Structure factors of polydisperse systems of hard spheres: A comparison
of Monte Carlo simulations and Percus-Yevick theory
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We present Monte Carlo (MC) simulations of the structure factors of polydisperse hard-sphere
fluids. The simulations were carried out for 108 particles and packing fractions up to ¢ = 0.5. The
size distribution of the particles was chosen randomly from a log-normal distribution. The MC
results are compared with predictions obtained using Percus—Yevick approximation. It is found
that for all but the highest densities and the highest polydispersities studied, the Percus-Yevick
approximation provides a satisfactory description of the MC data.

I. INTRODUCTION

Scattering of electromagnetic radiation and (cold) neu-
trons is becoming a tool of increasing importance in the
study of “supramolecular liquid structures” in concentrated
solutions of colloidal particles dispersed in a low-molecular
liquid." In analyzing the data one usually assumes that the
interacting particles are uniform in size and shape and that
the interaction forces between the particles are identical.
This is of course an oversimplification. Colloidal particles
are prepared in such a way that because of the nature of their
preparation, there will always be a distribution in these pa-
rameters. In practice one can synthesize colloidal spheroids
with mean diameters of between 50 and 500 nm and a stan-
dard deviation ranging from 5% for the largest spheroids to
20% for the smallest ones.” Particles that are formed spon-
taneously in a solution (e.g., a microemulsion of water
droplets dispersed in an oil and stabilized with surfactants)
also vary in size, sometimes by as much as 30%.>

In dilute colloidal suspensions, where the interactions
between particles are negligible, scattering methods have
been used for a long time to analyze the particle configura-
tions. In nondilute systems, where the interaction forces
between particles cannot be neglected, the situation is much
more complicated and therefore much more difficult to ana-
lyze. It is often assumed that in such systems the interactions
between particles are identical although the scattering prop-
erties of the particles may still vary.** But pair potentials of
different particle pairs usually will not all be the same and
will show smaller or larger variations in magnitude and
range. It is therefore very desirable to consider a model sys-
tem where the effects of polydispersity in interaction param-
eters can be described by an approximate analytical theory.

A simple model potential for which this is feasible is the
“hard-sphere” pair potential. This potential is also quite re-
alistic in certain colloid systems.® The potential is character-
ized by only a single parameter: the hard-sphere diameter d.
The attractive feature of this system is that an approximate
theory is available to describe its structural and thermody-
namic properties. This theory is based on using the Percus—
Yevick approximation in the Ornstein—Zernike equation
and was developed by Lebowitz’ and Baxter.® In principle it
allows one to evaluate the radial distribution functions of the
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different particle pairs in a hard-sphere mixture. From the
results one may also calculate the intensity scattered by a
mixture of particles with hard-sphere interactions as a func-
tion of scattering angle. Fortunately, this can even be done in
a closed form so that after the Percus—Yevick approximation
has been adopted the scattering can be evaluated exactly®'°
for all types of polydispersities in particle scattering proper-
ties and interaction (hard-sphere sizes). Explicit results
were obtained by Van Beurten and Vrij.!! They used a
Schulz distribution of hard-sphere sizes with standard devia-
tions of up to 100% and different particle scattering func-
tions.

From earlier computer simulations on fluids of mono-
disperse hard spheres it is known that the Percus-Yevick
approximation yields a reasonable description of the static
structure factor up to the freezing density.'? It is not known,
how accurately the Percus-Yevick approximation describes
the scattering properties of polydisperse fluids.

