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1. Introduction

Throughout this paper, let p be a prime number, and let k be an algebraically closed 
field of characteristic p. An abelian variety X over k is said to be supersingular if it 
is isogenous to a product of supersingular elliptic curves; it is called superspecial if 
it is isomorphic to a product of supersingular elliptic curves. To each polarised su-
persingular abelian variety x = (X0, λ0) of p-power polarisation degree, we associate 
a set Λx of isomorphism classes of p-power degree polarised abelian varieties (X, λ)
over k, consisting of those whose associated quasi-polarised p-divisible groups satisfy 
(X, λ)[p∞] � (X0, λ0)[p∞]. It is known that Λx is a finite set, and the mass of Λx is 
defined to be the weighted sum

Mass(Λx) :=
∑

(X,λ)∈Λx

1
|Aut(X,λ)| . (1)

Let Ag be the moduli space over Fp of g-dimensional principally polarised abelian 
varieties. If x = (X0, λ0) is a superspecial point in Ag(k), that is, X0 is superspecial, then 
Λx coincides with the superspecial locus Λg,1 of Ag, which consists of all superspecial 
points in Ag, called the principal genus. The classical mass formula (see Hashimoto–
Ibukiyama [6, Proposition 9] and Ekedahl [3, p. 159]) states that

Mass(Λg,1) = (−1)g(g+1)/2

2g

{
g∏

i=1
ζ(1− 2i)

}
·

g∏
i=1

{
(pi + (−1)i

}
, (2)

where ζ(s) denotes the Riemann zeta function.
More generally, for any integer c with 0 ≤ c ≤ �g/2�, let Λg,pc denote the finite set of 

isomorphism classes of g-dimensional polarised superspecial abelian varieties (X, λ) such 
that ker(λ) � α2c

p , where αp is the kernel of the Frobenius morphism on the additive 
group Ga. Then one also has Λg,pc = Λx for any member x in Λg,pc . The case c = �g/2�
is called the non-principal genus. As shown by Li-Oort [13], both the principal and non-
principal genera describe the irreducible components of the supersingular locus Sg,1

of Ag. Similarly, the sets Λg,pc describe the irreducible components of supersingular 
Ekedahl-Oort (EO) strata in Ag cf. [4]. The explicit determination of the class number 
|Λg,pc |, i.e., the class number problem, is a very difficult task for large g, and is still open 
for g = 3 and c = 1. Nevertheless, an explicit calculation of the mass Mass(Λg,pc) is more 
accessible and provides a good estimate for the class number. This mass was calculated 
explicitly by the third author [23, Theorem 1.4] when g = 2c and extended to arbitrary 
g and c by Harashita [4, Proposition 3.5.2].

In [27], J.-D. Yu and the third author explicitly calculated the mass formula for 
Mass(Λx) for an arbitrary principally polarised supersingular abelian surface x =
(X0, λ0). In [8], Ibukiyama investigated principal polarisations of a given supersingular 
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non-superspecial abelian surface X0. He explicitly computed the number of polarisa-
tions and the mass of the corresponding principally polarised abelian surfaces. He also 
showed the agreement with |Λx| and Mass(Λx) cf. [8, Proposition 3.3 and Theorem 3.6], 
respectively, for a member x = (X0, λ0) in S2,1. As an important arithmetic applica-
tion, Ibukiyama proved Oort’s conjecture that the automorphism group of any generic 
member is {±1} for p ≥ 3, and he gave a counterexample for p = 2.

Inspired by Ibukiyama’s work [8], and as a continuation of [27], in this paper we 
completely determine the mass formula for Mass(Λx) when g = 3, and prove Oort’s 
conjecture for p > 2 as an arithmetic application. To describe our results, we introduce 
some notation; more details will be given in Sections 2 and 3.

For any abelian variety X over k, the a-number of X is a(X) := dimkHom(αp, X). 
For abelian threefolds X we have a(X) ∈ {1, 2, 3}; when computing the mass, we will 
separate into cases based on the a-number.

Further let E be a supersingular elliptic curve over Fp2 with Frobenius endomorphism 
πE = −p, and let Ek = E ⊗Fp2 k. For each integer c with 0 ≤ c ≤ �g/2�, we denote 
by Ppc(Eg

k) the set of polarisations μ on Eg
k such that kerμ � α2c

p ; one has Ppc(Eg
k) =

Ppc(Eg). As superspecial abelian threefolds are unique up to isomorphism, there is a 
natural bijection Ppc(Eg

k) � Λg,pc .
Let μ be a polarisation in P1(E3

k). As alluded to above, Li and Oort [13] show there 
is a one-to-one natural correspondence between the set P1(E3

k) and the set Σ(S3,1)
of (geometrically) irreducible components of S3,1. More precisely, they consider the 
moduli space Pμ (resp. P ′

μ) over Fp2 of three-dimensional (resp. rigid) polarised flag 
type quotients with respect to μ. This space is an irreducible scheme which comes with 
a proper projection morphism pr0 : Pμ → S3,1, such that for each principally polarised 
supersingular abelian threefold (X, λ) there exist a μ ∈ P1(E3

k) and a y ∈Pμ such that 
pr0(y) = [(X, λ)] ∈ S3,1.

Let C ⊆ P 2 be the Fermat curve of degree p + 1 defined by the equation Xp+1
1 +

Xp+1
2 +Xp+1

3 = 0. There exists a natural proper morphism π : Pμ → C with P 1-fibres, 
and it is shown (cf. [13, Section 9.4] and Proposition 3.7) that Pμ is isomorphic to the 
P 1-bundle PC(O(−1) ⊕ O(1)) over the Fermat curve C. Moreover, the morphism π has 
a section s : C

∼−→ T ⊆ Pμ, cf. Definition 3.14. In particular, for each k-point (X, λ)
in the component pr0(Pμ) of S3,1 and a point y ∈Pμ(k) lying over (X, λ), there exists 
a unique pair (t, u) where t = (t1 : t2 : t3) ∈ C(k) and u = (u1 : u2) ∈ π−1(t) � P 1

t (k)
that characterises y. Moreover, we have (cf. Proposition 3.15):

(1) If y ∈ T then a(X) = 3.
(2) For any t ∈ C(k), we have t ∈ C(Fp2) if and only if for any y ∈ π−1(t) the corre-

sponding threefold X has a(X) ≥ 2.
(3) We have a(X) = 1 if and only if y /∈ T and π(y) /∈ C(Fp2).

We are now ready to state our first two main results, computing the mass for any 
principally polarised supersingular abelian threefold.
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Theorem A. (Theorem 4.3) Let x = (X, λ) ∈ S3,1(k) with a(X) ≥ 2, let μ ∈ P1(E3), and 
let y ∈ P ′

μ(k) be such that pr0(y) = [(X, λ)]. Write y = (t, u) where t = π(y) ∈ C(Fp2)
and u ∈ π−1(t) � P 1

t (k). Then

Mass(Λx) = Lp

210 · 34 · 5 · 7 ,

where

Lp =

⎧⎪⎪⎨⎪⎪⎩
(p− 1)(p2 + 1)(p3 − 1) if u ∈ P 1

t (Fp2);
(p− 1)(p3 + 1)(p3 − 1)(p4 − p2) if u ∈ P 1

t (Fp4) \ P 1
t (Fp2);

2−e(p)(p− 1)(p3 + 1)(p3 − 1)p2(p4 − 1) if u /∈ P 1
t (Fp4);

where e(p) = 0 if p = 2 and e(p) = 1 if p > 2.

Theorem B. (Theorem 5.21) Let x = (X, λ) ∈ S3,1(k) such that a(X) = 1 and 
x ∈ pr0(Pμ) for some μ ∈ P1(E3). Consider an element y ∈ Pμ(k) over x, which 
is characterised by the pair (t, u) with t ∈ C(k) \C(Fp2) and u ∈ P 1

t (k). Let Dt be as in 
Definition 5.16, and let d(t) be as in Definition 5.12. Then

Mass(Λx) = p3Lp

210 · 34 · 5 · 7 ,

where

Lp =

⎧⎪⎪⎨⎪⎪⎩
2−e(p)p2d(t)(p2 − 1)(p4 − 1)(p6 − 1) if u /∈ Dt;
p2d(t)(p− 1)(p4 − 1)(p6 − 1) if t /∈ C(Fp6) and u ∈ Dt;
p6(p2 − 1)(p3 − 1)(p4 − 1) if t ∈ C(Fp6) and u ∈ Dt.

The mass function on S3,1 induces a stratification such that the mass function be-
comes constant on each stratum. By Theorem A, the locus of S3,1 with a-number ≥ 2
decomposes into three strata: one stratum with a-number 3 and two strata with a-number 
2. On the locus with a-number 1, the stratification depends on p. When p �= 2, the d-
invariant takes values in {3, 4, 5, 6} and d(t) = 3 if and only if t ∈ C(Fp6). In this case, 
Theorem B says that the mass function depends only on the d-invariant and whether 
u ∈ Dt or not, and hence there are eight strata. When p = 2, the d-value d(t) is always 
3 and Theorem B gives three strata.

Our computations of the automorphism groups can be summarised as follows.

Theorem C. Let x = (X, λ) ∈ S3,1(k) and μ ∈ P1(E3) so that x ∈ pr0(Pμ). Consider 
an element y ∈ Pμ over x, which is characterised by the pair (t, u) with t ∈ C(k) and 
u ∈ P 1

t (k). Let Dt be as in Definition 5.16 and let d(t) be as in Definition 5.12.
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(1) (Theorem 6.4) Suppose that a(X) = 1, so that t ∈ C(k) \ C(Fp2). Assume that 
(t, u) /∈ D , that is, u /∈ Dt.
(a) If p = 2, then Aut(X, λ) � C3

2 .
(b) If p ≥ 5, or p = 3 and d(t) = 6, then Aut(X, λ) � C2,
where Cn denotes the cyclic group of order n.

(2) (Theorem 6.9) Suppose that a(X) = 1 and that (t, u) ∈ D with t /∈ C(Fp6).
(a) If p = 2, then Aut(X, λ) � C3

2 × C3.
(b) If p = 3 and d(t) = 6, then Aut(X, λ) ∈ {C2, C4}.
(c) For p ≥ 5, we have the following cases:

(i) If p ≡ −1 (mod 4), then Aut(X, λ) ∈ {C2, C4}.
(ii) If p ≡ −1 (mod 3), then Aut(X, λ) ∈ {C2, C6}.
(iii) If p ≡ 1 (mod 12), then Aut(X, λ) � C2.

(3) (Proposition 6.12) Let Λ3,1(C2) := {(X, λ) ∈ Λ3,1 : Aut(X, λ) � C2} be the set 
of superspecial principally polarised abelian threefolds satisfying Oort’s conjecture. 
Then

|Λ3,1(C2)|
|Λ3,1|

→ 1 as p→∞.

In particular, Part (1) of Theorem C shows that Oort’s conjecture is true precisely for 
p �= 2. That is, every generic principally polarised supersingular abelian threefold over k
of characteristic �= 2 has automorphism group C2.

Schemes in this paper are assumed to be locally Noetherian unless stated otherwise.
The organisation of the paper is as follows. Sections 2 and 3 contain preliminaries, 

respectively on mass formulae and the structure of the supersingular locus S3,1. In par-
ticular, the strategy we will follow in later sections to obtain mass formulae is outlined 
at the end of Section 2. Sections 4 and 5 determine the mass formulae for supersingular 
abelian threefolds X, respectively with a(X) = 2 (cf. Theorem A) and a(X) = 1 (cf. The-
orem B). The automorphism groups, as well as the implications for Oort’s conjecture, 
are studied in Section 6 (cf. Theorem C). The Appendix contains results of independent 
interest, concerning a set-theoretic intersection arising in Section 5.

2. Mass formulae for supersingular abelian varieties

2.1. Set-up and notation

Throughout the paper, let p be a prime number, let g be a positive integer, and let k
be an algebraically closed field of characteristic p. The ground field for objects studied 
is k, unless stated otherwise.

For a finite set S, write |S| for the cardinality of S. Let αp be the unique α-group 
of order p over Fp; it is defined to be the kernel of the Frobenius morphism on the 
additive group Ga over Fp. For a matrix A = (aij) ∈ Matm×n(k) and integer r, write 
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A(pr) := (ap
r

ij ) for the image of A under the rth Frobenius map. Denote by Ẑ =
∏

� Z�

the profinite completion of Z and by Af = Ẑ⊗Z Q the finite adele ring of Q.

Definition 2.1. For any integer d ≥ 1, let Ag,d denote the (coarse) moduli space over Fp of 
g-dimensional polarised abelian varieties (X, λ) with polarisation degree degλ = d2. For 
any m ≥ 1, let Sg,pm be the supersingular locus of Ag,pm , which consists of all polarised 
supersingular abelian varieties in Ag,pm . Then Sg,1 is the moduli space of g-dimensional 
principally polarised supersingular abelian varieties. Denote Sg,p∗ = ∪m≥1Sg,pm .

Definition 2.2. (1) If S is a finite set of objects with finite automorphism groups in a 
specified category, then we define the mass of S to be the weighted sum

Mass(S) :=
∑
s∈S

1
|Aut(s)| .

(2) For any x = (X0, λ0) ∈ Sg,p∗(k), we define

Λx = {(X,λ) ∈ Sg,p∗(k) : (X,λ)[p∞] � (X0, λ0)[p∞]}, (3)

where (X, λ)[p∞] denotes the polarised p-divisible group associated to (X, λ). Then Λx

is a finite set; see [22, Theorem 2.1]. The mass of Λx is defined as

Mass(Λx) =
∑

(X,λ)∈Λx

1
|Aut(X,λ)| .

2.2. Superspecial mass formulae

Recall that a superspecial abelian variety over k is an abelian variety isomorphic to a 
product of supersingular elliptic curves.

Definition 2.3. Let 0 ≤ c ≤ �g/2� be an integer. We define Λg,pc to be the set of iso-
morphism classes of g-dimensional superspecial polarised abelian varieties (X, λ) whose 
polarisation λ satisfies ker(λ) � α2c

p . Its mass is

Mass(Λg,pc) =
∑

(X,λ)∈Λg,pc

1
|Aut(X,λ)| .

In particular, Mass(Λg,pc) is a special case of Mass(Λx), cf. Definition 2.2. Note that 
the p-divisible group of a superspecial abelian variety of given dimension is unique up to 
isomorphism. Furthermore, the polarised p-divisible group associated to any member in 
Λg,pc is unique up to isomorphism, cf. [13, Proposition 6.1]. Thus, if x = (X, λ) is any 
member in Λg,pc , then we have Λx = Λg,pc .
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Theorem 2.4.

(1) For any g ≥ 1, we have

Mass(Λg,1) = (−1)g(g+1)/2

2g
g∏

i=1
ζ(1− 2i) ·

g∏
i=1

(pi + (−1)i).

(2) For any g ≥ 1 and 0 ≤ c ≤ �g/2�, we have

Mass(Λg,pc) =(−1)g(g+1)/2

2g
g∏

i=1
ζ(1− 2i) ·

g−2c∏
i=1

(pi + (−1)i) ·
c∏

i=1
(p4i−2 − 1)

·
∏g

i=1(p2i − 1)∏2c
i=1(p2i − 1)

∏g−2c
i=1 (p2i − 1)

.

