

DYNACORE Project

DYNACORE Final Report
Plasma Physics Prototype

Ref: D1.1
Version: DRAFT Date: Sept 2000

CEC Project: RE 4005 (RE)
Telematics for Research
Telematics Applications Programme

 2

To this report contributed:

 Institution

W. Lourens UU Editor
B.U.Nideröst UU

A. Taal UU
B.A. Andree UU

H. Blom UU
E. van der Meer UU

A. Gerritsen UU
P. van Haren UU

C.T.A.M. de Laat UU

M. Korten FZJ
G. Kemmerling FZJ

C. Fuchs FZJ

The contents of this report is under review of the EU-commission

Nothing of the content of this report can be used for commercial purposes without written permission
of the “werkgroep Fysische Informatica” UU, Utrecht, the Netherlands

 3

Contents

PREFACE 7

PLASMA PHYSICS COMMUNITIES. 8

IPP FACILITIES 11

Introduction 11

The experimental fusion device. Tokamak TEXTOR ‘94 11

REMOTE PARTNER AND VALIDATION SITE 15

NETWORK SITUATION 16

Introduction 16

Network connections 16

DYNACORE SYSTEM ARCHITECTURE 19

Introduction 19

DATA RETRIEVAL ARCHITECTURE 23

Introduction 23

CORBA 24

Database 25

Storage Hierarchy 25

Database Distribution 26

Measurement data 28

THE DATAMANAGER, OBJECTMANAGER AND LAUNCHER 29

Introduction 29

Interface Launcher. 30

Interface ObjectManager. 30

Interface DataManager 32
Data specific operations 32
Access rights and the DataManager. 34

Extended Interface 35

 4

SECURITY 37

Introduction 37

Secure information transfer 38
Message encryption 38
Authentication by use of tickets 39
Authentication within messages 40

Components in the security system 41

The Authenticator 42
The password file 43
The list of authenticated clients 43
The list of registered servant objects 44
The list of servant object tickets 44
The maximum login time file 45

The Client 46
The client’s list of servant object tickets 46

The CORBA Object Server and Servant Objects 48

The Security Service Protocol 51
Common protocol phases 52
Object server dependent protocol phases 57

Utilizing Servant Objects 59

THE DATAVIEWER. 61

Introduction 61

The Dataviewer application 61

The DataViewer – Architecture 66
DataViewer structure 66
The DataViewer Start-up Code. 66
The DataViewer GUI. 67
The Plugins. 67

The DataManagerWrapper. 68

EXPERIMENT TO BE CONTROLLED REMOTELY 69

The pulsed Radar Reflector Diagnostic 69

THE PULSED RADAR REFLECTOR CONTROL 73

Interface Pulsed Radar Reflector viewer 73
An example interface. 75

 5

PERFORMANCE MEASUREMENTS 77

Direct versus CORBA:ANY parameter passing 78

Filling a database 78

Dependency on number and size of objects 79

Conclusions 81

Performance measurements on a distributed database 82
Distribution over multiple SUN-Ultra-10 computers 82

NETWORK PERFORMANCE ASPECTS 85

Network performance measurements IPP - FOM – UU 85
Features 85
Measurements IPP -- FOM – UU, earlier measurements, August ‘99 86
Measurements IPP -- FOM – UU, later measurements, Jan – April 2000 88
Overview time throughput averages 94
Bad performance events 98

Overall Conclusions 100

AUDIO AND VIDEO CONNECTIONS 101

Introduction 101

Conferencing clients 101
Overview IP based clients 101
Tests 102

Multipoint Servers 102

Recommendations 104
MCU Recommendation 104

DISSEMINATION OF RESULTS 105

 7

Preface

In the following chapters we will describe the DYNACORE Plasma Physics prototype
(PPP). To this end we will pay attention to:

n The experimental physics environment and user community,

n The existing electronic network situation between the co-operating institutes and
at the local and remote sites,

n The local (host) experimental facilities and procedures globally,

n The remote facilities and mission,

n Outlines of the DYNACORE architecture, already described in earlier deliver-
ables,

n A description of the target experimental set-up to be controlled remotely,

n A description of the control prototype,

n The architecture for remote data retrieval and analysis,

n Implementations of the data retrieval system

n Security issues

n Performance measurements,

n Audio and video connectivity,

n Dissemination results

For reasons outlined in the sequel the emphasis in the PPP was laid at the data retrieval
part, the control aspects were unfortunately given less attention. As for the data retrieval
part we can speak of a marketable product, whereas the control part is still a prototype.

The contents of the chapters on “Performance measurements”, “Network perform-
ance aspects” and “Audio and video connections” don’t relate directly to commit-
ments for the Dynacore work packages, but is included to complete the setting of the
project.

 8

Plasma Physics communities.

The start of the DYNACORE project coincided with the actual outset of the formal col-
laboration between plasma physics research institutes in Germany(-Rhineland-Westfalia),
the Netherlands and Belgium.

This effects to plasma physics research to be carried out in the framework of the Euregio
Cluster TEC (Trilateral Euregio Cluster) at the Institut fuer Plasma Physik (IPP) located in
the Forschungs Zentrum Juelich (FZJ) in Juelich, Germany. The partners will accommo-
date their experimental set-ups at IPP, which houses the experimental plasma fusion de-
vice TEXTOR-941.

German and Belgium plasma physics groups already were used to carry out their experi-
ments at the IPP-site, but the Dutch group had its own facilities in Nieuwegein (near
Utrecht), which facilities ceased to end, effectively end 1998. The Dutch group (FOM
group, see also “Remote partner and validation site”) however already co-operated with
IPP for a long time in mutual experiments. The Dutch group moved part of its equipment
to the IPP site (viz. the so called Pulsed Radar Reflector Diagnostic, to be described further
on: “The pulsed Radar Reflector Diagnostic”). In this sense the FOM group was an ideal
target for remote operations, and to adapt the DYNACORE architecture to their require-
ments and establish a platform for validation of the products.

There are however several circumstances that hamper the remote operations of large ex-
perimental facilities, like big accelerators, tokamaks and reactors:

n Experimental facilities are usually not designed for routine operations. Which
means that always some technicians and scientists have to be on-site to prepare
and maintain the set-ups. Usually is it is quite arbitrary which part of the scien-
tists have to be on-site and which part can stay in the home institute. Sometimes
it is more efficient to move the greater part of the staff to the experimental site.
In this case not any architectural design for remote operation can offer enough
facilities to prevent the removal of the majority of the scientific staff from the
home institute and remote operation is a very scarcely used phenomenon.

n Even very complicated experiments, as are conducted in the plasma physics re-
search, need a kind of “feel and look” from the scientists point of view. Nor-
mally all big experiments are conducted more or less remotely, since radiation
and other hazards prevent the scientist to come to close to a working set-up (a
tokamak). But it is mostly not too difficult to observe things closely, not only by
closed circuit (TV) surveillance, but also by eye. It is rather difficult to include
this “feel and look” in remote operations, but one can try.

n Remote operations require at least sufficient capacity of the interconnecting net-
works. If requirements to this end are not met sufficiently, one can forget about
remote operations at all, because the scientists are not interested. For this reason
in the DYNACORE project we paid much attention to the behaviour of the (in-
ternational) connectivity between the collaborating institutes.

1 TEXTOR-94: see http://www..fz-juelich.de/ipp/

 9

From the arguments described above one can extrapolate that remote control of an experi-
mental set-up whenever feasible will only be used reluctantly. Usually it will not be the
prime option for a scientist (or boards of scientists that govern these large facilities). One
can observe this fact with rather all the large facilities of physics research. (e.g. CERN,
JET, etc. in Europe, but also in the USA, FERMI lab, etc).

Yet another point is the remote analysis of the data that originate from the experiments.
There are two reasons for favouring at least the remote processing of data.

1) There does not exist so much as a notion amongst scientists about local and/or
remote data. The physical whereabouts of data are always more or less remote,
so it does not matter if it is stored and/or analysed locally (at the site) or re-
motely. However in some scientific communities (e.g. CERN) there is a strong
feeling about a centralised place for archiving of raw (experimental) data. This
should always be done at the experimental site. Maintenance for a longer period
can be guaranteed better in this way.

2) Usually there are never enough computer facilities locally, at the experiment’s
site. So one has to divert the computational workload anyway to the home insti-
tutes. In communities with a centralised storage of the raw data this will be ac-
complished via data replication. Processed data will usually not be included in
the centralised storage, but can be kept at the (remote) home institutions. This
could give rise to the so-called computational grids2.

The last observations have lead us to put the emphasis on remote processing of experimen-
tal data, and to the distributed storage and retrieval of data. The remote operation was
implemented in the DYNACORE plasma prototype, but mainly as a demonstration of the
possibilities of the proposed architecture, as a kind of template, more than as a routine tool.

Wherever scientific communities collaborate in large experimental facilities it is obvious
that the participants start from different positions, especially with respect to experimental
procedures, but certainly also for data formats, etc. If the collaboration exists for many
years (as is e.g. the case for the CERN communities) then gradually a common pattern for
data formats, data reduction and analysis tools will evolve. This is not a fast process, but
takes several years. Since the plasma physics communities co-operating in the TEC col-
laboration are only recently coupled, there doesn’t exist at this moment a common attitude
towards data formatting, data storage etc. With the exception of the user community of
JET3

2 The grid, blueprint for a new computing infrastructure, I. Forster and C. Kesselman, Morgan Kaufman publ.
inc. 1999
3 V. Schmidt, The development of the JET Control and data acquisition system, IEEE Trans. Nucl.Sc. 45
(1998), 2026
 V. Schmidt, The development of the JET Control and data acquisition system, in C.E. Vandoni, Xth IEEE
Real-Time Conference, Beaune, 1997, 25-30

 10

 11

IPP facilities

Introduction

The generation and behaviour of plasma in a fusion device and its interaction with sur-
rounding materials is studied by observing several phenomena that will accompany a
plasma discharge. These phenomena are recorded by means of so called Diagnostics.
These are instruments that comprise complex electronic equipment, coupled to various
sensors. The generation of the plasma is also governed by electronic systems that control
different parameters of the fusion device, the Tokamak, and of auxiliary equipment. Ideally
there are two separated channels that are used to (see also Figure 3):

1. Control (monitor, read and set) the adjustable parameters of the electronic systems,

2. Perform the reading of data that are collected in the instrument during an experi-
ment.

The first issue is dealt with in the chapter “ The DataViewer.“; the second will be treated in
chapters “Data retrieval architecture “; “The DataManager, ObjectManager and
Launcher”; and “Performance measurements”.

The experimental fusion device. Tokamak TEXTOR ‘94

At IPP's premises a large research facility is available in the tokamak TEXTOR-94.
(Figure 1)

In TEXOR-94 high temperature plasmas can be generated in a pulsed fashion (see Figure
2, the drawing is not to scale). The periods between pulses, including the pulse itself, are
divided in 4 intervals as depicted in the figure. In the first interval (T1, T2) decisions about
settings of the tokamak and diagnostics have to be made, in the second interval, the pre-
pulse (T2, T3) the new settings have to be applied, the system is armed. During the pulse
(T3, T4) data has to be acquired and stored. Data will be analysed subsequently in the
fourth interval, the post-pulse (T4, T5). After this the cycle can be repeated.

Figure 1 TEXTOR ’94,Tokamak and auxiliary equipment

 12

(T3, T4) is in the order of seconds, while the other intervals range up to minutes. The whole
cycle constitutes a state machine; its states and transitions have to be incorporated in the
(remote) control. At least the onset of the pre-pulse, pulse and post-pulse have to be com-
municated (broadcasted) to all diagnostics participating in a particular experiment. This
communication will be no matter for the remote control, but will be dealt with locally by a
suitable circuitry.

Figure 2: Pulsed operation of the tokamak and auxiliary equipment (diagnostics)

D D

DD

C

C

T

D: Diagnostic
T: Tokamak
C: Plasma Control

Data bus

Control
bus

Figure 3 Data and control paths in fusion experiments (see also Figure 6)

So TEXTOR-94 is surrounded by diagnostics as depicted schematically in

 13

Figure 3. The task of operating the large research facility is to control and monitor both the
state of the tokamak and of the diagnostics.

In this context IPP (TEXTOR-94) functions as the local (large) experimental facility. Col-
laborating institutes could either operate their instruments at the IPP site (locally) or do it
remotely. In the DYNACORE project IPP (FZJ) is a partner in the development of the
teleoperation system (DYNACORE System). One of the TEC partners, FOM-Rijnhuizen,
functions as the remote site, where the prototype has be implemented and tested.

The use of the DYNACORE System in the plasma physics environment

Traditionally the research facilities (TEXTOR-94 and surrounding diagnostics) are
operated at the site of IPP. In the context of TEC at least one of the larger diagnostics
will be operated remotely from the remote site at Nieuwegein in the Netherlands. The
Dynacore prototype will be designed and implemented to facilitate this intention. The
global requirements for this remote control are:
- Operation of the diagnostic. (This diagnostic, Pulsed Radar Reflector, will be de-

scribed in the chapter: “Experiment to be controlled remotely”). Operation means
in this respect total remote control of the settings of the instrument and complete
control over the data acquired during a shot (or in offline tests).

- Remote access to status and some settings of the tokamak and supplying instru-
mentation.

- Remote access to some of the data of other diagnostics
- Audio / video connectivity in order to facilitate deliberations between scientists

and engineers at the remote site and local operators, scientists and technicians.
The last issue will be covered in the description of the recommended AV-applications
in chapter: “Audio and video connections”. The first requirement will be covered in
the description of the diagnostic Pulsed Radar Reflector and its remote operation in
the sequel. The second and third requirement will be covered in principle by the de-
scription of the DYNACORE System architecture that will be used for this purpose
and will be described in following paragraphs.

 15

Remote partner and validation site

The FOM Institute for Plasma Physics ‘Rijnhuizen’4 is one of the research institutes
of the Foundation for Fundamental Research on Matter, FOM. The institute is usually
referred to as ‘Rijnhuizen’, the name of an 18th-century mansion and of the surround-
ing estate, which forms the institute’s premises since its foundation in 1959.

FOM is a government-supported organization with an annual budget of about 150
million DGL (approximately 65 M$), which co-ordinates and stimulates most of the
fundamental physics research in the Netherlands. The funding of FOM is provided for
a large part by the Netherlands Organization for Scientific Research (NWO). NWO is
the central Dutch organization in the field of fundamental and strategic scientific re-
search.

A major mission of Rijnhuizen is to contribute to the European research programme
on nuclear fusion, a programme that is co-ordinated and financially supported by
Euratom via an Association Agreement. The Association Euratom-FOM is also re-
sponsible for the Dutch contribution to the European Fusion Development Agreement
(EFDA5) signed 30 March 1999. The EFDA Agreement is part of a long-term pro-
gramme of co-operation covering all the activities in the field of controlled thermonu-
clear fusion by magnetic confinement in the European Union and in the Swiss Con-
federation.

Its aim is to provide a framework for implementing research; development and design
work in preparation for the possible construction of an experimental fusion reactor.
The Dutch participation in the development of reactor technology is carried out by the
Nuclear Research and Consultancy Group NRG6.

The institute has the disposal of a versatile computer and network infrastructure, com-
prising of primarily UNIX-based systems. These are used, clustered and stand-alone,
in the remote participation.

4 http://www.rijnh.nl/
5 http://europa.eu.int/comm/research/fusion/efda.html
6 http://www.nrg-nl.com/general/index.html

 16

Network situation

Introduction

The remote operation of experiments at –experimental- , fusion devices requires appropri-
ate bandwidth between collaborating institutes. In the course of the project REMOT7, pre-
ceding DYNACORE, these requirements were tentatively formulated as ought to be at
least equivalent to normal Ethernet conditions (10Mbit/s), which exist at the partners’ insti-
tutes. Since we have decided that the connections between these partners should use the
offered Internet facilities, these requirements should at least be met by the available capac-
ity of the backbone TEN-155 infrastructure (Figure 4).

Figure 4

Network connections

The TEN-155 backbone is a part of the total network infrastructure that is utilised in the
final stages of the DYNACORE project.

7 REMOT: TAP (in Research) -EU program, RE 1008

 17

In the Netherlands both Utrecht University (UU) as the FOM Institute Rijnhuizen (FOM)
are coupled to the Amsterdam PoP, at this moment by nominally 155, respectively 34
Mbit/s connections (Surfnet). UU has a 100 Mbit/s Ethernet infrastructure, whereas FOM
has locally a 10 Mbit/s Ethernet LAN. Forschungszentrum Juelich (FZJ-ZAM) is coupled
via DFN to the PoP at Frankfurt by nominally at least 155 Mbit/s via Cologne and Aix-la
Chapelle. At the site of FZJ the Institute of Plasma Physics (IPP) is coupled via nominally
100 Mbit/s FDDI rings to the DFN backbone and in IPP itself several FDDI rings are used,
but the LAN is normal Ethernet (10Mbit/s).

Forschungs Zentrum Jülich
Campus Network

155+ Mbit/s
European
Research
Networks

Utrecht University
Campus Network

Fom Rijnhuizen
Campus Network

Computational Science
Building Router

TEN-155

SURFNET

DFN

Campus Router FOM Rijnhuizen
Campus Router

10/100 Mbit/s UTP
Star Ethernet

10/100 Mbit/s
Coax Ethernets

Campus
Router

IPP Building
Router

Textor Control Room

10/100 Mbit/s
Coax Ethernets

Textor SuO
Servers

Remote
Control
Roomlocal userlocal user local userlocal userremotel user

external
users

external
users

Remote
Control
Room

remote user

External
Internet

external
users

34 Mbit/s

20 Mbit/s

64 Mbit/s

local userlocal userlocal user

1 Gbit/s planned

100 MBit/s
Campuswide
FDDI Ring

155 Mbit/s
ATM planned

Figure 5 Network topology exploited in the DYNACORE (PP) project

 18

In testing all these connections that have to transport “messages and data” in the normal
mode of operation we used the scheme as presented in Figure 5. Measurements were car-
ried in the last part of the DYNACORE project (august ’99 until recent). The performance
measurements will be presented in the chapter “Network performance aspects” and are
also presented elsewhere8.

