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The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing
these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assess-
ment is performed using the two-sample Kolmogorov–Smirnov statistical test. To demonstrate the
assessment procedure, it is applied to three different models of the Agulhas region. The test can either
be performed using crossing positions of one-dimensional sections in order to test model performance
in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quan-
tities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-
fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and
cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their con-
fidence levels is the same as the ordering based on the qualitative analysis, which suggests that the
method is suited for model validation. Only one of the three models, a 1/10� two-way nested regional
ocean model, might have skill in the Agulhas region. The other two models, a 1/2� global model and a
1/8� assimilative model, might have skill only on some sections in the region.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Assessing the skill of ocean models is an important step before
the data produced by such a model can be analyzed and inter-
preted. Special projects have been set up to facilitate the compar-
ison of different ocean models within a fixed framework (e.g. the
Coordinated Ocean-ice Reference Experiments (CORE), Griffies
et al. (2009)). One of the problems of such skill assessment is that
the observations to which the model should be verified are scarce
in space and time. The skill assessment is therefore, often limited
to a subset of the state vector.

Historically, verification is predominantly qualitative, where one
or more specific model variables are compared to observations of
these variables. The advantage of this qualitative method is that it
introduces the expertise of the modeler in selecting fields and re-
gions that are more important than others. However, the qualitative
method also introduces subjectiveness into the skill assessment
procedure.
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There are objective methods to assess the model skill. Hetland
(2006) introduced a way to calculate the improvement of a model
with respect to some climatology. Using statistics on the complete
model domain, however, has the disadvantage that dynamically
relevant regions (such as the western boundary currents) are trea-
ted similar to dynamically less important regions. This is a relevant
problem especially when the subsequent data analysis is done
using numerical Lagrangian floats, tracers that are advected with
the flow. These floats often cluster in some regions of the model
domain and only the model skill in these regions is relevant for
the aptitude of the float data. Ideally, these regions should, there-
fore, have more weight in the skill assessment. A way to accom-
plish this focus on dynamically relevant regions is to base the
skill assessment on the float trajectories themselves.

The assumption behind trajectory verification is that only skillful
models produce trajectories with similar properties as drifting
buoys. Therefore, a high skill in float trajectories implies that the
underlying model is highly skilled. Here, we present a quantitative
method to assess the skill of a set of numerical drifters. Using real-
world drifting buoy trajectories, the chance can be calculated that
the drifting buoys and the numerical drifters are drawn from the
same distribution.

For assimilative models, where it is the objective for the model
to represent the ocean state as accurately as possible, Barron et al.
(2007) have developed a technique to compare drifting buoy
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trajectories with the trajectories of numerical drifters. The authors
seed numerical drifters at the locations where drifting buoys are
observed and then calculate the deviation of model and in-situ
paths as a function of time. However, many models are non-assim-
ilative and for these models one-to-one comparison of buoys and
numerical drifters is futile as the forcing is different between the
model and drifting buoy trajectories. And even if the forcing is sim-
ilar, nonlinearity leads to de-coupling (or rather de-timing) be-
tween the circulation and the forcing, and therefore, an increased
error between observed and modeled trajectories. Verification
should be done in a statistical sense, where the distribution func-
tions of the two kinds of drifters are compared rigorously.

Lagrangian data is often used in examinations of relative and
absolute dispersion. Such estimates of dispersion would be useful
in quantifying important aspects of Agulhas circulation. For exam-
ple, Drijfhout et al. (2003) identify dispersion through Rossby-wave
radiation as a key factor in the decay of Agulhas rings. Lacorata et al.
(2001) used Lyapunov exponents to characterize the drifter paths
and assess the dispersion of drifting buoys. Manning and Churchill
(2006) track the spread within drifter clusters in an alternate
approach to estimating dispersion.

Drifter observations used within the present Agulhas study,
however, are not well distributed for these type of methods, which
analyze group characteristics of among multiple pairs or clusters of
simultaneously trajectories with initially small separation. Numer-
ical simulations of drifter trajectories can be designed to support
dispersion studies, but the validity of such studies requires that
the simulated trajectories are representative of the true local circu-
lation. The focus of the present study is to present a technique to
assess whether the advection patterns in the model drifters agree
with patterns in the real ocean. Model results that are shown to
be sufficiently representative of observed characteristics could
then be more credible in a subsequent study focused on dispersion
characteristics.