Proof. (1) See [3, p. 159] and [6, Proposition 9]. (2) This follows from [4, Proposi-
tion 3.5.2] by the functional equation for ζ(s). See also [23] for a geometric proof in the 
case where g = 2c. �

Using the fact that ζ(−1) = −1/12, ζ(−3) = 1/120 and ζ(−5) = −1/(42 · 6), we 
obtain the following corollary.

Corollary 2.5. Let g = 3.

(1) If c = 0, then Λg,pc = Λ3,1 consists of all principally polarised superspecial abelian 
threefolds, and

Mass(Λ3,1) = (p− 1)(p2 + 1)(p3 − 1)
210 · 34 · 5 · 7 . (4)

(2) If c = 1, then Λg,pc = Λ3,p consists of all polarised superspecial abelian threefolds 
whose polarisation λ has ker(λ) � αp × αp, and

Mass(Λ3,p) = (p− 1)(p3 + 1)(p3 − 1)
210 · 34 · 5 · 7 . (5)

2.3. From superspecial to supersingular mass formulae

For a (not necessary principally) polarised supersingular abelian variety x = (X0, λ0)
over k, let Gx be the automorphism group scheme over Z associated to x; for any 
commutative ring R, the group of its R-valued points is defined by

Gx(R) = {g ∈ (End(X0)⊗Z R)× : gTλ0g = λ0}. (6)



8 V. Karemaker et al. / Advances in Mathematics 386 (2021) 107812
Definition 2.6. For a connected reductive group G over Q with finite arithmetic subgroups 
and an open compact subgroup U ⊆ G(Af ), we define its (arithmetic) mass Mass(G, U)
by

Mass(G,U) =
h∑

i=1

1
|Γi|

, Γi := G(Q) ∩ ciUc−1
i ,

where {c1, · · · , ch} is a set of representatives for the double coset space G(Q)\G(Af)/U .

Proposition 2.7. For any object x = (X0, λ0) ∈ Sg,p∗(k), there is a natural bijection of 
pointed sets

Λx � Gx(Q)\Gx(Af )/Gx(Ẑ).

Moreover, if (X, λ) is a member of Λx which corresponds to the class [c] under the 
bijection, then Aut(X, λ) � Gx(Q) ∩ cGx(Ẑ)c−1. In particular, we have

Mass(Λx) = Mass(Gx, Gx(Ẑ)),

cf. Definition 2.2.

Proof. See [25, Theorems 2.2 and 4.6]. Also see [27, Proposition 2.1] for a proof 
sketch. �
Definition 2.8. Let U1, U2 be two open compact subgroups of Gx(Af ). Then we define

μ(U1/U2) = [U1 : U1 ∩ U2]
[U2 : U1 ∩ U2]

.

Interpreting the mass from Definition 2.6 as the volume of a fundamental domain, 
with notation as above, we have the following lemma.

Lemma 2.9. Let U1, U2 be two open compact subgroups of Gx(Af ). Then their (arith-
metic) masses compare as

Mass(Gx, U2) = μ(U1/U2)Mass(Gx, U1).

Lemma 2.10. Let X be a supersingular abelian variety over k. Then there exists a pair 
(Y, ϕ), where Y is a superspecial abelian variety and ϕ : Y → X is an isogeny such 
that for any pair (Y ′, ϕ′) as above there exists a unique isogeny ρ : Y ′ → Y such that 
ϕ′ = ϕ ◦ ρ.

Dually, there exists a pair (Z, γ), where Z is a superspecial abelian variety and γ :
X → Z such that for any pair (Z ′, γ′) as above there exists a unique isogeny ρ : Z → Z ′

such that γ′ = ρ ◦ γ.
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Proof. See [13, Lemma 1.8]; also see [24, Corollary 4.3] for an independent proof. The 
proof of [13, Lemma 1.8] contains a gap; see Remark 3.17 for a counterexample to the 
argument. �
Definition 2.11. Let X be a supersingular abelian variety over k. We call the pair (Y, ϕ :
Y → X) or the pair (Z, γ : X → Z) as in Lemma 2.10 the minimal isogeny of X.

Proposition 2.12. Let x = (X, λ) ∈ Sg,p∗(k) and let ϕ : X̃ → X be the minimal isogeny 
of X. Put x̃ = (X̃, ̃λ), where λ̃ := ϕ∗λ. Let (M, 〈 , 〉), (M̃, 〈 , 〉) denote the quasi-polarised 
(contravariant) Dieudonné module of X, X̃, respectively. Then ϕ induces an injective 
map ϕ∗ : End(X[p∞]) ↪→ End(X̃[p∞]), or equivalently ϕ∗ : End(M) ↪→ End(M̃), and 
we have

Mass(Λx) = [Aut((X̃, λ̃)[p∞]) : Aut((X,λ)[p∞])] ·Mass(Λx̃)

= [Aut(M̃, 〈 , 〉) : Aut(M, 〈 , 〉)] ·Mass(Λx̃).
(7)

Here the injective map ϕ∗ yields the inclusion map Aut(M, 〈 , 〉) ⊆ Aut(M̃, 〈 , 〉).

Proof. This may be regarded as a refinement of [22, Theorem 2.7]. Through the isogeny 
ϕ, we may view Gx̃(Ẑ) and ϕ∗Gx(Ẑ) as open compact subgroups of the same group 
Gx̃(Af ). Using Proposition 2.7 and Lemma 2.9, we see that

Mass(Λx) = μ(Gx̃(Ẑ)/ϕ∗Gx(Ẑ))Mass(Λx̃)

= [Gx̃(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]
[ϕ∗Gx(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]

Mass(Λx̃).

Note that Gx̃(Ẑ) and ϕ∗Gx(Ẑ) differ only at p. By [24, Proposition 4.8], every en-
domorphism of X[p∞] lifts uniquely to an endomorphism of X̃[p∞]. This shows the 
injectivity of the map ϕ∗ : End(X[p∞]) → End(X̃[p∞]). Therefore, we have the inclu-
sion Gx(Zp) = Aut((X, λ)[p∞]) ↪→ Gx̃(Zp) = Aut((X̃, ̃λ)[p∞]) via ϕ∗ and find the first 
part of Equation (7).

By Dieudonné module theory, for any polarised supersingular abelian variety (X, λ)
with quasi-polarised Dieudonné module (M, 〈 , 〉), we may identify Aut((X, λ)[p∞]) with 
Aut(M, 〈 , 〉). This yields Equation (7). �

To summarise, the results of this section provide the following strategy for obtaining 
a mass formula for any principally polarised supersingular abelian variety:

(a) For any supersingular abelian variety x = (X, λ), construct the minimal isogeny 
ϕ : (X̃, ̃λ) → (X, λ) from a suitable superspecial abelian variety x̃ = (X̃, ̃λ).

(b) Use Theorem 2.4 (or Corollary 2.5 if g = 3) to compute Mass(Λx̃).
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(c) Compute the local index [Aut(M̃, 〈, 〉) : Aut((M, 〈, 〉)], cf. (7).
(d) Compute Mass(Λx), i.e., compare Mass(Λx̃) and Mass(Λx) by applying Proposi-

tion 2.12.

We will carry out these steps, in particular Step (c), in the next sections in the case 
where g = 3. In the next section, we start by studying in detail the moduli space S3,1
of supersingular principally polarised abelian threefolds and the minimal isogenies (cf. 
Definition 2.11) between threefolds.

3. Structure of the supersingular locus SSS 3,1

In this section we describe the supersingular locus S3,1. Its structure will be used to 
determine minimal isogenies, cf. Proposition 3.16. Finer structures will be introduced in 
order to compute the local index in Step (c) in the previous section.

3.1. The supersingular locus Sg,1 and the mass function

To describe the moduli space S3,1 of supersingular principally polarised abelian three-
folds, we will use the framework of polarised flag type quotients (for g = 3) as developed 
by Li and Oort [13], which we will briefly describe below (for any g ≥ 1). Then we will 
introduce the stratification of Sg,1 induced by the mass values and its local analogue.

For any abelian variety X, denote by P (X) the set of isomorphism classes of principal 
polarisations on X.

Let E/Fp2 be a supersingular elliptic curve whose Frobenius endomorphism is πE =
−p and denote Ek = E ⊗Fp2 k. Since every polarisation on Eg

k is defined over Fp2 , we 
may identify P (Eg

k) with P (Eg). Recall that an α-group of rank r over an Fp-scheme S is 
a finite flat group scheme over S which is Zariski-locally isomorphic to αr

p. For a scheme 
X over S, put X(p) := X ×S,FS

S, where FS : S → S denotes the absolute Frobenius 
morphism on S, and denote by FX/S : X → X(p) the relative Frobenius morphism.

For each integer i ≥ 0, let P (Eg, i) be the set of isomorphism classes of polarisations λ
on Eg such that kerλ = E[Fi] with F = FE/Fp2 and set P ∗(Eg) := P (Eg, g−1). The map 

λ �→ p�(g−1)/2	λ gives a bijection P (Eg) ∼−→ P ∗(Eg) if g is odd and P (Eg, 1) ∼−→ P ∗(Eg)
otherwise. Moreover, the map λ �→ (Eg

k , λ) gives a bijection P (Eg) ∼−→ Λg,1 when g is 
odd and P (Eg, 1) ∼−→ Λg,pc when g = 2c is even. Thus,

P ∗(Eg) �
{

Λg,1, if g is odd;
Λg,pc , if g = 2c is even.

(8)

It is known that |Λg,1| = Hg(p, 1) for any positive integer g and |Λg,pc | = Hg(1, p) for 
any even positive integer g = 2c, where Hg(p, 1) (resp. Hg(1, p)) is the class number of 
principal genus (resp. the non-principal genus); see [13] for details.
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Definition 3.1. (cf. [13, Section 3])

(1) Let g ≥ 1 be an integer. For any μ ∈ P ∗(Eg), a g-dimensional polarised flag type 
quotient (PFTQ) with respect to μ is a chain of g-dimensional polarised abelian 
schemes over a base Fp2-scheme S

(Y•, ρ•) : (Yg−1, λg−1)
ρg−1−−−→ (Yg−2, λg−2)

ρg−2−−−→ · · · ρ2−→ (Y1, λ1)
ρ1−→ (Y0, λ0),

such that:
(i) (Yg−1, λg−1) = (Eg, μ) ×SpecFp2 S;
(ii) ker(ρi) is an α-group of rank i for 1 ≤ i ≤ g − 1;
(iii) ker(λi) ⊆ ker(Vj ◦ Fi−j) for 0 ≤ i ≤ g − 1 and 0 ≤ j ≤ �i/2�, where F =

FYi/S : Yi → Y
(p)
i and V = VYi/S : Y (p)

i → Yi are the relative Frobenius and 
Verschiebung morphisms, respectively.

In particular, λ0 is a principal polarisation on Y0. An isomorphism of g-dimensional 
polarised flag type quotients is a chain of isomorphisms (αi)0≤i≤g−1 of polarised 
abelian varieties such that αg−1 = idYg−1 .

(2) A g-dimensional polarised flag type quotient (Y•, ρ•) is said to be rigid if

ker(Yg−1 → Yi) = ker(Yg−1 → Y0) ∩ Yg−1[Fg−1−i], for 1 ≤ i ≤ g − 1,

where Yg−1[Fg−1−i] := ker(Fg−1−i : Yg−1 → Y
(pg−1−i)
g−1 ).

(3) Let Pg,μ (resp. P ′
g,μ) denote the moduli space over Fp2 of g-dimensional (resp. rigid) 

polarised flag type quotients with respect to μ.

Clearly, each member Yi of (Y•, ρ•) is a supersingular abelian variety.

Definition 3.2. For an abelian variety X over k, its a-number is defined as

a(X) := dimk Hom(αp, X).

The a-number of a Dieudonné module M over k is defined as a(M) := dim(M/(F, V)M). 
If M is the Dieudonné module of X, then a(M) = a(X). When x ∈ Pg,μ corresponds 
to a polarised flag type quotient (Yg−1, λg−1) → · · · → (Y1, λ1) → (Y0, λ0), we say that 
its a-number is a(x) = a(Y0).

According to [13, Lemma 3.7], Pg,μ is a projective scheme over Fp2 and P ′
g,μ ⊂Pg,μ

is an open subscheme. Thus, P ′
g,μ a quasi-projective scheme over Fp2 . The projection to 

the last member gives a proper Fp-morphism

pr0 : Pg,μ,Fp
→ Sg,1,

(Y•, ρ•) �→ (Y0, λ0).
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Theorem 3.3 (Li-Oort).

(1) The natural morphism

pr0 :
∐

μ∈P∗(Eg)

P ′
g,μ,Fp

→ Sg,1 (9)

is quasi-finite and surjective.
(2) For every μ ∈ P ∗(Eg), the scheme P ′

g,μ is non-singular and geometrically irreducible 
of dimension �g2/4�. Moreover, the a-number 1 locus P ′

g,μ(a = 1) is open and dense 
in P ′

g,μ.
(3) The morphism pr0 induces a surjective birational morphism

pr0 :
∐

μ∈P∗(Eg)

P ′
g,μ,Fp

/Gμ → Sg,1, (10)

where Gμ := Aut(Eg, μ) is the automorphism group of (Eg, μ). Moreover, it induces 
an isomorphism on the a-number 1 loci:

pr0 :
∐

μ∈P∗(Eg)

P ′
g,μ,Fp

(a = 1)/Gμ
∼−→ Sg,1(a = 1). (11)

(4) The supersingular locus Sg,1 is equidimensional of dimension �g2/4�. The a-number 
1 locus Sg,1(a = 1) is open and dense in Sg,1. It has{

Hg(p, 1), for odd integer g;
Hg(1, p), for even integer g

(12)

geometrically irreducible components.

Proof. See [13, Section 4]. �
Note that P ′

3,μ ⊂P3,μ is dense, while for general g the open subscheme P ′
g,μ ⊂Pg,μ

is no longer dense, cf. [13, Section 9.6].

Definition 3.4.

(1) Let k be an algebraically closed field of characteristic p > 0 and let

Mass : Sg,1(k)→ Q, x �→ Mass(x) := Mass(Λx)

be the mass function. For each mass value r ∈ Q, i.e. r = Mass(x) for some point 
x ∈ Sg,1(k), define a subset
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Sg,1,r := {x ∈ Sg,1(k) : Mass(x) = r}. (13)

Then we have a decomposition of the supersingular locus into subsets

Sg,1(k) =
∐
r

Sg,1,r, (14)

where r runs through all mass values. Each subset Sg,1,r is called the mass stratum 
with mass value r, and the decomposition (14) is called the mass stratification of 
Sg,1(k).

(2) For each μ ∈ P ∗(Eg), consider the pull-back of the mass function on Sg,1(k) by pr0. 
We obtain the mass function on Pg,μ(k):

Mass : Pg,μ(k)→ Q, y �→ Mass(y) := Mass(Λpr0(y)).

Similarly, we define the mass stratum Pg,μ,r for each mass value r ∈ Q as in (13)
and obtain a decomposition of Pg,μ(k) into mass strata:

Pg,μ(k) =
∐
r

Pg,μ,r, (15)

called the mass stratification of Pg,μ(k).

