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Abstract
Jim Cushing emphasized that physical theory should tell us an in-

telligible and objective story about the world, and concluded that the
Bohm theory is to be preferred over the Copenhagen interpretation.
We argue here, however, that the Bohm theory is only one member
of a wider class of interpretations that can be said to fulfil Cushing’s
desiderata. We discuss how the pictures provided by these interpreta-
tions differ from the classical one. In particular, it seems that a rather
drastic form of perspectivalism is needed if accordance with special
relativity is to be achieved.

1 Intelligibility and objectivity

In his book “Quantum Mechanics: Historical Contingency and the Copen-
hagen Hegemony” [7], Jim Cushing lucidly defended the position that one
of the main aims of physical theory is to provide an intelligible picture of
objective physical reality. He argued that the Copenhagen interpretation
of quantum mechanics fails to yield such a picture, whereas the Bohm in-
terpretation succeeds. This led him to the historical thesis that the wide
acceptance of the Copenhagen interpretation must be understood as a result
of external, contingent influences.

Jim Cushing’s thesis that not many physicists have given sufficient thought
to the interpretational problems of quantum theory in general, and the diffi-
culties of the Copenhagen interpretation in particular, is doubtlessly correct.
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It has also to be conceded that objectivity and intelligibility are traditional
goals of physics that should not easily be abandoned. However, one can legit-
imately ask what the exact meaning of these concepts is. In particular, ideas
about what is understandable and what is not can be shown to vary over
time and to depend on context [8]; similarly, objectivity does not necessarily
imply use of the concepts of classical physics. Therefore, it is not obvious
that the ideals of objectivity and intelligibility uniquely single out the Bohm
theory.

In this paper we will investigate the possibilities to interpret quantum the-
ory in accordance with Jim Cushing’s philosophical desiderata. That is, we
will attempt to determine what ways there are to interpret the usual mathe-
matical formalism of quantum mechanics in terms of properties possessed by
physical systems, independently of consciousness and measurements (in the
sense of human interventions). As we will see, Bohm’s interpretation is only
one of a number of possibilities.

2 Objectivity, no-collapse and modality

The problem of the interpretation of quantum mechanics revolves around
two related issues: the status of measurements and the question of whether
the quantum state can be interpreted in terms of objective states of affairs,
i.e. definite properties possessed by physical systems.

The measurement problem is first of all a consequence of the assumption,
made in many presentations of the theory, that a separate evolution mech-
anism exists—the collapse of the wave function—that applies exclusively to
measurements. The idea that measurements possess a special status goes
back to the early days of quantum theory, when Bohr spoke about the finite
and uncontrollable disturbances caused by interactions with measuring de-
vices. Von Neumann developed the idea in the context of his Hilbert space
formalism [20]; according to von Neumann unitary evolution alone would in
general not lead to one definite measurement outcome; collapses are needed
to break the unitary chain.

However, the lack of a clear-cut, objective, demarcation between mea-
surements and ordinary physical interactions creates a tension between this
assumption of measurement collapses and the aim of objectivity. If we aim
for an interpretation according to which quantum theory is about a world
that exists independently of human thought and experiments, we had better
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avoid a special status of measurements (in the sense of human interventions).
This thought is reinforced by experimental evidence gathered in the last

decades. The evidence in question strongly suggests that the coherence of
superpositions is never lost; in other words, that collapses do not occur.

Accordingly, we will concentrate on “no-collapse interpretations” of quan-
tum mechanics. These interpretations aim at dissolving the measurement
problem by allowing only unitary evolution: there are no collapses, and mea-
surements are treated just like other interactions, by the Schrödinger equa-
tion (or a generalization of it). Because measurements thus lose their special
status, it becomes unnatural to construe the content of the theory in terms
of outcomes of experiments. The alternative that we will consider is to in-
terpret the formalism as providing information about properties of physical
systems. As we will see, this addresses the measurement problem and the
objectivity issue at one stroke.