Although drifting buoys have been deployed for over a decade
now, and large numbers of buoys have been released, the total
number of drifting buoys in a mesoscale region such as the Agulhas
region is in the order of 10� 102. Numerical floats are seeded in
quantities of 105 � 107, many orders of magnitude larger. This
small number of drifting buoy trajectories limits the ability to
use standard statistical tools. A common v2-test, for example, re-
quires histograms with at least five members in each bin. This con-
fines the number of bins and consequently reduces the accuracy
and strength of the method. A statistical test which is better suited
for this problem is the two-sample Kolmogorov–Smirnov test,
which does not require binning the data.

The method is applied to a set of experiments in the Agulhas
system (De Ruijter et al., 1999; Lutjeharms, 2006), where numeri-
cal floats are continuously seeded in the upstream Agulhas Current
and then tracked as they move through the Agulhas region. The
highly nonlinear behavior of the flow in this region, with its dy-
namic retroflection and mesoscale eddies, serves as an ideal test
case to investigate the strengths and weaknesses of the assessment
method presented here.
n

Fig. 1. An illustration of the two-sample Kolmogorov–Smirnov test. The test is
performed using two random one-dimensional data sets B (asterisks) and L
(circles), with NB ¼ 5 and NL ¼ 40 (upper panel), drawn from a uniform
distribution. Cumulative distribution functions, the fraction of data points below
some value x, have been computed from these two data sets (middle panel;
black line for data set B and gray line for data set L). The test statistic Dn of Eq.
(1) is denoted by the dotted line (with a value of 0.38). This test statistic is
related to a confidence level a by a Monte Carlo process where Dn is calculated
for 105 uniformly distributed data sets of similar NB and NL (lower panel). In this
particular case the confidence level is 0.47, the value for a on the ordinate where
the Dn ¼ 0:38 line and the cumulative distribution function of all Dns intersect.
Since a > 0:05, this leads to the (correct) conclusion that B and L are from the
same distribution.
2. The two-sample Kolmogorov–Smirnov test

To measure the agreement between the distribution functions
of the numerical drifter data set and the drifting buoy data set,
the two-sample Kolmogorov–Smirnov test (2KS-test) is used (Mas-
sey, 1951). The 2KS-test is designed to test the hypothesis that two
data sets B (drifting buoys) and L (Lagrangian numerical drifters)
are taken from the same underlying distribution. This underlying
distribution does not need to be known. The two data sets have
to be one-dimensional vectors of independent and identically
distributed real numbers and they may have different lengths NB

and NL, as the 2KS-test is also powerful when NB � NL. The 2KS-
test starts out with formulating the null-hypothesis that B and L
share an underlying distribution. After that, there are four steps
(Fig. 1).

First, cumulative distribution functions FBðxÞ and FLðxÞ are con-
structed from the data sets B and L. These functions give the frac-
tion of data below some value of the position x. They are zero
below the minimum value in the data set and one above the max-
imum value. At each member of the (sorted) data set they increase
with 1=N. By construction, FðxÞ ¼ 0:5 denotes the median of the
data set.

Second, a test statistic is calculated. For the 2KS-test, this test
statistic is the largest distance between FBðxÞ and FLðxÞ:

Dn ¼ sup
x
jFBðxÞ � FLðxÞj ð1Þ
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Fig. 2. The cumulative distribution functions (CDFs) that can be defined from a
two-dimensional data set. Due to the orderings that can be made in the x and y
dimensions, there are at least four different CDFs in two dimensions, where there is
only one in one dimension. The middle panel shows an example data set where
N ¼ 3. The four corner panels show the four very different CDFs that result when
the ordering is started in the respective corner of the ðx; yÞ-domain. The color scale
is such that white is zero and black is one. In the case of the two-dimensional 2KS-
test, the ordering is chosen which results in the largest value of Dn.
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Fig. 3. Contour plots of the confidence level a as a function of N and Dn for the one-
dimensional (upper panel) and two-dimensional (lower panel) Kolmogorov–
Smirnov test. For a given N and Dn , the latter gives a higher confidence level.
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Other tests use different test statistics, such as the Cramér-Von-
Mises test where the test statistic is the area between FBðxÞ and
FLðxÞ. However, these tests are not necessarily more powerful
(Conover, 1980).