In this paper we give some first results of Monte Carlo
simulations and compare these with calculations based on
the multicomponent Percus-Yevick solution.

il. SCATTERING EQUATIONS
A. Scattering ampliitudes of particles

We consider a p-component system of particles dis-
persed in a solvent. The scattering amplitude contributed by
a particle / will be denoted by f;B; (K). Here f; is the ampli-
tude at zero angle of scattering and B, (X) is their normal-
ized intraparticle interference factor and is unity at X = 0.
B,(K) and f; are given by®:

B.(K) =f '41rf°° Pe, () Snkr 1)
o Kr

£ =417'J~m e (rydr. )
(¢}

Here £, (r) is the (spherosymmetric) distribution of scatter-
ing material inside particle i, and X is the magnitude of the
scattering vector given by K = (47/A4)sin(6 /2) with A the
wavelength of the scattering radiation and & the scattering
angle.
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Nonspherosymmetric distributions can also be treated
but they do not add any essentially new feature and fall out-
side the scope of this paper.

B. Scattering intensity

The scattering intensity per unit volume of the particle
dispersion is given by>!:

p ~
R(K) = Z fiﬁcBi(K)Bk(K)(Pipk)l/2[5,'k +H,-k(K)]
k=1
(3)
with

Hy (K) = (p,pi)"? F 47rh, (r) [L"(ﬁ)—]dr. (4)
o Kr

Here h, (r) = g, (r) — 1, where g, (r) is the radial distri-
bution function of the pair i, k, and  is the distance between
the particle (force) centers. Further p; and p, are the num-
ber densities of the particle species / and &, and &, is the
Kronecker delta (85,, =0 when i#k and 5, =1 when
i = k). The functions fI,.k (K) describe the interparticle in-
terference effects on the scattering. For low enough particle
concentrations (p,—0) the fI,-k (K) vanish and Eq. (3) be-
comes simply

R(K) = 3 pfIBIHK). 5)

i=1
For a single component fluid (i.e., p=1) Eq. (3) re-
duces to

R(K) =pf?P(K)S(K) (6)
with
P(K) =B*(K) (7
and
S(K) =1+1?(1<)=1+pf°° arPh(r) SRKT 4
o Kr )

Here P(K) and S(K) are the so-called particle scattering
factor and the structure factor, respectively.

C. Polydisperse particle and structure factors

For small concentrations one may write for the intensi-
ty, instead of Eq. (5),

Ry(K)=pf*P(X), (9
where
P
P= Pi» (10)
i=1
2 2
2 p.fi
== , (11)
iglp‘
P
_ 2 pSiBIK)
P(K) =", (12)
2 pfi
at K—0, P(K)—1.
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For finite concentrations we now define an average
structure factor by analogy with Eq. (6), i.e,,

R(K) =p fAP(K)S(K)
or combining Eq. (13) with Eq. (3):

(13)

P ~
_ kz lfokBi(K)Bk (K)(pipk)ln[aik + H, (K)]
S(K) = nE= .

3 p.SiBI(K)
i=1
(14)

Other definitions are possible, but the advantage of the defin-
ition of S(X) in Eq. (14) is that it can be compared directly
with experiments performed at high and low concentrations,
ie.,

Ry(K)

where p/p, is the dilution factor.

Note that Eq. (14) describes the scattering behavior of a
p-component fluid mixture. For a truly polydisperse fluid
the number of components p becomes very large and all sum-
mations, such as in Eq. (14), may be replaced by integra-
tions. However, in the present paper we shall always be deal-
ing with finite systems of N particles. The number of
components p is then at most equal to N.

It should be kept in mind that S(K) is no longer a quan-
tity that can be defined independently of the B, (K) asin a
single-component fluid: Eq. (8). This will become apparent
from the results in a subsequent section. On the other hand
S(K) may contain information on the particle scattering fac-
tor which is useful, for instance because the dilute limit is
beyond the reach of experiment, as in some aggregation col-
loids.

(15)

lil. HARD-SPHERE PAIR POTENTIAL
The hard-sphere pair potential is defined by

d, +d
+ o« for O<r< i 1 G

Up(r) = (16)

d +d
0 for r>—'—_;—'—‘-

Here d; and d, are the hard-sphere diameters associated
with the particle species / and & (i, k = 1,...p). No exact,
analytical results for the 4, (r) are known for this potential
at finite concentrations. Approximate theories, however,
have been developed and fairly accurate results for hard
spheres are predicted by the Percus-Yevick theory.

