DYNACORE Project

DYNACORE Final Report
Plasma Physics Prototype

Ref: D1.1
Version: DRAFT Date: Sept 2000

CEC Project: RE 4005 (RE)
Telematics for Research
Telematics Applications Programme

To this report contributed:

I nstitution

W. Lourens uu Editor
B.U.Niderost uu
A.Tad uu
B.A. Andree uu
H. Blom uu
E. van der Meer uu
A. Gerritsen uu
P. van Haren uu
C.T.AM. de Laat uu
M. Korten FZJ
G. Kemmerling FZJ
C. Fuchs FzJ

The contents of this report is under review of the EU-commission

Nothing of the content of this report can be used for commercia purposes without written permission
of the “werkgroep Fysische Informatica” UU, Utrecht, the Netherlands

Contents

PREFACE

PLASMA PHYSICS COMMUNITIES.

IPP FACILITIES

I ntroduction

The experimental fusion device. Tokamak TEXTOR ‘94
REMOTE PARTNER AND VALIDATION SITE
NETWORK SITUATION

I ntroduction

Network connections

DYNACORE SYSTEM ARCHITECTURE

I ntroduction

DATA RETRIEVAL ARCHITECTURE

I ntroduction

CORBA

Database

Storage Hierarchy

Database Distribution

M easur ement data

THE DATAMANAGER, OBJECTMANAGER AND LAUNCHER

I ntroduction

I nterface Launcher.

I nterface ObjectM anager .

I nterface DataM anager
Data specific operations

Access rights and the DataM anager.

Extended I nterface

11
11
11
15
16
16
16
19
19
23
23
24
25
25
26
28
29
29
30
30

32
32

35

SECURITY
| ntroduction

Secur e information transfer
Message encryption
Authentication by use of tickets
Authentication within messages

Componentsin the security system

The Authenticator
The password file
The list of authenticated clients
The list of registered servant objects
Thelist of servant object tickets
The maximum login time file

The Client
The client’slist of servant object tickets

The CORBA Object Server and Servant Objects

The Security Service Protocol
Common protocol phases
Object server dependent protocol phases

Utilizing Servant Objects
THE DATAVIEWER.

I ntroduction

The Dataviewer application

The DataViewer — Architecture
DataViewer structure
The DataViewer Start-up Code.
The DataViewer GUI.
The Plugins.

The DataM anager Wr apper .

EXPERIMENT TO BE CONTROLLED REMOTELY

The pulsed Radar Reflector Diagnostic

THE PULSED RADAR REFLECTOR CONTROL

Interface Pulsed Radar Reflector viewer
An example interface.

37
37

38
38
39
40

41

42
43
43

45

46
46

48
51
52
57
59
61
61
61

66
66
66
67
67

68
69
69
73

73
75

PERFORMANCE MEASUREMENTS

Direct versus CORBA:ANY parameter passing
Filling a database

Dependency on number and size of objects
Conclusions

Perfor mance measur ements on a distributed database
Distribution over multiple SUN-Ultra-10 computers

NETWORK PERFORMANCE ASPECTS

Network performance measurements |PP - FOM —UU
Features
Measurements IPP -- FOM — UU, earlier measurements, August ‘99
Measurements |PP -- FOM — UU, later measurements, Jan — April 2000
Overview time throughput averages
Bad performance events

Overall Conclusions
AUDIO AND VIDEO CONNECTIONS
I ntroduction

Conferencing clients
Overview IP based clients
Tests

Multipoint Servers

Recommendations
MCU Recommendation

DISSEMINATION OF RESULTS

77
78
78
79
81

82
82

85

85
85
86
88
94
98

100
101
101
101
101
102
102

104
104

105

In the following chapters we will describe the DY NACORE Plasma Physics prototype
(PPP). To thisend we will pay attention to:

The experimental physics environment and user community,

The existing eectronic network situation between the co-operating ingtitutes and
at thelocal and remote sites,

The local (host) experimental facilities and procedures globally,
The remote facilities and mission,

Outlines of the DYNACORE architecture, already described in earlier ddiver-
ables,

A description of the target experimental set-up to be controlled remotely,
A description of the control prototype,

The architecture for remote dataretrieval and analysis,

Implementations of the dataretrieval system

Security issues

Performance measurements,

Audio and video connectivity,

Dissemination results

For reasons outlined in the sequel the emphasis in the PPP was laid at the data retrieval
part, the control aspects were unfortunately given less attention. As for the data retrieva
part we can speak of a marketable product, whereas the control part is still a prototype.

The contents of the chapters on “Performance measurements’, “Network perform-
ance aspects’ and “Audio and video connections’ don't relate directly to commit-
ments for the Dynacore work packages, but isincluded to complete the setting of the
project.

Plasma Physics communities.

The start of the DY NACORE project coincided with the actual outset of the forma col-
[aboration between plasma physics research ingtitutes in Germany(-Rhindland-Westfdia),
the Netherlands and Belgium.

This effects to plasma physics research to be carried out in the framework of the Euregio
Cluster TEC (Trilateral Euregio Cluster) at the Ingtitut fuer Plasma Physik (1PP) located in
the Forschungs Zentrum Judich (FZJ) in Juelich, Germany. The partners will accommo-
date their experimental set-ups at 1PP, which houses the experimental plasma fusion de-
vice TEXTOR-94".

German and Belgium plasma physics groups aready were used to carry out their experi-
ments at the IPP-gite, but the Dutch group had its own facilities in Nieuwegein (near
Utrecht), which facilities ceased to end, effectively end 1998. The Dutch group (FOM
group, see dso “Remote partner and vaidation site€”) however aready co-operated with
IPP for along time in mutual experiments. The Dutch group moved part of its equipment
to the IPP site (viz. the so cdled Pulsed Radar Reflector Diagnogtic, to be described further
on: “The pulsed Radar Reflector Diagnogtic”). In this sense the FOM group was an idedl
target for remote operations, and to adapt the DY NACORE architecture to their require-
ments and establish a platform for validation of the products.

There are however severa circumstances that hamper the remote operations of large ex-
perimental facilities, like big accelerators, tokamaks and reactors:

m Experimentd facilities are usualy not designed for routine operaions. Which
means that aways some technicians and scientists have to be on-gite to prepare
and maintain the set-ups. Usudly is it is quite arbitrary which part of the scien-
tists have to be on-site and which part can stay in the home institute. Sometimes
it is more efficient to move the greater part of the staff to the experimenta ste.
In this case not any architectural design for remote operation can offer enough
facilities to prevent the remova of the mgjority of the scientific staff from the
home ingtitute and remote operation is a very scarcely used phenomenon.

m Even very complicated experiments, as are conducted in the plasma physics re-
search, need a kind of “fed and look” from the scientists point of view. Nor-
mally al big experiments are conducted more or less remotely, since radiation
and other hazards prevent the scientist to come to close to a working set-up (a
tokamak). But it is mostly not too difficult to observe things closdly, not only by
closed circuit (TV) surveillance, but also by eye. It is rather difficult to include
this“fedl and look” in remote operations, but one can try.

» Remote operations require at least sufficient capacity of the interconnecting net-
works. If requirements to this end are not met sufficiently, one can forget about
remote operations at al, because the scientists are not interested. For this reason
in the DYNACORE project we paid much attention to the behaviour of the (in-
ternational) connectivity between the collaborating ingtitutes.

! TEXTOR-94: see http:/ivww..fz-juelich.defipp/

From the arguments described above one can extrapolate that remote control of an experi-
mental set-up whenever feasible will only be used reluctantly. Usudly it will not be the
prime option for a scientist (or boards of scientists that govern these large facilities). One
can observe this fact with rather al the large facilities of physics research. (eg. CERN,
JET, etc. in Europe, but dso in the USA, FERMI lab, etc).

Y et another point is the remote analysis of the data that originate from the experiments.
There are two reasons for favouring at least the remote processing of data.

1) There does not exist so much as a notion amongst scientists about local and/or
remote data. The physical whereabouts of data are always more or less remote,
S0 it does not matter if it is stored and/or andysed locdly (at the Site) or re-
motely. However in some scientific communities (e.g. CERN) there is a strong
feding about a centralised place for archiving of raw (experimental) data. This
should always be done at the experimental site. Maintenance for alonger period
can be guaranteed better in thisway.

2) Usudly there are never enough computer facilities locally, at the experiment’s
gte. So one has to divert the computational workload anyway to the home insti-
tutes. In communities with a centralised storage of the raw data this will be ac-
complished via data replication. Processed data will usually not be included in
the centralised storage, but can be kept at the (remote) home ingtitutions. This
could give rise to the so-called computational grids’.

The last observations have lead us to put the emphasis on remote processing of experimen-
tal data, and to the distributed storage and retrieval of data The remote operation was
implemented in the DY NACORE plasma prototype, but mainly as a demonstration of the
possibilities of the proposed architecture, as akind of template, more than as aroutine tool.

Wherever scientific communities collaborate in large experimental facilities it is obvious
that the participants start from different positions, especialy with respect to experimental
procedures, but certainly also for data formats, etc. If the collaboration exists for many
years (asis eg. the case for the CERN communities) then gradually a common pattern for
data formats, data reduction and analysis tools will evolve. Thisis not a fast process, but
takes several years. Since the plasma physics communities co-operating in the TEC col-
laboration are only recently coupled, there doesn’t exist at this moment a common éttitude
towgrds data formatting, data storage etc. With the exception of the user community of
JET

% The grid, blueprint for a new computing infrastructure, I. Forster and C. Kesselman, Morgan Kaufman publ.
inc. 1999
V. Schmidt, The development of the JET Control and data acquisition system, IEEE Trans. Nucl.Sc. 45
(1998), 2026

V. Schmidt, The development of the JET Control and data acquisition system, in C.E. Vandoni, Xth IEEE
Real-Time Conference, Beaune, 1997, 25-30

10

| PP facilities

Figure 1 TEXTOR '94,Tokamak and auxiliary equipment

I ntroduction

The generation and behaviour of plasmain a fusion device and its interaction with sur-
rounding materias is studied by observing severa phenomena that will accompany a
plasma discharge. These phenomena are recorded by means of so caled Diagnostics.
These are instruments that comprise complex electronic equipment, coupled to various
sensors. The generation of the plasmais aso governed by eectronic systems that control
different parameters of the fusion device, the Tokamak, and of auxiliary equipment. Ideslly
there are two separated channels that are used to (see aso Figure 3):

1. Control (monitor, read and set) the adjustable parameters of the electronic systems,

2. Perform the reading of data that are collected in the instrument during an experi-
ment.

Thefirg issue is dedt with in the chapter “ The DataViewer.*; the second will be treated in
chapters “Data retrieval architecture “; “The DataManager, ObjectManager and
Launcher”; and “ Performance measurements’.

Theexperimental fuson device Tokamak TEXTOR ‘A

At IPPs premises a large research facility is available in the tokamak TEXTOR-94.
(Figurel)

In TEXOR-94 high temperature plasmas can be generated in a pulsed fashion (see Figure
2, the drawing is not to scale). The periods between pulses, including the pulse itsdlf, are
divided in 4 intervals as depicted in the figure. In the first interva (T4, T») decisions about
settings of the tokamak and diagnogtics have to be made, in the second interval, the pre-
pulse (T2, T3) the new settings have to be applied, the system is armed. During the pulse
(T3, T4) data has to be acquired and stored. Data will be analysed subsequently in the
fourth interval, the post-pulse (T4, Ts). After thisthe cycle can be repeated.

11

(T3, T4) isin the order of seconds, while the other intervals range up to minutes. The whole
cycle condtitutes a state machine; its states and trangitions have to be incorporated in the
(remote) control. At least the onset of the pre-pulse, pulse and post-pulse have to be com-
municated (broadcasted) to al diagnostics participating in a particular experiment. This
communication will be no matter for the remote control, but will be dealt with localy by a
suitable circuitry.

L Plasma Current

L.

T,- T, : interpulse (discussion) Tep7q identical with T, .,
T;- T, : Prepulse
Ty4- Ty : Pulse

Tg- T, : Post pulse (analysls)

Figure 2: Pulsed operation of the tokamak and auxiliary equipment (diagnostics)

Control
bus

Data bus

—

D: Diagnostic
T: Tokamak
C: Plasma Control

Figure 3 Data and control paths in fusion experiments (see also Figure 6)

So TEXTOR-9 is surrounded by diagnostics as depicted schematicaly in

12

Figure 3. Thetask of operating the large research facility isto control and monitor both the
dtate of the tokamak and of the diagnogtics.

In this context I1PP (TEXTOR-94) functions as the loca (large) experimental facility. Col-
laborating ingtitutes could either operate their instruments at the IPP site (locally) or do it
remotely. In the DYNACORE project IPP (FZJ) is a partner in the development of the
teleoperation system (DY NACORE System). One of the TEC partners, FOM-Rijnhuizen,
functions as the remote Site, where the prototype has be implemented and tested.

The use of the DYNACORE System in the plasma physics environment

Traditionally the research facilities (TEXTOR-94 and surrounding diagnostics) are

operated at the site of 1PP. In the context of TEC at least one of the larger diagnostics

will be operated remotely from the remote site at Nieuwegein in the Netherlands. The

Dynacore prototype will be designed and implemented to facilitate this intention. The

global requirements for this remote control are:

- Operation of the diagnostic. (This diagnostic, Pulsed Radar Reflector, will be de-
scribed in the chapter: “Experiment to be controlled remotely”). Operation means
in this respect total remote control of the settings of the instrument and complete
control over the data acquired during a shot (or in offline tests).

- Remote access to status and some settings of the tokamak and supplying instru-
mentation.

- Remote access to some of the data of other diagnostics

- Audio/ video connectivity in order to facilitate deliberations between scientists
and engineers at the remote site and local operators, scientists and technicians.

The last issue will be covered in the description of the recommended AV -applications
in chapter: “Audio and video connections’. The first requirement will be covered in
the description of the diagnostic Pulsed Radar Reflector and its remote operation in
the sequel. The second and third requirement will be covered in principle by the de-
scription of the DY NACORE System architecture that will be used for this purpose
and will be described in following paragraphs.

13

Remote partner and validation Ste

The FOM Institute for Plasma Physics ‘ Rijnhuizen’® is one of the research institutes
of the Foundation for Fundamental Research on Matter, FOM. The institute is usually
referred to as ‘ Rijnhuizen’, the name of an 18"-century mansion and of the surround-
ing estate, which forms the institute’ s premises since its foundation in 1959.

FOM is a government-supported organization with an annual budget of about 150
million DGL (approximately 65 M$), which co-ordinates and stimulates most of the
fundamenta physics research in the Netherlands. The funding of FOM is provided for
alarge part by the Netherlands Organization for Scientific Research (NWO). NWO is
the central Dutch organization in the field of fundamental and strategic scientific re-
search.

A magjor mission of Rijnhuizen isto contribute to the European research programme
on nuclear fusion, a programme that is co-ordinated and financially supported by
Euratom via an Association Agreement. The Association Euratom-FOM is also re-
sponsible for the Dutch contribution to the European Fusion Development Agreement
(EFDA”) signed 30 March 1999. The EFDA Agreement is part of along-term pro-
gramme of co-operation covering all the activitiesin the field of controlled thermonu-
clear fusion by magnetic confinement in the European Union and in the Swiss Con-
federation.

Itsaim is to provide aframework for implementing research; development and design
work in preparation for the possible construction of an experimental fusion reactor.
The Dutch participation in the development of reactor technology is carried out by the
Nuclear Research and Consultancy Group NRG®.

The institute has the disposal of a versatile computer and network infrastructure, com-
prising of primarily UNIX-based systems. These are used, clustered and stand-alone,
in the remote participation.

* http:/mww.rijnh.nl/
® http://europa.eu.int/comm/research/fusion/efda.html
6 http:/mww.nrg-nl.com/general/index.html

15

Networ k stuation

I ntroduction

The remote operation of experiments at —experimental- , fusion devices requires appropri-
ate bandwidth between collaborating institutes. In the course of the project REMOT’, pre-
ceding DYNACORE, these requirements were tentatively formulated as ought to be at
least equivaent to normal Ethernet conditions (10Mbit/s), which exist a the partners’ insti-
tutes. Since we have decided that the connections between these partners should use the
offered Internet facilities, these requirements should at least be met by the available capac-
ity of the backbone TEN-155 infrastructure (Figure 4).

April 2000

Topology
r— 34 /45 Mbps
—].l'.Ibeps

Figure 4
Networ k connections

The TEN-155 backbone is a part of the total network infrastructure that is utilised in the
find stages of the DY NACORE project.

" REMOT: TAP (in Research) -EU program, RE 1008

16

In the Netherlands both Utrecht University (UU) as the FOM Institute Rijnhuizen (FOM)
are coupled to the Amsterdam PoP, a this moment by nominally 155, respectively 34
Mbit/s connections (Surfnet). UU has a 100 Mbit/s Ethernet infrastructure, whereas FOM
has locdly a 10 Mhit/s Ethernet LAN. Forschungszentrum Judlich (FZJ3ZAM) is coupled
via DFN to the PoP at Frankfurt by nominaly at least 155 Mbit/s via Cologne and Aix-la
Chapelle. At the site of FZJ the Ingtitute of Plasma Physics (IPP) is coupled via nominaly
100 Mbit/s FDDI rings to the DFN backbone and in IPP itself several FDDI rings are used,
but the LAN isnormal Ethernet (10Mbit/s).

CTextor Control RoonD (Iocal userb)

Cg‘;ﬂ’p“lffv'j{j .)| IPP Building 10/100 Mbit/s
FDDI Ring Router Coax Ethernets

155 ME;IUS Textor SUO
ATM planned Servers

Forschungs Zentrum Jiilich
Campus Network

Campus
Router

64 Mbit/s
|
@ External external
Interne; ———_ users)

SURFNET
155+ Mbit/s
European
Research
Networks

34 Mbit/s 1 Gbit/s planned

) | (
Campus Router 20 Mbit/s
[J | L

I
[Computational Science]

Campus Router

FOM Rijnhuizen J

Building Router

10/100 Mbit/s UTP
Star Ethernet
) (o),

Control

Room
Utrecht University Fom Rijnhuizen
Campus Network Campus Network

10/100 Mbit/s
Coax Ethernets

Remote
Control
Room

remotel user ’

Figure 5 Network topology exploited in the DYNACORE (PP) project

17

In testing al these connections that have to trangport “messages and data’ in the normal
mode of operation we used the scheme as presented in Figure 5. Measurements were car-
ried in the last part of the DY NACORE project (august *99 until recent). The performance
measurements will be presented in the chapter “Network performance aspects’ and are
also presented el sawhere®,

8 http:/mww.phys.uu.nl/~wwwii/rtpl/home.html

18

DYNACORE system ar chitecture

I ntroduction

Planning and executing plasma physics experiments evolves aong a rather complicated
operational schema. There are different viewpoints, connected to the different actors in the
scene. There isthe staff which is planning the set-up, the experimental procedures and first
of all the gods of the experiments to be carried out. There is the operationa crew of the
fusion device, which isresponsible for the operational status of the apparatus. This Satusis
closaly coupled to the character of the experiments to be performed. There are the scien-
tists of the collaborating institutes, partly represented in the global staff, as far as the over-
al planning is concerned, but mainly responsible for their own (diagnostic) experiments,
together with dedicated technicians. Planning and scheduling of the different tasks will
finaly result in the actual experimental phase. At this phase the DY NACORE architecture
isaimed a.

