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The (spherical) gravitational shock wave doe to a massless particle moving at the speed of 
light along the horizon of the Schwarzschild black hole is obtained. Special cases of our procedure 
yield previous results by Aichelburg and Sexl [1] for a photon in Minkowski space and by Penrose 
[2] for sourceless shock waves in Minkowski space. A new derivation of the (plane) shock wave 
of a photon in Minkowski space [I] involving explicit calculation of geodesics crossing the shock 
wave is also given in order to clarify the underlying physics. Applications to quantum gravity, 
specifically the possible effect on the Hawking temperature, are briefly discussed. 

I. Introduction 

There are various reasons why one may be interested in exact expressions for the 

gravi ta t ional  field su r round ing  a particle whose mass is domina ted  by kinetic energy 

ra ther  than rest mass. For  instance the first non-tr ivial  gravi tat ional  effects to be 

seen in par t ic le-par t ic le  interact ions at extreme energies may be due to such fields. 

Our  unde r s t and ing  of  q u a n t u m  gravity may be helped by consider ing  these field 

configurat ions.  A specific case of interest is the gravitat ional  back-react ion and  

self- interact ion of matter  enter ing or leaving a black hole (Hawking  radiat ion) .  At 

the black hole hor izon the relative velocity of  these particles approach that of  light. 

Aichelburg  and  Sexl [ l ]  considered the gravi tat ional  field of a massless particle 

in Minkowski  space, and  showed that the result ing space- t ime  is a special case of  

a gravi ta t ional  impulsive wave* [2] which is also an asymmetr ic  plane- fronted gravita- 

t ional wave  [3]. Penrose [2] also gives explicit  examples of sourceless gravitat ional  

impulsive waves in Minkowski  space. 

In this paper  we first summarize  the properties of the shock wave due to a massless 

particle in Minkowski  space. We do this by present ing a new der ivat ion of the 

results of  Aichelburg  and  Sexl [I] involving explicit  calculat ion of (null)  geodesics 

crossing the shock wave. This enables the physical properties of such shock waves 

to be easily exhibited.  

We then determine,  for a par t icular  class of  vacuum solut ions to the Einstein 

field equat ions ,  the (necessary and  sufficient) condi t ions  for being able to in t roduce 

t Supported by the Stichting voor Fundamenteel Onderzoek der Materie. 
* Note that Penrose [2] reserves the term gravitational shock wave for a metric Which is C ~ whereas 

the metrics we consider are only C ° . We will nevertheless use the term "'shock wave'" for what are, 
in the terminology of [2], impulsive waves. 
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Fig; I. The horizon shift (eq. (15)) due to the field of a massless panicle moving in the e-direction along 
the horizon of the Schwarzschild black hole. The amount of the shift depends on 0. 

a grav i ta t iona l  shock wave via a coo rd ina t e  shift*. These  cond i t ions  inc lude  both 

const ra ints  on the metr ic  coefficients and  on the form of  the shift. In Minkowski  

space  they reduce  to the p lane- f ron ted  wave o f  Aiche iburg  and Sexl [1] and,  o f  

course,  to Penrose ' s  results  [2] for sourceless  waves. However ,  for Schwarzschi ld  

b lack  holes  we obta in  someth ing  new: there  is a ( spher ica l )  shock wave at the 

hor izon due  to a massless  par t ic le  at the hor izon.  (See fig. 1.) 

T h r o u g h o u t  this p a p e r  we th ink of  the massless  par t ic le  as the l imit  o f  a fas t -moving 

part ic le  with negl igible  rest mass**;  this l imit  is given expl ic i t ly  for  the Minkowski  

case. Fig. 1 can thus be in te rpre ted  as descr ib ing  an o rd ina ry  par t ic le  with small  

mass fal l ing into the b lack  hole  from the left, as seen by an ou ts ide  observer  (on 

the left) at very late t imes ;  the par t ic le  is then seen close to the hor izon  and  boos ted  

to high energies.  

