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E. Brownson, T. Danielson, A. Everett, D. Kçira, D. D. Reeder,e P. Ryan, A. A. Savin, W. H. Smith, and H. Wolfe
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

HIGH-ET DIJET PHOTOPRODUCTION AT HERA PHYSICAL REVIEW D 76, 072011 (2007)

072011-3



S. Bhadra, C. D. Catterall, Y. Cui, G. Hartner, S. Menary, U. Noor, J. Standage, and J. Whyte
Department of Physics, York University, Ontario, Canada M3J 1P3

(ZEUS Collaboration)

(Received 2 July 2007; published 29 October 2007)

The cross section for high-ET dijet production in photoproduction has been measured with the ZEUS
detector at HERA using an integrated luminosity of 81:8 pb�1. The events were required to have a
virtuality of the incoming photon, Q2, of less than 1 GeV2 and a photon-proton center-of-mass energy in
the range 142<W�p < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy
requirements of Ejet1

T > 20 GeV and Ejet2
T > 15 GeV and pseudorapidity (with respect to the proton beam

direction) requirements of �1<�jet1;2 < 3, with at least one of the jets satisfying �1<�jet < 2:5. The
measurements show sensitivity to the parton distributions in the photon and proton and to effects beyond
next-to-leading order in QCD. Hence these data can be used to constrain further the parton densities in the
proton and photon.

DOI: 10.1103/PhysRevD.76.072011 PACS numbers: 12.38.�t, 13.60.�r

I. INTRODUCTION

In photoproduction at HERA, a quasi-real photon emit-
ted from the incoming positron1 collides with a parton
from the incoming proton. The photoproduction of jets
can be classified into two types of processes in leading-
order (LO) quantum chromodynamics (QCD). In direct
processes, the photon participates in the hard scatter via
either boson-gluon fusion [see Fig. 1(a)] or QCD Compton

scattering. The second class, resolved processes [see
Fig. 1(b)], involves the photon acting as a source of quarks
and gluons, with only a fraction of its momentum, x�,
participating in the hard scatter. Measurements of jet cross
sections in photoproduction [1–6] are sensitive to the
structure of both the proton and the photon and thus
provide input to global fits to determine their parton
densities.

There are three objectives of the measurement reported
in this paper. First, the analysis was designed to provide
constraints on the parton density functions (PDFs) of the
photon. Over the last two years there has been active
research in the area of fitting photon PDFs and a number
of new parametrizations have become available [7–9]. In
two of these [7,8], fits were performed exclusively to
photon structure function, F�2 , data; the other [9] also
considered data from a previous dijet photoproduction
analysis published by the ZEUS collaboration [4]. It is

γ
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FIG. 1. Examples of (a) direct and (b) resolved dijet photo-
production diagrams in positron-proton, ep, collisions in LO
QCD. This direct-photon process is the collision of a photon, �,
and gluon, g from the proton. This resolved-photon process is a
collision of a parton from the photon and a gluon, g, from the
proton.
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tAlso at Łódź University, Poland.
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the purpose of this analysis to test the effectiveness of each
parametrization at describing HERA photoproduction
data. To this end, the present analysis was conducted at
higher transverse energy relative to previous publications.
It is expected that at these high transverse energies the
predictions of next-to-leading-order (NLO) QCD calcula-
tions should describe the data well, have smaller uncer-
tainties, and allow a more precise discrimination between
the different parametrizations of the photon PDFs. The
reduction in statistics associated with moving to higher
transverse energies was in part compensated by the factor
of two increase in luminosity, for this independent data
sample, and the extension to higher pseudorapidity2 of the
jet compared to the previous analysis [4].

Second, the present analysis was designed to provide
constraints on the proton PDFs. Global fits to determine the
proton PDFs continue to be a very active and important
area of research. A common feature of these global fits is a
large uncertainty in the gluon PDF for high values of xp,
the fractional momentum at which partons inside the pro-
ton are probed. At such high values (xp * 0:1), the gluon
PDF is poorly constrained and so attempts were made for
the present investigation to measure cross sections which
show particular sensitivity to these uncertainties. Recently,
the ZEUS collaboration included jet data into fits for the
proton PDFs [10].

Finally, the difference in azimuthal angle of two jets was
considered, as in previous measurements of charm and
prompt photon photoproduction [11,12]. In LO QCD, the
cross section as a function of the azimuthal difference
would simply be a delta function located at � radians.
However, the presence of higher-order effects leads to
extra jets in the final state and in values less than � radians.
The cross section is therefore directly sensitive to higher-
order topologies and provides a test of NLO QCD and of
Monte Carlo (MC) models with different implementations
of parton-cascade algorithms. The data for charm photo-
production [11] demonstrated the inadequacy of NLO
QCD, particularly when the azimuthal angle difference
was significantly different from � and for a sample of
events enriched in resolved-photon processes. To investi-
gate this inadequacy in a more inclusive way and with
higher precision, such distributions were also measured.

II. DEFINITION OF THE CROSS SECTION AND
VARIABLES

Within the framework of perturbative QCD, the dijet
positron-proton cross section, d�ep, can be written as a

convolution of the proton PDFs, fp, and photon PDFs, f�,
with the partonic hard cross section, d�̂ab, as
 

d�ep �
X
ab

Z
dyf�=e�y�

ZZ
dxpdx�fp�xp;�2

F�

� f��x�;�2
F�d�̂ab�xp; x�; �

2
R�; (1)

where y � E�=Ee is the longitudinal momentum fraction
of the almost-real photon emitted by the positron and the
function f�=e is the flux of photons from the positron. The
equation is a sum over all possible partons, a and b. In the
case of the direct cross section, the photon PDF is replaced
by a delta function at x� � 1. The scales of the process are
the renormalization, �R, and factorization scales, �F.

To probe the structure of the photon, it is desirable to
measure cross sections as functions of variables that are
sensitive to the incoming parton momentum spectrum,
such as the momentum fraction, x�, at which partons inside
the photon are probed. Since x� is not directly measurable,
it is necessary to define [1] an observable, xobs

� , which is the
fraction of the photon momentum participating in the
production of the two highest transverse-energy jets (and
is equal to x� for partons in LO QCD), as

 xobs
� �

Ejet1
T e��

jet1
� Ejet2

T e��
jet2

2yEe
; (2)

where Ee is the incident positron energy, Ejet1
T and Ejet2

T are
the transverse energies, and �jet1 and �jet2 the pseudora-
pidities of the two jets in the laboratory frame (Ejet1

T >
Ejet2
T ). At LO (see Fig. 1), direct processes have xobs

� � 1,
while resolved processes have xobs

� < 1.
For the proton, the observable xobs

p is similarly defined
[1] as

 xobs
p �

Ejet1
T e�

jet1
� Ejet2

T e�
jet2

2Ep
; (3)

where Ep is the incident proton energy. This observable is
the fraction of the proton momentum participating in the
production of the two highest-energy jets (and is equal to
xp for partons in LO QCD).