8 http://www.phys.uu.nl/~wwwfi/rtpl/home.html

 19

DYNACORE system architecture

Introduction

Planning and executing plasma physics experiments evolves along a rather complicated
operational schema. There are different viewpoints, connected to the different actors in the
scene. There is the staff which is planning the set-up, the experimental procedures and first
of all the goals of the experiments to be carried out. There is the operational crew of the
fusion device, which is responsible for the operational status of the apparatus. This status is
closely coupled to the character of the experiments to be performed. There are the scien-
tists of the collaborating institutes, partly represented in the global staff, as far as the over-
all planning is concerned, but mainly responsible for their own (diagnostic) experiments,
together with dedicated technicians. Planning and scheduling of the different tasks will
finally result in the actual experimental phase. At this phase the DYNACORE architecture
is aimed at.

The architecture to be described is mainly meant to support the experimentalists, including
the technicians, who constructed the instrument and maintain it. The User Requirements
Specification and Validation report [D3.1, D7.1], represent roughly their interests. This is
understandable, since only they use the facilities directly, either locally, but also remotely.
The operation of the fusion device itself is too delicate to be performed remotely, be it is
obvious that the architecture could be used in the local conduction of the operations.

The deliberations of the staff could be supported by some parts of the architecture’s im-
plementation as if they were management support tools, as are used in commercially oper-
ated corporations.

The DYNACORE architecture is based on the three-tier concept. This means that client
and server applications have been separated by a middle layer, in our case CORBA, origi-
nated from OMG9 standards. This approach serves several goals: one is e.g. distribution
(also in the topological sense) of services and data; another is the use of a heterogeneously
composed environment. The latter is very adequate for the plasma physics community,
since its equipment and software possesses historically and functionally a great many-
sidedness. Yet another goal is to implement security at an appropriate level.

The scientists and technicians operating the peripheral instruments, around the fusion de-
vice, situated part remotely, and part locally, have the following global requirements:

• Information concerning their past and present (raw-)data.

• Information of the status of their equipment and the ongoing experiment.

• Information regarding past and present status of the fusion device.

9 OMG group, “CORBA services specification”, chapter 3. Available on the Internet via
http://www.omg.org/cgi-bin/doc?formal/97-12-10

 20

• Information about related experiments, run by different scientific groups at
the same fusion device. (Tokamak).

• Means to analyse theirs and others data

• Information about related experiments performed in the past in other insti-
tutes (archives)

• Means to control and monitor and set experimental parameters during the
experiment (remotely)

• Means to synchronise their experiment with other ongoing experiments,
but certainly with the operation of the tokamak

• Means to keep track of their doing (logbook, etc.)

During the DYNACORE project it turned out that the scientists had their priorities in the
realisation of all these requirements. These priorities are reflected in the above list, mean-
ing that the scientists’ highest priority is given at the top of the list. In developing the archi-
tecture and establishing the implementations, the emphasis was on those parts with highest
priority, implying that for some parts rather extensive implementations were prepared, -
viz. data retrieval -, for other parts only provisional solutions were worked out, - viz. re-
mote control of experimental parameters-.

In the considerations leading to the development of a PP-DYNACORE prototype from the
general architecture and the above-described requirements, it seemed self-evident to inves-
tigate the information streams in a (plasma) physics experiment. An abstraction of these
streams is depicted in Figure 6. In the discussion with the experimentalist it turned out that
not all information has the same priority. It became clear that the concept of a (technical) /
settings database is rather abstract, though useful. It is usually directly implemented in the
front-end’s electronics. For this reason we did not implement stream “6” and “7” of Figure
6 in the prototype. Another consideration is the use of a middle layer between the database
for acquired data and the experimental set-up. From symmetry reasons one should include
it in the architecture, so we introduced it in performance measurements (described in sect.)
of a data supplier to a data store (object database). Since the community uses their own
implementation in the form of coherent files for their data storage directly coupled to the
experiments, it seemed not necessary to implement it in the prototype. So the layer “11”
from Figure 6 is not (yet) implemented in the DynaDemo (the prototype). Since the scien-
tists wanted to refer to each others data the streams indicated by “4” and “5” (bi-
directional) and the belonging interfaces “8” and “9” are very important in the validation
of the prototype, so the emphasis in the next chapters will be on this subject. Finally the
remote control of an experiment, this could be accomplished via streams “1” and “2” via
layer “11”. In practise experimentalists choose for local control, but they realise that this
could not last for ever, so we constructed a very light control application via the CORBA
layer, which is functioning quite well and is described in more detail in “The Pulsed Radar
Reflector Control” In this application we don’t use the settings database concept, but ap-
proach the experimental set-up via the CORBA layer, directly. Since remote control of
delicate experiments cannot do without security provisions, we decided that the middle tier
should implement these. But since available ORBs don’t still incorporate this at a suffi-
cient level we worked out a scheme for security services as described in chapter “Security”

 21

Figure 6 Information streams in a fusion experiment. An abstraction of the real situation.

1. Feeding the settings database with new settings for the instrument(s), responses included.

2. The configuration stream from the settings database to all involved experiment equipment, responses included.

3. The storage of acquired data from the data recorders into the data database. This database in principle has infinite storage capacity.
This (raw) data, once measured, is untouchable.

4. Retrieval of acquired data from the pulse database by operators, diagnosticians and other scientists for e.g. analysis.

5. The storage of computed or interpreted values by scientists into the data database.

6. The automatic storage of (all, or selected) settings into the data database.

7. The automatic retrieval of (all, or selected) settings stored in the data database by the settings database.

8. The CORBA middleware layer that is between the scientists and the databases. This layer hides many implementation details of the
databases from the users and provides uniform and controlled access to the database services.

9. The Application Programmers Interface (API) at the client side of the CORBA layer.

10. The API at the data database server side of the CORBA layer.

11. The CORBA layer that is between the databases and the experiment.

1

7 6

5

3

2

Local & Remote
Control rooms

Database
for settings

Database
for Data

10
11

The Experiment

9 4

8

 22

 23

Data retrieval architecture

Introduction

Some kind of a measurement database will always be part of a fusion experiment. This
database is used to store all the data created by diagnostics and auxiliary equipment during
a well-defined period in time (seconds to minutes, this period is sometimes called a shot).
As a past design this database is implemented as a collection of files having some kind of
internal coherence, usually in the form of a directory structure. Every diagnostic that par-
ticipates in a shot generates its own file during the first few minutes after the shot. Typical
information stored in this file is the content of ADC buffers, which are filled during a shot,
and the set-up parameters of the diagnostic. After a diagnostic has created its data file, it is
moved to a central file server. The file name and location indicate which diagnostic gener-
ated it, and which shot it belongs to. Also more advanced systems are in use[ref].

A standard diagnostic (electronic) front-end consists of a number of CAMAC crates with
many ADC channels (or equivalents). One ADC channel typically generates 10 to 100 kB
of data per shot. During the years, the number of channels has grown steadily, and some
newer channels use faster ADC’s that generate more data per channel per shot. There are
also new diagnostics being developed. These use e.g. video camera’s PC platforms instead
of CAMAC crates or high speed ADC’s that produce tens of MB of data per shot10.

The volume of the data generated per shot, together with the need to store this data in the
short time between the shots puts high performance demands on the file server. Also the
large data volumes of the new diagnostics and the non-CAMAC diagnostics cannot be in-
tegrated (without many difficulties) in the original architecture. Finally, for remote opera-
tion, the data in the database must be accessible from the virtual control rooms to allow for
quick analysis directly after the shot. The original architecture provides nearly no hooks to
allow for this.

Because of the shortcomings, it has been decided that the DYNACORE plasma physics
prototype would incorporate investigations to another way to implement a measurement
database. This database should be accessible for storage from a large number of computer
platforms, allowing new diagnostics to be added to the system easily.

The database requirements can be summarised as follows:

n The database must be able to store signals, which have a size of several MB.

n The database must be able to store hundreds of MB of data per shot.

n All the data generated during a shot need to be stored in the database within a
few minutes after the shot.

n The database must store on the average 30 shots per operation day, 80 days a
year, adding up to TB of data per year.

10 M. Korten et al, “Upgrade of the TEXTOR ’94 Data Acquisition Systems for Plasma Diagnostics,” Proceed-
ings 17th IEEE/NPSS, Vol. 2, pp 803 – 806, October 1998

 24

n The database needs to be accessible from many different computer platforms,
locally and in virtual control rooms.

n A hard requirement has been defined as follows: the measurement database must
be able to store 500 MB of data within 1 minute.

CORBA

CORBA11 is a open standard for middleware. Using the standardised IIOP protocol, it can
work on the existing Internet (IP) infrastructure. There are implementations of CORBA
available for many computer platforms. The standardisation guarantees that these imple-
mentations can interact with each other. This makes CORBA an ideal candidate to provide
for an architecture of a dynamically configurable (remote) access to data either for storage
or retrieval in a heterogeneous environment.

The Dynacore architecture defines data managers with CORBA interfaces. These data
managers have direct access to the measurement database. Data clients, for example analy-
sis programs, use the data managers via their CORBA interface to store and retrieve ob-
jects in their database. The data managers provide not only platform independence, but
also a way to introduce security into the database, even if the real database, underneath the
data manager, does not implement it. Additionally, the data managers shield the actual da-
tabase implementation from the clients. This allows us to change to a new database im-
plementation without reprogramming any data clients. We only have to implement the
data manager’s CORBA interface for a new database type. Specialised data manager will
be discussed in the sequel.

11 CORBA homepage: http://www.corba.org

 25

Database

ooObjooObj

SecurityObj
Bulk

DynaObject
DynaDirectory

DynaCalibration DynaComment DynaScalar DynaDimN DynaMimeObjDynaBase

Figure 7 Inheritance tree of the measurement database classes

As an example we investigated the abilities and performance of an object database. We
selected for this purpose Objectivity/DB12.

The object-oriented database is used to store a predefined set of data classes. Our database
model defines these classes.. These are displayed in Figure 7.

Storage Hierarchy

Objectivity/DB provides a storage hierarchy based on a federated database, which contains
a number of databases. Each of these databases in turn contains a number of containers.
Our persistent objects are stored in these containers.

In the proposed architecture, all measurement data (perhaps sometimes supplemented with
settings of the diagnostic) is put together in one federated database. For every diagnostic, a
new database is created in this federated database. Every diagnostic that participates in a
certain shot stores the measurement data that belongs to that shot in a new container in its
own database. The name of this container is the unique shot number.

For easy data access, every container has a DynaDirectory object, which holds references
to the objects that the container holds. Additionally, database users can logically group
measurement objects together in modules and sub modules, which are represented by sub
directory entries (“pathnames”) in the DynaDirectory object. This way, modules and sub
modules resemble a Unix-like directory structure, which is stored in a flat Objectivity con-
tainer.

12 see :http://www.objectivity.com

 26

One important remark must be made with regard to transporting the measurement objects
via CORBA. It is theoretically possible to create a CORBA interface to every persistent
class in the database. This would, however, complicate the design of the data manager and
database clients considerably. It would also add a lot of network traffic overhead to our
architecture. Our data manager, therefore, provides methods that pass data objects as
CORBA’s Interface Definition Language (IDL) structures.

Database Distribution

Objectivity/DB allows for the distribution of a federated database over multiple computers.
Each computer can hold one or more databases of the federation. For our architecture this
means that every diagnostic can have its own data storage machine. However, several di-
agnostics that create only moderate amounts of data might share one machine.

Users that access Objectivity databases from their desktop don’t need to be running on a
computer containing any database. They can access the federation via a private data man-
ager. Objectivity uses internally the standard NFS protocol to access remote data, but it can
also use its own proprietary protocol, called AMS. Using AMS improves the performance
of Objectivity. In our performance tests, we used CORBA IIOP to communicate between
database client and data manager. The data manager had its database locally.

Figure 8 shows a typical set-up of a distributed architecture. We have used Objectivity’s
database distribution functionalities in order to distribute our federation – and, therefore,
the total load on the measurement database – over multiple computer systems. In addition,
we could run data managers on many computers, not necessarily the ones that hold the da-
tabase, while every data manager can access both local and remote data via an access to
one federated database. However, from e.g. performance considerations one could decide
to use more than one data manager in a client application to address data from other diag-
nostics (remote data) and implement distribution in this way via CORBA. This issue has to
be studied to a greater extent in a next phase of future projects.

The central class in the model is the class DynaObject. Its subclasses are instantiated as the
measurements objects, e.g. DynaScalar, DynaDimN and DynaMimeObj. These are wrap-
per objects for a specific type of measurement data generated during a fusion experiment
(e.g. at Textor 94). A measurement object contains a reference to an object of the class
Bulk, which contains the raw data. The Objectivity database allows us to put this refer-
enced data directly into the database.

The measurement objects hold references to objects of other classes in the database. For
example, a measurement object has reference to DynaBase objects, which contain infor-
mation on the measurement bases and to a DynaCalibration object, which holds calibration
information. Finally, a user can add a comment to a measurement by setting a reference in
the measurement object to a DynaComment.

 27

Splitting the information about data and the raw data itself speeds up the browsing of the
contents of the database. To view the properties of data, only the measurement object
needs to be retrieved. Opening the full Bulk object, which can contain megabytes of data,
would cause too much overhead. Using references to DynaComment, DynaCalibration
and DynaBase objects allows clients to reuse these objects, such that many measurements
that use the same calibration, for example, can reference the same DynaCalibration object.
This saves database space and provides users with extra information on the origin of the
data. When, for example, a calibration turns out to be wrong, all measurements that are
influenced by this calibration can be found easily. This is a consequence of implementing
bi-directional associations for e.g. the DynaCalibration object.

Since there are special references for comments, calibrations and measurements bases,
smart database browsers can be built that use these references to enhance data viewing.
This is a very useful feature in a multi-user environment. It keeps together all the informa-
tion in the database that is necessary to interpret a measurement. In case a user has addi-
tional information on a certain measurement, like a special calibration function, this infor-
mation can be put into a DynaComment, and, if necessary, parsed by a specialized data-
base client. In the case that a DynaComment contains this type of information, the Dyna-
Comment should obey certain syntax rules, in order to give a handle to how this informa-
tion should be used. A DynaComment can have a reference to another DynaComment for
this purpose. Our data browsers do not yet implement this feature.

The DynaObject class inherits via the SecurityObj class from ooObj. OoObj is a class pro-
vided by the Objectivity database framework. Inheriting from ooObj makes a class persis-
tent. This means that its attributes, which must be of special Objectivity types, can be
stored in a database automatically. The SecurityObj class adds security attributes like the
user ID and group ID of the owner of an object to all subclasses. It also has attributes that
hold an object’s access rights. Inserting the security class allows us to create data managers
that provide a Unix-like security architecture, while all information necessary to imple-
ment is stored in the measurement database itself, together with the objects to which the
information belongs. Also this functionality has not yet been implemented, however the
IDL interface is provided with the necessary hooks. (See also the chapter “Security”)

 28

Measurement data

Local Area Network

Textor Control Room

Internet
Router

Distributed
Database

Services

Object
Manager

Platform 1

Data
Manager

Platform 2

Data
Manager

Figure 8 Typical set-up for a distributed heterogeneous database

The prototype also provides for an object manager, which acts a central starting point for
all database clients. When a data manager is started, it registers at the object manager. The
object manager then assigns the available data managers to clients, thereby distributing the
database load over more computers. This object manager has at first only been imple-
mented in its most simple form. For the early performance test we included the functional-
ity in a dedicated data manager. Later on we designed the ObjectManager in a more elabo-
rated form as will be described in a next chapter.

When a database client contacts a data manager and asks it for an object from the database,
the data manager first has to load the object from the database into its memory. After that,
it can fill IDL structure and send this structure to the database client. In this scheme, a da-
tabase object must be sent twice over the network in the local control room, once from the
database that stored the object to the data manager that serves the client and once from that
data manager to the Internet router. Running the data manager on the machine that con-
tains the data object to be transferred can save one transfer. Since certain clients (for ex-
ample diagnostics themselves) mainly use objects that are located in the same database on
the same physical machine, it makes sense to assign data managers to these clients that are
located on those specific machines. In the proposed architecture, the object manager has
knowledge about such clients and is able to assign them the most network-efficient data
managers.

Moreover since the existing practise at fusion experiments involves still more tradi-
tional ways of storing data (Files), we constructed from the most elaborated design
specialised DataManagers to make the integration of new and old as smooth as pos-
sible. These (simpler) DataManagers fulfil also another purpose since collaborations,
involving different external groups, usually have no other means to inspect each
other’s data than looking at each other’s screen (X-term capability). In our approach
it is possible that with the same client application (e.g. a Data Viewer) one can in-
spect each other’s data, provided the ObjectManager knows the exact location of the
data and can address a proper Launcher, DataManager combination.

 29

The DataManager, ObjectManager and Launcher

Introduction

The DataManager is “the middleware” between a client and a database. A client can be a
user (scientist), who wants to read data for analysis, or an instrument that delivers data in a
raw format for storage. Via an interface, the DataManager provides access to the database
in a generic way. This means that the interface does not reveal any information about the
DataManager actually stores the data. This makes it possible to store the data in various
types of databases, like flat files, a relational database or in an object-oriented database.

