
Automatic Generation of Camera Motion

to Track a Moving Guide

Onno Goemans and Mark Overmars

Institute of Information and Computing Sciences, Utrecht University,
P.P. Box 80.089, 3508 TB Utrecht, The Netherlands.
Email: [onno,markov]@cs.uu.nl.

Abstract. Following a moving object through a cluttered virtual environment can
be a challenge for a user. Instead one would prefer to concentrate on observing the
object and its environment. In this paper we propose an approach to automatically
generate a camera motion, such that the user maintains visibility with an object
moving along a known path through a virtual environment. The user specifies the
camera placement at the start and end of the object path, and the constraints on
the camera placement relative to the object. The system then computes a smooth
camera path, satisfying the constraints. The approach first applies a single-shot
probabilistic road map technique to generate an initial camera path. Several opti-
mizations are proposed to speed up the construction considerably. The initial path
is then smoothened to present the user a pleasant camera motion. The approach
has been implemented and tested. It is fast and computes paths in complicated 2D
and 3D environments in less than a second.

1 Introduction

A growing public is coming into contact with virtual environments as a re-
sult of the combination of faster and cheaper 3D graphics technology and
the increasing use of broadband internet connections. Crucial in all virtual
environment applications is effective control of the user’s viewpoint, or vir-
tual camera. For the novice user, navigating a virtual camera through an
environment can be challenging. Such a challenge can easily become over-
whelming when the user has to perform a task within a certain time frame.
A typical task is following a guide object that is moving through the virtual
environment.

In this paper, we propose a technique which generates a camera motion
to track a guide (object). We assume the guide moves along a known path
through a given virtual environment. The user specifies the placement of the
camera at the start and end of the guide path, and constraints on the camera
placement relative to the guide. The resulting camera motion must satisfy
the user’s constraints, and the camera must at all times maintain visibility
with the guide; see Fig. 1(a) and (b).

The last decade, much research has been done to assist the user in con-
trolling the camera [9,13,14,22,26] and to control the camera automatically.
We can roughly divide the latter research into three groups of techniques.



2 O.C. Goemans and M.H. Overmars

The first group consists of techniques that plan camera motion as a sequence
of shots. The shots are either based on cinematographic rules [6,15] or cal-
culated by solving a set of constraints [2,8,11]. The second group consists of
techniques that generate a collision free camera motion from a start to a goal
placement through a virtual environment [4,7,23,24]. The third group consists
of techniques that generate a camera motion to track a moving guide. Most
of these techniques assume the path of the guide to be unknown [10,12]. None
of these techniques are suitable to solve our problem: when the guide path is
unknown, a smooth motion maintaining visibility is not always possible.

LaVall et al. [18] proposed an approach that describes the target path as
a sequence of configurations in a two-dimensional environment. For each of
these configurations the approach determines the visibility region, which it
then uses to calculate an optimal path. We expect that the visibility region
approach is not viable in a three-dimensional environment because of the
large computation time.

Li et al. assumed the guide path to be known; they proposed an approach
to plan a camera motion through a two-dimensional environment [20,21].
Their approach maintains visibility at all time and optimizes several addi-
tional camera-specific criteria. They described a camera configuration as the
position relative to a guide position, and a guide position as the position of
the guide on the predefined guide path at a point in time. The continuous
space containing all camera configurations is approximated with a uniform
grid of configurations. The approach applies a best-first planning algorithm
to find a collision-free camera path in this configuration-time space. Their
approach is limited to two-dimensional environments that are not too com-
plicated as otherwise the grid becomes too large. Li et al.’s approach inspired
our representation for camera configuration, but we use a different planning
approach that can also be used in large three-dimensional environments.

Our aim is to efficiently solve the given problem for two-dimensional as
well as three-dimensional environments. The general idea is as follows. The
configuration space describes all possible placement combinations of camera
and guide. The relevant subspace contains all configurations that satisfy the
constraint that the camera maintains visibility with the guide, and the con-
straints on the camera placement relative to the guide. We apply a single-shot
probabilistic road map method, or PRM [1,3,16,17,25], to construct a road
map in this relevant subspace. We considerably improve its efficiency by fo-
cusing on “useful” road map growth. A valid camera motion is found once
the road map connects the start and goal configuration. We then smooth this
initial camera motion to eliminate unnecessary camera movement.