As a third step, a confidence level a is assigned to the test sta-
tistic Dn, given the data set lengths NB and NL. These two data set
lengths are converted to one pseudo-length:

N ¼ NBNL

NB þ NL
ð2Þ

after which the two-sample Kolmogorov–Smirnov test is similar to
the ordinary Kolmogorov–Smirnov test. Note that for NB � NL, the
length of the numerical drifter data set is unimportant as N � NB.

The theory behind the 2KS-test states that, although the distri-
butions of B and L may be unknown, Dn follows the Kolmogorov
distribution. The transformation from Dn to a can be done using
a look-up table (Sveshnikov, 1968; Conover, 1980), but here it is
computed using a Monte Carlo simulation. In such a Monte Carlo
simulation, a cumulative distribution function FDn ðaÞ is acquired
by repeatedly taking random samples of lengths N and calculating
the test statistic. The advantage of using a Monte Carlo simulation
over a look-up table is that it is much more accurate, at the cost of
computing time.

Finally, the null hypothesis is rejected when a is below some va-
lue. In this paper, we use the 95% confidence interval. This leads to
the decision rule:

The model:
has no skill if a 6 0:05
might have skill if a > 0:05;

�
ð3Þ

which means that when a 6 0:05 it is more than 95% certain that
the drifting buoy trajectories and numerical drifter trajectories do
not share an underlying distribution and hence the model is not
good. On the other hand, if a > 0:05 it means that it is not certain
whether the distributions of B and L are different. Although this
technically only means that we can not say that the model is faulty,
it will be used here as evidence that the model might have skill.

Note that in this formulation the 2KS-test only returns ‘has no
skill’ or ‘might have skill’. However, there is also information in
the test statistic Dn and the confidence level a. They can be used
for inter-model comparison. In addition, the cumulative distribu-
tion functions FBðxÞ and FLðxÞ can aid in subjective analysis as they
reveal where model and reality diverge most.

The one-dimensional two-sample Kolmogorov–Smirnov test
has been extended to two-dimensional data sets by Peacock
(1983). The procedure is very similar in two dimensions, except
for the conversion from B and L to FBðx; yÞ and FLðx; yÞ. In two
dimensions, there are four ways to define a cumulative distribution
function, depending on where Fðx; yÞ is defined to be zero (Fig. 2).
This is related to the possible orderings in x and y. As suggested by
Peacock (1983), preliminary Dns are computed for each of these
four orderings, and the largest of these is selected as the represen-
tative Dn for the set, since that gives the smallest value for a,

Dn ¼max sup
x;y

FBðx; yÞ � FLðx; yÞj j
� �

ð4Þ

For a given N and Dn, the confidence level a is higher in the two-
dimensional than in the one-dimensional 2KS-test (Fig. 3). This is
probably because the average distance between N points in two
dimensions is larger than in one dimension.

For sufficiently large data sets ðN > 10Þ, the 2KS-test is much
more sensitive to changes in Dn than to changes in N (Fig. 3). If it
is assumed that the data set is an unbiased subsample of the
underlying distribution, so that Dn does not change when one data
set member is added, the sensitivity of a is dominated by the
change in N. For N > 10, the maximum sensitivity jda=dNj ¼ 0:05.
Furthermore, the sensitivity around the critical a ¼ 0:05 value,
which is the basis for the decision rule, Eq. (3), is always less than
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0.01. That means that a decision will not have to be changed when
0:05 < a < 0:06 if one data point is added, under the assumption
that Dn is constant. But even if the data set is extremely biased,
the addition of one extra member to data set B can never change
Dn by more than 1=NB, the height of each step in FBðxÞ.

The advantage of the 2KS-test is that it is independent of a norm
to compute the distance between the two data sets. Such a norm is
required in the minimum spanning tree rank histogram method
(Gombos et al., 2007), and this choice introduces subjectiveness
into the method. The 2KS-test is, apart from a critical confidence
level where the hypothesis is rejected, completely choice-free
and thereby objective. Together with the ability of the 2KS-test
to work for a large range of data set lengths, this makes the 2KS-
test very appropriate for this oceanographic application.
3. The Agulhas region data

The 2KS-test is applied in the Agulhas region using drifting buoy
trajectories as data set B and numerical drifter trajectories as data
set L. The numerical drifter trajectories are obtained by seeding
drifters in three different models, which means that there are actu-
ally three different data sets L.

