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The (spherical) gravitational shock wave due to a massless particle moving at the speed of
light along the horizon of the Schwarzschild black hole is obtained. Special cases of our procedure
yield previous results by Aichelburg and Sexl [1] for a photon in Minkowski space and by Penrose
[2] for sourceless shock waves in Minkowski space. A new derivation of the (plane) shock wave
of a photon in Minkowski space [1] involving explicit calculation of geodesics crossing the shock
wave is also given in order to clarify the underlying physics. Applications to quantum gravity,
specifically the possible eftect on the Hawking temperature, are briefly discussed.

1. Introduction

There are various reasons why one may be interested in exact expressions for the
gravita{ional field surrounding a particle whose mass is dominated by kinetic energy
rather than rest mass. For instance the first non-trivial gravitational effects to be
seen in particle-particle interactions at extreme energies may be due to such fields.
Our understanding of quantum gravity may be helped by considering these field
configurations. A specific case of interest is the gravitational back-reaction and
self-interaction of matter entering or leaving a black hole (Hawking radiation). At
the black hole horizon the relative velocity of these particles approach that of light.

Aichelburg and Sexl [1] considered the gravitational field of a massless pdrticle
in Minkowski space, and showed that the resulting space-time is a special case of
a gravitational impulsive wave* [2] which is also an asymmetric plane-fronted gravita-
tional wave [3]. Penrose [2] also gives explicit examples of sourceless gravitational
impulsive waves in Minkowski space.

In this paper we first summarize the properties of the shock wave due to a massless
particle in Minkowski space. We do this by presenting a new derivation of the
results of Aichelburg and Sexl [1] involving explicit calculation of (null) geodesics
crossing the shock wave. This enables the physical properties of such shock waves
to be easily exhibited.

We then determine, for a particular class of vacuum solutions to the Einstein
field equations, the (necessary and sufficient) conditions for being able to introduce

' Supported by the Stichting voor Fundamenteel Onderzoek der Materie.

* Note that Penrose [2] reserves the term gravitational shock wave for a metric which is C' whereas
the metrics we consider are only C°. We will nevertheless use the term “shock wave™ for what are,
in the terminology of [2], impulsive waves.
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Fig. I. The horizon shift (eq. (15)) due to the field of a massless particle moving in the v-direction along
the horizon of the Schwarzschild black hole. The amount of the shift depends on 6.

a gravitational shock wave via a coordinate shift*. These conditions include both
constraints on the metric coefficients and on the form of the shift. In Minkowski
space they reduce to the plane-fronted wave of Aichelburg and Sexl [1] and, of
course, to Penrose’s results [2] for sourceless waves. However, for Schwarzschild
black holes we obtain something new: there is a (spherical) shock wave at the
horizon due to a massless particle at the horizon. (See fig. 1.)

Throughout this paper we think of the massless particle as the limit of a fast-moving
particle with negligible rest mass**; this limit is given explicitly for the Minkowski
case. Fig. 1 can thus be interpreted as describing an ordinary particle with small
mass falling into the black hole from the left, as seen by an outside observer (on
the left) at very late times; the particle is then seen close to the horizon and boosted
to high energies.

The paper is organized as follows: in sect. 2 we summarize the situation for the
(plane) shock wave due to a massless particle in Minkowski space and discuss the
general physical features of such a wave. These results are based on a calculation
of the null geodesics in such a space-time, which is given explicitly in appendix A.
In sect. 3 we give the conditions, derived in appendix B, for a shock wave to be
possible starting from a given **background” space-time. After showing that these
conditions reduce to the correct ones [1, 2] in Minkowski space we then obtain the
(spherical) shock wave at the horizon of the Schwarzschild black hole due to a
massless particle there. In sect. 4 we discuss our results.

