact  a bijection f rom NODES(g) to NODES(h). 

Proof. Suppose there are s~, $ 2  E NODES(g), t S NODES(h) such that (s~, t) ~ R, 

(s2, t) s R. Now if R is a bis imulat ion from g to h, the converse of R, R -t,  is a 

bis imulat ion from h to g and the compos i t ion  R -t o R is a bis imulat ion from g to 

g, i.e., an au tobis imula t ion  of  g. Since. (st, s2) s R -~ o R, it follows from the rigidity 
o f  g that s~ = s2. [] 

2.12. Theorem. (i) Normal  graphs are rigid. 

(ii) I f  gl, g2 are normal process graphs and gt ~"~rr g2, then gt and g2 must be identicaL 

Proof. We will prove (i), (ii) s imul taneously  with induct ion on the size of the process 
graphs involved.  To be precise: Let [g] be the number  of  edges of  g. Consider the  
statements: 
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(i),  : i f  g is a normal  process graph, and  [g[ ~< n, then g is rigid. 

(ii) .:  if  g~, gz are normal  process graphs such that  Ig l, Ig21 <~ n and g~ ~-~r, g2, then 

gl = g2. 
We will prove (i),  & (i i) ,  with induct ion on n. The basis, (i)~ & (ii)~, is trivial. (Note  

here that  the one edge graph ----~o--~o is rigid.) 

Induction step: suppose as induct ion hypothes is  that (i)k & (ii)k holds for k < n. 

To prove: ( i) ,  & (ii),. We first prove (i),. 

So let g with Ig[ = n be normal.  Suppose,  for  a p roof  by contradict ion,  that g is 

not  rigid; then there is an r~'-autobisimulation of  g relating unequal  nodes s, t. By 
defini t ion of  r~--bisimulation, none of  s, t can be the root of  g. But then the subgraphs 

(g)s ,(g) ,  have at least two edges less t han  g, i.e., [(g)sl ,[(g),l<~n-2. Clearly 
(g)~ ~--~ (g), and hence z.(g)~ <"'>r.r "i"(g)t" (Here  ~'.(g)~ results f rom prefixing a ~--edge 

to (g)~.) Moreover  (g)s, (g),  are normal  since they are subgraphs of  a normal  graph;  

and  since s, t are non-root  nodes, (g)~, (g)t do not  start with a 'determinist ic '  ~'-step 

and hence also r(g)s, 7-(g)t are normal.  

Now, since Ir(g)sl, I (g),l n - 1 ,  we may  apply  the induct ion  hypothesis  and  

conclude that  "r(g)~ = ~'(g), and hence (g)s = (g)t. But then g would admit  a ---*-step, 
[i] 

contradic t ing the normali ty.  Hence g is rigid and  we have proved (i),. 

Next we prove (ii)n, using the induct ion hypothesis  (i)k & (ii)k ( k <  n) and (i),,. 

So let gl, gz be normal  such that gt ~---~:-~--r~- g2 and  Ig, I, [g21 = n. By (i),,, the graphs g~, g2 
are rigid. Let R be an r~--bisimulation from g~ to g2. By Proposi t ion 2.11.2, R is a 

bi ject ion from NODES(gl) to NODES(g2). Fur thermore,  we claim that R maps the 

edges of  gl bijectively to those of  g2; more precisely: 

Claim. (1) I f  s -~  t , u ~ A ,  is an edge o f  g~ and ( s , s ' )~R ,  then there is an edge 
s' -~ t' in g2 for some t' with ( t, t') ~ R. 

(2) Likewise vice versa. 
With the claim we are through,  since R is then an i somorphism between labeled 

graphs. (Intuit ively,  this can easily be seen by not ing that a process graph g without  

double  edges can be considered as an algebraic  structure, in the sense of  model  

theory,  with universe NODES(g), a constant  RooT(g)  and binary relations a, b, c , . . . ,  
the labels of  the edges of  g.) 

Proof o f  the Claim. (1) Let s--~ t be an edge as in (1) of  the Claim. Let (s, s ' )~  R 

(see Fig. 15). Suppose there is not  a 'direct '  step s' -~ t', (t, t') e R as we want. Then,  

since R is an r~'-bisimulation, there is a path  
T n ld  T m 

S r )~' S "  ) t "  ; ;  t r 

from s' to t', (t, t ' ) c R  (see Fig. 15) such that  n + m # O .  Say n # 0  (the other case, 
m ~ 0, is similar). Going  'backwards '  from s" with R we find a node  s'" in g~ such 

" (s",s") that  s ~ s , ~ R. Since n # 0 and  because R is a bi ject ion between the 
node  sets o f  g~, g2, we have s ~ s",  i.e., n ' #  0. Likewise, the pa th  s" ~ t" ~'~,~ t' in 
g2 is carried via R backwards to gl to yield a pa th  

. l-kll.i  -1 

S m )) t * .  
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gl g2 

t "  

Fig. 15. 

By the bijectivity of R, t-- t*. But then there is an arc in g~, in contradiction with 
the normality of g~. Hence, there is a direct step s' -% t', (t, t') c R. 

Part (2) of the Claim is like (1), with g~, g2 interchanged. [] 

2.13. Corollary. Let gl, g2 ~ G. Then the following are equivalent: 

(i) gl <"~rr g2, 
(ii) gl, g2 reduce (by [i]-[v]) to the same normal graph, 

(iii) g~, g2 are convertible via applications o f  [i]-[v]. 

Proof. Suppose (i). Reduce gl, g2 to normal g'i, g'2; this is possible by Proposition 
2.9. Since reduction -~ is sound w.r.t. ~'-~r, also g~ ~-'>r~g~. By Theorem 2.i2(ii) it 
follows that g'l and g~ are identical; hence (ii). From (ii) we trivially have (iii). 
From (iii), since reduction is sound, we have again (i). [] 

2.14. Remark. As a further corollary (which we do not need here) one obtains the 
confluency of the graph reductions [i]-[v]. This immediately follows from the 
termination property of the graph reductions (Proposition 2.9), together with Lemma 
2.10 and Theorem 2.12(ii). 

2.15. Corollary. Let g~, g2 E ~. Then gt ~--~-r~rg2 i f f  g~, g2 are convertible by means o f  
the fol lowing reductions: 

[i] sharing (as in Definition 2.7); 
[ii] removal o f  a non-initial deterministic 1--step (as in Definition 2.7); 
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The elementary arc reductions: 

[iii]I 

[iii]II 
T T 

[iii]III 

flu 
Proof. Every arc can be filled up with elementary arcs, e.g.: 

u may yield u 

T 

T T 

T 

Therefore, every arc reduction gt ------o g2 can be replaced by a conversion consisting 
[ i i i ]  

of elementary arc reductions of type [iii]II or [iii]III: 

g l ~  [iii] / g2 

[iii]lI N / [iii]lI 

or [iii]lll N / or [iii]llI steps 

s t e p s  " V  

[] 

In the sequel, when closed terms in the signature (+, - ,  a ~ A,) are mentioned, 
we will always mean terms modulo the basic congruence given by the axioms A1, 2, 5 
in Table 2 (associativity of +, -, and commutativity of +). To such terms we will 
refer as '+, .-terms' or as 'basic terms'. 
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E.g., a ( b + c ) d  and a ( c + b ) d  are (representat ions of) the same basic term; 
a(bd + cd) is (a representat ion of) a different basic term. 

2.16. Definition. Let t be a basic term. 
(i) Then  [t]  denotes the interpretat ion of  t in ~ ;  so It]  is a process graph. 

(ii) [[t~ denotes  the interpretat ion of  t in ~/*--~r~ ; SO [[t]] is a process graph modulo 

r~--bisimulation. 
(iii) Let g ~ G. Let g '  be the process tree obtained f rom g by 'unraveling'  the 

shared subgraphs .  Then ~g~ is the basic term corresponding to the tree g'. 
Example. I f  g is , then g ' !  [ ~g~ = dc+a(bc+e) .  

d 

e 

2.17. Proposition. Let gl, g2 E G and suppose gl "~ g2 via an elementary graph reduc- 
tion [i], [ii], [iiiI, II,  I I I] ,  [iv], Iv]. Then the basic terms ~g~ and ~g2~ can be proved 
equal using the A-axioms (about + , . ,  6) in Table 2, A1-7,  and the 7-1aws T1-3 (see 

the diagram below). 

gl :- g2 
elementary graph 

reduction step 

3 
t~ t2 

AI-7, TI-3 

Proof. In case [i], t~ ~ t 2. Case [ii] translates into an appl icat ion of  T1 (or several 
such). Case [iiiI]: removal of  a double edge. This translates into applications of  
x+x=x(A3). 