The complexity and nonlinearity of the Agulhas system, where
the Indian Ocean and Atlantic Ocean meet, makes it an ideal test
case for the 2KS-test. The region is fed by three distinct sources:
the Agulhas Current in the northeast, the South Atlantic subtropi-
cal gyre in the west, and the Antarctic Circumpolar Current in the
southwest. The system is populated with mesoscale cyclones and
anti-cyclones, which vigorously mix the water from these three
source regions (Boebel et al., 2003). The float experiments are de-
signed to determine the amount of Agulhas leakage, which is the
water flowing from the Indian to the Atlantic Ocean in the warm
upper-branch return flow of the thermohaline circulation (Gordon,
1985).

The three numerical data sets are from Lagrangian float exper-
iments inside three different models: NCOM, ORCA, and AG01. The
models vary in their ability to simulate the complicated Agulhas
system dynamics, and this provides an opportunity to gauge the
strength of the 2KS-test in this oceanographic context.

The 1/8� Global NCOM is an assimilative model in which satel-
lite observations of sea surface height and temperature are used to
derive synthetic profiles of temperature and salinity (Barron et al.,
2006, version 2.5). Using seven years of model data in the Agulhas
region (1998–2004), Lagrangian floats have been seeded daily
according to volume flux in the Agulhas Current. Each float repre-
sents 0.1 Sv and the floats are tracked for two years. The total num-
ber of floats that is released at 30�S is 1:5� 106.

The 1/2� global ocean sea-ice ORCA model (Biastoch et al.,
2008c) is based on NEMO (Madec, 2006, version 2.3). It is forced
with the Large and Yeager (2004) 6-hourly data set for wind and
thermohaline forcing, over the period 1958–2004. The numerical
floats are released at 32�S, employing the ARIANE package (Blanke
and Raynaud, 1997). In the period 1992–2004, using the five day
resolution model output, the floats are tracked for five years. In
total, 1:3� 106 floats are released.

The 1/10� AG01 model is a two-way nested grid inside the ORCA
model, that spans the greater Agulhas region (20�W–70�E; 47�S–
7�S) (Biastoch et al., 2008a,b). The two-way nesting procedure
allows the AG01 model to both receive its boundary conditions
from the base model and to update the base model (Debreu
et al., 2008). The numerical float trajectories are computed in a
similar way as in ORCA. In 37 years, 5:5� 106 are released at 32�S.

The ‘‘truth”, data set B, is a subset of the drifting buoy data set
from the Global Drifting Buoy Data Assembly Center at the NOAA
Atlantic and Oceanographic Meteorological Laboratory. The surface
buoys have a drogue at 15 m depth. Richardson (2007) has used
similar drifters to estimate Agulhas leakage and was able to iden-
tify some new features in the Agulhas region using all drifter tra-
jectories in the domain. Here, the drifter data set has been
limited to drifting buoys that flow downstream within the Agulhas
Current. Since the numerical drifter release location is different be-
tween the models, two drifting buoy trajectory data sets are used.
The trajectories start when the drifting buoys cross 30�S (NCOM) or
32�S (ORCA and AG01). Only that part of the trajectories is taken
into account that is within the Agulhas region. These drifter trajec-
tory boundaries are at 32�S and 40�E in the Indian Ocean, at 47�S in
the Southern Ocean, and at 20�S and 20�W in the Atlantic Ocean. In
total, the trajectories of 51 (NCOM) and 47 (ORCA and AG01) drift-
ing buoys are used, in the period between 1995 and 2008.

In all three models, numerical floats are released throughout a
large part of the water column. The drifting buoys, however, have
a drogue at 15 m depth. Therefore, only the numerical floats in the
upper 15 m of the models are used, and the models are only tested
on their skill in the upper ocean (see also the discussion, Section 7).
Technically, the numerical drifters released in AG01 and ORCA are
not even drifters, as they are isopycnal and allowed to change their
depth. If a float is within the upper 15 m, it is added to the drifter
data set, irrespective of its depth history. However, we expect that
the effect of resurfacing floats is minor.
4. Qualitative skill assessment

Although the goal of this article is to introduce a quantitative
method for assessing the skill of an ocean model, we will start with
qualitatively verifying the model results. This aids the interpreta-
tion of the results obtained later when the 2KS-test is applied.