The p a p e r  is o rgan ized  as fol lows:  in sect. 2 we summar ize  the s i tua t ion  for the 

(p lane)  shock wave due  to a massless par t ic le  in Minkowski  space and discuss the 

general  phys ica l  features  o f  such a wave. These  results  are based  on a ca lcu la t ion  

o f  the null geodes ics  in such a space - t ime ,  which is given expl ic i t ly  in a p p e n d i x  A. 

In sect. 3 we give the condi t ions ,  der ived  in a p p e n d i x  B, for a shock wave to be 

poss ib le  s tar t ing from a given " b a c k g r o u n d "  space - t ime .  After  showing that  these 

condi t ions  reduce  to the correct  ones [1, 2] in Minkowsk i  space  we then ob ta in  the 

(spher ica l )  shock wave at the hor izon o f  the Schwarzschi ld  black hole  due  to a 

massless par t ic le  there,  in sect. 4 we discuss  our  results.  

2. Shock waves: an example  

Aiche lburg  and Sexl [1] (cf. eq. (A.37)) have shown that  the grav i ta t iona l  field o f  

a massless par t ic le  in Minkowsk i  space  is desc r ibed  by the metr ic  

ds  2 = - d ~ ( d t 3  + 4p ln(p2)~5(~) dt~+ dx" + d y "  2, ( I )  

* This is just the scissors-and-paste approach of Penrose [2] applied to more general space-times. 
** We assume that the particle has no electric charge and no angular momentum. However, for an 

elementary particle for example we do not expect the results to differ significantly from those we 
derive here. 
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where  p 2 = x 2 + y 2 .  The  par t ic le  moves  in the t3 d i rec t ion  with m o m e n t u m  p. By 

ca lcu la t ing  geodesc is  which  cross the shock wave,  which is loca ted  at u = 0, we 

ob ta in  the fo l lowing  two phys ica l  effects o f  such a shock wave (see a p p e n d i x  A):  

geodesc is  have a d i scon t inu i ty  At3 at u = 0  and  are  ref rac ted  in the t ransverse  
d i rec t ion .  The  shift  At3 is given by (cf. eq. (A.26)) 

4Gp pg 
At3 = -  c3 l n - y ,  (2a) 

lpl 

which,  for  a pho ton ,  is 

c m 121, (2b)  

where  we have put  the  units  back  in and  where  we have used E = p c  = h~, where  ~, 

is the f requency  o f  the p h o t o n  and Ip~ is the Planck length,  po is the va lue  o f  p when 

the geodes ic  reaches  u = 0. This shift  is i l lus t ra ted  (for n o n z e r o  m and  x = 0) in fig. 

2; for m = 0 the shift  occurs  as a d i scon t inu i ty  at u = 0. 

Note  that  the presence  o f  a length scale in the a r g u m e n t  of  the logar i thm is merely  

a ref lect ion o f  our  choice  o f  units and  has no phys ica l  meaning .  It represents  a 

c o n s t a n t  shif t  in ~ which  can be t r ans fo rmed  away  by a su i tab le  redef ini t ion o f  t3 

(eq. (A.I  !)) .  Fu r the rmore ,  by the same p rocedure ,  the  value  o f  po for  which A~ = 0 

(here  po = lpL) can be chosen  arb i t ra r i ly  far f rom the p h o t o n  (Po large).  In any case, 

only  the d i f f e rence  in A~ for nea rby  geodes ics  is phys ica l ly  relevant .  

There  is also a re f rac t ion  effect desc r ibed  by (cf. eq. (A.36)) 

cot  a + cot /3  - 4 G p  (3a) 
C3po ' 

which,  for  a pho ton ,  is 

41~,, v 
cot  a + cot /3  = (3b) 

Cpo 

This is i l lus t ra ted  (for  x = O) in fig. 3, where  the  angles  a a n d / 3  are def ined.  

a) yo< I b) Yo>l 
Fig. 2. The path of a null geodesic in the (~, ~) plane as described by eq. (2) for m< 1, pt,),rn, and (a) 

po< l, (b) p0 > 1. The near region N and the far region F, as well as the shift At3, are indicated. 