Case [ii i lI]  t ranslates to terms as an application of  ~'(x + y ) +  x = z(x  + y), where 
x =  uz (see Fig. 16(a)), or, if y is empty, r x + x =  zx (T2). The former equation 
follows f rom T2 and A3: 

7"(x + y )+  x =  r(x  + y )+  x + y+  x =  1"(x + y )+  x + y =  ~'(x + y). 

Case [i i i lII]  t ranslates to terms as an application of  

u ( ~ ' z + y ) = u ( ~ z + y ) + u z  (uEA.~) 
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(see Fig. 16(b)). The case that  u = ¢ follows from T2; the case that  u # ~- is just the 

third r-law T3; for z or y empty,  an appl ica t ion of  T1 is needed.  [] 

(a) (b) 

Fig. 16. 

Now we can prove an impor tan t  fact. 

2.18. Lemma. S u p p o s e  t, s are basic terms. Then:  

~1~-->~ ~ t = s ~ A1-7, T1-3 ~ t = s. 

Proof. Suppose ~/<-">r~- ~ t =  s. Then [t]--r~-[s]. By Corol lary  2.15, the graphs [t], 
[s] are convert ible via e lementary graph reductions:  

[ t ] - -  g o m g ,  . . . . .  g , - - [ s ] .  ( H e r e - - i s ~ o r , , - - . )  

Now Proposi t ion 2.17 states that  

A1-7,  T1-3 ~ } [ t ] } =  ~gt} . . . . .  }g.} = }[s]}. 

Since A1-7 ~ }[t]~ = t and  likewise for s, we have A1-7, T1-3 ~- t = s. []  

By a similar me thod  (essentially by leaving out all reference to r) one proves the 
following lemma. 

2.19. Lemma. Suppose  t, s are basic terms not  conta in ing  ~-. Then: 

~ /  ~--r~ ~ t  = s ~ A 1 - 7  F- t = s. 

2.20. Elimination Theorem. L e t  t be a closed term in the s igna ture  o f  ACP~. Then,  

using the a x i o m s  o f  ACP~ excep t  A1-7 a n d  the z - laws T1-3 as  rewrite rules f r o m  lef t  

to right, t can be rewri t ten  to a basic term t'. 

For the proof ,  see Appendix  A. 
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Combin ing  the previous results we now have, writing AT for the set of  axioms 
A1-7, T1-3, the fol lowing result. 

2.21. Lemma 

O) 

AC PT - A T  

t t~ 

A C P ~  

3 
t3 t 4 

A T  

ACPT - A T  

/.e., i f  ACP~ F- t I = t2 ,  then tl and t 2 c a n  be reduced by means o f  the rewrite rules 

( f rom left to right) associated to the axioms in A C P ~ -  AT to basic terms t3, t4 which 

are convertible via the AT-axioms.  

(ii) Every term t can be proved equal in ACP~ to a basic term t'; moreover, t' is 

unique modulo AT. 

Proof. (i) Suppose ACP~ ~- tl = t2. By the El iminat ion  Theorem 2.20 we can rewrite 
t l ,  t 2 to respectively bas ic  terms t3,  t 4 using the axioms in ACP~ - A T  as rewrite rules. 
By the fact that qd/~'-~r~ is a model  of  ACP~ we have ~/~----r~ ~ t3 = t4- Hence (Lemma 
2.18) AT ~- t 3 = t 4. 

(ii) Immediate  f rom (i). [] 

2.22. Examples. The fol lowing examples illustrate Lemma 2.21(i): 

(i) ( r a + a ) [  b ~ ra[ b 

J r a l b + a ] b  

alb÷alb alb 

(ii) arl] b a L b 
$ 

a ( r l l b )  
$ 

a ( r ~ _ b + b ~ _ r + r [ b )  

a ( rb  + br + 8) = a(Tb + br) = a(rb  + b) = arb = ab 



100 J.A. Bergstra, J.W. Klop 

(iii) (ra+a)ll  b 

ra~_b+a~_b 
$ 

r(al]b)+all  b 

r (a[Lb+b[La+alb )+a l [  b 

r(ab+ ba+ a lb )+  ab 
(*) 

ra~_b 
$ 

r(a b) 

r(ab+ ba+ alb). 

Here, (*) is an instance of  the (from AT) derivable rule r ( x + y ) +  x = r(x +y). 

As a fur ther  corol lary we have the following. 

2.23. Theorem. (i) ~/~-%~ is isomorphic to A~, the initial algebra of  ACP~. 

(ii) ACP~ is conservative over ACP (the latter over the alphabet A). Le., for r-less 

t e r m s  tt, /2: 

ACP,. ~- t~ = t 2 ~ ACP ~ t~ = t 2 .  

Proof. (i) We have to prove 

~/  ~--~-,,. ~ s = t ¢¢, A C P , . ~ s = t .  

( ~ )  is Theorem 2.5(ii). 
For  ( ~ ) ,  suppose ~/~---r~ ~ S = t. Then also ~/*'%~ ~ s ' =  t' for some basic terms 

s', t' such that  ACP~ ~ s = s', t = t'. The result now follows by Lemma 2.18. 

(ii) Suppose tl, t2 are closed terms in the signature of  ACP (so r-less and r~-less), 

and suppose ACP~ ~ t~ = t2. Let t3, t4 be basic terms such that ACP~ ~- tl = t3, t2 = t4. 

Since t3, t4 can be ob ta ined  by rewrite rules A C P ~ - A T ,  we have ACP~-t~ = t3, 

t2 = t4. Now, by Lemma 2.19, A1-7 ~- t 3 = t 4. Hence, ACP ~- t~ = t2. []  

3. The Expansion Theorem for ACP~ 

The Expans ion  Theorem is an impor tan t  algebraic tool since it helps in breaking 

down a merge expression x~ II x2 II... II xk. For  CCS, an Expansion Theorem is proved 
in [12]. For  ACP (i.e., ACP~ without  r) ,  the analogous theorem is proved in [5]. As 

an example we ment ion  the Expansion Theorem for ACP in the case k = 3: 

xllyll z =  xll (yll z ) + y l l  (z l lx)+ zll (xlly)+(ylz)ll x+(z lx )Ey+(x ly ) l l  z. 

In [5], the Expans ion  Theorem is proved by a straightforward induct ion  on k starting 
from the fol lowing assumptions:  

(a) the handshaking axiom xlylz -- 8 (i.e., communicat ions  are binary) ,  

(b) the axioms of standard concurrency for ACP (see Table 3). 
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Table 3. 

(xll y)U_z=xU (y[Iz) 
(xly)ll z= xl(yE z) 
x ly=ytx  
xlly=yll x 
xl(YlZ)=(xlY)lz 
x tt (Y tl z) = (x II y)II z 

The s tandard concurrency axioms are fulfilled in the main models of  ACP, to wit 
the term model (initial algebra) A,o of ACP, the projective limit model A ~ and the 

graph model A ~ (see [4]). 
For ACP~ this is no longer true; all axioms of standard concurrency hold in the 

initial algebra A~' of ACP~ except the second one. 

Example 

(alrb)ll c=(alb)c and al(rbll c)=(alb)c+(alc)b+alblc. 