When g = 1, the supersingular locus S1,1 consists of one mass stratum. When g = 2, 
there are three mass strata: one stratum with a-number 2 and two strata with a-number 
1. Each mass stratum is a locally closed subset and the collection of mass strata satisfies 
the stratification property, namely, the closure of each stratum is the union of some strata 
cf. [27]. When g = 3, we will see again from our computation that each mass stratum 
is a locally closed subset on both P3,μ and S3,1. However, the collection of mass strata 
does not satisfy the stratification property on P3,μ (because the structure morphism 
π : P3,μ → C constructed in Proposition 3.7 admits a section T , which will be formally 
introduced in Definition 3.14) but it does on its open dense subscheme P ′

3,μ = P3,μ−T . 
We expect that every mass stratum is a locally closed subset for general g. The mass 
stratification encodes arithmetic information (automorphism groups and endomorphism 
rings) of supersingular abelian varieties. For example, we will see in Section 6 that the 
automorphism groups of supersingular abelian threefolds jump only when the objects 
cross different mass strata. Since arithmetic properties generally do not respect geometric 
properties, we are less optimistic that the collection of mass strata of P ′

g,μ satisfies the 
stratification property.

Now we introduce a local analogue of the mass stratification where the underlying 
space Sg,1 is replaced with the moduli space of supersingular p-divisible groups, namely, 
the supersingular Rapoport-Zink space.

Fix a g-dimensional principally polarised superspecial abelian variety x0 = (X0, λX0)
over Fp, and let X0 = (X0, λX0) = (X0, λX0)[p∞] be the associated principally polarised 
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p-divisible group. Let M 0
Fp

be the Rapoport-Zink space over Fp classifying principally 

polarised quasi-isogenies of (X0, λX0) of height 0. For each Fp-scheme S, M 0
Fp

(S) is the 

set of isomorphism classes of pairs (X, ρ)S , where

(i) X = (X, λX) is a principally polarised p-divisible group over S;
(ii) ρ : X0 → X is a quasi-isogeny over S such that ρ∗λX = λX0 .

Two pairs (X1, ρ1) and (X2, ρ2) are isomorphic if there exists an isomorphism α : X1
∼−→

X2 such that α ◦ ρ1 = ρ2. One easily sees α∗λX2 = λX1 . The Rapoport-Zink space M 0
Fp

is a scheme locally of finite type over Fp, cf. [18, Theorem 3.25 and Corollary 2.29].
Let GX0 be the automorphism group scheme of X0 over Zp. The group GX0(Qp) of 

Qp-valued points consists of polarised quasi-self-isogenies of X0 over k; it is a locally 
compact topological group. Choose a Haar measure on GX0(Qp) with volume one on 
the maximal open compact subgroup GX0(Zp) = Aut(X0). For each k-valued point 
x = (X, ρ) ∈ M 0

Fp
(k), we may regard its automorphism group Aut(X) as an open 

compact subgroup of GX0(Qp) by inclusion:

ρ∗ : Aut(X) ↪→ GX0(Qp), h �→ ρ−1 ◦ h ◦ ρ.

Definition 3.5. Let the notation be as above. Define a function on M 0
Fp

(k) by

v : M 0
Fp

(k)→ Q, x = (X, ρ) �→ v(x) := vol(ρ∗(Aut(X)))−1. (16)

For each v-value r ∈ Q, that is, r = v(x) for some x ∈M 0
Fp

(k), consider the subset

M 0
r := {x ∈M 0

Fp
(k) : v(x) = r},

for which the function v takes value r, called the v-stratum with v-value r. The Rapoport-
Zink space then decomposes in subsets:

M 0
Fp

(k) =
∐
r

M 0
r ,

where r runs through all v-values in Q, called the v-stratification of M 0
Fp

(k). Observe that 
the collection of v-strata is independent of the choice of the Haar measure on GX0(Qp)
as the function v′ associated to a different Haar measure is just a multiple of v by a 
scalar.

Let

π̃ : M 0
Fp
→ Sg,1

be the Rapoport-Zink uniformisation morphism, cf. [18, 6.13].
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Proposition 3.6. The stratification of M 0
Fp

(k) obtained by the pull-back of the mass strat-
ification of Sg,1(k) by π̃ coincides with the v-stratification.

Proof. We compare the functions v and π̃∗ Mass = Mass ◦π̃. Let x = (X, ρ) be a k-
valued point in M 0

Fp
(k). Then x lifts to a pair ((X, λX), ̃ρ) of a principally polarised 

supersingular abelian variety (X, λX) and a polarised quasi-isogeny ρ̃ : (X0, λX0) →
(X, λX). By the construction of [18, 6.13], the map π̃ sends x to x := (X, λX). Using 
Proposition 2.7 and Lemma 2.9, we see that

Mass(x) = Mass(Λx) = vol(Gx0(Zp))
vol(ρ̃∗(Gx(Zp)))

Mass(Λx0)

= Mass(Λx0)
vol(ρ∗(Aut(X, λX))) = Mass(x0) · v(x).

Thus, π̃∗ Mass(x) = Mass(x0) · v(x) for x ∈M 0
Fp

(k) and the assertion follows. �
3.2. The structure of S3,1

Hereafter we will only treat the case where g = 3. For brevity, we write Pμ and 
P ′

μ for P3,μ and P ′
3,μ, respectively. Roughly speaking, Equation (9) says that each Pμ

approximates an irreducible component of the supersingular locus S3,1. More precisely, 
one can show the following structure results; for more details, we refer to [13, Sections 9.3-
9.4]. Let C ⊆ P 2 be the Fermat curve defined by the equation Xp+1

1 +Xp+1
2 +Xp+1

3 = 0.

Proposition 3.7. The Fermat curve C can be interpreted as the classifying space of 
isogenies (Y2, λ2) → (Y1, λ1) whose kernel is locally isomorphic to α2

p. Moreover, 
there is an isomorphism Pμ � PC(O(−1) ⊕ O(1)) for which the structure morphism 
π : PC(O(−1) ⊕ O(1)) → C corresponds to the forgetful map ((Y2, λ2) → (Y1, λ1) →
(Y0, λ0)) �→ ((Y2, λ2) → (Y1, λ1)).

Proof. Let M2 be the polarised contravariant Dieudonné module of Y2. Choosing an 
isogeny ρ2 from E3

k such that ker(ρ2) � α2
p is equivalent to choosing a surjection of 

Dieudonné modules M2 → k2. Since Frobenius F and Verschiebung V act as zero on k2, 
this is further equivalent to choosing a one-dimensional subspace of the three-dimensional 
(since a(Y2) = 3) k-vector space M2/(F, V)M2 which corresponds to a point (t1 : t2 :
t3) ∈ P 2 = P ((M2/(F, V)M2)∗).

The polarisation λ2 = pμ descends to a polarisation λ1 on Y1 through such ρ2, and 
the condition ker(λ1) ⊆ Y1[F] is equivalent to the condition

tp+1
1 + tp+1

2 + tp+1
3 = 0,

which describes the Fermat curve C of degree p + 1 in P 2. For precise computations, we 
refer to [12].
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Let M1 be the polarised Dieudonné module of Y1: the polarisation λ1 induces a quasi-
polarisation D(λ1) : M∨

1 → M1, and we regard M∨
1 as an submodule of M1 under this 

injection. One has the inclusions M∨
1 ⊂ VM2 ⊂M1 as VM2 is self-dual with respect to the 

quasi-polarisation induced by λ1 and VM2 = (F, V)M2 ⊂M1. Choosing a second isogeny 
(Y1, λ1) → (Y0, λ0) is equivalent to choosing a one-dimensional subspace of the two-
dimensional vector space M1/M

∨
1 . Thus each fibre of the structure morphism π : Pμ → C

is isomorphic to P ((M1/M
∨
1 )∗) � P 1 and this fibration corresponds to a rank two vector 

bundle V on C. The canonical one-dimensional space (F, V)M2/M
∨
1 ⊆ M1/M

∨
1 defines 

a section s of π : Pμ → C and corresponds to a surjection V → O(−1). By the duality 
of polarisations, we see that V is an extension of O(−1) by O(1) and this extension 
splits. �

Since the Fermat curve C is a smooth plane curve of degree p +1, its genus is equal to 
p(p − 1)/2. Let U3(Fp) ⊆ GL3(Fp2) denote the unitary subgroup consisting of matrices 
A such that ATA(p) = I3. We see that for each A ∈ U3(Fp) and t ∈ C, the matrix 
multiplication A · tT lies in C. This gives a left action of U3(Fp) on the curve C. It is 
known that |U3(Fp)| = p3(p + 1)(p2 − 1)(p3 + 1).

A curve is Fp2k -maximal (resp. minimal) if its Frobenius eigenvalues over Fp2k all equal 
−pk (resp. pk). From the well-understood behaviour of Frobenius eigenvalues under field 
extensions we then derive the following lemma.

Lemma 3.8. We have |C(Fp2)| = p3 +1. Thus, it is Fp2-maximal and hence Fp4-minimal. 
Moreover, we have C(Fp2) = C(Fp4). Furthermore, we have

|C(Fp2i)| =
{
p2i + pi+2 − pi+1 + 1 if i is odd;
p2i − pi+2 + pi+1 + 1 if i is even.

(17)

Proof. For each t = (ti) ∈ C(Fp2), let si = tp+1
i . Then si ∈ Fp and s1 + s2 + s3 = 0. So 

there are p + 1 points (si) in P 1(Fp). For each point (si), there are p + 1 (resp. (p + 1)2) 
points (ti) over (si) if some of the si are zero (resp. otherwise); there are 3 points (si)
with si = 0 for some i. Thus,

|C(Fp2)| = (p + 1− 3)(p + 1)2 + 3(p + 1) = p3 + 1.

One checks that this means C is Fp2-maximal. Hence, C is Fp4-minimal and satisfies 
|C(Fp4)| = p3 + 1. Since C is Fp2i -maximal (resp. Fp2i-minimal) if i is odd (resp. even), 
the formula (17) follows immediately. �
Lemma 3.9. Let t = (t1 : t2 : t3) ∈ C(k). Then t ∈ C(Fp2) if and only if t1, t2, t3 are 
linearly dependent over Fp2 .

Proof. See [16, Lemma 2.1]. Alternatively, we give the following independent proof:
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The forward implication is immediate, so we will only show the reverse implication. 
Assume t1, t2, t3 are linearly dependent over Fp2 . Then the vectors (ti, tp

2

i , tp
4

i ) for i =
1, 2, 3 are k-linearly dependent. If (ti, tp

2

i , tp
4

i ) for i = 2, 3 are linearly independent, then 

there exist a, b ∈ k such that ti = atp
2

i +btp
4

i for i = 1, 2, 3. If they are linearly dependent, 
then there exists a′ ∈ k such that tp

2

i = a′tp
4

i for i = 1, 2, 3 and hence ti = atp
2

i with 

ap
2 = a′. Therefore, there exist a, b ∈ k such that ti = atp

2

i + btp
4

i for i = 1, 2, 3 in either 
case. Substituting this into the defining equation of C, we obtain

ap+1
3∑

i=1
tp

2+p3

i + abp
3∑

i=1
tp

2+p5

i + apb

3∑
i=1

tp
3+p4

i + bp+1
3∑

i=1
tp

4+p5

i = 0.

Again using the defining equation of C, we see that the first, third, and fourth terms 
vanish, so that also abp

∑3
i=1 t

p2+p5

i = abp(
∑3

i=1 t
p3+1
i )p2 = 0. If a = 0 then the point 

t = (t1 : t2 : t3) is defined over Fp4 and hence, by Lemma 3.8, it is defined over Fp2 . If 
b = 0, then t is defined over Fp2 as well. So we may assume that 

∑3
i=1 t

p3+1
i = 0. Let 

Z := V (Xp3+1
1 +Xp3+1

2 +Xp3+1
3 ) be the Fermat curve of degree p3 + 1. Then t ∈ C ∩Z. 

The intersection number of C and Z is (p + 1)(p3 + 1) and each point of C(Fp2) is in 
C ∩ Z. Since |C(Fp2)| = p3 + 1 by Lemma 3.8, it is enough to show that for each point 
s ∈ C(Fp2), the local multiplicity of C and Z at s is p +1. Since the unitary group U3(Fp)
acts transitively on C(Fp2), we may assume that s = (ζ : 0 : 1) where ζp+1 = −1. With 
local coordinates v = X1 − ζ and w = X2, the respective equations for C and Z at y
become vp+1 + ζvp + ζv + wp+1 and vp

3+1 + ζvp
3 + ζpv + wp3+1. Now we may read off 

that the local multiplicity, i.e., the valuation of v at s, is p + 1, as required. �
We will denote C0 := C \ C(Fp2). Slightly abusively, we will tacitly switch between 

the notations (t1, t2, t3) and (t1 : t2 : t3). For later use, we define the following:

Definition 3.10. For t = (t1, t2, t3) ∈ k3 (viewed as a column vector), let

End(t) = {A ∈ Mat3(Fp2) : A · t ∈ k · t}.

Lemma 3.11. For any t ∈ C0(k), the Fp2-algebra End(t) is isomorphic to either Fp2 or 
Fp6 .

Proof. For any A ∈ End(t), we have A · t = αAt for some αA ∈ k. The map

End(t)→ k

A �→ αA

is an Fp2-algebra homomorphism. It is injective, i.e., A · t = 0 with t = (t1 : t2 : t3)
implies that A = 0, since the ti are linearly independent over Fp2 by Lemma 3.9. Hence, 
End(t) is a finite field extension of Fp2 . Since End(t) ⊆ Mat3(Fp2) = End((Fp2)3), we 
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may regard (Fp2)3 as a vector space over End(t). It follows that [End(t) : Fp2 ] | 3, as 
required. �
Lemma 3.12. We have

CM := {t ∈ C0(k) : End(t) � Fp6} = C0(Fp6). (18)

Proof. The containment {t ∈ C0(k) : End(t) � Fp6} ⊆ C0(Fp6) is immediate, because t
is an eigenvector of a matrix in Mat3(Fp2) and can be solved over the ground field Fp6 . 
We will now prove the reverse containment.

For each t ∈ C0(Fp6), we construct for each element α ∈ Fp6 a matrix A ∈ Mat3(Fp6)
as follows

A = Aα := (t, t(p
2), t(p

4)) · diag(α, αp2
, αp4

) · (t, t(p2), t(p
4))−1.

Since the ti are linearly independent over Fp2 by Lemma 3.9, the matrix (t, t(p2), t(p
4))

is invertible. We check that

A(p2) = (t(p
2), t(p

4), t) · diag(αp2
, αp4

, α) · (t(p2), t(p
4), t)−1

= (t, t(p
2), t(p

4)) ·
(0 0 1

1 0 0
0 1 0

)
· diag(αp2

, αp4
, α) ·

(0 1 0
0 0 1
1 0 0

)
· (t, t(p2), t(p

4))−1

= A,

and hence A ∈ Mat3(Fp2). We also have that Aα · t = αt. Thus, the map α ∈ Fp6 �→ Aα

gives an isomorphism Fp6 � End(t), as required. �
Remark 3.13.

(1) We can also show that U3(Fp) acts transitively on C0(Fp6) = CM . The action on 
C(Fp2) is also transitive, with stabilisers of size p3(p + 1)(p2 − 1); this gives another 
proof of the result |C(Fp2)| = p3 + 1.