In the no-collapse scheme the need to assign a special status to macro-
scopic devices disappears; there is consequently no longer a reason to in-
troduce a split between a classical and a quantum domain. This makes it
possible to think of quantum theory as a universal theory, valid for all systems
(of course, this is not meant to involve the belief that present-day quantum
theory is the final physical theory; it is sufficient to view quantum mechanics
as a possibly correct universal theory).

Summing up, the interpretations that we will consider accept the standard
mathematical formalism of Hilbert space, but without collapses, and regard
it as encoding information about objective physical characteristics of the
represented systems. For this, it is important to distinguish between the
state as it is defined in Hilbert space (the mathematical state, a vector or
a density operator) on the one hand and physical properties on the other.
By a physical property of a system we mean a definite value of a physical
quantity belonging to this system; i.e./ a feature of physical reality, the
physical state of the system. It is not an a priori obvious matter what the
relation is between mathematical and the physical states; i.e., exactly in what
way the mathematical state represents the physical properties possessed by
the system. Indeed, it is the main task of no-collapse interpretations to
unambiguously and consistently specify to which physical properties a state
in Hilbert space corresponds.

Physical properties, i.e. values of physical magnitudes, correspond to
yes/no propositions (asserting whether or not the properties in question
are possessed) and can be represented by orthogonal projection operators
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in Hilbert space (projecting on the eigenspaces of the observables that repre-
sent the definite-valued magnitudes). The task of no-collapse interpretations
is thus to make clear what is the set of definite-valued projection operators,
once the state in Hilbert space is given.

Now, indeterminism is a notorious feature of the usual interpretation of
quantum mechanics. It is a feature grounded in experience: repeated mea-
surements performed on a system that is reproduced in the same quantum
state lead to a probability distribution of results. Without collapses, the final
stage of such a measurement is described by one entangled total state of ob-
ject system and measuring device: the same initial object and device states
will always lead, in view of the deterministic character of the Schrödinger
equation, to the same final mathematical state. Apparently, we must assume
that one quantum state can correspond to different possible physical proper-
ties (in this example, to different possible measurement results, e.g. pointer
positions on a dial). This means that there is not a one-to-one correspondence
between the quantum state and physical reality. Rather, the quantum state
will determine what may be the case, what the possible physical situations
are.

Thus, the sought-after link between quantum state and physical proper-
ties must have a probabilistic character. The quantum state will fix possibil-
ities. In philosophical jargon, the interpretation of the quantum state must
contain a modal aspect (possibility and necessity are “modalities”). Inter-
pretations along this line have been proposed by various authors. The best
known “modal interpretation” is the one put forward by Bohm [3]. Later,
other modal no-collapse interpretations have been developed [17, 18, 15, 9,
10, 14]. The term “modal interpretation” itself was coined by B. van Fraassen
[17].

As we will presently see, the just-described characteristics of no-collapse
interpretations, together with the requirement that they should not rely
on things not represented in the quantum formalism, uniquely determine
them. All such no-collapse interpretations fall under one general mathemat-
ical scheme.
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3 The uniqueness of no-collapse interpreta-

tions

What we want is a prescription for finding out which properties a system
may possess, if the quantum state is given. That is, we want to construct a
set of definite-valued observables; the possibilities will then be represented by
a probability distribution over value assignments to these observables. Now,
it is a notorious feature of the Hilbert space formalism that not all observ-
ables can have definite values simultaneously (because of the Kochen-Specker
theorem and similar results). The question therefore becomes: what is the
maximum set of observables that are definable from the quantum state and
can jointly be assigned definite values without getting into contradictions?
If the no-collapse idea is to work, we should be able to reproduce the usual
quantum probabilities as classical probability measures on value assignments
to the observables in this set.

In order to make our results general, we will allow for the possibility that
there is a preferred observable R that is always definite, for all quantum
states. This will make it possible to include theories like the Bohm theory
in our collection of no-collapse interpretations (in the Bohm theory position
is a preferred observable). The situation in which no privileged observable
exists then becomes a special case.