176 T. Dray, G. "t Hooft / Gravitational shock wave 
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Fig. 3. The "'spatial refraction" of null geodesics as described by eq. (3) for the two special cases (a) 
a= /3 ,  and (b) a = ½ m  

Eqs. (2) a n d ( 3 )  are the central results for  these shock waves and describe physical  
effects which should also occur  in more  general  situations. Note  that  if the shift (2) 
were constant it could be removed  by a coordinate  t ranslat ion and would therefore 
not be physical ly observable  (cf. the discussion af ter  eq. (2)). Also, a shift linear in 
the t ransverse dis tance p would not be observable  since it could be removed  by a 
Lorentz rotat ion of  one of  the fiat half-spaces with respect  to the other. However  
the shift (2) is logarithmic in t9 and leads to physical ly observable  effects. The relative 

shift for nearby  observers  goes as the first derivat ive ( I / t9) while the relative refraction 
goes as the second derivat ive ( i / p  2) o f  the shift*. See fig. 4. 

I 

. . . . . . . .  

t y 

Fig. 4. Four synchronized clocks were originally situated at rest at the corners of a rectangle. A fast 
particle approaches from the left. The situation is shown when the shock wave has passed two of the 
clocks. The one closest to the trajectory of the particles has been shifted to the right with respect to the 
other; its clock now runs behind the other. They are also moving towards the trajectory of the fast 
particle at different speeds (arrows). Only their relative velocity, which is always away from each other, 

is locally observable. 

* Note that a local observer can only detect the second derivative (1//2 2) of the shift. 
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3. General result 

Consider  a solution o f  the vacuum Einstein field equat ions o f  the form 

d.~ 2 = 2A(u,  v) du dv+ g(u, v)hu(x') dx ~ dx j. (4) 

Under  what  condit ions can we introduce a shift in v at u = 0 so that the resulting 

space- t ime solves the field equat ion with a photon  at the origin p - 0  o f  the (x ~) 

2-surface and u = 0? As shown in appendix B the answer  is the at u = 0 we must have 

A.v = 0 = g . ~ ,  

A A f - g ' " ~ f =  32zrpA26(p), (5) 
g g 

where f = f ( x  ') represents the shift in v, / i f  is the laplacian o f f  with respect to the 
2-metric ho, and the resulting metric is described by (B.2) or (B.4). Eqs. (5) represent 

our  main result. We now turn to specific examples. 

For a plane wave due to a photon  in Minkowski  space we have 

d s  2= - d u  dv ÷ d x 2 +  dy 2 , (6a) 

and thus 

I 
A = - 2 ,  

g = l .  (6b) 

The condi t ions  on the metric are trivially satisfied, and the condi t ion on the 
shift f is 

Af  = - 16~rp6 ( p ) ,  (7) 

where p2=x2+y2. The solution o f  this equation,  unique up to solutions o f  the 

homogeneous  equation,  is 

f = - 4 p  In p2, (8) 

which agrees precisely with Aichelburg and Sexl [1] (cf. eqs. (2) and (A.26)). 

For a sourceless plane wave in Minkowski space we set p = 0 to obtain 

Af = 0 ,  (9) 

which agrees with Penrose [2]. 
For a spherical wave in Minkowski  space we write the metric in the form 

d.( 2 = - d u  d v + ~ ( v -  u)2(dO2+sin 2 0 d,p2), (10a) 

so that 

A ~  / 

g = r 2 = ~ ( v  - u)2. ( 1 0 b )  
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But the der ivat ives  o f  g are not  ident ica l ly  zero at u -- 0. Thus,  there  are no spher ica l  

waves (of  this form) in Minkowski  space.  

Physica l ly  this might  seem myster ious  because  one expects  spher ica l  shock waves 

to arise in, e.g., the debr is  o f  a violent  explos ion .  On c loser  inspec t ion  one  conc ludes  

that  there  must  be non-zero  curvature  beh ind  such shock waves.  However ,  note that  

Penrose [2] does  exhibi t  the exis tence o f  sourceless  spher ica l  shock waves in 

Minkowski  space  but  having a different form than  our  ansatz  (eq. (B.2)). 