(2) The proof of Lemma 3.11 proves the following more general result. Let F be any field 
contained in a field K and t1, t2, . . . , tn be a set of F -linearly independent elements 
in K. Put t = (t1, . . . , tn)T and End(t) := {A ∈ Matn(F ) : A ·t ⊆ K·t}. Then End(t)
is a finite field extension of F of degree dividing n.
Furthermore, suppose that t1, . . . , tn are contained a degree n subextension E of F
in K. Then the F -basis t1, . . . , tn of E determines an F -algebra embedding r : E →
Matn(F ) which is characterised by r(a) · t = at for every a ∈ E. Thus, E � End(t)
and t is an eigenvector of a matrix in Matn(F ). This is an abstract way of doing 
what is done explicitly in the second part of the proof of Lemma 3.12.
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Definition 3.14. The morphism π : Pμ → C admits a section s defined as follows. For 
a base scheme S, let ρ2 : (Y2, pμ) → (Y1, λ1) be an object in C(S). Put (Y (p)

2 , μ(p)) :=
(Y, μ) ×S,FS

S, where FS : S → S is the absolute Frobenius map. The relative Frobenius 
morphism F : Y2 → Y

(p)
2 gives rise to a morphism of polarised abelian schemes F :

(Y2, pμ) → (Y (p)
2 , μ(p)). Since ker(ρ2) ⊆ ker(F), the morphism factors through an isogeny 

ρ1 : Y1 → Y
(p)
2 . As ρ∗2ρ∗1μ(p) = F∗μ(p) = pμ = ρ∗2λ1, we see that ρ∗1μ(p) = λ1 and thus 

obtain a polarised flag type quotient

(Y2, pμ) ρ2−−−−→ (Y1, λ1)
ρ1−−−−→ (Y (p)

2 , μ(p)).

This defines the section s, whose image will be denoted by T .

Recall the definition of the a-number from Definition 3.2. For an abelian threefold X
over k, we have a(X) ∈ {1, 2, 3}.

Proposition 3.15. Let the notation be as above.

(1) We have P ′
μ = Pμ − T .

(2) If x ∈ T then we have a(x) = 3.
(3) For any t ∈ C(k), we have t ∈ C(Fp2) if and only if a(x) ≥ 2 for any x ∈ π−1(t).
(4) For any x ∈Pμ(k), we have a(x) = 1 if and only if x /∈ T and π(x) /∈ C(Fp2).

Proof. See [13, Section 9.4]. �
3.3. Minimal isogenies

Given a polarised flag type quotient Y2 = E3
k

ρ2−→ Y1
ρ1−→ Y0 = X, the composite map 

ρ1 ◦ ρ2 : (Y2, λ2) → (Y0, λ0) = (X, λ) is an isogeny from a superspecial abelian variety 
Y2. Thus, this isogeny factors through the minimal isogeny of (X, λ):

(Y2, λ2)
ρ1◦ρ2−−−→ (X̃, λ̃) ϕ−→ (X,λ).

Since every member (X, λ) ∈ S3,1(k) can be constructed from a polarised flag type 
quotient (Y•, ρ•), we can construct the minimal isogeny of (X, λ) from (Y•, ρ•).

To describe the minimal isogenies for supersingular abelian threefolds in more detail, 
in the following proposition we separate into three cases, based on the a-number of the 
threefold.

Proposition 3.16. Let (X, λ) be a supersingular principally polarised abelian threefold 
over k. Suppose that (X, λ) lies in the image of P ′

μ under the map P ′
μ → S3,1 for some 

μ ∈ P (E3), so that there is a unique PFTQ over (X, λ).
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(1) If a(X) = 1, then the associated polarised flag type quotient (Y2, λ2) 
ρ2−→ (Y1, λ1) 

ρ1−→
(Y0, λ0) = (X, λ) gives the minimal isogeny ϕ := ρ1 ◦ ρ2 of degree p3.

(2) If a(X) = 2, then in the associated polarised flag type quotient Y2 = E3
k → Y1 →

Y0 = X we have a(Y1) = 3, so Y1 is superspecial. Thus, the minimal isogeny is 
ρ1 : (Y1, λ1) → (X, λ) of degree p, where ρ∗1λ = λ1 satisfies ker(λ1) � αp × αp.

(3) If a(X) = 3, then X is superspecial. Thus, X is k-isomorphic to E3
k and the minimal 

isogeny is the identity map.

Proof. (1) Let M2, M1, M0 denote the Dieudonné modules of Y2, Y1, Y0 = X, respec-
tively. Then a(M2) = 3. Suppose that a(M0) = 1. By Proposition 3.15, this 
corresponds to a point t = (t1 : t2 : t3) /∈ C(Fp2). We claim that a(M1) = 2, which 
implies the statement. The Dieudonné modules satisfy the following inclusions:

M2 ⊇ M1 ⊇ M0
⊇ ⊆ ⊆ ⊇

(F,V)M2 ⊃ (F,V)M1 = (F,V)M0
⊇ ⊆ ⊇ ⊆ ⊇

(F,V)2M2 = (F,V)2M1 = (F,V)2M0.

All inclusions follow from the construction of flag type quotients. For the equalities, 
we note the following: Since M2 is superspecial of genus three, we have (F, V)M2 =
FM2, (F, V)2M2 = pM2, and

dim(M2/FM2) = dim(FM2/pM2) = 3.

It follows from the definition of flag type quotients that dim(M1/FM2) = 1, so 
M1/FM2 is generated by one element, namely the image of t (abusively again denoted 
t). So (F, V)M1/pM2 is two-dimensional and generated by the two elements Ft and 
Vt, which are k-linearly independent since t /∈ C(Fp2), by Lemma 3.9. Using this, we 
see that

dim(FM2/(F,V)M1) = dim(FM2/pM2)− dim((F,V)M1/pM2) = 1

and a(M1) = dim(M1/(F, V)M1) = 2, as claimed. It follows from dim(M1/M0) = 1
and a(M1) = 2 that dim(M0/(F, V)M1) = 1. As we have assumed that a(M0) =
dim(M0/(F, V)M0) = 1, the latter implies the equality (F, V)M1 = (F, V)M0. Since 
dim(M0/(F, V)M1) = 1 and dim(M0/pM2) = 3, one has dim(F, V)M1/pM2) = 2. 
Since t1, t2, t3 are Fp2-linearly independent by Lemma 3.9, the vectors F2t, pt and V2t

in FM2/pFM2 span a 3-dimensional subspace and hence dim((F, V)2M1/pFM2) = 3. 
This shows the equality pM2 = (F, V)2M1 = (F, V)2M0.
Now put Φ := 1 + FV−1. We have shown that VΦM0 = (F, V)M1 is not superspecial 
and that Φ2M0 = M2 is superspecial. Therefore, M2 is the smallest superspecial 
Dieudonné module containing M0. This proves that ρ1 ◦ ρ2 : Y2 → X is the minimal 
isogeny.
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(2) When a(M0) = 2, this corresponds to a point t = (t1 : t2 : t3) ∈ C(Fp2). Using the 
notation from the previous item, we still have that (F, V)M1/pM2 is generated by Ft
and Vt, but since the ti are Fp2-linearly dependent, we have dim((F, V)M1/pM2) = 1, 
so a(M1) = 3. Since ker(λ1) ⊆ Y1[F ] � α3

p, we have ker(λ1) � α2
p, as claimed.

(3) The fact that a(X) = 3 if and only if X is superspecial is due to Oort, [15, Theo-
rem 2]. �

Remark 3.17. The proof of [13, Lemma 1.8] uses the claim: If X is a g-dimensional 
supersingular abelian variety with a(X) < g, and X ′ := X/A(X), where A(X) is the 
maximal α-subgroup of X, then a(X ′) > a(X).

Now take Y1 the abelian threefold as in Proposition 3.16(1). We have computed 
a(Y1) = 2 and

a(Y1/A(Y1)) = a((F,V)M1) = dim (F,V)M0/(F,V)2M1

= dim M0/(F,V)2M1 − dim M0/(F,V)M0 = 2.

This gives a counterexample to the claim.

4. The case a(X) ≥ 2

Let x = (X, λ) ∈ S3,1(k) with a(X) = 2 and let y ∈Pμ � P 1
C(O(−1) ⊕O(1)) be the 

point corresponding to the PFTQ over it:

(Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→ (Y0, λ0) = (X,λ).

By Propositions 3.15 and 3.16, (Y1, λ1) corresponds to a point t = (t1, t2, t3) ∈ C(Fp2)
and u ∈ P 1

t (k) := π−1(t). Moreover, ρ1 : (Y1, λ1) → (X, λ) is the minimal isogeny. Put 
x1 = (Y1, λ1). Then Λx1 = Λ3,p and by Corollary 2.5 and Proposition 2.12 we have

Mass(Λx) = (p− 1)(p3 + 1)(p3 − 1)
210 · 34 · 5 · 7 · [Aut(M1, 〈 〉) : Aut(M, 〈 , 〉)], (19)

where (M, 〈 , 〉) ⊆ (M1, 〈 , 〉) are the quasi-polarised Dieudonné modules associated to 
(Y1, λ1) → (X, λ).

Let M∨
1 denote the dual lattice of M1 with respect to 〈 , 〉. Then one has M∨

1 ⊆M ⊆
M1 and M/M∨

1 ∈ P (M1/M
∨
1 ) = P 1

t (k) is a one-dimensional k-subspace in M1/M
∨
1 . 

Since the morphism ρ2 is defined over Fp2 , the threefold Y1 is endowed with the Fp2-
structure Y ′

1 with Frobenius πY ′
1

= −p. The induced Fp2-structure on P 1
t is defined by 

the Fp2 -vector space V0 := M

1 /M

t,

1 , where M


1 := {m ∈ M1 : Fm + Vm = 0} is the 
skeleton of M1, cf. [13, Section 5.7].

Since ker(λ1) � αp×αp, the quasi-polarised superspecial Dieudonné module (M1, 〈 , 〉)
decomposes into a product of a two-dimensional indecomposable superspecial Dieudonné 
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module and a one-dimensional such module. By [13, Proposition 6.1], there is a W -basis 
e1, e2, e3, f1, f2, f3 for M1 such that Fei = −Vei = fi, Ffi = −Vfi = −pei for i = 1, 2, 3,

〈e1, e2〉 = p−1, 〈f1, f2〉 = 1, 〈e3, f3〉 = 1,

and other pairings are zero. Then M∨
1 is spanned by pe1, p2, e3, f1, f2, f3 and M1/M

∨
1 =

Spank{e1, e2}. Let u = (u1 : u2) ∈ P 1
t (k) be the projective coordinates of the point 

corresponding to M/M∨
1 . That is, M/M∨

1 is the one-dimensional subspace spanned by 
u = u1ē1 + u2ē2, where ēi denotes the image of ei in M1/M

∨
1 .

If u ∈ P 1
t (Fp2), then a(M) = 3 and Mass(Λx) is already computed in Corollary 2.5. 

Suppose then that u /∈ P 1
t (Fp2). In this case, M1 (resp. M∨

1 ) is the smallest (resp. max-
imal) superspecial Dieudonné module containing (resp. contained in) M . Thus,

End(M) = {g ∈ End(M1) : g(M∨
1 ) ⊆M∨

1 , g(M) ⊆M}.

Consider the reduction map

m : End(M1) = End(M

1 ) � End(M


1 /M
t,

1 ) = EndFp2 (V0) = Mat2(Fp2).

It is clear that End(M) contains ker(m) and that m induces a surjective map

m : End(M) � m(End(M)) = {g ∈ Mat2(Fp2) : g · u ⊆ k · u}.

Write End(u) := {g ∈ Mat2(Fp2) : g · u ⊆ k · u}.

Lemma 4.1.

(1) If u ∈ P 1
t (Fp4) − P 1

t (Fp2), then End(u) ⊆ Mat2(Fp2) is an Fp2-subalgebra which is 
isomorphic to Fp4 .

(2) If u ∈ P 1
t (k) − P 1

t (Fp4), then End(u) = Fp2 .

Proof. This is a simpler version of Lemmas 3.11 and 3.12 so we omit the proof; cf. also 
[27, Section 3]. �

Put 〈 , 〉1 := p〈 , 〉. Then 〈 , 〉1 induces a non-degenerate alternating pairing, again 
denoted 〈 , 〉1 : V0×V0 → Fp2 . The reduction map m then gives rise to the following map

m : Aut(M1, 〈 , 〉) = Aut(M1, 〈 , 〉1)→ Aut(V0, 〈 , 〉1) � SL2(Fp2). (20)

Lemma 4.2. The map m : Aut(M1, 〈 , 〉) → Aut(V0, 〈 , 〉1) is surjective.

Proof. Since Y1 is supersingular, we have that End(Y1) ⊗ Zp � End(M1) and that 
Gx1(Zp) � Aut(M1, 〈 , 〉); recall the notation from (6). The group scheme Gx1 ⊗ Zp is a 
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parahoric group scheme and in particular is smooth over Zp. Thus, the map Gx1(Zp) →
Gx1(Fp) is surjective. Now Aut(V0, 〈 , 〉1) = ResFp2/Fp

SL2 viewed as an algebraic group 
over Fp is a reductive quotient of the special fibre Gx1⊗Fp. Therefore, the map Gx1(Fp) →
Aut(V0, 〈 , 〉1) = SL2(Fp2) is also surjective. This proves the lemma. �

We now prove the main result of this section.

Theorem 4.3. Let x = (X, λ) ∈ S3,1(k) with a(X) ≥ 2 and let y ∈ P ′
μ(k) be a lift of x

for some μ ∈ P (E3). Write y = (t, u) where t = π(y) ∈ C(Fp2) and u ∈ π−1(t) = P 1
t (k). 

Then

Mass(Λx) = Lp

210 · 34 · 5 · 7 , (21)

where

Lp =

⎧⎪⎪⎨⎪⎪⎩
(p− 1)(p2 + 1)(p3 − 1) if u ∈ P 1

t (Fp2);
(p− 1)(p3 + 1)(p3 − 1)(p4 − p2) if u ∈ P 1

t (Fp4) \ P 1
t (Fp2);

2−e(p)(p− 1)(p3 + 1)(p3 − 1)p2(p4 − 1) if u /∈ P 1
t (Fp4);

(22)

where e(p) = 0 if p = 2 and e(p) = 1 if p > 2.

Proof. By Lemma 4.2,

[Aut(M1, 〈 , 〉) : Aut(M, 〈 , 〉)] = [SL2(Fp2) : SL2(Fp2) ∩ End(u)×].

By Lemma 4.1,

SL2(Fp2) ∩ End(u)× =
{
F1
p4 if u ∈ P 1

t (Fp4) \ P 1
t (Fp2);

{±1} if u /∈ P 1
t (Fp4).