A DataManager is designed to service only one client at a time. Therefore, each client re-
ceives its own personal DataManager. So, if multiple clients need to access the same data-
base simultaneously, an equal number of DataManagers needs to be running. To realise
this a Launcher application is designed.

When a client requests a specific DataManager type, a Launcher will start this type of
DataManager, which then can be used by a client. When a client is finished it can notify
the DataManager that it is no longer needed. The DataManager will then shutdown and
release its systems-resources. If a client fails to notify the DataManager or, if the connec-
tion between client and DataManager is lost, the DataManager will auto-shutdown after a
predefined timeout period.

Because various databases can exists at various places, it would be difficult for a client to
know the precise location of all these databases and know the address of the particular
Launcher at each of these locations. Therefore, the location of each database and address
of each corresponding Launcher is held by one application, called ObjectManager.

This makes everything much easier for clients. They now only have to know (or register)
the address of this ObjectManager. The clients can then request a list of all available data-
bases from the ObjectManager. When a client wants to access a specific database in the
reach of the ObjectManager, it can ask the ObjectManager for the address of a DataMan-
ager for this database. The ObjectManager will contact the appropriate Launcher ad return
the address of the newly started DataManager to the client, which then can contact this
DataManager. The communications between client, ObjectManager, Launcher and Data-
Manager will take place via CORBA13. For this purpose interfaces of the specific “mod-
ules” have to be defined more in the framework of CORBA, which means in IDL14.

13 CORBA homepage: http://www.corba.org

14 IDL: Interface Definition Language, a inalienable property of the CORBA specs.

 30

ObjectManager Launcher

Client

Launcher

DataManager
Database

11

22

Database

Figure 9 The ObjectManager, Launcher and DataManager at work

Interface Launcher.

Accessing the Launcher proceeds through CORBA, where at the server side a C++ ORB
(omniORB 2.8.0 for C++) is employed. The Launcher’s interface has only one method.

boolean launch(out string ior)

This starts a new DataManager and returns true or false to notify the caller if the operation
succeeded. If the launch-operation was successful, the string "ior" contains the address of
the newly launched DataManager. Else "ior" is NULL.

Interface ObjectManager.

Accessing the ObjectManager proceeds also through CORBA, where at the server side a
C++ ORB (omniORB 2.8.0) is employed. The ObjectManager’s interface contains two
methods.

boolean GetList(

 in OmListReqStruct ListRequest,

 out OmListStruct ListResult)

raises(Error) ;

boolean GetDataManager(

 in OmConReqStruct ConnectionRe-

quest,

 out OmConStruct ConnectionRe-

sult)

raises(Error) ;

 31

A client first calls GetList to get a list of all available DataManagers. After it received a
list, it can get the address of specific DataManagers. The struct-objects used to sent and
receive the request are defined in the following way:

 struct OmListStruct

 {

 OmResultType Result ;

 string strResult ;

 StringSeq Names ;

 LongSeq IDs ;

 long iSize ;

 } ;

 struct OmListReqStruct

 {

 CryptoSeq Key ;

 } ;

 struct OmConStruct

 {

 OmResultType Result ;

 string strResult ;

 string IOR ;

 } ;

 struct OmConReqStruct

 {

 CryptoSeq Key ;

 long iID ;

 } ;

Without going into each detail, it is interesting to note that with each request a key is
passed to prove to the ObjectManager that the client in indeed authorised to perform a spe-
cific action. Also interesting is that the return-struct always contains a value and a string
which can be used to present to the user in case of a failure.

Because everything is packed into structs, it makes the design flexible, because future ex-
tensions and changes to the function of the ObjectManager will not require a complete re-
write of the whole architecture around it, but only a change in those members actually
handling the structs.

 32

Interface DataManager

Accessing the DataManager proceeds also through CORBA, with at the server side a C++
omniORB 2.8.0 ORB. The operations of the CORBA interface can be divided into trans-
action specific operations and data specific operations. These operations are listed below.
The comments are specified to the DataManager implementation for the DOM415 database
type, but are virtually identical in terms of interface to other implementations16.

First a common note: all interface-members have a parameter CryptoSeq signature, which
is used to pass a security key to the DataManager, so that it knows the client is authorised
to perform the action.

Transaction specific operations

void start(in CryptoSeq signature)

Starts a new transaction with the DataManager. If a transaction is already active, an Error-
exception will be raised.

void commit(in CryptoSeq signature)

Commits the changes made to the database during the current transaction. This stops the cur-
rent transaction. If no transaction is currently active, an Error-exception will be raised.

void commitAndHold(in CryptoSeq signature)

Commits the changes made to the database during the current transaction, but does not end
the current transaction. If no transaction is currently active, an Error-exception will be raised.

void abort(in CryptoSeq signature)

Aborts the changes made to the database in the current transaction and ends the current
transaction. If no transaction is currently active, an Error-exception will be raised.

Data specific operations

void store(in any object, in string path)

Creates a new object in the database at location path. If an entry with the same path exists, an
exception will be raised. If the type of the object is not a legal type known to the DataMan-
ager, an exception will also be raised.

void update(in any object, in string path,
in boolean headerOnly, in string info,
in CryptoSeq signature)

Updates the contents of an existing object with the data provided. If the entry specified by
path does not exists an exception is raised. If the type of the object is not a legal type known
to the DataManager, an exception will also be raised. Finally, also when the type of the ob-
ject sent is different from the existing object, an exception will be raised.

15 DOM4 is the way in which the FOM group stores their data. It is basically a structured file system, which
emulates a database behaviour.
16 We have constructed also a DataManager for the file type used at IPP and in the control of the TEXTOR 94
itself, the so-called RT2 file system; also for the old FOM data type RTF.

 33

RevInfoSeq getHistory(in string path,
in CryptoSeq signature)

Retrieves the history of the object indicated by path as a sequence of RevInfo structures.
If the object is not found, an exception is raised.

Also, note that not all Database types support reminding of the history. In such case, an
exception is raised. DOM4 does not support history reminding.

ObjectHeader getHeader(in string path,
in CryptoSeq signature)

Retrieves only the basic object header of the object indicated by path. If the object is not
found, an exception is raised.

any getProperties(in string path, in CryptoSeq sig-
nature)

Retrieves all properties of the object specified by path. If the object is not found, an excep-
tion is raised. This function will return an object of the correct type with all property attrib-
utes set, but with empty content.

any getData(in string path, in CryptoSeq signature)

Retrieves the object specified by path. If the object is not found, an exception is raised.

void rm(in string path, in CryptoSeq signature)

Removes the object specified by path. If the object is not found, an exception is raised.

void link(in string source, in string destination,
in CryptoSeq signature)

Creates an entry that binds an object to a symbolic name destination. The object speci-
fied by source will be used as the path of the object that will be linked. If the object is not
found, an exception is raised. In addition, if an object with name destination already
exists an exception will be raised too.

Note that not all database types support linking. If linking is not supported, and exception
will be raised. DOM4 does not support linking.

StringSeq list(in string path,
in CryptoSeq signature)

Returns a list of strings with the full path of all objects at a given location path. If the object
is not found, an exception is raised. This function doe not recursively list the content of di-
rectories. Also note that the path of directories in the list will end with a ‘/’ character so they
can easily be distinguished from other objects.

void lock(in string path, in CryptoSeq signature)

Locks the object specified by path for exclusive use by the client. If the object is not found,
an exception is raised.

 34

Note that not all database types support locking. If locking is not supported, and exception
will be raised. DOM4 does not support locking.

void unlock(in string path, in CryptoSeq signature)

Unlocks the object specified by path. See also lock. If the object is not found or wasn’t
locked, an exception is raised.

Note that not all database types support locking. If locking is not supported, and exception
will be raised. DOM4 does not support locking.

oneway void shutdown(in CryptoSeq signature)

If the client no longer needs the DataManager it can tell it to shutdown. This will shut down
that DataManager and abort any currently active transaction.

void keepAlive(in CryptoSeq signature)

To prevent a DataManager from wasting valuable system-resources in case of a client-
disconnect where the client didn’t call shutdown, the DataManager will auto-shutdown af-
ter a specific period of time in which it was not used (default one hour). If a client wants to
prevent this, it should call this function one in a while to reset the internal timer in the Data-
Manager.

const unsigned long maxIdleTime = 3600 ;

readonly attribute unsigned long idleTime ;

Both attributes are used to control the auto-shutdown behaviour of the DataManager. See
also shutdown and keepAlive. MaxIdleTime describes the maximum time the
DataManager should remain idle before it should auto-shutdown.

The idleTime is the internal timer that tells how long the DataManager hasn’t been used.
To manually reset it, use keepAlive.

Access rights and the DataManager.

The following operations are relevant for security issues.

PolicySeq getPolicies(in string path,
in CryptoSeq signature)

Gets a list of policies that apply to an object. If the object is not found, an exception is rais-
edNote that not all database types support policies. In these cases, it is a good idea to fake it
and return a dummy-value.

DOM4 does not support policies and the DOM4 DataManager therefore returns a policy
that indicates that everyone is able to read the specified object.

void setPolicies(in string path, in Policy policy,
in CryptoSeq signature)

Sets a policy for an object specified by path. If the object is not found, an exception is
raised.

 35

Note that not all database types support policies. DOM4 does not support policies and the
DOM4 DataManager therefore returns raises an exception.

Extended Interface

Problem with the standard getData member is that CORBA Any objects require a lot of
system resources, especially CPU resources, when packed and unpacked. In case of large
objects, like DimN-objects (one or multiple dimension array-objects), this method can be
very time-consuming. To provide optimal read performance in all circumstances the inter-
face is extended with members for specific data types.

DimNFloat64 getDim1Data(in string path,
in ulong npoints, in ulong interval,
in Interpolation how, in CryptoSeq signature)

Retrieves expanded data of an 1-dimensional object indicated by path. If the object is
not found, an exception is raised. Allows retrieval of only a part of the data providing the
index of the first point to read together with an interval and the total number of points to be
retrieved. The data in the interval is interpolated in the way specified by the Interpola-
tion argument. None does no interpolation and returns only the first data point of each
interval. Average will return the average of all points in the interval. MinMax will return
both the minimum and the maximum value for each interval. Therefore, in MinMax
mode twice the number of requested points is returned.

DimNFloat64 getDim2Data(
in string path, in unsigned long x_first,
in unsigned long x_npoints,
in unsigned long x_interval,
in unsigned long y_first,
in unsigned long y_npoints,
in unsigned long y_interval,
in Interpolation how,
in CryptoSeq signature)

Retrieves expanded data of a 2-dimensional object indicated by path. If the object is not
found, an exception is raised. Allows retrieval of only a part of the data providing, for both
the x and y range, the index of the first point to read together with an interval and the total
number of points to be retrieved. The data in the interval is interpolated in the way specified
by the Interpolation argument. None does no interpolation and returns only the first
data point of each interval. Average will return the average of all points in the interval.
MinMax will return both the minimum and the maximum value for each interval. There-
fore, in MinMax mode, 4 times (2x2) the number of requested points is returned.

These members behave identical to the getData member, except that they do not require
the wrapping (on server side) and unwrapping (on client side) of the CORBA Any object.

 36

 37

Security

Introduction

The architecture for the DYNACORE prototype is based upon the Common Object Re-
quest Broker Architecture (CORBA) as defined by the Object Management Group
(OMG)17 in [Obj96]. CORBA however shows a lack on an important issue: “Though se-
curity services are defined in CORBA services18, they are not implemented within the em-
ployed CORBA implementations so far”. Since security mechanisms are essential for
many remote actions, it is necessary to define and implement a security service for the
DYNACORE prototype, which could be replaced by an intrinsic CORBA service at a
proper time.

This chapter presents a description of the security service defined for and used within the
DYNACORE (plasma physics) prototype (system). This security service acts as a
CORBA component, which is on one hand responsible for the authentication of users that
want to get access to the DYNACORE services offered by the prototype and on the other
hand for management purposes (i.e. management of registered objects within the system,
forwarding of object access rights to clients, etc.)19.

To perform these tasks the security service uses well-defined mechanisms as the Data En-
cryption Standard (DES)20 [46-93] and an authentication scheme similar to the security
service Kerberos21. In this respect every client who wants to get access to the system first
has to authenticate itself at the authenticator (the authentication service) with username
and password. Encryption is foreseen in the security service; however, the data produced
by plasma physics experiments often is by all means bulky, but isn't secret22. Overall en-
cryption would lead to much overhead on the sender as well as on the receiver side. To this
end we added a feature of partly encrypted messages. The encrypted part of the message,
the so-called authentication value, is of small size and serves to definitely authenticate (and
authorise) the sender of the message. Utilizing such authenticated messages results in an
enormously reduction of overhead that accompanies security.

CORBA object servers in the DYNACORE prototype that want to offer their services only
to authorised clients, have to register their servant objects at the authenticator. To this end
such an object server needs to have a user account at the authenticator, because it first has
to authenticate itself as a normal user and then, after granted authorisation, register its ser-
vant objects there. If an authorized client wants to utilize such a servant object, it has to
request for a servant object ticket at the authenticator. With this ticket, that contains all
the encrypted data the servant object needs to know about the client, the client is able to
register at the servant object and to utilize its services.

17 Object Management Group. The Common Object Request Broker: Architecture and Specification. OMG,
July 1996.
18 Object Management Group. CORBA services: Common Object Service Specification. OMG, March 1995.
19 If we talk about clients we mean the software application that acts on behalf of a user.
20 Federal Information Processing Standards Publication 46-2. Data Encryption Standard (DES). National In-
stitute of Standards and Technology, December 1993.
21 J.G. Steiner, C. Neumann, and J.I. Schiller. Kerberos: An Authentication Service for Open Network Sys-
tems. Project Athena, Massachusetts Institute of Technology, Cambridge, January 1988.
22 Raw data is in itself not very meaningful to outsiders

 38

Secure information transfer

Message encryption

The development of a network based security system requires a mechanism to send infor-
mation within messages in a secure manner across the network. The most obvious thing to
realize that (and the one used here) is sending these messages in an encrypted form. This
requires, that the sender has a key to encrypt the message and the receiver a key to decrypt
this message.

By using a private cryptosystem both the sender and receiver need the same key for en-
cryption and decryption. Another possibility is to use a public cryptosystem, where the
sender has one key to encrypt the message (the public key of the receiver) and the receiver
has another key to decrypt the message (the receivers private key). In such a cryptosystem
it ought to be impossible to use the keys interchangeably.

Both cryptosystems have their advantages and disadvantages. For example, how do two
parties in a private cryptosystem come to an agreement about the key to use? Since the key
to encrypt is public in a public cryptosystem, and could be published by a key distribution
center, this problem doesn’t exist here. On the other hand, a public cryptosystem needs
very long keys and the algorithms to en- {or} decrypt messages are much more complex
than in a private cryptosystem.

We decided to use the Data Encryption Standard (DES), which is a private crypto system.
To avoid the problems concerning agreement over the key between sender and receiver,
we designed the security system respecting to the following items:

n The DES key needed for authorisation is generated on the basis of the password
of the user. This has two advantages: firstly there is no problem with agreement
about the key, because only the user and the authenticator know the users
password, secondly this procedure avoids the necessity of sending the (not en-
crypted) password across the network. If the authenticator concludes that the
user has the correct key, he also must have the correct password.

n If two parties (users) want to intercommunicate, they get each their common
DES key from the authenticator. The main assumption here is, that the authen-
ticator is reliable (if not, it has to be exchanged with a reliable one). In this con-
text the authenticator acts as a kind of key distribution center.

n To enhance security, the password generated DES key is only used within the
primary authentication procedure. (Attackers, that want to break the key of a
cryptosystem, now get as little crypto code as possible, this hampers breaking
the key.) Let's suppose that an attacker breaks a key; he not only gets the DES
key, but also the password of the user (since he is able to reverse the password
DES key generation). To play it safe, the authenticator generates a session DES
key for the further communication between user and authenticator.

With respect to future enhancements the security system does not depend solely on DES; it
could be exchanged very easy by another private cryptosystem and with little modifica-
tions by a public cryptosystem. The decision to make use of DES is based on the follow-
ing:

 39

n DES is one of the free usable cryptosystem definitions. In difference to other
cryptosystems, one doesn’t have to pay a fee for using it.

n There are many existing implementations of DES and if one is missing for a
particular language (environment), it is easy to implement.

n DES is a well-defined and standardized cryptosystem.

N.B.
In the following, we often use the terms private (DES) key, session (DES) key or commu-
nication (DES) key. The meaning of these terms is:

n The private key is the key generated from the users password.

n The session key is an authenticator-generated key for the succeeding communi-
cation between an authorised client (which acts on behalf of an user) and the au-
thenticator.

n The communication key is an authenticator-generated key for the communica-
tion between two authorised parties.

Authentication by use of tickets

In real life presenting an identity card or something else that proves ones identity and is
accepted by the party that requires the authentication often performs the procedure of au-
thentication.

In computer based systems the identity of a user is normally checked by a non-ambiguous
username, that can be public, and a password, that has to be a common secret to the user
and the party that requires the authentication. This authentication combination (username
and password) is stored in a database (e.g. a password file). In a system with many services
(to be performed by servant objects), which require authentication of users with the same
authentication combination, it is necessary that all these servant objects have the same
copy of the database23. This can lead to problems:

• When a new servant object is added to the system. How it gets a copy of
this database?

• If a new user is added to the system. How can all these database copies be
updated consistently?