For a proof  of  the validity of  some of the axioms of  standard concurrency in A~', 

see Appendix B. 
Fortunately, the Expansion Theorem carries over from ACP to A C P ,  in exactly 

the same form. This is what we will prove in this section. The underlying intuition 
is that II and I1 behave in ACP,  just like in ACP, with the convention that r cannot 
communicate. For "[" the same is true if its arguments x, y are 'saturated'  in the 
sense that they have been maximally exposed to the rewrite rule associated to 
T2: zx -> rx + x. As an example, consider ra I b. Evaluated according to ACP, we have 

r a l b = ( r l b ) a = a a  = & 

However, according to ACP~: 

 alb=alb, 

which may be different from 8. Now suppose that za is made 'saturated'  in the 
above sense, i.e., replaced by ra  + a. Then, also by ACP, 

(ra+ a)lb= zalb+ alb=(rlb)a+ alb= a+ alb=alb, 

just as in ACP~. 
Below, the proof  of the Expansion Theorem will also entail the associativity of 

I[. Nevertheless, we have given in Appendix B a totally different proof  of the 
associativity of  II in A~', by means of an induction to term complexity. This is done, 
because the latter proof yields some useful identities (some of the axioms of  standard 
concurrency) and for the curious fact that the proof  requires an application of the 
third z-law (T3). (In computations with and applications of ACP~ the first two 
r-laws turn up frequently; this seems not to be the case for the third z-law.) 
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3.1. Definition. T is the set of basic  terms in normal  form w.r.t, the rewrite rule 

associated to A 4 : ( x  + y ) z  ~ xz  + yz. (This means that  if t ~ T, then [t], the interpreta-  

tion of t in the domain  of process graphs  G in Section 2, is a process tree.) 

3.2 .  N o t a t i o n .  Let  s, t ~ T. We write s__= t, if  s is a summand  of s, i .e. ,  i f  t = s or 

t = s + r  for some r. 

Example.  a ( r b +  c ) E a ( r b +  c ) +  ab. 

3.3. Definition. Let x e T. Then x is saturated if  

r y E x  ~ y~_x. 

Example.  (i) b + ra is not sa tura ted  but  becomes so after an appl icat ion of  the 

r- law T2 : b + ra + a. 

(ii) b + r ( a  + re) + a + re + c is saturated.  

3.4. Proposition. Let  x ~ T. Then there exists a saturated y c Tsuch  that ACP~ ~- x = y 
(in fact,  even T2 F- x = y ) .  

3.5. Notation. We will denote by  ~ a saturated y as in Proposi t ion 3.4. For definite- 

ness, we take y of minimal  length. So, e.g., b + ra = b + ra + a. 

The next  proposi t ion  says that  a merge in ACP~ (anyway in its initial algebra 

AT) can be carried out by t reat ing the atom r as if  it were an 'ordinary ' ,  noncom-  

municat ing atom. Formally,  this can be expressed by extending the a lphabet  with 

a fresh symbol  t (acting as a s tand- in  for  r) which does not communicate ,  replacing 

all r 's  in a merge by t and after evaluat ing the merge restoring the r ' s  by means  of 

the operator  ~{,}. The same is t rue for 4 ;  for I it is true under  the condit ion tha t  the 

arguments are saturated. Thus, we have the following proposi t ion.  

3.6. Proposition. Let  x, y ~ T be terms over the alphabet A,.  Le t  t ~ AT and ex tend  the 

communicat ion funct ion  on AT to ( A t3 {t})~ such that t does not communicate.  Further, 

let xt  be t h e  term "resulting f r o m  replacing all occurrences o f  r by t. Then: 
(i) ACP~ ~- x l l y = r { , } ( x t l l y ' ) ,  

(ii) A C P ,  ~ xll y = r{,}(x'[[_y'), 

(iii) ACP~ ~-  ly= 

P r o o f .  ( i )  Let 

x = ( r ) + ~  a , + ~  bjx~+~ rx'~ a n d  Y = ( r ) + E  c t + E  amy" + ~  "r.v~ 
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where a~, bj, ct, dm ~ A. Then 

xlly=xll y+yll x+xly  = 

( ry ) + E a~y 

(~x) +X c,x 

(,Ir) +(2 ,Ic,) 
(Y a, lr) +X a,[c, 

(Z bjxjlr) +Y~ b~lc, 

=zl ) +ly  c, 

+E bj(xSlly) +E r(xZlly) 

+E dm(y" llx) +E r(ygllx) 

+Z a, l d~"  +[Y a, lryg 

+E bjx~ld~" +[E bjx~lzyg 
+Y. rxZld~" + E rxZlry~ 

+ 

+ 

+ 

+ 

+ 

Here the five enclosed summands can be skipped, in view of the following claim. 

Claim. x'~_x& y'~_y ~ x' ly '~xlyEr(xl ly) .  
Proof of  the Claim. If  x 'Ex,  y'~_y, then by the linearity laws CM8, 9 for "'1" at 

once: x'ly'Exly. Further, xly~_ r(xlly) follows since 

ACP,  ~- r(x Ily)= r(x~_y+ y l  x + xly)-- r(x~_y+ yll x + xly)+ xly. 

So, e.g., the summand ~ a,l~y;;--Y~ a, ly~-Y, r(ygllx) (since a, Ex);  likewise, the 
other four enclosed summands can be shown to be summands of non-enclosed 
summands. On the other hand, the give corresponding summands in ro}(x' II y ' )  are 
equal to 8, since t does not communicate. The remaining summands pose no problem, 

e.g.: 

Y~ bAx'lly)= r{,~ Y~ bj(x~'llY') 

follows by 

r{,~ ~, bj(x~' ll y ') = Z bjrt,~(x~' li y') 

and the induction hypothesis 

x~ ll y = r~,~(xj' ll y ') 

(induction on the sum of the term complexities). 
(ii) The case of 11 is similar to that of II. 

(iii) It is easy to show that a saturated term ~ e T can be decomposed as follows: 

n m l 

~ = ( r ) +  Y. a , +  E bye+ Y'. "r2k, 
i = 1  j = l  k = l  

where ai, bj ~ A, n, m, 1 I> 0, and the ~k are again saturated. Note that the length of 

2k is less than  that o f  2. We will  use  this for an induct ion  on  the lengths o f  ~, )7 in 
the s tatement  to prove.  
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We consider a typical example; the general proof involves only greater notational 
complexity. Let 

"2 = a + bXl + 7~2 + x2, 

)7 = 7+ c+ dyl + 7372+)72. 

Then 

 1)7 = 

a17 +alc +aldy, 

bx,[7 +bx,[c +bx, ldy, 

+ al~= 

+ bx,[~2 
"4- '/'X2 1 7y2 

+al)7  + 

+ bx, I)72 + 

Note that the enclosed summands can be skipped, since (by virtue of the saturation 
requirement) they are equal to other summands: e.g., a]D72 = a [)72 (by axiom TC4), 
bx~[~'fi2 = bx~ I)72. Now these are just the terms which are 'lost' when evaluating 
7~,~(~' I)7') (since t does not communicate). Namely: 

~, ly '=  

aJt +alc +aldy; +8  +a[)7~ + 

bx',lt +bx',lc-i-bx~ldY'~ + 8 +bx~lfi~ -4- 

6 + 6  + 8  + 6 +8  + 

- - t  - - t  t ~]t +x2lc +x2ldy, +8 +~[)7~ 

To see that 7~,~(~'[)7 t) =~[)7 we can inspect the summands separately (since 7~0 
distributes over +). Indeed, a i r =  7~t~(alt)=6; and, e.g., ~2]dy~= 7~o(~'2[dyt~) fol- 
lows by the induction hypothesis, using the fact that dy't =-@'~. [] 

In the same way one can prove the following proposition which generalises 
Proposition 3.6(i) and is of independent interest. 

3.7. Proposition. (i) Let I ~_ A be 
{ c [ 3 i e  I, a ~ A ,  ila - -  c } . )  Then, in A'~, 

7,(x II y)= 7,(7,(x)II 7,(7)). 

(ii) Moreover, let (AIA) n I = 0. Then, 

71(x [[ y ) = 7,(x)[I 7,(y). 

3.8. Corollary. A~' ~ x II (y II z) = (x Ily)II z 

such that I [ A = { 8 }. (Here I [ A = 

in A~,  
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Proof. Let t be as in Proposition 3.6. Note that Proposition 3.6(i) entails (x ]] y ) t =  

x' Ily'. Now: 

xll(yllz)= ..~(x'll(yllz)')= ..~(x'll(y'llz')) (% ..~((x'lly')llz')=(xlly)llz. 

