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We present Monte Carlo simulations of the hopping motion of a particle in a two-dimensional square lattice Lorentz gas. The
long time tail of the velocity autocorrelation function in this system is computed with an accuracy of 1:5x 10°. At low densities
the Monte Carlo results agree quantitatively at all times with the predictions of kinetic theory. The theoretical predictions for the
second order density corrections to the diffusion constant and the asymptotic behavior of the velocity autocorrelation function
are found to be compatible with the Monte Carlo results. To our knowledge, this is the first example of quantitative agreement
between kinetic theory and computer simulation for the long time tail of the velocity ACF in a Lorentz gas.

Modern kinetic theory was born with the discov-
ery by Alder and Wainwright [1] of a long time tail
in the velocity autocorrelation function (ACF) of
hard spheres. Since then, long time tails have been
observed in a wide variety of correlation functions.
However, not all tails have the same origin [2]. Some
are hydrodynamic in nature, such as the one observed
by Alder and Wainwright. Hydrodynamic tails are at
present reasonably well understood (see e.g. ref. [3]).
Other tails (the so-called “molasses tail”’) appear to
be associated with slow structural relaxation in dense
fluids. A third type of long time tail is observed in
the velocity ACF of a Lorentz gas. Unlike the pre-
vious two this tail is not due to collective motions,
because in a Lorentz gas the moving particles only
collide with static scatterers. Because of their relative
simplicity, Lorentz gas models have been a favorite
playground to compare kinetic theories with com-
puter simulations [4-6]. The results of these com-
parisons have, thus far, been somewhat
disappointing. The reason is that the kinetic theory
predictions were valid only for low concentrations
and long times. However, for the models studied,
computer simulations could not be carried out with
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sufficient accuracy in this regime. To compare the-
ory and simulations for higher concentrations, the
effect of higher order density corrections must be
estimated [7]. When this is done, there remains a
discrepancy of a factor two between theory and the
most accurate computer simulation data. This sug-
gests either that the asymptotic regime has not been
reached in the simulations, or that the theoretical
description is not valid (or both).

In the present paper we compare kinetic theory and
computer simulations for a particularly simple model,
viz. a stochastic hopping model on a square lattice
with excluded sites (hard scatterers). In this model,
a test particle performs a random walk on the lattice.
The waiting times between successive trial moves are
Poisson distributed. At every move, the mobile test
particle attempts to jump to one of four neighboring
lattice sites, selected at random. If this lattice site is
not excluded, the trial move is accepted, otherwise
the test particle remains at its original location. This
model is well suited for a comparison between Kkinetic
theory and numerical simulation for the following
reasons: first of all, the lowest order (linear) density
expansion of the velocity ACF for this model is
known analytically at all times [8], rather than just
asymptotically. Secondly, the asymptotic behavior
of the next order density correction to the velocity
ACF is known [9]. And, last but not least, this model
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lends itself to simulation on a vector computer, which
implies that we can compute the velocity ACF with
a much higher accuracy, and therefore to longer
times, than could be achieved in earlier simulations.

In order to test the range of validity of the theo-
retical expressions derived in ref. [8], we carried out
Monte Carlo (MC) simulations on a square 2D lat-
tice Lorentz gas, at low concentrations of the excluded
sites. At these low concentrations (typically,
¢=1.0-5.0%) the expected amplitude of the 7 2 tail
of the velocity ACF is small. E.g. after 100 attempted
jumps, the absolute value of the velocity ACF should
be of order 105, Clearly, in numerical simulations
of long time tails, the statistical errors should be of
this order of magnitude, or less. This seems difficult
to achieve without excessively long calculations. The
reason is the following: let us assume that we wish to
compute the velocity ACF (#(0)-¢(¢)> for0<t<100
with an accuracy of 1:10% Using Zwanzig and Ail-
awadi’s estimate for the relative statistical error in a
correlation function C(¢) [10],

(AC? () »/C?*(0) z%fcz(t) dt/C*(0)

o]

~ 2/Ivsamples ( 1 )

we find that some 10'? independent samples of
v(0)-v(t) for every value of ¢ are needed in order to
achieve the desired accuracy. For 100 different ¢ val-
ues, this implies that such a calculation would require
10'* multiplications and additions just to compute
the velocity ACF (i.e. excluding the actual Monte
Carlo simulation). Assuming that the computation
of the velocity ACF is a completely vectorizable point
operation, it would take a computer like the Cyber
205 some 500 hours to carry out this task for every
density.