We now turn to a more  interest ing example ,  namely  the Schwarzschi ld  metr ic  

which in (null)  Kruska l -Szeke re s  coord ina tes  takes the form 

32rn 3 
d~ 2 -  - - e - r / 2 m d u d v + r 2 ( d O 2 + s i n 2 O d ¢ 2 ) ,  ( l l a )  

r 

so that  

16m3 - r/2,,, 
A -  - - e  

r 

g =  r 2 . 

r is given impl ic i t ly  as a funct ion of  u and v by 

u v = -  - 1  , 

( l i b )  

(llc) 

so that  all v-der ivat ives  o f  r are p ropo r t i ona l  to u. Thus,  the cond i t ions  on the 

metr ic  coefficients A and  g are satisfied at u = 0. 

Fur the rmore ,  s ince g,,~ =-A the condi t ion  on f becomes  

A f - - f =  32rrpgA 1~=o8(0) 

= -27rKtS(0) ,  (12) 

where K = 29map e t and  where  we have a r r anged  the coord ina tes  so that  the pho ton  

is at 0 = 0 = u .  
We now solve eq. (12) by expand ing  f in terms o f  spher ica l  ha rmonics  Ytm(O, ¢) .  

We see immed ia t e ly  that  only  spher ica l  ha rmon ic s  with m = 0 con t r ibu te ;  express ing  

these in terms o f  the Legendre  po lynomia l s  Ps(x) leads  to 

1+½ Pl(cos 0). (13) 
f =K ~ l ( l+ l )+  l 

We can ob ta in  an integral  express ion  for f by using the genera t ing  funct ion for 

the Legendre  po lynomia l s ,  namely  

Pt(x)t  ~ = (! - 2xt + t2) -1/2 , (14a) 
I = 0  
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and the fact that 

~- t t eS/2 cos (½x/3s) ds l ( l +  1)+ I ' (14b) 

where t = e ~, to finally obtain 

,/ cos 
f =  K , (cos---~s-__-~os~,/` ds.  (15) 

We have not at tempted to perform the integration explicitly. We note that the 

homogeneous equation (eq. (12) with p = O )  has no solution. In the limit of  small 
0 eq. (15) in appropriate  coordinates reduces to eq. (8), with a well-determined 
value of the integration constant. 

4. Discussion 

The surprisingly simple geometric shape of a gravitational shock wave of massless 
particles in flat space can help us obtain a better understanding of gravitational 
interactions among particles at extreme energies. It is easy to argue that at extremely 
high energies interactions due to this shock wave will dominate over all quantum 
field theoretic interactions, simply because the latter will be postponed by an infinite 
time shift (due to the logarithmic singularitity in eq. (2), see fig. 4). This implies 
that cross sections at such energies will be entirely predictable. 

A problem arises if two  such particles are considered, both accompanied by their 
shock waves, that meet and collide. The result of  such a collision will be curved 
shock waves which obey the vacuum Einstein field equations only if space-t ime 
after the collision in the region between both shock waves is curved, so that we 
then have to deal with the full complexity of  general relativity. We have here a 
limiting case of  the general problem of black hole encounters which has been studied 
in detail by D'Eath [4] and Curtis [5]. 

On physical grounds the Schwarzschild result, eq. (13), should not be surprising. 
The fiat space result (e.g. eq. (8)) can be obtained [l] by infinitely boosting a 
(massive) source particle. Now take an r = const observer in the usual Schwarzschild 
coordinates. Put a (nearly) massless particle at the horizon and wait. The observer 
will see a particle with an increasingly large boost! It is only natural to expect a 

similar result in both cases. The spherical nature of  the wave in the Schwarzschild 
case (as opposed to the plane wave in Minkowski space) is merely a reflection of 
the spherically symmetric nature of  the "boos t"  relating an r = const observer to 
KruskaI-Szekeres coordinates. Physically, one expects any (weak) plane wave 
approaching the black hole to become gradually more spherical, as seen by an 
outside observer, as it comes closer to the horizon. 