Here, (*) follows from the associativity of II in ACP (see [2]). [] 

3.9. Expansion Theorem for ACP, .  L e t  c o m m u n i c a t i o n  be binary. Then,  in A ~ ,  

x, ll...llx~= X x, llx~,+ y~ (x, lxj)llx'L 
l~ i~k  l<~i<j<~k 

where  X ~  is the merge  o f  x l ,  . . . , Xk except  xi, a n d  X~k j is the merge  o f  x , ,  . . . , Xk except  

xi, xj (k ~> 3). 

Proof 

x, I I  II xk = ~, II--II ~k = ~.~(~', I I  II ~L) 

= g  ~.~(~IE (£~:)') +g  ~.~((~; I~j) E (£~J) ') 

~-~,~xj) E ~-~a(xk ) (2.)Z ('.~,~(~3E~-~,~(x~,)')+Z (',-~,~;I - ' -"J ' 

- - i - I - -  =Yx, EXk X(~,l~j)ll g~ j 

= X x, II x L + X  (x, I xj)ll x~J. 

Here, (*) is the Expansion Theorem for ACP (see [5]) and (**) is by Proposition 
3.6. [] 

Appendix A. Termination of ACP. reductions proved by recursive path orderings 

In this appendix We will prove the termination result in the Elimination Theorem 
2.20 by the method of recursive pa th  orderings  as in [7]. Since we will give a slightly 
different presentation of recursive path orderings, a short account of this method 
will be given. Our presentation replaces Dershowitz's inductive definition of the 
recursive path ordering by a reduction procedure (which may be seen as an 'opera- 

tionalisation' of that inductive definition). This reduction procedure provides a 
somewhat easier notation in applications. 

We start with the basis of the recursive path ordering method, the Kruskal Tree 
Theorem. First we need a definition. 

A.1. Definition. (i) Let D be the domain of finite commutative rooted trees whose 
nodes are labeled with natural numbers; alternatively one may consider an element 
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t of D as a part ial ly ordered multiset of natura l  numbers  such that  t has a least 

element. 

Example  

t =  3 

/ 1 \  
5 7 8 

I I 
9 0 

/ \  
I 5 

We will use  the sel f -explaining notat ion t = 3(5, 7(9), 8(0(1, 5))). This notat ion is 

ambiguous  since the ' a rguments '  of  the 'opera tors '  may  be permuted,  e.g., also 

t =  3(8(0(5, 1)), 5, 7(9)). 

(ii) Let t, s s D. We say tha t  s is covered by t, nota t ion  s E t, if  there is an injection 

¢: NODES(S)~ NODES(t) which  is an order-preserving i somorphism and such that  

for all nodes  a ~ NODES(S) we have: l abe l (a )  ~< l a b e l ( ~ ( a ) )  where <~ is the ordering 

on •. 

Example. s = 2(9, 7(4, 0)) E t as in (i): 

s =  2 --- ~ _ _ - ~ 3  = t  

/ \ /1\  
9.. 7 ~ 5__ 7-.~8 

" % \ _  I I 
4 0 . . . . .  "~9 0 

, . / \  
~ "~5  1 

Clearly,  E is a p.o. on D. N o w  there is the fol lowing beaut i ful  theorem. 

A.2. Kruskal  Xree  Theorem. Let fi, t2, t 3 , . . ,  be a sequence in D. Then for  some 

i < j :  t i ~  tj. 

In fact,  this is not the most  general formula t ion  of  the theorem (see [7]). The 

fo rmula t ion  there is s t ronger  in two respects: the l inear  ordering of the labels (in 

our case 1~1) can be taken to be a partial  order which  is wel l - founded;  and secondly, 

Kruskal ' s  original  fo rmula t ion  concerns noncommuta t ive  trees and an embedding 

as above must  also respect the  ' left-to-right'  ordering.  Clearly,  that version implies 

immedia te ly  the above s ta tement  of the Tree Theorem.  For  a short proof,  see [8]. 

The next  definit ion is f rom [7]. 

A.3. Definition. The p.o. ~ on  D is defined induct ively  as follows: t = n ( h , . . . ,  tk)  l:> 

m ( s l , . . . ,  s t ) = s  (k, l>~O) iff 
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(i) n > m a n d  t ~,. si for  all i = 1 , . . . ,  l, or  

(ii) n = m a n d  { t l , . . . ,  tk} t:>t> { S l , . . . ,  St} where  t:>t> is the p.o. on  mul t ise ts  o f  

e lements  o f  D i n d u c e d  by t:>, or  
(iii) n < m  a n d  t i ~ s  for  s o m e i ~ { 1 , . . . , k } .  

It is imp l i c i t  in  [7] tha t  an equ iva len t  def in i t ion  o f  t> is the  fo l lowing.  

A.4. Defini t ion.  T h e  p.o. t:> on  D is def ined induc t ive ly  as fol lows:  

(a) t =  n ( t l , . . . ,  t k ) ~ > m ( s l , . . . ,  St)=S (k, l~O)  iff 
(i) as above ,  or  

(ii) as above ,  or  

(i i i) '  s = t~ for  some i ~ { 1 , . . . ,  k}. 
(b) t> is t rans i t ive .  

(Here the  cases  (i), (ii), (i i i) '  may  over lap.  The  t rans i t iv i ty  has to be requ i red  

explici t ly  now. )  

A.5. Example 

t = 

/ 
6 

5 t:> 4 = s  

\ / \  
7 6 5 4 

! / \  I \  
8 6 8 6 6 

/1\  
8 8 8 8  

Proof.  By (i) f r o m  Def in i t ion  A.3, t t> s if  
(a) t t > 6  a n d  (b) t t>  5 and  

/ \  
6 8 

(a) fo l lows  by  (iii) o f  Def in i t ion  A.3; 

(c) t t> 4 

/ \  
6 6 

8 8 8 8  

(b) fo l lows  by  (ii) and  7 t > 8  (by (iii)). 
I 
8 

(c) fo l lows  f r o m  ( d ) t  t>6  and  (e) t t> 6 

8 8 8 8  



108 J.A. Bergstra, J.W. Klop 

(d) is by (iii) and (e) is so by (iii) since 

7 t> 6 (by (i), (iii)). []  

I / 1 \ \  
8 8 8 8 8  

So establishing that  t t> s requires a miniature proof.  Another  presentat ion may 
be more convenient:  instead of  by the inductive definition above we can also define 
t> by an auxil iary reduction procedure  as follows. 

Let D*  be D where some nodes of  t ~ D may be marked  with *. E.g., 

3" (1 ,2*(4 ) )  = 3* 6 D*. 

/ \  
1 2* 

I 
4 

Notation. I f t = n ( t l , . . . , t k )  or t = n * ( t i , . . . , t k ) , t h e n  t * = n * ( t ~ , . . , t k ) .  
(The marker  * can be unders tood as a command  to replace the marked term by 

a lesser term.) 

A.6. Definition. On D* a reduction relat ion =* is defined as follows: 
(0) n ( h , . . . ,  tk)=* n * ( h , . . . ,  tk) (k>-O),  
(1) if n >  m, then n * ( h , . . . ,  tk) =*" m ( n * ( / ' ) , . . . ,  n * ( t ) )  

(k~>0, s~>0 copies of  n* ( f ) ) ,  

(2) n * ( t l , . . . , t k ) = * n ( t * , . . . , t * , t E , . . . , t k )  ( k >>- l,  s ~> O copies  o f  t*), 
(3) n * ( t i , . . . , t k ) = * t ,  ( i e { 1 , . . . , k } , k > ~ l ) ,  
(4) if t =* s, then n ( - - ,  t, - - )  =* n ( - - ,  s, - - ) .  

Furthermore,  =*7 is the transitive reflexive closure of  =*. 

(In fact, (4) is superfluous for the definition o f=* , ;  wi thout  it one easily derives: 
if t =* s, then n ( - - ,  t, - - )  =,.~ n ( - - ,  s, - - ) . )  

We are only interested in *-free t ~ D ~_ D*.  Now we have,  by a tedious but routine 

proof  which is omitted,  the following proposition. 

A.7. Proposition. Let  t, s ~ D (i.e., not  containing *). Then" 

t=~> S i f f  t ~  S. 