Explicit solutions of 4, (r) cannot be obtained, but it is
possible to express the scattering properties in terms of auxil-
iary functions g, (r) related to the so-called direct correla-
tion function ¢, (r) and which have a relatively simple alge-
braic form.®

In this way explicit, analytical solutions for the intensity
R(K) can be formulated for any number, p, of hard-sphere
components. In an earlier publication'’ results were present-
ed of the calculation of scattering intensities for a Schulz
distribution of hard-sphere diameters. As a check on the
computer program,'” we verified numerically that for p = 1
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the single-component results were reproduced and that for
P = 2 the results were identical to those of Ashcroft and Lan-
greth'* for the two-component case.'® For details we refer to
previous papers.>'! For the convenience of the reader we
have given the final equation in the Appendix.

IV. COMPUTER SIMULATIONS

The Monte Carlo simulations were carried out on a sys-
tem of 108 polydisperse hard spheres. At the beginning of a
series of MC runs the particle diameters d; were chosen at
random from a log-normal distribution.

P(Ind)dInd = (2mB?) /2

Xexp( — [In(d /dy)1*/28%)d Ind,
an

where 3 is a parameter controlling the width of the distribu-
tion. The unit of volume in our simulation was chosen as

d? =3, p,d3/Z,; p; . The advantage of this choice is that it
leads to the same relation between packing fraction
¢ =7/62, p,d; and number density p ==, p; as in the
monodisperse case, viz. ¢ = (7/6)p. Initially the spheres
that were put on the fcc lattice expanded sufficiently so that
no two spheres overlapped. Thereon the system was “melt-
ed” and compressed (or expanded) to the desired density.
Next the polydisperse fluid was left to equilibrate for ~ 10°
Monte Carlo sweeps ( = moves/particle). Particle displace-
ments were generated by moving a particle randomly in a
cube of edge length A around its original position. The move
was accepted if no hard-core overlaps resulted from this dis-
placement. The value of A was chosen such that ~25% of all
trial moves are accepted. Note that we took A the same for
all particles. It seems likely that sampling could be made
more efficient by choosing a value of A that depends on the
diameter of the particle to be moved. A typical Monte Carlo
run consisted of 2.10* sweeps, excluding equilibration. In
order to compute the structure factor for different form fac-
tors, we used a fast Fourier routine, i.e., we first computed
the scattering amplitude 4(KX) as:

N
AK) =Y fiB;(K)exp(K-1,) . (18)

i=1
A(K) is related to R(K) [Eq. (3)] by:
R(K) =V K|4K)») . (19)

There is a twofold reason why we opted for the fast
Fourier transform method to compute R (K), rather than for
the more usual procedure of accumulating a correlation
function {p[g(7) — 1] for monodisperse systems} during
the run and performing the Fourier transform afterwards.
First of all, for particles that are not point scatterers, accu-
mulating the relevant scattering amplitude density correla-
tion function is extremely time consuming. Secondly, in or-
der to avoid truncation errors in the Fourier transform of
such correlation functions one must introduce an assump-
tion about the behavior or g(r) (or the corresponding corre-
lation function) for 7> L /2, where L is the diameter of the
periodic unit box in the simulation. But, as we are interested
in the behavior of R(K) at small K, we would rather not
introduce such an assumption. We therefore compute 4 (K)