Consider an arbitrary pure quantum state represented by a ray ψ in a
Hilbert space H and the Boolean algebra or lattice, B(R), generated by the
eigenspaces of the observable R. The usual quantum mechanical probabilities
defined by ψ for the values of R can be represented by a probability measure
over the 2-valued homomorphisms (consistent assignments of truth values 0
and 1) on B(R). We now ask for the maximal lattice extension D(ψ,R) of
B(R), generated by eigenspaces of observables other than R, on which there
exist 2-valued homomorphisms such that we can represent in the same way
the quantum mechanical probabilities defined by ψ for values of R plus these
additional observables.

Since we want to stay within the quantum formalism, and refrain from in-
troducing mathematical structures not present there, we require the definite-
valued observables to be definable in Hilbert space in terms of ψ and R. We
therefore demand that each element of D(ψ, R) be invariant under all auto-
morphisms of Hilbert space that preserve the ray ψ and R (note that this
requirement is different, and in fact stronger, than the one made in previous
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work on this subject, [4, 5, 6]—we will come back to the difference below).
We consider an n-dimensional Hilbert space H (n < ∞), and an observ-

able R with m ≤ n distinct eigenspaces ri of H. Let ψri
= (ψ ∨ r⊥i ) ∧ ri, i =

1, 2, . . . , k ≤ m, denote the orthogonal projections of ψ onto the eigenspaces
ri. Now, the set of automorphisms that leave ψ and R invariant includes all
automorphisms that are equal to the unity operator everywhere outside of
one of the spaces ri (i.e., when they work on vectors orthogonal to ri), and
are rotations around ψri

or reflections with respect to ψri
inside ri. Consider

a projection operator P that is to correspond to a definite-valued property.
That is, it projects on one of the eigenspaces of a definite-valued observable
and represents a definite yes-no proposition. If the subspace of H on which
P projects is contained in one of the ri, it should be invariant under rota-
tions and reflections with respect to ψri

. This leaves four possibilities for the
subspace in question: it can be the null-space, ψri

, ψ⊥ri
∧ ri, or ri.

In the general case, the subspace on which P projects will not be contained
in one of the ri spaces, but will have non-zero projections on a number of
them. The requirement that it remains invariant under the above-mentioned
automorphisms now implies that its projection on ri is either null, ψri

, ψ⊥ri
∧ri,

or ri. All possible subspaces on which P may project are therefore found by
taking one of these latter spaces for each value of i, and taking their span.

The lattice of subspaces that correspond to definite propositions is there-
fore generated by all sublattices {0, ψri

, ψ⊥ri
∧ ri, ri}. In the case that ri is

one-dimensional, ψri
is equal to ri and ψ⊥ri

∧ri equals 0, so that the sublattice
then reduces to {0, ri}.

It is clear from this construction that the resulting set of definite-valued
projection operators is indeed a lattice: it is closed under the lattice oper-
ations of disjunction and conjunction (corresponding to taking the span or
intersection of the associated eigenspaces). Moreover, the lattice is Boolean:
all projection operators in it commute with each other, as is clear from inspec-
tion of the generators of the lattice. Therefore, no Kochen and Specker-type
paradoxes can arise, and the quantum mechanical probabilities (including
joint probabilities) can be represented by means of a classical probability
distribution on the lattice.

The above construction made use of the existence of a preferred observ-
able, namely R. The assumption that there is such an observable was inspired
by the example of the Bohm theory, which is recovered when R is taken to
be the position operator. (Strictly speaking we have not really dealt with
the Bohm case, because there the preferred observable is continuous—but
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using the Dirac formalism with the vectors |q〉 spanning one-dimensional
eigenspaces of the position operator immediately leads to the result in an
informal way.) In discussions about hidden-variable theories the objection is
often made that the selection of a preferred observable “is made by hand”;
indeed, the existence of a privileged observable is not a natural part of the
quantum mechanical formalism. It is therefore worth-while to see what hap-
pens if no additional structural elements are introduced—if the state |ψ〉,
and the Hilbert space structure, are the only things that are used to define
the definite properties.