We employed two tricks to reduce the amount of
computing by more than two orders of magnitude.
The first trick is based on the fact that we perform
the actual simulation on a lattice Lorentz gas with
discrete rather that continuous time steps. In the dis-
crete Lorentz gas, trial moves are attempted at con-
stant time intervals (i.e. the distribution of waiting
times is a d-function, rather than a Poisson distri-
bution). Choosing this time interval as our unit of
time, and the spacing of the lattice as our unit of
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length, all particle velocities at a given time step are
either 0 or * 1. This enables us to represent all par-
ticle velocities by bit-vectors. The time consuming
floating point multiplications are replaced by the
much faster bit-vector operations. Once we have
obtained the velocity ACF for the discrete-time lat-
tice Lorentz gas, &4, we can compute the continuous
time ACF, @, using the following relation, derived
by Nieuwenhuizen et al. [11]:

@ (1) =e—" 5;0 gtbd(s+l) (1>0). (2)

All the simulation results obtained for the discrete-
time model have been converted to the correspond-
ing continuous-time expression using eq. (2). In
principle, this procedure might entail a truncation
error because one needs to know @, at all times in
order to compute @, with eq. (2). However, for the
simulation results reported below, we only consider
the behavior of @ for times that are about a factor
of two shorter than the interval over which the @4’s
were sampled. We checked that our computed @.’s
were insensitive to the precise asymptotic behavior
of @, at times outside the interval sampled.

The second trick is designed to reduce the Zwan-
zig-Ailawadi error estimate (eq. (1)). To see how
this is achieved, it is instructive to consider the
velocity ACF of a particle performing a random walk
on a lattice without excluded sites. As successive steps
in such an ideal random walk are uncorrelated, the
velocity ACF reduces to a delta function at (=0,
Next, consider exactly the same sequence of trial
moves, but now with excluded sites present. As long
as the test particle is not hitting an excluded site, the
velocity is the same as in the previous case. But par-
ticle moves that would result in the particle occu-
pying an excluded site are rejected. Hence, for those
trial moves, the actual displacement and hence the
“velocity” (defined as displacement per time step)
is not equal to the velocity of the underlying ideal
random walk. Let us denote the difference in veloc-
ity of a test particle for the same sequence of trial
moves with and without excluded sites by . Clearly,
the average magnitude of v is proportional to the
density of such sites. Let us write the total velocity
of a particle in the presence of hard obstacles as

Utot(t)zvran(t)+sv(t) ’ (3)
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where v,,(?) is the velocity of the ideal random walk.
The expression for the velocity ACF now becomes

<0(0)-0(2) > = <w(0)* [vran(2) +80(2)] ) . (4)

As the random velocity v,., at time #> 0 contains no
memory of the previous history of the particle, it is
not correlated to #(0). Hence,

<w(0)-v(1)>=<v(0)-du(r)> (¢>0). (3)

The advantage of rewriting (#(0)-o(¢) ) in this way
is that the Zwanzig-Ailawadi estimate for the mean
square error in the quantity on the right-hand side
of eq. (5) is a factor c lower than for the quantity on
the right-hand side, where ¢ is the concentration of
excluded sites.

By combing the two tricks described above, we
were able to compute velocity ACFs with an accu-
racy of (2-3) X 10~ in simulations that took about
1.5 h on a Cyber 205 computer. This accuracy is suf-
ficient to determine the tail of the velocity ACF for
times up to 100 mean collision times. As a test par-
ticle can move at most 100 lattice spacings in 100
time steps (and in the overwhelming majority of
cases much less ), it was sufficient to study the dif-
fusion process on relatively small (128 % 128) square
attices. It should be stressed that finite size effects
can only show up at times long enough that a particle
has a reasonable change to -move over the linear
dimensions of the box. In our case this would typi-
cally happen after some 10* (=1282) time steps.

We carried out simulations on square lattices con-
taining 1, 2.5, 5, 10 and 15% hard scatters *'. At the
higher densities significant deviations from the (low-
density) kinetic theory are to be expected. For every
run we generated 500 different configurations of the
square lattice with randomly distributed impurities.
For every configuration we let 256 independent (i.e.
noninteracting) test particles perform random walks
during 12800 timesteps. All in all this amounts to 1.5
billion trial moves per simulation. The velocity ACF
was accumulated during the run. As a check we com-
pared the MC results for @4(s) for s=1, 2 and 3 with
the exact results which can easily be worked out. In
all cases we found that the MC data reproduced the
exact results to within the estimated error. Next, in

! We used a Monte Carlo procedure similar to the one described
by Pandey et al. [12].
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order to facilitate comparison with the kinetic theory
of ref. [8], we transformed the discrete time velocity
ACF, d,(s), to the corresponding continuous time
expression, &, using eq. (2)

Fig. 1 shows the tail of the velocity ACF, @, for
impurity concentrations between 1 and 5%. The esti-
mated error (obtained from the variance in the data
for 500 independent configurations of scatterers) is
indicated in the same figure. The drawn lines rep-
resent the predictions of kinetic theory, to linear order
in the density. The agreement between theory and
simulation is quite satisfactory, especially at short
times. However, the discrepancy between the theo-
retical curve and the MC data is significant. The MC
values for the tail of the velocity ACF appear to be
systematically larger (in absolute value) than the low
density kinetic theory expression. The difference is
larger for the higher concentration results. This sug-
gests that, even at these fairly low densities correc-
tions to O(c?) in the velocity ACF should be taken
into account. If this is indeed the reason for the
observed difference between the Monte Carlo data,
Dy, and @V, the O(c) kinetic theory expression,
then the scaled difference @ =(Dyc—PV)/?
should superimpose, at least for low densities. This
comparison is shown in fig. 2. As can be seen, the
curves almost coincide for short times. At longer
times the curves appear to go through a maximum,
although, due to the statistical noise, its precise loca-
tion is uncertain. The effect of this noise is worst at
low concentrations. The figure suggests that the max-
imum is more pronounced at higher concentrations.
This implies that, at these concentrations, third and
higher order density corrections play a role. In fig. 2
we have also indicated the theoretical prediction for
the second order density correction to the asymp-
totic tail of the velocity ACF. Clearly, the asymptotic
regime is not yet reached after some 50 collision
times. Moreover, the approach to the asymptotic
value is not monotonic.