The three models show very diverse behavior in the Agulhas re-
gion (Fig. 4). Of the drifting buoys in the real ocean approximately
25% end up in the Atlantic Ocean, and this is in agreement with re-
cent estimates of Agulhas leakage (Doglioli et al., 2006; Richardson,
2007). In NCOM this fraction is much lower and this shows in the
model trajectory density, which is very low in the Atlantic Ocean.
However, the location and direction of the path taken by the Agul-
has rings seems adequate. The Agulhas Return Current, at 37.5�E is
better sampled.

The drifter density in ORCA reveals that the Agulhas leakage is di-
rected too zonally, with the majority of the numerical drifters flow-
ing westward after they round the Cape of Good Hope. This is an
expression of the so-called Indian–Atlantic super-gyre (De Ruijter,
1982). In the Agulhas Return Current, at 37.5�E, a curious bi-parti-
tioning can be seen. All drifting buoys flow eastward between 35�S
and 42�S, but in the model there is an extra core around 33�S. A third
discrepancy, which is to some degree also observed in NCOM, be-
tween the drifting buoys and the numerical drifters in ORCA is in
the southward extent of the trajectories. The numerical drifters do
not reach latitudes more southward than 41�S.

In AG01 the drifting buoy and numerical drifter distribution are
much more in agreement, although the numerical drifters seem to
enter the Atlantic on a too western course. No drifting buoys reach
0�E more southward than 25�S, but a vast amount of the numerical
drifters from AG01 cross that longitude south of 30�S. Another dis-
crepancy is in the return flow, where the distribution of numerical
drifters is wider in latitude than that of the drifting buoys.

In summary, AG01 is qualitatively the best model. Although it
has some deficiencies (too southward Agulhas leakage, too wide
return flow), the area of maximum densities of the drifting buoys
and numerical drifters coincide. The skill of NCOM is less, most
notably in the fraction of drifters that get into the Atlantic Ocean
(see also the discussion, Section 7). ORCA, at 1/2� resolution, seems
to be the least skillful model with a preference for zonal flow.
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5. Model validation along one-dimensional sections

The qualitative judgment of the skills of the three different
models from the previous section can be quantified using the
2KS-test. For this, one-dimensional sections are taken at key loca-
tions in the Agulhas region. They are (A) the longitude of release at
30�S (NCOM) or 32�S (ORCA and AG01), (B) the highly variable ret-
roflection at 20�E, (C) the Agulhas leakage at the GoodHope line
(Swart et al., 2008), (D) the Agulhas Return Current location at
37.5�E, and (E) the Agulhas Current core attached to the continen-
tal slope as it passes Port Elizabeth and turns westward.

For each of the sections and all drifters, the position where the
drifter crosses that section is added to the data set. Both the
numerical and in-situ drifters may cross a section multiple times.
If that is the case, the individual members of the data set are not
independent anymore and the 2KS-test is formally not valid. To as-
sure independence, each drifter can be in the data set only once. A
way to resolve this is by adding the position of only the last cross-
ing of each drifter to the data set. Using the first crossing instead of
the last appears not to change the conclusions on model skill
drawn below.

The data sets yield cumulative distribution functions similar to
the one from Fig. 1. The qualitative skill assessment of Section 4
can be quantified using these cumulative distribution functions
(Fig. 5), and the resulting confidence level a can be used to decide
on the skill of the model over each of these five sections (Table 1).

At the latitude of release, both NCOM and AG01 perform well.
In ORCA, on the other hand, the numerical drifter release loca-
tions are too far west, which implies that the modeled Agulhas
Current is too confined to the African coast. This coastal confine-
ment might be related to the absence of inshore cyclones that
push the Agulhas Current offshore. These cyclones, called Natal
pulses (Lutjeharms and Roberts, 1988), are not resolved on a
1/2� grid such as that in ORCA. Note that the drifter release loca-
tions in the ARIANE package, which is used in ORCA and AG01,
are not continuous. Instead, drifters are only released in the cen-
ter of the grid cells. Because the resulting distribution function is
discrete, the transformation from test statistic Dn to confidence
level a has to be performed using the finite sums method
described by Conover (1980). This method is much more labori-
ous than a Monte Carlo simulation but is exact for discrete distri-
bution functions and yields confidence levels smaller than those
for continuous distribution functions.

