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We develop various mathematical models of the clinical latency stage of HIV-1 infection assuming that
HIV-1 infection is limited either by the availability of cells that HIV can infect or by a specific anti-HIV
cellular immune response. The former models we call ‘‘target-cell-limited’’. Comparing the models by
phase plane analysis we find that they all belong to the class of predator-prey models. In the
target-cell-limited models the virus is a predator feeding upon target cell prey, while in the
immune-control models the virus is a prey that is controlled by an immune response predator. Because
both classes of models are of predator-prey type they behave similarly in most circumstances. We find
that both types of model can account for the generic picture of disease progression in which the CD4
T cell count slowly decreases and the viral load slowly increases. Additionally, we find that both types
of models can adequately describe the clinically observed changes in the plasma HIV-1 RNA loads in
response to retroviral therapies.
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Introduction

A typical HIV-1 infection has a long clinical latency
phase (Coffin, 1995). Following an initial viremia, the
viral load in peripheral blood declines rapidly and
establishes a quasi-steady state level. The length of the
clinical latency phase correlates negatively with the
quasi-steady state level that is attained shortly after
the initial viremia (Mellors et al., 1996). During
disease progression there is a slow increase in the viral
load, and a slow decrease in the CD4+ T cell count
in peripheral blood. Because of the slowness of
disease progression, it had been thought that the
processes of HIV-1 replication and the destruction of
infected CD4+ cells would also have a slow time-scale.
This viewpoint has recently been contradicted by
mathematical analysis of data obtained in patients

treated with anti-viral drugs inhibiting either HIV-1
protease (Ho et al., 1995; Perelson et al., 1996) and/or
HIV-1 reverse-transcriptase (RT) (Wei et al., 1995;
Perelson et al., 1997). Following such a therapeutic
perturbation of the quasi-steady state, the HIV-1
RNA load and the CD4+ T cell count in the
peripheral blood change drastically on a time-scale of
weeks. It was estimated that in patients with CD4
counts below 500, the average HIV-1 generation time
is 2–3 days (Ho et al., 1995; Wei et al., 1995), leading
to 0140 generations per year (Perelson et al., 1996),
and that the average total HIV-1 production is about
1010 virions per day (Perelson et al., 1996). Clinical
latency therefore appears to be a quasi-steady state in
which fast HIV-1 replication and clearance remain in
almost perfect balance. According to this view,
disease progression involves a slow change of
parameters that gradually moves the quasi-steady
state to higher viral loads and consequently lower
CD4+ T cell counts.
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The crucial question arising from this novel view is
the nature of the processes setting the long-term
balance between viral replication and clearance
(Coffin, 1995). One obvious control process is the
anti-viral immune response. HIV-1 infection elicits
both humoral and cellular immune responses (Fauci,
1993; Weiss, 1993). CD8+ T lymphocytes, which
suppress and/or kill virus infected cells, are thought
to be the dominant defense mechanism, and it has
been postulated that long term survival is associated
with a good cellular immune response (Klein et al.,
1995; Rinaldo et al., 1995; Shearer & Clerici, 1996;
Nowak & Bangham, 1996; Levy et al., 1996;
Wolinsky et al., 1996; Goulder et al., 1997; Borrow
et al., 1997). Another significant control factor is the
availability of ‘‘target’’ cells, i.e. cells that HIV is able
to infect (Coffin, 1995; Phillips, 1996; De Boer &
Boucher, 1996). The primary target of HIV-1
infection is an activated CD4+ T cell (Fauci, 1993;
Weiss, 1993).

A variety of clinical data sets suggest that virus
replication is limited by the availability of target cells.
Suppressing the immune system with either cy-
closporine (Andrieu et al., 1988; Schwarz et al., 1993;
Weber & Galpin, 1995) or prednisolone (Andrieu et
al., 1995; Corey, 1995) can have beneficial effects
because it decreases the CD4+ T cell count and
sometimes (Weber & Galpin, 1995) decreases the viral
load. Stimulating the immune system with IL-2 tends
to increase the viral load (Kovacs et al., 1995).
Immunization of HIV-1 infected patients with either
influenza vaccine (Staprans et al., 1995; O’Brien et al.,
1995), hepatitis B vaccine (Cheeseman et al., 1996),
pneumococcal vaccine (Brichacek et al., 1996), or
tetanus toxoid (Stanley et al., 1996), which should
activate T cells, tends to increase the viral load. A
similar increase in HIV is seen during infection with
pathogenic organisms (Goletti et al., 1996). Because
the number of activated CD4+ T cells, i.e. target cells,
decreases with immune suppression and increases
with immune stimulation, these results suggest that
the infection may be ‘‘target-cell-limited’’ during such
post-treatment transients. Finally, monotherapy with
the anti-retroviral drug didanosine unexpectedly gives
a long-term suppression of HIV-1 when it is combined
with the immunosuppressive drug hydroxyurea (Vila
et al., 1996; Lori et al., 1997). Precisely this long-term
effect was previously predicted by studies of
target-cell-limited models (De Boer & Boucher, 1996).

In this paper we perform a comparative study of
target-cell-limited and immune-controlled models of
HIV infection. To enable an objective comparison
between models we set the unknown parameters such
that the models all have a similar clinical latency

steady state. This is the equivalence approach
advocated by Irvine & Savageau (1995a,b). Our main
conclusion is that both target-cell limited and immune
control models have similar behavior, and can
account for the dynamics observed after drug
perturbation experiments.