The paper is structured as follows. The first four sections address the
problem in a two-dimensional workspace. Section 2 discusses the guide, cam-
era, and configuration space in more detail. Section 3 describes the basic
approach to generate the initial camera path, and then discusses two im-
provements. Section 4 discusses the application we built to test the approach,
provides test results, and explains the automation of a PRM-parameter. The



Camera tracks a Guide 3

technique is able to solve complex test cases within one second. Section 5
discusses the smoothing of the initial camera path. Section 6 describes the
extension of the motion planner to 3D environments. The generalization is
almost straight-forward and solutions are found equally fast.

2 Preliminaries

For the moment we assume that the guide and camera move in a two-
dimensional environment. We specify a guide placement g with three param-
eters: two for its position W(g) in the workspace, and one for its orientation.
The guide moves along a known path GP through the workspace. The length
offset lo is the normalized length along GP between the start configuration of
GP and configuration g ∈ GP . The guide path is defined as a mapping from
length offset to guide configuration; e.g. GP(0) and GP(1) uniquely identify
the start and end configuration of GP .

As proposed by Li et al. [20,21], we specify the camera configuration v
relative to a given guide configuration g. The tracking distance is the Eu-
clidean distance between v and g in the workspace; and the tracking angle

is the orientation of the vector
−−−−−−−→
W(g)W(v) in the workspace. We choose the

camera orientation such that the camera always looks straight at the guide.
Length offset, tracking distance and tracking angle together uniquely define
the position and orientation of the camera. See figure 1(c).

Fig. 1. Figure (a) depicts the guide path; at the start and end the camera place-
ments are shown. Figure (b) shows a possible camera path from the start to the
goal. In figure (c) the camera configuration v is defined relative to guide configu-
ration GP(lo) by tracking distance d and tracking angle θv.

We refer to the imaginary line segment connecting the camera and the
guide as the viewing line. Recall that the user defines constraints on the
camera placement relative to the guide. These constraints are a minimum and
maximum on the tracking distance, and a minimum and maximum on the
tracking angle. Note that the constraints on the tracking angle are specified



4 O.C. Goemans and M.H. Overmars

relative to the guide orientation. Thus if the guide orientation changes then
the allowed tracking angle range changes as well.

Let us now look at the configuration space in which we will solve our
motion planning problem. A configuration describes a combined placement
of guide and camera. That is, a guide configuration on the guide path, and
a camera configuration relative to this guide configuration. We specify such
a configuration with two parameters: the length offset lo, which specifies
the guide configuration, and the tracking angle ta, which describes the cam-
era configuration relative to GP(lo). The configuration description does not
contain the tracking distance, because we fix the tracking distance at its user-
defined minimum. The motivation for this choice is that if no solution exists
for the minimum tracking distance, then no solution exists at all. The actual
tracking distance can easily be computed during a post-processing phase. We
refer to the configuration space as the configuration-length offset space, or
CLO-space. A path through the CLO-space is a camera path.

Not all CLO-configurations are valid, because of the visibility constraint
and the user’s constraints on the tracking angle. We refer to the valid part
of the CLO-space as free CLO-space, or CLOf . See figure 2.

Fig. 2. Figure (a) shows a workspace, where the sequence of line segments tagged
with GP is the guide path. Configurations s and g are the start and goal config-
uration. The sequence of lines segments tagged with numbers is the camera path,
where the dotted lines illustrate how the camera looks at the guide.
Figure (b) shows the CLO-space. The white area is the CLOf -space. The gray areas
illustrate the collection of occluded configurations. The black areas illustrate the
collection of configurations not allowed because of the tracking angle constraints.
The line through CLOf is the path connecting the start and goal configuration,
and corresponds to the camera path in the workspace (figure 2a)



Camera tracks a Guide 5

We assume that the guide only moves forwards along its path, and that
the camera only moves when the guide moves. Consequently, a path through
the CLO-space must be increasingly monotone in the length offset direction.
A camera path is free if it lies entirely in the CLOf space; which means
that the the viewing line never intersects any obstacles in the workspace. See
figure 2.