2. Shock waves: an example

Aichelburg and Sexl [1] (cf. eq. (A.37)) have shown that the gravitational field of
a massless particle in Minkowski space is described by the metric

s?=—di(dd+4p In(p?)6(ii) did +dx>+dy’, (1)

* This is just the scissors-and-paste approach of Penrose [2] applied to more general space-times.
** We assume that the particle has no electric charge and no angular momentum. However, for an
clementary particle for example we do not expect the results to differ significantly from those we
derive here.
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where p?=x’+y’. The particle moves in the # direction with momentum p. By
calculating geodescis which cross the shock wave, which is located at u=0, we
obtain the following two physical effects of such a shock wave (see appendix A):
geodescis have a discontinuity A at u =0 and are refracted in the transverse
direction. The shift A is given by (cf. eq. (A.26))

4Gp. pi

Ab=— > lnz, (2a)
which, for a photon, is
a2 ;
Ap=——2pPo. (2b)
4 Iy

where we have put the units back in and where we have used E = pc = #v, where »
is the frequency of the photon and /g, is the Planck length. p, is the value of p when
the geodesic reaches u =0. This shift is illustrated (for nonzero m and x = 0) in fig.
2; for m =0 the shift occurs as a discontinuity at u =0.

Note that the presence of a length scale in the argument of the logarithm is merely
a reflection of our choice of units and has no physical meaning. It represents a
constant shift in § which can be transformed away by a suitable redefinition of §
(eq. (A.11)). Furthermore, by the same procedure, the value of p, for which A5 =0
(here p,=1,,) can be chosen arbitrarily far from the photon (p, large). In any case,
only the difference in 4% for nearby geodesics is physically relevant.

There is also a refraction effect described by (cf. eq. (A.36))

4G,
cota+cotB=3—p, (3a)
€ po
which, for a photon, is
4l
cota+cotB=—LV. (3b)
€po

This is illustrated (for x =0) in fig. 3, where the angles a and 8 are defined.

4

a)y, <1 b) y,>1
Fig. 2. The path of a null geodesic in the (i, §) plane as described by eq. (2) for m <1, p,» m, and (a)
Po<1, (b) po> 1. The near region N and the far region F, as well as the shift A5, are indicated.
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Ny Ny
y= yo
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(a) (b}

Fig. 3. The “spatial refraction”™ of null geodesics as described by eq. (3) for the two special cases (a)
a=p, and (b) a =im

Egs. (2) and'(3) are the central results for these shock waves and describe physical
effects which should also occur in more general situations. Note that if the shift (2)
were constant it could be removed by a coordinate translation and would therefore
not be physically observable (cf. the discussion after eq. (2)). Also, a shift linear in
the transverse distance p would not be observable since it could be removed by a
Lorentz rotation of one of the flat half-spaces with respect to the other. However
the shift (2) is logarithmic in p and leads to physically observable effects. The relative
shift for nearby observers goes as the first derivative (1/ p) while the relative refraction
goes as the second derivative (1/p?) of the shift*. See fig. 4.

Fig. 4. Four synchronized clocks were originally situated at rest at the corners of a rectangle. A fast

particle approaches from the left. The situation is shown when the shock wave has passed two of the

clocks. The one closest to the trajectory of the particles has been shifted to the right with respect to the

other; its clock now runs behind the other. They are also moving towards the trajectory of the fast

particle at different speeds (arrows). Only their relative velocity, which is always away from each other,
is locally observable.

* Note that a local observer can only detect the second derivative (1/p?) of the shift.
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3. General result
Consider a solution of the vacuum Einstein field equations of the form
d§®=2A(u, v) dudo+g(u, v)h;(x') dx' dx’. (4)

Under what conditions can we introduce a shift in v at ¥ =0 so that the resulting
space-time solves the field equation with a photon at the origin p =0 of the (x')
2-surface and u = 0? As shown in appendix B the answer is the ar u = 0 we must have

A,=0=g,,
A uv
—g—Af—g?f=327rpA23(p), (5)

where f = f(x') represents the shift in v, Af is the laplacian of f with respect to the
2-metric h;, and the resulting metric is described by (B.2) or (B.4). Egs. (5) represent
our main result. We now turn to specific examples.