It follows that

[Aut(M1, 〈 〉) : Aut(M, 〈 , 〉)] =
{
p2(p2 − 1) if u ∈ P 1

t (Fp4) \ P 1
t (Fp2);

|PSL2(Fp2)| if u /∈ P 1
t (Fp4),

so the theorem follows from (19). �
5. The case a(X) = 1

Suppose that (X, λ) is a supersingular principally polarised abelian threefold over k
with a(X) = 1. By Proposition 3.16(1), there is a minimal isogeny ϕ : (Y2, μ) → (X, λ), 
where Y2 = E3

k, and where ϕ∗λ = pμ for μ ∈ P (E3) a principal polarisation. In this 
section we will compute the local index
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[Aut((Y2, μ)[p∞]) : Aut((X,λ)[p∞])]. (23)

Let M and M2 be the Dieudonné modules of X and Y2, respectively. Together with the 
induced (quasi-)polarisations, we have (M, 〈, 〉) and (M2, 〈, 〉2), where 〈, 〉2 = p〈, 〉 is again 
a principal polarisation. (Note that (M2, 〈, 〉2) is the quasi-polarised Dieudonné module 
associated to (Y2, μ) and not to (Y2, pμ), and that pM2 ⊆ M by the proof of Proposi-
tion 3.16(1).) The proof of Proposition 3.16(1) also shows that every automorphism of 
M can be lifted to an automorphism of M2, i.e., that Aut((M, 〈, 〉)) ⊆ Aut((M2, 〈, 〉2)). 
Then equivalently to (23), cf. Proposition 2.12, we will compute

[Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))]. (24)

5.1. Determining Aut((M2, 〈, 〉2))

Let W = W (k) denote the ring of Witt vectors over k. Choose a W -basis 
e1, e2, e3, f1, f2, f3 for M2 such that

Fei = −Vei = fi, Ffi = −Vfi = −pei, 〈ei, fj〉2 = δij , 〈ei, ej〉2 = 〈fi, fj〉2 = 0,
(25)

for all i, j ∈ {1, 2, 3}.
Let Dp be the division quaternion algebra over Qp and let ODp

denote its maximal 
order. We also write Dp = Qp2 [Π] and ODp

= Zp2 [Π], where Zp2 = W (Fp2) and Qp2 =
FracW (Fp2), and where Π2 = −p and Πa = aΠ for any a ∈ Qp2 . Here a �→ a denotes 
the non-trivial automorphism of Qp2/Qp. If we let ∗ denote the canonical involution of 
Dp, then a∗ = a for any a ∈ Qp2 , and Π∗ = −Π.

Lemma 5.1. We have End(M2) � Mat3(ODp
) and hence Aut(M2) � GL3(ODp

) (not 
taking the polarisation into account).

Proof. We have End(M2) = EndODp
(M�

2 ), where M�
2 := {m ∈ M2 : Fm + Vm = 0}

denotes the skeleton of M2; this is an ODp
-module where Π acts by F and Π∗ acts by V. 

Now the result follows by using the basis e1, e2, e3 for Mat3(ODp
)op (the opposite alge-

bra); we choose a convention where the matrices act on the left. We fix the isomorphism 
Mat3(ODp

)op � Mat3(OD) by sending A to A∗. �
We fix the identification End(M2) = Mat3(OD) by the isomorphism chosen in 

Lemma 5.1 with respect to the basis in (25).

Lemma 5.2. We have Aut(M2, 〈, 〉2) � {A ∈ GL3(ODp
) : A∗A � I3}.

Proof. It suffices to check that 〈A ·ei, ej〉2 = 〈ei, A∗ ·ej〉2 for any A ∈ Mat3(ODp
) and any 

i, j ∈ {1, 2, 3}. Write A = (aij) and A∗ = (a′ij) with aij = cij + dijΠ for cij , dij ∈ Zp2 , 
and with a′ij = a∗ji. Then
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〈A · ei, ej〉2 = 〈
∑
k

aikek, ej〉2 = 〈dijfj , ej〉2 = −dij

coincides with

〈ei, A∗ · ej〉2 = 〈ei,
∑
k

a′jkek〉2 = 〈ei, a′jiei〉2 = 〈ei, cijei − dijfi〉2 = −dij ,

as required. �
5.2. Endomorphisms and automorphisms modulo pM2

As was pointed out earlier, the proof of Proposition 3.16(1) contains the important 
observation that pM2 ⊆ M . This allows us to consider the endomorphisms and auto-
morphisms of both M2 and M modulo p (i.e., reducing modulo pM2) and modulo Π. In 
Definitions 5.3 and 5.4, we first define, and introduce notation for, all the endomorphism 
rings and automorphism groups we are considering.

Definition 5.3. Let mp denote the reduction-modulo-p map and mΠ the reduction-
modulo-Π map. By Lemma 5.1, for M2 we have

End(M2) � Mat3(ODp
) mp−−→ Mat3(Fp2 [Π]) mΠ−−→ Mat3(Fp2). (26)

On the level of automorphisms (respecting the polarisation) we get

Aut(M2, 〈, 〉2)
mp−−→ G(M2,〈,〉2)

mΠ−−→ G(M2,〈,〉2), (27)

where

G(M2,〈,〉2) := {A + BΠ ∈ GL3(Fp2 [Π]) : AA
T = I3, B

TA = A
T
B}, (28)

(here, BT denotes the transpose of the matrix B), and where

G(M2,〈,〉2) := {A ∈ GL3(Fp2) : A∗A = I3}. (29)

Definition 5.4. For M we have End(M) = {g ∈ End(M2) : g(M) ⊆ M} and Aut(M) =
{g ∈ Aut(M2) : g(M) = M}, and

Aut(M, 〈, 〉) = {g ∈ Aut(M2, 〈, 〉2) : g(M) = M}. (30)

Under the same maps mp and mΠ, we find

EM := mp(End(M)) = {A ∈ Mat3(Fp2 [Π]) : A ·M/pM2 ⊆M/pM2} (31)

and EM := mΠ(EM ) ⊆ Mat3(Fp2). These fit in the diagram
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End(M) End(M2) = Mat3(ODp
)

EM Mat3(Fp2 [Π]))

EM Mat3(Fp2)

mp mp

mΠ mΠ

(32)

in which all horizontal maps are inclusion maps and the left vertical maps are the sur-
jective reduction maps.

On the level of automorphisms, we let

GM := mp(Aut(M)) = {A ∈ GL3(Fp2 [Π]) : A ·M/pM2 ⊆M/pM2} (33)

and GM := mΠ(GM ). For the polarised versions, since ϕ∗λ = pμ, we obtain

G(M,〈,〉) := {g ∈ G(M2,〈,〉2) : g(M/pM2) ⊆M/pM2} (34)

and

G(M,〈,〉) := {g ∈ G(M2,〈,〉2) : g(M/pM2) ⊆M/pM2}. (35)

Denote the group of three-by-three symmetric matrices over Fp2 by S3(Fp2); this 
group has cardinality p12 (since it a six-dimensional Fp2-vector space). Also recall that 
the group U3(Fp) of three-by-three unitary matrices with entries in Fp2 has cardinality 
p3(p + 1)(p2 − 1)(p3 + 1).

Lemma 5.5. In Equation (28) we have A ∈ U3(Fp) and BTA ∈ S3(Fp2). Hence,

|G(M2,〈,〉2)| = |U3(Fp)| · |S3(Fp2)| = p15(p + 1)(p2 − 1)(p3 + 1). (36)

Remark 5.6. Now we note, cf. (24), that

[Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))] = [G(M2,〈,〉2) : G(M,〈,〉)]. (37)

In light of Lemma 5.5, it now suffices to compute [G(M2,〈,〉2) : G(M,〈,〉)]. This will take 
up the remainder of this section.

We start by studying the unpolarised automorphisms GM2 . Thus, let g = (aij +
bijΠ)1≤i,j≤3 ∈ GL3(Fp2(Π)) be an (unpolarised) automorphism of M2/pM2. If we take 
ē1, ̄e2, ̄e3, f̄1, f̄2, f̄3 (i.e., the reductions of e1, . . . , f3 in the previous subsection) as a basis 
of M2/pM2 in this order, g can be expressed by a matrix of the form

g =
(
A 0
B A(p)

)
, (38)
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where A = (aij)1≤i,j≤3, B = (bij)1≤i,j≤3, and A(p) = (apij)1≤i,j≤3.
Recall from Propositions 3.15 and 3.16(1) that the polarised flag type quotient Y2 →

Y1 → X corresponds to a point t = (t1 : t2 : t3) ∈ C0(k) such that M1/FM2 is 
generated by t1ē1 + t2ē2 + t3ē3, where M1 is the Dieudonné module of Y1, and a point 
u = (u1 : u2) ∈ P 1

t (k) := π−1(t). We choose a new basis for M2/pM2 as follows:

Ē1 :=
∑

i=1,2,3
tiēi, Ē2 :=

∑
i=1,2,3

tpi ēi, Ē3 :=
∑

i=1,2,3
tp

−1

i ēi,

F̄1 :=
∑

i=1,2,3
tif̄i, F̄2 :=

∑
i=1,2,3

tpi f̄i, F̄3 :=
∑

i=1,2,3
tp

−1

i f̄i.

(This is a basis by Lemma 3.9.) Using this basis, g is expressed as

g =
(
T−1AT 0
T−1BT T−1A(p)T

)
, (39)

where

T :=

⎛⎜⎝t1 tp1 tp
−1

1
t2 tp2 tp

−1

2
t3 tp3 tp

−1

3

⎞⎟⎠ . (40)

Now we determine the group GM ⊆ GL3(Fp2 [Π]) of elements preserving M/pM2. Any 
such element will also preserve M1/pM2. We prove the following proposition.

Proposition 5.7. Let g ∈ GL3(Fp2 [Π]) be an automorphism of M2/pM2, expressed as in 
(38). Then g ∈ GM (i.e., g preserves M/pM2) if and only if the following hold:

(a) We have A · t = αt for some α ∈ k, i.e., A ∈ End(t).
(b) The (1, 1)-component of the matrix T−1BT is u2u

−1
1 (α− αp3).

Proof. For an A ∈ End(t) (see Definition 3.10) with eigenvalue α, it holds by definition 
that

T−1AT =
(
α ∗ ∗
∗ ∗
∗ ∗

)
,T−1A(p)T =

⎛⎝∗∗ αp

∗ αp−1

⎞⎠ . (41)

As det(A) = α1+p2+p−2 and det(A(p)) = det(A)p, we see that

T−1A(p)T =

⎛⎝αp3

∗ αp

∗ αp−1

⎞⎠ . (42)
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By Proposition 3.16(1), the quotient M1/pM2 is a two dimensional k-vector space gen-
erated by Ē1 and F̄1. As M∨

1 = (F, V)M1 = pM2, we find that M/pM2 ⊆ M1/pM2 is 
a one-dimensional k-vector space. Take u1, u2 ∈ k so that M/pM2 is generated by the 
image of u1Ē1 + u2F̄1. As M �= pM2, we see that u1 �= 0.

We see that if g ∈ GL3(Fp2 [Π]) preserves M1/(F, V)M2, then it induces an automor-
phism of M1/(F, V)M1 = M1/pM2 which is expressed as 

( α

∗ αp3
)

by (39), (41), and 
(42). Moreover, g also preserves M/(F, V)M1 = M/pM2 if and only if the column vector ( α

∗ αp3
) ( u1

u2

)
is in the subspace spanned by 

( u1
u2

)
. This is equivalent to the entry ∗ being 

equal to u2u
−1
1 (α− αp3). �

Remark 5.8.

(1) It follows from the construction of polarised flag type quotients that for (X, λ) with 
a(X) = 1 and a choice μ ∈ P (E3) together with an identification (X̃, ̃λ) = (E3

k, pμ), 
there exists a unique pair (t, u) where t = (t1 : t2 : t3) ∈ C0(k) and u = (u1 : u2) ∈
P 1(k) as in the proof of Proposition 5.7. For the rest of the section, we will work 
with these (t, u).

(2) The coordinates (t, u) in (1) also give rise to a trivialisation C0 × P � PC0 , where 
PC0 := Pμ ×C C0, as follows. By Proposition 3.7, points in PC0 correspond to 
pairs (M1, M): here M1 ⊆ M2 is a four-dimensional subspace generated by the 
subspace VM2 and E1 = t1ē1 + t2ē2 + t3ē3 with (t1 : t2 : t3) ∈ C0, and M ⊆ M2

is a three-dimensional subspace with M
⊥
1 ⊆M ⊆M1, where M

⊥
1 is the orthogonal 

complement of M1 with respect to 〈 , 〉2. The two-dimensional vector spaces M1/M
⊥
1

for t ∈ C0 form a rank two vector bundle V = O(1) ⊕O(−1)|C0 over C0. As shown 

in the proof of Proposition 5.7, the images of E1 and F 1 in M1/M
⊥
1 (again denoted 

by E1 and F 1 for simplicity) form a basis, and give rise to two global sections Ẽ1

and F̃1 of V respectively (note that both E1 and F 1 are vector-valued functions in 
t1, t2, and t3). Then the desired trivialisation C0 × P

∼−→PC0 � P (V ) is given by 
(t, (u1 : u2)) �→ [u1Ẽ1(t) + u2F̃1(t)]. Since M2 is the Dieudonné module of E3

k, the 
vector space M2 has an Fp2-structure, so we see that this trivialisation is defined 
over Fp2 .
Now let t ∈ C0(k) and u = (0 : 1). The corresponding subspace M is generated by 

F 1 and M
⊥
1 = (F, V)M1. Therefore, we have M = VM2, which corresponds a point 

in T . It follows that under the above trivialisation, T |C0 � C0 × {∞}.

The following lemma follows from Lemma 3.11, Lemma 3.12, and Proposition 5.7. It 
describes the polarised elements g ∈ G(M2,〈,〉2) that preserve M1/pM2: for such g of the 
form (38), Proposition 5.7(1) implies that A ∈ End(t), while Definition 5.3(28) implies 
that A is unitary.

Lemma 5.9. Let t = (t1 : t2 : t3) ∈ C0(k).
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(1) When t /∈ C(Fp6), we have

End(t) ∩ U3(Fp) � {α ∈ Fp2 : αp+1 = 1}.

(2) When t ∈ C(Fp6), we have

End(t) ∩ U3(Fp) � {α ∈ Fp6 : αp3+1 = 1}.

Proof. (1) This follows since a diagonal matrix αI3 with α ∈ Fp2 is unitary if and only 
if αp+1 = 1.

(2) Take any A ∈ End(t) ∩ U3(Fp). The eigenvalues of A(p)T are αp, αp3
, αp5 where 

α is the eigenvalue of A. As A is unitary, α−1 is also an eigenvalue, so we have 
α−1 ∈ {αp, αp3

, αp5}. In each case, we have αp3+1 = 1.
For the converse, choose any α ∈ Fp6 such that αp3+1 = 1. By the proof of 
Lemma 3.11, the corresponding A ∈ End(t) is given by

A = (t, t(p
2), t(p

4))diag(α, αp2
, αp4

)(t, t(p
2), t(p

4))−1.

We compute that

AA(p)T = (t, t(p
2), t(p

4))

⎛⎝ s−1

s−p2

s−p

⎞⎠ (t(p), t(p
3), t(p

5))T

where s = tp
3+1

1 + tp
3+1

2 + tp
3+1

3 . That is, AA(p)T is independent of α. By the case 
α = 1, we have AA(p)T = 1. �

Suppose now that we have g ∈ G(M2,〈,〉2) of the form (38) preserving M1/pM2, i.e., 
we have A ∈ End(t) ∩ U3(Fp) by Lemma 5.9. We now determine the conditions on B so 
that g also preserves M/pM2, i.e., so that g ∈ G(M,〈,〉). By (28), B satisfies a symmetric 
condition.