Returning to the picture of  a particle of  small mass falling into the black hole 
(see discussion after fig. I ) one expects a small increase of the Schwarzschild radius 



180 T. Dray,  G. " t Hooft  / Gravi ta t ional  shock wave 

of the black hole, together with a slight expansion of its furture horizon. This 
expansion then grows exponentially with the Schwarzschild time coordinate. This 
is what our "shock wave" here actually describes. Eq. (15) is in closed form the 
extent of the horizon expansion. One might speculate what effect this expansion 
has on the quantum nature of the vacuum and, in particular, Hawking radiation. 
We believe that the gravitational interaction between infalling matter and Hawking 
radiation, crucial for a deeper understanding of the quantum properties of black 
holes themselves [6], should be described using our expression for the horizon 
expansion. 

Finally, we are aware of  the analogy with the electric field of a charged particle 
moving at the speed of light, which is similar to the gravitational field described 
here. Our gravitational shock wave can be compared to a limiting case of Cherenkov 
radiation. 

We thank Paul Shellard for bringing the work of D'Eath [4] to our attention, 
which then led us to the previous work of Aichelburg and Sexl [I] and Penrose [2]. 

The computer calculations of the Ricci tenser were performed while one of us 
(T.D.) was a visitor at Queen Mary College, London. He is deeply indebted to 
Malcolm MacCallum and Gordon Joly for hospitality and assistance. 

Appendix A 

A PHOTON IN MINKOWSKI SPACE 

Consider the linearized field of a point mass in Lorentz gauge: 

d s 2 = - ( 1 - ~ - ~ )  d T 2 + ( l  + - ~ ) ( d x 2 + d y 2 + d Z 2 ) ,  (A.I) 

with m ,~ R. This is the field of the particle as seen in its rest frame. Boost this rest 
frame with respect to coordinates (t, x, y, z) via 

and simultaneously set 

for some constant p > 0. 
Introduce null coordinates 

T = t cosh/3 - z sinh/3, 

Z = - t  sinh/3 + z  cosh/3,  (A.2) 

U = / - - Z ,  

v = t + z .  (A.4) 

m = 2p e o (A.3) 
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The momentum of the particle is 

p" = m[(cosh/3)~  + (sinh/3)8~], 

and thus 
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(A.5) 

with 

R2=x2+y2+ U-~pV . (A.8) 

The key idea is to notice that 

( lim ds2----du d v - 4 p  + d x 2 + d y  2 , 
rrl~O 

(u~'O.v.x.y)fixed 

(A.9) 

which is flat although the coordinate v' satisfying 

4p du 
d v ' = d v - - -  (A.10) 

r,I 
suffers a discontinuity at u = 0 due to the absolute value sign. To make this somewhat 
more precise, introduce coordinates (if, z3, x, y) by* 

m2Z in (2R) ~=u-~ 
pR 

4pZ In (2R) 
~- -v+  (A.II) 

R 

Note that (~, z3, x, y) is obtained from (u, v, x, y) by adding (4Z In (2R)IR)p a. Then 

R 2 = x 2 + y 2 +  ~ _ m  ~ (A.12) 
4p ' 

lira ds 2= - d ~  d ~ + d x 2 + d y  2. (A.13) 
m ~O 

( u ~" O. t,,x, y l fixed 

" The m o t i v a t i o n  for  these  c o o r d i n a t e s  is as fo l lows:  in the  l imit ,  Z / R  acts  like a 0 - f u n c t i o n  a n d  

r e p r o d u c e s  the  effect  o f  the  a b s o l u t e  va lue  s ign,  whi le  d R / R  = d u / u .  F u r t h e r m o r e ,  In R is finite at  

u = 0. The  f a c t o r  2 is c h o s e n  fo r  conven i ence .  We use  g e o m e t r i c  uni t s  in w h i c h  G = c = h = I ; all 

quan t i t i e s  a re  d i m e n s i o n l e s s .  

in the limit the particle is massless and moves (at the speed of light) in the v-direction" 
p is its momentum and is kept finite (possibly large). 