Biological Variables and Parameters

The models that we develop involve various cells
types: non-infected quiescent T cells, Q, (non-in-
fected) activated or cycling CD4+ cells, which we
consider to be target cells T, productively infected T
cells, I, cytotoxic effector T cells, E, and HIV-1 virus
particles, V. (Parameter and variable names follow
the ‘‘Arden Accord’’, http://binf.biol.ruu.nl/0rdb/ar-
den.html.) Recent studies on the dynamics of HIV-1
turnover and the rate of CD4+ T cell recovery
following the administration of antiretroviral drugs
provide estimates for some of the parameters of the
models. In HIV-infected patients the division rate of
CD4+ T cells decreases approximately linearly with
the CD4 T cell count, suggesting that the growth rate
is density dependent and is governed by a logistic-like
growth function (Sachsenberg et al., submitted). The
CD4 cell count in an uninfected individual is
approximately 1000 CD4+ T cells per ml. Estimating
the maximum growth rate is difficult, but an upper
estimate is provided by the recovery rate of about 0.1
per day during treatment (Ho et al., 1995; Wei et al.,
1995). The average lifetime of a productivity infected
T cell is estimated to be between 1 and 2 days (Ho et
al., 1995; Wei et al., 1995; Perelson et al., 1996, 1997),
and the average lifetime of virus particles is estimated
to be maximally 8 hr (Perelson et al., 1996).

The clinical status of a patient is typically assessed
by measuring CD4 T cells counts and viral loads in
the blood. The typical patient that we consider has a
CD4+ T cell count of say 200 cells per ml, and a viral
load of approximately 105 virions per ml of plasma.
In our models virus particles, V, are produced by
productively infected cells, I, at rate p per cell, and are
cleared at a per capita rate c, i.e.

dV
dt

= pI− cV, (1)

where the clearance rate constant c may involve
binding of particles to cells and clearance by
antibodies. Because the dynamics of the viral particles
are much faster than the dynamics of cells, [Perelson
et al. (1996) estimated ce 3 day−1], we make a
quasi-steady state assumption for eqn (1), i.e.

V� =(p/c)I, (2)
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where the overbar denotes a steady-state quantity. The
production rate p has been estimated to be approx-
imately p=100 (Haase et al., 1996; Cavert et al., 1997)
virions per cell per day. Given the viral clearance rate
c=3 day−1, our typical viral load of V� =
100 virions ml−1 yields an estimate of I� =3 cells ml−1.

With these parameters, a patient having a typical
CD4 count of 200 cells ml−1, would have 1.5% of
CD4+ T cells productively infected. We will show
below that this fraction is too low to account by itself
for significant CD4+ T cell depletion. Thus, in our
models we allow for depletion mechanisms other than
productive infection. Additional depletion effects,
such as apoptosis, have been used before (Frost &
Michie, 1996) and have been introduced to account
for the sustained effect of therapy on reducing viral
load (Bonhoeffer et al., 1997). If in the blood and in
the lymphoid tissue the same percentage of CD4+ T
cells are productively infected, and if 2% of the CD4+

T cells are in the blood, then 1.5% of CD4 T cell being
productively infected implies a total body burden of
3 ml−1 ×5×106 m1×50=7.5×108, which is high
when it is compared with recent studies measuring
numbers of productively infected CD4+ T cells in the
lymphoid tissue. Measured total body loads were
4×107 (Haase et al., 1996) and 3×107 (Chun et al.,
1997) productively infected CD4+ T cells. Given
experimental detection limits the former study
estimates a total number of 2×108 productively
infected CD4+ T cells (Haase et al., 1996). A similar
estimate can be arrived at from data measuring that
the frequency of mononuclear cells with greater than
20 copies of HIV-1 RNA was 3.1×105 per gram of
lymphoid tissue (Cavert et al., 1997). Assuming that
these cells are productively infected, and that 1% of
the body mass is lymphoid tissue, one again obtains
2×108 productively infected cells. Since total CD4+

T cell levels in these patients is of order magnitude
1011 cells, one arrives at the very low frequencies of
10−3 (Haase et al., 1996) to 10−4 (Chun et al., 1997)
productively infected CD4+ T cells. We will show
below that one can obtain indeed obtain similar low
frequencies in our models if we were to allow for a
larger burst size p and significant CD4+ depletion by
mechanisms other than productive infection. Under-
standing the mechanisms of CD4+ T cell depletion
with so few productively infected CD4+ T cells
remains a major unresolved issue in HIV infection.

Target Cell Limitation

 

Recent data measuring the number of dividing
CD4+ T cells in HIV-infected patients with

different CD4 cell counts suggest a logistic-like
growth function (Sachsenberg et al., submitted).
Thus, we model the population dynamics of target
cells, T, and productively infected cells, I, as

dT
dt

= aTT(1−Ttot /Tmax )− (b+ g)TV,

and
dI
dt

= bTV− dII, (3a,b)

where V is described by eqn (1) or (2). Here b is a true
infection rate (cells per particle per day) and g

combines all other virus induced depletion of the
CD4+ T cells. This may vary from apoptosis
(Meyaard et al., 1992) to destruction of lymphoid
tissue (Pantaleo et al., 1993; Pantaleo, 1997). The rate
of increase aT =0.1 day−1 is the maximum rate of T
cell renewal, Tmax =1000 cells ml−1 is the non-infected
steady state CD4 count, and dI =0.5 day−1 is the
turnover rate of productively infected T cells. The
CD4 count, i.e. the total number of T cells,
Ttot =T+ I. The steady state of this model is at