The architecture to be described is mainly meant to support the experimentalists, including
the technicians, who constructed the instrument and maintain it. The User Requirements
Specification and Validation report [D3.1, D7.1], represent roughly their interests. Thisis
understandable, since only they use the facilities directly, either locally, but also remotely.
The operation of the fusion device itsdlf is too ddlicate to be performed remotely, beit is
obvious that the architecture could be used in thelocal conduction of the operations.

The ddiberations of the staff could be supported by some parts of the architecture’'s im-
plementation as if they were management support tools, as are used in commercialy oper-
ated corporations.

The DYNACORE architecture is based on the three-tier concept. This means that client
and server gpplications have been separated by a middle layer, in our case CORBA, origi-
nated from OMG® standards. This approach serves severa goas: one is e.g. distribution
(aso in the topologica sense) of services and data; another is the use of a heterogeneoudy
composed environment. The latter is very adequate for the plasma physics community,
gnce its equipment and software possesses historically and functionaly a great many-
sSdedness. Y et another god isto implement security at an appropriate level.

The scientists and technicians operating the peripheral instruments, around the fusion de-
vice, Situated part remotely, and part localy, have the following globa requirements:

Information concerning their past and present (raw-)data.
Information of the status of their equipment and the ongoing experiment.

Information regarding past and present status of the fusion device.

o OMG group, “CORBA services specification”, chapter 3. Available on the Internet via

http://Aww.omg.org/cgi-bin/doc?formal/97-12-10

19

Information about related experiments, run by different scientific groups at
the same fusion device. (Tokamak).

Means to anayse theirs and others data

Information about related experiments performed in the past in other insti-
tutes (archives)

Means to control and monitor and set experimental parameters during the
experiment (remotely)

Means to synchronise their experiment with other ongoing experiments,
but certainly with the operation of the tokamak

Means to keep track of their doing (logbook, etc.)

During the DY NACORE project it turned out that the scientists had their priorities in the
redisation of al these requirements. These priorities are reflected in the above list, mean-
ing that the scientists' highest priority isgiven at the top of the list. In developing the archi-
tecture and establishing the implementations, the emphasis was on those parts with highest
priority, implying that for some parts rather extensive implementations were prepared, -
viz. data retrievd -, for other parts only provisona solutions were worked out, - viz. re-
mote control of experimental parameters-.

In the considerations leading to the development of a PP-DY NACORE prototype from the
general architecture and the above-described requirements, it seemed self-evident to inves-
tigate the information streams in a (plasma) physics experiment. An abstraction of these
sreamsiis depicted in Figure 6. In the discussion with the experimentaist it turned out that
not al information has the same priority. It became clear that the concept of a (technical) /
Settings database is rather abstract, though useful. It is usually directly implemented in the
front-end' s electronics. For this reason we did not implement stream “6” and “7” of Figure
6 in the prototype. Another consideration isthe use of amiddle layer between the database
for acquired data and the experimental set-up. From symmetry reasons one should include
it in the architecture, so we introduced it in performance measurements (described in sect.)
of a data supplier to a data store (object database). Since the community uses their own
implementation in the form of coherent files for their data storage directly coupled to the
experiments, it seemed not necessary to implement it in the prototype. So the layer “11”
from Figure 6 is not (yet) implemented in the DynaDemo (the prototype). Since the scien-
tists wanted to refer to each others data the streams indicated by “4” and “5" (bi-
directiona) and the belonging interfaces “8” and “9” are very important in the validation
of the prototype, so the emphasis in the next chapters will be on this subject. Findly the
remote control of an experiment, this could be accomplished via streams “1” and “2” via
layer “11”. In practise experimentalists choose for local control, but they redlise that this
could not last for ever, so we constructed a very light control application viathe CORBA
layer, which is functioning quite well and is described in more detail in “The Pulsed Radar
Reflector Control” In this application we don’'t use the settings database concept, but ap-
proach the experimenta set-up via the CORBA layer, directly. Since remote control of
delicate experiments cannot do without security provisions, we decided that the middle tier
should implement these. But since available ORBs don't still incorporate this at a suffi-
cient level we worked out a scheme for security services as described in chapter “ Security”

20

Local & Remote
Control rooms

Database
for settings

The Experiment

T

> U000

9

= PDwOr~- >oUVO

V\\qﬂgﬂl-

for Data

Figure 6 Information streams in a fusion experiment. An abstraction of the real situation.
1. Feeding the settings database with new settings for the instrument(s), responses included.
2. The configuration stream from the settings database to all involved experiment equipment, responses included.

3. The storage of acquired data from the data recorders into the data database. This database in principle has infinite storage capacity.
This (raw) data, once measured, is untouchable.

4. Retrieval of acquired data from the pulse database by operators, diagnosticians and other scientists for e.g. analysis.
5. The storage of computed or interpreted values by scientists into the data database.

6. The automatic storage of (all, or selected) settings into the data database.

7. The automatic retrieval of (all, or selected) settings stored in the data database by the settings database.

8. The CORBA middleware layer that is between the scientists and the databases. This layer hides many implementation details of the
databases from the users and provides uniform and controlled access to the database services.

9. The Application Programmers Interface (API) at the client side of the CORBA layer.
10. The API at the data database server side of the CORBA layer.
11. The CORBA layer that is between the databases and the experiment.

21

22

Dataretrieval architecture

I ntroduction

Some kind of a measurement database will dways be part of a fuson experiment. This
database is used to store al the data created by diagnostics and auxiliary equipment during
awell-defined period in time (seconds to minutes, this period is sometimes called a shot).
As a past design this database is implemented as a collection of files having some kind of
internal coherence, usualy in the form of a directory Structure. Every diagnostic that par-
ticipates in a shot generates its own file during the first few minutes after the shot. Typical
information stored in thisfile is the content of ADC buffers, which arefilled during a shot,
and the set-up parameters of the diagnostic. After a diagnostic has created its datafile, it is
moved to a centrd file server. The file name and location indicate which diagnostic gener-
ated it, and which shot it belongs to. Also more advanced systemsarein use ref |.

A standard diagnostic (electronic) front-end consists of a number of CAMAC crates with
many ADC channels (or equivaents). One ADC channd typically generates 10 to 100 kB
of data per shot. During the years, the number of channels has grown steadily, and some
newer channels use faster ADC' s that generate more data per channel per shot. There are
also new diagnostics being devel oped. These use e.g. video camera s PC platformsinstead
of CAMAC crates or high speed ADC' s that produce tens of MB of data per shot™°.

The volume of the data generated per shot, together with the need to store this data in the
short time between the shots puts high performance demands on the file server. Also the
large data volumes of the new diagnostics and the non-CAMAC diagnostics cannot be in-
tegrated (without many difficulties) in the origina architecture. Finally, for remote opera-
tion, the data in the database must be accessible from the virtual control roomsto alow for
quick analysis directly after the shot. The origina architecture provides nearly no hooks to
alow for this.

Because of the shortcomings, it has been decided that the DY NACORE plasma physics
prototype would incorporate investigations to another way to implement a measurement
database. This database should be accessible for storage from a large number of computer
platforms, alowing new diagnogtics to be added to the system easily.

The database requirements can be summarised as follows:

m Thedatabase must be able to store signals, which have asize of severa MB.
m Thedatabase must be able to store hundreds of MB of data per shot.

m All the data generated during a shot need to be stored in the database within a
few minutes after the shot.

m The database must store on the average 30 shots per operation day, 80 days a
year, adding up to TB of data per year.

1% M. Korten et al, “Upgrade of the TEXTOR 94 Data Acquisition Systems for Plasma Diagnostics,” Proceed-
ings 17" IEEE/NPSS, Vol. 2, pp 803 — 806, October 1998

23

m The database needs to be accessible from many different computer platforms,
locally and in virtua control rooms.

m A hard requirement has been defined as follows: the measurement database must
be able to store 500 MB of datawithin 1 minute.

CORBA

CORBA™ is a open standard for middleware. Using the standardised 11OP protocol, it can
work on the exigting Internet (IP) infrastructure. There are implementations of CORBA
available for many computer platforms. The standardisation guarantees that these imple-
mentations can interact with each other. This makes CORBA an ided candidate to provide
for an architecture of adynamically configurable (remote) access to data either for storage
or retrieval in a heterogeneous environment.

The Dynacore architecture defines data managers with CORBA interfaces. These data
managers have direct access to the measurement database. Data clients, for example analy-
Ss programs, use the data managers via their CORBA interface to store and retrieve ob-
jects in their database. The data managers provide not only platform independence, but
also away to introduce security into the database, even if the real database, undernegth the
data manager, does not implement it. Additionally, the data managers shield the actual da-
tabase implementation from the clients. This alows us to change to a new database im-
plementation without reprogramming any data clients. We only have to implement the
data manager’'s CORBA interface for a new database type. Specialised data manager will
be discussed in the sequel.

! CORBA homepage: http:/www.corba.org

24

Database

000bj

SecurityObj
Bulk
Dyna Object .
DynaDirectory
Dyna Calibration DynaBase DynaComment | | DynaScalar DynaDimN | [DynaMimeObj

Figure 7 Inheritance tree of the measurement database classes

As an example we investigated the abilities and performance of an object database. We
selected for this purpose Objectivity/DB*.

The object-oriented database is used to store a predefined set of data classes. Our database
model definesthese classes.. These are displayed in Figure 7.

SorageHierarchy

Objectivity/DB provides a storage hierarchy based on a federated database, which contains
a number of databases. Each of these databases in turn contains a number of containers.
Our persistent objects are stored in these containers.

In the proposed architecture, all measurement data (perhaps sometimes supplemented with
settings of the diagnostic) is put together in one federated database. For every diagnostic, a
new database is crested in this federated database. Every diagnogtic that participates in a
certain shot stores the measurement data that belongs to that shot in a new container in its
own database. The name of this container is the unique shot number.

For easy data access, every container has a DynaDirectory object, which holds references
to the objects that the container holds. Additionally, database users can logicaly group
measurement objects together in modules and sub modules, which are represented by sub
directory entries (“ pathnames’) in the DynaDirectory object. This way, modules and sub
modules resemble a Unix-like directory structure, which is stored in a flat Objectivity con-
tainer.

12 see :http://www.objectivity.com

25

One important remark must be made with regard to transporting the measurement objects
via CORBA. It is theoretically possible to create a CORBA interface to every persistent
classin the database. Thiswould, however, complicate the design of the data manager and
database clients considerably. It would aso add a lot of network traffic overhead to our
architecture. Our data manager, therefore, provides methods that pass data objects as
CORBA's Interface Definition Language (IDL) structures.

Database Digribution

Objectivity/DB dlowsfor the distribution of afederated database over multiple computers.
Each computer can hold one or more databases of the federation. For our architecture this
means that every diagnostic can have its own data storage machine. However, severd di-
agnostics that create only moderate amounts of data might share one machine.

Users that access Objectivity databases from their desktop don't need to be running on a
computer containing any database. They can access the federation via a private data man-
ager. Objectivity usesinterndly the standard NFS protocol to access remote data, but it can
also use its own proprietary protocol, called AMS. Using AMS improves the performance
of Objectivity. In our performance tests, we used CORBA [10OP to communicate between
database client and data manager. The data manager had its database locdly.

Figure 8 shows a typical set-up of a distributed architecture. We have used Objectivity’s
database digtribution functionalities in order to distribute our federation — and, therefore,
the total 1oad on the measurement database — over multiple computer systems. In addition,
we could run data managers on many computers, not necessarily the ones that hold the da-
tabase, while every data manager can access both local and remote data via an access to
one federated database. However, from e.g. performance considerations one could decide
to use more than one data manager in a client application to address data from other diag-
nostics (remote data) and implement distribution in thisway via CORBA. Thisissue hasto
be studied to a greater extent in a next phase of future projects.

The centra classin the model isthe class DynaObject. Its subclasses are instantiated as the
measurements objects, e.g. DynaScalar, DynaDimN and DynaMimeObj. These are wrap-
per objects for a specific type of measurement data generated during a fusion experiment
(e.g. a Textor 94). A measurement object contains a reference to an object of the class
Bulk, which contains the raw data. The Objectivity database alows us to put this refer-
enced data directly into the database.

The measurement objects hold references to objects of other classes in the database. For
example, a measurement object has reference to DynaBase objects, which contain infor-
mation on the measurement bases and to a DynaCalibration object, which holds calibration
information. Finaly, a user can add a comment to a measurement by setting areferencein
the measurement object to a DynaComment.

26

Splitting the information about data and the raw data itself speeds up the browsing of the
contents of the database. To view the properties of data, only the measurement object
needs to be retrieved. Opening the full Bulk object, which can contain megabytes of data,
would cause too much overhead. Using references to DynaComment, DynaCalibration
and DynaBase objects allows clients to reuse these objects, such that many measurements
that use the same calibration, for example, can reference the same DynaCdlibration object.
This saves database space and provides users with extra information on the origin of the
data. When, for example, a cdibration turns out to be wrong, al measurements that are
influenced by this calibration can be found easily. This is a consequence of implementing
bi-directiona associationsfor e.g. the DynaCalibration object.

Since there are specia references for comments, cdibrations and measurements bases,
smart database browsers can be built that use these references to enhance data viewing.
Thisisavery useful feature in a multi-user environment. It keeps together al the informa-
tion in the database that is necessary to interpret a measurement. In case a user has addi-
tiona information on a certain measurement, like a special cdibration function, this infor-
mation can be put into a DynaComment, and, if necessary, parsed by a speciadized data-
base client. In the case that a DynaComment contains this type of information, the Dyna-
Comment should obey certain syntax rules, in order to give a handle to how this informa-
tion should be used. A DynaComment can have a reference to another DynaComment for
this purpose. Our data browsers do not yet implement this feature.

The DynaObject class inherits via the SecurityObyj class from 0oObj. OoObj is a class pro-
vided by the Objectivity database framework. Inheriting from 0oObj makes a class perss-
tent. This means that its attributes, which must be of special Objectivity types, can be
stored in a database automatically. The SecurityObj class adds security attributes like the
user ID and group ID of the owner of an object to al subclasses. It aso has attributes that
hold an object’ s access rights. Inserting the security class alows us to cresate data managers
that provide a Unix-like security architecture, while al information necessary to imple-
ment is stored in the measurement database itself, together with the objects to which the
information belongs. Also this functionaity has not yet been implemented, however the
IDL interface is provided with the necessary hooks. (See aso the chapter “ Security”)

27

M easurement data

| Distributedl
Data Database |~ pata
Manager I Manager I

/ Platform 1 Platform 2 \
Object
wena] Local Area Network |/ ooieet I
Router | —— e
Services
Textor Control Room

Figure 8 Typical set-up for a distributed heterogeneous database

The prototype aso provides for an object manager, which acts a central starting point for
all database clients. When a data manager is started, it registers at the object manager. The
object manager then assigns the available data managers to clients, thereby distributing the
database load over more computers. This object manager has at first only been imple-
mented in its most smple form. For the early performance test we included the functional-
ity in a dedicated data manager. Later on we designed the ObjectManager in amore el abo-
rated form as will be described in a next chapter.

When a database client contacts a data manager and asks it for an object from the database,
the data manager first has to load the object from the database into its memory. After that,
it can fill IDL structure and send this structure to the database client. In this scheme, a da-
tabase object must be sent twice over the network in the local control room, once from the
database that stored the object to the data manager that serves the client and once from that
data manager to the Internet router. Running the data manager on the machine that con-
tains the data object to be transferred can save one transfer. Since certain clients (for ex-
ample diagnostics themsalves) mainly use objects that are located in the same database on
the same physical machine, it makes sense to assign data managers to these clients that are
located on those specific machines. In the proposed architecture, the object manager has

knowledge about such clients and is able to assgn them the most network-efficient data
manager's.

Moreover since the existing practise a fusion experiments involves still more tradi-
tional ways of storing data (Files), we constructed from the most elaborated design
gpecialised DataM anagers to make the integration of new and old as smooth as pos-
sble. These (smpler) DataManagers fulfil aso another purpose since collaborations,
involving different externa groups, usually have no other means to inspect each
other’s data than looking at each other’s screen (X-term capability). In our approach
it is possible that with the same client application (e.g. a Data Viewer) one can in-
spect each other’ s data, provided the ObjectManager knows the exact location of the
dataand can address a proper Launcher, DataManager combination.

28

The DataM anager, ObjectM anager and L auncher

I ntroduction

The DataManager is “the middleware” between a client and a database. A client can be a
user (scientist), who wants to read data for analysis, or an instrument that delivers datain a
raw format for storage. Via an interface, the DataManager provides access to the database
in a generic way. This means that the interface does not reved any information about the
DataManager actudly stores the data. This makes it possible to store the data in various
types of databases, likeflat files, arelationa database or in an object-oriented database.

A DataManager is designed to service only one client at atime. Therefore, each client re-
ceives its own persona DataManager. So, if multiple clients need to access the same data
base smultaneoudly, an equa number of DataManagers needs to be running. To redise
thisa Launcher application is designed.

When a client requests a specific DataManager type, a Launcher will start this type of
DataManager, which then can be used by a client. When a client is finished it can notify
the DataManager that it is no longer needed. The DataManager will then shutdown and
release its systems-resources. If a client fails to notify the DataManager or, if the connec-
tion between client and DataManager is log, the DataManager will auto-shutdown after a
predefined timeout period.

Because various databases can exists at various places, it would be difficult for aclient to
know the precise location of al these databases and know the address of the particular
Launcher a each of these locations. Therefore, the location of each database and address
of each corresponding Launcher is held by one application, caled ObjectManager.

This makes everything much easier for clients. They now only have to know (or register)
the address of this ObjectManager. The clients can then request alist of all available data-
bases from the ObjectManager. When a client wants to access a specific database in the
reach of the ObjectManager, it can ask the ObjectManager for the address of a DataMan-
ager for this database. The ObjectManager will contact the appropriate Launcher ad return
the address of the newly started DataManager to the client, which then can contact this
DataManager. The communications between client, ObjectManager, Launcher and Data-
Manager will take place via CORBA™. For this purpose interfaces of the specific “mod-
ules’ have to be defined more in the framework of CORBA, which meansin IDL*.

'* CORBA homepage: http:/mww.corba.org

* IDL: Interface Definition Language, a inalienable property of the CORBA specs.

29

Client

1

Launcher ObjectManager— Launcher

> > _—
DataManager

Figure 9 The ObjectManager, Launcher and DataManager at work

I nterface Launcher.

Accessing the Launcher proceeds through CORBA, where & the server sde a C++ ORB
(omniORB 2.8.0 for C++) isemployed. The Launcher’ s interface has only one method.

bool ean | aunch(out string ior)

This gtarts a new DataManager and returns true or false to notify the caler if the operation
succeeded. If the launch-operation was successful, the string "ior" contains the address of
the newly launched DataManager. Else"ior" isNULL.