For a plane wave due to a photon in Minkowski space we have

d§’= —du dv+dx*+dy?, (6a)
and thus
A=-t,
g=1. (6b)

The conditions on the metric are trivially satisfied, and the condition on the
shift f is

Af =-16mps(p), (7)

where p” = x>+ y° The solution of this equation, unique up to solutions of the
homogeneous equation, is

f=-4pInp*, (8)

which agrees precisely with Aichelburg and Sexl {1] (cf. egs. (2) and (A.26)).
For a sourceless plane wave in Minkowski space we set p =0 to obtain

Af=0, 9)

which agrees with Penrose [2].
For a spherical wave in Minkowski space we write the metric in the form

d§?= —du do+3(v—u)¥(de>+sin’ 6 de?), (10a)

so that

g=r’=,(v—u) (10b)
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But the derivatives of g are not identically zero at u = 0. Thus, there are no spherical
waves (of this form) in Minkowski space.

Physically this might seem mysterious because one expects spherical shock waves
to arise in, e.g., the debris of a violent explosion. On closer inspection one concludes
that there must be non-zero curvature behind such shock waves. However, note that
Penrose [2] does exhibit the existence of sourceless spherical shock waves in
Minkowski space but having a different form than our ansatz (eq. (B.2)).

We now turn to a more interesting example, namely the Schwarzschild metric
which in (null) Kruskal-Szekeres coordinates takes the form

32m’

d§2=—Te_'/2"‘ du dv+r¥(de*+sin® 6 d¢?), (11a)

so that

3
16m o r/2m
r

g=r>. (11b)

r is given implicitly as a function of u and v by

r
- _ _—1 r/2m
e (2m )e

so that all v-derivatives of r are proportional to u. Thus, the conditions on the
metric coefficients A and g are satisfied at u =0.
Furthermore, since g, = A the condition on f becomes

(11¢c)

-

Af - f=327pgAl.-056(6)
=-2m7k8(8), (12)

where k =2°m*p e ' and where we have arranged the coordinates so that the photon
isat 0=0=u.

We now solve eq. (12) by expanding f in terms of spherical harmonics Y..(6, ¢).
We see immediately that only spherical harmonics with m =0 contribute; expressing
these in terms of the Legendre polynomials P(x) leads to

3 1+3
f—x%——1(1+1)+1P,(c050). (13)

We can obtain an integral expression for f by using the generating function for
the Legendre polynomials, namely

E P(x)!'=(1-2xt+ )2, (14a)

=0
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and the fact that

" e (W3s)ds= [+ (14b)
IR A TIES TR
where t = e, to finally obtain
o 1 1/~
§COS(T/3S)
= ds. 15
4 KL (cosh s —cos 6)'/? s (15)

We have not attempted to perform the integration explicitly. We note that the
homogeneous equation (eq. (12) with p=0) has no solution. In the limit of small
6 eq. (15) in appropriate coordinates reduces to eq. (8), with a well-determined
value of the integration constant.

4. Discussion

The surprisingly simple geometric shape of a gravitational shock wave of massless
particles in flat space can help us obtain a better understanding of gravitational
interactions among particles at extreme energies. It is easy to argue that at extremely
high energies interactions due to this shock wave will dominate over all quantum
field theoretic interactions, simply because the latter will be postponed by an infinite
time shift (due to the logarithmic singularitity in eq. (2), see fig. 4). This implies
that cross sections at such energies will be entirely predictable.

A problem arises if two such particles are considered, both accompanied by their
shock waves, that meet and collide. The result of such a collision will be curved
shock waves which obey the vacuum Einstein field equations only if space-time
after the collision in the region between both shock waves is curved, so that we
then have to deal with the full complexity of general relativity. We have here a
limiting case of the general problem of black hole encounters which has been studied
in detail by D’Eath [4] and Curtis [5].