A possible way of implementing this idea is to take the projection on |ψ〉
itself for R. If we denote the subspace orthogonal to ψ by ψ⊥, we obtain the
definite lattice consisting of the subspaces {0, ψ, ψ⊥,H}. Exactly the same
result is obtained if we take the unity operator on H for R. These choices
therefore lead to the “orthodox” property assignment: only observables of
which |ψ〉 is an eigenvector qualify as definite-valued ([5]). This traditional
way of assigning properties at first sight returns us to the measurement prob-
lem, because after a measurement the combined system of measuring device
and object system ends up in an entangled state which does not correspond
to a definite “pointer state” property. However, on second thoughts the sit-
uation is not so obvious. The projection operator |ψ〉〈ψ| is an observable
of the total system, and the property assignment pertains likewise to this
total system; whereas we are really interested in the individual properties of
device and object after the measurement. Therefore, we need substitutes for
|ψ〉〈ψ| that represent the states of these individual systems. In the context
of standard quantum mechanics such operators readily suggest themselves,
namely the density operators for the partial systems. This prompts a consid-
eration of the definite lattices that result if the operators W1⊗ I and I ⊗W2

are taken for R (here we assume that the total Hilbert space is the tensor
product of Hilbert spaces belonging to the partial systems, H = H1 ⊗H2).

The eigenspaces of W1⊗I are wi⊗H2. We can write |ψ〉 as a biorthogonal
decomposition

|ψ〉 =
∑

k,j

ck,j|αk,j〉 ⊗ |βk,j〉, (1)

with |αk,j〉 in H1, |βk,j〉 in H2, 〈αl,i|αm,j〉 = δlm.δij = 〈βl,i|βm,j〉. The index j
takes possible degeneracies into account: |ck,j|2 depends only on k, not on j.
The projection of |ψ〉 on wi ⊗H2 is now given by |ψi〉 =

∑
j ci,j|αi,j〉 ⊗ |βi,j〉.

The lattice of definite properties is generated by the sublattices {0, ψi, ψ
⊥
i ∧

(wi ⊗H2), wi ⊗H2}. We can now restrict this lattice to a lattice of definite
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properties of the first system alone (represented in H1) by looking for all
definite projections of the form P ⊗ I; the projection operators P then rep-
resent properties of system 1 by itself. Inspection of the lattice shows that
all projections of the sought form are generated by the projectors Pwi

⊗ I.
The restriction of the lattice of definite properties of the combined system to
a lattice of definitive properties of system 1 is therefore the Boolean lattice
generated by the projections Pwi

. These are the same properties as assigned
by modal interpretations of the type discussed in [9, 10, 19]. In measurement
situations of the kind first discussed by von Neumann ([20]) these definite
properties correspond to pointer positions, so that the measurement prob-
lem disappears: when the measurement has been completed, the measuring
device indicates a definite result.

The analysis just given is similar to the one worked out by Bub, Clifton,
and Goldstein [4, 5, 6]. The essential difference is that Bub and Clifton
required the lattice of definite properties to be definable from |ψ〉 and R,
whereas we have imposed the stronger demand that the individual definite
properties themselves be so definable (in both cases this is a “no-hidden
variables demand” in the sense that we do not want to accept properties
that remain hidden from view once we have specified |ψ〉 and R). Our
stronger requirement makes the analysis considerably simpler. As was to be
expected, the lattice of definite properties that we found above on the basis
of the stronger requirement is included in the lattice determined by Bub and
Clifton. The latter is given by {p : ψi ≤ p or ψri

≤ p⊥, for all i = 1, . . . , k},
or equivalently, the commutant of the set of all the non-null projectors on
ψi, for all i = 1, . . . , k. The definite projection operators that we have de-
termined above also commute with this set of projectors, so that our set
of definite properties indeed forms a sublattice of the Bub-Clifton lattice.
The latter lattice possesses more “fine structure”, namely projection opera-
tors that cannot be defined individually but still belong to the lattice, which
is defined as a whole. But although the two approaches are distinct, they
lead to very similar results. For the measurement situation we have just
discussed, the only final difference is that in the Bub-Clifton approach all
individual one-dimensional projections within the null-space of W1 are defi-
nite, whereas in our approach it is only the projector on this null-space as a
whole that is definite.