23 Under the assumption that these servant objects can't share the same database.

 40

There are some options to solve the problems. One is to use one dedicated servant object,
which is responsible for the authentication, at all other servant objects. This servant object,
the so-called authenticator, is the only servant object in the system, which holds a data-
base with authentication information for every user. Whenever a new servant object is
added to the system, that wants to restrict access only to authenticated users, it has to en-
gage the authenticator with an authentication service by registering itself at the authenti-
cator, while establishing a session key. The authentication service performed by the au-
thenticator requires, that every user, that wants to utilize a dedicated servant object, first
has to authenticate himself at the authenticator. If this is successful, the user has to specify
the servant object that he wants to utilize, and that has to be registered in advance at the
authenticator. The authenticator generates from the user’s and servant object’s information
a digital ticket, which, after being obtained by the user, has to be used to register at the
specified servant object. - Such a ticket is comparable with a normal 'bus ticket' -. The au-
thenticator puts in it all the information, which a servant object needs to know from the
user. Since this ticket is encrypted with the servant object’s session key24, the servant ob-
ject knows that the authenticator, which is a reliable party, could only have generated this
ticket.

The user himself can't read the contents of the ticket, since he doesn't know the key by
which the ticket was encrypted. It isn't necessary that the user understands the contents of
the ticket, because the only thing the user has to do with it, is to send this ticket unchanged
to the target servant object.

Authentication within messages

A possibility to authenticate messages between communicating parties is to encrypt the
whole message and precede it with the sender’s identity in plain text. Doing so the receiver
is able to identify the sender and get the belonging DES key to use for the decryption of
the message. This is certainly the safest way to exchange messages, but it will also result in
much overhead on both sides. If the parties exchange messages with secret contents only,
there is no alternative than proceeding this way25

In the DYNACORE prototype many of the exchanged messages contain data, which do
not have to be protected against reading by others. It is important however, that the mes-
sage comes from a trustable party. Therefore the security service has to support both alter-
natives: the encryption of entire messages and the authentication of plain text messages.
The authentication of plain text messages is supported by a small piece of encrypted code
(the so called authentication value), which comes along with the message. The authentica-
tion value is encrypted with the session or communication key in use between the commu-
nicating parties and contains an integer number. Both parties (and only these parties) know
the value of this number. The receiver checks the validity of the received message by de-
crypting the obtained authentication value and comparing it with the one expected. If these
two values match, the received message has to come from the right party. Otherwise the
receiver would reject the message.

24 This is the DES key, which is only known by the authenticator and the dedicated object server (and its ser-
vant objects).
25 Except to using a Secure Socket Layer (SSL), which is a variant of this.

 41

Since it isn't very safe to use the same authentication value in consecutive messages26, this
authentication value will have to be modified by both parties from message to message. To
this end, the sender and the receiver, share in addition to the authentication value a secret
modification rule. Every time a message is exchanged, both sides apply this modification
rule to their authentication value copy, so that they always have a new, but a matching au-
thentication value.

Components in the security system

In the system there are the following conceptual components (cf. Figure 10):

Figure 10 Security service components

n One Authenticator,

n Several Clients, acting on behalf of an user and

n Several CORBA Object Servers, which offer their servant objects via the
CORBA middleware to authenticate clients.

n Several Callback Servers. A mixture of a client and servant objects. It doesn’t
add extra services to the total system, but allows a client to obtain automatically
updated status information via servant objects from an Object Server. The call-
back server is implemented in a Client by means of an additional servant object..

26 An attacker could tap the connection line and use this authentication value for own messages to the re-
ceiver and to the sender.

 42

The operation of these components will be described in detail in the following chapters.

The Authenticator

Figure 11 Databases of the authenticator

The authenticator is the main component in the entire security system. It has to be started
before any other component. The authenticator manages the user accounts and the regis-
tered servant objects. Without the authenticator no one can access anything remotely. To
this end the authenticator has several long-term and short-term databases to store the nec-
essary security information (cf. Figure 11):

n Password file. Within this file the authenticator stores the usernames and the
passwords of the users, which are allowed to get access to the system.

n List of authenticated clients. To every point in time there can be several active
authenticated (logged in) clients in the system. A client is a software application
that acts on behalf of a user. The information concerning the security and the
status of this client are held in this database.

n List of registered servant objects. Every registered servant object is accompa-
nied by (much) information concerning the service it offers and how it is to be
referenced. All this information and the dedicated security information is stored
here.

n List of servant object tickets. For each client that requested for servant object
tickets this database holds an entry with information about the servant objects,
this particular client has tickets for. This information is essential for a servant ob-
ject that wants to be notified when the particular client leaves the system.

 43

n Maximum login time file. Apart from the security information, which is neces-
sary for communication, there is another important information element: the
maximum login time. When the authenticator is started, there is a default
maximum login time for each user. If it is necessary to specify a different maxi-
mum login time for a specific user, one can do that by creating an entry in this
file.

The password file

Like many other security systems do, this system manages the information about the users
that are allowed to access the system via a password file. For every user, which has an ac-
count for the system, there is one entry containing the user’s ID (username in plaintext)
and his password encrypted with the superuser’s DES key. Every time a user wants to
login, the authenticator references this file to check the users access rights.

Example:
root:6bf2b61ed778921d
adminntf:6bf2b61ed778921d
fba:6bf2b61ed778921d # this a servant object
fuchs:6490fce06d1cf2fb
kemmerli:0686a02c3a297133

The list of authenticated clients

If a client wants to get access to the system and starts the login procedure to authenticate
himself at the authenticator, the following information is generated that has to be stored
within this database:

n The client's username,

n The session id, whereby the client’s session together with the username can be
definitely tied together,

n A DES session key for further communication between this particular client ses-
sion and the authenticator,

n The login time that denotes the point in time when the client logged in,

n A pending flag, from which the authenticator, on the basis of the login time, is
able to determine if the authentication procedure lasts to long or is already final-
ised,

n A maximum login time after which the client is kicked out of the system, and

n An authentication value that is used within the communication between the cli-
ent and the authenticator to validate their mutual identity.

Example:
root:0:sesKey:loginTime:pending:maxTime:auth
fuchs:0:sesKey:loginTime:pending:maxTime:auth

 44

The list of registered servant objects

CORBA object servers represent their servant objects. If a CORBA object server wants to
offer a service in the form of a servant object, it first has to register this servant object at
the authenticator. In this way the CORBA object server primarily makes its servant ob-
ject public to the whole system and secondly it engages the authenticator for the authenti-
cation of each client that wants to utilize this servant object. To do this, the authenticator
needs some information about the servant object:

n The name of the object server, that registers this servant object (i.e. name of the
object’s owner),

n The session id of the owner,

n A base object information element, which consists of the following informa-
tional elements:

• The name of the servant object, that should be registered at the server,

• A textual description, that describes the servant object in a concise way,

• The stringified IOR of the servant object to be registered,

• The type of the servant object,

• The owner of the servant object,

• The group this servant object belongs to and

• The access mode of the servant object.

n A CORBA object reference (obtained from the stringified IOR) to call the ser-
vant object via CORBA.

Example:
fba:0:sesKey:<FBA_DB,descr,ior,...>:objref
fba:1:sesKey:<FBA_NTF,descr,ior,...>:objref

The list of servant object tickets

The list of servant object tickets is a security enhancement of the security service. It is not a
standard, but an optional element of the authenticator. If a servant object wants to offer its
services to clients, who are actually logged in, the authenticator has to notify all servant
objects, a client has tickets for, on a client’s ticket request and the client’s logout. To do so,
the authenticator needs to know for which servant objects this particular client has obtained
tickets. To this end, the authenticator holds a list of servant object tickets which consists of
the following elements:

n The username of the client, that has at least one ticket,

n Its session id to definite identify the client’s session,

 45

n A list of servant object names the specified client has gotten tickets for.

On a client’s ticket request, the authenticator makes an appropriate entry in the list and no-
tifies the specified servant object about it. On client’s logout, the authenticator looks in the
list for all servant objects the client has obtained tickets for. It notifies all these servant ob-
jects about the client's logout. Than it is left to the servant object's individual decision how
to treat this client.

Example:
fuchs:0:<FBA_DB,FBA_NTF>

The maximum login time file

A security gap would be present if every client were allowed to stay logged in until obliv-
ion. Because of that, the authenticator is initiated with a default maximum login time.
This means the time after which every client should be automatically logged out. Using
this static time for all clients leads to problems with servers (since every server at first acts
as a normal client), that should run longer than this default time, or with clients that may
not be allowed to stay logged in for even the default time. For his reason the authenticator
maintains a table with an entry for every client that has a maximum login time different
from the default one. Every entry consists of:

n The username and

n The maximum login time, that is different from the default one (otherwise it isn't
necessary to make an entry for this user).

To allow a client to stay logged in until system shut down, the maximum login time in
the particular entry is set to a negative value. This could be useful for object servers,
which should last as long as the authenticator itself (which in principle runs until sys-
tem shut down).
Example:

root -1 # until eternity
fba -1 # until eternity
kemmerli 100000 # maximum login time in seconds
fuchs 50000 # -"-

 46

The Client

The client is a software application acting on behalf of a user. A client could be for exam-
ple a world clock implementation that requests the local time of worldwide distributed
CORBA time servers, but also an authenticator administration application that allows
users with proper rights to add/delete user accounts or to change the maximum login time
of any user. It could be a monitoring tool that presents a graphical view to the state of the
security system27. If those clients wants to access additional services from servant objects
residing on object servers, that offer their services only to authenticated clients, all those
clients have one thing in common: they have to authenticate themselves at these servant
objects28.

Figure 12 Client's database for the servant objects it is registered at

Due to the fact that a client often utilizes more than one servant object, every client has to
hold (security) information about every servant object it is accessing, in a appropriate data
structure, i.e. he needs a database for the servant objects he is registered at, as it is shown in
Figure 12.

The client’s list of servant object tickets

This database consists of the following elements:

n The name of the servant object owner (e.g. the Object Server),

n The session id of the servant object owner,

n A base object information element, that consists of the following elements:

• The name of the servant object,

• A textual description, describing the servant object in a short way,

• The stringified IOR of the servant object,

• The type of the servant object,

• The owner of the servant object,

• The group this servant object belongs to and

27 There are many more possible client applications; this is only a small overview!
28 How this will be done is not the object of this section, this will be explained in detail in the next section.

 47

• The access mode of the servant object.

n A CORBA object reference (gotten from the stringified IOR) to call the servant
object via CORBA.

n An authentication value, that is used to authenticate the message exchange be-
tween this client and the servant object and

n A servant object ticket (obtained from the authenticator) that authenticates the
client's request for registration at the servant object.

A client needs such an entry in his private database for every servant object from which he
wants to utilize its services. If all the required information is complete, the client first has
to register himself at the servant object with the (servant object) ticket. After having ob-
tained permission he can use the service(s) of this object.

 48

The CORBA Object Server and Servant Objects

A CORBA object server acts in principle as a client. It uses the main CORBA object in the
system, the authenticator, to get access to the system and it can use other servant objects
offered by other object servers. This means, that a CORBA object server basically has the
same structure as every client does (see section The Client).

In addition to the client nature of a CORBA object server, there are services in the form of
accessible CORBA servant objects within the server. The object server has to register the
servant objects at the authenticator and engage the authenticator with the authentication of
each client that wants to utilize this servant object.

The servant objects are working individually, but share the same base (under the supervi-
sion of the authenticator) security information, inherited from the object server (session
key, authentication value and modification rule for communication with the authentica-
tor). If a client wants to utilize such a servant object, it has to register at the servant object
by calling its registration method. To authenticate the registration, the client needs a valid
servant object ticket and an authentication value. The servant object accepts the registra-
tion request when the ticket was generated by the authenticator and when the authentica-
tion value, that comes along with the request, matches the one in the ticket.

All this information are managed by a servant object in the following databases (cf. Figure
13):

Figure 13 Databases of a servant object

n List of registered clients. If a client wants to register at a servant object, it first
has to get a ticket for this servant object from the authenticator. This ticket that is
encrypted with the servant object session key, consists of the information neces-
sary for service communication between the servant object and the client. After
decrypting the ticket, the servant object extracts the following information from
it an stores it in the database:

• The client's username,

 49

• The client's session id,

• The communication key for the communication between the servant object
and the client,

• The authentication value and the belonging modification rule for the
communication between the servant object and the client,

• The time the client tries to register and

• The maximum time the client is allowed to stay registered.

n List of registered callback objects. The list of registered callback objects is not
standard to every servant object. It is only needed if the service, this servant ob-
ject furnishes, requires a callback to a callback object of a registered client (e.g.
if this servant objects acts as a notifier about special events). To this end every
callback client has to register a callback object at this servant object. The infor-
mation that comes along with such a callback registration is stored in this table
and consists of the following elements:

• The client's username,

• The client's session id,

• The communication key for the communication between the servant object
and the client,

• A base object information element of the callback object, that consists of
the following informational elements:

∗ The name of the callback object, that should be regis-
tered at the servant object,

∗ A textual description, that describes the callback ob-
ject in a concise way,

∗ The stringified IOR of the callback object to be regis-
tered,

∗ The type of the callback object,

∗ The owner of the callback object,

∗ The group this callback object belongs to and

∗ The access mode of the callback object.

• CORBA object reference (obtained from the stringified IOR) to call the
callback object via CORBA.

 50

n List of clients with tickets. When the authenticator is initiated with the op-
tional feature of notifying registered servant objects about the clients that have
requested tickets for this servant object, and the servant object wants to make use
of this mechanism as an security enhancement, the servant object has to store the
information about these clients in a table. If the authenticator notifies an servant
object about an issued ticket, the notification message contains the following
elements:

• The name of the client,

• The session id of the client and

• A digest of the given servant object ticket. This is the count of the set bits
within the ticket.

If then a client wants to register at this servant object, the servant object
looks in this list for a matching client entry. If this entry exists, the servant
object compares the ticket, which came along with the client's registration
request, and the ticket’s digest. If this matches, the registration request
maybe granted, otherwise rejected. There are two possible reasons for a
missing match:

• The client has never requested for a ticket for this servant object. Such a
registration request should always be rejected, because the requesting cli-
ent is obviously an attacker.

• The client has requested a ticket, but either the maximum login time at the
authenticator is expired (i.e. the client was logged out by the authentica-
tor) or the client has logged out on its own. If the client is logged out,
normally the authenticator notifies all the servant objects, the client has
tickets for. Normally, the servant objects remove the client entry from
their lists upon receiving such a notification.

 51

The Security Service Protocol

As mentioned above, common to all parties in the system is the necessity of phasing the
security protocol, without putting severe restrictions about periods a party can offer or use
a service. The first thing to do is to become an authenticated member of the system by per-
forming a login procedure. Being successful in this respect, carrying out the remaining
protocol phases depend on the kind of component to engage. In principle there are, apart
from the authenticator, three possible targets (cf. Figure 10):

n Client. A client represents the simplest component within the system. It only
utilizes the servant objects offered by CORBA servers in the system. In a
CORBA system without security functionality, such a client would only need
the interface definition of the objects it want to utilize29 and an IOR of the object
to call the servant object on the server side via the middleware.

n Object Server and its Servant Objects. From the standpoint of the authentica-
tor, an object server is a simple client with additional service functionality. In a
CORBA system, initially without security functionality, such a CORBA server
would be one of the main components, because of the services, via the servant
objects, it can offer to clients in the system.

n Callback Server. A callback server is a mixture of a client and an object server.
On the one hand, it utilizes servant objects from (real) CORBA servers, and on
the other hand, it implements a servant object (the so called callback method),
which can be used from the server side to realize the offered service, as it is
shown in Figure 14. A callback server is more client than server, because it
doesn't offer a service to the system, but implements a servant object to utilize
servant objects from the servers in the system.

Figure 14 Client as callback server.

29 In the form of an CORBA IDL-file, from which it has to generate the client stub.

 52

An example of such a callback client could be a monitoring tool, which offers the user an
actual view of the state of some devices in the system. Since the user expects that the state
given by the monitoring tool is always up to date, it is necessary to update the monitor rep-
resentation every time, a device changes state. There are two possibilities for the imple-
mentation of such a (monitor) client:

1) Poll the servant object, that gives the actual state of the device in certain
intervals (this could result in high server and network load), or

2) Implement a servant object on the client side, which can be used by the
servant object on server side to notify the client about state changes of the
device.

The second alternative is precisely the one used in a callback server.

The next sections give detailed descriptions of the security protocol phases, which have to
be carried out by the all mentioned system components in common and the ones, which
are type dependent.

Common protocol phases

Every party that wants to access the system, controlled by a security service, has to authen-
ticate itself at the main system component, the authenticator, by performing a login pro-
cedure. In analogy to that, the parties also have to perform a logout procedure, if they want
to leave the system30.

Login

The login procedure is implemented as a three-way-handshake mechanism and is divided
in the following two parts (see Figure 15):

Figure 15 Client's login procedure at authenticator.

getSessionKey():

(C) The client, who acts on behalf of a user, sends its username to the authenticator.

30 If the party doesn’t support this, the authenticator in a kind of lightweight garbage collecting will do this.

 53

(A) The authenticator looks in its password file for a matching entry and, if one exists,
extracts the users password.

(A) Since this password is encrypted with the authenticator’s private key, the authen-
ticator decrypts this password and generates the belonging users private key from
it.

(A) Since it is possible that one user with one username tries to open more than one
session at the same time, it is necessary to distinguish the user’s different sessions.
To this end, the authenticator generates a session id for this particular session, so
that in future requests to this session could be identified in a unique way by user-
name and session id.

(A) As explained in the section Message encryption, further communication between
the client and the authenticator will take place by using a session key. The authen-
ticator creates this session key randomly.