T� =
cdI

pb
, I� =

caT (pbTmax − cdI )
pb(aTc+ p(b+ g)Tmax )

,

and V� =
p
c

I� . (4a,b,c)

We set parameters such that this steady state
corresponds to a CD4 T cell count of approximately
200 cells ml−1 and a viral load of 105 virions ml−1.
Importantly, without the additional depletion term,
gTV, this model cannot account for such a steady
state CD4 T cell count with so few productively
infected T cells. First, we consider a patient with a
steady state CD4 count of T� tot 2T� =200 and
calculate the number of productively infected cells I�
for g=0. Requiring T� =200, we solve eqn (4a) for
pb, which is the only unknown parameter combi-
nation, to find pb=(0.5×3)/200=7.5×10−3. Hav-
ing estimated pb, we know all parameters in the
steady-state expression for the infected cells [eqn
(4b)], and hence find that I� 2 30 cells ml−1. This
corresponds to more than 10% productively infected
cells. Second, consider a patient with a steady state
viral load of 105 virions ml−1, i.e. V� =100 ml−1, and
I� =3 ml−1, for whom we compute the steady state
CD4 count. Requiring I� =3, we solve the quadratic
eqn (4b) for b, to find that b=1.5×10−5 or
b=9.8×10−4. Substituting into eqn (4a), with
p=100, yields uninfected CD4+ T cell counts of 982
and 15 cells ml−1, respectively. Only in the latter case
do we find significant T cell depletion but again we
have more than 10% productively infected cells.
Thus, we see that when the fraction of productively
infected CD4+ T cells is low, other mechanisms beside
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productive infection are required to account for
significant CD4+ T cell depletion. Similar results
pertain to the activated T cell model (see below).

The depletion parameter g allows us to scale the
number of productively infected cells to arbitrarily
low levels. Note from eqn (4) that increasing g lowers
I� but leaves T� unchanged. Lowering I� will lower V� ,
but this can be compensated for by increasing the
virion production rate p. Having empirical estimates
for the production rate, we set p=100 and compute
from eqn (4c) that, for V� =100 virions ml−1, I� =3
cells ml−1. If T� tot =200 then T� =197, and by eqn (4a)
we obtain that b=7.6×10−5 virion−1 day−1. Next we
solve eqn (4b) with I� =3 and find that g=7.2×10−4

virion−1 day−1. Thus, to account for a steady state
with a CD4+ T cell level of 200 and a viral load of
V� =100 virions ml, the additional depletion rate g has
to be almost 10-fold larger than the infection rate b.
According to this logistic model, the direct impact of
productive infections on CD4+ T cell depletion
should be marginal.

   

Activated T cells make better targets for HIV
infection than quiescent cells (Bukrinsky et al., 1991).
Thus, we propose a second target-cell-limited model
in which we distinguish quiescent and activated T cells
(McLean & Kirkwood, 1990; McLean & Nowak,
1992b; Essunger & Perelson, 1994). In this particular
model (Stilianakis et al., 1997), we assume that
quiescent T cells are activated at rate aQ , die at rate
dQ , and appear by the proliferation of activated T
cells at a maximum rate r. Activated CD4 cells, T,
appear by activation of quiescent cells, they revert to
the quiescent state at rate r, and they are infected by
virus at a rate b. Thus,

dQ
dt

=
2rT

1+Ttot /Tmax
−(aQ + dQ )Q,

and
dT
dt

= aQQ− rT−(b+ g)TV, (5a,b)

where the 2/(1+Ttot /Tmax ) term defines a density
dependent regulation of the proliferation rate. When
Ttot =Tmax proliferation stops, and activated T cells
simply revert to the quiescent state. For the infected
T cells we copy eqn (3b), i.e.

dI
dt

= bTV− dII, (6)

and V is still given by eqn (1).

The total number of T cells, i.e. the CD4 count, in
this model is Ttot =Q+T+ I. The clinical latency
steady state is at

T� =
cdI

pb
, I� =

aQQ� b
dI (b+ g)

−
cr

p(b+ g)
,

and V� =
p
c

I� . (7a,b,c)

The value of Q� can easily be computed; it is too
complicated to warrant printing here.

For the lifespan of quiescent human CD4+ T cells
we employ our three year estimate (De Boer & Noest,
submitted) based upon telomere data in normal
individuals (Weng et al., 1995), i.e. we set dQ =0.001
day−1. By setting r=1 day−1 we assume that activated
T cells revert quite rapidly to the quiescent state. In
the Appendix we derive that the maximum growth
rate of the CD4 population is determined by the
activation rate aQ and that the CD4 cell count should
remain below Tmax . Using the maximum growth rate
estimated above, we set aQ =0.1 day−1. Further,
setting T� max =1200 we obtain a normal CD4 cell
count of approximately 1000 CD4+ T cells per ml. We
numerically fit b and g for the required steady state,
i.e. we set b=1.35×10−3 and g=5.6×10−3 to have
a steady state, Ttot 2 200 cells ml−1, Q� 2 188 cells ml−1,
T� 2 11 cells ml−1, I� 2 3 cells ml−1, and V� 2 100
particles ml−1. All other parameters remain the same
as those in the logistic model. Note that b2 g/4, i.e.
025% of the depletion is accounted for by
productive infections. Further, because only a small
fraction of all CD4+ T cells are now target cells, the
infection rate b is about 100-fold higher than it is in
the logistic model.