Cross sections are presented as functions of xobs
� , xobs

p ,
�ET , Ejet1

T , ��, and j��jjj. The mean transverse energy of the
two jets, �ET , is given by

 

�E T �
Ejet1
T � Ejet2

T

2
: (4)

Similarly, the mean pseudorapidity of the two jets, ��, is
given by

 �� �
�jet1 � �jet2

2
: (5)

2The ZEUS coordinate system is a right-handed Cartesian
system, with the Z axis pointing in the proton beam direction,
referred to as the ‘‘forward direction,’’ and the X axis pointing
left towards the center of HERA. The coordinate origin is at the
nominal interaction point. The pseudorapidity is defined as � �
� ln�tan�2�, where the polar angle, �, is measured with respect to
the proton beam direction.

HIGH-ET DIJET PHOTOPRODUCTION AT HERA PHYSICAL REVIEW D 76, 072011 (2007)

072011-5



The absolute difference in azimuthal angle of the two jets,
�jet1 and �jet2, is given by

 j��jjj � j�jet1 ��jet2j: (6)

The kinematic region for this study is defined as Q2 <
1 GeV2, where Q2 � 2EeE0e�1� cos�e� and E0e and �e are
the energy and angle, respectively, of the scattered posi-
tron. The photon-proton center-of-mass energy, W�p ������������������

4yEeEp
p

, is required to be in the range 142 GeV to
293 GeV. Each event is required to have at least two jets
reconstructed with the kT cluster algorithm [13] in its
longitudinally invariant inclusive mode [14], with at least
one jet having transverse energy greater than 20 GeV and
another greater than 15 GeV. The jets are required to satisfy
�1<�jet1;2 < 3 with at least one jet lying in the range
between�1 and 2.5. The upper bound of 3 units represents
an extension of the pseudorapidity range by 0.6 units in the
forward direction over the previous analysis [4], thereby
increasing the sensitivity of the measurement to low-x�
and high-xp processes. The cross sections for all distribu-
tions have been determined for regions enriched in direct-
and resolved-photon processes by requiring xobs

� to be
greater than 0.75 or less than 0.75, respectively.

One of the goals of the present investigation is to provide
data that constrain the gluon PDF in the proton, which
exhibits large uncertainties at values of xp * 0:1. A study
was performed [15] by considering the xobs

p cross section in
different kinematic regions, varying the cuts on the jet
transverse energies and pseudorapidities as well as on
xobs
� . This allowed the determination of kinematic regions

in which the cross section was large enough to be measured
and in which the uncertainties on the cross section that
arise due to those of the gluon PDF were largest. These
cross sections will be referred to as ‘‘optimized’’ cross
sections and are those which have the largest uncertainty
from the gluon PDF; in total eight cross sections were
measured (four direct enriched and four resolved en-
riched). The PDF sets chosen to conduct the optimization
study were the ZEUS-S [16] and ZEUS-JETS [10] PDF
sets. The kinematic regions of the cross sections are de-

fined in Table I, where the W�p and Q2 requirements are as
above.

III. EXPERIMENTAL CONDITIONS

The data were collected during the 1998–2000 running
periods, where HERA operated with protons of energy
Ep � 920 GeV and electrons or positrons of energy Ee �
27:5 GeV. During 1998 and the first half of 1999, a sample
of electron data corresponding to an integrated luminosity
of 16:7� 0:3 pb�1 was collected. The remaining data up
to the year 2000 were taken using positrons and correspond
to an integrated luminosity of 65:1� 1:5 pb�1. The results
presented here are therefore based on a total integrated
luminosity of 81:8� 1:8 pb�1. A detailed description of
the ZEUS detector can be found elsewhere [17,18]. A brief
outline of the components that are most relevant for this
analysis is given below.

Charged particles are tracked in the central tracking
detector (CTD) [19], which operates in a magnetic field
of 1.43 T provided by a thin superconducting coil. The
CTD consists of 72 cylindrical drift chamber layers, or-
ganized in 9 superlayers covering the polar-angle region
15� < �< 164�. The transverse-momentum resolution
for full-length tracks is��pT�=pT � 0:0058pT 	 0:0065 	
0:0014=pT , with pT in GeV.

The high-resolution uranium-scintillator calorimeter
(CAL) [20] consists of three parts: the forward (FCAL),
the barrel (BCAL), and the rear (RCAL) calorimeters.
Each part is subdivided transversely into towers and lon-
gitudinally into one electromagnetic section (EMC) and
either one (in RCAL) or two (in BCAL and FCAL) had-
ronic sections (HAC). The smallest subdivision of the
calorimeter is called a cell. The CAL energy resolutions,
as measured under test-beam conditions, are ��E�=E �
0:18=

����
E
p

for electrons and ��E�=E � 0:35=
����
E
p

for had-
rons, with E in GeV.

The luminosity was measured from the rate of the
bremsstrahlung process ep! e�p, where the photon
was measured in a lead-scintillator calorimeter [21] placed
in the HERA tunnel at Z � �107 m.

TABLE I. Kinematic regions of the optimized cross sections.