by direct Fourier transform of the scattering amplitude den-
sity. In the transform we take a spatial resolution of 256
points in the direction of K. This number of points is suffi-
cient to suppress aliasing effects, even for point scatterers. In
order to improve our statistics we compute 4 (K) for K along
13 independent directions [three along P([100]), six along
P([110}), and four along P([111]), where P stands for all
independent permutations]. We never found evidence for
systematic differences between R(K) along different direc-
tions, which is surprising in view of the small system size
used. Simulations and calculations of the scattering ampli-
tude A(K) were performed for several particle scattering
functions. Here we report results for: (a) homogeneous
spheres where f; =d? and £;(r) =1 for O<r<id; and
§;(r) =0 for r> d, substituted in Eq. (1) for B;(K); (b)
infinitely thin shells where f; =d? and £;(r) is a delta
peaked function for r=1Ild,, so Eq. (1) gives:
B,(K) =sin(3Kd,)/(3Kd;). The 13X 4 fast Fourier trans-
forms were carried out every ten sweeps. This resulted in a
moderate ( ~30%) increase in computing time. In order to
get an estimate of the accuracy of the results we computed
block averages of R(K). The estimated error varies between
2% and 5%. In order to test whether a single sample drawn
from the log-normal distribution of particle sizes is indeed
representative of that particular distribution we carried out
simulations with other samples drawn from the same distri-
bution.

In the following section we present some resuits ob-
tained for the scattering of homogeneous spheres and shells,
as these are of the most physical interest.

V. RESULTS AND DISCUSSION
A. Monodisperse system

As a first test of the method we computed the structure
factor for monodisperse hard spheres. We find that the re-
sults for S(K) agree rather well with the approximate Per-
cus—Yevick expression (see Figs. 2 and 5), except for the
well-known fact that the PY expression tends to overesti-
mate the height of the first peak in S(X) and to underesti-
mate the compressibility, i.e., $(0). Less is known about the
deviations of S(X) from the PY theory in the small-X re-
gime. We have attempted to fit the density dependence of
In[S(X)MC/S(K)FY] to a power series in K 2 for K<7/0. As
the PY theory is exact up to terms of order p°, we have fitted
the coefficients of powers of K  to a polynomial in the density
with powers larger than three. However, apart from the well-
known fact that the PY compressibility [i.e., S(K =0)] is
too low at high densities, our data were insufficiently accu-
rate to reveal other systematic deviations from the PY
expression in the small-K regime.

B. Comparison of simulations with the Percus-Yevick
theory for polydisperse system

Four (discrete) diameter distributions were used, sam-

pled at random from a log-normal distribution with 8 = 0.1;
0.2; 0.3, and 0.8. {The corresponding standard deviations

sd=[(71_32)/32]1/2___[exp(ﬁz)_”l/z are s,
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FIG. 1. Cumulative, discrete distributions of 108 hard-sphere diameters
sampled from log-normal distributions. The parameter Bis a measure of the
width of the distribution (and is nearly equal to the standard deviation, see
the text). The drawn curves correspond to the continuous cumulative dis-
tribution obtained by integrating Eq. (17). For all cases except 8 = 0.8, the
continuous curve and the discrete sample coincide. For 8 = 0.8 the discrete
distribution is shifted in such a way that the condition d° = 1 is satisfied.

= 0.100; 0.202; 0.307; 0.947.} The (cumulative) diameter
distributions of the 108 spheres are shown in Fig. 1. For
B = 0.8 we also carried out the MC simulations for a second
sample of particle diameters drawn from the same distribu-
tion (not shown in Fig. 1). Distances are expressed in the
following length unit:
1/3

Zpid?

zt:Pi

simply denoted by the symbol 0. The PY calculations were
performed with the same discrete distributions as used in the
MC simulations.

Structure factors for a volume fraction ¢ = 0.3 are
shown in Figs. 2 and 4. Here ¢ is defined by the following
equation:

~(2) g0

i=1

o= d3\3 = ; (20)

(21)

In Figs. 2 and 5 the scattering entities are homogeneous
spheres with a scattering diameter equal to the hard-sphere
diameter. In Fig. 4 the scattering entities are infinitely thin
shells with the same diameters.