I nterface ObjectM anager.

Accessing the ObjectManager proceeds also through CORBA, where at the server Sde a
C++ ORB (omniORB 2.8.0) is employed. The ObjectManager’s interface contains two
methods.
bool ean Get Li st (
in QrlistReqStruct ListRequest,
out Onli st Struct Li st Result)
rai ses(Error)

bool ean Get Dat aManager (
in OmonReqStruct Connecti onRe-
quest,
out OnConStruct Connecti onRe-
sult)

rai ses(Error)

30

A client first callsGet Li st toget alist of dl available DataManagers. After it received a

ligt, it can get the address of specific DataManagers. The struct-objects used to sent and
receive the request are defined in the following way:

struct Onli st Struct

{
OnResul t Type Result
string strResult
StringSeq Nanes
LongSeq | Ds
| ong i Size

}

struct Onli st ReqStruct

{
Crypt 0Seq Key

struct OrConStruct
{
OnResul t Type Resul t
string strResul t
string I OR
}
struct OrConReqStruct

{
Crypt 0Seq Key
| ong ilD
}

Without going into each detall, it is interesting to note that with each request a key is
passed to prove to the ObjectManager that the client in indeed authorised to perform a spe-
cific action. Also interesting is that the return-struct always contains a value and a string
which can be used to present to the user in case of afailure.

Because everything is packed into structs, it makes the design flexible, because future ex-
tensions and changes to the function of the ObjectManager will not require a complete re-
write of the whole architecture around it, but only a change in those members actually
handling the structs.

31

I nterface DataM anager

Accessing the DataManager proceeds also through CORBA, with at the server sde a C++
omniORB 2.8.0 ORB. The operations of the CORBA interface can be divided into trans-
action specific operations and data specific operations. These operations are listed below.
The comments are specified to the DataManager implementation for the DOM4™ database
type, but are virtually identical in terms of interface to other implementations'.

First acommon note: al interface-members have a parameter CryptoSeq signature, which
is used to pass a security key to the DataManager, so that it knows the client is authorised
to perform the action.

Transaction specific operations

void start(in CyptoSeq signature)

Starts a new transaction with the DataManager. If a transaction is aready active, an Error-
exception will beraised.

void commit(in CryptoSeq signature)

Commits the changes made to the database during the current transaction. This stops the cur-
rent transaction. If no transaction is currently active, an Error-exception will be raised.

voi d commit AndHol d(in CryptoSeq signature)

Commits the changes made to the database during the current transaction, but does not end
the current transaction. If no transaction is currently active, an Error-exception will be raised.

void abort(in OyptoSeq signature)

Aborts the changes made to the database in the current transaction and ends the current
transaction. If no transaction is currently active, an Error-exception will be raised.

Data specific operations

void store(in any object, in string path)

Cregtes anew object in the database a location path. If an entry with the same path exigts, an
exception will be raised. If the type of the object is not alega type known to the DataMan-
ager, an exception will aso be raised.

voi d update(in any object, in string path,
i n bool ean headerOly, in string info,
in OyptoSeq signhature)

Updates the contents of an existing object with the data provided. If the entry specified by
path does not exists an exception is raised. If the type of the object is not alega type known
to the DataM anager, an exception will also be raised. Finally, also when the type of the ob-
ject sent is different from the exigting object, an exception will be raised.

!> DOMA4 is the way in which the FOM group stores their data. It is basically a structured file system, which
emulates a database behaviour.

'® \We have constructed also a DataManager for the file type used at IPP and in the control of the TEXTOR 94
itself, the so-called RT2 file system; also for the old FOM data type RTF.

32

RevinfoSeq getH story(in string path,
in OyptoSeq signhature)

Retrieves the history of the object indicated by pat h asasequence of Revl nf o sructures.
If the object isnot found, an exception is raised.

Also, note that not al Database types support reminding of the history. In such case, an
exception israised. DOM4 does not support history reminding.

(oj ect Header getHeader(in string path,
in OyptoSeq signhature)

Retrieves only the basic object header of the object indicated by pat h. If the object is not
found, an exceptionisraised.

any getProperties(in string path, in CyptoSeq sig-
nature)

Retrieves al properties of the object specified by pat h. If the object is not found, an excep-
tion is raised. This function will return an object of the correct type with al property attrib-
utes set, but with empty content.

any getData(in string path, in GyptoSeq signature)
Retrieves the object specified by pat h. If the abject is not found, an exception is raised.

void rm(in string path, in GyptoSeq signature)
Removes the object specified by path. If the object is not found, an exception is raised.

void link(in string source, in string destination,
in OyptoSeq signhature)

Cregtes an entry that binds an object to asymbolic name dest i nat i on. The object speci-
fied by sour ce will be used as the path of the object that will be linked. If the object is not
found, an exception is raised. In addition, if an object with name dest i nat i on aready
exigts an exception will be raised too.

Note that not al database types support linking. If linking is not supported, and exception
will be raised. DOM4 does not support linking.

StringSeq list(in string path,
in OyptoSeq signhature)

Returns alist of strings with the full path of al objects a a given location path. If the object
is not found, an exception is raised. This function doe not recursively list the content of di-
rectories. Also note that the path of directoriesin the list will end with a*/* character so they
can easily be digtinguished from other objects.

void lock(in string path, in OyptoSeq signature)

Locks the object specified by pat h for exclusive use by the client. If the object is not found,
an exceptionisraised.

33

Note that not all database types support locking. If locking is not supported, and exception
will be raised. DOM4 does not support locking.

void unlock(in string path, in CyptoSeq signature)
Unlocks the object specified by pat h. See dso lock. If the object is not found or wasn't
locked, an exceptionisraised.

Note that not all database types support locking. If locking is not supported, and exception
will be raised. DOM4 does not support locking.

oneway voi d shutdown(in CryptoSeq signature)

If the client no longer needs the DataManager it can tell it to shutdown. Thiswill shut down
that DataM anager and abort any currently active transaction.

voi d keepAlive(in CryptoSeq signature)

To prevent a DataManager from wasting vauable system-resources in case of a client-
disconnect where the client didn't cdl shut down, the DataManager will auto-shutdown af-
ter a specific period of time in which it was not used (default one hour). If a client wants to
prevent this, it should call this function one in awhile to reset the interna timer in the Data-
Manager.

const unsigned | ong nmaxldl eTinre = 3600 ;

readonly attribute unsigned I ong idleTine ;

Both attributes are used to control the auto-shutdown behaviour of the DataManager. See
adso shut down and keepAl i ve. Maxl dl eTi me describes the maximum time the
DataManager should remain idle before it should auto-shutdown.

The i dl eTi e istheinterna timer that tells how long the DataManager hasn't been used.
Tomanudly resetit, usekeepAl i ve.

Accessrightsand the DataM anager .

The following operations are relevant for security issues.

PolicySeq getPolicies(in string path,
in GyptoSeq signature)

Gets aligt of palicies that apply to an object. If the object is not found, an exception israis-
edNote that not all database types support policies. In these cases, it isagood ideato fake it
and return adummy-vaue.

DOM4 does not support policies and the DOM4 DataManager therefore returns a policy
that indicates that everyone is able to read the specified object.

void setPolicies(in string path, in Policy policy,
in OyptoSeq signhature)

Sets a policy for an object specified by pat h. If the object is not found, an exception is
raised.

34

Note that not al database types support policies. DOM4 does not support policies and the
DOM4 DataManager therefore returns raises an exception.

Extended I nterface

Problem with the standard getData member is that CORBA Any objects require a lot of
system resources, especialy CPU resources, when packed and unpacked. In case of large
objects, like DimN-objects (one or multiple dimension array-objects), this method can be
very time-consuming. To provide optimal read performance in al circumstances the inter-
face is extended with members for specific datatypes.

D mM\Fl oat 64 getDi nlData(in string path,
in ulong npoints, in ulong interval,
in Interpolation how, in OyptoSeq signhature)

Retrieves expanded data of an 1-dimensional object indicated by pat h. If theobjectis
not found, an exception israised. Allows retrieva of only a part of the data providing the
index of the first point to read together with an interva and the total number of pointsto be
retrieved. The datain the interval isinterpolated in the way specified by thel nt er pol a-
t i on argument. None does no interpolation and returns only the first data point of each
interval. Aver age will return the average of al pointsin theinterval. M nax will return
both the minimum and the maximum vaue for each interva. Therefore, in M nMax
mode twice the number of requested pointsis returned.

D m\FI oat 64 get Di n2Dat a(

in string path, in unsigned long x_first,
unsi gned | ong x_npoi nts,

unsi gned long x_interval,

unsi gned long y_first,

unsi gned | ong y_npoints,

unsi gned long y_interval,

I nt er pol ati on how,

n CryptoSeq signature)

5 3 3 3 3535

Retrieves expanded data of a 2-dimensiona object indicated by pat h. If the object is not
found, an exception is raised. Allows retrieval of only a part of the data providing, for both
the x and y range, the index of the first point to read together with an interval and the total
number of points to be retrieved. The datain the interval isinterpolated in the way specified
by the | nt er pol ati on argument. None does no interpolation and returns only the first
data point of each interva. Aver age will return the average of al points in the interval.
M niMax will return both the minimum and the maximum vaue for each interva. There-
fore, inM niVax mode, 4 times (2x2) the number of requested pointsis returned.

These members behave identica to the getData member, except that they do not require
the wrapping (on server side) and unwrapping (on client side) of the CORBA Any object.

35

36

I ntroduction

The architecture for the DY NACORE prototype is based upon the Common Object Re-
quest Broker Architecture (CORBA) as defined by the Object Management Group
(OMG)"" in [Obj96]. CORBA however shows a lack on an important issue: “Though se-
curity services are defined in CORBA services', they are not implemented within the em-
ployed CORBA implementations so far”. Since security mechanisms are essential for
many remote actions, it is necessary to define and implement a security service for the
DYNACORE prototype, which could be replaced by an intrinsic CORBA service a a
proper time.

This chapter presents a description of the security service defined for and used within the
DYNACORE (plasma physics) prototype (system). This security service acts as a
CORBA component, which is on one hand responsible for the authentication of users that
want to get access to the DY NACORE services offered by the prototype and on the other
hand for management purposes (i.e. management of registered objects within the system,
forwarding of object access rights to clients, etc.)™®.

To perform these tasks the security service uses well-defined mechanisms as the Data En-
cryption Standard (DES)? [46-93] and an authentication scheme similar to the security
service Kerberos?. In this respect every client who wants to get access to the system first
has to authenticate itself at the authenticator (the authentication service) with username
and password. Encryption is foreseen in the security service; however, the data produced
by plasma physics experiments often is by al means bulky, but isn't secret®”. Overall en-
cryption would lead to much overhead on the sender aswell as on the receiver side. To this
end we added a feature of partly encrypted messages. The encrypted part of the message,
the so-called authentication value, is of small size and servesto definitely authenticate (and
authorise) the sender of the message. Utilizing such authenticated messages results in an
enormoudy reduction of overhead that accompanies security.

CORBA object serversinthe DY NACORE prototype that want to offer their services only
to authorised clients, have to register their servant objects at the authenticator. To thisend
such an object server needs to have a user account at the authenticator, because it first has
to authenticate itself as a normal user and then, after granted authorisation, register its ser-
vant objects there. If an authorized client wants to utilize such a servant object, it has to
request for a servant object ticket at the authenticator. With this ticket, that contains all
the encrypted data the servant object needs to know about the client, the client is able to
register at the servant object and to utilizeits services.

7 Object Management Group. The Common Object Request Broker: Architecture and Specification. OMG,
July 1996.

'8 Object Management Group. CORBA services: Common Object Service Specification. OMG, March 1995.
19 1f we talk about clients we mean the software application that acts on behalf of a user.

% Federal Information Processing Standards Publication 46-2. Data Encryption Standard (DES). National In-
stitute of Standards and Technology, December 1993.

%1 J.G. Steiner, C. Neumann, and J.I. Schiller. Kerberos: An Authentication Service for Open Network Sys-
tems. Project Athena, Massachusetts Institute of Technology, Cambridge, January 1988.

22 Raw data is in itself not very meaningful to outsiders

37

Sacureinformation transfer

M essage encryption

The development of a network based security system requires a mechanism to send infor-
mation within messages in a secure manner across the network. The most obvious thing to
realize that (and the one used here) is sending these messages in an encrypted form. This
requires, that the sender has a key to encrypt the message and the receiver a key to decrypt

this message.

By using a private cryptosystem both the sender and receiver need the same key for en-
cryption and decryption. Another possibility is to use a public cryptosystem, where the
sender has one key to encrypt the message (the public key of the receiver) and the receiver
has another key to decrypt the message (the receivers private key). In such a cryptosystem
it ought to be impossible to use the keys interchangesbly.

Both cryptosystems have their advantages and disadvantages. For example, how do two
parties in a private cryptosystem come to an agreement about the key to use? Since the key
to encrypt is public in a public cryptosystem, and could be published by a key distribution
center, this problem doesn't exist here. On the other hand, a public cryptosystem needs
very long keys and the agorithms to en- {or} decrypt messages are much more complex
than in a private cryptosystem.

We decided to use the Data Encryption Standard (DES), which is a private crypto system.
To avoid the problems concerning agreement over the key between sender and receiver,
we designed the security system respecting to the following items:

= The DES key needed for authorisation is generated on the basis of the password
of the user. This has two advantages:. firstly there is no problem with agreement
about the key, because only the user and the authenticator know the users
password, secondly this procedure avoids the necessity of sending the (not en-
crypted) password across the network. If the authenticator concludes that the
user hasthe correct key, he dso must have the correct password.

= If two parties (users) want to intercommunicate, they get each their common
DES key from the authenticator. The main assumption hereis, that the authen-
ticator isreliable (if not, it has to be exchanged with areliable one). In this con-
text the authenticator acts asakind of key distribution center.

= To enhance security, the password generated DES key is only used within the
primary authentication procedure. (Attackers, that want to bresk the key of a
cryptosystem, now get as little crypto code as possible, this hampers breaking
the key.) Let's suppose that an attacker breaks a key; he not only gets the DES
key, but also the password of the user (Snce he is able to reverse the password
DES key generation). To play it safe, the authenticator generates a sesson DES
key for the further communication between user and authenticator.

With respect to future enhancements the security system does not depend solely on DES; it
could be exchanged very easy by another private cryptosystem and with little modifica
tions by a public cryptosystem. The decison to make use of DES is based on the follow-

ing:

38

= DES s one of the free usable cryptosystem definitions. In difference to other
cryptosystems, one doesn't have to pay afee for usngit.

= There are many existing implementations of DES and if one is missing for a
particular language (environment), it is easy to implement.

= DESisawdl-defined and standardized cryptosystem.

N.B.

In the following, we often use the terms private (DES) key, session (DES) key or commu-
nication (DES) key. The meaning of these termsis:

= Theprivate key isthe key generated from the users password.

= The session key is an authenticator-generated key for the succeeding communi-
cation between an authorised client (which acts on behdf of an user) and the au-
thenticator.

= The communication key is an authenticator-generated key for the communica-
tion between two authorised parties.

Authentication by useof tickets

In redl life presenting an identity card or something else that proves ones identity and is

accepted by the party that requires the authentication often performs the procedure of au-
thentication.

In computer based systems the identity of a user is normally checked by a non-ambiguous
username, that can be public, and a password, that has to be a common secret to the user
and the party that requires the authentication. This authentication combination (username
and password) is stored in adatabase (e.g. a password fil€). In a system with many services
(to be performed by servant objects), which require authentication of users with the same
authentication combination, it is necessary that dl these servant objects have the same
copy of the database®. This can lead to problems:

When a new servant object is added to the system. How it gets a copy of
this database?

If anew user is added to the system. How can all these database copies be
updated consistently?

2 Under the assumption that these servant objects can't share the same database.

39

There are some options to solve the problems. One is to use one dedicated servant object,
which isresponsible for the authentication, at al other servant objects. This servant object,
the so-cdled authenticator, is the only servant object in the system, which holds a data-
base with authentication information for every user. Whenever a new servant object is
added to the system, that wants to restrict access only to authenticated users, it has to en-
gage the authenticator with an authentication service by registering itself a the authenti-
cator, while establishing a session key. The authentication service performed by the au-
thenticator requires, that every user, that wants to utilize a dedicated servant object, first
has to authenticate himsalf at the authenticator. If thisis successful, the user has to specify
the servant object that he wants to utilize, and that has to be registered in advance at the
authenticator. The authenticator generates from the user’s and servant object’ s information
adigital ticket, which, after being obtained by the user, has to be used to register at the
gpecified servant object. - Such aticket is comparable with anormal 'bus ticket' -. The au-
thenticator puts in it dl the information, which a servant object needs to know from the
user. Since this ticket is encrypted with the servant object’s session key?*, the servant ob-
ject knows that the authenticator, which is a reliable party, could only have generated this
ticket.

The user himsdf can't read the contents of the ticket, since he doesn't know the key by
which the ticket was encrypted. It isn't necessary that the user understands the contents of
the ticket, because the only thing the user hasto do with it, is to send this ticket unchanged
to the target servant object.

Authentication within messages

A possihility to authenticate messages between communicating parties is to encrypt the
whole message and precede it with the sender’ sidentity in plain text. Doing so the receiver
is able to identify the sender and get the belonging DES key to use for the decryption of
the message. Thisis certainly the safest way to exchange messages, but it will also result in
much overhead on both sides. If the parties exchange messages with secret contents only,
thereis no aternative than proceeding this way®

In the DYNACORE prototype many of the exchanged messages contain data, which do
not have to be protected against reading by others. It is important however, that the mes-
sage comes from a trustable party. Therefore the security service has to support both ater-
natives. the encryption of entire messages and the authentication of plain text messages.
The authentication of plain text messages is supported by a smal piece of encrypted code
(the so cdlled authentication value), which comes adong with the message. The authentica-
tion vaue is encrypted with the session or communication key in use between the commu-
nicating parties and contains an integer number. Both parties (and only these parties) know
the value of this number. The receiver checks the validity of the received message by de-
crypting the obtained authentication value and comparing it with the one expected. If these
two values match, the received message has to come from the right party. Otherwise the
receiver would reject the message.

? This is the DES key, which is only known by the authenticator and the dedicated object server (and its ser-
vant objects).
%5 Except to using a Secure Socket Layer (SSL), which is a variant of this.

40

Sinceit isn't very safe to use the same authentication value in consecutive messages™, this
authentication value will have to be modified by both parties from message to message. To
this end, the sender and the receiver, share in addition to the authentication value a secret
modification rule. Every time a message is exchanged, both sides apply this modification
rule to their authentication value copy, so that they aways have a new, but a matching au-
thentication value.

Componentsin thesecurity sysem

In the system there are the following conceptual components (cf. Figure 10):

registered
ed i objects

H%@/@ =

Authenticator

away

Object Server

'j'/_t@
@@

Figure 10 Security service components

= One Authenticator,
= Severd Clients, acting on behaf of an user and

= Severd CORBA Object Servers, which offer their servant objects via the
CORBA middleware to authenticate clients.