Label xobs
� cut �jet1;2 cuts Ejet1;2

T cuts

‘‘High-xobs
� 1’’ xobs

� > 0:75 0<�jet1 < 1, 2<�jet2 < 3 Ejet1;2
T > 25, 15 GeV

‘‘High-xobs
� 2’’ xobs

� > 0:75 0<�jet1 < 1, 2<�jet2 < 3 Ejet1;2
T > 20, 15 GeV

‘‘High-xobs
� 3’’ xobs

� > 0:75 1<�jet1;2 < 2 Ejet1;2
T > 30, 15 GeV

‘‘High-xobs
� 4’’ xobs

� > 0:75 �1<�jet1 < 0, 0<�jet2 < 1 Ejet1;2
T > 20, 15 GeV

‘‘Low-xobs
� 1’’ xobs

� < 0:75 2<�jet1 < 2:5, 2<�jet2 < 3 Ejet1;2
T > 20, 15 GeV

‘‘Low-xobs
� 2’’ xobs

� < 0:75 1<�jet1;2 < 2 Ejet1;2
T > 25, 15 GeV

‘‘Low-xobs
� 3’’ xobs

� < 0:75 1<�jet1 < 2, 2<�jet2 < 3 Ejet1;2
T > 20, 15 GeV

‘‘Low-xobs
� 4’’ xobs

� < 0:75 1<�jet1 < 2, 2<�jet2 < 3 Ejet1;2
T > 25, 15 GeV
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IV. MONTE CARLO MODELS

The acceptance and the effects of detector response were
determined using samples of simulated events. The pro-
grams HERWIG 6.505 [22] and PYTHIA 6.221 [23], which
implement the leading-order matrix elements, followed by
parton showers and hadronization, were used. The HERWIG

and PYTHIA generators differ in the details of the imple-
mentation of the leading-logarithmic parton-shower mod-
els and hence are also compared to the measured cross
section d�=dj��jjj. The MC programs also use different
hadronization models: HERWIG uses the cluster model [24]
and PYTHIA uses the Lund string model [25]. Direct and
resolved events were generated separately. For the pur-
poses of correction, the relative contribution of direct and
resolved events was fitted to the data. For all generated
events, the ZEUS detector response was simulated in detail
using a program based on GEANT 3.13 [26].

For both MC programs, the CTEQ5L [27] and GRV-LO
[28] proton and photon PDFs, respectively, were used. The
pmin
T for the outgoing partons from the hard scatter was set

to 4 GeV. For the generation of resolved-photon events, the
default multiparton interaction models [29,30] were used.
A comparably reasonable description of the raw data kine-
matic distributions was observed with both HERWIG and
PYTHIA MC simulations.

V. NLO QCD CALCULATIONS

The calculation for jet photoproduction used is that of
Frixione and Ridolfi [31,32], which employs the subtrac-
tion method [33] for dealing with the collinear and infrared
divergencies. The number of flavors was set to 5 and the
renormalization and factorization scales were both set to
hEparton

T i, which is half the sum of the transverse energies of
the final-state partons. The parton densities in the proton
were parametrized using CTEQ5M1 [27]; the value
�s�MZ� � 0:118 used therein was adopted for the central
prediction.

The following parametrizations of the photon PDFs
were used: Cornet et al. (CJK) [7], Aurenche et al.
(AFG04) [8], Slominski et al. (SAL) [9], Glück et al.
(GRV-HO) [28], and a previous set of PDFs from
Aurenche et al. (AFG) [34]. The three new PDFs [7–9]
use all available data onF�2 from the LEP experiments. The
data are of higher precision and cover a wider region of
phase space, reaching lower in x� and higher in the mo-
mentum of the exchanged photon, compared to the data
used in the AFG and GRV-HO parametrizations. The
parametrization from CJK uses a more careful treatment
of heavy quarks, whereas that from SAL also considers
previous dijet photoproduction data from ZEUS [4].
The most striking difference between the resulting PDFs
is that CJK has a more rapid rise of the gluon density at low
x�.

The NLO QCD predictions were corrected for hadroni-
zation effects using a bin-by-bin procedure according to
d� � d�NLO 
 Chad, where d�NLO is the cross section for
partons in the final state of the NLO calculation. The
hadronization correction factor, Chad, was defined as the
ratio of the dijet cross sections after and before the hadro-
nization process, Chad � d�hadrons

MC =d�partons
MC . The value of

Chad was taken as the mean of the ratios obtained using the
HERWIG and PYTHIA predictions. The hadronization cor-
rection was generally below 10% in each bin.

Several sources of theoretical uncertainty were investi-
gated, which are given below with their typical size,

(i) the renormalization scale was changed to 2�0:5 


hEparton
T i [10]. This led to an uncertainty of ��10�

20�%;
(ii) the factorization scale was changed to 2�0:5 


hEparton
T i [10]. This led to an uncertainty of ��5�

10�%;
(iii) the value of �s was changed by�0:001, the uncer-

tainty on the world average [35], by using the
CTEQ4 PDFs for �s�MZ� � 0:113, 0.116, and
0.119 and interpolating accordingly. This led to
an uncertainty of about �2%;

(iv) the uncertainty in the hadronization correction was
estimated as half the spread between the two MC
correction factors. This led to an uncertainty of
generally less than �5%.

The above four uncertainties were added in quadrature
and are displayed on the figures as the shaded band around
the central prediction. The size of these uncertainties is
also shown as a function of �ET , xobs

� and xobs
p in Fig. 2. The

uncertainty from changing the renormalization scale is
dominant. It should be noted that here the renormalization
and factorization scales were varied independently by fac-
tors of 2�0:5 and the resulting changes were added in
quadrature as in the determination of the ZEUS-JETS
PDF [10]. The result of this procedure leads to an uncer-
tainty which is approximately the same as varying both
simultaneously by 2�1 as has been done previously [4].

Other uncertainties which were considered are:
(i) the uncertainties in determining the proton PDFs

were assessed by using the ZEUS-JETS PDF uncer-
tainties propagated from the experimental uncertain-
ties of the fitted data. This led to an uncertainty of
��5� 10�%;

(ii) the uncertainties in determining the photon PDFs
were assessed by using sets from different authors.
Differences of generally less than 25% were ob-
served between the AFG, AFG04, SAL, and
GRV sets. However, the predictions based on CJK
were up to 70% higher than those based on the other
four.

These uncertainties were not added in quadrature with
the others, but examples of their size are given in Fig. 2.
Differences between the two photon PDFs, CJK, and
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AFG04, are concentrated at low xobs
� and low �ET ; the low

xobs
� region is most sensitive to the gluon distribution in the

photon, which increases more rapidly for CJK as shown in
Fig. 3. At lowest xobs

� , the fraction of the cross section
arising from the gluon distribution in the photon is 66%
for CJK. The uncertainty on the proton PDF increases with
increasing �ET and xobs

p and is sometimes, as seen in
Fig. 2(c), as large as the other combined uncertainties.
The fraction of the cross section arising from the gluon
distribution in the proton is about 50% for the lower �ET and
xobs
p values considered, but decreases to below 20% for

high values. However, the uncertainty on the gluon domi-
nates the proton PDF uncertainty in most of the kinematic
region investigated.