(A) Most messages between the authenticator and the client only need to be authenti-
cated, but not encrypted as a whole. To this end the authenticator generates an au-
thentication value and a belonging modification rule for the further communica-
tion between client and authenticator.

 (A) Since the client's login procedure isn't finalised at this point, the authenticator
sets the loginPending flag to true. This indicates that the client still is in the proc-
ess to validate his login.

(A) Now, the authenticator encrypts the generated session key with the private key of
the user, and the authentication value and its modification rule with the generated
session key. These two pieces of information are sent back to the client.

(C) The client application prompts the user for his password when it gets back these
two pieces of encrypted information; it then generates the users private key from
it.

(C) With the private key the client decrypts the obtained session key.

(C) With the session key the client decrypts the obtained authentication value and the
belonging modification rule.

login():

(C) The client modifies the authentication value with respect to the modification
rule.

(C) He encrypts the authentication value with the session key and sends this together
with username and session id to the authenticator.

(A) The authenticator encrypts the authentication value and compares the result with
its copy. If these two match, it sets the loginPending flag to false, which indicates
a successful completed login procedure. Otherwise, the authenticator sends a sig-

 54

nal back to the client that indicates, that the authentication value was wrong31, and
releases all resources allocated for this session.

Logout

The logout procedure is the simplest method in this security service. If a party wants to
logout at the authenticator it only has to call the logout() method together with its user-
name, session id and a valid authentication value at the authenticator as it is shown in
Figure 16. The authenticator checks the authentication value, and (if it is correct) releases
all resources for this particular user session.

Figure 16 Client's logout procedure at authenticator.

Client dependent protocol phases

A CORBA client is an application that utilises servant objects offered by CORBA servers
in a way similar to using functions of local libraries. If a client wants to utilise servant ob-
jects of servers within this security system, it has to be registered at this servant object. The
procedure to register at such a servant object is similar to the login procedure at the authen-
ticator, with the exception, that the servant object doesn't have to proof the authentication
of clients on its own, but engages the authenticator with this job.

For this reason, the authenticated client first has to request for a servant object ticket at the
authenticator. If the client has sufficient access rights to utilize the particular servant ob-
ject, it will get such a ticket; otherwise the authenticator will reject the request. The only
thing the client can do with the ticket is to send it to the servant object, requesting it to reg-
ister the client as a party allowed to utilize this servant object. Since the ticket was gener-
ated by the authenticator and contains all the information the servant object needs about
the client, the registration will normally be accepted. The ticket is completely encrypted
with the object server’s session key, so that the object server and its servant objects only
can decrypt it. Only the particular client can use it (i.e. no other client can take this ticket
and exchange the client’s information with its settings).

The registration at a servant object will be carried out in two phases:

n Requesting a servant object ticket at the authenticator and

n Registering with this ticket at the servant object.

31 This normally points to a typo in the password.

 55

This and the analog unregistration from the servant object will be explained in the follow-
ing subsections.

Register at a servant object

As mentioned above, the client first has to request for a servant object ticket at the authen-
ticator, before it can request the servant object for registration. The question is, how can a
client know, which servant objects are registered at the authenticator. One possibility is to
request a servant object ticket with the hope that this servant object is registered at the au-
thenticator. Since this is a gamble, the authenticator (as every object register should)
provides a getRegisteredObjects() method which returns with a CORBA sequence
of information of the registered servant objects (name, short description, IOR, etc.)32. In
this sequence, the client can look for the servant object he wants to utilise, or for an
alternative servant object if the one, he primarily wanted to register at, isn't available. With
this information, the client is able to start the registration procedure (cf. Figure 17 and
Figure 18):

Figure 17 Client's request for an servant object ticket at authenticator.

requestOT():

(C) The client sends the servant object name together with his username, session id
and a valid authentication value to the authenticator.

(A) The authenticator verifies the authentication value with respect to the username
and session id.

(A) It randomly generates a communication key, an authentication value and the be-
longing modification rule for the communication between the requesting client
and the target servant object.

(A) Since the servant object ticket has to be encrypted with the servant object session
key, the authenticator gets this key from its list of registered servant objects (cf.
The list of registered servant objects).

(A) The servant object ticket is generated by putting the client's username, session id,
communication key and authentication value (with the belonging modification
rule) into a CORBA sequence, and encrypts the whole sequence with the servant
object's session key.

32 The getRegisteredObject() method is the only method that could be called unauthenticated.

 56

(A) Since the client also need to know about the communication key and the authenti-
cation value, the authenticator gets the clients session key from the list of authen-
ticated clients (cf. The list of authenticated clients) and encrypts the communica-
tion key and the authentication value with this key.

(A) If this is supported by the servant object, the authenticator sends a ticket digest of
the encrypted ticket to the servant object to notify it about the given ticket.

(A) Finally it sends the ticket, the communication key and the authentication value
back to the requesting client.

(C) The client decrypts the communication key and the authentication value and
stores them together with the untouched ticket in the list of servant objects; it is
registered at (cf. The client’s list of servant object tickets).

registerClient():

Figure 18 Clients registration at a servant object.

(C) The client uses the servant object's IOR to get a reference to the servant object.

(C) It sends the encrypted servant object ticket together with a valid authentication
value to the servant object.

(O) If the servant object supports this, it validates the obtained, encrypted ticket with
respect to the message digest obtained earlier from the authenticator on client’s
ticket request.

(O) The servant object decrypts the obtained ticket with its session key and extracts
the client’s username, session id, communication key and authentication value
from it, validates the additionally sent authentication value with respect to the one
in the ticket and stores this information in the list of registered clients.

If the client no longer uses the servant object or wants to leave the system, it has to unreg-
ister from the servant object, so that it can release the held resources for this client33 (cf.
Figure 19).

33 If the client doesn’t do this, the servant object in a kind of lightweight garbage collecting should do this.

 57

Figure 19 Clients unregistration at a servant object.

unregisterClient():

(C) The client sends its username, session id and a valid authentication value to the
servant object.

(O) The servant object validates the authentication value, releases all the resources of
this client, and returns with no value, if the authentication value is correct. Other-
wise it sends a signal to client.

Object server dependent protocol phases

Basically, every object server is a client and has to carry out the phases to login at the au-
thenticator as described in the forgoing sections. If an object server needs to utilise ser-
vant objects offered by other object servers, it also has to register itself at these servant ob-
jects. The thing that makes an object server different from an normal client is the services
it offers in the form of servant objects, that can be utilized by registered clients as shown in
Figure 20.

Figure 20 Object server that offers servant objects to clients.

 58

In the security service an object server doesn't authenticate the clients by itself, but it en-
gages the authenticator with this job. For this reason an object server has to register all its
servant objects at the authenticator. A servant object is the implementation of a CORBA
object and is accessible over the network. In a CORBA system without security functional-
ity it would suffice to a client to have the interface description and the IOR of this servant
object in order to utilise it. By using the security system, the client has to proof, that he has
the required rights to utilise this servant object. But before any client can utilise a servant
object, the respective object server has to register it at the authenticator. This is done as
described in the following subsections.

Registering a servant object at the authenticator

Assuming, the implementation of a servant object to register already exists, and the Basic
Object Adapter (BOA) is ready, the object server can start the registration procedure at the
authenticator by calling the authenticator method

registerObject():

(OS) The object server creates a basic object information element, which contains the
following elements:

• The name of the servant object that should be registered,

• A textual description that describes the servant object in a concise way,

• The stringified IOR of the servant object,

• The type of the servant object,

• The owner of the servant object (this is the username of the object server),

• The group of the servant object and

• The access mode of the servant object.

Figure 21 Registration of a servant object.

 59

(OS) The object server sends this information together with its username, session id
and an valid authentication value via a call to registerObject() to the authenti-
cator (cf. Figure 21).

(A) The authenticator verifies the authentication value with respect to the username
and session id of the object server.

(A) It extracts the servant object dependant information from the given basic object
information element and puts these together with some object server inherited in-
formation in its list of registered servant objects.

At this point, the servant object is registered at the authenticator and can be utilized by cli-
ents that request tickets for it.

unregisterObject

If the Object Server decides to stop serving, because it want to leave the system, or no
longer wants to offer a servant object to clients in the system, it has to unregister this ser-
vant object at the authenticator. This is done by a call to the unregisterObject() method at
the authenticator. This method has the same parameters as registerObject(). Even the con-
tents of the parameters are the same with the exception of the authentication value, that
must have a different value (since it was modified with the modification rule before).

Utilizing Servant Objects

Once an authorised client has requested for a servant object ticket of its choice, and is reg-
istered at the servant object, this client can utilise the servant object. How such a servant
object should be utilised is however not specified by the security service, but this is up to
the programmer of the object server. If the programmer wants full security support, each
servant object requires a registration (table) of authorised clients, and every method of the
servant object must contain at least the authentication value as parameter (which is to be
validated by the servant object). It is also up to the programmer to implement full message
encryption or only authenticated messages.

It is also possible, that the programmer decides to offer some services to authenticated cli-
ents only, and other (not secure) services to the rest of world. This requires, that he in-
cludes a method in the servant objects to publish the IORs for these kind of services, in-
stead of engaging the authenticator with this job.

 61

The DataViewer.

Introduction

The DataViewer is the client-software used to view the data from a database (or equivalent
files) made accessible by a DataManager. The DataViewer is a Java applet that can run as
a standalone application in a so-called appletviewer or in a browser. It requires however a
Java 1.1.x compatible virtual machine. All the images here were made with IBM Java
1.1.7 running on Windows 2000 Professional (= Windows NT 5.0 Workstation).

The Dataviewer application

When a user (scientist) has started the applet, in a browser, or as a
standalone applet with in an appletviewer, an image as displayed in
Figure 22 will be presented to him.

Clicking on this image will initiate the start-up procedure of
the actual viewer. When the DataViewer is started, clicking
again on this image will hide, or re-show the DataViewer.

During the initialisation of the DataViewer, the user
will first be asked to identify him or herself by logging
in. See chapter “Security” and the section on “Interface
DataManager”.

This enables the use of policies. One can for instance imagine that not all users have access
to all data.

If the user decides not to login by pressing cancel, or if
the logging fails, one can retry by simply clicking again
on the image displayed in Figure 22.

 Figure 22 Start Image of the DataViewer

Figure 23 Login window

Figure 24 Available databases

 62

If the login succeeds, the DataViewer will contact the ObjectManager with the login-result
to get a list of all available databases. It will then present the list of all DataManagers,
available to the user, in a dialog with a combo-box. The user can then select one of them to
connect to. See Figure 24.

If the user has made his selection, the DataViewer will contact the ObjectManager again,
and request the IOR-string of the selected DataManager.

When the DataViewer has received this IOR-string, it is ready to request the DataManager
for the selected database.

The DataViewer will then contact this DataManager, load all available plugins (more on
this later) and start the actual viewer-GUI. The result is presented in Figure 25.

The DataViewer is by default of size 800x600, but can be resized to any preferred size. In
addition, the split-pane can be repositioned, if needed.

Figure 25 DataViewer window with split panes and empty property view.

Clicking on the item Data Root will result in the DataViewer contacting the DataManager
to get the contents of the database and display the hierarchy. The user can then browse
through the whole database (unless of course its user-rights are insufficient.) See Figure
26.

 63

Figure 26 DataViewer window with unfolded content tree

If a user wants to have more information about an object in the database, he/she will only
have to click on the item. The DataViewer will then retrieve the properties of this object
and display them in the Property view. It can also graphically display the item, provided
that a plug-in is available. See Figure 27.

Figure 27 DataViewer window with unfolded content tree and property view containing the pointed to information.

Each data type has a (graphical display) plug-in that is able to handle the particular data
type. Users can write additional plug-ins for new data types. Depending on the object, one
is viewing; the plug-in may have additional options available. See Figure 28.

 64

Figure 28 DataViewer window with graphical plug-in (1-D) to view particular data.

Of course, it is possible to view various objects at the same time. It is also possible to com-
bine several objects in one viewer, for instance for comparison. See Figure 29.

Figure 29 DataViewer window with two graphical displays simultaneously open.

Note that with the 1D (as for instance displayed in Figure 28 and Figure 29) and 2D (for
instance intensity plots) plug-ins, it is possible to zoom in and out. Zooming in is per-
formed by selecting a part of the graph (by using the pointing device) and zooming out by
simply right-button clicking. The DataViewer will exclusively retrieve the data needed to
create the graph. This can speedup viewing considerably (efficient use of network capac-
ity), since the pointed to data could consist out of millions of points.

 65

Finally by choosing the Close menu-item in the File menu one can hide the viewer as ex-
plained earlier. The DataViewer-applet is automatically destroyed when the browser
leaves the page, or, in case of standalone use, when the user closes the appletviewer.

 66

The DataViewer – Architecture

DataViewer structure

The DataViewer was build with flexibility in mind. This becomes clear, when viewing the
global structure of the viewer, see Figure 30.

Viewer GUI

Startup
Application

Viewer
Plugins

DataManager-
Wrapper

Data-
Manager

Figure 30 DataViewer structure

One can observe that we have decomposed the DataViewer in four parts:

• The Application Start-up code

• The Viewer Graphical User Interface

• The plugins

• The DataManagerWrapper

The DataViewer Start-up Code.

In the current version the DataViewer will first contact a Security Manager (Authentica-
tor), then contact an ObjectManager to get a list of all available DataManagers and finally
contact that DataManager and start the GUI.

However, one can imagine that in other situations more or less steps are required / wanted
before the DataManager is contacted and the GUI displayed. For development purposes, a
specials lite client was created, which is identical to the actual DataViewer, except for the
fact that it contacts a DataManager directly, to allow for the testing of DataManagers. The
flexible design, which separates the actual Viewer GUI from the initial start-up-code
made, facilitates this.

 67

Another example is that the same Viewer GUI could be used in developing both an applet-
version for use in web pages and a standalone Java-application. Only the Start-up-code had
to be different.

The DataViewer GUI.

The DataViewer GUI consists of a set of Java-classes
based on the Java SWING library. What the Viewer
GUI does is nothing more than contacting the Data-
Manager to get all the available items and list them in a
tree-like fashion (Figure 31). When a user (scientist)
selects an item, it will display its properties in a special
property window and when the user decides to view the
item, it will start the appropriate plugin, which will then
handle all further actions.

The Plugins.

Because a database can contain many different object types, the DataViewer should be
able to view just as many as there are present. However, the Viewer GUI does not have to
accommodate all data-types by itself, but uses plugins instead. This prevents the Viewer
GUI from getting too complex and difficult to maintain. This also means that the function-
ality of the DataViewer can be augmented by simply adding or changing plugins. In the
case of different applications, one could also opt for different plugins for the same data-
type.

Moreover, if in the future, additional data-types are added to a database, the viewer can be
easily extended to support the new types.

Writing a Java-plugin for the DataViewer involves the following steps:

1) Define a class with a unique name, which extends the abstract class
DataPlotter:

 class MyClass extends DataPlotter

 {

 }

2) Implement the abstract member functions of the DataPlotter class:

JMenu getMenu()

Should return a JMenu, which can be used to configure your DataPlotter.
May return null, if you don't provide a menu.

void clear()

Figure 31 DataViewer, expanded tree

 68

Perform whatever actions will clear your plotter.

void setDataSource(DataManagerWrapper dm)

Tells your plotter where from to get its data. The DataManagerWrapper
class is described later.

void addSignal(ObjectHeader oh)

If possible, add the signal corresponding to the ObjectHeader to your plot-
ter. Your implementation should retrieve the data itself, using the data
source provided by setDataSource().

boolean canPlot(ObjectType t)

Should indicate, whether or not your potter is capable of plotting an object
of the provided type.

ObjectType[] getPlotableTypes()

Should return an array of all the types your plotter is capable of handling.
Don't return an empty array here, as your plotter will only be asked to plot
data of the types you return.

3) Add the name of your class to the list in the 'plugin.list' file. This file will be read
by the Start-up code, and all classes in it will be automatically registered with the
Viewer GUI.

The DataManagerWrapper.

The DataManager-interface has certain aspects, like security, which would make the
viewer, in having to deal with them, very complex and not very flexible. Any change in
the DataManager’s interface, or any change of its aspects, like the security, would require
rewriting large amounts of code. Therefore, a DataManagerWrapper-class was put in be-
tween.

The DataManagerWrapper is, as the name already indicates, a wrapper around the actual
DataManager-interface. This wrapper shields the Viewer GUI and its plugins from the ac-
tual CORBA DataManager interface.

The DataManagerWrapper provides the same calls as the DataManager-interface imple-
ments, but then simplified, by stripping all to the GUI and plugins irrelevant aspects. This
design makes programming less complicated, since all these aspects of the DataManager-
interface are now hidden from the Viewer GUI and plugins.

All communication between a DataManager and the DataViewer occur via this wrapper,
which also results in a very flexible design, since now any change in the DataManager-
interface will only require an equivalent change in the code of the wrapper-class.