» Severd Callback Servers. A mixture of a client and servant objects. It doesn't
add extra services to the total system, but allows a client to obtain automatically
updated status information via servant objects from an Object Server. The call-
back server isimplemented in a Client by means of an additional servant object..

%% An attacker could tap the connection line and use this authentication value for own messages to the re-
ceiver and to the sender.

41

Wil

The operation of these components will be described in detail in the following chapters.

The Authenticator

passwiord

root : 6bl45adb45c37aebif018724eblad 055
i fucha:e3de56al1173617h1

root: 0 aegley auth:pending: loginTime :maxTime
i fuchs :0: peskey:auth: pending : loginTime :maxTims

fba:0:peaKey:<FBA DB, descr,ior, ... =:objref
i fha:1:peskey:<FBA NTF,descr, ior, .. .s:abjref

El

fuchs:0:=FBA DE,FBA NTF:=>

root:infinity
tfuchg : 50000

Figure 11 Databases of the authenticator

The authenticator isthe main component in the entire security system. It has to be arted
before any other component. The authenticator manages the user accounts and the regis-
tered servant objects. Without the authenticator no one can access anything remotely. To
this end the authenticator has several long-term and short-term databases to store the nec-
essary security information (cf. Figure 11):

= Password file. Within this file the authenticator stores the usernames and the
passwords of the users, which are alowed to get accessto the system.

= List of authenticated clients. To every point in time there can be severd active
authenticated (logged in) clientsin the system. A client is a software application
that acts on behaf of a user. The information concerning the security and the
dtatus of thisclient are held in this database.

= List of registered servant objects. Every registered servant object is accompa:
nied by (much) information concerning the service it offers and how it is to be
referenced. All this information and the dedicated security information is stored
here.

» List of servant object tickets. For each client that requested for servant object
tickets this database holds an entry with information about the servant objects,
this particular client hasticketsfor. Thisinformation is essential for a servant ob-
ject that wants to be notified when the particular client leaves the system.

42

= Maximum login time file. Apart from the security information, which is neces-
sary for communication, there is another important information element: the
maximum login time. When the authenticator is started, there is a default
maximum login time for each user. If it is necessary to specify a different maxi-
mum login time for a specific user, one can do that by creating an entry in this
file

Thepassvord file

Like many other security systems do, this system manages the information about the users
that are allowed to access the system via a password file. For every user, which has an ac-
count for the system, there is one entry containing the user’s ID (username in plaintext)
and his password encrypted with the superuser’s DES key. Every time a user wants to
login, the authenticator references thisfile to check the users accessrights.

Example:

r oot : 6bf 2b61ed778921d

adm nnt f: 6bf 2b61ed778921d

f ba: 6bf 2b61ed778921d # this a servant object
fuchs: 6490f ce06dlcf 2f b

kemer|li: 0686a02c3a297133

Thelig of authenticated clients

If aclient wants to get access to the system and starts the login procedure to authenticate
himself at the authenticator, the following information is generated that has to be stored
within this database:

» Thedient'susername,

= The sesson id, whereby the client’s session together with the username can be
definitely tied together,

= A DES session key for further communication between this particular client ses-
son and the authenticator,

= Thelogin time that denotes the point in time when the client logged in,

= A pending flag, from which the authenticator, on the basis of the login time, is
able to determine if the authentication procedure laststo long or is already final-
ised,

= A maximumlogin time after which the client is kicked out of the system, and

» An authentication value that is used within the communication between the cli-
ent and the authenticator to validate their mutual identity.

Example:
root: 0: sesKey: | ogi nTi me: pendi ng: maxTi ne: aut h
fuchs: 0: sesKey: | ogi nTi ne: pendi ng: maxTi me: aut h

43

Thelig of registered servant objects

CORBA object servers represent their servant objects. If a CORBA object server wants to
offer a service in the form of a servant object, it first has to register this servant object at
the authenticator. In this way the CORBA object server primarily makes its servant ob-
ject public to the whole system and secondly it engages the authenticator for the authenti-
cation of each client that wants to utilize this servant object. To do this, the authenticator
needs some information about the servant object:

= The name of the object server, that registers this servant object (i.e. name of the
object’s owner),

m Thesessonid of the owner,

= A base object information element, which conssts of the following informa-
tiona eements:

The name of the servant object, that should be registered at the server,
A textua description, that describes the servant object in a concise way,
The stringified IOR of the servant object to be registered,

The type of the servant object,

The owner of the servant object,

The group this servant object belongs to and

The access mode of the servant object.

= A CORBA object reference (obtained from the stringified IOR) to call the ser-
vant object via CORBA.

Example:
f ba: 0: sesKey: <FBA DB, descr,ior,...>:0objref
fba: 1. sesKey: <FBA NTF, descr,ior,...>:objref

Thelid of servant object tickets

Thelist of servant object tickets is a security enhancement of the security service. Itisnot a
standard, but an optiona element of the authenticator. If a servant object wantsto offer its
sarvices to clients, who are actually logged in, the authenticator has to notify all servant
objects, aclient hasticketsfor, on aclient’ sticket request and the client’slogout. To do so,
the authenticator needs to know for which servant objects this particular client has obtained
tickets. To this end, the authenticator holds alist of servant object tickets which conssts of
the following eements:

» Theusername of the client, that has at least one ticket,

» |Itssesson id to definite identify the client’s session,

44

= Aligt of servant object names the specified client has gotten ticketsfor.

On aclient’ s ticket request, the authenticator makes an appropriate entry in the list and no-
tifies the specified servant object about it. On client’s logout, the authenticator looks in the
list for al servant objects the client has obtained tickets for. It notifies all these servant ob-
jects about the client's logout. Than it isleft to the servant object's individua decision how
to treat thisclient.

Example:

fuchs: 0: <FBA DB, FBA NTF>

Themaximum login timefile

A security gap would be present if every client were allowed to stay logged in until obliv-
ion. Because of that, the authenticator is initiated with a default maximum login time.
This means the time after which every client should be automaticaly logged out. Using
this static time for dl clients leads to problems with servers (since every server at first acts
as anormal client), that should run longer than this default time, or with clients that may
not be allowed to stay logged in for even the default time. For his reason the authenticator
maintains a table with an entry for every client that has a maximum login time different
from the default one. Every entry consists of:

s Theusernameand

= The maximum login time, that is different from the default one (otherwise it isn't
necessary to make an entry for this user).

To alow aclient to stay logged in until system shut down, the maximum login timein
the particular entry is set to a negative value. This could be useful for object servers,
which should last as long as the authenticator itself (which in principle runs until sys-
tem shut down).
Example:

root -1 # until eternity

fba -1 # until eternity

kemmerli 100000 # maximum |l ogin tine in seconds

fuchs 50000 # -"-

45

TheClient

The client is a software gpplication acting on behalf of auser. A client could be for exam-
ple a world clock implementation that requests the local time of worldwide distributed
CORBA time servers, but dso an authenticator administration application that alows
users with proper rights to add/delete user accounts or to change the maximum login time
of any user. It could be a monitoring tool that presents a graphical view to the state of the
security system?’. If those clients wants to access additional services from servant objects
resding on object servers, that offer their services only to authenticated clients, all those
clientsSZ i;ave one thing in common: they have to authenticate themselves at these servant
objects™.

flba:0:comKey:<FER OBE,degcr,ior, .. .=:ghjref:auth:ticket

{ fba: 0:comkey:<FER_NTF,descr, ior, .. .>:objref:auth:ticket

Figure 12 Client's database for the servant objects it is registered at

Due to the fact that a client often utilizes more than one servant object, every client hasto
hold (security) information about every servant object it is accessing, in a appropriate data
structure, i.e. he needs a database for the servant objects heisregistered at, asitisshownin
Figure 12.

Thedient’slig of servant object tickets

This database conssts of the following elements:

= The name of the servant object owner (e.g. the Object Server),

= Thesessonid of the servant object owner,

= A base object information element, that consists of the following elements:
The name of the servant object,
A textua description, describing the servant object in a short way,
The stringified |OR of the servant object,
The type of the servant object,
The owner of the servant object,

The group this servant object belongsto and

%" There are many more possible client applications; this is only a small overview!
%% How this will be done is not the object of this section, this will be explained in detail in the next section.

46

The access mode of the servant object.

= A CORBA object reference (gotten from the stringified IOR) to call the servant
object via CORBA.

= An authentication value, that is used to authenticate the message exchange be-
tween this client and the servant object and

= A servant object ticket (obtained from the authenticator) that authenticates the
client's request for registration at the servant object.

A client needs such an entry in his private database for every servant object from which he
wants to utilize its services. If dl the required information is complete, the client first has
to register himsdlf at the servant object with the (servant object) ticket. After having ob-
tained permission he can use the service(s) of this object.

47

The CORBA Object Sarver and Sarvant Objects

A CORBA object server actsin principle as aclient. It usesthe main CORBA aobject in the
system, the authenticator, to get access to the system and it can use other servant objects
offered by other object servers. This means, that a CORBA object server basically has the
same structure as every client does (see section The Client).

In addition to the client nature of a CORBA object server, there are services in the form of
accessible CORBA servant objects within the server. The object server has to register the
servant objects at the authenticator and engage the authenticator with the authentication of
each client that wantsto utilize this servant object.

The servant objects are working individualy, but share the same base (under the supervi-
son of the authenticator) security information, inherited from the object server (sesson
key, authentication value and modification rule for communication with the authentica-
tor). If aclient wants to utilize such a servant object, it has to register at the servant object
by caling its registration method. To authenticate the registration, the client needs a valid
servant object ticket and an authentication value. The servant object accepts the registra
tion request when the ticket was generated by the authenticator and when the authentica-
tion value, that comes along with the request, matches the onein the ticket.

All this information are managed by a servant object in the following databases (cf. Figure
13):

re s lerid

registered
callback

chantls with

liEels

Figure 13 Databases of a servant object

= List of registered clients. If aclient wants to register at a servant object, it first
hasto get aticket for this servant object from the authenticator. Thisticket that is
encrypted with the servant object session key, consists of the information neces-
sary for service communication between the servant object and the client. After
decrypting the ticket, the servant object extracts the following information from
it an gtoresit in the database:

The client's username,

48

Theclient'ssessionid,

The communication key for the communication between the servant object
and the client,

The authentication value and the belonging modification rule for the
communication between the servant object and the client,

Thetimethe client triesto register and
The maximum time the client is allowed to Stay registered.

Ligt of registered callback objects. Thelist of registered callback objectsis not
standard to every servant object. It is only needed if the service, this servant ob-
ject furnishes, requires a callback to a callback object of aregistered client (e.g.
if this servant objects acts as a notifier about specia events). To this end every
calback client has to register a callback object at this servant object. The infor-
mation that comes along with such a callback registration is stored in this table
and consigts of the following elements:

The client's username,
Theclient'ssessionid,

The communication key for the communication between the servant object
and the client,

A base object information element of the callback object, that consists of
the following informational elements:

+ The name of the callback object, that should be regis-
tered at the servant object,

+ A textua description, that describes the callback ob-
ject in aconcise way,

+ The stringified I0R of the callback object to be regis-
tered,

» Thetype of the callback object,

+ The owner of the callback object,

» Thegroup this callback object belongsto and
+ The access mode of the callback object.

CORBA object reference (obtained from the stringified 10R) to call the
callback object viaCORBA.

49

Ligt of clients with tickets. When the authenticator is initiated with the op-
tional feature of notifying registered servant objects about the clients that have
requested tickets for this servant object, and the servant object wants to make use
of this mechanism as an security enhancement, the servant object hasto store the
information about these clientsin atable. If the authenticator notifies an servant
object about an issued ticket, the notification message contains the following
elements:

50

The name of the client,
The sessonid of the client and

A digest of the given servant object ticket. This is the count of the set bits
within the ticket.

If then a client wants to register at this servant object, the servant object
looks in this list for a matching client entry. If this entry exists, the servant
object compares the ticket, which came aong with the client's registration
request, and the ticket's digest. If this matches, the registration request
maybe granted, otherwise rejected. There are two possible reasons for a
missing match:

The client has never requested for a ticket for this servant object. Such a
registration request should always be rejected, because the requesting cli-
ent is obvioudy an attacker.

The client has requested a ticket, but either the maximum login time &t the

authenticator is expired (i.e. the client was logged out by the authentica-
tor) or the client has logged out on its own. If the client is logged out,
normally the authenticator notifies al the servant objects, the client has
tickets for. Normdly, the servant objects remove the client entry from
their lists upon receiving such a notification.

The Security Service Protocol

As mentioned above, common to al parties in the system is the necessity of phasing the
security protocol, without putting severe restrictions about periods a party can offer or use
asarvice. Thefirst thing to do isto become an authenticated member of the system by per-
forming a login procedure. Being successful in this respect, carrying out the remaining
protocol phases depend on the kind of component to engage. In principle there are, apart
from the authenticator, three possible targets (cf. Figure 10):

Client. A client represents the smplest component within the system. It only
utilizes the servant objects offered by CORBA servers in the system. In a
CORBA system without security functionality, such a client would only need
the interface definition of the objectsit want to utilize”® and an IOR of the object
to cal the servant object on the server sde viathe middieware.

Object Server and its Servant Objects. From the standpoint of the authentica-
tor, an object server is a simple client with additiona service functiondity. In a
CORBA system, initidly without security functionaity, such a CORBA server
would be one of the main components, because of the services, via the servant
objects, it can offer to clientsin the system.

Callback Server. A cdlback server isamixture of aclient and an object server.
On the one hand, it utilizes servant objects from (real) CORBA servers, and on
the other hand, it implements a servant object (the so called callback method),
which can be used from the server side to redlize the offered service, as it is
shown in Figure 14. A calback server is more client than server, because it
doesn't offer a service to the system, but implements a servant object to utilize
servant objects from the serversin the system.

Sarvant
Dbject

Client Object Server

Figure 14 Client as callback server.

% |n the form of an CORBA IDL-file, from which it has to generate the client stub.

51

An example of such a callback client could be a monitoring tool, which offers the user an
actud view of the state of some devices in the system. Since the user expects that the state
given by the monitoring tool is always up to date, it is hecessary to update the monitor rep-
resentation every time, a device changes state. There are two possihilities for the imple-
mentation of such a (monitor) client:

1) Poll the servant object, that gives the actua state of the device in certain
intervals (this could result in high server and network load), or

2) Implement a servant object on the client side, which can be used by the
servant object on server side to notify the client about state changes of the
device.

The second dternative is precisaly the one used in acallback server.

The next sections give detailed descriptions of the security protocol phases, which have to
be carried out by the all mentioned system components in common and the ones, which

are type dependent.

Common protocol phases

Every party that wants to access the system, controlled by a security service, has to authen-
ticate itself at the main system component, the authenticator, by performing alogin pro-
cedure. In anaogy to that, the parties aso have to perform alogout procedure, if they want
to leave the system™.

Login

The login procedure is implemented as a three-way-handshake mechanism and is divided
in the following two parts (see Figure 15):

session key, authenficalion vale

Client Authenticator

Figure 15 Client's login procedure at authenticator.

get Sessi onKey():

(C) The client, who acts on behalf of a user, sends its username to the authenticator.

% If the party doesn't support this, the authenticator in a kind of lightweight garbage collecting will do this.

52

(A) The authenticator looks in its password file for a matching entry and, if one exists,
extracts the users password.

(A) Since this password is encrypted with the authenticator’ s private key, the authen-
ticator decrypts this password and generates the belonging users private key from
it.

(A)Sinceit is possible that one user with one username tries to open more than one
session at the same time, it is necessary to distinguish the user’ s different sessions.
To this end, the authenticator generates a session id for this particular session, so
that in future requests to this session could be identified in a unique way by user-
name and session id.

(A)As explained in the section Message encryption, further communication between
the client and the authenticator will take place by using a session key. The authen-
ticator creates this session key randomly.

(A)Most messages between the authenticator and the client only need to be authenti-
cated, but not encrypted as awhole. To this end the authenticator generates an au-
thentication value and a belonging modification rule for the further communica-
tion between client and authenticator.

(A) Sincethe client'slogin procedureisn't finalised at this point, the authenticator
sets the loginPending flag to true. This indicates that the client still isin the proc-
essto validate hislogin.

(A) Now, the authenticator encrypts the generated session key with the private key of
the user, and the authentication value and its modification rule with the generated
session key. These two pieces of information are sent back to the client.

(C) The client application prompts the user for his password when it gets back these
two pieces of encrypted information; it then generates the users private key from
it.

(C) With the private key the client decrypts the obtained session key.

(C) With the session key the client decrypts the obtained authentication value and the
belonging modification rule.

login():

(C) Theclient modifies the authentication value with respect to the modification
rule.

(C) He encrypts the authentication value with the session key and sends this together
with username and session id to the authenticator.

(A) The authenticator encrypts the authentication value and compares the result with
its copy. If these two match, it sets the loginPending flag to false, which indicates
a successful completed login procedure. Otherwise, the authenticator sends a sig-

53

nal back to the client that indicates, that the authentication value was wrong™, and
releases all resources allocated for this session.

L ogout

The logout procedure is the smplest method in this security service. If a party wants to
logout at the authenticator it only has to call the logout() method together with its user-
name, session id and a valid authentication value at the authenticator as it is shown in
Figure 16. The authenticator checks the authentication value, and (if it is correct) releases
all resourcesfor this particular user session.

Client Authenticator

Figure 16 Client's logout procedure at authenticator.
Client dependent protocol phases

A CORBA client is an gpplication that utilises servant objects offered by CORBA servers
inaway smilar to using functions of locdl libraries. If a client wants to utilise servant ob-
jects of serverswithin this security system, it hasto be registered at this servant object. The
procedure to register at such a servant object is similar to the login procedure at the authen-
ticator, with the exception, that the servant object doesn't have to proof the authentication
of clientsonits own, but engages the authenticator with thisjob.

For this reason, the authenticated client first has to request for a servant object ticket at the
authenticator. If the client has sufficient access rights to utilize the particular servant ob-
ject, it will get such aticket; otherwise the authenticator will rgject the request. The only
thing the client can do with the ticket isto send it to the servant object, requesting it to reg-
ister the client as a party allowed to utilize this servant object. Since the ticket was gener-
ated by the authenticator and contains al the information the servant object needs about
the client, the registration will normally be accepted. The ticket is completely encrypted
with the object server’s sesson key, so that the object server and its servant objects only
can decrypt it. Only the particular client can use it (i.e. no other client can take this ticket
and exchange the client’ sinformation with its settings).

The registration at a servant object will be carried out in two phases:

= Reguedting a servant object ticket at the authenticator and

= Regigtering with thisticket at the servant object.

% This normally points to a typo in the password.

54

This and the analog unregistration from the servant object will be explained in the follow-
ing subsections.