A.8. Example. (i) 4=,-4* =~ 3(4", 4* )=*  3(2(4"),  4*)=* 3(2(1), 4*)=,*. 3(2(1), 0). 
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6 

(ii) (Cf. Example A.5): 

t = 5 

/ \  
6 7 

I 
8 

5 • 

/ \  
6 7 

8 

4 

5* 5* 5* 

/ \  / \  / \  
6 7 6  7 6  7 

I I I 
8 8 8 

=:=p-~ 

5 

/ \  
6 7* 

I 
8 

::=:::t~'~ 

4 6 / \  
5* 5* 

/ \  / \  
6 7 6 7 

I I 
8 8 

4 

/ 7 \  
5 4 

/ \  / \  
6 8 6 7 

I 
8 

=z~l> 

6 

4 

/ 7 \  
5 4 

/ \  / \  
6 8 6 

=~,, 

/ 7 \  
6 5 4 6 

/ \  / \  
6 8 6 6 

/ \ ~ .  
7* 7* 7* 7* 

I I 
8 8 8 8 

/ / \  
5 

/ \  
6 8 

4 

/ \  
6 6 

8 8 8 8  

7 • 

I 
8 

In [7], the following facts about r> are proved. 

A.9. Proposition. t~ is a partial order. 

The proof  requires a simple induction to show the irreflexivity. 

A.10. Proposition 
(i) n ( t l , . . . ,  t k ) t>n( t2 , . . . ,  tk), 

(ii) n ( t l , . . . , t k ) t ~ t i  (1 ~< i<~k), 
(iii) t > s  =:> n ( . . ,  t , . . ) t > n ( . . , s , . . ) ,  
(iv) i fn  > m then n ( t l , . . . ,  tk) t> m ( t l , . . . ,  tk). 
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Proof. Using Proposit ion A.7, (i)-(iii) are immedia te ;  e.g., (ii): n ( f )  =*, n*(/')=*-ti 
and (i): n (  tl ,  . . . , tk) =*" n * (  t l ,  . . . , tk) =t, n(t2, . . . ,  tk).  

As to (iv): n(  i') =~ n * (  l') =~ m ( n * (  i ' ) , .  . . ,  n * (  r ) )  =,,> m ( t l ,  . .  . ,  tk). []  

Using Proposit ion A.IO one easily shows the following. 

A.11. Proposition. s e t  ===> t ~  s. 

From this we have the following theorem. 

A.12. Theorem (Dershowitz)  (The terminat ion property for the recursive path order- 

ing t>). t> is a w e l l - f o u n d e d  par t i a l  order.  

Proof. Suppose to t> tl t >  t 2 t> • • • is an infinite descending chain w.r.t, t>. Then, by 
the Kruskal  Tree Theorem A.2, ti---tj for some i < j .  So by Proposit ion A.1 l, t~ ~ h. 
However, since t> is a p.o., this contradicts t~ t> tj. [] 

A.13. Application to ACP~.. We want to prove that the rewrite rules (from left to 
right) associated to the axioms of ACP~ except A1,2,  5, C1 ,2  and  T1,2,  3 are 
terminating. These rewrite rules have, in tree notation, the form as shown in Table 
4 below. 

Note that the occurrence of II in the RHS of the rules CM3, CM7 prevents us to 
order the operators directly in a way suitable for an applicat ion of the terminat ion 
property of  recursive pa th  orderings. 

Therefore,  we will rank  the operators II, [L, [ in the following way. Define the 
weigh t  [TI of a term T as follows: 

l a l  = I~1 = 1 ,  

[x [] y[ = Ixl + ]yl for [] = -, II, II, l, 

Ix + Y l--max{Ixl, lYl}, 

la . (x) l  = I~,(x)l = Ixl. 

Now the r a n k  of an operator  II, [l, I is the weight of  the subterm of  which it is the 
leading operator. Operators  other than It, ~l, I need no rank. 

The ranked operators II,, ~_,, I,, +, ", all, ~'i are partially ordered as follows: 

II.>ll . .I .  II., I . >  II+-, II.,ll + , l . > ' > +  a,,, ~ , > -  

(see Fig. 17). 
Now consider  a closed ACP,- te rm T and obtain the ranked term Tr by assigning 

to all operators in T their  rank. 
E x a m p l e  

T =  (ab[l  cd)~_  (Tq  I (r+ u v ) )  
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°°. °°° 
\ / 

/ \  
113 13 \ /  

/ \  
L2 [: 

I 
+ 

Fig. 17. 

will be ranked  as 

Tr=( ab 114 cd) 118 (~'q 14(r+ uv)). 

To Tr we associate an e lement  t s D by writing down the formation tree of  T~: 

L8  

114 ~ I, 
/ \  / 

/ \  
a b 

/ \  / \  
c d T q 

\ 
+ 

/ \  
r 

/ \  
U /) 

(In fact, we must assign to the a, ~', II~, lln, In, +, ", all, ~, natural  numbers correspond- 
ing to the p.o. in Fig. 17 above. To all atoms we assign, say, 0.) 

It is impor tan t  to note that  the definition of  the rank of  II, 11, I is such that a 

rewriting in term T does not  cause the rank of  operators 'higher '  in the format ion 
tree of  T to increase (it may decrease).  This is effectuated by the clause for + in 

the def ini t ion of  'weight ' .  Indeed,  if  T--> T' is a rewriting by one of  the rewrite rules 

in Table  4, then I TI t> I T'[, i.e., the weight cannot  increase in a rewriting. Moreover,  

if ITI~>IT'[, then for each context  C[ ]: IC[T]I~IC[T'][. 

Now we have the fol lowing theorem. 

A.13.1. Theorem. The rewrite rules in Table 4 have the termination property. 
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Table  4. Rewri te  rules assoc ia ted  to the ax ioms  o f  A C P , - - { A 1 ,  2, 5; C1, 2; T1, 2, 3}. 

A3. + 

/ \  
X X 

A4. 

/ \  
+ z 

/ \  
x y 

+ 

/ \  
/ x  / \  

x z y z 

CM5,  6. 

CM7.  

r / \  / \  
b I x 

/ X  / \  
a x a b 

/ \ i / \ ,  
/ N  / N  / \  / N  

a x b y a b x y 

A6. 

/ \  
x 6 

A7. 
. . - - . ~  ~ 

/ \  
x 

C3. I 
/ \  

6 a 

6 

C M l .  II 
/ \  

x y 

CM2.  ~_ 

/ \  
a x 

Likewise TM I. 

CM8,  9. 

D I , 2 .  

D3. 

+ D4. 

/ \  / \  / X  
x y y x x y 

/ \  
a x 

T I I - 5 :  

/ \  
+ z 

/ \  
x y 

OH 

I 
Q 

Likewise DT. 

o3 H 

I 
+ 

/ \  
x y 

+ 

/ N  

/N  / N  
x z y z 

C3H I~ 

I 
/ \  

x y 

ana logous  to DT, D I-4. 

a, 8 

/ + \  
OH OH 

I I 
x y 

/ \  
aH OH 

I I 
x y 

CM3.  
I1 

/ \  
Y 

/ \  
a x 

Likewise TM2. 

C M 4 .  ~_ 

/ k  
+ z 

/ \  
x y 

IX 
a I1 

IX 
x y 

;- + 

/ \  
II II 

I\ /\ 
X Z y 2 

T C I ,  2. 

TC3, 4. 

I 
/ \  

7" X 

i 
/ \  

Y / \  
7" X 

8 

I 
/ \  

x y 
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Proof .  Let ~ be  the  recurs ive  p a t h  o r d e r i n g  i n d u c e d  by the  p.o. on  the r a n k e d  

operators  as d e f i n e d  above .  We  wi l l  s h o w  that  for  each  c lo sed  ins tance  t ~ s o f  the  

rewrite rules ,  w e  h a v e  t ~ s. In order  to do  so,  we  use  the a l ternat ive  d e f i n i t i o n  o f  

t> as +=~> ( the  trans i t ive  c losure  o f  =*-). W e  wi l l  treat s o m e  typica l  cases  (see  T a b l e s  
5 and  6). [ ]  

T a b l e  5 .  