VI. EVENT SELECTION

A three-level trigger system was used to select events
online [2,18,36]. At the third level, a cone algorithm was
applied to the CAL cells and jets were reconstructed using
the energies and positions of these cells. Events with at
least one jet, which satisfied the requirements that the
transverse energy exceeded 10 GeVand the pseudorapidity
was less than 2.5, were accepted. Dijet events in photo-
production were then selected offline by using the follow-
ing procedures and cuts designed to remove sources of
background:

(i) to remove background due to proton beam-gas inter-
actions and cosmic-ray showers, the longitudinal
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FIG. 3 (color online). Predictions of the fraction of the cross
section initiated by gluons for sample distributions: (a) xobs

� ,
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FIG. 2 (color online). The theoretical uncertainties (see
Sec. V) for sample distributions: (a) xobs
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position of the reconstructed vertex was required to
be in the range jZvertexj< 40 cm;

(ii) a cut on the ratio of the number of tracks assigned to
the primary vertex to the total number of tracks,
Nvtx

trk =Ntrk > 0:1, was also imposed to remove beam-
related background, which have values of this ratio
typically below 0.1;

(iii) to remove background due to charged current deep
inelastic scattering (DIS) and cosmic-ray showers,
events were required to have a relative transverse
momentum of pT=

������
ET
p

< 1:5
����������
GeV
p

, where pT and
ET are, respectively, the measured transverse mo-
mentum and transverse energy of the event;

(iv) neutral current (NC) DIS events with a scattered
positron candidate in the CAL were removed by
cutting [1] on the inelasticity, y, which is estimated
from the energy, E0e, and polar angle, �0e, of the
scattered positron candidate using ye � 1� E0e

2Ee
�

�1� cos�0e�. Events were rejected if ye < 0:7;
(v) the requirement 0:15< yJB < 0:7 was imposed,

where yJB is the estimator of y measured from the
CAL energy deposits according to the Jacquet-
Blondel method [37]. The upper cut removed NC
DIS events where the positron was not identified and
which therefore have a value of yJB close to 1. The
lower cut removed proton beam-gas events which
typically have a low value of yJB;

(vi) the kT-clustering algorithm was applied to the CAL
energy deposits. The transverse energies of the jets
were corrected [3,4,38] in order to compensate for
energy losses in inactive material in front of the
CAL. Events were selected in which at least
two jets were found with Ejet1

T > 20 GeV, Ejet2
T >

15 GeV, and �1<�jet1;2 < 3, with at least one jet
lying in the range between �1 and 2.5. In this
region, the resolution of the jet transverse energy
was about 10%.

VII. DATA CORRECTION AND SYSTEMATICS

The data were corrected using the MC samples detailed
in Sec. IV for acceptance and the effects of detector
response using the bin-by-bin method, in which the cor-
rection factor, as a function of an observable O in a given
bin i, is Ci�O� � Nhad

i �O�=N
det
i �O�. The variable Nhad

i �O�
is the number of events in the simulation passing the
kinematic requirements on the hadronic final state de-
scribed in Sec. II and Ndet

i �O� is the number of recon-
structed events passing the selection requirements as
detailed in Sec. VI.

The results of a detailed analysis [15,39] of the possible
sources of systematic uncertainty are listed below. Typical
values for the systematic uncertainty are quoted for the
cross sections as a function of xobs

� ,

(i) varying the measured jet energies by �1% [3,4,38]
in the simulation, in accordance with the uncertainty
in the jet energy scale, gave an uncertainty of �5%;

(ii) the central correction factors were determined using
the PYTHIA MC. The HERWIG MC sample was used
to assess the model dependency of this correction
and gave an uncertainty of�4%, but up to�12% at
lowest xobs

� ;
(iii) changing the values of the various cuts to remove

backgrounds from DIS, cosmic-ray and beam-gas
events gave a combined uncertainty of less than
�1%;

(iv) varying the fraction of direct processes between
34% and 70% of the total MC sample in order to
describe each of the kinematic distributions gave an
uncertainty of about �2

�5 %;
(v) changing the proton and photon PDFs to CTEQ4L

[27] and WHIT2 [40], respectively, in the MC
samples gave an uncertainty of about �1:5% and
�2:5%.

The uncertainty in the cross sections due to the jet
energy-scale uncertainty is correlated between bins and
is therefore displayed separately as a shaded band in

 (GeV)TE

 (
p

b
/G

eV
)

T
E

/dσd

-210

-110

1

10

 > 0.75obs
γx

-1ZEUS 82 pb

 HAD⊗NLO (AFG04) 

 HAD⊗NLO (CJK) 

Jet ES uncertainty

 (GeV)TE

 (
p

b
/G

eV
)

T
E

/dσd

-210

-110

1

10

 (GeV)TE
20 40 60 80

R
at

io
 t

o
 A

F
G

04

0.5

1

1.5

2

 (GeV)TE
20 40 60 80

R
at

io
 t

o
 A

F
G

04

0.5

1

1.5

2

 (GeV)TE

 (
p

b
/G

eV
)

T
E

/dσd

-210

-110

1

10

 0.75 (b)(a) ≤ obs
γx

 (GeV)TE

 (
p

b
/G

eV
)

T
E

/dσd

-210

-110

1

10

 (GeV)TE
20 40 60 80

R
at

io
 t

o
 A

F
G

04

0.5

1

1.5

2

 (GeV)TE
20 40 60 80

R
at

io
 t

o
 A

F
G

04

0.5

1

1.5

2

ZEUS
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Figs. 4–13. All other systematic uncertainties were added
in quadrature when displayed in these figures. The choice
of MC sample also exhibited some correlation between
bins and is hence given separately in Tables II–XX. In
addition, an overall normalization uncertainty of 2.2%
from the luminosity determination is not included in either
the figures or tables.
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VIII. RESULTS

A. Dijet differential cross sections

Differential cross sections d�=d �ET , d�=dEjet1
T , d�=d ��,

and d�=dxobs
p are given in Tables II–IX and shown in

Figs. 4–7 for xobs
� above and below 0.75. For xobs

� > 0:75,

d�=d �ET and d�=dEjet1
T fall by over 3 orders of magnitude

over the �ET and Ejet1
T ranges measured and the jets are

produced up to ��� 2. For xobs
� � 0:75, the slopes of

d�=d �ET and d�=dEjet1
T are steeper, with the jets produced

further forward in ��. It is interesting to note that in both
regions of xobs

� , the data probe high values of x in the
proton.