Regigter at a servant object

As mentioned above, the client first hasto request for a servant object ticket at the authen-
ticator, before it can request the servant object for registration. The question is, how can a
client know, which servant objects are registered at the authenticator . One possibility isto
request a servant object ticket with the hope that this servant object is registered at the au-
thenticator. Since this is a gamble, the authenticator (as every object register should)
provides aget Regi st er edbj ect s() method which returns with a CORBA sequence
of information of the registered servant objects (name, short description, I10R, etc)®. In
this sequence, the client can look for the servant object he wants to utilise, or for an
aternative servant object if the one, he primarily wanted to register at, isn't available. With
this information, the client is able to start the registration procedure (cf. Figure 17 and
Figure 18):

servant ohpect cfied

Client Authenticator

Figure 17 Client's request for an servant object ticket at authenticator.

request OT() :

(C) The client sends the servant object name together with his username, session id
and a valid authentication value to the authenticator.

(A) The authenticator verifies the authentication value with respect to the username
and session id.

(A) It randomly generates a communication key, an authentication value and the be-
longing modification rule for the communication between the requesting client
and the target servant object.

(A) Since the servant object ticket has to be encrypted with the servant object session
key, the authenticator gets this key from itslist of registered servant objects (cf.
Thelist of registered servant objects).

(A) The servant object ticket is generated by putting the client's username, session id,
communication key and authentication value (with the belonging modification
rule) into a CORBA sequence, and encrypts the whole sequence with the servant
object's session key.

%2 The getRegisteredObject() method is the only method that could be called unauthenticated.

55

(A) Since the client also need to know about the communication key and the authenti-
cation value, the authenticator gets the clients session key from the list of authen-
ticated clients (cf. The list of authenticated clients) and encrypts the communica-
tion key and the authentication value with this key.

(A) If thisis supported by the servant object, the authenticator sends a ticket digest of
the encrypted ticket to the servant object to notify it about the given ticket.

(A) Finaly it sends the ticket, the communication key and the authentication value
back to the requesting client.

(C) The client decrypts the communication key and the authentication value and
stores them together with the untouched ticket in the list of servant objects; it is
registered at (cf. The client’slist of servant object tickets).

registerdient():

Client Servant Object
Figure 18 Clients registration at a servant object.

(C) The client uses the servant object's IOR to get a reference to the servant object.

(C) It sends the encrypted servant object ticket together with avalid authentication
value to the servant object.

(O) If the servant object supports this, it validates the obtained, encrypted ticket with
respect to the message digest obtained earlier from the authenticator on client’s
ticket request.

(O) The servant object decrypts the obtained ticket with its session key and extracts
the client’ s username, session id, communication key and authentication value
from it, validates the additionally sent authentication value with respect to the one
in the ticket and stores this information in the list of registered clients.

If the client no longer uses the servant object or wants to leave the system, it has to unreg-
ister from the servant object, so that it can release the held resources for this client® (cf.
Figure 19).

% I the client doesn't do this, the servant object in a kind of lightweight garbage collecting should do this.

56

=

Client Servant Object

Figure 19 Clients unregistration at a servant object.

unregi sterdient():

(C) The client sends its username, session id and a valid authentication value to the
servant object.

(O) The servant object validates the authentication value, releases all the resources of
this client, and returns with no value, if the authentication value is correct. Other-
wise it sends asignal to client.

Object server dependent protocol phases

Basicdly, every object server isaclient and has to carry out the phasesto login at the au-
thenticator as described in the forgoing sections. If an object server needs to utilise ser-
vant objects offered by other object servers, it also hasto register itself at these servant ob-
jects. The thing that makes an object server different from an normal client is the services
it offersin the form of servant objects, that can be utilized by registered clients as shown in
Figure 20.

Servant
Object

Servant
Object

Servant
Object

Object Server

Client

Figure 20 Object server that offers servant objects to clients.

57

In the security service an object server doesn't authenticate the clients by itsdf, but it en-
gages the authenticator with thisjob. For this reason an object server hasto register dl its
servant objects at the authenticator. A servant object is the implementation of a CORBA
object and is accessible over the network. InaCORBA system without security functional -
ity it would suffice to a client to have the interface description and the IOR of this servant
object in order to utiliseit. By using the security system, the client has to proof, that he has
the required rights to utilise this servant object. But before any client can utilise a servant
object, the respective object server has to register it a the authenticator. This is done as
described in the following subsections.

Registering a servant object at the authenticator
Assuming, the implementation of a servant object to register dready exists, and the Basic

Object Adapter (BOA) is ready, the object server can start the registration procedure at the
authenticator by calling the authenticator method

regi sterChject():

(OS) The object server creates a basic object information element, which contains the
following elements:

The name of the servant object that should be registered,

A textua description that describes the servant object in a concise way,
The stringified IOR of the servant object,

The type of the servant object,

The owner of the servant object (thisisthe username of the object server),
The group of the servant object and

The access mode of the servant object.

Servant
Ohbject

=5l

Object Server Authenticator

Figure 21 Registration of a servant object.

58

(OS) The object server sends this information together with its username, session id
and an valid authentication value via a call to registerObject() to the authenti-
cator (cf. Figure 21).

(A) The authenticator verifies the authentication value with respect to the username
and session id of the object server.

(A) It extracts the servant object dependant information from the given basic object
information element and puts these together with some object server inherited in-
formation in its list of registered servant objects.

At this point, the servant object is registered at the authenticator and can be utilized by cli-
ents that request ticketsfor it.

unregister Object

If the Object Server decides to stop serving, because it want to leave the system, or no
longer wants to offer a servant object to clients in the system, it has to unregister this ser-
vant object at the authenticator. Thisis done by a call to the unregisterObject() method at
the authenticator. This method has the same parameters as registerObject(). Even the con-
tents of the parameters are the same with the exception of the authentication value, that
must have a different value (since it was modified with the modification rule before).

Utilizing Servant Objects

Once an authorised client has requested for a servant object ticket of its choice, and isreg-
istered at the servant object, this client can utilise the servant object. How such a servant
object should be utilised is however not specified by the security service, but thisis up to
the programmer of the object server. If the programmer wants full security support, each
servant object requires a registration (table) of authorised clients, and every method of the
servant object must contain at least the authentication value as parameter (which is to be
validated by the servant object). It isaso up to the programmer to implement full message
encryption or only authenticated messages.

It is also possible, that the programmer decides to offer some services to authenticated cli-
ents only, and other (not secure) services to the rest of world. This requires, that he in-
cludes a method in the servant objects to publish the IORs for these kind of services, in-
stead of engaging the authenticator with thisjob.

59

The DataViewer.

I ntroduction

The DataViewer isthe client-software used to view the data from a database (or equivalent
files) made accessible by a DataManager. The DataViewer is a Java applet that can run as
a standa one application in a so-called appletviewer or in a browser. It requires however a
Java 1.1.x compatible virtual machine. All the images here were made with IBM Java
1.1.7 running on Windows 2000 Professional (= Windows NT 5.0 Workstation).

The Dataviewer application

When a user (scientist) has started the applet, in a browser, or asa
standalone applet with in an appletviewer, an image as displayed in
Figure 22 will be presented to him.

Clicking on this image will initiate the start-up procedure of

the actua viewer. When the DataViewer is Started, clicking Figure 22 Start Image of the DataViewer

again on thisimage will hide, or re-show the DataViewer.

During the initidisation of the DataViewer, the user [Login:
will first be asked to identify him or herself by logging
in. See chapter “Security” and the section on “Interface
DataManager”.

Armmin|

ko

Login

Figure 23 Login window

Cancel

This enables the use of policies. One can for instance imagine that not al users have access
to dl data.

Select DataManager: If the user decides not to login by pressing cancd, or if
the logging fails, one can retry by smply clicking again

Dom4 w | ontheimagedisplayedin Figure 22.

pom4.

Objectivity

PulsRadar

Ecelmage

RTP Figure 24 Available databases

RT2

61

If the login succeeds, the DataViewer will contact the ObjectManager with the login-result
to get a list of al available databases. It will then present the list of al DataManagers,
available to the user, in adialog with a combo-box. The user can then select one of them to
connect to. See Figure 24.

If the user has made his salection, the DataViewer will contact the ObjectManager again,
and request the IOR-string of the selected DataM anager.

When the DataViewer has received this|OR-string, it is ready to request the DataM anager
for the selected database.

The DataViewer will then contact this DataManager, load al available plugins (more on
thislater) and start the actua viewer-GUI. The result is presented in Figure 25.

The DataViewer is by default of size 800x600, but can be resized to any preferred size. In
addition, the split-pane can be repositioned, if needed.

il S Hulpy
[Ciata Root

Figure 25 DataViewer window with split panes and empty property view.

Clicking on the item Data Root will result in the DataViewer contacting the DatalM anager
to get the contents of the database and display the hierarchy. The user can then browse
through the whole database (unless of course its user-rights are insufficient.) See Figure
26.

62

% CIrwens1 4034
& »_thomeon_ime
§ iz

= [ucda
& 9 mcth
&= [ol
o= arnie
& [0 imeging
?’ﬂin‘ug'ng_hu{
@= [intaipal
& [magneics
& S michelzon
Lol i DT
& M mim
& Hpper=
¥ S thamsmn
&= [rafararces
@ M =elup
[tha
¥ e
Dz
i

Figure 26 DataViewer window with unfolded content tree

If a user wants to have more information about an object in the database, he/she will only
have to click on the item. The DataViewer will then retrieve the properties of this object
and display them in the Property view. It can aso graphically display the item, provided
that aplug-in isavailable. See Figure 27.

[pstartanag
& 8 nph
& T pllipe
& [amin kg mtz
&= rmaging BmOnm.
bl = Pnnn;m_rhnt {1 BB 51 4. 054t th
&= = wriarpo _wealihration 4. BFESIZTTATEN.

o T rragnaiics
B T rachelaon
= 5 mdac
= =3 mirm L L
&= = ppocs Tull path: et
& O homson A0 I L
O [ratarancas
Lo VT
[1ho
L i
Oy 12r
[y 128
Y sawtontn
Y 1 ear
[tigaar
[o
Y

& [machine
=] phirsica
@= [praf
B) 11 90067 0 7
&= 5] 1 9060804.020
= 7 1190 60919.038

Figure 27 DataViewer window with unfolded content tree and property view containing the pointed to information.

Each data type has a (graphical display) plug-in that is able to handle the particular data
type. Users can write additiona plug-ins for new data types. Depending on the object, one
is viewing; the plug-in may have additiona options available. See Figure 28.

63

& N imagp_fast
L TS
B T ragnatics
o= T roichalson
B 7 ks

B T ki
B [ppis

2 CSihomson

P 2 eatup
[tho

f Do
M4y1a7
(4128

[trugar

& Hmachine
B) pwais
&= [el
&= T @ES0R24.017
= T il AEE0E04.020

T] meferences :

Dnhmnm

D tiggart
[iggarz |
[siigar

: uni -
rome
feases
5 M eatibration
i Jjeocrs

[k m*J &% 3 A%
qEmom ;
A FEE051 4.0 80~ i _IT

—
Chosmalmonar 5000 g il s 0 o'l E
LR LG PR ERIBTE R B TR R TN T B

=)

=1
10 KD N2 s A

bl

24933 034 800.025000.025001 025002035003, 035004 02500
-5
= 10

Figure 28 DataViewer window with graphical plug-in (1-D) to view particular data.

Of coursg, it is possible to view various objects at the same time. It is also possible to com-

bine several objectsin one viewer, for instance for comparison. See Figure 29.

D3 Rool
% =3 11 9uR051 4054
&= T at_thomsnn_times
% Ddiag
&=] polo
&= i
& nllps
& omia
&= inaging
&= 21 rnaging_Tasl
&=] rricmal
& magnalics
&] michisleon
&= mise
&= mim
&] ppecs
I tiomson
& [refarances
% [setup
(e
?Oie
Cyaze
Cyaza
[zaetnatn
[wiggar
[t iggen
[riggerz
[rigger
% 3 maching

B T ks

sk

il

wf ClPropemyen 550 P pattar e s e P [d

S(=IE.|

55 0 e o A

T 103)

alzed] 10 Sl Plattes 7 5 e i E
3 10005403 nachin e oil b

N edit]

|| =
HAualsn g |

LALR:
e oo

RS T AL A A i e odl i

O 1
namg 10 kgried §h-3 a1

TosE

-0.5

243060 243970 F4030.0 248380 Z3000.0 25001.0
-8

210

Figure 29 DataViewer window with two graphical displays simultaneously open.

Note that with the 1D (as for instance displayed in Figure 28 and Figure 29) and 2D (for
instance intensity plots) plug-ins, it is possible to zoom in and out. Zooming in is per-
formed by sdlecting a part of the graph (by using the pointing device) and zooming out by
smply right-button clicking. The DataViewer will exclusively retrieve the data needed to
create the graph. This can speedup viewing considerably (efficient use of network capac-
ity), since the pointed to data could consist out of millions of points.

64

Finally by choosing the Close menu-item in the File menu one can hide the viewer as ex-
plained earlier. The DataViewer-agpplet is automaticaly destroyed when the browser
leaves the page, or, in case of standal one use, when the user closes the appletviewer.

65

TheDataViewer —Architecture

DataViewer dructure

The DataViewer was build with flexibility in mind. This becomes clear, when viewing the
global structure of the viewer, see Figure 30.

Viewer
Plugins
T DataManager- Data-

Wrapper Rl Manager

Viewer GUI

T

Startup
Application

Figure 30 DataViewer structure

One can observe that we have decomposed the DataViewer in four parts:

The Application Start-up code

The Viewer Graphical User Interface

The plugins

The DataM anager\Wrapper
TheDataViewer Start-up Code.

In the current version the DataViewer will first contact a Security Manager (Authentica-
tor), then contact an ObjectManager to get aligt of all available DataManagers and finaly
contact that DataM anager and start the GUI.

However, one can imagine that in other situations more or less steps are required / wanted
before the DataManager is contacted and the GUI displayed. For development purposes, a
gpecids lite client was created, which isidentical to the actua DataViewer, except for the
fact that it contacts a DataManager directly, to allow for the testing of DataManagers. The
flexible design, which separates the actua Viewer GUI from the initid Start-up-code
made, facilitatesthis.

66

Another example isthat the same Viewer GUI could be used in developing both an applet-
version for use in web pages and a standal one Java-application. Only the Start-up-code had
to be different.

TheDataViewer GUI. @ [ppees

% [thomson
The DataViewer GUI consists of a set of Java-classes o B8 referancas
based on the Java SWING library. What the Viewer @ T setup
GUI does is nothing more than contacting the Data- [th
Manager to get al the available items and list them in a ® Ttho
tree-like fashion (Figure 31). When a user (scientist) (Y127
selects an item, it will display its properties in a specia [y 128
property window and when the user decidesto view the O s ot
item, it will start the appropriate plugin, which will then :
handleall further actions [3 trigger
ThePlugins Figure 31 DataViewer, expanded tree

Because a database can contain many different object types, the DataViewer should be
able to view just as many as there are present. However, the Viewer GUI does not have to
accommodate al data-types by itsalf, but uses plugins instead. This prevents the Viewer
GUI from getting too complex and difficult to maintain. This also means that the function-
ality of the DataViewer can be augmented by smply adding or changing plugins. In the
case of different applications, one could also opt for different plugins for the same data-

type.

Moreover, if in the future, additional data-types are added to a database, the viewer can be
eadly extended to support the new types.

Writing a Java-plugin for the DataViewer involves the following steps:

1) Define a class with a unique name, which extends the abstract class
DataPlotter:

class MyClass extends DataPlotter

{
}

2) Implement the abstract member functions of the DataPlotter class:

JMenu getMenu()

Should return a IMenu, which can be used to configure your DataPlotter.
May return null, if you don't provide a menu.

voi d clear ()

67

Perform whatever actionswill clear your plotter.

voi d set Dat aSour ce(Dat aManager W apper dm

Tells your plotter where from to get its data. The DataManagerWrapper
classis described later.

voi d addSi gnal ((bj ect Header oh)

If possible, add the signd corresponding to the ObjectHeader to your plot-
ter. Your implementation should retrieve the data itself, using the data
source provided by setDataSource().

bool ean canPl ot (Chj ect Type t)

Should indicate, whether or not your potter is capable of plotting an object
of the provided type.

oj ect Type[] get Pl ot abl eTypes()

Should return an array of al the types your plotter is capable of handling.
Don't return an empty array here, as your plotter will only be asked to plot
data of the typesyou return.

3) Add the name of your classto thelist in the 'plugin.list’ file. Thisfile will be read
by the Start-up code, and dll classesin it will be automatically registered with the
Viewer GUI.

The DataM anager Wrapper.

The DataManager-interface has certain aspects, like security, which would make the
viewer, in having to dea with them, very complex and not very flexible. Any change in
the DataManager’ s interface, or any change of its aspects, like the security, would require
rewriting large amounts of code. Therefore, a DataM anagerWrapper-class was put in be-
tween.

The DataManagerWrapper is, as the name aready indicates, a wrapper around the actual
DataManager-interface. This wrapper shields the Viewer GUI and its plugins from the ac-
tual CORBA DataManager interface.

The DataManagerWrapper provides the same cdls as the DataManager-interface imple-
ments, but then simplified, by stripping al to the GUI and plugins irrelevant aspects. This
design makes programming less complicated, since al these aspects of the DataManager-
interface are now hidden from the Viewer GUI and plugins.

All communication between a DataManager and the DataViewer occur via this wrapper,
which aso results in a very flexible design, since now any change in the DataM anager-
interface will only require an equivaent change in the code of the wrapper-class.

68

Experiment to be controlled remotely

The nature of diagnostic systems ranges from simple magnet field sensors to complete
interferometers, from current reading devices to complete tomographs. The mgjority of the
sgnds from the sensors have to be digitised and undergo ana ogue-to-digital conversion
after proper amplification and filtering. The eectronic systems are there to perform i.e. dl
these tasks. The settings of the electronics have to be adjusted remotely because of radia-
tion hazards etc. The same holds for the instruments that control the generation of the
plasma. (See Figure 3). Idedly control and data acquisition should be carried out aong
well-separated channels, but in practise this is not always the case. The PP DY NACORE
architecture is developed

Thepulsed Radar Reflector Diagnostic™

In pulsed radar reflectometry, short microwave pulsesin the order of 1 nsare
launched into the plasma by means of antennas. Depending on the radar frequency
(channels) and the plasma parameters, the pulseis reflected by a critical density layer
and received again (also in an antenna) by the diagnostic equipment. The basic quan-
tity that is measured by the pulsed radar diagnostic is the flight time of the microwave
pulse between transmission and detection.

The number of independent channelsis ten and two variable frequency channels are
added to the system. The two variable frequency channels can be used in combination
with two fixed frequency channels to perform correlation measurements and to study
MHD modes in the plasma. The pulse repetition frequency is 2 MHz for the ten chan-
nels. The flight time is recorded with an accuracy of 70 ps, corresponding to a spatial
resolution of 1 cm when reflected from ametal mirror. The accuracy can be further
improved to 35 ps. One of the drawbacks of the pulsed radar technique is the fact that
fluctuations and shallow density gradients give additional pulse broadening, which
has an effect on the flight time measurement. The chosen pulse length of 1 nsisa
compromise between the accuracy of the time of flight measurement and the pulse
broadening. In the present system, the flight time is measured between the 50% level
of the leading edge of the transmitted and received pulse. By clocking also the 50%
level of the falling edge a measurement of the pulse width could be obtained. This
would provide additional information on the density gradient.