  

Comparing the two target-cell-limited models by
phase plane analysis we point out their similarity and
their relationship to predator-prey models. We reduce
both models to two ODEs by making a quasi-steady
state assumption for virus [eqn (2)], and a second
quasi-steady state assumption for the target cell
population, T, in the activated T cell model. Plotting
the ‘‘prey’’ population T (or Q) on the horizontal axis
and the ‘‘predator’’ population I on the vertical axis,
we obtain two very similar phase plane pictures (see
Fig. 1). In the logistic model the location of the
vertical predator nullcline determines the CD4 cell
count of the latency steady state. We indeed have set
the CD4 count to 200 by tuning the infection rate b.
For these parameter values the steady state is a stable
spiral point. The nullclines of the activated T cell
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model [Fig. 1(b)] resemble those of the logistic model,
but the prey nullcline (heavy line) is slightly curved
and the predator nullcline (light line) is slanted. The
steady state remains a stable spiral point, but tends to
be more stable than that of Fig. 1(a).

 

For a typical patient, during the asymptomatic,
clinical latency phase the CD4 cell count slowly
decreases and the viral load slowly increases. The
onset of AIDS is defined as reaching a CD4 count of
200 cells ml−1 or below. An aim of theoretical
modeling is to find a disease progression parameter
that decreases the CD4 count and increases the viral
load. This is an interesting problem because one
would expect the viral load to decrease with
decreasing CD4 counts if the virus is target-cell-lim-
ited. If this were true, it would contradict the data,
and would be an argument against a target cell limited
model.

We can incorporate disease progression into the
model by assuming that the virus increases its
infection rate b. This assumption has been the focus
of a model developed by Schenzle (1994) and is in
agreement with data suggesting that the virus
quasispecies becomes more virulent during pro-
gression (Tersmette et al., 1989; Schellekens et al.,
1992; Connor & Ho, 1994), but is at odds with other
data suggesting that the virulence remains similar
(Wolinsky et al., 1996). In the clinical latency steady

state of the logistic model, eqn (4), the CD4 count, T� ,
is an inverse function of the infection rate b. The viral
load is a complicated function of b however. When b

is small, increasing b increases the viral load; when b

is large it is the other way around [Fig. 2(a)].
In Fig. 2(a) we plot the steady state viral load and

CD4 count as a function of b in the logistic model.
Disease progression is interpreted as an increase of b

in time. Observe that CD4 count, T (light line), is
inversely related to b, and that the viral load (dark
line) first increases and then decreases. This decrease
of the viral load is in disagreement with the data, but
is natural in simple host-parasite models. For the
current parameters the equilibrium is stable only for
bQ 1.4×10−4; the model behavior is oscillatory
otherwise (not shown).

Other parameters that might change during disease
progression are Tmax , the maximum T cell count, the
additional depletion g, and aT or aQ , the T cell
self-renewal rates. A biological argument for decreas-
ing Tmax would be that during HIV-1 infection
lymphoid tissues is destroyed (Pantaleo et al., 1993;
Pantaleo, 1997), which could lower the maximum
number of T cells that can be maintained. An
argument for choosing aT or aQ as a progression
parameter is that HIV-1 infection involves hyperacti-
vation of the immune system (Fauci, 1993). However
g, aT and Tmax are all absent from the steady-state
equation for uninfected T cell of the logistic model
[eqn 4(a)]. Thus, changing any of them fails to

F. 1. Nullclines of the target-cell-limited models. Making quasi-steady state assumptions for the virus particles, and for target cells
in the activated T cell model, both models become two-dimensional, and can be analyzed in a phase-plane. The heavy line is the nullcline
of the prey species (T or Q) and the light line is the nullcline of the predator, I. Panel (a) depicts the logistic model for b=7.5×10−5,
g=7.2×10−4, aT =0.1 day−1, and Tmax =1000 cells. Panel (b) depicts the activated T cell model for aQ =0.1, r=1, dQ =0.001,
b=0.00135, g=0.0056, and Tmax =1200. Invariant parameters: p=100 day−1, dI =0.5 day−1, and c=3 day−1.
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F. 2. Disease progression studied by continuing the clinical latency steady state as a function of a ‘‘progression’’ parameter. The light
line is the CD4 count per ml on a linear scale. For the logistic model (a) we pick the infection rate b as the disease progression parameter.
(It should be noted that the equilibrium is involved in a Hopf bifurcation around b=0.00014, not shown.) For the activated T cell model
we obtain realistic disease progression by picking the T cell activation rate aQ as a progression parameter. The viral load is measured by
the conventional HIV-1 RNA load per ml, i.e. rna=2000 V.

decrease the CD4 cell count. This occurs because in
the logistic model the CD4 count is set by parameters
of the virus only [see eqn 4(a)], and because the
additional depletion parameter g merely scales the
number of productively infected cells.

Interestingly, changing the T cell activation rate,
aQ , seems to be the best parameter for modeling
progression in the activated T cell model. Increasing
aQ decreases the number of quiescent T cells and
hence causes the CD4 T cell count to go down and
the viral load to go up [Fig. 2(b)]. Moreover, recent
data (Chun et al., 1997; Sachsenberg et al., submitted)
suggest that as T cell counts fall a higher fraction of
CD4 cells are activated. This demonstrates that
target-cell-limited models can account for the
observed clinical pattern of decreasing CD4 counts
and increasing viral loads during disease progression.
The equilibrium is stable over the full range of aQ

values depicted in Fig. 2(b). Modeling disease
progression by increasing virus infectivity, i.e. b, in
the activated T cell model yields results that are
similar to those of the logistic model [cf. Fig. 2(a)].