We can compare the theoretical predictions for the
density-dependence of the diffusion constant D(c)
with the Monte Carlo results, writing

D(c)=D©@ +DWVc+D® 2 +....

For convenience, we have expressed D(c)
(=[3dt @(t)) in units of D(c=0). We can estimate
D? from our Monte Carlo data by determining the
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Fig. 1. The (negative) tail of the velocity autocorrelation function of the two-dimensional “lattice Lorentz gas™ for 1% (A), 2.5% (B)
and 5% (C) occupied sites. The Monte Carlo data points are denoted by open circles. The estimated errors in the Monte Carlo results
are shown as open triangles. The drawn lines are the kinetic theory predictions of ref. [8] for the velocity ACF to lowest order in the
density of scatterers. Note that only those simulation data points are shown that are at least a factor 2-3 above the statistical noise.
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Fig. 2. Comparison between the kinetic theory predictions for
the second order density correction to the asymptotic part of the
tail of the velocity ACF of the two-dimensional “lattice Lorentz
gas” [8] and the corresponding Monte Carlo data. In the figure,
the difference between the full Monte Carlo velocity ACF and the
lowest (linear) order kinetic theory prediction for this quantity
has been multiplied by ¢? and divided by c2. The dashed horizon-
tal line corresponds to the second order density correction to the
asymptote of the velocity ACF as given in ref. [8]. Simulation
data: 1% scatterers (—), 2.5% (-~ -), 5% (--- -}, 10% (- - -
- =), 15% (-.-.-). At long times the simulation data are over-
whelmed by noise, this problem is most serious for the lower con-
centrations. In the figure we do not plot the data beyond times
where the estimated statistical error becomes 100%.
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Fig. 3. Estimate of the second order density dependence of the
diffusion constant. The points shown in the figure were com-
puted from the Monte Carlo data using:
D@ =[Dyc(c)-D®—-DM¢]/c? The estimated errors (one
standard deviation) are indicated in the figure, for the two high-
est densities the error bars are smaller than the dots. The drawn
line is a least squares fit to the data points. The intercept of this
line at c=0 (D =0.76 £0.05) should be compared with the
theoretical prediction (D(®=0.85571, indicated by a filled tri-
angle). Note that the theoretical value is within two standard
deviations of the MC results.

zero-concentration intercept of (D{c)—-D©®—
DM®¢)/c?. This comparison is shown in fig. 3. The
estimated intercept is within two standard devia-
tions of the theoretical value D® =0.85571. The data



Volume 121, number 8,9

are not sufficiently accurate to determine the sign (let
alone the magnitude) of D3,

It is important to note that knowledge of the full
time dependence of the lowest order density expres-
sion for the velocity ACF has been crucial for the
comparison between theory and simulation. If, in
contrast, we had attempted to compare our Monte
Carlo data directly with the presumed asymptote we
might have been led to erroneous conclusions about
the amplitude and/or exponent of the asymptotic tail.
It is instructive to consider what would have hap-
pened if we had tried to “measure” the apparent
amplitude or exponent of the tail of the velocity ACF
from our MC data between 20 and 40 collision times.
If we had made the (incorrect) assumption that after
some 20 (attempted) jumps the velocity ACF decays
with a simple power law then we would have been
forced to conclude the following: Either the velocity
ACF decays as ¢t 2, but the amplitude is larger than
predicted by the linear density theory (for 1, 2.5, 5,
10 and 15% hard scatterers these apparent ratios
would have been: 1.24, 1.33, 1.46, 1.81 and 2.09
respectively). Or, if we had not assumed a ¢ ~2 decay,
we would have found a 1 —* decay, with a non-uni-
versal value of «. For the same concentrations of
excluded sites as above, a least-squares fit yields the
following values for a: @=2.05 (1%), 1.93 (2.5%),
1.82 (5%), 1.68 (10%) and 1.52 (15%). It should be
stressed that the fact that the lattice Lorentz gas has
not yet reached asymptotic behavior after 20 jumps
does not imply that the same holds for continuous
2D Lorentz gas after 20 collisions. The reason is that
in a continuous Lorentz gas [6] 20 impermeable
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scatterers are visited in 20 collisions. For the dilute

lattice model only a few hard scatteres are visited in

this number of jumps.

The simulations reported in this paper were car-
ried out following many stimulating discussions with
Matthieu Ernst, Theo Nieuwenhuizen and Peter van
Velthoven. I gratefully acknowledge their continuous
interest and support. Computer time on the Amster-
dam Cyber 205 was kindly made available by the
University of Utrecht and Control Data Corporation.
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