% http://ns2.rijnh.nl/n3/n1/n3/f1234.htm; C.A.J. Hugenholtz et al., Fast pulsed radar reflectometry for the Tex-
tor Tokamak, Rev. Sci. Instr. 70 (1999) 1034

69

System layout

The distance from the antennas to the radar set-up itsdf is about 10 meters. Two echo
pulses will be received from each transmitted radar pulse. The first one is a start pulse
traveling via a bypass and the second one is the stop pulse reflected at the critical density
layer. The minimum time between the two pulses is 4 ns, which is determined by the con-
stant fraction discriminator (CFD) in the video section of the set-up (Figure 24). The long-
est time delay is obtained from reflections at the far wall when the dengity risesto near the
critical density (nc). The time delay with plasma densities near n. is about 6 nslonger than
the time delay without plasma. Cdlibration is performed using the time of flight system
(TOF) of the reflected pulse at the far wall. The bypass consists of two 10 dB directiona
couplers, an attenuator and a short section of wave-guide. The position of the bypass must
be chosen in such a way that the start and stop pulse coincide with the 20 ns LO (oscilla-
tor)-pulse. The two (bypass and signal) pulses will start and stop a time-of-flight counter
(TOF), developed at Rijnhuizen using eight parallel-gated counters. The data produced by
the TOF-counter is fed to a data acquisition system built in VME. The data handling, stor-
age etc. will be described in the next section.

Ethernet ?

CPU
SOURCE
MEMORY
MIXER
18 ARBITRARY
WAVE GENERATOR
AN
Cern) A
Control
start/stop
Data
\ 4

TEXTOR Start > TIMING

Figure 32: Timing, control and data storage

Software for control, data handling, and storage

The pulsed radar diagnostic will be regarded as a subsystem of TEXTOR. This means that
the diagnostic should be synchronized with the TEXTOR control system. Four timing
stages are distinguished:

= inter-pulse (diagnostic can be used),

70

= pre-pulse (dl devicesareinitidised and ready to accept apulse),
n Sart-pulse (radar sart),

= post-pulse (the datain the memory module can be stored in a database).

There is a possibility to work stand aone for test purposes. The data acquisition of the
pulsed radar diagnogtic is (whenever possible) built up from commercialy available com-
ponents like a Solaris v2.4 operating under UNIX with a VME-bus system (Figure 25).
The embedded controller® clocks the data via the RS485 input into a dual-port memory. A
VSB VME-bus is the connection between the modules. In this way the memory-module
acts as amemory extension of the UNIX system. The pulsed radar controller and the arbi-
trary waveform generator (for caibration and test purposes) are developed by FOM-
Nieuwegein.

[VME Bus
init
SPARC - 5V 64 - 128 Mb Acces Dynamics Pulsed Radar |—
(}— vME - PROC yrany <:> iy control
SOLARIS v2.4 68340 embedded M
controller AWG
DM14 @
SCSI -l RS485
| | TEXTOR
16 1/0 lines EP)!J'Sed Radar timing
8 00O 20 Mbls jagnostic
9 Gb Disk DLT Tape
20 M Samples/s
¢ -
trigger
G =
=>——{ source J#5 oo

2/4/10 channels

TEXTOR

Figure 33: Control, data handling and storage systems

% Acces Dynamics, DC1.

71

The Pulsed Radar Reflector Control

The PulsedRadar Viewer is a viewer application for the exemplary “Diagnostics
Controller”. This controller is an application, which sets and monitors all the settings
used for a specific experiment that is performed on the Textor-94 tokamak. Since
there can be various sorts of experiments, there can be various types of PulsedRadar
viewers. This document describes an example of such aviewer (controller).

I nterface Pulsed Radar Reflector viewer

Since the exact interface depends of the type of experiment there is no need to go into al
thefull details of the interface and only the basics of atypical “Controller” interface will be
described.

enum Event _Type
{
UNKNOMAN_Event ,
STOPR,
START,
ARM
TR G
DATA,
HALT,
Nr_Events
3
The controller typically uses aset of events, which are used to set and monitor the status of
the experiment. These would usually contain eventslikein our example.

enum St ate_Type
{
UNKNOMN_St at e,
NoPul se,
I nt er Pul se,
Pr ePul se,
Acti vePul se,
Post Pul se,
Abort,
Nr_States
3
The controller reports the status to the viewer during the experiment. Therefore, the
interface will typically contain an enumeration of state-types.

73

struct Config_Type

{
| ong pre_trigger;
short node;
shortinterl ace;
| ong start_time;
| ong nr_sanpl es;
| ong st ep;
| ong end_ti ne;

3

The interface will also contain a structure, which defines the configuration. The client uses
this to set a new configuration for a new experiment. The exact content of course varies
from experiment to experiment.

struct Status_Type

{
State_Type state;
string shot nr;
| ong progress;
| ong pre_trigger;
| ong sanpl es;
| ong dcl_stat us;
| ong awg_st at us;
short node;
short interl ace;

3

Besides generd status about the current experiment more advanced status-information is
returned to enable the client to view the exact results of the experiment and enables the
user (scientist) to actively control the experiment remote.

Besides these structures there are a few other structures, which define the interface and
GUI of the client. All these structures can be read and set during the experiment.

An example of how to set the Config_Type structure with Java or C++ would for instance
be:

CurrentConfig = PrsChject.config() ; /1 get configuration

PrsChj ect.config(NewConfig) ; /1 set configuration

74

Because everything is packed into structures and enumerations, the interface is very flexi-
ble. Although the exact contents of these structures and enumeration’s may change, al cli-
ents will be of a smilar form, which enables fast development of such viewers and

controllers.

Next to this set of enumeration’s and structures, the interface will typically contain a set of
functions of which these are the most important.

| ong generate_event (in Event_Type event) ;

This function is used to generate an event. This function enables the client to control the

Pulsed radar controller.

Confi g_Type check_config(in Config_Type conf);

Thisfunction is asthe name says, used to check anew configuration. Some settings might be

theoreticaly possible, but not supported by the actua equipment that perform the experi-
ment. In addition, conflicting settings might occur. This function enables the client to check
such settings before actualy trying to set them (which of course will fail if the settings are
not valid). It will automatically correct incorrect or conflicting settings.

oneway voi d shut down();

This function will shutdown the remote contraller if the experiment is finished.

An exampleinterface.

An example of an interface is presented in Figure 34.

E%PulsRadar GUI
File Option Help
Seﬁinus :

Mode : 24 .57
Pretrigoger : 0
Interlace: 1:1
Start_time : -10
#Samples : 6400
Step : 1000

Buents

AWG 1
#Steps : 1
ZPoints: 64

Start_freq: 34.9

Stop_freq: 34.9

Start

Status
State :
Shotnr :

Data :

HoPulse

_|of x|
AWG 2

#Steps : 1

ZPoints: 64

Start_freq: 48.9

Stop_freq: 48.9

Halt

prs19980828.000

0%

Figure 34 GUI for controlling the Pulsed Radar Reflector, either locally or remotely.

75

The interface shows al the current settings in three pands (Settings, AWG1 and AWG2)
and an event-bar, which shows all the events and enables the user to create them too.

On the bottom, the statusis being displayed.

A typical settings-screen to set the options can be found in the Option menu. See Figure
35.

x|
i
Change Checked
Maodle : 24 .57 * || [Mode: 24 .57
Pretrigger : 1] Pretrigger: 0
Interlace : 1:1 * || |Interlace : 1:1
Start_time : -10 Start_time: -10
zsamples ; G400 z5amples : 6400
Step : 1000 Step : 1000
Check Apply Cancel

Figure 35 Extra pane (options) to change settings with check.

Note the Check button, which is used to validate the new settings.

76

Per for mance measur ements

We measured the performance of our distributed database architecture in order to seeiif it
can meet the high performance requirements mentioned before. For this, we have used the

GigaCluster set-up as shown in Figure 36.

HDE

o
Cabletron

Figure 36 The GigaCluster measurement set-up

The GigaCluster set-up consists of eight Sun-Ultra-10 workstations running SunOS 5.7
and two Cabletron SSR-8000 Smart Switch Routers. The SUNSs are grouped in two clus-
ters of four computers. All computersin a cluster are interconnected via a Cabl etron router

in aswitched 1 Gigabit/sec fibre network.

]
]
. . . :
Client side : Server side

"

]

]

]

]

]

i

' Objectivity

Objects to store H Database

" f

]

]

]

CORBA/IIOP
Test Client -—-1--- DataManager
]
Sun Ultra 10 ¢ : > Sun Ultra 10
SunOS 7.0 SunOS 7.0

IP over Ethernet

Figure 37 Actual set-up for the performance measurements.

% SUN-Ultra-10 GigaCluster project overview and status:http:/mww.phys.uu.nl/~niderost/gigacluster. This
reference is given for a complete overview on the available hardware and is not directly of concern for this re-

port.

HDE

o
Cabletron

The two routers are aso interconnected viaa 100 Mbit/sec fibre network. Finally, all com-
puters are a so interconnected viaa 100 Mbit/sec link using a Cabletron switch.

For the performance measurements described in the sequel we used only a part of the clus-
ter. To this end a client (data producer) and a server (data storage) were implemented ac-
cording to the scheme above, each on one computer in the cluster.

Direct ver usCORBA:ANY parameter passng

In our first test, we have run a database with a data manager on a computer of one of the
clusters, and a database client on a computer on the other cluster. The measurement was
performed with two different CORBA interfaces. Using the first (fast) interface, data was
sent as is from the client to the server. Using the second (generic) interface, data was
packed into a CORBA:ANY object before transport, and after the transport, this object
was unpacked again by the server before storage. The fast interface looks very compli-
cated, Since it needs separate methods for storage of every type of data objects. The generic
interface is much smpler, but the data packing might influence the performance of the sys-
tem significantly. The measured times are given in Table 1.

CORBA interface Client time Server time
Fast interface 08.48 + 0.14 sec 70.55 + 0.11 sec
Generic interface 483.9 + 0.5 sec 289.7 + 0.3 sec

Table 1:Time to set up a transaction, store 324 data objects, each consisting of a header and 10 bytes of raw data, in a
single directory, and commit the transaction. The client time is the total time as seen from the client. The server time is the
time spent in the data manager routines at the server.3’

The errors given are the internal errors in the results of the measurement series, taken with
only minimal processes running on the computer, and one active user. Systematic errors
depending on the software environment can have much larger influences. Clearly, the
time necessary to pack datainto a CORBA:ANY and unpack it again adds a considerable
overhead. Thisistrue for the server aswell asfor the client, as can be seen from the meas-
urements of the time spent in the server routines during the previous test (see Table 1

again).

Filling a database

In order to achieve higher performance, we have used only the fast interface in further test-
ing. In the next test, we measured again the time necessary to store 324 objects with 10°
bytes of raw data. We repeated the measurements 20 times, while we reused the database
until it was full. Every time the database was full, we emptied the database and continued
our measurement. The result is depicted in Figure 38.

We grouped the 20 measurement results into four series(1t0 6, 7t0 12, 13to 18 and 19 &
20), since we had to empty the database after every 6 measurements™. The number on the
x-axis of the graph isthe number of the measurement within its series.

%" These are the routines that implement the CORBA interface. Only the time used to unpack and store the
data is included, not the time spent in the IP-stack or in the CORBA IIOP protocol.

78

The measurements show that the time to store data in a database is dightly dependent on
the sze of the database. Maximum time is about 10 % above the average. The time does
not increase linearly with increasing database size, but shows a characteristic peak just be-
low a1 GB database size. Perhaps that thisis a result of the algorithm used by Objectiv-
ity/DB to incresse to database file stepwise. We repested this experiment with different
object sizes. The same characteristic appeared, and it turned out that it depends on the
amount of datain the database, not the number of objects.

j‘\ ——Measurement 1 to 6
110 / \\ —=— Measurement 7 to 12
108 7 X\ - 2~ Measurement 13 to 18
2 106 // \ - o--Measurement 19 & 20
() N\

Number within series

Figure 38 Repeatedly storing data in the same database. The database is emptied after the 6%, 12t and 18" measure-
ment.

One more remark should be made here. The first measurement series started with a com-
pletely new database, while the other three reused the database after it was emptied. This
difference might explain the difference between the corresponding graphs. The physica
file sze of the database on the hard disk was small in the first case, but it remained 2 GB
after emptying afull (2 GB) database.

Dependency on number and Sze of objects

350
300 |y = 0,3116x - 1,9894 —7
250 11 R*=0,9998 il
< 200
()
E 150
'_
100 -
50 A
L 4
Pl
O v T T T T
0 200 400 600 800 1000
Number of objects
(each containing 10° bytes of raw data)

Figure 39 Time needed to store objects containing 108 of raw data as a function of the number of objects stored. (R2is
correlation coefficient squared)

% On our test platform, the maximum database size is 2*!-1 bytes, or 2 GB. Since we store 320'000°000 bytes
per measurement, we hit the database limit during the 7th measurement. This number is not the maximum
storage capacity of our architecture, since a federated database can contain many databases.

79

The following two measurements show the dependency of the performance on the object
size and the number of objects stored. They both measure the time at the client involved in
storing a number of data objects into an empty database. In the first case, the size of the
objects was fixed to 10° bytes of raw data, and the number of objects stored in one transac-
tion was varied (Figure 39), in the second case, the number of objects was fixed to 324,
and the size was varied (Figure 40).

Both measurements fit well to alinear functiony = ax + b. The offset b can be understood
as a non-linearity for smal number of objects or object sizes respectively. The a-vaues
indicate a storage speed of 3.2 x 10° and 3.4 x 10° B/s respectively. Thisis about one third
of the raw data storage speed of the hard disk used (10 to 11 MB/s).

250

y = 95.521x + 11.141
200 R? = 0.9991

150 /
100
50 /

0

Time (s)

0 0.5 1 1.5 2
Raw data in object (x 10° bytes)

Figure 40 Time to store 324 objects as a function of object size.

To achieve the performance requirements, a storage speed of 500 x 10°/ 60 = 8,3 x 10° B/s
is needed. This can easily be achieved using 3 SUNs in parallel (3 x 3.2 x 10° = 9.6 x 10°
B/s).

Finally we measured the time needed to store data using different networks. Theresults are
displayed in Table 2.

Network type Client time Network time
Client and server on same ma- 89.20 sec 0 sec
chine

10 Mbit/sec UTP 350.77 sec 259 sec
100 Mbit/sec UTP (using SS 98.51 sec 25.9 sec
6000)

1 Gbit/sec & 100 Mbit/sec fi- 95.76 sec 259 sec

ber network (client and server
on different clusters)

1 Ghit/sec fiber-optic (client 91.64 sec 2.59 sec
and server on same cluster)

Table 2 The time measured at the client to start a transaction, store 324 objects containing 106 bytes of raw data each
and finish the transaction using different networks, and the theoretical minimal time to transfer the amount of data without
any overhead over the network.

80

Consdering that the time spent in the data unpack and storage routines aways amounts to
about 70 s, the times measured for a client and a server on the same machine and for acli-
ent and a server interconnected viaa 1 Ghit/s network can be explained when it is assumed
that about 20 s are spent in the IP-stack routines. The three other times can be explained
consdering the network limitation, where the network overhead varies from negligible for
the 1 Ghit/sec & 100 Mbit/s fibre network to 10 % for the 10 Mbit/s and 100 Mbit/sec
switched UTP network Using these figures, it can be seen that at least a 100 Mbit/s
switched UTP network is necessary to achieve the performance goa using 3 SUNsin par-
ald. A 100 Mbit/s shared network would not have enough bandwidth to meet the re-
quirements.

Condusons

We have designed a database modd that is very flexible. It can store any measurement ob-
ject that is created currently at the Textor 94 experiment, and we assume it is flexible
enough to be able to store any new type of measurement data that will be created in the
future.

The database model is embedded in a distributed database architecture using Objectivity
and CORBA. The architecture has been optimised for performance, since high perform-
anceisof utmost importance in this project.

We have measured the performance of our prototype architecture on a state-of-the-art
computer cluster. We used different network configurations to emulate a real-world sce-
nario. Our measurements showed that the prototype architecture can meet the high per-
formance requirements of a Textor * 94 measurement database using SUN Ultra-10 work-
gationsin parallel as database servers together with a 100 Mbit/s switched network.

81

Perfor mance measurementson adistributed database

There are many tests possible that measure the performance of the demonstrator described
above. How useful they are depends mainly on for what purpose they are done. The meas-
urements described in this section are meant to show if the distribution mechanisms work.
Results of other measurements, which show the performance of a single DataManager ob-
ject using a single database, were described before.

Didribution over multiple SUN-Ultra-10 computers

The following measurements have been performed on four computers that are part of the
GigaCluster which was described before. The GigaCluster consists of eight SUN-Ultra-10
computers, running the Solaris 7 operating system, Objectivity/DB verson 5.1 and the
SUN workshop compiler version 4.2. The same computers have been used under the simi-
lar conditions for previous measurements, mentioned above. For thistest the computers are
interconnected using a 10 Mbit/s Ethernet network.

~—
dynadisFD

= S S s
Database 1 Database 2 Database 3

DataM anager DataM anager DataM anager DataM anager
DB client DB client DB client DB client

Figure 41 Set-up for the distributed database performance
measurements on the SUN-Ultra-10 GigaCluster.

| 10 Mbit's Ethernet network |

Figure 41 shows the measurement set-up. The measurement database is distributed over
four computers. Every computer has one database file, one AMS server, a DataM anager,
and a database (DB) client that stores data in the database. The database client uses the
DataManager that is running on the same computer, and stores data in the local database
file. Thisis the most optima Situation, as it does neither use the AMS servers nor the net-
work to store data. However, the DataManager objects still need the network to connect to
the lock server, and to resolve the references to the databases. Initialy the DataM anager
objects only know the location of the federated database.

Using this set-up, the time a database client needs to store 500 MB of raw signal data has
been measured. The measurement has been repeated four times, first with only one data-
base client, running on computer “hst3733", then with two clients, three clients, and finaly
with four clients. The results are shown in Figure 42.

As can be seen from the figure, the paralldlisation of the data storage works very well. The
graph showing the total processor time indicates that there is only a few seconds overhead
associated with the database distribution over two or three computers. Distributing the da-
tabase over four computers yields a larger overhead, and a much larger uncertainty in the
total processor time. The exact reason for this effect is unclear, but it seems plausible that
the (shared) network reaches a limit. For example, it might become overloaded and drop
packets. This would result in TCP/IP time-outs, which in turn cause a lot of overhead and
uncertainty in the total processor time.