In our derivation of the “modal lattice” we made use of the notion that W1

can be considered the state of system 1. Although this assumption is usually
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made in standard quantum mechanics, it is not uncontroversial in founda-
tional discussions—it is not self-evident that it is justified in the present con-
text. It would therefore be helpful if we could give an independent derivation
that does not presuppose that W1 is a preferred observable.

In order to do so we make use of the biorthogonal way of writing |ψ〉,
Eq. (1). As stated, our aim is to determine those properties of system 1
that can be defined from this state plus the structure of Hilbert space. In
particular, we will use that H is the tensor product of the Hilbert spaces of
the individual systems 1 and 2, H = H1⊗H2. We want the definite properties
of system 1 to be invariant under automorphisms that leave |ψ〉 the same;
but clearly there are no non-trivial such automorphisms that operate in H1

alone (of the form U1⊗I). However, there are such automorphisms that have
the form U1 ⊗ U2, with U1 and U2 defined on H1 and H2, respectively [12].
These automorphisms with product form define individual automorphisms in
the two Hilbert spaces H1 and H2. So we focus on automorphisms U1 ⊗ U2

that leave |ψ〉 invariant, and ask which projectors in H1 remain the same
under their operation (in other words, under the operation of the associated
U1). Now, the biorthogonal form (1) is unique up to unitary transformations
within the subspaces spanned by the vectors {|αk,j〉}j (and {|βk,j〉}j). These
spaces are labelled by values of k. Subspaces contained within these spaces
are not invariant under all transformations that preserve |ψ〉; but the spaces
themselves, spanned by {|αk,j〉}j ({|βk,j〉}j), are. These spaces are exactly the
eigenspaces of the reduced density operator W1. So we arrive at precisely the
same conclusion as before: the lattice of those properties of system 1 that can
be defined on the basis of |ψ〉 alone, is generated by the projection operators
Pwi

. Since this lattice is Boolean, definite values can be assigned to its
elements without contradictions, and the quantum mechanical probabilities
on the lattice can be represented in a classical Kolmogorovian probability
space.

4 Definite properties without collapses

Let us sum up: the no-collapse schemes that we have discussed are about
definite properties (definite measurement outcomes, for example) even if the
quantum state |ψ〉 is a superposition of the eigenvectors associated with the
properties in question. To review how this is achieved, consider a composite
physical system, consisting of two parts. Let us assume for simplicity that
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there is no degeneracy, so that the bi-orthonormal decomposition is unique
and has he following form:

|ψ〉 =
∑

k

ck|ψk〉 ⊗ |Rk〉, (2)

with |ψk〉 in H1, |Rk〉 in H2, 〈ψi|ψj〉 = δij and 〈Ri|Rj〉 = δij.
The modal no-collapse interpretation that we have dealt with at the end of

the foregoing section gives the following physical meaning to this mathemat-
ical state. The projection operators {|ψk〉〈ψk|} represent definite properties
of the system described in H1: exactly one of the mentioned projectors is
assigned the value 1, the others get the value 0. The interpretation thus
selects, on the basis of the form of the state |ψ〉, the set of quantities that are
definite-valued. All observables that are functions of these projectors, namely
hermitian operators with spectral resolution given by Σak|ψk〉〈ψk|, are also
definite-valued and possess one of their possible values (their eigenvalues).

The Born probabilities are reproduced as an ordinary probability distri-
bution on the Boolean lattice generated by {|ψk〉〈ψk|}. The probability that
the l-th possibility is actually realized (that |ψl〉〈ψl| has the value 1) is given
by |cl|2.

In the case of degeneracy, that is |cj|2 = |ci|2, for i, j ∈ Il (with Il a
set of indices), the one-dimensional projectors have to be replaced by multi-
dimensional projectors Pl =

∑
i∈Il

|ψi〉〈ψi|; the physical properties now cor-
respond to these projectors. The class of definite-valued physical quantities
in this case contains only non-maximal hermitian operators characterized
by their spectral resolution ΣakPk. The probability of value al is given by∑

i∈Il
|ci|2.