3 Motion planner

The user specifies the start configuration clostart and goal configuration
clogoal, which are respectively at length offset 0 and 1. Now the goal of the
motion planner is to generate a free camera path Psolution, which connects
clostart and clogoal. We apply a single-shot motion planner based on the
PRM-approach to construct a graph G = (V, E), or road map, in the CLOf -
space. The graph nodes V correspond to free configurations, and edges E
to free paths. Recall that a path in the CLO-space must be monotone in
length offset. This restriction imposes two limitations on the graph: firstly, G
is a directed graph; and secondly, for all edges the length offset of the begin
configuration must be smaller than the length offset of the end configuration.

The start and goal configuration are the first two nodes added to the
graph. Next the motion planner first chooses a random free configuration
clonew and adds it to the graph; then the motion planner attempts to connect
clonew to the graph by connecting clonew to nearby nodes (neighbors); and
finally the motion planner checks whether the graph connects clostart and
clogoal. These last three steps are repeated in a loop, referred to as the PRM-
loop, until Psolution is found.

Algorithm 1 Overview Motion Planner

1. E ← ∅ [edges]
2. V ← {clostart, clogoal} [nodes]
3. loop

4. clo← randomly chosen configuration ∈ CLOf [Sampling]
5. Nclo ← set of neighbors of clo chosen from V [Neighbor set]
6. Attempt to connect clo to its neighbours [Connection]
7. if G connects clostart and clogoal then return path [Termination]
8. else continue loop

3.1 Basic motion planner

We need to fill in some details in the basic planner:



6 O.C. Goemans and M.H. Overmars

Sampling: The motion planner picks a random configuration clonew from
CLO. If the random configuration is free, then the motion planner adds clonew

to V. The motion planner repeats the sampling, if clonew is not free.
Neighbor set: The planner selects the nodes ∈ V that are within a

certain length offset range from clonew’s length offset. This length offset range
is referred to as the neighbor set distance. Subsection 4.2 further discusses
the choice of neighbor set distance.

Connection: Next the algorithm attempts to connect clonew to each of
its neighbors with a local path computed by the local planner. A local path is
the shortest possible path between two configurations in the CLO-space. If a
local path is occlusion free, then it is added as an edge to the road map.

Termination: The algorithm first checks if clostart and clogoal are in
the same connected graph component. If this test is positive, then the di-
rected graph is queried to determine whether G connects clostart and clogoal.
If G connects the start and goal configuration, then the algorithm returns
Psolution; otherwise the PRM-loop is repeated.

3.2 “Push” sampling

A narrow passage in the CLOf -space is a length offset interval for which a rel-
atively small part of the tracking angle interval consists of free configurations.
The chance that the sampler randomly generates a free sample in an area of
the CLOf -space is determined by the size of the area. Eventually enough
samples will be generated in a narrow passage to enable the generation of a
path though the passage; however, this process will be rather time-expensive.

To increase the sample generation in narrow passages, the “push” motion
planner pushes a new sample out of the obstacle in case of occlusion; as has
also been suggested for PRM application in other motion planning problems
[1,25]. The pushing is done by changing the tracking angle value while main-
taining the same length offset. Thus the narrower a passage, the higher the
expected number of nodes in the passage.

3.3 “Useful” nodes

Occlusion checks require collision tests, which takes up more than 90% of
the motion planner’s execution time. Hence the motion planner should avoid
occlusion checks whenever possible. This subsection discusses the concept of
usefulness in the framework of our study. We first experimented with grow-
ing trees [19] to reduce useless roadmap growth; however the gain was only
marginal. Due to the monotonicity property, the roadmap graph G is a di-
rected acyclic graph. We exploit this roadmap property; as a result the per-
formance of the motion planner improves drastically.