82

In the present set-up the average computer time shows that three computersin paralel are
able to meet the performance requirement of storing 500 MB of measurement data within

e Total processor time

w
g 4= == Average Storage Time
'_

Figure 42 The average time it takes to store 500 MB of
100 N raw data, using 1, 2, 3 respectively 4 computers in
N parallel. The total processing time of all participating

N computers together is also shown. Every point has
been measured multiple times. The error bars show the
standard deviation in the results of the repeated meas-
urements. Only the one for 4 computer-case stands
0 out, the others are too small to be visible in the graph.

50 -

1 minute. Four computers in pardle should further reduce the time, but the uncertainty in
the storage time will become larger. The figure indicates that the requirement of storing
500 MB within 1 minute on 4 computers is not met always. In this test situation distribu-
tion of the data storage over three computers seems to be optimal, but would not be exem-
plary for other configurations.

Performance of a 700 MHz Athlon computer running Windows NT 4

The computer industry increases the performance of their architectures at an incredible
pace. The tests of the previous paragraph were performed on computers that are over a
year old. To have a view of what a single commodity computer can achieve nowadays,
another test has been done. It was carried out on a computer with an Asus K7M mother-
board® running the Microsoft Windows NT Server 4.0°°. The CPU was a 700 MHz Ath-
lon-processor*. The measurement database was stored on an 18.2 GB Quantum Atlas 10K
SCSI hard disk*. The test repeated the one in the previous paragraph, but now only for a
single DataManager using a single computer. The time necessary to store 500 MB of raw
sgnal was 99 £ 6 secondsin this case.

This measurement indicates that today, two commodity computers working in parallel can
achieve the performance god of storing 500 MB of measurement data within one minute.
If the machines would work completely in paralld, it would take them approximately 100/
2 = 50 seconds to store 500 MB of measurement data. The locking mechanism will in-
crease this time dightly, but, looking at the distribution overhead on the SUN clugter, this
overhead would not amount to more than 10 seconds. It is also to be expect ed that in the
near future, one single commodity computer will be able to achieve the performance goal
al by itsdf.

% Asus K7M motherboard product description:
http://mww.asus.com/Products/Motherboard/slota/k7m/index.html

% Microsoft Windows NT server 4.0 product description available on the Internet:
http://ww.microsoft.com/ntserver/default.asp

“1 AMD Athlon processor product description available on the Internet;
http://krypton.amd.com/products/cpg/athlon/

2 Quantum Atlas 10K product description available on the Internet:
http://www.quantum.com/products/hdd/atlas_10k/atlas_10k_overview.htm

83

84

Networ k performance aspects

Networ k performance measurements| PP - FOM —UU

Features

The network performance between the sites at IPP, FOM and UU (see aso chapter ©
Network situation” for the positions in the network and the next paragraph) is measured
with a package called RTPL (Remote Throughput Ping Load). The intention of this pack-
age is to do periodic net performance measurements between a set of hosts, which can be
specified by the user. From a control host, these measurements are started at the participat-
ing hosts with aremote shell command. The following tests are executed:

= Thethroughput between each host pair, using the netperf** command.
» Theroundtrip times between each host pair, using the ping command***.

= Theload of each host with the uptime command. The load is measured to be
ableto relate net performance decrease to eventua machine load.

The measurements are performed at Unix workstations by executing Perl scripts. The
crontab utility is used to start the tests periodically at the so called control host. The Perl
script at the control host starts the net performance measurements at the test hosts with re-
mote or secure shells. The results are collected at the control host and stored in ZIP com-
pressed data files. The presentation of the data is Web based: A JAVA Applet is used to
load the ZIP compressed data files, JavaScript is used to generate dynamicaly severa
views to the data in the form of HTML tables. JavaScript directly calls Applet methods to
obtain the required data. The Applet can aso be used to present a plot of the data, dis-
played in the tables.

The following data files, also recent ones, of more general interest, can be viewed viathe
Web in the mean time: [http://www.phys.uu.nl/~blom/doc/net_test/ipp_fom uu/]

Since these data do not particularly focus on the connectivity between I|PP and FOM, they
are mentioned here just for completeness. This “archive’ contains

= dataof thelast 7 days.
= For each week of the last half year adatafileis available.
= Theweek’s mean vaues from the last yesar.

= Theday’s mean values from the last yesar.

“3 Netperf Home Page: http:/Aww.netperf.org/netperf/NetperfPage.html
“R. L. A. Cottrel, C. A. Logg, and D. E. Martin, "What is the internet doing?
performance and reliability monitoring for the HEP community”, Computer
Physics Communications, vol.110, pp.142--148, May 1998

S URL: http://ww-iepm.slac.stanford.edu/pinger/

85

= The mean values, caculated at the periodic measurement times, for the days of
the week, averaged during a quarter. The data are stored during ayear.

= The mean vaues, caculated a the measurement times, for the workdays of the
week, averaged during amonth. The data are stored during a yesr.

Measurements| PP -- FOM —UU, earlier measurements, August ‘99

Router IPP
134.94.100.1 ipp277.ipp.kfa-juelich.de
ZAMO4T - Juelich IPP - Juelich
Router ZAM
124.94.100.22 zamd72-b.zam.kfajuelich.de
ZAMOGZ - Juelich ZAM - Juelich
Router RUS
Stuttgart1.BelWue.DE 193.196.152.162
RUS - Stuttyart RUS - Stuttgart
Router TEN-DE
dfn.de.ten-155.net atm.ws1.de.ten-155.net
TEN-155 - Frankfurt TEN-155 - Frankfurt
Router TEN-NL
surfnet.de.ten-155.net atm.ws1.nl.ten-155.net
TEN-155 - Amsterdam TEN-155 - Amsterdam

Router Router SARA
BRB. Amsterdam.surf.net AR1.Amsterdam.surf.net 192.87.106.120
SARA - Amsterdam SARA - Amsterdam SARA - Amsterdam
Router

AR2.Utrecht.surf. net
ACCU - Utrecht

Router FOM
— ciscol.rijnh.nl huygens.rijnh.nl
Nieuwegein Nie uwegein
Router UuU-36
b 121.211.36.1 hst3736.phys.uu.nl
ACCU - Utrecht MG - Utrecht

Figure 43 Topology used in the tests, described in the text

86

Close § Mo Markers Show Al

Throughput [Mbit/s]

[[1c< | << | > R

7.0
608

W UU-38
50r
40r
30r
2.0r 1

ty

ik M /é/ W
00——%— - : S ikt g,
00:00 18:00 12:00 05:00 00:00 18:00 12:00 06:00 00:00
26/08 25/08 2508 25/08 2508 24/08 24/08 24/08 24/08

Drate

| Java spplet Window

Figure 44 Throughput data between the IPP site and sites at the FOM and UU for two workdays in August. The test direc-
tion is specified in the plot labels. The site entitled "SURFnet" is positioned close to the router in Utrecht.

With these features of the package the network performance was monitored between the
following sites participating in the DY NACORE initiative:

= Ingtitute for Plasma Physics (IPP) in the Science Centre Jilich (FZJ), Germany
(DYNACORE partner).

= FOM-Ingtitute for Plasma Physics Rijnhuizen, Nieuwegein, the Netherlands.

= |ngitute of Computational Physics, Faculty of Physics & Astronomy, Utrecht
University, Utrecht, the Netherlands (DY NACORE partner).

To check if possible bad performance could have been caused by congestion in the net-
work at the FZJ, two other sites at the FZJ were included in the measurements:

= A hodt a the ZAM department, close to the (DFN) router.

= A host a the ZELAS department at another region of the FZJ.

The August ‘99 data, here presented, are the most representative for the sart of the tests for
the DY NACORE deployment. Before, but also after August, not al connections were
available. So to evaluate the situation with respect to the connection ‘IPP— FOM’ thiswas
the most relevant period. In the comparison of the results we focused on the Stuation to
and from IPP. During day time there is a considerable net performance loss at the connec-
tions between IPP and FOM and between FOM and UU. In Figure 44 the throughput
measurements from the site at |PP to sites at the FOM and UU during two workdays in
August are displayed.

87

The results of the measurements with these Sites at the same days as the throughput data
from Figure 44 are shown in Figure 45

Close § Mo Markers Show Al

2 Throughput [Ibit/s]
7.5 .

[[1c< | << | > R

701
8.51
a0
555
501
451
40r
351
30
251
201

15 . . L . L . L

00:00 18:.00 12:00 06:00 00:00 18:00 12:00 06:00 00:00

28/08 25/08 25/08 25/08 25/08 24,08 24/08 24/08 2408
Date

| Java spplet Window

Figure 45 Throughput data between the sites IPP, ZELAS and ZAM at the Forschungszentrum Jiilich for two workdays in
August.

Figure 45 shows clearly, with the exception of some accidenta dips, that there is no con-
gestion at the FZJ network: the throughput values during daytime and night time are not
much different.

The generd conclusion from the measurements was that at the time of the first network
performance measurements the international connectivity was not very stable, but improv-
ing. Theloca networks at FZJ, FOM and UU were rather stable with some exceptions that
have been cured in the mean time.

Measurements| PP -- FOM —UU, later measurements, Jan —April 2000

In this paragraph the results of the network performance monitor between IPP - FOM and
Utrecht will be reviewed. The attention will be focussed on the results in the first thirteen
weeks of the year 2000. Moreover the improvements during the complete observation pe-
riod (22-8-1999 until 2-4-2000) are discussed. Because bandwidth, and not so much avail-
ability, is the limiting factor in the connections, mainly throughput results are presented
here.

88

Sites

The results of the throughput measurements between the following sites will be compared:

Connecti on BW [Moi t/ s] Weeks

ZAVK=>UU- 36 100 34 (99) - 14 (00)

| PP<=>FOM 10 34 (99) - 05 (00)
TEN- DE<=>TEN- NL 100 37 (99) - 49 (99

The participating sites where placed at the following locations:

Site Locati on
ZAM ZAM Departnent, Julich, Gernmany.
| PP | PP Departnent, Jualich, Germany.
TEN- NL Dut ch PoP TEN- 155 net wor Kk,
Anst erdam Net her | ands.
TEN- DE German PoP TEN- 155 net work,
Frankfurt, Germany.
FOM FOM I nstitute Rijnhuizen,
Ni euwegei n, Net herl ands.
UU- 36 Conput ati onal Physics Uni.

Utrecht, Urecht, Netherl ands.

For the connections between these sites the results concerning performance and availabil-
ity are presented in the following sections.

Time throughput averages

In this section the throughput average values, calculated at the hours of the days for the bi-
directional connections ZAM <=> UU-36 and IPP <=> FOM will be compared. There are
mean values calculated for working days (Mon - Fri) and for in the weekend (Sat - Sun).
The results are obtained for the first thirteen weeks of 2000. This implies that the mean
value of a workday (weekend day) is the result of averaging 65 (26) throughput values.
Figure 46 presents the hourly throughput values during working days and Figure 47 shows
the corresponding values in the weekend.

89

11 + T

Throughput [Hbits=]

3 L L

T
ZAH => UU=36 —s—
uu-36 =» ZAH ——
IPP => FOH —5—
FOH => IPF —— |

a 5 18
Hour of Day

Figure 46 mean workday throughputs in the network between IPP and FOM

12 T T

15

28

Throughput [Hbits=]

4 L L

T
ZAH => UU=36 —s—
uu-36 =» ZAH ——
IPP => FOH —5—
FOH => IPF —— |

a 5 18
Hour of Day

Figure 47 mean weekend throughputs in the network between IPP and FOM

90

15

28

From both figures the following conclusions can be drawn:

= The striking behaviour is the clear performance decrease at working days be-
tween 08h - 18h. This is especidly true for the connections between the sites
with 100 Mbit/s interfaces (ZAM <=> UU-36), but also the connections between
the stes with 10 Mbit/s interfaces show a decrease in performance. During the
weekend the performance difference between day and night is not so very sig-
nificant.

= We computed the ratio between the minimum throughput during daytime and
the maximum throughput at night for working days. The table below contains
this ratio for the various connections (in the values the non-typical performance
decreases for IPP => FOM a 00h and for ZAM <=> UU-36 around 20h have
been ignored)

Connecti on M n- Tput /
Max- Tput

ZAM => UU 36 0. 60

UU- 36 => ZAM 0. 64

| PP => FOM 0. 67

FOM => | PP 0.79

= With the exception of FOM => IPP dl ratios are about the same value. The ex-
planation for this may be that with congestion at a router, the queuing protocols,
diding window adjustment, etc. are responsible that a proportional part of the re-
ceived packages will be sent to the next hop. Thisimplies that the bandwidth to
the next hop will be related to the incoming bandwidth. This mechanism bresks
down when packets are lost due to heavily congestion at the router. Therefore,
these results were less clear found in earlier throughput measurements where the
performance of the network was worse.

= The performance decrease at 00h for the IPP => FOM connection is typical for
this connection. The result is unknown, but probably loca to the IPP. May be
backup activity or other regular service jobs, generating loca traffic may be the
cause. The load of the IPP hogt at that moment is not larger than otherwise, so it
is not a performance feature. The reason that we do not find it in the reverse
gtuation, FOM => IPP, may be due to the overdl lower bandwidth of that
connection.

= The performance decrease around 20h for the connection ZAM <=> UU-36 is
not clear. However, other results show that the cause is probably situated in the
Utrecht University network. The performance diminution isfound for al days of
the week.

91

Throughput histograms

In this paragraph histograms from throughput counting are presented for the connections
ZAM <=>UU-36. The bin counts are given as percentage from the total # of observations.
The results are obtained for the first thirteen weeks of the year 2000, but only a working
days (Mon - Fri)

The following histograms are presented: Figure 48 and Figure 49 show the histograms for
connection ZAM => UU-36 and v.v. UU-36 => ZAM during working hours (08h - 18h);

L} T T
ZAH => UU-36 ——

Count [X1
o

| —I_V
a

a 2 4 B 8 18 12 14 16
Throughput [Hbit/s]

Figure 48 Histogram of the throughput distribution during working days (08h -
18h) ZAM —UU

Figure 50 and Figure 51 display the histograms for connection ZAM => UU-36 and the
reverse, UU-36 => ZAM, during the evening and night (18h - 24h; 00h - 08h).

The results lead to the following conclusions:

= |n the evening and night the higher throughput bins are more frequently repre-
sented than during workday, as may be expected.

= Asexpected, during workday the lower bins (Tput U 5 Mbit/s) are, due to con-
gestion, more filled than during the evening and night.

= For the connection UU-36 => ZAM there exists more heavily congestion (Tput
U 1Mbit/s) than for the ZAM => UU-36 connection.

92

With the exception of ZAM => UU-36 at nighttimes, al histograms show a
clear maximum (shifted to alarger bin at night compared to the working hours).
The distribution of the higher throughput bins shows a shape similar to a Poisson
distribution, probably due to router -> queue algorithms, while there exists a
relative flat shape for the lower bins. In this area more incident driven protocols
may play arole, like for instance packet retransmission.

12

UU-36 => ZAH ——

18 -

Count [%]
@

a 2 4 6 8 18 12 14 16
Throughput [Hbit/s1

Figure 49 Histogram of the throughput distribution during working days (08h - 18h) UU — ZAM

16

ZAH => UUS36 —— |

14

12 -

i8 -

Count [%]
@

a 2 4 6 8 18 12 14 16
Throughput [Hbit/s1

Figure 50 Histogram of the throughput distribution during nights of working days working days (18h - 24h; 00h - 08h) ZAM -

uu

93

12

UU-36 => ZAH ——

18 -

Count [%]
@

a 2 4 [8 18 12 14 16
Throughput [Hbit/s1

Figure 51 Histogram of the throughput distribution during nights of working days working days (18h - 24h; 00h - 08h) UU -
ZAM

Overview timethroughput averages

In this section we give an overview of the throughput average vaues, calculated at the
hours, from al available workday data for a particular connection. The data are presented
in the form of 3D plots, where the x-axis represents the hour and the y-axis the week of
year (1999 and 2000). The plots for the following connections at workdays (Mon - Fri) are
shown:

TEN-DE <=> TEN-NL

During a couple of weeks at the last half of 1999, hogts at the Frankfurt and the Amster-
dam PoP of the TEN-155 network were added to be able to see the influence of router tun-
ing in the throughput performance measurements. Figure 52 displays the performance of
the TEN-DE => TEN-NL connection and Figure 53 the reverse connection. In both plots
the data are averaged over the workdays of one week.

The following conclusions can be given:

= Both plots clearly show the performance improvements due to the router tuning.

= |n fact there were two stages in the tuning: after large improvements around
week 42 (1999), there was a so a tuning around week 48 where the performance
during daytime was improved. Meanwhile also some high performance pesks
especidly for TEN-DE => TEN-NL) were flattened.

94

ZAM <=>UU-36

Figure 54 presents the hourly throughput vaues for the connection ZAM => UU-36 and
Figure 55 for the reverse connection. In these plots the data are averaged over the work-
days of two weeks.

The following conclusions can be given:

The same conclusions are vaid as for the TEN-DE <=> TEN-NL connec-
tions.

Around week 52 1999 there is a maximum for al hours. Thisis caused by
the traditional low seasona traffic, especidly in the Netherlands, in that

period.
In begin of 2000 there was a further improvement of the performance.

TEN-DE => TEN-NL —+—

Throughput [Hbit/s]

45

a0 | AT =N
38 o ‘w.,__ . ..’,’*’
25 - o T e
is L A, ; ; v :
10 [Tt DR [e ek A /Il/
5 W — Do - e
ar T @
a a8
5 43
a6
18 44
15 42
Hour of Day 48 Cont, Heek #
28]

Figure 52 Performance of the network backbone between Germany and the Netherlands

95

Throughput [Hbit/s]

ol /,%!!llll")**‘ L7
Hour of Day 15 48 *

28

38

Figure 53 Performance of the network backbone between the Netherlands and Germany

Throughput [Hbit/=]

25
28
15

i@

Hour of Day

Figure 54 Performance of the network between ZAM-FZJ Germany and UU, the Netherlands.

96

38

TEN-NL => TEN-DE —+—

56
a5
a6
a4

Cont, Heek #

ZAH => UU-36 ——

13

Cont, Heek #

uU-36 =» ZAH ——

Throughput [Hbit/=]

13

L]
Hour of Day Cont, Heek #

Figure 55 Performance of the network between UU, the Netherlands and ZAM-FZJ Germany.