Writing the metric in (u, v, x, y) coordinates we obtain 

2, <,,..7> 
Lm 4p J 

lim pO = p ( 8 ~  + 8~)  = 2p8~ " (A.6)  
fl~oo 
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The metric (A.13) is flat. It remains to investigate its behavior  near  u = 0, which, 

in the limit, is just  ~ = 0. To do this we consider  the behavior  of (null)  geodesics 

crossing u = 0 for m # 0 and then take the limit as m goes to zero*. We do this both 

in a "nea r"  region, which collapses to a = 0 in the limit - this is just  the rest frame 

of the particle - and a "'far" region, where t~ remains  non-zero in the limit. 
The ( l inearized) geodescis of  the metric (1) are given by 

where the dot denotes derivatives with respect to the afline parameter  ,~ along the 

geodesic. We have assumed x = 0 without loss of general i ty;  the constants  E, L, M 

denote the energy, angular  momen tum,  and  rest mass of the test particle, respectively. 

In what follows we consider  only "nu l l "  geodescis;  i.e. we set M = O ( m 2 ) .  

Expanding  y, Z and T in powers of m and  consider ing only the terms l inear in m 

we have 

and eqs. (A.14) now become 

where R 2 =  2 2 yo+ Zo. 

Y = Yo + m y ~ ,  

Z = Zo + m Z t  , 

T =  T o + m T i ,  (A.15) 

T o  = E ,  

yo~+ 2 o  = E 2 , 

YoZo - Zoyo = L, 

7"1 = 2 E /  Ro, 

yoY, + 202 ,  = o ,  

YoZI  - ZO;o + Y I Z o  - Zo)~ - - 2 L  
Ro ' 

(A.16) 

* Penrose and MacCallum [7] describe some properties of such geodesics without actually calculating 
them. Penrose and Curtis have performed similar calculations of null geodesics crossing a shock 
wave, but as far as we know these have not been published [8]. 
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However, since 

we must require 

= r e ( T - Z ) ,  
u 2p 

2p 
v = - - ( T + Z ) ,  

m 
(A.17) 

2o = -7"o-- - E  (A.18) 

if v, and thus 6, is to remain finite in the limit as m goes to zero. The second and 
third of  eqs. (A.16) now yield 

)o = O, 

Yo = - L / E ,  (A.19) 

and the fifth of eqs. (A.16) implies 

Thus 

Zi  = 0 .  ( A . 2 0 )  

m m 2 E 
ti = - -  E + - - - - -  

p p Ro'  

E 
6 = 4 p ~  ° . (A.21) 

Using eq. (A.18) these can be integrated directly to give 

m E  m 2 
u = -  A - - - I n  ( Z o + R o ) ,  

P P 

v = - 4 p  In (Zo+ Ro), 

where we have ignored an irrelevant integration constant, and thus 

m 2 [Zo,n (2Ro) ] ~ = mE a + in ( Zo + Ro) 
P -7- L Ro 

[Zo In (2Ro) ] 
t3 = 4p L )~7 In (Zo+ Ro) . 

We now separate into a near region N and a far region F as follows: 

N =/lal < l/,,/gm}, 
F =  {V~m ~< mla l<oo} .  

(A.22) 

(A.23) 

(A.24) 



184 

Note further that 
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lim ~ = 0, 

lim z3 = - 4 p  In yo 2 , 
A ~ 4 ~  

mE 
lira t~ = - -  A. (A.25) 

A ~ - "  zc p 

Thus, there is a total shift in z3 given by 

A~ = - 4 p  In y2.  (A.26) 

Note that, in the limit as m goes to zero, A is infinite everywhere in F. Furthermore,  
in this limit ~ is identically zero in N, whereas t~ is a good  affine parameter  in F 

along the geodesic. 

The shift (A.26) thus occurs, for small m, "essential ly" only in N! Thus, in the 

limit as m goes to zero, the shift (A.26) occurs at t~ = 0  and represents a finite 
discontinuity in ~ along null geodesics! This can also be seen by calculating 

lira 13 = 0 ,  (A.27) 

thus showing that in the limit as m goes to zero ~3 is constant  in F, i.e. for non- 

zero t~. This is just a reflection of  the fact that, in the limit, F is fiat. This is 
illustrated in fig. 2. 