The relation between mathematical state and actual physical properties
is therefore probabilistic. The probabilities materialize as relative frequencies
in repetitions of the situation described by the same state. In the individual
case, the probabilities quantify the information provided by the state about
the actual state of affairs. In general, these probabilities will not be 1 or 0.
This expresses the fact that the physical situation generally could have been
different from what it actually is, given the mathematical state.

The situation after an ideal (von Neumann) measurement will also be
described by a superposition of the form (2), with |ψk〉 denoting states of
the object system and |Rk〉 states of the measuring device (“pointer position
states”). The physical meaning of this mathematical state according to our
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no-collapse interpretation is that one of the pointer positions is actually re-
alized. We thus see that the traditional argument for the occurrence of a
collapse of the wave function no longer has force. The argument in ques-
tion says that if a definite result is obtained in a measurement, the state
immediately after the measurement should reflect the presence of this result:
and this is taken to mean that it should be the corresponding eigenstate.
Accordingly the measurement must induce a transition—the collapse—from
a superposition of eigenstates to one of the terms in the superposition. By
contrast, in our scheme a system can possess a definite property even if the
state in Hilbert space is not an eigenstate of the associated observable.

It therefore becomes possible to consistently assume that the evolution of
the mathematical state is unitary at all times. Measurements are treated as
ordinary physical interactions between measuring device and object system,
both treated by quantum mechanics.

5 Perspectivalism

The interpretational scheme that we have outlined salvages the idea of an
objective reality that is characterized by definite values of physical quanti-
ties. But the ensuing picture is nevertheless very different from what we have
become used to in classical physics. In our scheme the definite-valued quan-
tities are defined by the total quantum state, representing both the object
system and the rest of the universe. By contrast, classical particles possess
properties like position and momentum quite independently of whether there
is any interaction with the rest of the world. If good measurements are made
on such classical objects, the results reflect these pre-existing values. How-
ever, in our quantum scheme the outcome of a measurement is in general not
the reflection of a pre-existing object system property.

The latter point is illustrated by experiments of the Einstein-Podolsky-
Rosen type. In a modern version, two electrons whose total spin state is the
singlet state, with vanishing total spin, fly apart until their mutual distance
has become very great. Subsequently, spin measurements are made on the
individual particles. For each particle, there is the choice of measuring the
spin in either one of two directions. The experiment can be repeated with
different choices of these directions, so that four combinations of directions
will be measured in the series of repetitions. Correlations between outcomes
in these four pairs of directions are predicted by quantum mechanics (and
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verified in actual experiments). As is well known, for some choices of the
spin directions these correlations violate Bell inequalities.

It is a mathematical fact that the Bell inequalities remain satisfied as
long as the spin values found in the measurements on the individual particles
can be regarded as coming from one joint probability distribution [13]. The
latter would be the case if the measurement results were determined by spin
values already jointly possessed by the electrons, independently of which—or
whether—measurements are made. If that were true, there would be well-
defined, definite spin values in the four directions under discussion in each
run of the experiment; in repetitions these values would vary and form an
ensemble that defines a joint distribution of the four spin quantities. Only
two of them could actually be measured in any single experimental run (one
direction for each particle); but the measured values would evidently be
samples from a joint distribution. The violation of Bell’s inequalities by the
predictions of quantum mechanics, and by the experimental results, therefore
shows that we cannot think of the EPR situation in classical terms—the
measurements do not reveal pre-existing jointly defined quantities.

See Figure 1 for a schematic representation of the situation: either σ1

or σ′1 is measured on electron 1, and similarly for electron 2. The two hor-
izontal and two diagonal lines symbolize the four possible combinations of
measurements. The vertical double lines represent the electrons.

This result is shocking for the classical intuition, but it is in complete
accordance with the mathematical structure of quantum mechanics and with
the way properties are assigned in our modal no-collapse interpretation; in
this sense it is intelligible, and it seems not unreasonable to expect that
intuition can adapt itself to the situation [8]. That the violation of Bell
inequalities has been empirically verified is of course strong evidence that a
completely classical account cannot be maintained anyway. Either non-local
interactions should be allowed (this happens in Bohm’s interpretation) or it
should be accepted that the choice of which observables are definite-valued is
made through the interaction with the rest of the universe (see [11] for more
details about how this works out for the modal scheme in the EPR situation).
However, it turns out that an argument that is analogous to Bell’s reasoning
can be applied to a new situation, with consequences that appear even more
drastic [16].