A 3 .  + = ~  + * 

/ \  / \  
X X X X 

==~ X 

A4. / \  
+ z 

/ \  
x y 

+/\ 
/ \  

x y 

+ 

/ \  
IX IX 

+ z + z 
/ X  / \  

X y X 

=~ + 

/ \  
/ \  
+* z +* /k  z 

/ \  / \  
x y x y 

+ 

/ \  
IX IX 

x z y z 

C M I .  
Ilixl+t,j =~ ilj~j+~,~ 

/\ /\ 
x y x y 

+ 

II~l+t.,-j I1" ixl+l,.i I1" Ixl+bl 

IX IX IX 
x y x y x y 

11 Ixl+bl II I.~l+l.,r 

/< /X 
II* * * 1--i+l;l II N+i.,l II l.,~÷b i 

/ \  1\ 1\ 
x y x y x y 

II~!+L,.I 

/\ 
x y 

II.~!+!,.I 

/X 
II~.*,l÷l., t 

/ \  
x y 

I1" I.~1+1.,1 

/\ 
x y 

+ 

11 Ixt+bl U I.,t+1.,-I Ilxl+l,-i 

/\ /\ /\ 
x y x y x y 
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T a b l e  6. 

C M 3 .  
~_ I+l-,l÷L.,t =*" 

/ \  
y 

/ \  
a x 

HI *t.~l+b! 

/ \  
y 

/ \  
a x 

I + t . ' : t+b ' l  

/ \  
Y 

/ \  
a x 

~- J*+l.~l+b'l 

/ \  
Y 

/ \  
a x 

C M 7 .  

/ \  
~ Illxl÷l.,-I 

I1 *l.,-i.i,-j 

/ \  
y 

/ \  
a x 

] + l . ~ l+ l y l  

/ \  
Y 

/ \  
a x 

12+[.v]+[.l.[ [2+1.': +Iv 

/ \  / \  
/ \  / \  / \  / \  

a x b y a x b y 

/ \  
a Itl~l+l,-I 

/ \  
x y 

/ \ ,  
12*l.~r+l., l J2÷p.,-I+j,.i 

/ \  / \  
/ \  / X  / X  / \ 

a x b y a x b y 

2 

/ \  
a b 

/ \  
/ \  

12~+lxl+lyl I2+l.~l+b'l 

/ \  / \  
I X .  I X  I X .  i X  

a x b y a x b .v 

/ \  
/ \  / \  

b x y 
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Appendix B. An inductive proof of associativity of merge in ACP~ 

We will prove that  in ACP~ the identities as shown in Table 7 between closed 
terms are derivable. These are the axioms of  s t andard  concurrency as in Table 3 
(Section 3), except for (2) which is a special case of  the second axiom of  s tandard 
concurrency.  (Alternatively,  (2) may  be replaced by: 

(x[y)~_ z =  x[(y~_ z) if y is stable. 

Here  y is 'stable' ,  in the terminology of  Milner [12], if it does not start with a r-step.) 

T a b l e  7. 

(1) (x[Ly)ll z=xU_(yllz) 
(2) (xlay)ll z=xl(ayll z) 
(3) x[y=YlX 
(4) xlly=Yllx 
(5) x[(Ylz)=(xlY)lz 
(6) x II (y II z) = (x II y) II z 

In Corol lary  3.8 a different p roof  of  (6) is given. The present p roof  uses an 
essential ly s t ra ightforward induction to the lengths of  the terms involved; the 
induct ion  has to be s imultaneously applied to several of  (1)-(6).  These identities, 
however ,  are interesting in their own right. 

The p r o o f  has two main par ts ;  in the first and easiest part,  identities (3), (4), (5) 

are proved.  The second part  takes care of  the main  identity, (6); the proof  is 
compl ica ted  by the fact that  we have in ACP~ only the weak version (2) of the 
second axiom of s t andard  concurrency.  

All identities (1)- (6)  are proved for basic terms ~ T (see Definition 3.1). In view 
of  the Eliminat ion Theorem 2.20 this entails the identities for all closed ACP,- te rms  
x , y , z .  

B.1. Proposition. L e t  x, y ,  z e T. Then: 

(i) A C P ,  f - x l y = Y l x  
(ii) ACP~ v- x [ [ y = y [ l x .  

Proof. Let Ix[ be the length in symbols of  x. The p roo f  uses an induction on Ix[ + [y[. 
We prove  (i), (ii) s imultaneously.  

The induction hypothesis  is: (i), (ii) are proved for all x' ,  y '  such that  [x'[ + [y'[ < 

[x[+[y[.  First we will prove the induction step of  (i), x [ y = y [ x .  

Case 1. x = x, + x2. So Ix, I <lxl ,  i = 1, 2. Then x l y = ( x ,  + x2) l y = Xl l y + x2 l y 
= ( i n d u c t i o n  hypothesis) ylx ,  + ylx2 = y l (x ,  + x2)= ylx. 

Case 2. y -- y~ + Y2: similar. 
Case 3. x = r :  x l y = r l y = 8 = y l r = y l x .  
Case 4. y = r:  similar. 



116 J.A. Bergstra, J.W. Klop 

Case 5. 

Case 6. 

Case 7. 

Case 8. 

Case 9. 

x = rx': xly = rx'ly = x'ly = ylx '= y[ rx'= ylx. 
x = a , y = b :  x l y = a l b = b l a = y l x .  
x =  ax', y =  by': x ly= ax'lby'=(alb)(x'llY')=(bla)(y'llx')= ylx. 
x = a , y = b y ' :  x l y = ( a [ b ) y ' = ( b l a ) y ' = y l  x. 
x = ax', y = b: s imi lar .  

( N o t e  tha t  in Case  7 the  i n d u c t i o n  hypo the s i s  fo r  (ii) is used. )  

N e x t  to s h o w  (ii) x l l y = Y l l x :  

xlly=xH_y+yU_x+xly=yll x + x l l y + y [ x = y l l  x. [] 

B.2. P ropos i t ion .  Let x, y, z ~ T. Then A C P ~ -  x l (y  l z ) = ( x l y ) l z. 

Proof. I n d u c t i o n  on Ixl + lYl + Izl- 
Case 1. x =  Xl + x 2. T h e n  xl (y lz )=x, l (y lz )+ x21(ylz)=(x, ly)lz+(x2ly)lz 

= ( ( x ,  ly)+(x21y))lz=((x, + x2)ly)lz=(xly)lz.  
Case 2. S imi l a r  wi th  y a n d  z sums of  sma l l e r  t e rms .  

Case 3. x, y, z have  one  o f  the  forms a, ~', au, ru. W e  m e n t i o n  one  o f  the  4 3 c a s e s :  

( ~ x ' l a y ' ) l b = ( x ' l a y ' ) l b =  x ' l ( a y ' l b ) =  rx'l(ay'lb). N o t e  tha t  one  o f  the  cases  is jus t  

ax iom C2 f r o m  ACP~ (Tab le  2). [] 

Fo r  t he  s e c o n d  h a l f  o f  the  p r o o f  we n e e d  two  p r e p a r a t o r y  p ropos i t ions .  

B.3. Def in i t ion .  Let  x, y be  c losed  ACP~-terms.  T h e n  we define:  ACP~ ~ - x E y  if, 

for  s o m e  c lo sed  t e r m  z, ACP~ ~- y = x + z. 

B.3.1. R e m a r k .  N o t e  the  d i f fe rence  with  ~ as d e f i n e d  for  T, in Def in i t i on  3.2. The  

p resen t  ' s u m m a n d  inc lus ion ' ,  ACP~ ~- • - _ .  • ,  is j u s t  E m o d u l o  ACP~-equa l i ty .  In  

the seque l ,  we  wil l  s o m e t i m e s  wri te  x E y  w h e r e  ACP~ ~- x E y  is m e a n t ,  i f  it is c lear  

tha t  we  a re  w o r k i n g  m o d u l o  ACP~-equal i ty .  

B.4. Example 
(i) ACP~ ~- a E ~a ( s ince  a = a + r a ) ,  

(ii) ACP,~amallr (sinceallr=ra+ar+alr=ra+a), 
(iii) A C P ,  t-- 8 E x for  all x, 

(iv) A C P ,  t- a + za + rb  ==_ b + ~-a + ~'b. 

B.5. Proposition. Let  x, y be closed terms. Then: 

A C P , ~ - x E y & A C P , ~ - y E x  ~ A C P , ~ x = y .  