Let v be a node in G. We refer to the nodes that connect to v as the
ancestors of v; and the nodes to which v connects as descendants of v. We
define the length of a path P as the difference in length offset between P ’s



Camera tracks a Guide 7

start and goal configuration. Now let av be the ancestor of v with the smallest
length offset; and let dv be the descendant of v with the largest length offset.
The camera path P (av, dv) is the longest path (in the graph) of which v
is a node. If v is not connected to any ancestors and descendants, then the
longest path consists only of node v. We denote the longest path containing
v by P̂ (v). See figure 3(a).

Fig. 3. Figure (a): The set of ancestors and descendants of node v are respectively

{a1, a2} and {d1, d2}. The longest path P̂ (v) is P (a2, d2) with length l.

For each graph-node v we store a P̂ -record, which describes P̂ (v). The

record stores the length offsets of P̂ (v)’s begin and end configuration, which

are respectively referred to as P̂ 0(v) and P̂ 1(v). Thus for example P̂ 0(v) in
figure 3(a) is the length offset of node a2.

To describe the usefulness-criterion, we first introduce an alternative de-
scription of the motion planner’s goal. Recall that the motion planner expands
the road map until a path is found. The length offsets of clostart and clogoal

are respectively 0 and 1, hence the length of Psolution is 1. All other paths of
the road map are shorter. Thus we can redefine the goal of the motion plan-
ner as the creation a path of length 1. In other words, the motion planner
expands the road map until P̂ of one of its nodes is of length 1.

Now let us return to the criterion of usefulness. Recall that the PRM-
loop starts with the generation of a new sample clonew. The next step is the
generation of the neighbor set containing all nodes close to clonew. One of the
three following scenarios occurs after the neighbor set generation: In the first
scenario the neighbor set is empty. In the second scenario, the motion planner
can connect clonew to the road map such that P̂ (clonew) is potentially longer
than the longest path of any of its neighbors; see figure 3(c): if clonew is

successfully connected to neighbors a and b, then the longest path P̂ (clonew)

is longer than P̂ (a) and P̂ (b). In the third scenario P̂ (clonew) does not exceed
the length of the longest path of one of its neighbors; see figure 3(b): even
if clonew is successfully connected to neighbors a and b, the longest path



8 O.C. Goemans and M.H. Overmars

P̂ (clonew) can clearly not become longer than P̂ (b). The sample clonew is
called useful when one of the first two scenarios occur. We will ony add useful
nodes. It can be proven that this approach is probabilistically complete.

Once it is decided that the addition of clonew is useful, the next step is
to connect clonew to the roadmap by adding edges. The addition of an edge
is only useful, when it increases the length of the current P̂ (clonew). Let us
fill in the details:

Sampling: We can use the basic sampler or the push sampler to gener-
ate clonew. The difference is that the motion planner does not perform an
occlusion check clonew before clonew is found to be useful.

Neighbor set generation: The motion planner again compiles the neigh-
bor set Nclo by taking all nodes ∈ V within a certain length offset range from
clonew. We refer to neighbors with a smaller length offset than clonew as
backward neighbors; and neighbors with a larger length offset than clonew as
forward neighbors. We now determine whether clonew is a potentially useful
node. If not, clonew is discarded and the PRM-loop is repeated.

A longest path of road map node v can be divided in two sub paths.
The first sub path consists of v and the ancestors of v; and the second sub
path consists of v and descendants of v. With this division in mind, we can
break the construction of P̂ (clonew) in two parts as well: the connection of a

backward neighbor bn to clonew, where P̂ 0(bn) should be as small as possible;

and the connection of clonew to a forward neighbor fn, where P̂ 1(fn) should
be as large as possible.

The motion planner splits the neighbor set Nclo into the set of backward
neighbors BNclo, and the set of forward neighbors FNclo. The nodes of the
first set are sorted on increasing P̂0 value, and the elements of the latter on
decreasing P̂ 1 value. See figure 4. So we first try the connections that will
lead to the longest paths.

Fig. 4. The sorted backward neighbors set BNclo is {b1, b2, b3, b4} and the sorted
forward neighbour set is {f1, f2}.