The activated T cell model is superior to the logistic
model for two reasons. First, its better stability
properties allow for higher infection rates b. Second,
the activated T cell model can account for the typical
picture of disease progression by increasing T cell
activation [Fig. 2(b)]. The logistic model only has a

small parameter range of low infection rates b where
as b increases viral loads go up and CD4 counts go
down [Fig. 2(a)]. Thus, disease progression is more
difficult to explain with the logistic model than with
the activated T cell model. Phase plane analysis shows
that activated T cell model is a predator-prey model
with a slanted predator nullcline, whereas the logistic
model has a vertical nullcline. This tends to make the
clinical latency steady state more stable in the
activated T cell model.

Immune-control

   () 

An alternative to target cell limitation of HIV
replication is immune control. We define an
immune-control model as one in which the high
turnover rate of infected cells dI =0.5 day−1 is entirely
due to their removal by CD8+ CTLs. This is extreme
but it allows us to clearly distinguish immune control
models from target cell limited models. The turnover
rates of CTLs can be estimated from data on other
viral infections. Following the successful clearance of
an LCMV infection, the CTL effector levels drop
95% in about 3 weeks (Ahmed & Gray, 1996). Thus,
we calculate that the turnover of the CTLs should
maximally be on the order of dE 2 0.2 day−1 [i.e.
ln(0.05)/21=−0.14].

In order to distinguish between target cell
limitation and immune control, we need to assume in
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an immune-control model that virus replication is
not limited by the target cell density. We thus assume
that

dI
dt

= bV− kIE. (9)

Note, b now has units of day−1 and that in essence a
constant value of T has been incorporated into b. We
assume that V is still given by eqn (1).

It is possible to develop a class of models that are
intermediate between target cell limitation and
immune control by assuming that the rate of target
cell infection is a saturating function of the target cell
density, T, i.e.

dI
dt

= bV
T

u+T
− kIE. (10)

For u�T, this reduces to the target cell limited
model, whereas for u�T one obtains the immune
control model.

To make the model of eqn (9) ‘‘equivalent’’ to the
target cell limited models we require that at the
latency steady state dI = kE� =0.5 day−1, so that
productively infected cells are lost at the observed rate
of 0.5 day−1. Solving eqn (9) and using eqn (2) we
obtain E� = pb/(ck). Since c=3 day−1, this allows us
to compute the product of the infection rate and the
production rate as pb= ckE� =1.5 day−1. Choosing
our earlier estimate of a production rate of p=100
virions per productively infected cell per day we
obtain b=0.015 day−1.

Considering such a simple ‘‘pure’’ immune-control
model however forces us to develop a relatively

sophisticated model for the CTLs. Combining eqn (9)
with the simplest possible CTL model, i.e.

dE
dt

= aEEI− dEE, (11)

yields the well-known structurally non-robust Lotka–
Volterra predator-prey model with perpendicular
nullclines [see Fig. 3(a)]. Nowak & Bangham (1996)
report for a similar class of models that the
steady-state viral load is determined only by
immune-control parameters. Indeed, solving eqn (11),
we obtain I� = dE /aE . Thus, the number of produc-
tively infected cells is independent of parameters
describing viral replication. Since we require I=3 at
steady state, and dE =0.2 day−1, we find that we must
choose aE =0.067 day−1.

One can make this model more realistic by using an
activation function that saturates, i.e.

dE
dt

=
aEEI

1+ eII
− dEE. (12)

Now, CTL activation/proliferation has a maximal
rate of aE /eI . Solving eqn (12) for the equilibrium
value of V, we obtain I� = dE /(aE − dEeI ). This still
yields a non-robust perpendicular nullcline [see Fig.
3(b)]. Assuming a maximum CTL proliferation rate
of about one doubling per day, i.e. assuming aE /eI =1
day−1, we obtain the required I� =3 by setting
aE = eI =0.08333.

We can obtain a structurally robust immune-con-
trol model by employing the model of De Boer &
Perelson (1995) that allows for competition between

F. 3. Nullclines of the three immune-control models. The heavy line is the nullcline of the prey species (i.e. I ) and the light line is
the nullcline of the predator, E. Parameters: (a) aE =0.002, eI = eE =0; (b) aE = eI =0.08333, eE =0; (b) aE = eI =0.125, eE =1; Invariant
parameters: dE =0.2 day−1, p=100 day−1, dI =0.5 day−1, and c=3 day−1.



. .    . . 208

CTLs when interacting with infected cells. In this
model,

dE
dt

=
aEEI

1+ eII+ eEE
− dEE. (13)

The maximum per capita proliferation rate is still
aE /eI =1, and eE defines the intensity of the
competition. The steady state of this model, found by
solving eqns (1), (9), and (13), is

E� =
pb

kc
, I� =

dE (kc+ eEpb)
kc(aE − dEeI )

, and V� =
p
c

I� . (14)

Note that I� now depends on the viral parameters p
and b. In this model the I-nullcline is slanted, making
the model structurally stable, and the steady state is
stable [see Fig. 3(c)]. Setting eE =1, k=1, and
requiring aE /eI =1 and I� =3, we find aE = eI =0.125.