At 20�E, the section that cuts through the Agulhas Current
retroflection, only AG01 might have skill. As also observed in the
qualitative skill assessment, drifter trajectories do not get
southward enough in ORCA. In NCOM, on the other hand, some
numerical drifters are located too far southward.
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levels associated with these cumulative distributions functions are tabulated in Table 1.

Table 1
Confidence levels a for the two-sample Kolmogorov–Smirnov test applied to the five
different sections shown in Figs. 4 and 5 for the three different models. According to
the decision rule, Eq. (3), sections where a < 0.05 are sections where the model does
not have skill.

Section NCOM ORCA AG01

A Release latitude 0.26 2:0� 10�8 0.21
B 20�E 1:7� 10�3 5:5� 10�4 0.79
C GoodHope line 0.44 7:2� 10�2 0.47
D 37.5�E 0.49 6:2� 10�6 1:4� 10�2

E Current core 6:4� 10�3 2:4� 10�4 7:4� 10�7
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At the GoodHope line, both NCOM and AG01 might have skill,
even though both models have drifter crossings too far offshore.
But because there are only 11 drifting buoy crossings at this sec-
tion, Dn is allowed to be larger before the decision has to be taken
that the model has no skill (Fig. 3). Even ORCA might have skill,
with a confidence level slightly higher than 0.05. One of the defi-
ciencies of the one-dimensional 2KS-test is demonstrated here.
NCOM severely underestimates Agulhas leakage, but because the
crossing positions of the few drifters that do make it to the Atlantic
Ocean are good, the model is designated skillful at the GoodHope
line.
At 37.5�E, only NCOM might have skill. In ORCA the drifters
cross too far northward, which is the expression of the bipartition
also observed in Fig. 4. The annotation from this figure on AG01 at
37.5�E, that the spread of drifters is too wide compared to the drift-
ing buoys, is confirmed in Fig. 5. Moreover, the median of the drif-
ter crossings is more southward in AG01 than in the drifting buoy
data.

According to the results tabulated in Table 1, none of the
models have skill in the Agulhas Current as the numerical drifters
are more coast-bound than the drifting buoys (Fig. 5). However, the
difference is in the order of tens of kilometers which is mainly due
to the details in the topography. All models use a land-mask which
ends slightly too far northward and does not fully resolve the in-
ner-shelf bathymetry. This causes a slight bias between the Agul-
has Current core as sampled by the drifting buoys and in the
models. This shows that one should be careful when applying the
2KS-test, especially if sections are very short.

Based on these five sections, it can be concluded that AG01 and
NCOM are the best models, with possible skill at three sections.
ORCA might have skill only at the GoodHope line. The highest con-
fidence level a is found at 20�E in AG01, with only 20% chance that
the numerical drifters and the drifting buoys are from a different
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distribution. This is above the critical confidence level of a ¼ 0:05
from the decision rule, Eq. (3).

The sensitivity of these results can be estimated by determining
how the decisions would change if an extra drifting buoy crossing
was added to the data sets of each section (Fig. 6). This figure de-
notes for each of the models and sections in Fig. 5 what its values
for N and Dn are. Moreover, it shows the robustness of the skill
decision since it divides the N � Dn space in three regions depend-
ing on what can happen to the model skill decision if one new
drifting buoy crossing is added to data set B. These are: a region
where a model will never have skill when B is extended by one
buoy; a region where a model might always have skill when B is
extended by one buoy; and a region where the decision might have
to be changed by the extension of B. As discussed in Section 2, add-
ing one extra member to data set B can alter FBðxÞ by only 1=NB,
and consequently the change in Dn is also at most 1=NB. Only the
decision at the GoodHope line in ORCA could change in this
worst-case scenario; all other decisions are immune to one extra
drifting buoy crossing. Note that the dashed lines in Fig. 6 denote
the maximum influence region. In reality, an extra buoy crossing
would probably fall within the already found distribution and the
change in Dn would likely be much smaller than 1=NB.