Figure 2 shows the following features:

(i) Thereis amain maximum at Ko =~ 6 which becomes
less pronounced with increasing £, and appears to
shift slightly to lower wave vectors.

(ii) In addition, the subsidiary oscillations in S(X) for
Ko > 6 are progressively washed out. This loss of
structure with increasing 8 is not surprising be-
cause the oscillations in S(X) for a monodisperse
system are mainly due to the sharp peak in g(r) at
r = o. This peak is washed out in a mixture of parti-
cles with different diameters.

(iii) For polydisperse systems the value of S(K = 0) is
no longer equal to the osmotic compressibility as
in the monodisperse case. Nevertheless, S(X = 0)
can still be used as an approximate measure of the
compressibility of the polydisperse fluid. The fact
that S(K = 0) remains small as £ increases re-

Frenkel ot a/. : Polydisperse hard spheres

S(k)

(0] ¥t .1....1...4_1‘.LL1.LLA1
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FIG. 2. Average structure factors for 108 homogeneous scattering spheres
with diameters equal to those of the hard spheres. The scaling distance o is
defined as ( d°)'/3. The upper curve is a second sample taken from a log-
normal distribution of 8 = 0.8. The volume fraction ¢ = 0.3.

flects the fact that the system remains difficult to
compress. The relation between S(X = 0) and the
osmotic compressibility has been discussed in
some detail in Ref. 16.

(iv) The simulations fit closely to the PY calculation
for small X and become noisier for large X, al-
though the relative noise remains approximately
constant.

(v) The two uppermost curves show S(K) for different
samples with the same B. This indicates that for

broad distributions a sample of 108 particles be-
comes too small to represent the (smooth) log-nor-
mal distribution. Simulations with each of the dis-
crete samples, however, again compare well with
the PY calculations corresponding to that sample.

We took a special look at the behavior of $(K) at small

K (see Fig. 3). This range of X is interesting because it is
often accessible to light-scattering experiments on colloids.
In dilute systems the range of X is known as the “Guinier”
range and a plot of log[ R (K) ] vs K ? is usually referred to as
a Guinier plot. The (negative) slope is a measure of the radi-
us of gyration of the scattering particle,
[P(K) =exp( — K?r2/3)]. At finite concentration (here
¢ = 0.3), S(K) increases linearly for small K 2 and shows a
positive slope. Thus the change in slope of log[R(K)] as a
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FIG. 3. The small-K part of the S(K) in Fig. 2 plotted as
log[S(K)] vs K 0%

function ¢ is a first measure of the range of the interactions
[the fourth moment of A(r)].

The results of Fig. 3 show that in the Guinier range the
PY theory is followed closely, within the accuracy of the
simulations, which is between 2%-5%. [It is known that for
¢ = 0.3 and a monodisperse system, the PY theory gives a
value for (K = 0) which is 4% too low.'?]

Let us now turn to Fig. 4 which gives the scattering of
the thin shells. In the first place one notes the large influence
of the different B; on the shape of S(X) even for 8 = 0.1.
[Note that for 8 = 0, S(X) is unique and does not differ for
spheres and shells.] The most salient feature in Fig. 4 is the
disappearance of the main peak of S(X). The reason for this
behavior is that the form factor of a shell interferes more
severely with the structure factor of the fluid than the form
factor of a homogeneous sphere. For 8> 0.2 the function
goes monotonically to one.

Finally we consider some results for ¢ = 0.50, a volume
fraction where it is known that for monodisperse systems
perceptible deviations from PY theory occur; e.g., for
S(K = 0) and 8 = 0 the PY approximation predicts a value
which is about 12% too low.

Results are given in Fig. 5. One observes that for § = 0.1
again the simulation closely follows the PY result, except
possibly at the top of the main peak. For = 0.20 and
B = 0.30 there are discrepancies between the main peak and
the secondary extremum. In this figure we added results for
a second run on the same assembly of spheres. Differences
between the two sets of points are due to the statistical noise
in the individual simulated points.