On physical grounds the Schwarzschild result, eq. (13), should not be surprising.
The flat space result (e.g. eq. (8)) can be obtained [1] by infinitely boosting a
(massive) source particle. Now take an r = const observer in the usual Schwarzschild
coordinates. Put a (nearly) massless particle at the horizon and wait. The observer
will see a particle with an increasingly large boost! It is only natural to expect a
similar result in both cases. The spherical nature of the wave in the Schwarzschild
case (as opposed to the plane wave in Minkowski space) is merely a reflection of
the spherically symmetric nature of the “‘boost™ relating an r = const observer to
Kruskal-Szekeres coordinates. Physically, one expects any (weak) plane wave
approaching the black hole to become gradually more spherical, as seen by an
outside observer, as it comes closer to the horizon.

Returning to the picture of a particle of small mass falling into the black hole
(see discussion after fig. 1) one expects a small increase of the Schwarzschild radius
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of the black hole, together with a slight expansion of its furture horizon. This
expansion then grows exponentially with the Schwarzschild time coordinate. This
is what our ‘‘shock wave” here actually describes. Eq. (15) is in closed form the
extent of the horizon expansion. One might speculate what effect this expansion
has on the quantum nature of the vacuum and, in particular, Hawking radiation.
We believe that the gravitational interaction between infalling matter and Hawking
radiation, crucial for a deeper understanding of the quantum properties of black
holes themselves [6], should be described using our expression for the horizon
expansion.

Finally, we are aware of the analogy with the electric field of a charged particle
moving at the speed of light, which is similar to the gravitational field described
here. Our gravitational shock wave can be compared to a limiting case of Cherenkov
radiation.

We thank Paul Shellard for bringing the work of D’Eath [4] to our attention,
which then led us to the previous work of Aichelburg and Sexl [1] and Penrose [2].

The computer calculations of the Ricci tenser were performed while one of us
(T.D.) was a visitor at Queen Mary College, London. He is deeply indebted to
Malcolm MacCallum and Gordon Joly for hospitality and assistance.

Appendix A

A PHOTON IN MINKOWSKI SPACE
Consider the linearized field of a point mass in Lorentz gauge:
ds2=—(|—27f"> dT%(H%") (dx*+dy*+dZz?), (A1)
with m < R. This is the field of the particle as seen in its rest frame. Boost this rest
frame with respect to coordinates (¢, x, y, z) via
T=tcoshB—zsinhf,
Z=—tsinh B+zcosh B, (A.2)
and simultaneously set
m=2pe® (A.3)

for some constant p > 0.
Introduce null coordinates

u=t-z,

v=1t+z. (A.4)



T. Dray, G. 't Hooft / Gravitational shock wave 181
The momentum of the particle is
p“ = m[(cosh B)&7 +(sinh B)87], (A.5)
and thus
;iglnp"=p(8?+8?)=2p83; (A.6)
in the limit the particle is massless and moves (at the speed of light) in the v-direction;

p is its momentum and is kept finite (possibly large).
Writing the metric in (&, v, X, y) coordinates we obtain

2 4 ;
ds2:<1+7f") [—dudv+dx2+dy2]+-1;—n[£du+4r:dv} : (A7)
with
14 m 2
R?=x*+ 2+(— -—— ) . A8
Ty mu 4pv (A8

The key idea is to notice that

d
lin}) ds?*= —du(dv—4p|—T) +dx’+dy?, (A9)
(u;‘O":x‘y)ﬁxcd u

which is flat although the coordinate v’ satisfying

4p du

dv'=dv—
Jul

(A.10)

suffers a discontinuity at ¥ = 0 due to the absolute value sign. To make this somewhat
more precise, introduce coordinates (i, 3, x, y) by*