6. Two-dimensional model validation

In the previous section, it was concluded that both NCOM and
AG01 might have skill at three of the five sections. However, from
Fig. 4, it is clear that the numerical drifter trajectories in AG01 are
in better agreement with the drifting buoy trajectories than they
are in NCOM. This qualitative statement can be quantified using
the two-dimensional 2KS-test, which yields a domain-wide mea-
sure of near-surface model skill.

One can not simply use the 2KS-test as described in Section 2,
since the individual points that make up a trajectory are certainly
not independent. This is because the location of a drifter at a cer-
tain moment is to a large extent determined by its former location.
However, independence is required for the 2KS-test to be valid. To
circumvent this problem of high interdependence of the data set,
two ways are presented to adjust the two-dimensional 2KS-test.

6.1. Time-dependent confidence levels

The trajectory data sets are not independent because they con-
tain information on the location of a drifter over a course of time.
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Fig. 6. Combinations of drifting buoy data set length N and test statistic Dn for the
five sections of Fig. 4 and Table 1 for NCOM (circles), the ORCA model (asterisks)
and the AG01 model (diamonds). The thick black line is the line where a ¼ 0:05, the
divider between a model that lacks or might have skill according to the decision
rule, Eq. (3). The area between the dashed lines denotes the region where in the
worst-case scenario one extra drifting buoy could make a cross the 0.05 line. Only
decisions inside this area are subject to change when an extra drifter is introduced.
But this interdependence can be removed by taking only one posi-
tion per drifter into account. To do this, the release of each drifter is
synchronized to t ¼ 0. Then, if the drifter positions are available at
resolution Dt, the two-dimensional 2KS-test can be performed at
every moment t ¼ nDt. This results in time series of the test statis-
tics DnðtÞ and confidence levels aðtÞ.

As time increases, the number of drifters in the model domain
decreases because the drifters exit as they cross the domain
boundaries. The two-dimensional 2KS-test is only valid for
N J 10 (Peacock, 1983). Therefore, the time series for a is trimmed
to the moment that the number of drifting buoys in the model do-
main reaches 10. This occurs after 6 months in NCOM and after 5
months in ORCA and AG01. Using only the aðtÞ for the time that
N > 10 yields mean confidence levels of 5:3� 10�3 (NCOM),
1:9� 10�2 (ORCA) and 0.11 (AG01). Using a 5 months window
for NCOM instead of a 6 month window changes the mean confi-
dence level to 4:2� 10�3. The conclusion must therefore be that,
using this method and the decision rule, Eq. (3), only AG01 might
possess skill when all drifter trajectories are taken into account.

6.2. Estimating the degrees of freedom

A second way to estimate the confidence level for the interde-
pendent complete trajectories is by just ignoring the interdepen-
dence. Using the complete data sets, cumulative distribution
functions can be calculated. From these cumulative distribution
functions, a test statistic can be calculated just as in Eq. (4).
Although technically the interdependence of the points in the data
set prevents the 2KS-test from being valid, the test statistic does
possess information.

This procedure yields values for the test statistic Dn of 0.25 for
NCOM, 0.31 for ORCA, and 0.18 for AG01. If one assumes complete
dependence of all data points on one trajectory, the number of de-
grees of freedom is just the number of trajectories. This is 51 for
NCOM, and 47 for ORCA and AG01. Taking this amount of drifting
buoys for N in the conversion from Dn to a leads to confidence lev-
els of 8:0� 10�3 (NCOM), 4:3� 10�4 (ORCA) and 0.24 (AG01). This
is an upper limit for the confidence level, as the relation between N
and a is inverse so that more degrees of freedom lead to lower val-
ues of a (Fig. 3). From this upper limit, it must be concluded that
ORCA and NCOM possess no skill in accordance with the decision
rule, Eq. (3). The AG01 model might possess skill for N ¼ 47, but
the confidence level drops below 0.05 when N ¼ 82.
7. Conclusions and discussion

We have applied the two-sample Kolmogorov–Smirnov test
(2KS-test) to data sets of drifting buoys and numerical Lagrangian
drifter trajectories. This test yields two numbers, the test statistic
Dn and the confidence level a, which can be used to determine
the skill of the model trajectories when the drifting buoy trajecto-
ries are taken as the truth. Moreover, the 2KS-test delivers a binary
decision on the skill of the model. Depending on the value of a, the
model either might have skill (when a > 0:05) or has no skill
(when a 6 0:05). These numbers come from the 95% confidence
interval with which the hypothesis that numerical drifters and
drifting buoys are drawn from the same distribution can be
rejected.