The NLO QCD predictions, corrected for hadronization
and using the AFG04 and CJK photon PDFs, are compared
to the data. For xobs

� > 0:75, the NLO QCD predictions
describe the data well, although some differences in shape
are observed for d�=d �ET and d�=dEjet1

T . Although mea-
surements at high xobs

� are less sensitive to the structure of
the photon, it is interesting to note that the prediction using
the CJK photon PDF describes the �ET spectrum somewhat
better. The shapes for the �� and xobs

p distributions are also
better reproduced using the CJK photon PDF.
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FIG. 9 (color online). Optimized cross sections d�=dxobs
p for

xobs
� > 0:75 in the kinematic regions defined in Table I. For

further details, see the caption to Fig. 4.
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FIG. 10 (color online). Optimized cross sections d�=dxobs
p for

xobs
� � 0:75 in the kinematic regions defined in Table I. For

further details, see the caption to Fig. 4.
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FIG. 11 (color online). Measured cross section for d�=dxobs
�

compared with NLO QCD predictions using the AFG04 (solid
line), CJK (dashed line), AFG (dotted line), GRV (dashed and
double-dotted line), and SAL (dashed and single-dotted line)
photon PDFs. The data (dots) are shown with statistical (inner
bars) and statistical and systematic uncertainties added in quad-
rature (outer bars) along with the jet energy-scale (Jet ES)
uncertainty (shaded band). The NLO QCD predictions are shown
(NLO QCD 
 HAD) multiplied by the hadronization correc-
tions, Chad, discussed in Sec. V. The predictions using AFG04
are also shown with their associated uncertainties (shaded his-
togram) as discussed in Sec. V. The ratios to the prediction using
the AFG04 photon PDF are shown at the bottom of the figure.
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At low xobs
� , the difference in shapes between data and

NLO QCD for d�=d �ET and d�=dEjet1
T is more marked, as

has been seen previously [4]. For the prediction using

AFG04, the data and NLO agree in the lowest bin whereas
the prediction is significantly lower at higher �ET and Ejet1

T .
In contrast, the prediction from CJK is too high in the first
bin, which dominates the cross section, but agrees well at
higher �ET and Ejet1

T . For the �� and xobs
p distributions, the

shapes are again better described by NLO QCD using the
CJK photon PDF, although the normalization is too high.
Sensitivity to the photon PDFs is discussed further in
Sec. VIII D.

B. Measurement of d�=dj��jjj

The cross section d�=dj��jjj is presented for xobs
� above

and below 0.75 in Tables X and XI and Fig. 8. For xobs
� >

0:75, the cross section data fall by about 3 orders of
magnitude in the cross section, more steeply than for
xobs
� � 0:75. The predictions from NLO QCD and also

both HERWIG and PYTHIA MC programs (plotted separately
since the implementation of parton showers differs be-
tween the two programs) are compared to the data. The
MC predictions are area normalized to the data in the
measured kinematic region. At high xobs

� , NLO QCD agrees
with the data at highest j��jjj, but it has a somewhat
steeper falloff. The prediction from the PYTHIA MC pro-
gram is similar to that for NLO QCD, whereas the pre-
diction from the HERWIG program describes the data well.
For low xobs

� , the distribution for NLO QCD is much too
steep and is significantly below the data for all values of
j��jjj except the highest bin. The prediction from the
PYTHIA program is less steep, but still gives a poor descrip-
tion. The prediction from the HERWIG program is in re-
markable agreement with the data.

The results and conclusions shown are qualitatively
similar to those already seen in dijet photoproduction in
which at least one of the jets was tagged as originating
from a charm quark [11]. The results here confirm that the
parton-shower model in HERWIG gives a good simulation of
high-order processes and suggests that a matching of it to
NLO QCD would give a good description of the data in
both shape and normalization. Should such a calculation or
other high-order prediction become available, the distribu-
tions presented here would be ideal tests of their validity as
they present inclusive quantities and also have higher
precision compared to the previous result [11].

C. Optimized cross sections

The cross sections d�=dxobs
p , optimized to be most

sensitive to the uncertainty on the gluon PDF in the proton,
are given in Tables XII–XIX and shown in Figs. 9 and 10
for xobs

� above and below 0.75, respectively. The measure-
ments cover a range in xobs

p of about 0.1 to 0.5. At high xobs
� ,

the data are very well described by NLO QCD predictions.
At low xobs

� , the description by NLO QCD is poorer,
particularly when using the AFG04 photon PDF.
Generally the predictions with CJK describe the data better
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FIG. 13 (color online). Measured cross section for
(a) d�=dxobs

p and (b) d�=d �� both for xobs
� � 0:75. For further

details, see the caption to Fig. 11.
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� � 0:75. For further details, see the caption to Fig. 11.
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TABLE II. Measured cross section d�=d �ET for xobs
� > 0:75. The statistical, 	stat, MC model,

	MC, uncorrelated systematic, 	syst, and jet energy scale, 	ES, uncertainties are shown separately.
The hadronization correction factor, Chad, applied to the NLO QCD prediction is shown in the
last column, where its uncertainty is half the spread between the values obtained using the
HERWIG and PYTHIA models.

�ET bin (GeV) d�=d �ET 	stat 	MC 	syst 	ES (pb/GeV) Chad

17.5, 22.5 25.73 �0:36 �0:66
�0:00

�0:41
�0:43

�1:03
�1:20 0:955� 0:017

22.5, 27.5 14.66 �0:28 �0:00
�0:28

�0:42
�0:26

�0:60
�0:65 0:931� 0:008

27.5, 32.5 5.57 �0:18 �0:09
�0:00

�0:14
�0:24

�0:30
�0:19 0:937� 0:029

32.5, 37.5 2.37 �0:12 �0:00
�0:03

�0:15
�0:04

�0:11
�0:11 0:927� 0:012

37.5, 42.5 0.96 �0:07 �0:02
�0:00

�0:06
�0:03

�0:07
�0:03 0:907� 0:034

42.5, 55.5 0.300 �0:024 �0:000
�0:004

�0:004
�0:018

�0:016
�0:020 0:932� 0:044

55.5, 70.5 0.046 �0:009 �0:006
�0:000

�0:001
�0:003

�0:003
�0:003 0:926� 0:029

70.5, 90.5 0.009 �0:004 �0:001
�0:000

�0:001
�0:002

�0:000
�0:002 0:917� 0:085

TABLE III. Measured cross section d�=d �ET for xobs
� � 0:75. For further details, see the

caption to Table II.