 69

Experiment to be controlled remotely

The nature of diagnostic systems ranges from simple magnet field sensors to complete
interferometers, from current reading devices to complete tomographs. The majority of the
signals from the sensors have to be digitised and undergo analogue-to-digital conversion
after proper amplification and filtering. The electronic systems are there to perform i.e. all
these tasks. The settings of the electronics have to be adjusted remotely because of radia-
tion hazards etc. The same holds for the instruments that control the generation of the
plasma. (See Figure 3). Ideally control and data acquisition should be carried out along
well-separated channels, but in practise this is not always the case. The PP DYNACORE
architecture is developed

The pulsed Radar Reflector Diagnostic34

In pulsed radar reflectometry, short microwave pulses in the order of 1 ns are
launched into the plasma by means of antennas. Depending on the radar frequency
(channels) and the plasma parameters, the pulse is reflected by a critical density layer
and received again (also in an antenna) by the diagnostic equipment. The basic quan-
tity that is measured by the pulsed radar diagnostic is the flight time of the microwave
pulse between transmission and detection.
The number of independent channels is ten and two variable frequency channels are
added to the system. The two variable frequency channels can be used in combination
with two fixed frequency channels to perform correlation measurements and to study
MHD modes in the plasma. The pulse repetition frequency is 2 MHz for the ten chan-
nels. The flight time is recorded with an accuracy of 70 ps, corresponding to a spatial
resolution of 1 cm when reflected from a metal mirror. The accuracy can be further
improved to 35 ps. One of the drawbacks of the pulsed radar technique is the fact that
fluctuations and shallow density gradients give additional pulse broadening, which
has an effect on the flight time measurement. The chosen pulse length of 1 ns is a
compromise between the accuracy of the time of flight measurement and the pulse
broadening. In the present system, the flight time is measured between the 50% level
of the leading edge of the transmitted and received pulse. By clocking also the 50%
level of the falling edge a measurement of the pulse width could be obtained. This
would provide additional information on the density gradient.

34 http://ns2.rijnh.nl/n3/n1/n3/f1234.htm; C.A.J. Hugenholtz et al., Fast pulsed radar reflectometry for the Tex-
tor Tokamak, Rev. Sci. Instr. 70 (1999) 1034

 70

System layout
The distance from the antennas to the radar set-up itself is about 10 meters. Two echo
pulses will be received from each transmitted radar pulse. The first one is a start pulse
traveling via a bypass and the second one is the stop pulse reflected at the critical density
layer. The minimum time between the two pulses is 4 ns, which is determined by the con-
stant fraction discriminator (CFD) in the video section of the set-up (Figure 24). The long-
est time delay is obtained from reflections at the far wall when the density rises to near the
critical density (nc). The time delay with plasma densities near nc is about 6 ns longer than
the time delay without plasma. Calibration is performed using the time of flight system
(TOF) of the reflected pulse at the far wall. The bypass consists of two 10 dB directional
couplers, an attenuator and a short section of wave-guide. The position of the bypass must
be chosen in such a way that the start and stop pulse coincide with the 20 ns LO (oscilla-
tor)-pulse. The two (bypass and signal) pulses will start and stop a time-of-flight counter
(TOF), developed at Rijnhuizen using eight parallel-gated counters. The data produced by
the TOF-counter is fed to a data acquisition system built in VME. The data handling, stor-
age etc. will be described in the next section.

SOURCE

MIXER

LO

CFD

TOF

18 ARBITRARY
WAVE GENERATOR

V M E

MEMORY

CPU

Data

Control

TEXTOR Start TIMING

start/stop

Ethernet

Figure 32: Timing, control and data storage

Software for control, data handling, and storage

The pulsed radar diagnostic will be regarded as a subsystem of TEXTOR. This means that
the diagnostic should be synchronized with the TEXTOR control system. Four timing
stages are distinguished:

n inter-pulse (diagnostic can be used),

 71

n pre-pulse (all devices are initialised and ready to accept a pulse),

n start-pulse (radar start),

n post-pulse (the data in the memory module can be stored in a database).

There is a possibility to work stand alone for test purposes. The data acquisition of the
pulsed radar diagnostic is (whenever possible) built up from commercially available com-
ponents like a Solaris v2.4 operating under UNIX with a VME-bus system (Figure 25).
The embedded controller35 clocks the data via the RS485 input into a dual-port memory. A
VSB VME-bus is the connection between the modules. In this way the memory-module
acts as a memory extension of the UNIX system. The pulsed radar controller and the arbi-
trary waveform generator (for calibration and test purposes) are developed by FOM-
Nieuwegein.

VME Bus

Pulsed Radar
Diagnostic

20 M Samples/s

Pulsed Radar
control

AWG

TEXTOR
timing

Source

TEXTOR

SPARC - 5V
VME - PROC
SOLARIS v2.4

64 - 128 Mb
 MEM

Acces Dynamics
 DC1
68340 embedded
 controller

DM14
RS485

9 Gb Disk

Ethernet

SCSI -II

16 I/O lines
20 Mb/s

2/4/10 channels
2 channels VCO

trigger

init

DLT Tape

Figure 33: Control, data handling and storage systems

35 Acces Dynamics, DC1.

 73

The Pulsed Radar Reflector Control

The PulsedRadar Viewer is a viewer application for the exemplary “Diagnostics
Controller”. This controller is an application, which sets and monitors all the settings
used for a specific experiment that is performed on the Textor-94 tokamak. Since
there can be various sorts of experiments, there can be various types of PulsedRadar
viewers. This document describes an example of such a viewer (controller).

Interface Pulsed Radar Reflector viewer

Since the exact interface depends of the type of experiment there is no need to go into all
the full details of the interface and only the basics of a typical “Controller” interface will be
described.

 enum Event_Type

 {

 UNKNOWN_Event,

 STOP,

 START,

 ARM,

 TRIG,

 DATA,

 HALT,

 Nr_Events

};

The controller typically uses a set of events, which are used to set and monitor the status of
the experiment. These would usually contain events like in our example.

enum State_Type

 {

 UNKNOWN_State,

 NoPulse,

 InterPulse,

 PrePulse,

 ActivePulse,

 PostPulse,

 Abort,

 Nr_States

 };

The controller reports the status to the viewer during the experiment. Therefore, the
interface will typically contain an enumeration of state-types.

 74

 struct Config_Type

{

 long pre_trigger;

 short mode;

 short interlace;

 long start_time;

 long nr_samples;

 long step;

 long end_time;

};

The interface will also contain a structure, which defines the configuration. The client uses
this to set a new configuration for a new experiment. The exact content of course varies
from experiment to experiment.

struct Status_Type

{

 State_Type state;

 string shotnr;

 long progress;

 long pre_trigger;

 long samples;

 long dc1_status;

 long awg_status;

 short mode;

 short interlace;

};

Besides general status about the current experiment more advanced status-information is
returned to enable the client to view the exact results of the experiment and enables the
user (scientist) to actively control the experiment remote.

Besides these structures there are a few other structures, which define the interface and
GUI of the client. All these structures can be read and set during the experiment.

An example of how to set the Config_Type structure with Java or C++ would for instance
be:

CurrentConfig = PrsObject.config() ; // get configuration

PrsObject.config(NewConfig) ; // set configuration

 75

Because everything is packed into structures and enumerations, the interface is very flexi-
ble. Although the exact contents of these structures and enumeration’s may change, all cli-
ents will be of a similar form, which enables fast development of such viewers and
controllers.

Next to this set of enumeration’s and structures, the interface will typically contain a set of
functions of which these are the most important.

long generate_event(in Event_Type event) ;

This function is used to generate an event. This function enables the client to control the
Pulsed radar controller.

Config_Type check_config(in Config_Type conf);

This function is as the name says, used to check a new configuration. Some settings might be
theoretically possible, but not supported by the actual equipment that perform the experi-
ment. In addition, conflicting settings might occur. This function enables the client to check
such settings before actually trying to set them (which of course will fail if the settings are
not valid). It will automatically correct incorrect or conflicting settings.

oneway void shutdown();

This function will shutdown the remote controller if the experiment is finished.

An example interface.

An example of an interface is presented in Figure 34.

Figure 34 GUI for controlling the Pulsed Radar Reflector, either locally or remotely.

 76

The interface shows all the current settings in three panels (Settings, AWG1 and AWG2)
and an event-bar, which shows all the events and enables the user to create them too.

On the bottom, the status is being displayed.

A typical settings-screen to set the options can be found in the Option menu. See Figure
35.

Figure 35 Extra pane (options) to change settings with check.

Note the Check button, which is used to validate the new settings.

 77

Performance measurements

We measured the performance of our distributed database architecture in order to see if it
can meet the high performance requirements mentioned before. For this, we have used the
GigaCluster set-up as shown in Figure 3636.

Cabletron
SSR - 8000
Router

Sun
Ultra

10
SunOS

7.0

Cabletron
SSR - 8000
Router

Cabletron
SS - 6000
Switch

Sun
Ultra

10
SunOS

7.0

Sun
Ultra

10
SunOS

7.0

Sun
Ultra

10
SunOS

7.0

Sun
Ultra

10
SunOS

7.0

Sun
Ultra

10
SunOS

7.0

Sun
Ultra

10
SunOS

7.0

Sun
Ultra

10
SunOS

7.0

Figure 36 The GigaCluster measurement set-up

The GigaCluster set-up consists of eight Sun-Ultra-10 workstations running SunOS 5.7
and two Cabletron SSR-8000 Smart Switch Routers. The SUNs are grouped in two clus-
ters of four computers. All computers in a cluster are interconnected via a Cabletron router
in a switched 1 Gigabit/sec fibre network.

Objects to store

Sun Ultra 10
SunOS 7.0

Test Client

Sun Ultra 10
SunOS 7.0

DataManager

Objectivity
Database

Client side Server side

IP over Ethernet

CORBA/IIOP

Figure 37 Actual set-up for the performance measurements.

36 SUN-Ultra-10 GigaCluster project overview and status:http://www.phys.uu.nl/~niderost/gigacluster. This
reference is given for a complete overview on the available hardware and is not directly of concern for this re-
port.

 78

The two routers are also interconnected via a 100 Mbit/sec fibre network. Finally, all com-
puters are also interconnected via a 100 Mbit/sec link using a Cabletron switch.

For the performance measurements described in the sequel we used only a part of the clus-
ter. To this end a client (data producer) and a server (data storage) were implemented ac-
cording to the scheme above, each on one computer in the cluster.

Direct versus CORBA:ANY parameter passing

In our first test, we have run a database with a data manager on a computer of one of the
clusters, and a database client on a computer on the other cluster. The measurement was
performed with two different CORBA interfaces. Using the first (fast) interface, data was
sent as is from the client to the server. Using the second (generic) interface, data was
packed into a CORBA:ANY object before transport, and after the transport, this object
was unpacked again by the server before storage. The fast interface looks very compli-
cated, since it needs separate methods for storage of every type of data objects. The generic
interface is much simpler, but the data packing might influence the performance of the sys-
tem significantly. The measured times are given in Table 1.

CORBA interface Client time Server time

Fast interface 98.48 ± 0.14 sec 70.55 ± 0.11 sec

Generic interface 483.9 ± 0.5 sec 289.7 ± 0.3 sec

Table 1:Time to set up a transaction, store 324 data objects, each consisting of a header and 106 bytes of raw data, in a
single directory, and commit the transaction. The client time is the total time as seen from the client. The server time is the
time spent in the data manager routines at the server.37

The errors given are the internal errors in the results of the measurement series, taken with
only minimal processes running on the computer, and one active user. Systematic errors
depending on the software environment can have much larger influences. Clearly, the
time necessary to pack data into a CORBA:ANY and unpack it again adds a considerable
overhead. This is true for the server as well as for the client, as can be seen from the meas-
urements of the time spent in the server routines during the previous test (see Table 1
again).

Filling a database

In order to achieve higher performance, we have used only the fast interface in further test-
ing. In the next test, we measured again the time necessary to store 324 objects with 106
bytes of raw data. We repeated the measurements 20 times, while we reused the database
until it was full. Every time the database was full, we emptied the database and continued
our measurement. The result is depicted in Figure 38.

We grouped the 20 measurement results into four series (1 to 6, 7 to 12, 13 to 18 and 19 &
20), since we had to empty the database after every 6 measurements38. The number on the
x-axis of the graph is the number of the measurement within its series.

37 These are the routines that implement the CORBA interface. Only the time used to unpack and store the
data is included, not the time spent in the IP-stack or in the CORBA IIOP protocol.

 79

The measurements show that the time to store data in a database is slightly dependent on
the size of the database. Maximum time is about 10 % above the average. The time does
not increase linearly with increasing database size, but shows a characteristic peak just be-
low a 1 GB database size. Perhaps that this is a result of the algorithm used by Objectiv-
ity/DB to increase to database file stepwise. We repeated this experiment with different
object sizes. The same characteristic appeared, and it turned out that it depends on the
amount of data in the database, not the number of objects.

96

98

100

102

104

106

108

110

112

1 2 3 4 5 6
Number within series

T
im

e
(s

)

Measurement 1 to 6
Measurement 7 to 12
Measurement 13 to 18
Measurement 19 & 20

Figure 38 Repeatedly storing data in the same database. The database is emptied after the 6th, 12th and 18th measure-
ment.

One more remark should be made here. The first measurement series started with a com-
pletely new database, while the other three reused the database after it was emptied. This
difference might explain the difference between the corresponding graphs. The physical
file size of the database on the hard disk was small in the first case, but it remained 2 GB
after emptying a full (2 GB) database.

Dependency on number and size of objects

y = 0,3116x - 1,9894
R2 = 0,9998

0

50

100

150

200

250

300

350

0 200 400 600 800 1000
Number of objects

(each containing 106 bytes of raw data)

T
im

e
(s

)

Figure 39 Time needed to store objects containing 106 of raw data as a function of the number of objects stored. (R2 is
correlation coefficient squared)

38 On our test platform, the maximum database size is 231-1 bytes, or 2 GB. Since we store 320’000’000 bytes
per measurement, we hit the database limit during the 7th measurement. This number is not the maximum
storage capacity of our architecture, since a federated database can contain many databases.

 80

The following two measurements show the dependency of the performance on the object
size and the number of objects stored. They both measure the time at the client involved in
storing a number of data objects into an empty database. In the first case, the size of the
objects was fixed to 106 bytes of raw data, and the number of objects stored in one transac-
tion was varied (Figure 39), in the second case, the number of objects was fixed to 324,
and the size was varied (Figure 40).

Both measurements fit well to a linear function y = a x + b. The offset b can be understood
as a non-linearity for small number of objects or object sizes respectively. The a-values
indicate a storage speed of 3.2 x 106 and 3.4 x 106 B/s respectively. This is about one third
of the raw data storage speed of the hard disk used (10 to 11 MB/s).

y = 95.521x + 11.141
R2 = 0.9991

0

50

100

150

200

250

0 0.5 1 1.5 2
Raw data in object (x 106 bytes)

T
im

e
(s

)

Figure 40 Time to store 324 objects as a function of object size.

To achieve the performance requirements, a storage speed of 500 x 106 / 60 = 8,3 x 106 B/s
is needed. This can easily be achieved using 3 SUNs in parallel (3 x 3.2 x 106 = 9.6 x 106
B/s).

Finally we measured the time needed to store data using different networks. The results are
displayed in Table 2.

Network type Client time Network time

Client and server on same ma-
chine

89.20 sec 0 sec

10 Mbit/sec UTP 350.77 sec 259 sec

100 Mbit/sec UTP (using SS-
6000)

98.51 sec 25.9 sec

1 Gbit/sec & 100 Mbit/sec fi-
ber network (client and server
on different clusters)

95.76 sec 25.9 sec

1 Gbit/sec fiber-optic (client
and server on same cluster)

91.64 sec 2.59 sec

Table 2 The time measured at the client to start a transaction, store 324 objects containing 106 bytes of raw data each
and finish the transaction using different networks, and the theoretical minimal time to transfer the amount of data without
any overhead over the network.

 81

Considering that the time spent in the data unpack and storage routines always amounts to
about 70 s, the times measured for a client and a server on the same machine and for a cli-
ent and a server interconnected via a 1 Gbit/s network can be explained when it is assumed
that about 20 s are spent in the IP-stack routines. The three other times can be explained
considering the network limitation, where the network overhead varies from negligible for
the 1 Gbit/sec & 100 Mbit/s fibre network to 10 % for the 10 Mbit/s and 100 Mbit/sec
switched UTP network Using these figures, it can be seen that at least a 100 Mbit/s
switched UTP network is necessary to achieve the performance goal using 3 SUNs in par-
allel. A 100 Mbit/s shared network would not have enough bandwidth to meet the re-
quirements.

Conclusions

We have designed a database model that is very flexible. It can store any measurement ob-
ject that is created currently at the Textor ’94 experiment, and we assume it is flexible
enough to be able to store any new type of measurement data that will be created in the
future.

The database model is embedded in a distributed database architecture using Objectivity
and CORBA. The architecture has been optimised for performance, since high perform-
ance is of utmost importance in this project.

We have measured the performance of our prototype architecture on a state-of-the-art
computer cluster. We used different network configurations to emulate a real-world sce-
nario. Our measurements showed that the prototype architecture can meet the high per-
formance requirements of a Textor ’94 measurement database using SUN Ultra-10 work-
stations in parallel as database servers together with a 100 Mbit/s switched network.

 82

Performance measurements on a distributed database

There are many tests possible that measure the performance of the demonstrator described
above. How useful they are depends mainly on for what purpose they are done. The meas-
urements described in this section are meant to show if the distribution mechanisms work.
Results of other measurements, which show the performance of a single DataManager ob-
ject using a single database, were described before.

Distribution over multiple SUN-Ultra-10 computers

The following measurements have been performed on four computers that are part of the
GigaCluster which was described before. The GigaCluster consists of eight SUN-Ultra-10
computers, running the Solaris 7 operating system, Objectivity/DB version 5.1 and the
SUN workshop compiler version 4.2. The same computers have been used under the simi-
lar conditions for previous measurements, mentioned above. For this test the computers are
interconnected using a 10 Mbit/s Ethernet network.