Consider two well-localized systems, Si, i = 1, 2. Let α and β be two
hyperplanes of simultaneity for some reference frame Σ. Let Ei be the places
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electron 1 electron 2

combination I

combination II

combination III combination IV

σ1 σ2

σ′1 σ′2

OROR

Figure 1. The four possible combinations of spin measurements.

where the systems Si are located on α, and let Fi be the corresponding regions
on β (see Figure 2). We assume that the two systems are sufficiently far apart
that E1 is spacelike separated from F2, and E2 is spacelike separated from
F1. Let γ be a spacelike hypersurface containing F1 and E2, and let δ be a
spacelike hypersurface containing E1 and F2.

If S1 and S2 are isolated during their evolution between α and β there
will be unitary operators Ui such that the state ρ of the combined system
S1 ⊕ S2 on β will be related to its state on α by

ρ(β) = U1 ⊗ U2 ρ(α) U †
1 ⊗ U †

2 . (3)

If the regions E1, E2, F1, F2 are sufficiently small, they may be treated
as points, and we may regard γ and δ as hyperplanes of simultaneity for
reference frames Σ′, Σ′′, respectively. Let ρ(γ) be the state on hypersurface
γ, and let ρ(δ) be the state according on δ. On the basis of the assumption
of unitary evolution between α and β, the states on the hyperplanes γ and δ
can easily be related to ρ(α). We find:

ρ(γ) = U1 ⊗ I2 ρ(α) U †
1 ⊗ I2, (4)
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Figure 2. The four simultaneity hyperplanes α, β, γ and δ.

and similarly
ρ(δ) = I1 ⊗ U2 ρ(α) I1 ⊗ U †

2 . (5)

Now suppose that A1 and A2 are definite properties of S1 and S2, respec-
tively, on α, and B1 and B2 are definite properties on β, as determined by
purely local interactions at their positions via the prescriptions of the previ-
ous sections [16]. What we would expect is that the value of A1 possessed by
S1 at E1 is possessed by it without reference to the hypersurface containing
E1 that is contemplated, and similarly for the other points of intersection E2,
F1, F2. It seems natural to assume that what happens at these four space-
time points are events that do not depend for their description on the way
the space-time is sliced up into simultaneity hyperplanes. But if this were
true, there would be a joint probability distribution over the values of our
four observables that yields as marginals the quantum mechanical Born prob-
abilities on all four hyperplanes. In this we have assumed the central tenet of
special relativity, namely that the different frames of reference are equivalent;
in our case that the Born probability rule applies equally on α, β, γ and δ.

But the states on the various hyperplanes are interrelated, as indicated
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in Eqs. (4, 5). By inspection of these relations we find that the existence of
such a joint distribution is equivalent to the existence of a joint distribution
calculated in one state, namely ρ(α), and yielding, as marginals, the statistics
for the observables A1 ⊗ A2, A1 ⊗ C2, C1 ⊗ A2, C1 ⊗ C2, where

Ci = U †
i Bi Ui. (6)

However, as we have explained for the case of the EPR-experiment, such
a joint distribution of four non-commuting observables, yielding the quan-
tum mechanical Born marginals for the pairs of observables, cannot exist in
general [13]. Bell inequalities will be violated in some states and for some ob-
servables; see [16] for the construction of an explicit example. This violation
of a Bell inequality entails the nonexistence of a joint distribution. Therefore,
if ρ(α) is a state such that a Bell inequality is violated for the observables
A1, C1, A2, C2, then it cannot be the case that A1 at E1, A2 at E2, B1 at F1,
and B2 at F2 constitute space-time events that exist independently of the
context, i.e. the spacelike separated events with which they are correlated.