There are alternative ways to make the immune-
control model structurally robust. For example, one
could allow some target cell limitation, i.e. use eqn
(10) instead of (9), or one could include a source of
naive cells into the CTL equation. With a fully
activated and proliferating CTL population such a
source term should make a relatively small contri-
bution to the population size. We prefer to use the
model with competition, eqn (13), because a small
source term, or a small effect of target-cell-limitation,
would only make the model marginally stable.
Further, using eqn (13) the steady-state value of V
depends on immune system parameters, which is a
desirable feature in an immune control model.

 

In immune-control models a natural method for
modeling disease progressing is to decrease the
activation/proliferation rate aE of the CTLs. Such a
decline could be due to the senescence of CTLs, as
recently observed via telomere shortening (Effros et
al., 1996; Wolthers et al., 1996), and/or to decreased
T cell help due to progressive CD4+ T cell loss.
Focusing on the structurally stable immune-control
model, we see from eqn (14) that decreasing aE

increases I� and hence the steady-state viral load
without affecting the steady-state level of the immune
response, E� . Since the steady state in the pure
immune-control models is independent of the CD4
cell count, one can easily account for the typical
picture of disease progression by independently
assuming that the CD4 cell count decreases with
increasing viral load.

Alternatively one may model disease progression
by allowing the virus to evolve immune-escape
variants increasing the diversity of the quasi-species

(Nowak & May, 1991; Nowak et al., 1991; Nowak &
Bangham, 1996; De Boer & Boerlijst, 1994; Wolinsky
et al., 1996). Since this requires high-dimensional
models, this form of disease progression is not
considered any further here.



Models of HIV infection that are purely immune-
controlled also have the form of predator-prey
models. The proliferation/activation function of the
CTLs that we use in eqn (14) is known in ecology as
the Beddington (1975) ‘‘functional response’’. Model-
ing disease progression in immune-control models can
be done by reducing the immune responsiveness
parameter aE .

Anti-viral Treatment

The activated T cell model and the CTL model
have similar phase planes and can both account for
the typical scheme of disease progression. We now
compare their behavior when HIV infection is treated
by either a protease inhibitor or an RT inhibitor. An
RT inhibitor is expected to reduce the infection rate
b, whereas a protease inhibitor reduces or eliminates
the production of infectious virions. A previous
model of protease inhibitor action (Perelson et al.,
1996) distinguished between infectious and non-infec-
tious virions. One can simplify matter in two ways.
First, if the number of infectious virions decreases this
in turn will reduce the infection rate. Thus, one can
approximate the action of protease inhibitors as a
decrease in b. Second, one can assume that in the
presence of a protease inhibitor the total virion
production rate p decreases.

First consider treatment with an RT-inhibitor that
brings about a two-fold reduction in the infection rate
b. In Fig. 4 the light lines depict the pre-treatment
situation (i.e. the same nullclines as those in Fig. 1),
and the heavy lines are the nullclines for this two-fold
RT-inhibitor treatment. Recall that I� and V� are
proportional, so that I� is a measure of the viral load.
We observe that if b is reduced a new steady state is
attained, which in the activated T cell model is located
at an almost two-fold higher CD4 count and a
somewhat lower infected cell level and hence lower
virus load [Fig. 4(a)]. In the CTL model this treatment
brings about an two-fold reduction of the immune
response and a somewhat lower viral load [Fig. 4(b)].
Thus, even in the absence of drug resistance, an
RT-inhibitor treatment hardly influences the equi-
librium viral load. Instead it largely increases CD4
count in the target-cell-limited model (Stilianakis
et al., 1997; Bonhoeffer et al., 1997), and decreases the
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F. 4. A two-fold effective RT-inhibitor treatment. The light lines depict the nullclines of Fig. 1b and 3c, respectively. The effect of
reducing b two-fold in (a) the activated T cell model and in (b) the immune control model of Fig. 3(c) is depicted by the heavy nullclines.
The gray lines depict trajectories corresponding to this anti-viral treatment. One observes that the viral load (as measured by the I variable)
initially declines, and ultimately attains a steady-state level that is similar to the pre-treatment level. Parameters as in Figs 1 and 3.

immune response in the CTL model. Treatment with
a drug that reduces p has very similar effects (see
below).

The heavy gray lines in Fig. 4 depict the trajectories
corresponding to giving this two-fold RT-inhibitor
treatment to a patient in the clinical latency steady
state. Transiently the virus load is significantly
reduced by such a treatment, but the virus rebounds
and attains the new steady state. Recent clinical data
have confirmed that the wild-type virus load declines
and rebounds before drug resistance evolves (De Jong
et al., 1996). Previous theoretical studies on
target-cell-limited models have predicted the decrease
and rebound of wild-type virus due to the typical
oscillatory nature of predator-prey interactions
(McLean & Nowak, 1992a; Frost & McLean, 1994;
De Jong et al., 1996; Stilianakis et al., 1997). Because
the CTL model is also a predator-prey model, the
same type of viral decline and rebound can be seen in
immune-control models. Thus, the rebound in viral
load can not be used as evidence in favor of a target
cell limited model.

The trajectories in Fig. 4 do not allow one to
compare the time courses of viral rebound between
the two models and the clinical data. For the target
cell limited models it has been well established that for
current parameter values one obtains a good
correspondence between the predicted and observed
time course of viral load changes (De Jong et al.,
1996; De Boer & Boucher, 1996; Stilianakis et al.,
1997). A similar good correspondence is also possible
in the immune-control models (not shown). With

drugs such as AZT used as monotherapy the viral
load typically rebounds in about a month (De Jong
et al., 1996). A good fit to such data therefore requires
a fairly high turnover of the immune effector cells E
(not shown). Because cytotoxic effector cells are
known to be short-lived (Ahmed & Gray, 1996),
immune-control can in principle account for a
realistic time course of the viral load. In our models
we have not allowed for immune memory however. In
patients one would expect the decline of the immune
response during anti-viral therapy to be slower due to
immune memory effects. In this case, target-cell-limi-
tation is expected to be the dominant control process
during the first weeks of treatment.