�ET bin (GeV) d�=d �ET 	stat 	MC 	syst 	ES (pb/GeV) Chad

17.5, 22.5 27.10 �0:36 �0:49
�0:00

�0:18
�1:31

�1:45
�1:42 1:082� 0:045

22.5, 27.5 11.97 �0:24 �0:07
�0:00

�0:21
�0:66

�0:56
�0:74 1:047� 0:009

27.5, 32.5 3.69 �0:14 �0:17
�0:00

�0:10
�0:23

�0:27
�0:18 1:057� 0:016

32.5, 37.5 1.24 �0:08 �0:03
�0:00

�0:10
�0:23

�0:07
�0:09 1:004� 0:024

37.5, 42.5 0.46 �0:05 �0:03
�0:00

�0:01
�0:05

�0:04
�0:03 1:069� 0:043

42.5, 55.5 0.090 �0:013 �0:005
�0:000

�0:009
�0:010

�0:008
�0:007 1:019� 0:015

55.5, 70.5 0.011 �0:005 �0:004
�0:000

�0:006
�0:002

�0:001
�0:001 0:924� 0:064

TABLE IV. Measured cross section d�=dEjet1
T for xobs

� > 0:75. For further details, see the
caption to Table II.

Ejet1
T bin (GeV) d�=dEjet1

T 	stat 	MC 	syst 	ES (pb/GeV) Chad

20, 26 27.24 �0:33 �0:18
�0:00

�0:56
�0:54

�1:05
�1:22 0:957� 0:021

26, 32 9.21 �0:20 �0:17
�0:00

�0:21
�0:15

�0:49
�0:37 0:920� 0:011

32, 38 3.34 �0:12 �0:00
�0:05

�0:16
�0:12

�0:14
�0:17 0:916� 0:024

38, 44 1.25 �0:07 �0:03
�0:00

�0:15
�0:03

�0:07
�0:06 0:943� 0:005

44, 55 0.37 �0:03 �0:00
�0:00

�0:01
�0:03

�0:02
�0:03 0:921� 0:035

55, 70 0.056 �0:009 �0:008
�0:000

�0:004
�0:003

�0:007
�0:002 0:889� 0:051

70, 90 0.010 �0:004 �0:004
�0:000

�0:004
�0:001

�0:002
�0:000 0:85� 0:11

TABLE V. Measured cross section d�=dEjet1
T for xobs

� � 0:75. For further details, see the
caption to Table II.

Ejet1
T bin (GeV) d�=dEjet1

T 	stat 	MC 	syst 	ES (pb/GeV) Chad

20, 26 25.59 �0:31 �0:43
�0:00

�0:21
�1:33

�1:32
�1:34 1:081� 0:043

26, 32 8.11 �0:18 �0:21
�0:00

�0:10
�0:41

�0:49
�0:47 1:041� 0:015

32, 38 2.39 �0:10 �0:06
�0:00

�0:10
�0:17

�0:14
�0:15 1:017� 0:025

38, 44 0.72 �0:05 �0:00
�0:01

�0:02
�0:05

�0:04
�0:05 0:997� 0:006

44, 55 0.18 �0:02 �0:02
�0:00

�0:01
�0:02

�0:02
�0:01 0:963� 0:027

55, 70 0.018 �0:006 �0:001
�0:000

�0:004
�0:003

�0:001
�0:002 0:927� 0:033
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TABLE VII. Measured cross section d�=d �� for xobs
� � 0:75. For further details, see the

caption to Table II.

�� bin d�=d �� 	stat 	MC 	syst 	ES (pb) Chad

0.00, 0.50 7.2 �0:8 �0:0
�0:1

�0:7
�0:9

�0:9
�0:8 1:052� 0:080

0.50, 1.00 65.9 �1:9 �0:0
�0:0

�1:5
�5:1

�4:1
�5:1 1:074� 0:054

1.00, 1.50 144.0 �2:6 �3:2
�0:0

�1:7
�7:6

�7:6
�8:1 1:080� 0:021

1.50, 2.00 146.8 �2:4 �1:6
�0:0

�2:2
�7:8

�7:2
�7:2 1:063� 0:019

2.00, 2.50 71.3 �1:7 �5:1
�0:0

�2:2
�2:5

�4:0
�2:9 1:062� 0:022

2.50, 2.75 18.4 �1:5 �0:7
�0:0

�0:3
�2:6

�0:4
�1:5 1:066� 0:002

TABLE VI. Measured cross section d�=d �� for xobs
� > 0:75. For further details, see the caption

to Table II.

�� bin d�=d �� 	stat 	MC 	syst 	ES (pb) Chad

-0.50, 0.00 4.8 �1:2 �0:2
�0:0

�0:7
�1:4

�0:7
�1:6 0:551� 0:037

0.00, 0.50 90.1 �2:3 �5:1
�0:0

�4:0
�1:2

�6:8
�5:3 0:892� 0:018

0.50, 1.00 177.8 �2:9 �2:5
�0:0

�2:6
�3:6

�7:1
�8:9 0:940� 0:001

1.00, 1.50 167.6 �2:6 �0:0
�1:2

�6:5
�3:1

�6:6
�6:5 0:952� 0:014

1.50, 2.00 59.0 �1:5 �0:6
�0:0

�0:7
�0:6

�1:4
�1:5 1:079� 0:035

2.00, 2.50 2.8 �0:5 �0:0
�0:2

�0:1
�0:3

�0:0
�0:0 1:062� 0:064

TABLE VIII. Measured cross section d�=dxobs
p for xobs

� > 0:75. For further details, see the
caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.00, 0.05 1260 �26 �57
�0

�21
�23

�69
�72 0:902� 0:025

0.05, 0.10 1960 �30 �7
�0

�35
�48

�81
�82 0:932� 0:007

0.10, 0.15 925 �20 �0
�1

�60
�12

�27
�41 0:996� 0:024

0.15, 0.20 468 �15 �0
�9

�13
�7

�24
�17 0:999� 0:015

0.20, 0.25 220 �11 �0
�4

�12
�5

�6
�9 0:982� 0:012

0.25, 0.30 104.9 �8:4 �0:0
�1:3

�2:9
�10:8

�5:1
�4:1 0:963� 0:015

0.30, 0.35 45.0 �5:6 �1:5
�0:0

�3:4
�1:0

�2:4
�1:2 1:063� 0:023

0.35, 0.40 23.2 �4:1 �0:0
�0:9

�0:5
�0:9

�0:6
�1:6 1:027� 0:008

0.40, 0.45 8.7 �2:4 �0:9
�0:0

�4:0
�0:5

�1:0
�0:1 1:010� 0:020

0.45, 0.50 3.2 �1:4 �0:0
�0:3

�2:5
�1:0

�0:2
�0:2 1:006� 0:016

0.50, 1.00 0.40 �0:17 �0:08
�0:00

�0:08
�0:21

�0:06
�0:01 0:987� 0:018

TABLE IX. Measured cross section d�=dxobs
p for xobs

� � 0:75. For further details, see the
caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.00, 0.05 236 �12 �2
�0