97

Bad performance events

Table 3 Events with Tput < 0.5 Mbit/s for the connection ZAM <=> UU-36, w

Dat e Time Site Site Tput Pi ng | ost
dd/mm/yyyy hh:mm:ss 1 2 Mbit/s min[us] avg[us] max[us] [%]
29/03/2000 17:00:08 UU-36 ZAM 0.32 31.200 57.075 85.500 5.000
29/03/2000 15:00:04 UU-36 ZAM 0.21 29.300 45.431 96.500 7.500
29/03/2000 13:00:02 UU-36 ZAM 0.02 23.500 46.862 144.000 2.500
29/03/2000 12:00:07 UU-36 ZAM 0.03 19.500 27.762 44.500 2.500
29/03/2000 11:00:03 UuU-36 ZAM 0.07 30.500 60.181 81.500 5.000
29/03/2000 10:00:03 UuU-36 ZAM 0.02 19.100 34.594 63.000 5.000
29/03/2000 09:00:03 UuU-36 ZAM 0.08 18.300 23.492 45.000 2.500
29/03/2000 08:00:03 UuU-36 ZAM 0.01 17.800 22.600 44.100 2.500
29/03/2000 07:00:04 UU-36 ZAM 0.02 16.500 20.341 112.000 2.500
29/03/2000 06:00:03 UuU-36 ZAM 0.15 17.500 20.051 32.300 2.500
29/03/2000 05:00:03 UuU-36 ZAM 0.02 17.300 18.611 20.100 0.000
29/03/2000 04:00:04 UuU-36 ZAM 0.02 17.200 18.624 21.300 0.000
29/03/2000 03:00:03 UuU-36 ZAM 0.01 17.000 19.868 61.000 0.000
29/03/2000 02:00:03 UU-36 ZAM 0.02 17.500 23.264 33.300 5.000
29/03/2000 01:00:03 UU-36 ZAM 0.14 17.400 20.060 52.600 7.500
29/03/2000 00:00:04 UU-36 ZAM 0.01 17.200 19.697 24.700 0.000
28/03/2000 23:00:02 UuU-36 ZAM 0.03 17.100 19.224 22.900 2.500
28/03/2000 22:00:01 UuU-36 ZAM 0.00 19.100 25.067 35.000 5.000
28/03/2000 21:00:02 UuU-36 ZAM 0.00 17.500 20.013 28.800 0.000
28/03/2000 20:00:03 UuU-36 ZAM 0.00 17.400 21.742 30.800 5.000
28/03/2000 19:00:02 UuU-36 ZAM 0.01 17.700 19.561 23.200 0.000
28/03/2000 18:00:03 UuU-36 ZAM 0.01 17.800 19.263 23.700 0.000
28/03/2000 17:00:01 UuU-36 ZAM 0.02 18.300 25.151 53.900 7.500
28/03/2000 15:00:02 UuU-36 ZAM 0.23 98.500 268.350 448.000 20.000
27/03/2000 18:00:04 UuU-36 ZAM 0.34 18.300 20.792 23.800 0.000
22/03/2000 18:00:01 UuU-36 ZAM 0.16 25.600 35.103 47.300 0.000
22/03/2000 12:00:06 UuU-36 ZAM *oxx 83.000 121.276 152.000 0.000
20/03/2000 16:00:13 UuU-36 ZAM *oxx 25.200 27.197 33.400 0.000
16/03/2000 16:00:06 UuU-36 ZAM 0.10 25.300 31.614 44.700 5.000
16/03/2000 16:00:06 ZAM UuU-36 0.08 25.000 32.243 59.000 2.500
16/03/2000 15:00:05 UuU-36 ZAM 0.00 25.100 27.881 34.700 2.500
16/03/2000 15:00:05 ZAM UU-36 0.00 25.000 28.314 36.000 7.500
16/03/2000 14:00:12 UU-36 ZAM 0.02 24.400 27.229 37.300 0.000
16/03/2000 13:00:08 UU-36 ZAM 0.12 19.100 22.389 31.000 2.500
16/03/2000 12:00:02 UuU-36 ZAM 0.04 18.700 21.543 29.000 2.500
16/03/2000 11:00:05 UuU-36 ZAM 0.01 18.400 22.418 46.300 0.000
16/03/2000 10:00:02 UU-36 ZAM 0.48 334.000 422.105 505.000 0.000
16/03/2000 10:00:02 ZAM UU-36 0.21 448.000 527.811 629.000 2.500
14/02/2000 15:00:04 UU-36 ZAM 0.28 44.200 47.850 51.300 10.000
08/02/2000 12:00:07 ZAM UU-36 0.40 30.000 36.270 43.000 2.500
28/01/2000 09:00:05 UU-36 ZAM 0.46 30.500 36.554 43.300 2.500
24/01/2000 17:00:06 ZAM UuU-36 *oxx 766.000 850.094 919.000 15.000
23/01/2000 14:00:06 ZAM UuU-36 0.03 25.000 52.667 83.000 5.000
20/01/2000 10:00:07 UU-36 ZAM *oxx 23.000 25.126 30.400 0.000
13/01/2000 16:00:07 UU-36 ZAM *oxx 17.500 19.463 23.300 0.000

98

Table 3 shows the monitor parameters for al events where Tput < 0.5 Mbit/s, which isa
arbitrairy number, for the first thirteen weeks of 2000. Only the events for the ZAM <=>
UU-36 connections are listed.

The following conclusions can be derived from thistable:

= There are no structura performance decreases (collapses).

= The performance diminutions are clustered at the same dates. They are probably
caused by network problems. Thisis especialy the case for the events during the
night.

= The most events are registered for the connection UU-36 => ZAM. They can
aso be observed asloca maximain the histograms for the corresponding bins.

Table 4 Failures in the network listed according date / time for the last part of the reported period (end April 2000) for the
connection FOM - IPP, w

Date Time Site Site Tput Ping lost
dd/mmlyyyy hh:mm:ss 1 2 [Mbit/s] min[us] avg[us] max[us] [%]
03/05/2000 12:30:05 FOM IPP 0.08 21,511 31.684 100.014 2.500
02/05/2000 14:30:05 FOM IPP 0.45 26.727 32.291 39.207 5.000
01/05/2000 01:30:04 FOM IPP ok 94.804 95.665 96.626 0.000
01/05/2000 01:30:04 IPP FOM 0.03 93.600 94.621 95.746 0.000
30/04/2000 14:30:05 FOM IPP ok 94.999 95.503 96.045 67.500
30/04/2000 04:30:04 FOM PP *E* 18.284 19.087 20.518 0.000
30/04/2000 04:30:04 IPP FOM 0.31 17.550 18.313 19.540 0.000
29/04/2000 03:30:06 IPP FOM *EK 17.550 24,973 219.375 15.000
25/04/2000 15:30:04 FOM IPP 0.35 25.996 31.196 35.238 10.000
14/04/2000 15:30:05 IPP FOM 0.05 26.325 80.163 254.475 22.500
14/04/2000 14:30:05 FOM IPP 0.20 28.613 36.875 41.483 0.000
14/04/2000 13:30:05 FOM IPP 0.05 30.705 103.175 267.399 27.500
14/04/2000 13:30:05 IPP FOM 0.14 31.200 114.903 240.342 30.000
13/04/2000 08:30:04 IPP FOM 0.03 23.400 84.153 373.724 15.000
12/04/2000 14:30:05 FOM IPP 0.46 30.107 49.902 137.668 10.000
11/04/2000 12:30:06 FOM PP 0.21 30.782 160.100 508.345 37.500
11/04/2000 12:30:06 PP FOM 0.16 25.350 108.707 253.500 22.500

Table 4 shows the events with Tput < 0.5 Mbit/s, for the connection IPP — FOM directly.
Since the first week of April this connection was monitored once again. There is still not
much statistics.

99

Overal Condusons

= The connection Jilich - FOM / UU performs quite satisfactory. There are no
structural performance decreases.

= The required bandwidth of 10 Mbit/s can only be obtained during the night.
However, improvements in the TEN-155 network in the near future may help to
improve this picture.

= Theinitia problems in the video connections between IPP and FOM were one
of the reasons to start the measurements on network performance. Some of the
problems could be alotted to the unpredictable behaviour of the international
connections (TEN-155). These problems were brought to the attention of na-
tional network providers (Surfnet, DFN) and were subject to discussons in the
international research network associations (Dante, Terena). Since then some
improvements could be noticed, but the situation is till not clear.

= Localy the Stuation seems stable enough, but since we can expect in the future
a nomina bandwidth of > 100 Mbitg/s, the loca infrastructure has to be up-
graded to thisfigure preferentialy.

= |SDN does not seem aright solution, since we are expecting to use at least 10
Mbits/s capacity in the future. Moreover ISDN is a fading technology which,
perhaps in a not to far future, can be substituted by the service providers. Using
the facility offered by the international research networks (IP based) seems ill
the right way to go.

= Quality of serviceis il aresearch topic. QoS is closely related to the solution
of authentication, authorisation and accounting in IP environments. Also inter-
working of products from different vendors is gtill not solved at the momen

100

Audio and video connections

I ntroduction

In remote participation, one of the goalsis to use videoconferencing in both the Remote
Control Room but aso for meetings. In order to meet the requirements, some aternatives
have been investigated. In this chapter we will deal with the recommended architecture for
video conferencing that emerged from the investigations, the one that uses the “Armada
Cruiser” hardware, present at the vaidation sites for the DY NACORE (PP) prototype (The
partners in the TEC collaboration). As will be explained in the following, thisis il the
best solution for point-to-point, quality video conferencing at limited bandwidth. We will
describe the way in which the present tools and hardware can be used for multi-cast con-
ferencing. This requires additional hardware at the vaidation sites (TEC), but could be
tested during this DY NACORE project using the Surfnet facilities, present at the UU*.
The AV application recommended is not directly integrated in the PP-DY NACORE proto-
type, but functions pardld withit.

Wewill aso briefly comment on the “public domain” software solutions based on Mbone:
VRVS, VIC and RAT, which could be considered as an dternative and is viz. used in the
international community that participates at experiments at JET*'.

The VRVS package (vrvs.cern.ch) includes the VIC (currently verson 2.8) and RAT
(3.0.29) toals for video and audio respectively. We evaluated these tools using point-to-
point connections. The use of a VRV S reflector offers multi-point facilities for these tools,
it is dedlt with in anext section.

Conferencng dients

Overview | P based dients

There are a number of IP based videoconferencing clients available. Here we can distin-
guish the hardware clients, such asthe VCON Armada PC cards of which &t dl three part-
ners of the DY NACORE project two systems are available, and software clients, such as
NetMesting and Cu-SeeMe.

Hardware clients nowadays offer a reasonable quality with quite low bandwidth de-
mands (from 128 kbits/s up to 384 kbits/s). The available VCON systems all follow
the H323 standard. This standard is now quite common and (should) guarantee inter-
operability.

Software clients, however, are alot cheaper or cost nothing at all (i.e. NetMeeting,
VIC + RAT). Some follow the H323 standard (NetMeeting, and Cu-SeeMe Pro)
whereas others don’t (VDOPhone and VIC + RAT). The quality of software clientsis
still moderate but improving fast. The current state of these clientsis that they can be
used as akind of telephone with low quality video. For the "remote participation” pro-
ject however, software clients are not considered to be an option.

“® hitp://contact.surfnet.nl/mcu/. Unfortunately only in Dutch
4" see 21-st Symposium on Fusion Technology, Madrid, Sept 2000, Conference Contributions, p 335

101

In Figure 56, the remote video window of the VCON client is shown. The current
VCON software (version 4.01) allows for automatic bandwidth adjustment and syn-
chronisation of video and audio. Only 384 kilobit is needed for a good quality video-
conference.

In addition to audio and video, the VCON systems support T.120 data sharing for chat
and whiteboard. This standard also includes sharing programs.

Teds

From the tests of the last year we can conclude that hardware clients offer a very usable
qudity. Typicaly the following performance is measured:

= Video framerate: 30 frames per second.

= Usad bandwidth: 384 kilobit/second, excluding bandwidth for data (320 kilobit
for video and 64 kilobit for audio).

= Video format: CIF, i.e. 352x288 pixels.

= Measured delay: approximately 0.5 seconds point-to-point for long distance
connections. Not much difference is measured for European connections and
connections from Europeto the U.S.

= Larger bandwidth settings up to 1500 kilobit yield a better video qudity, i.e.
smoother motion and less pixelisation. Less bandwidth settings of (at least) 128-
kilobit till offer a usable connection, but for our applications the image is not
smooth enough. With the current status of the hardware clients about 10 frames
per second (in CIF format) can be transmitted with acceptable pixdisation.

We tested the VIC and RAT tools on two PC's on different VLANS, but insde the same
building. The audio latency, using the RAT tool was up to four seconds, especialy when at
the same time the VIC tool was running. When only one microphone was un-muted, no
VIC tools were running and no audio driver was using full duplex, the delay was about 1
second.

The VIC tool is much quicker athough (in case of a point-to-point connection) selection of
video device and IP port numbers must be done by the end-user. It isalso possibleto usea
configuration file, but the use of these tools is far less smple than that of the well-known
H.323 systems like NetMeeting and VCON MeetingPoint. The quality of VIC is compa-
rableto that of NetMeeting.

Multipoint Servers
Most of the above systems only provide point-to-point connections. For the H323 standard

“Multipoint Control Units’ (MCU) are available. These devices provide the possibility to
organise meetings with alarger number of participants at different locations.

102

Ié [4 |+ TENNRREEN |

e e

Figure 56 VCON client

We tested several MCU'’ s from different vendors (PictureTel, RadVision and
WhitePine). All of these MCU'’s still have some drawbacks for integration within the
project. The WhitePine (software) MCU does not offer a quality that meets the high
standards of our hardware clients. The PictureTel 330 (software) MCU works quite
well but we were not able to use data sharing with our VCON clients. Asfar aswe
can conclude from the specifications the T.120 server of the PictureTel should be
compatible with the VCON clients. For the RadVision (hardware) MCU, audio, video
and data sharing works well, but there are some less attractive security aspects. The
only way to prevent anybody from using this MCU is to predefine the | P addresses of
allowed videoconferencing clients. Apart from this drawback, this MCU, which al-
lows up to 9 client connections at 384 kilobit per second, works very well. The video
and audio quality is almost equal to that of a point-to-point connection. The video is
normally switched to the loudest speaker, but it is also possible to use chair control. In
case of chair control, a WWW client can switch the video that is distributed to the par-
ticipants.

Asfar asVRVS concerns: VRV Sis a server for the well-known VIC/RAT tools. The
end-to-end delay with RAT (audio) should be 1 second, not including transcoding in
the server. This ssimply lies in the specification of the chosen CODEC for audio. With
systems that work well with Netmeeting however, we measured much larger delays.

103

Recommendations

All parties need a system that is always switched on and always on auto answer (this
way any party can conduct tests without having to ask the other parties). Of course,
the audio of such atest system can be muted. It is preferable to point the cameraat a
moving object such as a clock, or out of awindow. In thisway the video quality can
be checked at any time.

For our VCON systems, now a multicast option is available. We recommend testing
this multicast option as an alternative to an MCU.

For data sharing we recommend using the T120 standard. For this standard Hardware
whiteboards are available. These whiteboards just ook like normal whiteboards, and
copy its contents to the remote system. We would like to evaluate such systems.

M CU Recommendation

We recommend a RadVision MCU-323 with our VCON clients. The RadVisionisa
hardware MCU alowing 3 to 15 client connection. Using more clients can be
achieved by stacking or cascading MCU's. In both ways a virtual MCU with more
connections is constructed by combining two or more real MCU's. The tested MCU
has the following specifications:

Software: MCU-323 version 1.5 (build 1.5.0.6) with OnLAN Configure 1.6.0 (build
1.6.0.19).

For H323 calls with a bandwidth of 384 kilobits per second as specified above under
"Tests", 9 smultaneous connections are supported.

The tested MCU is a dedicated hardware device supporting up to 15 video calls and up to
24 audio only calls. The MCU comes with a software upload tool to upgrade the software
from any windows 9x/NT machine. Our unit was configured software version 1.5 (build
1.5.0.6).

The tested MCU is il available as a "free-love’ MCU, this means that people can con-
nect to it when it is not used by SURFnet (its owner).

Information on when the MCU should be available and how to connect can be requested
by e-mail: h.m.a.andree@phys.uu.nl

Asthe VIC and RAT tools offer a quaity that doesn't match that of hardware H.323 sys-
tems by any means we do not investigate the use of a VRV S server yet. Software confer-
encing systems may be very promising in the future, but at the moment only hardware sys-
tems seem to offer the quality and that is needed in future Virtua Control Room collabora-
tions.

104

Dissamination of results

Account of the progress in the Dynacore project was given a severa occasions. We pre-
sent below alist.

B.U. Nider6st et al., Objectivity / Corba Distributed database Performance on a Giga-
bit Sun-ultra-10 Cluster, IEEE Trans. on Nucl. Sc. 47 (2000) 313-318.
Information on the exact working of the Dynacore architecture, and the meas-
urement of its performance. Also published in the 11th IEEE NPSS Real-Time
Conference Record.
B.U. Nider6st et al., Objectivity / Corba Distributed database Performance on a Giga-
bit Sun-ultra-10 Cluster, 11th IEEE NPSS Real-Time Conference Record, Alpha-
graphics, Santa Fe (NM), 1999, pp. 442-445.
Information on the exact working of the Dynacore architecture, and the meas-
urement of its performance. Also published in the IEEE Trans. on Nucl. Sc. 47
E.A. van der Meer et al., A distributed Plasma Physics experiment system using
CORBA, in S.C. Schaller (ed.), 11th IEEE NPSS Rea - Time Conference Record, Al-
phagraphics, Santa Fe (NM), 1999, pp. 438-441.
This article gives a global overview over the Dynacore project: its features,
architecture and design decisions. It describes the ideas as of summer 1999,
not the implementation that the demonstrator uses today.
G. Kemmerling et al., Development of an integrated data storage and retrieval system
for TEC, 2nd IAEA Technica Committee Meeting on Control, Data Acquisition and
Remote Participation on Fusion Research Conference Report, Lisbon, 1999, to ap-
pear.
This article gives a work in progress overview over the Dynacore project, as
of summer 1999.
E.A. van der Meer et al, Combining Objectivity and CORBA: “A laborious marriage”
at European Technical Forum Objectivity/DB, Munich Oct. 1999
An overview of matching the demands of the middleware to existing solutions
of an object database.
M. Korten et al., Upgrading a TEXTOR Data Acquisition System for Remote Partici-
pation using Java and Corba, 2nd IAEA Technical Committee Meeting on Control,
Data Acquisition and Remote Participation on Fusion Research Conference Report,
Lisbon, 1999, to appear.
General info on the work in progress over the Dynacore project, as of summer
1999.
B.U. Nider6st et al. .A software architecture for remote participation at the TEXTOR-
9 experiment,21-st Symposium on Fusion Technology, Sept 2000, Madrid. pp 336.
The contribution gives an overview of the Dynacore project and the obtained
results. Special focus on the data viewer.

105

Since the Dynacore system architecture opens the way for experimentalists to retrieve each
other’ s data we have opened the possibility under certain restrictions to use the DynaDemo
at the location: http://hst3731.phys.uu.nl/dynademo/. One can find a description at this lo-
cation together with the demao’s, i.e. an applet for retrieving TEXTOR-94 status, which is
not dedlt with explicitly in this report, but which we added for convenience. The Data-
Viewer deals with red data from present and past. The scientists of TEC have no objec-
tions for afree use of these data, S0 the data is not severely protected according the given
security scheme described before, but the hooks are available in the software to do so. The
control of the Pulsed Radar reflector diagnostic deals with a dummy experiment that we
have implemented on one of the computers at the UU. The dummy mimicsthe real behav-
iour of adiagnostic, running at TEXTOR-94.

106