Camera tracks a Guide 9

Connection: The motion planner attempts to connect the backward
neighbors to clonew, starting with the first element of BNclo. This connec-
tion process continuous until the local planner generates a free local path, or
until all backward neighbors are tested and the corresponding local paths are
all found occluded. In the first case the motion planner sets P̂ 0(clonew) as

P̂ 0(nb); otherwise P̂ 0(clonew) is set to clonew. Similarly, the motion planner

attempts to connect clonew to a forward neighbor, and sets P̂ 1(clonew) ac-

cordingly. Again in case of failure P̂ 1(clonew) is clonew. This approach reduces
the number of attempted connections considerably.

Once clonew is connected to the graph, the P̂ -records of clonew’s ancestors
and descendants must be updated: P̂ 0(clonew) is propagated through clonew’s

ancestors, and P̂ 1(clonew) is propagated through clonew’s descendants.
Termination criterion: The goal of the motion planner is to construct

a longest path of length 1. This is the case once the length of P̂ (clonew) is 1.

4 Experimental results

We implemented the techniques described above in C++. As collision check
package we used Solid [5]. All tests are run on a computer with a 2.4 GHz
Pentium 4 processor, 512 MB of memory and Windows XP operating system.

4.1 Results

Figure 5, 6 and 7 illustrate the test cases. Each left picture depicts the
workspace containing the guide path, and the start and goal camera con-
figuration at respectively the start and end of the guide path. Each right
picture shows a possible camera path. In all experiments we use a maximal
tracking angle of π/2; that is, the camera must stay behind the guide.

We use test case 1 to test the motion planner in an environment with
a rather uniform obstacle distribution, and enough room for the camera to
maneuver. The purpose of test case 2 is to determine the effect of the num-
ber of guide path segments on the planner’s efficiency. The path is short, but
consists of a large number of small segments, increasing the cost of the local
planner. Case 3 tests the planner’s capability to operate in cluttered envi-
ronments with a challenging guide path. Below you find the results of the
basic planner, the “pusher” planner and the “useful” planner equipped with
the push sampling. Recall that the tracking distance is fixed at the most
challenging value. The results, expressed in seconds, are averages over 250
runs.

Test case 1 Test case 2 Test case 3

Basic planner 1.29 1.02 60+
Push planner 0.91 0.31 45.96
Push + Useful planner 0.22 0.02 0.60



10 O.C. Goemans and M.H. Overmars

Fig. 5. Test case 1

Fig. 6. Test case 2

Fig. 7. Test case 3



Camera tracks a Guide 11

The basic motion planner solves test case 1 and 2 in about one second.
However the basic planner is not able to solve the complex test case 3 within
a minute. To give an impression of the road map size: for test case 3, the
road map on average consisted of about 60,000 edges and 1,600 nodes.

The ”pusher“ motion planner clearly performs better overall, although its
performance in test case 3 is still not satisfying. For test case 3, the road map
now consisted of about 43,000 edges and 1,400 nodes.

Adding the usefulness test solved each test case well within a second. The
notion of usefulness enables the motion planner to quickly expand the road
map in uncluttered areas of the CLO-space; and then focus on the cluttered
areas of the CLO-space, while discarding the already covered easy areas. The
roadmap of test case 3 now consists on average of only about 600 edges and
400 nodes.

4.2 Neighbor Set Distance

There is one parameter to fill in; the neighbor set distance (nsd). For practical
use it is important that the system determines this value automatically. This
subsection describes a technique we refer to as NSDauto.

Let us first define a few roadmap properties. The percentage of all local
paths that is tested occlusion free, is referred to as the success ratio. Further-
more, the percentage of the length offset interval covered by the road map G
is denoted as the coverage ratio.

NSDauto consists of two phases. In the first phase, the learning phase, the
road map provides too little and too unreliable information to base nsd on.
Hence in the learning phase nsd is a constant value. Experiments in a variety
of scenes show that the constant nsd is rather scene independent; somewhere
in the range from 0.05 to 0.10 is optimal. The NSDauto goes into the next
phase, when the coverage ratio becomes larger than the success ratio. This
transition assures on the one hand that the motion planner “learns” enough
about the environment, and on the other that the motion planner’s efficiency
does not decrease because of the relatively large constant nsd. During the
second phase, we base nsd on the average length of the last c free local paths.
Experiments show that the results are optimal when c is between about 25
and 100. For test cases of average complexity, NSDauto spends most of its
time in the second phase.