The argument here mimics the earlier Bell argument: the mathematics
is the same. The structural identity of the two arguments can also be seen
clearly from the similarity between Figure 1 and Figure 2. The symbols have
different meanings, but the mutual relations are the same. In the original
Bell case locality was at issue: in that case one could argue that the distant
measurement setting has a non-local influence on the situation at the nearby
side of the experiment. However, only one distant setting is actually realized
in any run of the experiment, so that the differences are differences with
respect to what could have been the case. By contrast, in the new case both
hyperplanes on which the event we consider lies are actually present. We
can therefore no longer argue in terms of what would have happened if some
other situation were real, and the non-local disturbances that would take
place. We are now compelled to conclude that it must make a difference
whether we view what happens in E1, e.g., from the perspective of E2 or
from the perspective of F2. In other words, events are not just there, but are
different depending on the hyperplane of which they are considered a part!
Apparently we must relativize the description of events, and the properties
of physical systems, to a perspective from which the description takes place
(see [1, 2] for attempts along these lines).

This result is even more perplexing than the conclusions drawn from the
original violations of Bell inequalities. In the original Bell case property
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assignments, and measurement outcomes, were shown to be contextual, or
subject to non-local influences. But since only one measurement can actually
be made, no conflict arises with the idea that the property in question is part
of a unique and objective space-time event. In our new case, the different
contexts, i.e. the different hyperplanes, are jointly actual. So events can in
general no longer be unique and objective in themselves.

6 Conclusion

Jim Cushing stood up for the idea that physics should strive for an intelligible
picture of a world that exists independently of consciousness and measure-
ments. That idea can indeed be implemented, even in the quantum mechan-
ical context. The Bohm interpretation, Jim Cushing’s favorite, provides an
example whose intelligibility standard stays close to the classical norm. An
objection to the Bohm theory is that it achieves its aims by introducing ad-
ditional theoretical structure (the preferred observable) that does not figure
in the standard quantum formalism. There is another possibility, motivated
by the same philosophy and falling under the same general category of inter-
pretations, that stays closer to the structure of the Hilbert space formalism.
Like the Bohm theory, this is a no-collapse interpretation with a “modal”
character: it predicts possibilities rather than one unique course of events.

Admittedly, this interpretation deviates more from classical ideas than
the Bohm picture with its particles and trajectories. However, it is only
natural that the standards of what are intelligible physical pictures change
with scientific developments [8]. That quantum theory gives rise to new
conceptions of intelligibility is something to be expected, especially since the
violations of Bell inequalities have shown that not all classical explanatory
ideals can be maintained together. That it is not fixed a priori what the
definite properties of physical systems are, but that this depends on the
total quantum state and therefore on the context, i.e. the relation with the
rest of the world, is therefore not something to be rejected out of hand. In
fact, ideas of this kind come up naturally within quantum mechanics: some
of the founding fathers of the theory, in particular Bohr, already suggested
conceptions of this kind (though not on the formal basis presented here).

However, it appears that the quantum theory may require a change in
conceptual standards that goes even further. As the analysis of the previous
section shows, we cannot have a Lorentz covariant interpretation of quantum
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theory if we hold on to the idea that events are hyperplane-independent. One
response would be to drop the requirement of complete Lorentz covariance—
this is the course taken by most adherents of the Bohm interpretation. Here
one accepts that there exists a preferred frame of reference, even though this
frame cannot be determined by empirical means. The alternative, which
is more in line with the ideas underlying relativity theory, is to insist on
Lorentz covariance; but then hyperplane independence must go. This means
that what properties a physical system possesses depends not only on its
interaction with its direct environment, but also on the simultaneity hyper-
plane on which the system is taken to lie. That would imply a much more
radical relativizing of properties than we have seen before. Suggestions to
implement this in the modal no-collapse scheme have already been made
[1, 2], but more work remains to be done.

The various ways in which the quantum theory can be interpreted can, as
we have illustrated, be analyzed and categorized in a systematic way. Work in
the foundations of quantum mechanics is clearly making progress. Without
the persistence and originality of determined and enthusiastic researchers like
Jim Cushing, this would never have happened.
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