Figure 41 shows the measurement set-up. The measurement database is distributed over
four computers. Every computer has one database file, one AMS server, a DataManager,
and a database (DB) client that stores data in the database. The database client uses the
DataManager that is running on the same computer, and stores data in the local database
file. This is the most optimal situation, as it does neither use the AMS servers nor the net-
work to store data. However, the DataManager objects still need the network to connect to
the lock server, and to resolve the references to the databases. Initially the DataManager
objects only know the location of the federated database.

Using this set-up, the time a database client needs to store 500 MB of raw signal data has
been measured. The measurement has been repeated four times, first with only one data-
base client, running on computer “hst3733”, then with two clients, three clients, and finally
with four clients. The results are shown in Figure 42.

As can be seen from the figure, the parallelisation of the data storage works very well. The
graph showing the total processor time indicates that there is only a few seconds overhead
associated with the database distribution over two or three computers. Distributing the da-
tabase over four computers yields a larger overhead, and a much larger uncertainty in the
total processor time. The exact reason for this effect is unclear, but it seems plausible that
the (shared) network reaches a limit. For example, it might become overloaded and drop
packets. This would result in TCP/IP time-outs, which in turn cause a lot of overhead and
uncertainty in the total processor time.

Figure 41 Set-up for the distributed database performance
measurements on the SUN-Ultra-10 GigaCluster.

“hst3730” “hst3731” “hst3732”

“hst3733”

10 Mbit/s Ethernet network

Database 1 Database 2 Database 3
Database 4
dynadisFD

Lock server

DataManager DataManager DataManager DataManager

AMS server AMS server AMS server AMS server

DB client DB client DB client DB client

 83

In the present set-up the average computer time shows that three computers in parallel are
able to meet the performance requirement of storing 500 MB of measurement data within

1 minute. Four computers in parallel should further reduce the time, but the uncertainty in
the storage time will become larger. The figure indicates that the requirement of storing
500 MB within 1 minute on 4 computers is not met always. In this test situation distribu-
tion of the data storage over three computers seems to be optimal, but would not be exem-
plary for other configurations.

Performance of a 700 MHz Athlon computer running Windows NT 4
The computer industry increases the performance of their architectures at an incredible
pace. The tests of the previous paragraph were performed on computers that are over a
year old. To have a view of what a single commodity computer can achieve nowadays,
another test has been done. It was carried out on a computer with an Asus K7M mother-
board39 running the Microsoft Windows NT Server 4.040. The CPU was a 700 MHz Ath-
lon-processor41. The measurement database was stored on an 18.2 GB Quantum Atlas 10K
SCSI hard disk42. The test repeated the one in the previous paragraph, but now only for a
single DataManager using a single computer. The time necessary to store 500 MB of raw
signal was 99 ± 6 seconds in this case.

This measurement indicates that today, two commodity computers working in parallel can
achieve the performance goal of storing 500 MB of measurement data within one minute.
If the machines would work completely in parallel, it would take them approximately 100 /
2 = 50 seconds to store 500 MB of measurement data. The locking mechanism will in-
crease this time slightly, but, looking at the distribution overhead on the SUN cluster, this
overhead would not amount to more than 10 seconds. It is also to be expect ed that in the
near future, one single commodity computer will be able to achieve the performance goal
all by itself.

39 Asus K7M motherboard product description:
http://www.asus.com/Products/Motherboard/slota/k7m/index.html
40 Microsoft Windows NT server 4.0 product description available on the Internet:
http://www.microsoft.com/ntserver/default.asp
41 AMD Athlon processor product description available on the Internet:
http://krypton.amd.com/products/cpg/athlon/
42 Quantum Atlas 10K product description available on the Internet:
http://www.quantum.com/products/hdd/atlas_10k/atlas_10k_overview.htm

Figure 42 The average time it takes to store 500 MB of
raw data, using 1, 2, 3 respectively 4 computers in
parallel. The total processing time of all participating
computers together is also shown. Every point has
been measured multiple times. The error bars show the
standard deviation in the results of the repeated meas-
urements. Only the one for 4 computer-case stands
out, the others are too small to be visible in the graph. 0

50

100

150

200

250

1 2 3 4

Number of parallel computers

T
im

e
(s

) Total processor time

Average Storage Time

 84

 85

Network performance aspects

Network performance measurements IPP - FOM – UU

Features

The network performance between the sites at IPP, FOM and UU (see also chapter “
Network situation” for the positions in the network and the next paragraph) is measured
with a package called RTPL (Remote Throughput Ping Load). The intention of this pack-
age is to do periodic net performance measurements between a set of hosts, which can be
specified by the user. From a control host, these measurements are started at the participat-
ing hosts with a remote shell command. The following tests are executed:

n The throughput between each host pair, using the netperf43 command.

n The roundtrip times between each host pair, using the ping command44,45.

n The load of each host with the uptime command. The load is measured to be
able to relate net performance decrease to eventual machine load.

The measurements are performed at Unix workstations by executing Perl scripts. The
crontab utility is used to start the tests periodically at the so called control host. The Perl
script at the control host starts the net performance measurements at the test hosts with re-
mote or secure shells. The results are collected at the control host and stored in ZIP com-
pressed data files. The presentation of the data is Web based: A JAVA Applet is used to
load the ZIP compressed data files, JavaScript is used to generate dynamically several
views to the data in the form of HTML tables. JavaScript directly calls Applet methods to
obtain the required data. The Applet can also be used to present a plot of the data, dis-
played in the tables.

The following data files, also recent ones, of more general interest, can be viewed via the
Web in the mean time: [http://www.phys.uu.nl/~blom/doc/net_test/ipp_fom_uu/]
Since these data do not particularly focus on the connectivity between IPP and FOM, they
are mentioned here just for completeness. This “archive’ contains

n data of the last 7 days.

n For each week of the last half year a data file is available.

n The week’s mean values from the last year.

n The day’s mean values from the last year.

43 Netperf Home Page: http://www.netperf.org/netperf/NetperfPage.html
44 R. L. A. Cottrel, C. A. Logg, and D. E. Martin, "What is the internet doing?
performance and reliability monitoring for the HEP community", Computer
Physics Communications, vol.110, pp.142--148, May 1998
45 URL: http://www-iepm.slac.stanford.edu/pinger/

 86

n The mean values, calculated at the periodic measurement times, for the days of
the week, averaged during a quarter. The data are stored during a year.

n The mean values, calculated at the measurement times, for the workdays of the
week, averaged during a month. The data are stored during a year.

Measurements IPP -- FOM – UU, earlier measurements, August ‘99

Figure 43 Topology used in the tests, described in the text

 87

Figure 44 Throughput data between the IPP site and sites at the FOM and UU for two workdays in August. The test direc-
tion is specified in the plot labels. The site entitled "SURFnet'' is positioned close to the router in Utrecht.

With these features of the package the network performance was monitored between the
following sites participating in the DYNACORE initiative:

n Institute for Plasma Physics (IPP) in the Science Centre Jülich (FZJ), Germany
(DYNACORE partner).

n FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein, the Netherlands.

n Institute of Computational Physics, Faculty of Physics & Astronomy, Utrecht
University, Utrecht, the Netherlands (DYNACORE partner).

To check if possible bad performance could have been caused by congestion in the net-
work at the FZJ, two other sites at the FZJ were included in the measurements:

n A host at the ZAM department, close to the (DFN) router.

n A host at the ZELAS department at another region of the FZJ.

The August ‘99 data, here presented, are the most representative for the start of the tests for
the DYNACORE deployment. Before, but also after August, not all connections were
available. So to evaluate the situation with respect to the connection ‘IPP – FOM’ this was
the most relevant period. In the comparison of the results we focused on the situation to
and from IPP. During day time there is a considerable net performance loss at the connec-
tions between IPP and FOM and between FOM and UU. In Figure 44 the throughput
measurements from the site at IPP to sites at the FOM and UU during two workdays in
August are displayed.

 88

The results of the measurements with these sites at the same days as the throughput data
from Figure 44 are shown in Figure 45

Figure 45 Throughput data between the sites IPP, ZELAS and ZAM at the Forschungszentrum Jülich for two workdays in
August.

Figure 45 shows clearly, with the exception of some accidental dips, that there is no con-
gestion at the FZJ network: the throughput values during daytime and night time are not
much different.

The general conclusion from the measurements was that at the time of the first network
performance measurements the international connectivity was not very stable, but improv-
ing. The local networks at FZJ, FOM and UU were rather stable with some exceptions that
have been cured in the mean time.

Measurements IPP -- FOM – UU, later measurements, Jan – April 2000

In this paragraph the results of the network performance monitor between IPP - FOM and
Utrecht will be reviewed. The attention will be focussed on the results in the first thirteen
weeks of the year 2000. Moreover the improvements during the complete observation pe-
riod (22-8-1999 until 2-4-2000) are discussed. Because bandwidth, and not so much avail-
ability, is the limiting factor in the connections, mainly throughput results are presented
here.

 89

Sites

The results of the throughput measurements between the following sites will be compared:

Connection BW [Mbit/s] Weeks
 ZAM<=>UU-36
IPP<=>FOM

TEN-DE<=>TEN-NL

100
10
100

34 (99) - 14 (00)
34 (99) - 05 (00)
37 (99) - 49 (99)

The participating sites where placed at the following locations:

Site Location
ZAM ZAM Department, Jülich, Germany.
IPP IPP Department, Jülich, Germany.
TEN-NL Dutch PoP TEN-155 network,

Amsterdam, Netherlands.
TEN-DE German PoP TEN-155 network,

Frankfurt, Germany.
FOM FOM Institute Rijnhuizen,

Nieuwegein, Netherlands.
UU-36 Computational Physics Uni.

Utrecht, Utrecht, Netherlands.

For the connections between these sites the results concerning performance and availabil-
ity are presented in the following sections.

Time throughput averages

In this section the throughput average values, calculated at the hours of the days for the bi-
directional connections ZAM <=> UU-36 and IPP <=> FOM will be compared. There are
mean values calculated for working days (Mon - Fri) and for in the weekend (Sat - Sun).
The results are obtained for the first thirteen weeks of 2000. This implies that the mean
value of a workday (weekend day) is the result of averaging 65 (26) throughput values.
Figure 46 presents the hourly throughput values during working days and Figure 47 shows
the corresponding values in the weekend.

 90

Figure 46 mean workday throughputs in the network between IPP and FOM

Figure 47 mean weekend throughputs in the network between IPP and FOM

 91

From both figures the following conclusions can be drawn:

n The striking behaviour is the clear performance decrease at working days be-
tween 08h - 18h. This is especially true for the connections between the sites
with 100 Mbit/s interfaces (ZAM <=> UU-36), but also the connections between
the sites with 10 Mbit/s interfaces show a decrease in performance. During the
weekend the performance difference between day and night is not so very sig-
nificant.

n We computed the ratio between the minimum throughput during daytime and
the maximum throughput at night for working days. The table below contains
this ratio for the various connections (in the values the non-typical performance
decreases for IPP => FOM at 00h and for ZAM <=> UU-36 around 20h have
been ignored)

Connection Min-Tput /
Max-Tput

ZAM => UU-36 0.60
UU-36 => ZAM 0.64
IPP => FOM 0.67
FOM => IPP 0.79

n With the exception of FOM => IPP all ratios are about the same value. The ex-
planation for this may be that with congestion at a router, the queuing protocols,
sliding window adjustment, etc. are responsible that a proportional part of the re-
ceived packages will be sent to the next hop. This implies that the bandwidth to
the next hop will be related to the incoming bandwidth. This mechanism breaks
down when packets are lost due to heavily congestion at the router. Therefore,
these results were less clear found in earlier throughput measurements where the
performance of the network was worse.

n The performance decrease at 00h for the IPP => FOM connection is typical for
this connection. The result is unknown, but probably local to the IPP. May be
backup activity or other regular service jobs, generating local traffic may be the
cause. The load of the IPP host at that moment is not larger than otherwise, so it
is not a performance feature. The reason that we do not find it in the reverse
situation, FOM => IPP, may be due to the overall lower bandwidth of that
connection.

n The performance decrease around 20h for the connection ZAM <=> UU-36 is
not clear. However, other results show that the cause is probably situated in the
Utrecht University network. The performance diminution is found for all days of
the week.

 92

Throughput histograms
In this paragraph histograms from throughput counting are presented for the connections
ZAM <=> UU-36. The bin counts are given as percentage from the total # of observations.
The results are obtained for the first thirteen weeks of the year 2000, but only at working
days (Mon - Fri)

The following histograms are presented: Figure 48 and Figure 49 show the histograms for
connection ZAM => UU-36 and v.v. UU-36 => ZAM during working hours (08h - 18h);

Figure 48 Histogram of the throughput distribution during working days (08h -
18h) ZAM – UU

Figure 50 and Figure 51 display the histograms for connection ZAM => UU-36 and the
reverse, UU-36 => ZAM, during the evening and night (18h - 24h; 00h - 08h).

The results lead to the following conclusions:

n In the evening and night the higher throughput bins are more frequently repre-
sented than during workday, as may be expected.

n As expected, during workday the lower bins (Tput � 5 Mbit/s) are, due to con-
gestion, more filled than during the evening and night.

n For the connection UU-36 => ZAM there exists more heavily congestion (Tput
� 1Mbit/s) than for the ZAM => UU-36 connection.

 93

n With the exception of ZAM => UU-36 at nighttimes, all histograms show a
clear maximum (shifted to a larger bin at night compared to the working hours).
The distribution of the higher throughput bins shows a shape similar to a Poisson
distribution, probably due to router -> queue algorithms, while there exists a
relative flat shape for the lower bins. In this area more incident driven protocols
may play a role, like for instance packet retransmission.

Figure 49 Histogram of the throughput distribution during working days (08h - 18h) UU – ZAM

Figure 50 Histogram of the throughput distribution during nights of working days working days (18h - 24h; 00h - 08h) ZAM -
UU

 94

Figure 51 Histogram of the throughput distribution during nights of working days working days (18h - 24h; 00h - 08h) UU -
ZAM

Overview time throughput averages

In this section we give an overview of the throughput average values, calculated at the
hours, from all available workday data for a particular connection. The data are presented
in the form of 3D plots, where the x-axis represents the hour and the y-axis the week of
year (1999 and 2000). The plots for the following connections at workdays (Mon - Fri) are
shown:

TEN-DE <=> TEN-NL

During a couple of weeks at the last half of 1999, hosts at the Frankfurt and the Amster-
dam PoP of the TEN-155 network were added to be able to see the influence of router tun-
ing in the throughput performance measurements. Figure 52 displays the performance of
the TEN-DE => TEN-NL connection and Figure 53 the reverse connection. In both plots
the data are averaged over the workdays of one week.

The following conclusions can be given:

n Both plots clearly show the performance improvements due to the router tuning.

n In fact there were two stages in the tuning: after large improvements around
week 42 (1999), there was also a tuning around week 48 where the performance
during daytime was improved. Meanwhile also some high performance peaks
especially for TEN-DE => TEN-NL) were flattened.

 95

ZAM <=> UU-36

Figure 54 presents the hourly throughput values for the connection ZAM => UU-36 and
Figure 55 for the reverse connection. In these plots the data are averaged over the work-
days of two weeks.

The following conclusions can be given:

• The same conclusions are valid as for the TEN-DE <=> TEN-NL connec-
tions.

• Around week 52 1999 there is a maximum for all hours. This is caused by
the traditional low seasonal traffic, especially in the Netherlands, in that
period.

In begin of 2000 there was a further improvement of the performance.

Figure 52 Performance of the network backbone between Germany and the Netherlands

 96

Figure 53 Performance of the network backbone between the Netherlands and Germany

Figure 54 Performance of the network between ZAM-FZJ Germany and UU, the Netherlands.

 97

Figure 55 Performance of the network between UU, the Netherlands and ZAM-FZJ Germany.