The NSDauto as described above causes two undesired side effects, which
result in a decrease of the motion planner’s performance. Both problems are
caused by the decrease of nsd over time and can easily be solved. One problem
occurs when the neighbor set of a new sample clonew is empty. Figure 8
illustrates the problem: The neighbor set N of the newly generated sample
clo is empty; thus the motion planner would mark clo as useful, and add clo
to the roadmap. However the addition of clo is not useful, since the graph
already spans the CLO-space covered by the neighbor set N . Note that this
situation does not occur when we use a fixed nsd, since in that case either



12 O.C. Goemans and M.H. Overmars

node v or w would be in N . To eliminate this problem, the motion planner
determines whether the graph already covers the neighbor set length offset
interval. If so, then the addition of clonew is considered not useful.

Fig. 8. Illustration of problem occurring because of decreasing nsd

The second problem occurs when nsd has become small, while a relatively
long local path is needed to bridge a gap in the road map. We solve this
problem by setting a lower boundary for nsd; which we base on the tracking
distance.

Experiments show that the motion planner performs as well with NSDauto

as when the neighbor set distance is manually optimized. The results in the
previous section were obtained using NSDauto.

5 Smoothing

Path quality indicates how pleasant the camera images are to watch for a
user. The motion planner as described so far disregards this aspect. See fig-
ure 9(a). Experiments show that the path quality is inversely related to the
total tracking angle change. Hence to improve the path quality, the motion
planner has to minimize the total tracking angle change. This smoothing
process consists of two phases.

The first phase is active while the motion planner generates the initial
camera path: The weight of each road map edge e is the tracking angle
difference between e’s begin and end configuration. When clostart and clogoal

are graph connected, the path with the smallest total weight is taken as initial
solution Psolution.

The second phase applies a standard smoothing approach [24]. The motion
planner repeatedly replaces random path segments of Psolution with new path
segments of higher quality using the local planner; and in doing so increases
the overall quality of Psolution.



Camera tracks a Guide 13

Fig. 9. Figure (a): A typical example of an unsmooth camera path in the con-
figuration space. The resulting camera images are unpleasant to watch, because
the camera changes its tracking angle frequently. Figure (b): The white area is an
approximation of CLOf . The path is an example of a smoothened path.

The longer this is repeated, the smoother Psolution becomes. Figure 9(b)
illustrates a smoothened path for the example test case. Without smoothing
the motion planner generates Psolution for the example test case on average
in 0.1 second. The (close to) optimally smoothened path as illustrated in
figure 9 is on average generated in 0.5 second. Experiments show however
that optimal smoothing is not necessary to ensure a satisfying path quality:
the motion planner generates a satisfying smooth Psolution in on average 0.2
second. The three test cases described in the previous section are all solved
and smoothened within a second. We expect that the smoothing phase can
easily be improved to reduce its execution time even further.

6 3D Motion Planner

We so far discussed camera motion generation in a two-dimensional workspace.
A virtual environment however is three-dimensional and the motions of the
guide and camera are not always reducible to a two-dimensional plane. The
motion planner described in the previous sections though is easily extendable
to operate efficiently in a three-dimensional workspace. We briefly describe
the required changes here.

The guide path remains a map from length offset to guide configuration,
where the guide configurations are now described by six parameters. Recall
that the camera position is specified relative to a guide configuration. In the
two-dimensional workspace we needed the tracking distance and the tracking
angle to describe this relative position. In the three-dimensional situation we
add a second tracking angle to describe the relative vertical angle. The cam-
era orientation is again discarded: the camera will always look straight at the
guide; furthermore, the camera’s up-vector is kept equal to the guide’s up-
vector. The corresponding CLO-space is a three-dimensional space spanned



14 O.C. Goemans and M.H. Overmars

by both tracking angles and the length offset. The motion planner works with-
out adaptation on the expanded CLO-space. We implemented and tested the
three-dimensional motion planner. The “push” and “usefulness” techniques
again result in a drastic performance improvement.