Let S3(Fp2)A (for A ∈ End(t) ∩ U3(Fp) as above) be the Fp2-vector space consisting 
of matrices of the form SA for some S ∈ S3(Fp2). Define a homomorphism of Fp2-vector 
spaces

ψt,A :S3(Fp2)A→ k

SA �→ the (1, 1)-component of T−1SAT .
(43)

Similarly define a homomorphism

ψt :S3(Fp2)→ k

S �→ the (1, 1)-component of T−1ST .
(44)

Using these notations, we have the following proposition.
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Proposition 5.10. The group G(M,〈,〉) consists of the matrices of the form

(
A 0
SA A(p)

)
satisfying the following conditions:

(1) A ∈ End(t) ∩ U3(Fp) with eigenvalue α;
(2) S ∈ S3(Fp2) is a symmetric matrix; and
(3) ψt,A(SA) = u2u

−1
1 (α− αp3).

The third condition is equivalent to

(3’) ψt(S) = u2u
−1
1 (1 − αp3−1).

Proof. It follows from (34) and Proposition 5.7 that for A ∈ End(t) ∩U3(Fp) with eigen-

value α, the matrix 
(
A 0
B A(p)

)
is an element of G(M,〈,〉2) ∩G(M,〈,〉) if and only if BA−1

is a symmetric matrix and the (1, 1)-component of the matrix T−1BT is u2u
−1
1 (α−αp3). 

The latter condition amounts to Condition (3) (and (3’)) by noticing that since T−1AT

is of the form

(
α ∗ ∗
∗ ∗
∗ ∗

)

where α is the eigenvalue of A, we have a commutative diagram

S3(Fp2) k

S3(Fp2)A k

ψx

·A ·α

ψt,A

, (45)

where the left vertical arrow is multiplying A from the right and the right vertical arrow 
is multiplying with α. �

The following corollary follows immediately from Proposition 5.10 and summarises 
the results in this subsection.

Corollary 5.11. We have

|G(M,〈,〉)| = |{A ∈ End(t) ∩ U3(Fp) : u2u
−1
1 (1− αp3−1) ∈ Im(ψt)}| · | ker(ψt)|. (46)
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5.3. Analysing Im(ψt) and ker(ψt)

In the following subsection, we will make Corollary 5.11 more explicit by analysing 
the image and kernel of the homomorphism ψt.

Definition 5.12. In the notation as above, we set

d(t) := dimFp2 (Im(ψt)). (47)

As dimFp2 (S3(Fp2)) = 6, we see that d(t) ≤ 6, and that

| ker(ψt)| = p2(6−d(t)). (48)

We prove the following precise result about the values of d(t).

Proposition 5.13. We have 3 ≤ d(t) ≤ 6. When p = 2, we have d(t) = 3. Let v =
(t21, t22, t23, t1t2, t1t3, t2t3) and let

Δ =
{

det
(
vT , (v(p2))T , (v(p4))T , . . . , (v(p10))T

)
= 0

}
.

When p �= 2, we have:

d(t) = 3 if and only if t ∈ C0(Fp6);

d(t) = 4 if and only if t ∈ C0(Fp8);

d(t) = 5 if and only if t ∈ Δ ∩ C0 \
(
C0(Fp6)� C0(Fp8)

)
;

d(t) = 6 if and only if t /∈ Δ ∩ C0.

(49)

Proof. Since t ∈ C0(k), we see that ti �= 0, and without loss of generality we assume 
that t3 = 1. For 1 ≤ i, j ≤ 3, let Iij be the three-by-three matrix whose (i, j)-component 
is one and where all other entries are zero. Then I11, I22, I33, I12 + I21, I13 + I31, I23 + I32
is a basis for S3(Fp2) over Fp2 . We set

w1 = ψt(I11), w2 = ψt(I22), w3 = ψt(I33),

w4 = ψt(I12 + I21), w5 = ψt(I13 + I31), w6 = ψt(I23 + I32).
(50)

Lemma 5.14. The wi in (50) satisfy the following relations:

w1 = t21w3, w2 = t22w3,

w4 = 2t1t2w3,

w5 = 2t1w3, w6 = 2t2w3,

and w3 is not zero.
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Proof. The inverse matrix of T is

T−1 = det(T )−1

⎛⎜⎝tp2 − tp
−1

2 tp
−1

1 − tp1 tp1t
p−1

2 − tp
−1

1 tp2

tp
−1

2 − t2 t1 − tp
−1

1 tp
−1

1 t2 − t1t
p−1

2
tp2 − t2 t1 − tp1 tp1t2 − t1t

p
2

⎞⎟⎠ .

Since for any matrices M = (mij), N = (nij) and L = (lij) the (1, 1)-component of 
MNL is given by 

∑
i,j m1inij lj1, we have

w1 = det(T )−1(tp2 − tp
−1

2 )t1;

w2 = det(T )−1(tp
−1

1 − tp1)t2.

Furthermore, w3 is given by

w3 = det(T )−1(tp1t
p−1

2 − tp
−1

1 tp2)

= det(T )−1t−1
1 (tp+1

1 tp
−1

2 − tp
−1+1

1 tp2)

= det(T )−1t−1
1 (tp2 − tp

−1

2 ).

For the last equality, we used equations tp+1
1 + tp+1

2 +1 = 0 and tp
−1+1

1 + tp
−1+1

2 +1 = 0. 
Similarly, we see that w3 = det(T )−1t−1

2 (tp
−1

1 − tp1). These computations imply the 
first two relations of the assertion, and since t1, t2 /∈ Fp2 , we see that w3 is not zero. 
Furthermore, we compute that

w4 = det(T )−1((tp2 − tp
−1

2 )t2 + (tp
−1

1 − tp1)t1)

= det(T )−1(tp+1
2 − tp

−1+1
2 + tp

−1+1
1 − tp+1

1 )

= 2 det(T )−1t2(tp2 − tp
−1

2 );

w5 = det(T )−1((tp2 − tp
−1

2 ) + (tp1t
p−1

2 − tp
−1

1 tp2)t1)

= det(T )−1(tp2 − tp
−1

2 + tp+1
1 tp

−1

2 − tp
−1+1

1 tp2)

= 2 det(T )−1(tp2 − tp
−1

2 ).

Similarly, we see that w6 = 2 det(T )−1(tp
−1

1 − tp1), so we obtain the remaining rela-
tions. �

When p �= 2, we see from Lemma 5.14 that

d(t) = dimFp2 〈w1, w2, w3, w4, w5, w6〉 = dimFp2 〈1, t1, t2, t1t2, t21, t22〉.

In particular, this implies that
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d(t) ≥ dimFp2 〈w3, w5, w6〉 = dimFp2 〈1, t1, t2〉 = 3.

When p = 2, by Lemma 3.9 and Lemma 5.14, we see that d(t) = 3. So assume p �= 2, 
and consider (49).

By construction (since t3 = 1), we have t ∈ Δ if and only if dimFp2 〈1, t1, t2, t1t2, t21, t22〉
≤ 5. Hence we see that t ∈ Δ ∩ C0 if and only if d(t) ≤ 5, which gives the required 
statement for d(t) = 6. Also note that if d(t) ≤ 5 then there exists some conic Q/Fp2

with equation a1 +a2t1 +a3t2 +a4t1t2 +a5t
2
1 +a6t

2
2 = 0 such that t ∈ C0∩Q. Similarly if 

d(t) ≤ 4 then there exist two independent conics Q1, Q2 such that t ∈ C0∩Q1∩Q2. In this 
case, Q1 and Q2 do not have a common component (even defined over Fp). Otherwise, 
the intersection Q1∩Q2 must be a line L defined over Fp2 (because we require Q1 �= Q2) 
and Q1 = L ∪L1 for another line L1 defined over Fp2 . This implies that t ∈ L or t ∈ L1, a 
contradiction by Lemma 3.9. If d(t) ≤ 3 there exist three independent conics Q1, Q2, Q3
such that t ∈ C0 ∩Q1 ∩Q2 ∩Q3.

If t ∈ C0(Fp2a) then d(t) ≤ a, i.e., if 2 ≤ degFp2 (t) ≤ a then d(t) ≤ a, for any value of 
a. This shows in particular that if t ∈ C0(Fp6), then d(t) = 3, cf. Lemma 3.9. Conversely, 
since |Q1 ∩ Q2| ≤ 4 by Bézout’s theorem we see that if d(t) ≤ 4 then degFp2 (t) ≤ 4. 
That is, then t ∈ C0(Fp8) ∪ C0(Fp6); note that by Lemma 3.8 we have C0(Fp4) = ∅. 
If d(t) = 3, then the Fp2-subspace 〈1, t1, t2, t21, t22, t1t2〉 is equal to the Fp2 -subspace U
spanned by 1, t1, t2. Since t1U ⊆ U and t2U ⊆ U , the algebra Fp2 [t1, t2] = U has 
dimension three and degFp2 (t) = 3. This implies that d(t) = 3 if and only if t ∈ C0(Fp6)
and hence d(t) = 4 if and only if t ∈ C0(Fp8). The statement for d(t) = 5 now follows. �
Remark 5.15. We provide another proof of the implication d(t) = 3 =⇒ degFp2 (t) = 3, 
since this information may also be useful. Suppose P1, P2, P3, P4 ∈ P 2(K), where K is 
a field, are four distinct points not on the same line. Then the conics passing through 
them form a P 1-family. To see this, suppose Q is represented by F (t) = 0, where F (t) =
a1t

2
1 + a2t

2
2 + a3t

2
3 + a4t1t2 + a5t1t2 + a6t1t3. By assumption P1, P2, P3 are not on the 

same line. Choose a coordinate for P 2 over K such that P1 = (1 : 0 : 0), P2 = (0 : 1 : 0)
and P3 = (0 : 0 : 1). Then a1 = a2 = a3 = 0. The point P4 = (α1 : α2 : α3) satisfies 
(α1α2, α1α3, α2α3) �= (0, 0, 0). Thus, F (P4) = 0 gives a non-trivial linear relation among 
a4, a5, and a6.

Suppose now t ∈ C0 ∩ Q1 ∩ Q2 ∩ Q3 with Fp2 -linear independent conics Q1, Q2, Q3. 
It suffices to prove |Q1 ∩Q2 ∩Q3| ≤ 3. If |Q1 ∩Q2| ≤ 3, then we are done. So suppose 
that Q1 ∩ Q2 = {P1, P2, P3, P4}. If Q3 contains these four points, then Q3 is a linear 
combination of Q1 and Q2 over some extension of Fp2 and by descent an Fp2 -linear 
combination of Q1 and Q2, contradiction. Thus, we have shown that |Q1∩Q2 ∩Q3| ≤ 3.

Definition 5.16. Let PC0 � C0 × P 1 be the fibre PC(O(−1) ⊕O(1)) ×C C0 over C0, cf. 
Remark 5.8. For each S ∈ S3(Fp2), we define a morphism fS : C0 → PC0 via the map 
C0 � t = (t1 : t2 : t3) �→ (t(p), (1 : ψt(S)p)) ∈ C0 × P 1. Observe from the computation in 

the proof of Proposition 5.13 that ψt(S) is a polynomial function in tp
−1

1 , tp
−1

2 , tp
−1

3 , and 
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hence that ψt(S)p is a polynomial function in t1, t2, t3. The image of fS defines a Cartier 
divisor DS ⊆PC0 , and we let D be the horizontal divisor

D =
∑

S∈S3(Fp2 )

DS .

For t ∈ C0(k), let Dt = π−1(t) ∩D . That is, (u1 : u2) ∈ Dt if and only if u2u
−1
1 ∈ Im(ψt).

Lemma 5.17. Let t = (t1 : t2 : t3) ∈ C0(k).

(1) If t /∈ C0(Fp6), then

{α ∈ F×
p2 : u2u

−1
1 (1− αp3−1) ∈ Im(ψt)} =

{
F×
p2 if (u1 : u2) ∈ Dt;

F×
p otherwise.

(2) If t ∈ C0(Fp6), then

{α ∈ F×
p6 : u2u

−1
1 (1− αp3−1) ∈ Im(ψt)} =

{
F×
p6 if (u1 : u2) ∈ Dt;

F×
p3 otherwise.

Proof. (1) First we note that F×
p ⊆ {α ∈ F×

p2 : u2u
−1
1 (1 −αp3−1) ∈ Im(ψt)}. Since Im(ψt)

is an Fp2-vector space, we have that if (u1 : u2) ∈ Dt, i.e., if u2u
−1
1 ∈ Im(ψt), then 

u2u
−1
1 (1 −αp3−1) ∈ Im(ψt) for any α ∈ F×

p2 . Conversely if u2u
−1
1 (1 −αp3−1) ∈ Im(ψt)

for some α ∈ Fp2 \ Fp, then u2u
−1
1 ∈ Im(ψt).

(2) If t ∈ C0(Fp6), then Im(ψt) ⊆ Fp6 . Since dimFp2 (Fp6) = 3 and d(t) ≥ 3 by Propo-
sition 5.13, we must have that Im(ψt) = Fp6 . The proof now follows from a similar 
argument as in (1). �

Corollary 5.18. We have

{A ∈ End(t) ∩ U3(Fp) : u2u
−1
1 (1− αp3−1) ∈ Im(ψt)} �⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{α ∈ Fp : αp+1 = 1} if t /∈ C0(Fp6) and u /∈ Dt;
{α ∈ Fp2 : αp+1 = 1} if t /∈ C0(Fp6) and u ∈ Dt;
{α ∈ Fp3 : αp3+1 = 1} if t ∈ C0(Fp6) and u /∈ Dt;
{α ∈ Fp6 : αp3+1 = 1} if t ∈ C0(Fp6) and u ∈ Dt.

Proof. This follows from combining Lemma 5.9 with Lemma 5.17. �
5.4. Determining [Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))]

By Corollary 5.11, Equation (48), and the results in the previous subsection, in par-
ticular Corollary 5.18, we immediately obtain the following result.



V. Karemaker et al. / Advances in Mathematics 386 (2021) 107812 35
Lemma 5.19. Define e(p) = 0 if p = 2 and e(p) = 1 if p > 2. Then

|G(M,〈,〉)| =

⎧⎪⎪⎨⎪⎪⎩
2e(p)p2(6−d(t)) if u /∈ Dt;
(p + 1)p2(6−d(t)) if t /∈ C0(Fp6) and u ∈ Dt;
(p3 + 1)p6 if t ∈ C0(Fp6) and u ∈ Dt.

(51)

Recall that d(t) = 3 when t ∈ C0(Fp6). Combining Lemma 5.19 with Lemma 5.5, and 
using Remark 5.6, we conclude the following.

Corollary 5.20. We have

[Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))] = [G(M2,〈,〉2) : G(M,〈,〉)] =⎧⎪⎪⎨⎪⎪⎩
2−e(p)p3+2d(t)(p + 1)(p2 − 1)(p3 + 1) if u /∈ Dt;
p3+2d(t)(p2 − 1)(p3 + 1) if t /∈ C0(Fp6) and u ∈ Dt;
p9(p + 1)(p2 − 1) if t ∈ C0(Fp6) and u ∈ Dt.

(52)

Now Corollary 2.5(1) and Corollary 5.20 yield the main result of this section, i.e., the 
mass formula for a supersingular principally polarised abelian threefold x = (X, λ) of 
a-number 1, cf. Theorem B.