The 2KS-test has been applied to three different models. The
numerical drifter trajectories in the 1/2� ORCA model are so differ-
ent from the drifting buoy trajectories that the model has skill in
neither four out of five one-dimensional sections, nor in a two-
dimensional sense. Only at the GoodHope line might the model
have some skill, all be it not very robust. The 1/10� AG01 model
might have skill in three of the five sections, and in the two-dimen-
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sional sense. The assimilative 1/8� NCOM has no skill in the
two-dimensional sense, but it might posses skill in three of the five
sections. This illustrates that, while a model may lack skill overall
in a domain, it may have skill in certain locations. It also shows that
the 11 buoy crossings through the GoodHope line might be too lit-
tle for the 2KS-test to be useful, as this is the only section where
the objective and subjective skill decisions differ.

Not only has AG01 the highest confidence levels in the Agulhas
region, with an Agulhas leakage of 16.7 Sv it is also closest to esti-
mates from many other studies (e.g. Doglioli et al., 2006; Richard-
son, 2007). NCOM, on the other hand, has a mean Agulhas leakage
of only 1.5 Sv in addition to its lower confidence levels. This under-
estimation of Agulhas leakage is probably related to the mean loca-
tion of the Agulhas Current retroflection, which is too far eastward
in NCOM (Van Sebille et al., in preparation). However, it is unclear
why a high resolution assimilative model is so underachieving in
the Agulhas region. The low confidence levels of ORCA can proba-
bly be attributed to consequences of its course resolution. Due to
the bad representation of the oceanic mesoscale in combination
with the high explicit and numerical eddy viscosity the model
shows a rather linear behavior. This results in an overestimation
of Agulhas leakage of 32 Sv in ORCA (Biastoch et al., 2008a) and
a relatively prominent supergyre (Biastoch et al., 2008b). But, as
is also the case with these three models, diagnosing why a model
lacks or might possess skill is much more difficult than assessing
its skill.

In the implementation of the 2KS-test described here, model
skill is a binary quantity: it is either 1 or 0. However, for model
comparison the confidence level is probably a much better quan-
tity. Using the magnitude of a also gets rid of the only choice
one has to make when applying the 2KS-test: the choice for a crit-
ical confidence level. The presence of only one tuning parameter is
one of the strengths of the 2KS-test. We have chosen for the 95%
confidence interval for the critical value of a. Note that a larger
confidence interval leads to a lower critical confidence level, which
is defined in this way so that ‘better’ models have higher confi-
dence levels, which is more intuitive than the other way around.
Using the a ¼ 0:05 critical confidence level differentiated between
a subjectively good model (AG01) and two subjectively bad models
(NCOM and ORCA). But for confidence intervals between 90% and
98%, none of the decisions made have to be changed, either in
the one-dimensional sections or the two-dimensional basin-wide
assessment, except for the problematic decision on ORCA model
skill at the GoodHope line.

The 2KS-test is here applied using drifting buoy trajectories as
data set B. The disadvantage is that this confines the assessment
to the skill of the upper 15 m. This is not a limitation of the method,
but of the data set. In principle, other Lagrangian data sets (e.g.
Argo floats or acoustic floats such as in RAFOS experiments) can
also be used. There are two requirements for float data sets to be
useful. Their time resolution should be high (a problem with Argo
floats, which surface typically once a month), although this is not a
requirement for two-dimensional skill assessment, and the num-
ber of trajectories should be sufficient (which is often a problem
with RAFOS experiments).

The 2KS-test might even be applied to data sets beyond those of
Lagrangian drifters or floats. In a Eulerian framework, the distribu-
tion of for instance model temperature at some grid-point could be
compared to the distribution of temperature as obtained by a
mooring. If one is interested in model-mooring validation of the
complete distribution of some field, the 2KS-test can give a quick
and objective measure of skill. However, if one is interested in
assessing the variability, than an analysis of spectrum would be
more suitable, as all temporal information is disregarded in the
construction of the cumulative distribution function FðxÞ.
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