We now turn to the behaviour  o f y .  We must solve the last o f  eqs. (A.16), which, 
on inserting eqs. (A.19) and (A.20) becomes 

y , Z , - Z o Y ,  = - 2 L / R o .  

The homogeneous  equation clearly has the solution 

),h = AZo 

for any constant  A; it remains to find a part icular  solution. 

Multiplying eq. (A.28) by Z,o yields 

E2yt- RoI~o91 = 2 LE / Ro.  

But noticing that 

- 2 _  o ! R U  R o -  R o  2 - E 2 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

suggests an ansatz for ym as a power  series in Ro. We thus obtain the particular solution 

2L 2Ro 
3't p = ~Y'----7 Ro =- - Yo (A.32) 
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The general solution to eq. (A.28) is thus 

2Ro+ 
Yl = - AZo, 

Yo 

and therefore 

185 

(A.33) 

L [ _ 2 R o +  ] .  
y = - - - +  rn AZo (A.34) 

E Yo 

We are interested in the behaviour of y in the far field F for m small. We obtain 

lim 0y_  2 P s g n ~ - p A .  (A.35) 
,,40 ¢9~ Yo 
~ 0  

This behaviour is illustrated in fig. 3. In general we have 

cot a + cot/3 =--4P (A.36) 
yo 

for the angles a and/3 as defined in fig. 3. 

At this point several comments are in order. We have not considered all geodesics 
which cross the shock wave, but only a sufficient number to determine how to glue 
the two flat half-space together. That this is sufficient follows from the existence of 
coordinates in which the metric is in fact continuous (see appendix B). 

Using the results of appendix B we see that 

lim ds 2 = -df f (d t3+4p In yo 2 ¢5(t~) dff) +dx2+  dy 2 
m ~ O  

= - d u (  dv+4pduu ( l - 2 0 ( u ) ) + 4 p l n 4 { S ( u ) d u )  +dx2+dy2 '  

(A.37) 

which of course reduce to (A. ! 3) and (A.9) respectively for u ~ 0. The first of (A.37) 
is just the result of Aichelburg and Sexl [I] (their eq. (3.9)), but the second of 
(A.37) disagrees with their eq. (3.10). Although this is at first disconcerting, a more 
careful analysis reveals the source of the discrepancy: we have taken a limit different 
from theirs. This can be seen by noting that for m ~ 0, u ~ 0, our original coordinates 
(t, z) are related to their coordinates (T, £) by infinite scale factors. 

Equivalently, note that the original Minkowski space given in (u, v, x, y) coordin- 
ates is "pushed to infinity" in the resulting space-time given in (t~, 13, x, y) coordinates. 
Specifically, {u ~ 0; Ivl < corresponds to (~ ~ 0; z3 = - (sgn t~) c~}, although the 
source located at {u = 0; Ivl < ~}, corresponds to {a = 0; I~1 < ~c}. The corresponding 
statement for the (i, £, )7, :~) coordinates of Aichelburg and Sexl [1] would be 
somewhat different. 

Finally, note that although we have linearized both the metric (A.I) and the 
geodesics (A.14) the result is in fact exact. Had we begun (as in [1]) with the exact 
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Schwarzschild metric in isotropic coordinates and expanded in powers of m only 
the linear terms we consider would have survived. 

Appendix B 

C A L C U L A T I O N  OF T H E  R I C C I  T E N S O R  

We start with the metric 

d~ 2 = 2A(u, v) du dv + g(u, t~)ho(x  i) dx + dx ' ,  (B.I) 

which is assumed to satisfy the Einstein vacuum equations. We introduce a shock 

wave by keeping (B.I) for u < 0  but replacing v by v + f ( x ' )  for u > 0 * :  

ds2=2A(u ,v+Of)  du(dv+Of,  dx~)+g(u , v+Of )h , jdx 'dx  j ,  (B.2) 

where 0 = O(u) is the usual step function. Changing to coordinates (6, t3, ~ )  defined 
by 