Theorem 5.21. Let x = (X, λ) ∈ S3,1 such that a(X) = 1. For μ ∈ P 1(E3), consider the 
associated polarised flag type quotient (Y2, μ) → (Y1, λ1) → (X, λ) which is characterised 
by the pair (t, u) with t = (t1 : t2 : t3) ∈ C0(k) and u = (u1 : u2) ∈ P 1(k). Let (M2, 〈, 〉2)
and (M, 〈, 〉) be the respective polarised Dieudonné modules of Y2 and X, let Dt be as in 
Definition 5.16, and let d(t) be as in Definition 5.12. Then

Mass(Λx) = Mass(Λ3,1) · [Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))] =

p3

210 · 34 · 5 · 7

⎧⎪⎪⎨⎪⎪⎩
2−e(p)p2d(t)(p2 − 1)(p4 − 1)(p6 − 1) if u /∈ Dt;
p2d(t)(p− 1)(p4 − 1)(p6 − 1) if t /∈ C0(Fp6) and u ∈ Dt;
p6(p2 − 1)(p3 − 1)(p4 − 1) if t ∈ C0(Fp6) and u ∈ Dt.

(53)

6. The automorphism groups

In this section we discuss the automorphism groups of principally polarised abelian 
threefolds (X, λ) over an algebraically closed field k ⊇ Fp with a(X) = 1. We shall 
first focus on an open dense locus in Pμ(a = 1) (the a-number one locus in Pμ) in 
Subsection 6.2 and then discuss a few other cases in Subsections 6.3 and 6.4. To get 
started, we record some preliminaries in the next subsection.
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6.1. Arithmetic properties of definite quaternion algebras over Q

Let Cn denote the cyclic group of order n ≥ 1. Let Bp,∞ denote the definite quaternion 
Q-algebra ramified exactly at {∞, p}. The class number h(Bp,∞) of Bp,∞ was determined 
by Deuring, Eichler and Igusa (cf. [10]) as follows:

h(Bp,∞) = p− 1
12 + 1

3

(
1−

(
−3
p

))
+ 1

4

(
1−

(
−4
p

))
, (54)

where (·/p) is the Legendre symbol. If h(Bp,∞) = 1, then the type number of Bp,∞ is 
one and hence all maximal orders are conjugate. It follows from (54) that

h(Bp,∞) = 1 ⇐⇒ p ∈ {2, 3, 5, 7, 13}. (55)

If p = 2, the quaternion algebra B2,∞ �
(

−1,−1
Q

)
is generated by i, j with relations 

i2 = j2 = −1 and k := ij = −ji, and the Z-lattice

O2,∞ := SpanZ
{

1, i, j, 1 + i + j + k

2

}
(56)

is a maximal order of B2,∞. Moreover,

O×
2,∞ =

{
±1,±i,±j,±k, ±1± i± j ± k

2

}
=: E24, (57)

and one has E24 � SL2(F3) and E24/{±1} � A4.
If p = 3, the quaternion algebra B3,∞ �

(
−1,−3

Q

)
is generated by i, j with relations 

i2 = −1, j2 = −3 and k := ij = −ji, and the Z-lattice

O3,∞ := SpanZ
{

1, i, 1 + j

2 ,
i(1 + j)

2

}
(58)

is a maximal order of B3,∞. Moreover,

O×
3,∞ = 〈i, ζ6〉 =: T12, ζ6 = (1 + j)/2, (59)

and one has T12 � C4 � C3 and T12/{±1} � D3, the dihedral group of order six.
If p ≥ 5, then O× ∈ {C2, C4, C6} for any maximal order O in Bp,∞ [19, V Proposi-

tion 3.1, p. 145]. Fix a maximal order O in Bp,∞ and let h(O, C2n) be the number of 
right O-ideal classes [I] with O�(I)× � C2n, where O�(I) is the left order of I. Then (see 
[10])

h(O,C4) = 1
(

1−
(
−4

))
and h(O,C6) = 1

(
1−

(
−3

))
. (60)
2 p 2 p
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Lemma 6.1.

(1) Let Q be a definite quaternion Q-algebra and O a Z-order in Q, and let n ≥ 1
be a positive integer. Then the integral quaternion hermitian group U(n, O) = {A ∈
Matn(O) : A ·A∗ = In} is equal to the permutation unit group diag(O×, . . . , O×) ·Sn.

(2) Let O be a maximal order in B2,∞. Let m2 : U(n, O) → GLn(O) → GLn(O/2O) be 
the reduction-modulo-2 map. Then ker(m2) = diag({±1}, . . . , {±1}) � Cn

2 .

Proof. (1) Note that O is stable under the involution ∗ since x∗ = Trx −x and Trx ∈ Z

for any x in O. Let A = (aij) ∈ U(n, O). Then since AA∗ = In, we have 
∑

k aika
∗
ik =

1 for any 1 ≤ i ≤ n. Since aika∗ik = 0 or 1, for any 1 ≤ i ≤ n, there is only one 
integer 1 ≤ k ≤ n such that aik �= 0 and aik ∈ O×. On the other hand, since 
A∗A = In, for any 1 ≤ k ≤ n, there is a only one integer 1 ≤ i ≤ n such that aik �= 0
and aik ∈ O×. Thus, A ∈ diag(O×, . . . , O×) · Sn. Checking the reverse containment 
diag(O×, . . . , O×) · Sn ⊆ U(n, O) is straightforward.

(2) By (55), we may assume that O = O2,∞. Since the diagonal entries of elements in 
ker(m2) are all not zero, by part (1) we find ker(m2) ⊆ diag(O×, . . . , O×). There-
fore, it suffices to show that the kernel of the reduction-modulo-2 map m2 : O× →
(O/2O)× is isomorphic to C2. Using (57) and 2O = {a1 + a2i + a3j + a4k : ai ∈
Z, a1 ≡ a2 ≡ a3 ≡ a4 (mod 2)}, one checks that indeed ker(m2) = {±1} ⊆ O×. �

Lemma 6.2. Let Dp be the quaternion division Qp-algebra and Op its maximal order. Let 
n ≥ 1 be a positive integer. Let Π be a uniformiser of Op, and put Vp := 1 +Π Matn(Op) ⊆
GLn(Op). If p ≥ 5, then the torsion subgroup (Vp)tors of Vp is trivial.

Remark 6.3. Before giving the proof, let us note that p ≥ 5 is best possible. Indeed, 
when p = 3, we have

D3 =
(
−1,−3
Q3

)
, O3 = Z3[i, (1 + j)/2] = Z3[i, j], Π = j.

Thus, we find the torsion element −(1 + j)/2 ∈ 1 + ΠOp.

Proof of Lemma 6.2. For simplicity, write (Π) for the two-sided ideal in Matn(Op) gen-
erated by Π. We must show that any α ∈ (Vp)tor must equal 1. Since Vp is a pro-p group, 
we have αpr = 1 for some r ≥ 1. By induction, we may assume that αp = 1. Suppose 
that α �= 1 and write α = 1 + Πβ for some nonzero β ∈ Matn(Op). Necessarily, β /∈ (Π), 
for otherwise α ≡ 1 (mod p), which implies that α = 1 by a lemma of Serre [14, p. 207]. 
Since p ≥ 5 and p |

(
p
i

)
for all 1 ≤ i ≤ p − 1, we find

1 =
p∑(

p

i

)
(Πβ)i ≡ 1 + pΠβ (mod Π4). (61)
i=0
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This implies that β ∈ (Π), which leads to a contradiction. �
6.2. The region outside the divisor D

Recall from Subsection 3.1 that E is a supersingular elliptic curve over Fp2 such that 
πE = −p. Let μcan ∈ P (E3) be the threefold self-product of the canonical principal 
polarisation on E; this is also called the canonical polarisation on E3.

Theorem 6.4. Let x = (X, λ) ∈ S3,1(k) with a(X) = 1. For μ ∈ P (E3), consider the 
associated polarised flag type quotient (Y2, pμ) → (Y1, λ1) → (X, λ) which is characterised 
by the pair (t, u) with t = (t1 : t2 : t3) ∈ C0(k) and u = (u1 : u2) ∈ P 1(k). Let (M2, 〈, 〉2)
and (M, 〈, 〉) be the respective polarised Dieudonné modules of (Y2, μ) and (X, λ), let Dt

be as in Definition 5.16 and let d(t) be as in Definition 5.12. Assume that (t, u) /∈ D , 
that is, u /∈ Dt.

(1) If p = 2, then Aut(X, λ) � C3
2 .

(2) If p ≥ 5, or p = 3 and d(t) = 6, then Aut(X, λ) � C2.

Proof. By Proposition 3.16, (Y2, pμ) → (X, λ) is the minimal isogeny. Therefore,

Aut(X,λ) = {h ∈ Aut(Y2, μ) : mp(h) ∈ G(M,〈 ,〉)}. (62)

By Proposition 5.10, we have an exact sequence

1→ ker(ψt) −→ G(M,〈,〉)
mΠ−−→ G(M,〈,〉) → 1. (63)

(1) A direct calculation using the mass formula (cf. Corollary 2.5 and Lemma 6.1) shows

Mass(Λ3,1) = 1
210 · 34 = 1

243 · 3! = 1
|Aut(E3, μcan)| ,

and hence |Λ3,1| = 1. Thus, we may assume that (Y2, μ) = (E3, μcan), and we have 
Aut(Y2, μ) = diag(O×, O×, O×) · S3 by Lemma 6.1 with O = End(E). As u /∈ Dt, 
Corollary 5.18 yields G(M,〈 ,〉) = {±1} = 1. We see from the proof of Proposition 5.13
that ker(ψt) is the Fp2-subspace generated by I12 + I21, I13 + I31 and I23 + I32 (in 
the notation of that proof). Therefore,

G(M,〈 ,〉) =
{(

I3 0
S I3

)
: S = (sij) ∈ S3(Fp2), sii = 0 ∀1 ≤ i ≤ 3

}
. (64)

Let h ∈ Aut(X, λ) ⊆ diag(O×, O×, O×) · S3. Since m2(h) has non-zero diago-
nal entries, h ∈ diag(O×, O×, O×). One deduces m2(h) = 1 from (64). Thus, 
h ∈ ker(m2) = C3

2 , by Lemma 6.1. On the other hand, ker(m2) ⊆ Aut(X, λ) from 
(62). This proves (1).
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(2) Assume p ≥ 5. As u /∈ Dt, Corollary 5.18 implies that G(M,〈 ,〉) = {±1}. Lemma 6.2
implies that the map mΠ : Aut(X, λ) → G(M,〈 ,〉) is injective, because ker(mΠ) is 
contained in (Vp)tors. Thus, Aut(X, λ) � C2. Now assume p = 3 and d(t) = 6. 
In this case G(M,〈 ,〉) = {±1} follows from (63) and Corollary 5.18. By a lemma 
of Serre [14, p. 207], the map m3 : Aut(X, λ) → G(M,〈 ,〉) is injective and hence 
Aut(X, λ) � C2. �

Corollary 6.5. Let the notation and assumptions be as in Theorem 6.4.

(1) If p = 2, then |Λx| = 4.
(2) If p = 3 and d(t) = 6, then |Λx| = 311 · 13.
(3) If p ≥ 5, then

|Λx| =
p3+2d(t)(p2 − 1)(p4 − 1)(p6 − 1)

210 · 34 · 5 · 7 . (65)

Proof. All statements follow from Theorems 5.21 and 6.4. For p = 2, we have 
Aut(X, λ) � C3

2 for each (X, λ) ∈ Λx and hence

|Λx| =
23 · 29 · 3 · (3 · 5) · (32 · 7)

210 · 34 · 5 · 7 = 4. (66)

For p = 3 and d(t) = 6, we have Aut(X, λ) � C2 for each (X, λ) ∈ Λx and hence

|Λx| =
33+2d(t) · 23 · (24 · 5) · (23 · 7 · 13)

210 · 34 · 5 · 7 = 32d(t)−1 · 13 = 311 · 13. (67)

The same argument gives (65) for p ≥ 5. �
A g-dimensional principally polarised supersingular abelian variety (X, λ) over k is 

said to be generic if the moduli point Spec k → Sg,1 factors through a generic point of 
Sg,1. Recall that the supersingular locus Sg,1 ⊆ Ag,1 ⊗ Fp is a scheme of finite type 
over Fp which is defined over Fp. Moreover, every geometrically irreducible component 
of Sg,1 is defined over Fp2 , cf. [26, Section 2.2].

Oort’s conjecture [2, Problem 4] asserts that for any integer g ≥ 2 and any prime 
number p, every generic g-dimensional principally polarised supersingular abelian variety 
(X, λ) over k of characteristic p has automorphism group {±1}. Oort’s conjecture fails 
with counterexamples in (g, p) = (2, 2) or (g, p) = (3, 2); see [8,16].

For fixed g ≥ 2 and prime number p, consider the refined Oort conjecture:

(O)g,p: Every generic g-dimensional principally polarised supersingular abelian variety 
(X, λ) over k of characteristic p has automorphism group {±1}.
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Corollary 6.6. Let (X, λ) be a generic principally polarised supersingular abelian threefold 
over k of characteristic p > 0. Then

Aut(X,λ) �
{
C3

2 for p = 2;
C2 for p ≥ 3.

Proof. This follows immediately from Theorem 6.4. �
In other words, Oort’s Conjecture (O)3,p holds precisely when p �= 2.

Remark 6.7.

(1) It is shown [16, Theorem 5.6, p. 270] that if (X, λ) is a principally polarised su-
persingular abelian threefold over k of characteristic 2, then Aut(X, λ) ⊇ C3

2 . By 
Corollary 6.6, the smallest group C3

2 also appears as Aut(X, λ) for some (X, λ). 
We have seen that the unique member (E3, μcan) in Λ3,1 has automorphism group 
E3

24 � S3 (of order 210 · 34). We expect that 210 · 34 is the maximal order of au-
tomorphism groups of all principally polarised abelian threefolds over k of any 
characteristic (including zero).

(2) According to Hashimoto’s result [5], we have |Λ3,1| = 2 for p = 3. In this case, we have 
two isomorphism classes, represented by (E3, μcan) and (E3, μ). Using Lemma 6.1, 
we compute | Aut(E3, μcan)| = 27 · 34 and conclude | Aut(E3, μ)| = 27 · 34 from the 
mass formula Mass(Λ3,1) = 1/(26 · 34).

6.3. The region where t /∈ C(Fp6) and (t, u) ∈ D

In this subsection we consider the region (t, u) ∈ D and assume that t /∈ C(Fp6). This 
extends the region considered in Subsection 6.2.

Lemma 6.8. Let (X, λ) ∈ S3,1(k) with a(X) = 1. If p ≥ 3 and Aut(X, λ) ⊆ Cp+1, then 
Aut(X, λ) ⊆ {C2, C4, C6}.