Proof. W e  m a y  suppose ,  by  the  E l imina t ion  T h e o r e m  2.20, that  x, y ~ T. Suppose  

ACP~ t-- y = x + z for  s o m e  z ~ T and  ACP~ t-- x = y + u for  some  u ~ T. T h e n  

ACP~ ~- x = x + z + u. T h e r e f o r e ,  the process  t rees  c o r r e s p o n d i n g  to x a n d  x + z + u 
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bis imula te :  [x ]  ~-'~---r~-[Xq-Zq-t/]. (Here ,  [x]  is the  i n t e rp r e t a t i on  o f  x in the g raph  

d o m a i n  ~ as in  Sect ion 2; s ince  x ~  T this  is a p rocess  tree.) Say R is an r r -  

b i s imu la t i on  b e t w e e n  Ix]  a n d  [x + z + u] = Ix]  + [ z ]  + [u] .  Let R '  be the  restr ic t ion o f  

R to ( the n o d e  sets of) Ix]  a n d  Ix]  + [z]. N o w  R '  n e e d  no t  be a b i s imu la t ion  be tween  

these t rees ;  h o w e v e r ,  if  I is the  tr ivial  ( ident i ty)  b i s i m u l a t i o n  be tween  Ix]  wi th  itself,  

then  it is no t  h a r d  to see tha t  R ' u  ! is an  r z - b i s i m u l a t i o n  be tween  [x]  and  Ix] + [ z ]  = 

[x + z]. (A l t e rna t ive ly :  let R be a b i s imu la t i on  as i n d i c a t e d  wh ich  is max ima l  w.r.t. 

inc lus ion.  T h e n  the  res t r ic t ion  R '  is a b i s i m u l a t i o n  as desi red.)  

H e n c e A C P ~ - x = x + z = y .  [ ]  

B.6. P ropos i t ion .  Let x be a closed term. Then ACP~ ~ xll z = x. 

Proof.  We m a y  suppose  x ~ T, and  use i n d u c t i o n  on  Ixl. 

I f  x = x~ + x2, t h e n  x L  ~'= x~ll r +  x211 r =  x~ + x2= x. 

I f  x = a, t h e n  a[I ~" = a~" = a. 

I f  x = ax', t h e n  

ax'll ~'= a ( x '  11 r )=  a(x'~_ r +  7~_ x ' +  x ' l r )  

= a(x'~_ ~-+ z x ' +  8) = a ( x ' +  ~'x') = a~-x'= ax'. 

The cases x = %  x = ~ '  are s imilar .  [ ]  

We will  n o w  start  the  s i m u l t a n e o u s  p r o o f  o f  (1), (2), (6) in Tab le  7. 

B.7. Theorem.  Let  x, y, z be closed ACP~-terms and a ~ A. Then: 

(i) ACP~  ~ (x l ly ) I I  z = xll (y II z), 
(ii) mfP~(xlay)U_z=xl(ayll z), 

(iii) A C P ~  xll(yllz)=(xlly)llz.  

Proof.  We  m a y  a s sume  x, y, z ~ T;  this  makes  an  i n d u c t i o n  to Ix[ + lyl + Izl possible .  

We will  p r o v e  ( i ) - ( i i i )  by  a s i m u l t a n e o u s  induc t ion .  Let  the  i nduc t ion  hypo thes i s  

be tha t  ( i ) - ( i i i )  a re  p roved  for  all x' ,  y ' ,  z ' ~  T such  tha t  Ix'l+ly'l+lz'l < Ixl+lyl+lzl. 
First  we p r o v e  the  i n d u c t i o n  s tep (i): (x l ly ) I I  z =xU_(y II z). 

Case ( i ) l .  x =  xl  + x2. T h e n  (x l l y ) l l  z = ( x l l [ y ) l l  z+(x21ly)~_ z = ( induc t ion  

h y p o t h e s i s  ) xl II (y  II z) + x2 IL (Y II z) = (x, + x2) I1 (y II z). 
Case (i)2. x =  ~-. Then :  (x l l y ) l l  z =  ~'yll z =  z(yl l  z) = zll(yllz)=xU_(yllz)- 
Case'(i)3. x =  rx' .  Then:  (x~_y)~_z= r(x'lly)ll z =  ~ ( ( x ' l l y ) l l z ) =  r ( x ' l l ( y l l z ) )  

= ~x'l_ (y II z) = xlL (y II z). 
The cases x = a, x = ax '  are  s imilar .  Th i s  ends  the  p r o o f  o f  the  i n d u c t i o n  step (i). 

Nex t  c o n s i d e r  the  i n d u c t i o n  step (ii): ( x l a y ) l l z =  x l ( a y l l z ) .  This  will  again  be 

proved by  a case  d i s t inc t ion  acco rd ing  to the  f o r m a t i o n  o f  X ~ T: x = x~ + x2, x = % 

rx ' ,  b, or  bx'. 
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Case ( i i ) l .  x =  x, + x2. T h e n  xl(ayll z ) =  (x, + x2)l(ayll z ) =  x,l(ayE z) 
+ x21(ayll z)=(x,  lay)ll z +(x2lay)ll z=(x,  lay+ x21ay)ll z 
= ((x, + x2)lay)[L z=  (xlay)l[  z. 

Case (ii)2. x = r. T h e n  (xlay)ll z = xl(ayll  z )=  & 
Case(ii)3. x =  rx'. T h e n  (xlay)ll z=(~x ' lay) l l  z = ( x ' i a y ) l L z = x ' l ( a y l L z )  

= Tx'l(ayll z)= xl(ayll z). 
Case(ii)4. x = b .  T h e n  (xlay)ll z=(blay)lLz=(bla)yll z=(bla)(Yllz), and  also 

xl(ayll z) = bl(ayll z)--- bl(a(y II z)) -- (bla)(y II z). 
Case (ii)5. x =  bx'. T h e n  (xlay)[l z=(bx'lay)ll z=(bla)(x'lly)ll z 

=(bla)((x'llY)ll z), and  xl(ayll z ) =  bx'l(ayll z ) =  bx'la(Yllz) 
= ( b l a ) ( x '  II (Y II z)). By the" induction hypothesis for statement (iii) 
therefore (xlay)ll z= xl(ayll z). 

This ends the  p r o o f  of  the  i nduc t ion  s tep (ii). 

N o w  c o n s i d e r  the  i n d u c t i o n  step (iii): L =  x II (y II z) = (x  II y)II z = R. B y t h e  ax ioms  
in A C P ,  we h a v e  

L =  x II (Y II z) = xll (y II z) + (y II z)ll x + x l (y II =) 

= xlL (y II ~)+(yll z+y lz+  zlly)ll x+xl(ytL z+ z l ly+y lz )  

= xll  (y II ~ )+  (yIL z)lL x + (y I z )E x + (z Ey)II  x + x l ( y E  z) 

+ x l (z l ly )+x l (y lz) .  

Likewise,  R can  be e x p a n d e d .  We will use the  fo l l owing  abbrevia t ions :  L =  

Ii +"  • • + 17 a n d  R = rl +"  • • + r7 where  

l ,=xE(yllz), r,=(xEy)Ez, 

&=(yEz)Ex, r~=(xly)Ez, 

13=(ylz)ll x, r3=(yEx)ll z, 

14=(zll y)ll x, r,=zll (xlly), 

Is=xl(yll z), rs=(x[Ly)lz, 

16=xl(zll y), r6=(ylLx)lz, 

17= xl(ylz), rT=(xly)lz. 

Claim. li m__ R, for  i = 1 , . . . ,  7. 

F rom the  C l a i m  the  i nduc t i on  step (iii) fol lows at once .  N a m e l y ,  we then  have:  

xll(yllz)=-(xlly)llz, h e n c e  by Propos i t ion  B. l ( i i ) :  xll(yllz)=--zll(xlly) (*). Now 
z II(x II Y) = z II (Y I1 x) =__ x II(z I1Y ) = x II (y II z), w h e r e  " E "  f o l l o w s  f r o m  ( * ). So w e  h a v e  

xll(ylIz)~(xlly)llz, and, by Proposition B.5: xll(yllz)=(xlly)tlz. 
The r e m a i n d e r  o f  the  p r o o f  is d e v o t e d  to the  p r o o f  o f  the  above  claim. 