. m’Z In (2R)
d=u+——--,
PR
4pZ R
p=psPZINC2R) (A.11)
R
Note that (4, 0, x, y) is obtained from (u, v, x, y) by adding (4Z In (2R)/R)p“. Then
2
R>=x+ 2+<—p— i ) A2
X m Ty (A.12)
lim ds?= —di df+dx?+dy?. (A.13)

m -
(ur0.0,x,v) fixed

* The motivation for these coordinates is as follows: in the limit, Z/R acts like a 8-function and
reproduces the effect of the absolute value sign, while dR/ R = du/ u. Furthermore, In R is finite at
u=0. The factor 2 is chosen for convenience. We use geometric units in which G=c=h=1; all
quantities are dimensionless.
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The metric (A.13) is flat. 1t remains to investigate its behavior near u = 0, which,
in the limit, is just # =0. To do this we consider the behavior of (null) geodesics
crossing u =0 for m # 0 and then take the limit as m goes to zero*. We do this both
in a “'near” region, which collapses to @ =0 in the limit - this is just the rest frame
of the particle - and a ““far” region, where i remains non-zero in the limit.

The (linearized} geodescis of the metric (1} are given by

. 2
T=E(l+—m>,
R
. 2m
z-zy=L[1-2),
yZ -2y ( R)

s 2
y'+Z‘=—M2(1——I;—n)+E2, (A.14)

where the dot denotes derivatives with respect to the affine parameter A along the
geodesic. We have assumed x =0 without loss of generality; the constants E, L, M
denote the energy, angular momentum, and rest mass of the test particle, respectively.

In what follows we consider only “null” geodescis; i.e. we set M =0O(m?).
Expanding y, Z and T in powers of m and considering only the terms linear in m
we have

y=Yyotmy,,
Z=Zy+t+mZ, ,
T=T,+mT,, (A.15)
and eqs. (A.14) now become
To=E,

it 2i- £,

)’ozo —Zyyy=1L,
T,=2E/R,,
Yo+ ZoZ, =0,
VoZi~Z Yo+ WZo—Zoy, = -i—';, (A.16)

where Ry =yo+ Z2.

* Penrose and MacCallum [7) describe some properties of such geodesics without actually calculating
them. Penrose and Curtis have performed similar calculations of null geodesics crossing a shock
wave, but as far as we know these have not been published [8].
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However, since

u=ﬂ(T-—Z) ,
2p
2
v=2(T+2),
m
we must require
Zoz_TOE_E

183

(A.17)

(A.18)

if v, and thus &, is to remain finite in the limit as m goes to zero. The second and

third of egs. (A.16) now yield

Yo=0,
Yo=—L/E,
and the fifth of eqs. (A.16) implies
Z,=0
Thus
u - E +m—2—E—,
p ? Ro
v=4p—E—.
RO

Using eq. (A.18) these can be integrated directly to give

E 2
u=—m—/\—'ﬂ'ln (Zo+ Ro),
4 p

v=—4pIn(Z,+R,),

where we have ignored an irrelevant integration constant, and thus

21 Z,In (2R
ﬁ:ZE,\+—m—[—°n—(—i)—ln(Zo+Ro)],
p P 0
R
ﬁ=4p[Z°l—nR(2—°)—ln(Zo+Ro)].
Y]

We now separate into a near region N and a far region F as follows:

N={Al<1/Vm},
F={V/m=m|A|<co}.

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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Note further that

lim £=0,

Ao —0

lim 6=-4plny}],

A+

A zoC

E
lim a=’"7x. (A.25)

Thus, there is a total shift in © given by
At =—-4pliny}. (A.26)

Note that, in the limit as m goes to zero, A is infinite everywhere in F. Furthermore,
in this limit @ is identically zero in N, whereas i is a good affine parameter in F
along the geodesic.