Fig. 10. Figure (a) shows the guide path, and the start and goal configurations
of the camera as clostart and clogoal. Figure (b) shows the guide path in gray and
camera path in black. The short lines between the guide and camera path illustrate
viewing directions of the camera.

Figure 10 shows a typical three-dimensional test case with open spaces,
narrow passages and height variations. As for the two-dimensional test cases,
the motion planner generates a smooth camera path in less than a second.
The resulting roadmap again is relatively small: on average it contains about
150 edges and 100 nodes.

7 Conclusion

We presented a technique to generate a camera motion such that the camera
tracks a guide moving through a known environment along a known path. The
motion planner applies a single-shot PRM approach to construct a graph in
the free configuration space. A substantial performance gain is accomplished
by a new technique, which determines whether a node or edge should be
added to the road map based on its usefulness. The resulting camera path is
smoothened to improve the path quality. Experiments show that the planner
can operate in three-dimensional environments, and provide the user with a
fast responds as is needed for interactive environments.

A number of extensions are possible. When the guide is an object rather
than a point, we might want to enforce the camera to see the complete guide
(and even some part around it). This can easily be achieved by replacing the



Camera tracks a Guide 15

occlusion check by an intersection test with a visibility cone. We can also eas-
ily deal with preferred tracking angles by changing the sampling distribution
and the smoothing process. Preferred tracking distance can be achieved in a
post processing stage. Finally, additional camera motion properties such as
camera speed, camera acceleration, changes in tracking distance and changes
in the camera orientation can be incorporated using techniques similar to
those proposed in [24].

Acknowledgement This work was partly supported by the Netherlands
organization for Scientific Research (NWO), and by the IST Programme of
the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-
2001-39250 (MOVIE - Motion Planning in Virtual Environments).

References

1. N. Amato, Y. Wu (1996). “A randomized roadmap method for path and manipu-

lation planning”. Proc. IEEE Int. Conf. on Robotics and Automation, 1996, pp.
113-120.

2. W.H. Bares, S. Thainimit, S. McDermott (2000). “A model for constraint-based

camera planning”. Smart Graphics. Papers from the 2000 AAAI Spring Sym-
posium (Stanford, March 20-22, 2000), pages 84-91, Menlo Park, 2000. AAAI
Press.

3. J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, P. Raghavan
(1997). “A random sampling scheme for path planning”. Int. Journal of Robotics
Research 16 (1997), pp. 759-774.

4. S. Beckhaus, F. Ritter, T. Strothotte (2000). “Cubicalpath – Dynamic Poten-

tial Fields for Guided Exploration in Virtual Environments”. roceedings Pacific
Graphics 2000 (Hong Kong, China, October 2000), pages 387-395, Los Alamitos,
2000. IEEE Computer Society.

5. G. van den Bergen (2003), “Collision Detection in Interactive 3D Environ-

ments”. Morgan Kaufmann 2003.
6. D. Christianson, S. Anderson, L. He, D. Salesin, D. Weld, M. Cohen (1996).

“Declarative camera control for automatic cinematography”. Thirteenth National
Conference on Artificial Intelligence, 148-155.

7. N. Courty, E. Marchand (2001). “Computer animation: a new application for

image-based visual servoing”. IEEE Int. Conf. on Robotics and Automation,
Volume 1, pages 223–228, Seoul, South Korea, Mai 2001.

8. S.M. Drucker, D. Zeltzer (1995). “CamDroid: A system for implementing intel-

ligent camera control”.P. Hanrahan and J.Winget, editors, 1995 Symposium on
Interactive 3D Graphics, pages 139-144. ACM SIGGRAPH, Apr. 1995. ISBN
0-89791-736-7.