Therapy and Drug Resistance

Monotherapy with protease or RT-inhibitors
generally results in the eventual development of drug
resistance (Larder et al., 1989; Boucher et al., 1992;
Wei et al., 1995; Lineberger et al., 1995). In the
presence of antiretroviral treatment, the drug-sensi-
tive wild type virus is ultimately outcompeted by
drug-resistant variants having a higher infection rate
b, or viral production rates p. Thus, in terms of our
models, antiretroviral treatment and the development
of drug resistance correspond to changes in either b

or p. Plotting the equilibrium viral load as a function
of either b or p (Fig. 5), allows us to examine the
effects of antiretroviral treatment in the presence of
drug resistance. For example in Fig. 5(b), starting at
a virion production rate of p=100 particles per cell
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per day, a drug treatment that decreases p
corresponds to moving leftwards. Note that a drug
effect that reduces p up to a four-fold reduces the viral
load only marginally. Further reduction of p causes
the virus to ‘‘suddenly’’ be eradicated. The subsequent
development of drug resistance corresponds to
moving rightwards, i.e. to increasing p. This will
increase the viral load again. The light lines in Fig. 5
depict the response of the CD4 count, or the immune
response, to changing b or p by treatment and
resistance development.

In both the activated T cell and the immune-control
model either form of antiretroviral treatment, and of
resistance, hardly affects the equilibrium viral load
until a (transcritical) bifurcation point is reached. In
the target-cell-limited model this is the critical
treatment level that reduces p or b below the value
needed to sustain the virus. In the immune-control

model the bifurcation point is where the bifurcation
parameter equals zero. Reducing parameters to zero
is not realistic however. Note that the immune
response, E, declines linearly with b or p. Hence at
some point the effect of the immune response is so
small that some form of target cell limitation should
take over as a control mechanism.



In both target-cell-limited and in immune-control
situations an antiretroviral treatment with limited
effects (e.g. due to drug resistance) has a negligible
effect on the viral load. The effect of the treatment is
largely reflected in the levels of either the target cells
or the immune response. A treatment with a
sufficiently strong impact eradicates the drug-sensitive
virus when the virus is target-cell-limited, but first
eradicates the immune response when the virus is

F. 5. Protease and RT-inhibitor treatment. (a,b) the equilibrium viral load (dark line) and CD4 T cell count (light line) as a function
of the infection rate, b, and the virion production rate, p, in the activated T cell model. (c,d) the equilibrium viral load (dark line) and
the effector cell level, E (light line). One observes that the effects of drug therapy and resistance are largely reflected in the CD4 T cell count
(a,b) or in the immune response level (c,d); up to the bifurcation points the viral load hardly changes. Parameters as in Figs 1 and 3.
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immune-controlled. This makes sense from an
ecological point of view because the predator should
go extinct before the prey.

HIV Can be Viewed as Either a Predator or a Prey

Obviously the target-cell-limited and the immune-
control models can be combined. In such models,
where the target cells form a prey species, the virus is
a predator, and the immune response is a super-
predator. Such a ‘‘food-chain’’ model can provide
further insights in the control processes regulating the
viral load (Nowak & Bangham, 1996). The simplest
food-chain model employs eqn (11) for E the
‘‘super-predator’’ population (cf. Nowak & Bang-
ham, 1996). By the solution of eqn (11), I� = dE /aE ,
one would conclude that the steady-state viral load is
determined by the immune-control parameters dE and
aE only (Nowak & Bangham, 1996). Thus, in a
food-chain model immune control would seem to
dominate over target cell limitation.

Generally, this need not be true however. First,
there is a non-robustness in this argument because
adding yet another level to the food chain, i.e. a
population regulating the CTL numbers, would make
the virus target-cell-limited again. To see this, we add
a regulator population R, which changes eqn (11) into
the system

dE
dt

= aEEI− dEE− kRER,

dR
dt

= aRRE− dRR, (15a,b)

where kR determines the magnitude of a possibly very
small down-regulatory effect of R on E. Solving eqn
(15) we obtain E� = dR /aR and R� =(aEI− dE )/kR .
Observe that the effector level is independent of the
magnitude, kR , of the down-regulatory effect.
Furthermore, since eqn (15) is required for determin-
ing E� and R� , the equilibrium viral load V� and I� have
to be solved from the remaining equations of the
model [e.g. eqn (2) and (10)]. Since these do not
depend on the immune-control parameters aE and dE

the viral load is target-cell-limited again. In
theoretical ecology this is a well known result. For
instance, in Lotka–Volterra type models, the effects of
an enrichment of a food-chain system differ when the
food chain has an even or odd length (Ginzburg &
Akc� akaya, 1992). This problem could well be an
artifact of the over-simplified interaction terms that
are used in these ecological models [and in the
immune control model of eqn (11)]. A solution to this
problem is to allow for a direct form of competition

(Beddington, 1975; Ginzburg & Akc� akaya, 1992;
Abrams, 1994; Huisman & De Boer, 1997), as we
have in eqn (13) and in De Boer & Perelson (1994,
1995).