The shift {A.26) thus occurs, for small m, “‘essentially” only in N! Thus, in the
limit as m goes to zero, the shift (A.26) occurs at &i =0 and represents a finite
discontinuity in ¥ along null geodesics! This can also be seen by calculating

lim $=0, (A.27)

A—=2X

thus showing that in the limit as m goes to zero ¥ is constant in F, i.e. for non-
zero 4. This is just a reflection of the fact that, in the limit, F is flat. This is
illustrated in fig. 2.

We now turn to the behaviour of y. We must solve the last of eqs. (A.16), which,
on inserting eqs. (A.19) and (A.20) becomes

yIZ()—ZO}}l =-2L/R,. (A.28)
The homogeneous equation clearly has the solution
yi=AZ, (A.29)

for any constant A; it remains to find a particular solution.
Multiplying eq. (A.28) by Z, yields

E’y,~ RyRoy, =2LE/R,. (A.30)
But noticing that
22 _ ZoE’ ( yé)
R}= =FE* 1~ A3l
0 R(z) R(z) ( )
suggests an ansatz for y, as a power series in R,. We thus obtain the particular solution
L 2R
w2k g=_2Re (A32)

)’tz)E ’ Yo
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The general solution to eq. (A.28) is thus

2R
h=- 0+AZO: (A.33)
Yo
and therefore
L 2R
E Yo

We are interested in the behaviour of y in the far field F for m small. We obtain

d 2 "
lim %=——psgnu—pA. (A.35)
m=00u  yo

This behaviour is illustrated in fig. 3. In general we have

4p
cota+cotB=—

Yo

(A.36)

for the angles a and B as defined in fig. 3.

At this point several comments are in order. We have not considered all geodesics
which cross the shock wave, but only a sufficient number to determine how to glue
the two flat half-space together. That this is sufficient follows from the existence of
coordinates in which the metric is in fact continuous (see appendix B).

Using the results of appendix B we see that

lim ds’ = —dd(dd +4p In y3 8(it) did) + dx>+dy’
m-0

= —du(dv+m(l —20(u))+4pInd &(u) du) +dx?+dy?,
u
(A.37)

which of course reduce to (A.13) and (A.9) respectively for u # 0. The first of (A.37)
is just the result of Aichelburg and Sexl [1] (their eq. (3.9)), but the second of
(A.37) disagrees with their eq. (3.10). Although this is at first disconcerting, a more
careful analysis reveals the source of the discrepancy: we have taken a limit different
from theirs. This can be seen by noting that for m > 0, u # 0, our original coordinates
(t, z) are related to their coordinates (7, X) by infinite scale factors.

Equivalently, note that the original Minkowski space given in (u, v, x, y) coordin-
ates is “‘pushed to infinity” in the resulting space-time given in (4, 3, x, y) coordinates.
Specifically, {u # 0: |v| <o} corresponds to (it #0; &= —(sgn &i) }, although the
source located at {u = 0: |v] < oo}, corresponds to {ii = 0; |5 < oc}. The corresponding
statement for the (7, X, 7, Z) coordinates of Aichelburg and Sexl [1] would be
somewhat different.

Finally, note that although we have linearized both the metric (A.1) and the
geodesics (A.14) the result is in fact exact. Had we begun (as in [1]) with the exact
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Schwarzschild metric in isotropic coordinates and expanded in powers of m only
the linear terms we consider would have survived.

Appendix B

CALCULATION OF THE RICCI TENSOR
We start with the metric
ds?=2A(u, v) du dv+g(u, v)h,(x') dx' dx’, (B.1)

which is assumed to satisfy the Einstein vacuum equations. We introduce a shock
wave by keeping (B.1) for u <0 but replacing v by v+ f(x') for u>0*:

ds’=2A(u, v+ 6f) du(dv+ 6f, dx') + g(u, v+ 6f ) h; dx' dx’, (B.2)

where 6 = 8(u) is the usual step function. Changing to coordinates (4, 6, ') defined
by

u=u,
p=v+46f,
£=x" (B.3)
we obtain
ds?=2A(i#, d) da(dd—8(a)f di)+g(i, O)hy dx' dz/, (B.4)

where 8 = 6(u) is the Dirac delta *“function”.