9. M. Gleicher, A. Witken (1992). “Through-the-Lens Camera Control”. Computer
Graphics, 26(2): 331-340.

10. H.H. Gonzalez-Banos, C.Y. Lee, and J.-C. Latombe (2002). “Real-Time Com-

binatorial Tracking of a Target Moving Unpredictably Among Obstacles”. Proc.
IEEE Int. Conf. on Robotics and Automation, 1683-1690, Washington D.C.,
May 2002.



16 O.C. Goemans and M.H. Overmars

11. N. Halper, P. Olivier (2000). “Camplan: A Camera Planning Agent”. Smart
Graphics. Papers from the 2000 AAAI Spring Symposium (Stanford, March 20-
22, 2000), pages 92-100, Menlo Park, 2000. AAAI Press.

12. N. Halper, R. Helbing, T.Strothotte (2001). “Computer Games: A Camera

Engine for Computer Games”. Computer Graphics Forum Volume 20, Issue 3.
13. A. Hanson, E. Wernert (1997). “Constrained 3D Navigation with 2D Con-

trollers”. IEEE Visualisation, pages 175-182.
14. Hanson, A., E. Wernert, S. Hughes (1999). “Constrained navigation environ-

ments”. Scientific Visualization: Dagstuhl ’97 Proceedings, H. Hagen, G.M. Niel-
son, and F. Post, Editors. 1999, IEEE Computer Society Press. p. 95-104.

15. L.-W He, M.F. Cohen, D.H. Salesin (1996). “The Virtual Cinematographer: a

Paradigm for Automatic Real-Time Camera Control and Directing”. Proceedings
of ACM SIGGRAPH’96, pp. 217-224, 1996.

16. L. Kavraki, J.C. Latombe (1994). “Randomized preprocessing of configuration

space for fast path planning”. Proc. IEEE Int. Conf. on Robotics and Automa-
tion, 1994, pp. 2138-2145.

17. L. Kavraki, P. Švestka, J. Latombe, and M. Overmars. (1996). “Probabilistic

Roadmaps for Path Planning in High-Dimensional Configuration Spaces”. IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566-580.

18. S.M. LaValle, H.H. Gonzalez-Banos, C. Becker, J.-C. Latombe (1997). “Motion

Strategies for Maintaining Visibility of a Moving Target”. Proceedings of the
1997 IEEE International Conference on Robotics and Automation, pages 731-
736.

19. S.LaValle, J. Kufner (2001). “Rapidly-exploring random trees: Progress and

prospects”, in Algorithmic and Computational Robotics: New Directions
(B.Donald, K.Lynch, and D.Rus, eds.), pp. 45-59, A.K. Peters, 2001.

20. T.Y. Li (1999). “An Auto-Navigation System for Virtual Factories”. Proceed-
ings of 1999 Automation Technology Conference, Chia-I, Taiwan.

21. T.Y. Li, J.M. Lien, S.Y. Chiu, T.H. Yu (1999). “Automatically Generating

Virtual Guided Tours”. Proceedings of the Computer Animation ’99 Conference,
Geneva, Switzerland, pp. 99-106, May 1999.

22. J. Mackinlay, S. Card, G. Robertson (1990). “Rapid controlled movement

through a virtual 3d workspace”. Computer Graphics (SIGGRAPH ’90 Proceed-
ings), pages 171-176, July 1990.

23. E. Marchand, N. Courty (2000). “Image-b̃ased virtual camera motion strate-

gies”. Graphics Interface Conference, GI2000, pages 69-76, 2000.
24. D. Nieuwenhuisen, M.H. Overmars (2003). “Motion Planning for Camera

Movements in Virtual Environments”. Proc. IEEE Int. Conf. on Robotics and
Automation 2004, to appear.

25. M.H. Overmars (1992). “A random approach to motion planning”. Technical
Report RUU-CS-92- 32, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Nether-
lands, 1992.

26. C.B. Phillips, N.I. Badler, J. Granieri (1992). “Automatic viewing control for

3D direct manipulation”. M. Levoy and E. E. Catmull, editors, Proceedings of
the 1992 Symposium on Interactive 3D Graphics, pages 71-74, Cambridge, MA,
Mar.-Apr. 1992. ACM Press.