Proof o f  the Claim 
(a) /7 = rTE---R by Propos i t ion  B.2. 
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(b) l~ = r~ER is s t a t emen t  (i) o f  this  t h e o r e m ;  this i n d u c t i o n  step has a l ready  

been  p roved .  L ikewise  for  12 = r3~R a n d  /4 = r4ER. 
(C) 13_r6ER. Here ,  13=(zly)llx and r6=zI (y~_x  ). 
I n d u c t i o n  on  z: 

Case(iii)(c)l.  z = z , + z z .  Then  13=((z,+z2)ly)ll x=(z~]y)[l x 
+ (zz l y)  II x _= ( i nduc t i on  hypo thes i s )  Zl I(y II x) + zz I(y U_ x) 
=(z~ + z2)l(Yll x ) =  zl(yll x). 

Case ( i i i )(c)2.  z = ~'. T h e n  13 = r 6 ---- t~. 

Case ( i i i )(c)3.  z =  ~-z'. T h e n  13=(rz'ly)ll x=(z'ly)ll x=--z'l(yll x) 
= ~z'l(yll x )=  zl(yll x). 

Case ( i i i )(c)4.  z = a. S imi lar  to the  nex t  case. 

Case ( i i i )(c)5.  z =  az'. To prove  (az'ly)[ l xEaz ' l (y[L x). We use an i n d u c t i o n  on y: 

Case (i i i)(c)5.1.  y =  y, + Y2. Then  (az' l(y z + Y2))[I x=(az ' ly , )[L x 
+(az'ly2)[l xEaz'l(yl~_x)+az'[(y2[[ x) 
= az'I((y, + y2)~_ x)  = (az')l(Yll x). 

Case(iii)(c)5.2. y =  z: (az'lz)U_x=SLx=S=_az'l(zll x). 
Case (iii)(c)5.3. y =  ry' :  (az'Izy')ll x=(az'Iy')ll x=__(az')I(y'll x) ~(az')l(y'llx) 

~.~(az')lz(y'llx)=(az')l(ry'llx). ( N o t e  the  cur ious  m a n o e u v r e  in 

s teps  (*).)  

Case(iii)(c)5.4. y=b"  (az'lb)Lx=((alb)z')ll x=(alb)(z ' l lx)=(az')l(bx) 
=(az')l(bU_x). 

Case (iii)(c)5.5. y =  by': (az'lby')ll x=((alb)(z'lly'))ll x=(alb)(z'llY')llx) 
= (a  I b)(z' II (y'll x ) ) =  (az')lb(y'll x)= az'l((by')U_ x). 

(d) F ina l ly  we p r o v e  15 E rz + r5 + r7 E R (and  by p e r m u t i n g  x, y we t h e n  have  also 

/6E r2+ r6+ r 7 ~ R ) ,  i.e.: 

xl(yU_z)E(xly)ll z+(xll_y)lz+xl(y[z). ] 

The p r o o f  is aga in  by i nduc t i on  on  Ixl + lYl +[zl .  We start wi th  an  i n d u c t i o n  on  x: 

Case ( i i i ) (d) l .  x =  x, + x2. Then xl(yll z ) =  x,l(Yll z )+  xzl(y[L z) 
=--(x, ly)ll z+(x, ll y) lz+ x,l(ylz)+(x2ly)U_ z 
+ (x211y)lz + x2l(ylz) = (x ly) U_ z +(xlLy)lz + xl(ylz). 

Case(iii)(d)2. x = r .  T h e n  xl(yll z)=S=-(x[y)ll z+(xU_y)lz+xl(ylz). 
Case ( i i i ) (d)3.  x =  rx ' .  T h e n  rx'l(yU_ z)= x'l(yU_ z) 

---(x'ly)ll z +(x'U_y)lz + x'l(ylz) 
= (~x'[y)ll  z+(x ' l ly) lz+ ~x'l(ylz) 
=-- ( rx '  I y)  U_ z +(x'llY) lZ + rx'l(YlZ) 
-- ( ~ ' l y ) l l  z + ~(x'lly)lz + ~x'l(ylz) 
= (~x' I y)IIz +(rx'lly)lz + ~x'l(ylz) 
-- (xly)l l  z+(xll y)lz+ xl(ylz). 
x = a" s imi lar  to the  nex t  case. Case ( i i i ) (d)4.  

Case ( i i i ) (d)5.  x = ax'. To prove:  

(*) ax'l(yll z)E(ax'ly)ll z+(ax'l[ y)lz+ax'l(ylz).  
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Subinduc t ion  to y: write y=(a ' )+~,c i+~,by~+~, ' ry~ ' .  Clearly 
ax'[(y  ][ z) can be decomposed as a sum analogous  to the sum 
expression for y. Each of  these summands  of ax'[ (yl[ z) will now 
be proved to be E the RHS of  (*). 

Case (iii) (d) 5.1. S u m m a n d s  bye: (ax') ] ( bjy~ [[ z) -- (by statement (ii) of  this theorem) 
r--  t (ax'[by~)[l  z _ ( a x  lY)~_z~-RHS(*).  

Case (iii)(d)5.2. S u m m a n d s  ci: as the previous case. 
Case (iii)(0)5.3. S u m m a n d  ~-: ax'l(~-~_ z) = ax '  I ~'z = ax'[ z = (ax'[L ~-)[z since ax '= 

ax'[L "r by Proposit ion B.6. 
Case (iii)(d)5.4. S u m m a n d s  "rye' (for convenience we drop the subscript  I and write 

y = a-y"+ y*): 

Now ax'l('ry"l[ z) = ax'['r(y"ll z )=  ax'l(y"ll z ) 
= ax'l(y"~_ z + z~_y"+ y'Jz) 
= ax'[(y"[L z)+ ax'l(z~_y")+ ax'[(y"lz)E(induction hypothesis) 
r-- r _ ( a x  [y")]] z + ( a x ' ~ y " ) l z + a x ' ] ( y " l z )  
+(ax ' [z )[[y"+(ax ' [[  z ) l y " +  a x ' l ( y " [ z ) +  a x ' l ( y " l z  ) 
= (Here the first summand  equals the fifth by (ii) of  this 
theorem, and likewise the second equals the fourth.)  

= (ax'ly")[[ z + (ax '[[y") lz  + ax'l(y"lz) 
= (ax' ly") I1 z + ( a x ' l l y " ) l z  + a x ' l ( ~ " l  : )  
E ( a x ' l Y ) l l  z + (ax ' lLy" ) l  z + ax'l(yl z). 
This matches  the RHS of (*) except for the second summand.  So 
it remains  to prove: 

I f y = ' r y " + y * , t h e n  (ax ' [ [y" )[zE(ax ' [Ly)[z  (**) 

Proof  of  (**): induct ion on z. 
Case (iii)(d)5.4.1. z =  z~ + z2. Then (ax'~_y")[ (z, + z2)=(ax'~_y")[z,  

+(ax'[Ly")lZ2E(ax'[l  y)[zl  +(ax'[[ y ) l z2=(ax ' [Ly)z .  
Case (iii)(d)5.4.2. z =  ~': (ax ' [ [y")[a-=~SERHS(**) .  
Case (iii)(d)5.4.3. z =  a'z': (ax'lLy")l(~z')=(ax'lly")lz'=_(ax'lly)]z' 

=(ax'll y)l(~z'). 
Case (i i i)(d)5.4.4.  z = b: ( a x ' ~  y") [ b = a(x '  II Y") [ b = (a I b)(x '  II Y"). 

Now x' ll y = x' [l (.ry" + y , )  = x'[L (.ry" + y , )  + (.ry,, + y , )  ~ x, 
+ x'[ (a-y"+ y*) -- "r(y"llx')+ T. 
So: ( a x ' [ L y ) [ b = ( a ] b ) ( x ' [ ] y ) =  
(alb)( 'r(Y"[[x ' )+ T)=(alb)(~(y"llx')+ T)+(aIb)(y"llx'). 

t 

Here " =  "' is an appl icat ion of  the third ~--law, T3. Therefore, 
t 

(ax'[Ly")[b=(a[b)(x']ly")E(ax'J[ y)lb. 
Case (iii)(d)5.4.5. z = bz': similar. 

This ends the proof  of  induct ion step (iii), and thereby of the theorem. [] 
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