We note that the metric ds® given in (B.2) and (B.4) is in fact continuous, i.e.
there exist coordinates (i, 0, X') such that the metric coefficients are continuous. A
possible choice is given implicitly by

=i,
\ . A .
b=0+6f —3a6° < h™f . f.,
g
, A
'=x'—u0< h"f ., (B.5)
g
where
f=1x",

g=g(4,0),
hY = hi(x'y. (B.6)
* This is not quite the standard ansatz g, = (1 — 8)g, + 8g.,- However, in the examples considered

here the corresponding Ricci tensors differ at worst by a term in R, proportional to 8(1 — 8), which
is not physically relevant.
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However, the coordinates (B.5) are extremely unwieldy both for mathematical
computations and for preserving physical intuition. We will thus proceed as
follows. Noting that the coordinate transformation between (i, 7, ') and (u, v, x)
coordinates is continuous, we will calculate the Ricci tensor for the metric (B.2).
However since the metric (B.4) is much easier to work with, we will formally
transform to (4, 8, £') coordinates, calculate R;;, and then transform back to obtain
R, Direct calculation yields*

A

A;
Ry=—-— 8,
5/

—

AAAL A‘ae 1 8.8 at A% A\aa Az‘:A‘ﬁ
Mlne 0, +_g‘ g. _h).\*_(_‘-_z‘;_ . __g.A 3 )_/8,
A A gA

Reg= -804 - 2Ly 8008

g 28 gA

8 i %, BauA A AA‘A AﬁAu uAy,
R.;.;=(—gl‘“+lgg7“+g—‘1’;4—“)+(2 s 2 . ”+g'4xﬁ+gA )f,s

g 2g gA A A gA gA

A A% §:/§~) A ge

H2| - ) P8R Af6 - f6 B.7
(A ATTgR ) g (B7)

where Rf,»z’ is the Ricci tensor derived from h;;, 4 is the Laplace operator associated
with hy, and & = 8(4).

Blithely ignoring the 8° term we transform to (u, v, x') coordinates and insert the
vacuum equations (obtained by setting f = 0) to get

RL‘v = RE{;:O )
R,=R;=0,

g.oc
R, = Rij=—h;~= 18,

A% Ay g:A ‘«)
Ruv:Rﬁéz : __“‘_—'_A‘i 6,
(7&7 A gA f

Rm = R|27+ Rﬁﬁoj:l
/‘ig A\z,g /‘i;,,; g,;/i;;)]
= ——+ —_r - —x— —
f,S[ A Gf(Az A A ’

* We note that Taub [9] has given a systematic presentation of space-times with distribution-valued
curvature tensors.
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P

A 8 5 §080 2845 85Aa BaAs
=2 Afa—g—-f5'+(g-§ _ +g‘A/ﬁ+g‘A%)f8. (B.8)
g g g gA gA

The stress-energy tensor for a massless particle located at the origin p =0 of the
(x') 2-surface and at u=0is

T =4ps(p)(u)86:8;, (B.9)
where p is the momentum of the particle. Thus, the only non-zero component is
T..=4pA%8(p)é(u). (B.10)

Inserting (B.8) and (B.10) into the Einstein field equations, partially integrating the

8’ term, noting that e.g. /i_,;(ﬁ =0)=0 A .(u=0)=0 yields precisely egs. (5).
The calculation above was first done by hand and then checked using the algebraic

manipulation computer system SHEEP. As a further check on the validity of working

Py

in the singular coordinates (i, §, X') (eq. (B.4)) SHEEP was also used to calculate
the Ricci tensor directly in (4, v, x') coordinates (eq. (B.8)), thus checking the
original calculation of 't Hooft for the Schwarzschild case. The same answer, namely
eqs. (5), was of course obtained in all cases.
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