 98

Bad performance events

Table 3 Events with Tput < 0.5 Mbit/s for the connection ZAM <=> UU-36, vv

Date Time Site Site Tput Ping lost
dd/mm/yyyy hh:mm:ss 1 2 Mbit/s min[us] avg[us] max[us] [%]

29/03/2000 17:00:08 UU-36 ZAM 0.32 31.200 57.075 85.500 5.000

29/03/2000 15:00:04 UU-36 ZAM 0.21 29.300 45.431 96.500 7.500

29/03/2000 13:00:02 UU-36 ZAM 0.02 23.500 46.862 144.000 2.500

29/03/2000 12:00:07 UU-36 ZAM 0.03 19.500 27.762 44.500 2.500

29/03/2000 11:00:03 UU-36 ZAM 0.07 30.500 60.181 81.500 5.000

29/03/2000 10:00:03 UU-36 ZAM 0.02 19.100 34.594 63.000 5.000

29/03/2000 09:00:03 UU-36 ZAM 0.08 18.300 23.492 45.000 2.500

29/03/2000 08:00:03 UU-36 ZAM 0.01 17.800 22.600 44.100 2.500

29/03/2000 07:00:04 UU-36 ZAM 0.02 16.500 20.341 112.000 2.500

29/03/2000 06:00:03 UU-36 ZAM 0.15 17.500 20.051 32.300 2.500

29/03/2000 05:00:03 UU-36 ZAM 0.02 17.300 18.611 20.100 0.000

29/03/2000 04:00:04 UU-36 ZAM 0.02 17.200 18.624 21.300 0.000

29/03/2000 03:00:03 UU-36 ZAM 0.01 17.000 19.868 61.000 0.000

29/03/2000 02:00:03 UU-36 ZAM 0.02 17.500 23.264 33.300 5.000

29/03/2000 01:00:03 UU-36 ZAM 0.14 17.400 20.060 52.600 7.500

29/03/2000 00:00:04 UU-36 ZAM 0.01 17.200 19.697 24.700 0.000

28/03/2000 23:00:02 UU-36 ZAM 0.03 17.100 19.224 22.900 2.500

28/03/2000 22:00:01 UU-36 ZAM 0.00 19.100 25.067 35.000 5.000

28/03/2000 21:00:02 UU-36 ZAM 0.00 17.500 20.013 28.800 0.000

28/03/2000 20:00:03 UU-36 ZAM 0.00 17.400 21.742 30.800 5.000

28/03/2000 19:00:02 UU-36 ZAM 0.01 17.700 19.561 23.200 0.000

28/03/2000 18:00:03 UU-36 ZAM 0.01 17.800 19.263 23.700 0.000

28/03/2000 17:00:01 UU-36 ZAM 0.02 18.300 25.151 53.900 7.500

28/03/2000 15:00:02 UU-36 ZAM 0.23 98.500 268.350 448.000 20.000

27/03/2000 18:00:04 UU-36 ZAM 0.34 18.300 20.792 23.800 0.000

22/03/2000 18:00:01 UU-36 ZAM 0.16 25.600 35.103 47.300 0.000

22/03/2000 12:00:06 UU-36 ZAM *** 83.000 121.276 152.000 0.000

20/03/2000 16:00:13 UU-36 ZAM *** 25.200 27.197 33.400 0.000

16/03/2000 16:00:06 UU-36 ZAM 0.10 25.300 31.614 44.700 5.000

16/03/2000 16:00:06 ZAM UU-36 0.08 25.000 32.243 59.000 2.500

16/03/2000 15:00:05 UU-36 ZAM 0.00 25.100 27.881 34.700 2.500

16/03/2000 15:00:05 ZAM UU-36 0.00 25.000 28.314 36.000 7.500

16/03/2000 14:00:12 UU-36 ZAM 0.02 24.400 27.229 37.300 0.000

16/03/2000 13:00:08 UU-36 ZAM 0.12 19.100 22.389 31.000 2.500

16/03/2000 12:00:02 UU-36 ZAM 0.04 18.700 21.543 29.000 2.500

16/03/2000 11:00:05 UU-36 ZAM 0.01 18.400 22.418 46.300 0.000

16/03/2000 10:00:02 UU-36 ZAM 0.48 334.000 422.105 505.000 0.000

16/03/2000 10:00:02 ZAM UU-36 0.21 448.000 527.811 629.000 2.500

14/02/2000 15:00:04 UU-36 ZAM 0.28 44.200 47.850 51.300 10.000

08/02/2000 12:00:07 ZAM UU-36 0.40 30.000 36.270 43.000 2.500

28/01/2000 09:00:05 UU-36 ZAM 0.46 30.500 36.554 43.300 2.500

24/01/2000 17:00:06 ZAM UU-36 *** 766.000 850.094 919.000 15.000

23/01/2000 14:00:06 ZAM UU-36 0.03 25.000 52.667 83.000 5.000

20/01/2000 10:00:07 UU-36 ZAM *** 23.000 25.126 30.400 0.000

13/01/2000 16:00:07 UU-36 ZAM *** 17.500 19.463 23.300 0.000

 99

Table 3 shows the monitor parameters for all events where Tput < 0.5 Mbit/s, which is a
arbitrairy number, for the first thirteen weeks of 2000. Only the events for the ZAM <=>
UU-36 connections are listed.

The following conclusions can be derived from this table:

n There are no structural performance decreases (collapses).

n The performance diminutions are clustered at the same dates. They are probably
caused by network problems. This is especially the case for the events during the
night.

n The most events are registered for the connection UU-36 => ZAM. They can
also be observed as local maxima in the histograms for the corresponding bins.

Table 4 Failures in the network listed according date / time for the last part of the reported period (end April 2000) for the
connection FOM – IPP, vv

Table 4 shows the events with Tput < 0.5 Mbit/s, for the connection IPP – FOM directly.
Since the first week of April this connection was monitored once again. There is still not
much statistics.

Date Time Site Site Tput Ping lost

dd/mm/yyyy hh:mm:ss 1 2 [Mbit/s] min[us] avg[us] max[us] [%]

03/05/2000 12:30:05 FOM IPP 0.08 21.511 31.684 100.014 2.500

02/05/2000 14:30:05 FOM IPP 0.45 26.727 32.291 39.207 5.000

01/05/2000 01:30:04 FOM IPP *** 94.804 95.665 96.626 0.000

01/05/2000 01:30:04 IPP FOM 0.03 93.600 94.621 95.746 0.000

30/04/2000 14:30:05 FOM IPP *** 94.999 95.503 96.045 67.500

30/04/2000 04:30:04 FOM IPP *** 18.284 19.087 20.518 0.000

30/04/2000 04:30:04 IPP FOM 0.31 17.550 18.313 19.540 0.000

29/04/2000 03:30:06 IPP FOM *** 17.550 24.973 219.375 15.000

25/04/2000 15:30:04 FOM IPP 0.35 25.996 31.196 35.238 10.000

14/04/2000 15:30:05 IPP FOM 0.05 26.325 80.163 254.475 22.500

14/04/2000 14:30:05 FOM IPP 0.20 28.613 36.875 41.483 0.000

14/04/2000 13:30:05 FOM IPP 0.05 30.705 103.175 267.399 27.500

14/04/2000 13:30:05 IPP FOM 0.14 31.200 114.903 240.342 30.000

13/04/2000 08:30:04 IPP FOM 0.03 23.400 84.153 373.724 15.000

12/04/2000 14:30:05 FOM IPP 0.46 30.107 49.902 137.668 10.000

11/04/2000 12:30:06 FOM IPP 0.21 30.782 160.100 508.345 37.500

11/04/2000 12:30:06 IPP FOM 0.16 25.350 108.707 253.500 22.500

 100

Overall Conclusions

n The connection Jülich - FOM / UU performs quite satisfactory. There are no
structural performance decreases.

n The required bandwidth of 10 Mbit/s can only be obtained during the night.
However, improvements in the TEN-155 network in the near future may help to
improve this picture.

n The initial problems in the video connections between IPP and FOM were one
of the reasons to start the measurements on network performance. Some of the
problems could be allotted to the unpredictable behaviour of the international
connections (TEN-155). These problems were brought to the attention of na-
tional network providers (Surfnet, DFN) and were subject to discussions in the
international research network associations (Dante, Terena). Since then some
improvements could be noticed, but the situation is still not clear.

n Locally the situation seems stable enough, but since we can expect in the future
a nominal bandwidth of > 100 Mbits/s, the local infrastructure has to be up-
graded to this figure preferentially.

n ISDN does not seem a right solution, since we are expecting to use at least 10
Mbits/s capacity in the future. Moreover ISDN is a fading technology which,
perhaps in a not to far future, can be substituted by the service providers. Using
the facility offered by the international research networks (IP based) seems still
the right way to go.

n Quality of service is still a research topic. QoS is closely related to the solution
of authentication, authorisation and accounting in IP environments. Also inter-
working of products from different vendors is still not solved at the momen

 101

Audio and video connections

Introduction

In remote participation, one of the goals is to use videoconferencing in both the Remote
Control Room but also for meetings. In order to meet the requirements, some alternatives
have been investigated. In this chapter we will deal with the recommended architecture for
video conferencing that emerged from the investigations, the one that uses the “Armada
Cruiser” hardware, present at the validation sites for the DYNACORE (PP) prototype (The
partners in the TEC collaboration). As will be explained in the following, this is still the
best solution for point-to-point, quality video conferencing at limited bandwidth. We will
describe the way in which the present tools and hardware can be used for multi-cast con-
ferencing. This requires additional hardware at the validation sites (TEC), but could be
tested during this DYNACORE project using the Surfnet facilities, present at the UU46.
The AV application recommended is not directly integrated in the PP-DYNACORE proto-
type, but functions parallel with it.

We will also briefly comment on the “public domain” software solutions based on Mbone:
VRVS, VIC and RAT, which could be considered as an alternative and is viz. used in the
international community that participates at experiments at JET47.

The VRVS package (vrvs.cern.ch) includes the VIC (currently version 2.8) and RAT
(3.0.29) tools for video and audio respectively. We evaluated these tools using point-to-
point connections. The use of a VRVS reflector offers multi-point facilities for these tools,
it is dealt with in a next section.

Conferencing clients

Overview IP based clients

There are a number of IP based videoconferencing clients available. Here we can distin-
guish the hardware clients, such as the VCON Armada PC cards of which at all three part-
ners of the DYNACORE project two systems are available, and software clients, such as
NetMeeting and Cu-SeeMe.

Hardware clients nowadays offer a reasonable quality with quite low bandwidth de-
mands (from 128 kbits/s up to 384 kbits/s). The available VCON systems all follow
the H323 standard. This standard is now quite common and (should) guarantee inter-
operability.
Software clients, however, are a lot cheaper or cost nothing at all (i.e. NetMeeting,
VIC + RAT). Some follow the H323 standard (NetMeeting, and Cu-SeeMe Pro)
whereas others don’t (VDOPhone and VIC + RAT). The quality of software clients is
still moderate but improving fast. The current state of these clients is that they can be
used as a kind of telephone with low quality video. For the "remote participation" pro-
ject however, software clients are not considered to be an option.

46 http://contact.surfnet.nl/mcu/. Unfortunately only in Dutch
47 see 21-st Symposium on Fusion Technology, Madrid, Sept 2000, Conference Contributions, p 335

 102

In Figure 56, the remote video window of the VCON client is shown. The current
VCON software (version 4.01) allows for automatic bandwidth adjustment and syn-
chronisation of video and audio. Only 384 kilobit is needed for a good quality video-
conference.
In addition to audio and video, the VCON systems support T.120 data sharing for chat
and whiteboard. This standard also includes sharing programs.

Tests

From the tests of the last year we can conclude that hardware clients offer a very usable
quality. Typically the following performance is measured:

n Video frame rate: 30 frames per second.

n Used bandwidth: 384 kilobit/second, excluding bandwidth for data (320 kilobit
for video and 64 kilobit for audio).

n Video format: CIF, i.e. 352x288 pixels.

n Measured delay: approximately 0.5 seconds point-to-point for long distance
connections. Not much difference is measured for European connections and
connections from Europe to the U.S.

n Larger bandwidth settings up to 1500 kilobit yield a better video quality, i.e.
smoother motion and less pixelisation. Less bandwidth settings of (at least) 128-
kilobit still offer a usable connection, but for our applications the image is not
smooth enough. With the current status of the hardware clients about 10 frames
per second (in CIF format) can be transmitted with acceptable pixelisation.

We tested the VIC and RAT tools on two PC's on different VLANs, but inside the same
building. The audio latency, using the RAT tool was up to four seconds, especially when at
the same time the VIC tool was running. When only one microphone was un-muted, no
VIC tools were running and no audio driver was using full duplex, the delay was about 1
second.

The VIC tool is much quicker although (in case of a point-to-point connection) selection of
video device and IP port numbers must be done by the end-user. It is also possible to use a
configuration file, but the use of these tools is far less simple than that of the well-known
H.323 systems like NetMeeting and VCON MeetingPoint. The quality of VIC is compa-
rable to that of NetMeeting.

Multipoint Servers

Most of the above systems only provide point-to-point connections. For the H323 standard
“Multipoint Control Units” (MCU) are available. These devices provide the possibility to
organise meetings with a larger number of participants at different locations.

 103

Figure 56 VCON client

We tested several MCU’s from different vendors (PictureTel, RadVision and
WhitePine). All of these MCU’s still have some drawbacks for integration within the
project. The WhitePine (software) MCU does not offer a quality that meets the high
standards of our hardware clients. The PictureTel 330 (software) MCU works quite
well but we were not able to use data sharing with our VCON clients. As far as we
can conclude from the specifications the T.120 server of the PictureTel should be
compatible with the VCON clients. For the RadVision (hardware) MCU, audio, video
and data sharing works well, but there are some less attractive security aspects. The
only way to prevent anybody from using this MCU is to predefine the IP addresses of
allowed videoconferencing clients. Apart from this drawback, this MCU, which al-
lows up to 9 client connections at 384 kilobit per second, works very well. The video
and audio quality is almost equal to that of a point-to-point connection. The video is
normally switched to the loudest speaker, but it is also possible to use chair control. In
case of chair control, a WWW client can switch the video that is distributed to the par-
ticipants.
As far as VRVS concerns: VRVS is a server for the well-known VIC/RAT tools. The
end-to-end delay with RAT (audio) should be 1 second, not including transcoding in
the server. This simply lies in the specification of the chosen CODEC for audio. With
systems that work well with Netmeeting however, we measured much larger delays.

 104

Recommendations

All parties need a system that is always switched on and always on auto answer (this
way any party can conduct tests without having to ask the other parties). Of course,
the audio of such a test system can be muted. It is preferable to point the camera at a
moving object such as a clock, or out of a window. In this way the video quality can
be checked at any time.
For our VCON systems, now a multicast option is available. We recommend testing
this multicast option as an alternative to an MCU.
For data sharing we recommend using the T120 standard. For this standard Hardware
whiteboards are available. These whiteboards just look like normal whiteboards, and
copy its contents to the remote system. We would like to evaluate such systems.

MCU Recommendation

We recommend a RadVision MCU-323 with our VCON clients. The RadVision is a
hardware MCU allowing 3 to 15 client connection. Using more clients can be
achieved by stacking or cascading MCU's. In both ways a virtual MCU with more
connections is constructed by combining two or more real MCU's. The tested MCU
has the following specifications:
Software: MCU-323 version 1.5 (build 1.5.0.6) with OnLAN Configure 1.6.0 (build
1.6.0.19).
For H323 calls with a bandwidth of 384 kilobits per second as specified above under
"Tests", 9 simultaneous connections are supported.
The tested MCU is a dedicated hardware device supporting up to 15 video calls and up to
24 audio only calls. The MCU comes with a software upload tool to upgrade the software
from any windows 9x/NT machine. Our unit was configured software version 1.5 (build
1.5.0.6).

The tested MCU is still available as a "free-love" MCU, this means that people can con-
nect to it when it is not used by SURFnet (its owner).

Information on when the MCU should be available and how to connect can be requested
by e-mail: h.m.a.andree@phys.uu.nl

As the VIC and RAT tools offer a quality that doesn't match that of hardware H.323 sys-
tems by any means we do not investigate the use of a VRVS server yet. Software confer-
encing systems may be very promising in the future, but at the moment only hardware sys-
tems seem to offer the quality and that is needed in future Virtual Control Room collabora-
tions.

 105

Dissemination of results

Account of the progress in the Dynacore project was given at several occasions. We pre-
sent below a list.

B.U. Nideröst et al., Objectivity / Corba Distributed database Performance on a Giga-
bit Sun-ultra-10 Cluster, IEEE Trans. on Nucl. Sc. 47 (2000) 313-318.

Information on the exact working of the Dynacore architecture, and the meas-
urement of its performance. Also published in the 11th IEEE NPSS Real-Time
Conference Record.

B.U. Nideröst et al., Objectivity / Corba Distributed database Performance on a Giga-
bit Sun-ultra-10 Cluster, 11th IEEE NPSS Real-Time Conference Record, Alpha-
graphics, Santa Fe (NM), 1999, pp. 442-445.

Information on the exact working of the Dynacore architecture, and the meas-
urement of its performance. Also published in the IEEE Trans. on Nucl. Sc. 47

E.A. van der Meer et al., A distributed Plasma Physics experiment system using
CORBA, in S.C. Schaller (ed.), 11th IEEE NPSS Real-Time Conference Record, Al-
phagraphics, Santa Fe (NM), 1999, pp. 438-441.

This article gives a global overview over the Dynacore project: its features,
architecture and design decisions. It describes the ideas as of summer 1999,
not the implementation that the demonstrator uses today.

G. Kemmerling et al., Development of an integrated data storage and retrieval system
for TEC, 2nd IAEA Technical Committee Meeting on Control, Data Acquisition and
Remote Participation on Fusion Research Conference Report, Lisbon, 1999, to ap-
pear.

This article gives a work in progress overview over the Dynacore project, as
of summer 1999.

E.A. van der Meer et al, Combining Objectivity and CORBA: “A laborious marriage”
at European Technical Forum Objectivity/DB, Munich Oct. 1999

An overview of matching the demands of the middleware to existing solutions
of an object database.

M. Korten et al., Upgrading a TEXTOR Data Acquisition System for Remote Partici-
pation using Java and Corba, 2nd IAEA Technical Committee Meeting on Control,
Data Acquisition and Remote Participation on Fusion Research Conference Report,
Lisbon, 1999, to appear.

General info on the work in progress over the Dynacore project, as of summer
1999.

B.U. Nideröst et al. .A software architecture for remote participation at the TEXTOR-
9 experiment,21-st Symposium on Fusion Technology, Sept 2000, Madrid. pp 336.

The contribution gives an overview of the Dynacore project and the obtained
results. Special focus on the data viewer.

.

 106

Since the Dynacore system architecture opens the way for experimentalists to retrieve each
other’s data we have opened the possibility under certain restrictions to use the DynaDemo
at the location: http://hst3731.phys.uu.nl/dynademo/. One can find a description at this lo-
cation together with the demo’s, i.e. an applet for retrieving TEXTOR-94 status, which is
not dealt with explicitly in this report, but which we added for convenience. The Data-
Viewer deals with real data from present and past. The scientists of TEC have no objec-
tions for a free use of these data, so the data is not severely protected according the given
security scheme described before, but the hooks are available in the software to do so. The
control of the Pulsed Radar reflector diagnostic deals with a dummy experiment that we
have implemented on one of the computers at the UU. The dummy mimics the real behav-
iour of a diagnostic, running at TEXTOR-94.