�17
�24

�18
�19 1:103� 0:092

0.05, 0.10 1131 �24 �0
�0

�19
�76

�55
�70 1:063� 0:046

0.10, 0.15 1120 �22 �19
�0

�37
�63

�56
�61 1:086� 0:022

0.15, 0.20 829 �19 �12
�0

�7
�37

�46
�37 1:074� 0:001

0.20, 0.25 581 �17 �14
�0

�5
�49

�31
�30 1:053� 0:001

0.25, 0.30 302 �12 �31
�0

�25
�10

�17
�13 1:052� 0:052

0.30, 0.35 146.8 �9:4 �8:3
�0:0

�4:2
�6:2

�7:0
�9:7 1:052� 0:014

0.35, 0.40 65.5 �6:6 �0:0
�0:3

�0:6
�15:0

�3:9
�4:2 1:041� 0:008

0.40, 0.45 24.6 �4:2 �1:1
�0:0

�4:8
�2:2

�0:4
�3:0 1:036� 0:004

0.45, 0.50 9.6 �2:7 �0:0
�0:7

�0:7
�2:3

�1:7
�0:2 1:020� 0:005

0.50, 1.00 0.86 �0:27 �0:09
�0:00

�0:32
�0:09

�0:07
�0:10 1:012� 0:034
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TABLE X. Measured cross section d�=dj��jjj for xobs
� > 0:75. For further details, see the

caption to Table II.

j��jjj bin d�=dj��jjj 	stat 	MC 	syst 	ES (pb/rad) Chad

1.83, 2.09 1.7 �0:5 �0:1
�0:0

�0:2
�0:5

�0:1
�0:2 0:65� 0:11

2.09, 2.36 7.8 �1:0 �0:0
�0:0

�1:2
�0:6

�0:6
�0:6 0:729� 0:059

2.36, 2.62 36.1 �2:2 �0:2
�0:0

�1:6
�1:7

�2:1
�1:8 0:826� 0:013

2.62, 2.88 132.9 �3:9 �5:8
�0:0

�5:9
�2:7

�6:6
�8:3 0:868� 0:008

2.88, 3.14 779.1 �8:1 �4:0
�0:0

�15:0
�13:3

�31:8
�33:6 0:984� 0:015

TABLE XI. Measured cross section d�=dj��jjj for xobs
� � 0:75. For further details, see the

caption to Table II.

j��jjj bin d�=dj��jjj 	stat 	MC 	syst 	ES (pb/rad) Chad

0.00, 1.57 0.26 �0:07 �0:05
�0:00

�0:02
�0:02

�0:04
�0:02 0:84� 0:15

1.57, 1.83 2.9 �0:6 �0:3
�0:0

�0:6
�0:1

�0:1
�0:3 0:869� 0:083

1.83, 2.09 6.6 �0:8 �0:2
�0:0

�0:4
�0:2

�0:3
�0:6 0:910� 0:031

2.09, 2.36 28.2 �1:7 �0:0
�0:5

�0:6
�2:3

�2:4
�1:3 0:959� 0:004

2.36, 2.62 78.4 �2:8 �1:2
�0:0

�3:5
�1:0

�4:3
�5:3 0:988� 0:006

2.62, 2.88 203.2 �4:5 �0:0
�1:1

�0:6
�8:6

�10:4
�13:4 1:006� 0:015

2.88, 3.14 528.6 �6:7 �16:5
�0:0

�6:0
�36:5

�28:1
�26:4 1:069� 0:020

TABLE XII. Measured cross section d�=dxobs
p for xobs

� > 0:75 (‘‘High-xobs
� 1’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.1, 0.2 80.9 �4:2 �0:0
�3:4

�3:8
�6:1

�3:8
�3:4 0:957� 0:010

0.2, 0.3 51.6 �3:5 �0:0
�1:0

�3:1
�2:0

�2:4
�2:1 0:974� 0:059

0.3, 0.4 12.6 �2:1 �0:0
�0:0

�1:0
�0:9

�0:6
�0:9 0:962� 0:010

0.4, 0.5 2.1 �1:0 �1:0
�0:0

�1:0
�0:3

�0:2
�0:1 0:953� 0:024

TABLE XIII. Measured cross section d�=dxobs
p for xobs

� > 0:75 (‘‘High-xobs
� 2’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.0, 0.1 10.1 �1:6 �0:1
�0:0

�0:6
�0:5

�0:7
�0:2 0:961� 0:037

0.1, 0.2 238.9 �7:1 �0:0
�5:2

�15:0
�6:8

�9:7
�10:8 1:006� 0:021

0.2, 0.3 77.0 �4:5 �0:0
�2:4

�6:7
�1:9

�3:6
�2:7 1:005� 0:026

0.3, 0.4 12.6 �2:1 �0:0
�0:0

�0:9
�0:9

�0:6
�0:9 0:964� 0:009

0.4, 0.5 2.1 �1:0 �1:0
�0:0

�1:0
�0:3

�0:2
�0:1 0:953� 0:024

TABLE XIV. Measured cross section d�=dxobs
p for xobs

� > 0:75 (‘‘High-xobs
� 3’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.0, 0.1 2.1 �0:8 �0:4
�0:0

�1:4
�0:1

�0:1
�0:1 0:914� 0:014

0.1, 0.2 55.9 �3:5 �0:1
�0:0

�1:2
�2:7

�2:3
�1:4 0:974� 0:006

0.2, 0.3 20.5 �2:1 �0:9
�0:0

�0:3
�3:0

�0:7
�0:8 0:988� 0:011

0.3, 0.4 2.4 �0:7 �0:0
�0:0

�0:1
�0:4

�0:1
�0:1 1:007� 0:046
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with the exception of the ‘‘Low-xobs
� 3’’ cross section.

Inclusion of these high-xobs
� data in future fits would con-

strain the proton PDFs further, in particular that of the
gluon. To include the cross sections for low xobs

� , a system-
atic treatment of the photon PDFs and their uncertainty is
needed.