PURIS W EST U S U AV MAPURT S U U W N N T S U

0 5 10 15 20 25
ko

FIG. 4. Meaning of symbols as Fig. 2, but for thin scattering shells (con-
stant thickness) with diameters equal to those of the hard spheres.

S(k)

FIG. 5. Meaning of symbols as Fig. 2, but for ¢ = 0.5. Results are for two
different runs on the same assembly of spheres. The spread in the resultsis a
measure for the inaccuracy in the simulation data.
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This observation also applies to the small-X results
where the fluctuations in the simulations are larger than in
Fig. 3 with ¢ = 0.3 It is still possible, however, that larger
oscillations near the position of the main peak would be
more real than the weak oscillations predicted by PY. This
will need further study.

One obvious question is whether a simpler description
than the polydisperse PY equation can be used to account for
the Monte Carlo data. For instance, a number of experimen-
talists analyze their scattering data using the assumption
that positional polydispersity and polydispersity in the form
factors are, to a first approximation, uncorrelated.*> This
leads to an expression for S(X) of the form:

S(K) =1+B(K)[S,(K) —1], (22)
where
P P )4 2
B(K) = (Z p,-) > pJ?B?(K)] / [ Y pufiB; (K)]
i=1 i=1 i=1
(23)

and the “positional” structure factor S, (K) is given by:

N N
S, (K)y=N"" > Zexp[iK-(R,.——Rj)]. (24)
i=1j=1

We have carried out a few tests of Eq. (22) and found it to
yield a rather poor description of the MC data, even at low
polydispersity (8=0.1). The discrepancy is worst at low X
values. Because of the disappointing results obtained with
Eq. (22) at low polydispersities we have not attempted to
carry out the comparison for higher values of 8.

APPENDIX
(7/6)R(K) = (f*B?) + (d*BO®)(L,+L%)

+3(d*fBY) (L, + LY) + (44 *) .
(A1)
Here, L,, L, and A4 are complex quantities. Their complex
conjugates L ¥, L ¥, and 4 * are obtained by replacing i, the
imaginary unit, by — i. Further,

L,=T,/T; Ly=T,/T,, (A2)
T, =F\Fy, — FpoF, (A3)
T, = F,,{dfBe™) — Fp,(fBe™) , (A4)
T, = F,,{fBe™ ) — F,,{dfBe”), (A5)
F,=1—§& + (d*®e*), (A6)
Fy, = (d*®e*), (A7)
Fpp=1—§5+ 3(d>Ve™), (A8)
Fy, =1(1 — &)iK — 3§, + 3(d *We*) (A9)
¥, = (sinX,)/X,, (A10)
P, = (3/X3)(sinX, — X, cos X,.), (All)

A, =di®,L,+3diV,L,, (A12)
X, =iKd, . (A13)
The brackets indicate averages over diameters, i.e.,
P
WY=(7/6) Y puy(d;), (Al4)
k=1
where y(d) is any function of d. Examples are
P
(f’B*) = (n/6) ¥ pufiB}, (A15)
k=1
P
(Bd*Y) = (7/6) ¥ pifiBidi ¥, , (A16)
k=1
. .4 .
(dfBe™) = (1/6) ¥ pidifiBie™, (A17)
k=1
. 4 R
(dfBe™)* = (7/6) ¥ pidifiBie™ ™. (A18)
k=1
In particular,
P
§,=(n/6) Y dip,=(d"). (A19)
k=1

Thus £, is the overall volume fraction of spheres. Further,

Bk(K)-': ;1]”47‘"’2;]((") sin Kr dr,
o Kr

(A20)

S = J; 4nr’c, (r)dr,

where £, (7) is the (spherically symmetric) distribution of
scattering amplitude in particle k as a function of the dis-
tance from the center of the hard sphere %.

(A21)
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