I ~ = U ,  

~=v+OJ, 

~i = x  i ' (B.3) 
we obtain 

ds 2 = 2A(a, t3) dt~(dt3- 8 ( ~ ) f  dt~) + g(t~, ~)h,j d~' d~ j , (B.4) 

where 8 = 5(u) is the Dirac delta "function".  
We note that the metric ds 2 given in (B.2) and (B.4) is in fact continuous, i.e. 

there exist coordinates (ti, tS, •') such that the metric coefficients are continuous. A 
possible choice is given implicitly by 

t~ -= /2, 

- I 2 'z~ 
~ = ~ + Of -~fiO 'T h""f,.,f,,,,  

g 

.~' = .~'- uO~ h"-f, , , ,  (B.5) 
g 

where 

f 
A = a ( a ,  t3), 

ff = g(~,  ~) ,  

h°= h°(x+) . (B.6) 

" This  is not  qui te  the s t andard  ansatz  gab = ( I - O ) g ~ b +  Og~b. However ,  in the examples  cons ide red  
here  the co r r e spond ing  Ricci tensors  differ at worst  by a term in R,,~ p ropor t iona l  to 0( I - 0), which  
is not  phys ica l ly  relevant .  
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However, the coordinates (B.5) are extremely unwieldy both for mathematical 
computations and for preserving physical intuition. We will thus proceed as 
follows. Noting that the coordinate transformation between (fi, t3, ~ )  and (u, v, x ~) 
coordinates is continuous, we will calculate the Ricci tensor for the metric (B.2). 
However since the metric (B.4) is much easier to work with, we will formally 
transform to (fi, z3, ~ )  coordinates, calculate Rag, and then transform back to obtain 
R~h. Direct calculation yields* 

A 
A 

R~; = O, 

R~s= W 2 1 - h  o + fS  - - i j  ~ 

Raa = 
~,2-~ ~A ] +  A ~ ~,A ~,A ] 

[/~e~ /~2~ ge/ll~\ 2 2 /~ __#f~,  
+2 t ,~ -'--~+--~-~--)f 6 +-2AfSg g , (B.7) 

where ..R!2>,, is the Ricci tensor derived from h o, A is the Laplace operator associated 
with h0, and 6 = 6(~). 

Blithely ignoring the 6 2 term we transform to (u, v, x') coordinates and insert the 
vacuum equations (obtained by setting f =  0) to get 

R~.~ = R ~  = O,  

R~; = R ~ = 0 ,  

= - h. .  g" ~ f~  RO R~i = - ,~ - -~  a~ , 

R~, = R~  + RaeOf,, 

* We no te  t ha t  T a u b  [9] has  g iven  a sys t ema t i c  p r e s e n t a t i o n  o f  s p a c e - t i m e s  wi th  d i s t r i b u t i o n - v a l u e d  

c u r v a t u r e  t ensors .  
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R~ =Rac, + 2Rc4.f8 
A ~ A 

g g \ ~2 g gA g,q / 

The stress-energy tensor for a massless panicle located at the origin p = 0 of the 
(x ~) 2-surface and at u =0  is 

T ~b =4p~(p)~(u)~ .~ ,  (B.9) 

where p is the momentum of the particle. Thus, the only non-zero component is 

Tuu = 4pA28(p)8(u). (B.10) 

Inserting (B.8) and (B.10) into the Einstein field equations, partially integrating the 
~5' term, noting that e.g. ,4.~(t~ = 0)=  0¢:¢, A t(u = 0 )=  0 yields precisely eqs. (5). 

The calculation above was first done by hand and then checked using the algebraic 
manipulation computer system SHEEP. As a further check on the validity of working 
in the singular coordinates (~, t3, .~') (eq. (B.4)) SHEEP was also used to calculate 
the Ricci tensor directly in (u, u, x ~) coordinates (eq. (B.8)), thus checking the 
original calculation o f ' t  Hooft for the Schwarzschiid case. The same answer, namely 
eqs. (5), was of course obtained in all cases. 
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