D. Sensitivity to the photon PDFs

As discussed in Sec. VIII A, the measured cross sections
show sensitivity to the choice of photon PDFs. This is to be
expected due to the extension further forward in pseudor-
apidity compared to previous measurements. This was
investigated further, with the results presented in

TABLE XV. Measured cross section d�=dxobs
p for xobs

� > 0:75 (‘‘High-xobs
� 4’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.0, 0.1 198.0 �8:8 �10:9
�0:0

�2:9
�2:3

�18:7
�16:0 0:832� 0:017

TABLE XVI. Measured cross section d�=dxobs
p for xobs

� � 0:75 (‘‘Low-xobs
� 1’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.1, 0.2 15.0 �2:0 �0:8
�0:0

�2:2
�0:5

�0:5
�0:3 1:004� 0:099

0.2, 0.3 89.4 �4:6 �13:4
�0:0

�1:5
�4:1

�4:3
�3:9 1:030� 0:003

0.3, 0.4 46.7 �3:8 �2:3
�0:0

�0:4
�4:3

�1:8
�3:3 1:070� 0:090

0.4, 0.5 7.0 �1:5 �0:4
�0:0

�0:2
�0:6

�0:1
�0:9 0:960� 0:083

0.5, 1.0 0.48 �0:20 �0:00
�0:04

�0:04
�0:09

�0:03
�0:05 1:024� 0:027

TABLE XVII. Measured cross section d�=dxobs
p for xobs

� � 0:75 (‘‘Low-xobs
� 2’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.0, 0.1 19.5 �2:3 �1:5
�0:0

�0:8
�3:0

�0:4
�1:8 0:876� 0:076

0.1, 0.2 117.6 �5:0 �2:0
�0:0

�4:7
�9:7

�5:5
�5:3 1:048� 0:014

0.2, 0.3 12.6 �1:7 �0:6
�0:0

�0:6
�1:9

�0:7
�0:7 1:116� 0:085

TABLE XVIII. Measured cross section d�=dxobs
p for xobs

� � 0:75 (‘‘Low-xobs
� 3’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.1, 0.2 278.4 �7:6 �4:2
�0:0

�4:6
�12:7

�13:5
�12:4 1:087� 0:015

0.2, 0.3 235.2 �7:1 �10:3
�0:0

�2:1
�9:6

�12:2
�10:3 1:077� 0:030

0.3, 0.4 47.8 �3:6 �0:7
�0:0

�0:8
�3:4

�2:8
�2:6 0:999� 0:064

0.4, 0.5 8.3 �1:6 �0:0
�0:1

�1:7
�0:6

�0:7
�0:6 1:037� 0:020

0.5, 1.0 0.28 �0:14 �0:15
�0:0

�0:19
�0:04

�0:07
�0:01 1:003� 0:037

TABLE XIX. Measured cross section d�=dxobs
p for xobs

� � 0:75 (‘‘Low-xobs
� 4’’). For further

details, see the caption to Table II.

xobs
p bin d�=dxobs

p 	stat 	MC 	syst 	ES (pb) Chad

0.1, 0.2 71.3 �4:1 �1:8
�0:0

�2:6
�4:6

�4:2
�3:4 1:066� 0:052

0.2, 0.3 120.4 �5:0 �5:6
�0:0

�2:6
�6:3

�7:3
�4:6 1:042� 0:021

0.3, 0.4 45.0 �3:4 �0:3
�0:0

�1:9
�3:3

�1:8
�3:2 1:013� 0:059

0.4, 0.5 8.3 �1:6 �0:0
�0:1

�1:7
�0:6

�0:7
�0:6 1:037� 0:020

0.5, 1.0 0.28 �0:14 �0:15
�0:00

�0:19
�0:04

�0:07
�0:01 1:003� 0:037
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Figs. 11–13, where predictions with all five available pa-
rametrizations of the photon PDFs are compared to the
data. In Table XX and Fig. 11 the cross section d�=dxobs

� is
shown. At high xobs

� , all predictions are similar, as expected
since there is little sensitivity to the photon structure in this
region. Towards low xobs

� , the predictions differ by up to
70%. The prediction from CJK deviates most from the
other predictions and also from the data. The other pre-
dictions, although also exhibiting differences between each
other of up to 25%, give a qualitatively similar description
of the data.

In Figs. 12 and 13, the cross sections d�=d �ET ,
d�=dxobs

p , and d�=d �� are presented for xobs
� � 0:75, as

shown previously in Figs. 4, 6, and 7, respectively, but here
with additional predictions using different photon PDFs.
For d�=d �ET , the prediction using CJK is much higher than
the data in the first bin, but then agrees with the data for all
subsequent bins. All photon PDFs have a similar shape,
and none can reproduce the shape of the measured distri-
bution. Apart from CJK, all PDFs are too low in the region
22:5< �ET < 37:5 GeV. For the cross section d�=dxobs

p , no
prediction gives a satisfactory description of the data. The
prediction from CJK is generally above the data by 20%–
30%, but describes the shape of the cross section reason-
ably well. All other predictions give a poor description of
the shape, with cross sections which fall too rapidly to high
xobs
p . For d�=d ��, the prediction from CJK again gives the

best description of the shape of the data, although it is too
high in normalization.

In summary, the data show a large sensitivity to the
parametrization of the photon PDFs. The gluon PDF
from CJK, in particular, differs from the others and this
may give a hint of how to improve the photon PDFs. The
data presented here should significantly improve the mea-
surement of the gluon PDF of the photon, which is cur-
rently insufficiently constrained by the F�2 data.

IX. CONCLUSIONS

Dijet cross sections in photoproduction have been mea-
sured at high Ejet

T and probe a wide range of xobs
� and xobs

p .
The kinematic region is Q2 < 1 GeV2, 142<W�p <

293 GeV, Ejet1
T > 20 GeV, Ejet2

T > 15 GeV, and �1<
�jet1;2 < 3, with at least one jet lying in the range between
�1 and 2.5. In general, the data enriched in direct-photon
events, at high xobs

� , are well described by NLO QCD
predictions. For the data enriched in resolved-photon
events, at low xobs

� , the data are less well described by
NLO QCD predictions. Predictions using different parame-
trizations of the photon parton density functions give a
large spread in the region measured, with no parton density
function giving an adequate description of the data.
Therefore the data have the potential to improve the con-
straints on the parton densities in the proton and photon
and should be used in future fits. The cross section in the
difference of azimuthal angle of the two jets is intrinsically
sensitive to high-order QCD processes and the data are
poorly described by NLO QCD, particularly at low xobs

� .
Therefore the data should be compared with new calcula-
tions of higher orders, or simulations thereof.
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