Second, when the virus load is so high that the
immune response can be considered to be at a
maximal level, e.g. by saturation and competition [cf.
eqn (13)], the HIV infection also becomes target cell
limited. Indeed, allowing for competition amongst the
CTLs [cf. eqn (14)] makes the viral load dependent on
many more parameters [cf. eqn (15)] than those of the
immune response. Third, the time-scale with which
the CTL response declines following a perturbation of
the clinical latency steady state by therapeutic
intervention may be much slower that the time-scale
with which the target cell levels rise. This makes HIV
transiently target cell limited.

Discussion

The available data do not allow us to distinguish
between our simple target cell limited and immune
control models. One approach is to concentrate on
the more complicated ‘‘food-chain’’ or ‘‘combined’’
models that incorporate target cell limitation, virus,
and immune control (Nowak & Bangham, 1996). We
have seen above however that such models suffer
from a non-robustness because adding another level
to the food-chain, i.e. any population down-regulat-
ing the immune response, has a major impact on the
results. Additionally, realistic models should allow for
saturation [cf. eqn (10) and/or competition, cf. eqn
(13)] effects. It is well known in theoretical ecology
that in food-chain models such effects easily lead
to humped-shaped nullclines, Hopf-bifurcations,
high amplitude oscillatory behavior and/or chaos
(Hastings & Powell, 1991). Thus, the behavior of such
a model soon becomes too complex for addressing the
simple questions of interest in HIV infection.

An argument in favor of immune control models is
the strong dependence of the viral load on the
immune responsiveness aE (Nowak & Bangham,
1996). Individual variations in the immune respon-
siveness therefore provide a good explanation for the
enormous variation in the viral loads of different
individuals (Mellors et al., 1996). Individuals might
indeed differ in their immune responsiveness because
of MHC differences. A more speculative argument
slightly in favor of immune control is that CD4
depletion occurs with a low fraction of productively
infected cells. In the target-cell-limited models we had
to rely on depletion mechanisms beside productive
infection to account for significant CD4 depletion.
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From the viewpoint of immune control one would
need to argue that most target cells infected by the
virus are eliminated by the immune response before
they can be detected as productively infected cells
[and before they produce virus (Klenerman et al.,
1996). To the extend that this is true, this would
account for a greater turnover of target cells than that
estimated by the low numbers of productively infected
cells (Haase et al., 1996; Chun et al., 1997; Cavert
et al., 1997).

There is also convincing evidence however that
target cell availability plays a role. Increasing target
cell levels by IL-2 treatment (Kovacs et al., 1995) or
by vaccination (Staprans et al., 1995; O’Brien et al.,
1995; Cheeseman et al., 1996; Stanley et al., 1996;
Brichacek et al., 1996) tends to increase the virus load.
Because such therapeutic interventions are pertur-
bations of the clinical latency steady state, the
reported effects on the viral load could just reflect a
transient impact of increased target-cell-availability.
Thus, these data do not rule out the possibility that
the equilibrium viral load is largely immune con-
trolled. Similar ambiguities are to be expected in other
experiments manipulating target cell numbers. More
convincing results are therefore expected from
immunosuppression experiments during clinical
latency: immune-control models would unequivocally
predict a rise of the viral load, whereas target-cell-lim-
ited models predict a drop. The fact that immunosup-
pression sometimes has beneficial effects (Andrieu et
al., 1988, 1995; Corey, 1995; Schwarz et al., 1993;
Weber & Galpin, 1995; Vila et al., 1996; Lori et al.,
1997) is a strong argument in favor of target cell
limitation.

Our comparative modelling approach shows that
both target-cell-limited and immune-control models
are similar predator-prey models, and can hence
account for most of the available data. The best
discrimination between the two classes of models is
provided by immunosuppression experiments where
immune-control models unequivocally predict a rise
in the viral load, whereas target-cell-limited models
predict a drop (De Boer & Boucher, 1996). It is
disappointing therefore that recent clinical monother-
apy trials with the immunosuppressive drug hydrox-
yurea fail to find any significant effect on the viral
load (Giacca et al., 1996; Simonelli et al., 1996),
suggesting that immune-control and target-cell-avail-
ability could be about equally important. This would
call for the development of novel ‘‘food-chain’’
models in which the steady-state level of the predator
HIV is more or less equally determined by its limiting
resource, the target cells, and it top-predator, the
immune response.
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APPENDIX

We further analyse the self-renewal in the activated
T cell model by making a quasi-steady state
assumption for the activated cells, in the absence of
the virus. Setting dT/dt=0 in eqn (5b) we obtain

T=
aQ

r
Q, (A.1)

which shows that the fraction of activated cells is
given by the ratio aQ /r. Because dT/dt=0 we may
add eqn (5b) to (5a). By substituting eqn (A.1) into
(5a) we obtain for the quiescent cells

dQ
dt

=
aQ

1+ kQ
− dQ, (A.2)

where a0 2aQ , d0 dQ + aQ and k0 (1+ aQ /r)/Tmax .
The maximum per capita growth rate is
a− d= aQ − dQ , which for our estimate dQ =0.001 is
approximately equal to aQ . This model is identical to
an earlier model of ours (De Boer & Perelson, 1994),
which was developed from realistic T cell activation
schemes.

The non-trivial equilibrium of eqn (A.2) is at

Q=
a− d

kd
. (A.3)

Because the CD4 cell count is Q+T=Q(1+ aQ /r),
we obtain for the uninfected equilibrium CD4 cell
count

CD4=
aQ − dQ

aQ + dQ
Tmax , (A.4)

which always remains below Tmax .