Proof. Suppose that Aut(X, λ) = C2d with 2d|(p + 1). Then we have a ring homo-
morphism Z[C2d] → End(X) which maps C2d bijectively to Aut(X, λ). The Q-algebra 
homomorphism

Q[C2d] =
∏
d′|2d

Q[ζd′ ]→ End0(X) = Mat3(Bp,∞)

factors through an injective Q-algebra homomorphism

r∏
Q[ζdi

] ↪→ End0(X) = Mat3(Bp,∞),

i=1
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where {di|2d} ⊆ {d′|2d}. Since the composition gives an embedding C2d ↪→ Aut(X), the 
integers {di} satisfy lcm(d1, . . . , dr) = 2d. Since p � 2d, the algebra Zp[C2d] is étale over 
Zp and is the maximal order in Qp[C2d]. This gives rise to an embedding 

∏r
i=1 Z[ζdi

] ⊗
Zp ↪→ End(X) ⊗ Zp � End(X[p∞]). Thus, the decomposition X[p∞] = H1 × · · · ×Hr

into a product of supersingular p-divisible groups shows a(X) ≥ r and hence r = 1. 
Therefore, there is a Q-algebra embedding of Q(ζ2d) into Mat3(Bp,∞). This implies that 
ϕ(2d)|6 (where ϕ denotes Euler’s totient function) and hence 2d ∈ {2, 4, 6, 14, 18}.

If 2d = 14, then p ≡ −1 (mod 7) and ord(p) = 2 in (Z/7Z)×. This gives rise to 
an embedding Z[ζ14] ⊗ Zp = Zp2 × Zp2 × Zp2 ↪→ End(X[p∞]) and hence a(X) = 3, a 
contradiction. If 2d = 18, then p ≡ −1 (mod 9) and ord(p) = 2 in (Z/9Z)×. Similarly, 
we get an embedding Z[ζ18] ⊗ Zp = Zp2 × Zp2 × Zp2 ↪→ End(X[p∞]) and a(X) = 3, 
again a contradiction. �

Recall that F1
p2 := {α ∈ F×

p2 : αp+1 = 1} � Cp+1 denotes the group of norm one 
elements in F×

p2 .

Theorem 6.9. Let the notation be as in Theorem 6.4. Assume that (t, u) ∈ D and t /∈
C(Fp6).

(1) If p = 2, then Aut(X, λ) � C3
2 × C3.

(2) If p = 3 and d(t) = 6, then Aut(X, λ) ∈ {C2, C4}.
(3) For p ≥ 5, we have the following cases:

(i) If p ≡ −1 (mod 4), then Aut(X, λ) ∈ {C2, C4}.
(ii) If p ≡ −1 (mod 3), then Aut(X, λ) ∈ {C2, C6}.
(iii) If p ≡ 1 (mod 12), then Aut(X, λ) � C2.

Proof. (1) As in Theorem 6.4(1), we may assume that (Y2, μ) = (E3, μcan), and by 
Lemma 6.1 we have Aut(Y2, μ) = diag(O×, O×, O×) · S3. Then

Aut(X,λ) =
{
h ∈ Aut(Y2, μ) : m2(h) =

(
a

a
a

)
, a ∈ F1

4

}

=
{
h ∈ diag(O×, O×, O×) : m2(h) =

(
a

a
a

)
, a ∈ F1

4

}

=

⎧⎨⎩
⎛⎝±wj

±wj

±wj

⎞⎠ : 0 ≤ j ≤ 5

⎫⎬⎭ � C3
2 × C3,

where w = (1 + i + j + k)/2 satisfies w6 = 1.
(2) In this case, G(M,〈 ,〉) = F1

9 � C4 by Corollary 5.18. The proof then follows from the 
fact that the reduction-modulo-3 map is injective.
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(3) In this case, G(M,〈 ,〉) = F1
p2 � Cp+1 by Corollary 5.18. It follows from Lemma 6.2

that Aut(X, λ) can be identified with a subgroup of G(M,〈 ,〉) � Cp+1 as p ≥ 5. By 
Lemma 6.8, Aut(X, λ) ∈ {C2, C4, C6}. The assertions for (i), (ii), (iii) and (iv) follow 
from this assertion. �

Write Dμ for D ⊆Pμ(a = 1) to emphasise its dependence on μ ∈ P (E3). Recall that 
Ψμ : Pμ → S3,1 is the map (Y•, ρ•) �→ (Y0, λ0). Put Dμ,C(Fp6 )c := {(t, u) ∈ Dμ : t /∈
C(Fp6)}.

Let Λ1 denote the set of Fp2-isomorphism classes of supersingular elliptic curves E′

over Fp2 with Frobenius endomorphism πE′ = −p. This set is in bijection with the set 
Cl(Bp,∞) of right O-ideal classes for a fixed maximal order O in Bp,∞; see [1] (also cf. 
[20, Theorem 2.1]).

Proposition 6.10.

(1) If p = 3 and d(t) = 6, then for all (X, λ) ∈ Ψμ(Dμ,C(Fp6 )c) with μ = μcan, one has 
Aut(X, λ) � C4.

(2) If p ≥ 5 and p ≡ 3 (mod 4), then there exists μ ∈ P (E3) such that for all (X, λ) ∈
Ψμ(Dμ,C(Fp6 )c) one has Aut(X, λ) � C4.

(3) If p ≥ 5 and p ≡ 2 (mod 3), then there exists μ ∈ P (E3) such that for all (X, λ) ∈
Ψμ(Dμ,C(Fp6 )c) one has Aut(X, λ) � C6.

(4) If p ≥ 11, then there exists μ ∈ P (E3) such that for all (X, λ) ∈ Ψμ(Dμ,C(Fp6 )c) one 
has Aut(X, λ) � C2.

Proof. We use the results from Subsection 6.1. If p = 3, then O× = Aut(E) = 〈i, ζ6〉. 
If p ≥ 5 and p ≡ 2 (mod 3) (resp. p ≡ 3 (mod 4)), there exists a unique supersingular 
elliptic curve E′ in Λ1 such that O× := Aut(E′) � C6 (resp. C4). If p ≥ 11, then there 
exists a supersingular elliptic curve E′ in Λ1 such that O× := Aut(E′) � C2. Note 
that if p ≥ 11 then either h(Bp,∞) ≥ 2 or p ≡ 1 (mod 12). For cases (2), (3), and 
(4) we choose a polarisation μ ∈ P (E3) such that (E3, μ) � (E′ 3, μ′

can), where μ′
can is 

the canonical polarisation on E′ 3 as before. (In case (1) μ = μcan is the unique choice 
of polarisation.) Then using the same argument as in Theorem 6.9, the automorphism 
group Aut(X, λ) for (X, λ) ∈ Ψμ(Dμ,C(Fp6 )c) consists of elements of the form diag(a, a, a)
with a ∈ O× satisfying m3(a) ∈ F1

4 if p = 3 (resp. mΠ(a) ∈ F1
p2 if p ≥ 5). If p = 3, we 

have m3(〈i〉) = C4. If p ≡ 3 (mod 4), we have mΠ(〈i〉) = C4. If p ≡ 2 (mod 3), we have 
mΠ(〈ζ6〉) = C6. Thus, Aut(X, λ) � C4 for p ≡ 3 (mod 4) and Aut(X, λ) � C6 for p ≡ 2
(mod 3). In case (4), we have Aut(X, λ) � C2. �
Remark 6.11.

(1) Given Proposition 6.10, it remains to check whether the group C2 also appears as 
Aut(X, λ) in the region Ψμ(Dμ,C(F 6 )c) for some μ ∈ P (E3) when p = 3, 5, 7.
p



V. Karemaker et al. / Advances in Mathematics 386 (2021) 107812 43
(2) We assume the condition d(t) = 6 when p = 3 in Theorems 6.4 and 6.9. It remains 
to determine which other automorphism groups occur if this condition is dropped.

6.4. The superspecial case

As we have seen in the previous subsection, to investigate the automorphism groups in 
some special region of Pμ(a = 1), the knowledge of automorphism groups arising from 
the superspecial locus Λ3,1 also plays an important role. In this subsection, we discuss 
only preliminary results on the automorphism groups of members in Λ3,1. A complete list 
of all possible automorphism groups requires much more work; see Question (2) below.

We briefly recall some results. For p = 2, we have |Λ3,1| = 1 and the unique isomor-
phism class represented by (X, λ) has automorphism group E3

24 �S3. For p = 3, we have 
|Λ3,1| = 2 by Hashimoto’s result. In this case, the two isomorphism classes are repre-
sented by (E3, μcan) and (E3, μ), respectively, and we have Aut(E3, μcan) = T 3

12 � S3 so 
| Aut(E3, μ)| = 27 ·34, cf. Remark 6.7. For p ≥ 5, the following non-abelian groups occur:⎧⎪⎪⎨⎪⎪⎩

C3
2 � S3 for p ≡ 1 (mod 12);

C3
4 � S3 for p ≡ 3 (mod 4);

C3
6 � S3 for p ≡ 2 (mod 6),

cf. Lemma 6.1.
Unlike the a-number one case, it is more difficult to construct a member (X, λ) in 

Λ3,1 such that Aut(X, λ) � C2. However, it is expected that when p goes to infinity, 
most members of Λg,1 have automorphism group C2. The following result confirms this 
expectation for g = 3, based on Hashimoto’s result [5].

Proposition 6.12. Let Λ3,1(C2) := {(X, λ) ∈ Λ3,1 : Aut(X, λ) � C2}. Then

|Λ3,1(C2)|
|Λ3,1|

→ 1 as p→∞. (68)

Proof. Put h2(p) := |Λ3,1(C2)|. By [5, Main Theorem], the main term of h(p) := |Λ3,1|
is H1(p) := (p −1)(p2 +1)(p3−1)/(29 ·34 ·5 ·7) and the error term ε(p) is O(p5). Observe 
that Mass(Λ3,1) = H1(p)/2. If (X, λ) /∈ Λ3,1(C2), then | Aut(X, λ)| ≥ 4. This gives the 
inequality

Mass(Λ3,1) ≤
h2(p)

2 + h(p)− h2(p)
4 = h2(p)

4 + H1(p) + ε(p)
4 .

From Mass(Λ3,1) = H1(p)/2 one deduces that h2(p) ≥ H1(p) − ε(p). Since

H1(p)− ε(p) ≤ |Λ3,1(C2)| ≤ 1 and H1(p)− ε(p) → 1 as p→∞,

H1(p) + ε(p) |Λ3,1| H1(p) + ε(p)
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we get the assertion (68). �
We end the paper with some open problems.

Questions.

(1) Let X be a principally polarisable supersingular abelian variety over k, and let P (X)
be the set of isomorphism classes of principal polarisations on X. The mass of P (X)
is defined as

Mass(P (X)) :=
∑

λ∈P (X)

1
|Aut(X,λ)| . (69)

One would like to find a mass formula for Mass(P (X)) and understand the re-
lationship between the sets P (X) and Λ(X,λ) for a polarisation λ ∈ P (X) when 
dim(X) = 3. Ibukiyama [8] studied P (X) for dim(X) = 2. He gave a mass formula 
for Mass(P (X)) and also showed that P (X) is in bijection with the set Λ(X,λ) for any 
principal polarisation λ on X. Note that not every supersingular abelian threefold 
is principally polarisable: by [13, Theorem 10.5, p. 71] we see that the supersingular 
locus S3,d ⊆ A3,d ⊗ Fp is three-dimensional if d is divisible by a high power of p, 
while dim(S3,1) = 2.

(2) In order to study the automorphism groups of (X, λ) with a(X) = 2, we also need 
to study the automorphism groups arising from the non-principal genus Λ3,p; see 
Proposition 3.16. Do we have an asymptotic result similar to Proposition 6.12 for 
Λ3,p? What are the possible automorphism groups arising from Λ3,1 or from Λ3,p? 
We refer to Ibukiyama-Katsura-Oort [9], Katsura-Oort [11] and Ibukiyama [7] for 
detailed investigations for the principal genus case Λ2,1 and the non-principal genus 
case Λ2,p. Observe that there are natural maps Λ2,1×Λ1,1 → Λ3,1 and Λ2,p×Λ1,1 →
Λ3,p. Following the references mentioned above, these maps already produce many 
automorphism groups of members of Λ3,1 and Λ3,p.

(3) We say two polarised abelian varieties (X1, λ1) and (X2, λ2) are isogenous, denoted 
(X1, λ1) ∼ (X2, λ2), if there exists a quasi-isogeny ϕ : X1 → X2 such that ϕ∗λ2 = λ1. 
Let x = (X0, λ0) ∈ Ag,1(k) be a geometric point. Define

Λx := {(X,λ) ∈ Ag,1(k) : (X,λ) ∼ (X0, λ0) and (X,λ)[p∞] � (X0, λ0)[p∞]}. (70)

Using the foliation structure on Newton strata due to Oort [17], one can show that 
the set Λx is finite. Note that any two principally polarised supersingular abelian 
varieties over k are isogenous, cf. [21, Corollary 10.3]. Thus, the definition of Λx in 
(70) coincides that of Λx in (3) when x ∈ Sg,1. That is, a mass function

Mass : Ag,1(k)→ Q, x �→ Mass(Λx) (71)
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extends the mass function Mass(x) := Mass(Λx) defined on Sg,1(k) as before. One 
would like to compute or study the properties of such a mass function on Ag,1(k), 
starting in low genus g. This problem may require developing more explicit descrip-
tions of the foliation structure on Newton strata, or employing analogues of the 
Rapoport-Zink space which was introduced in Subsection 3.1.
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Appendix A. The intersection C ∩ Δ

Let C ⊆ P 2 be the Fermat curve defined by the equation Xp+1
1 + Xp+1

2 + Xp+1
3 = 0

and Δ ⊆ P 2 the curve defined in Proposition 5.13.
In Section 5 we have seen the inclusion

C(Fp2)
∐

C0(Fp6)
∐

C0(Fp8)
∐

C0(Fp10) ⊆ C ∩Δ

for p > 2. In this (independent) section we study the complement of this inclusion.

A.1. Bounds for the degrees

Let Q denote the set of all conics (including degenerate ones) Q ⊆ P 2 defined over 
Fp2 . Then Δ = ∪Q∈QQ. If t ∈ C ∩ Δ, then t ∈ C ∩ Q for some Q ∈ Q and hence 
degFp2 (t) := [Fp2(t) : Fp2 ] ≤ 2(p + 1). We need the following well-known result.

Theorem A.1 (Kummer’s Theorem). Let K be any field and n ≥ 1 an integer and 
a ∈ K×. If (n, charK) = 1, and μn(Ksep) ⊆ K, and the element a (mod (K×)n) in 
K×/(K×)n has order n, then [K(a1/n) : K] = n.

The authors are grateful to Ming-Lun Hsieh for providing the following proposition.
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Proposition A.2. There exist a conic Q ∈ Q and a point t ∈ C ∩Q such that degFp2 (t) =
(p + 1).

Proof. Choose a generator u1 of F×
p2 such that up

1 + u1 = −a �= 0. Put u := a−1u1 and 
let α be a p + 1-th root of u. As a ∈ F×

p , we have up + u = −1. Since the element u
(mod (F×

p2)p+1) in F×
p2/(F×

p2)p+1 = F×
p2/(F×

p ) has order p +1, one has [Fp2(α) : Fp2 ] = p +1
by Kummer’s Theorem. Let

Q : X1X2 = uX2
3 and t := (α : uα−1 : 1).

One sees t ∈ C as αp+1 + (uα−1)p+1 + 1 = u + up+1 · u−1 + 1 = 0. So t ∈ C ∩ Q and 
degFp2 (t) = p + 1. �

The following result, due to Akio Tamagawa, says that the upper bound 2(p + 1) for 
degFp2 (t) in C ∩Δ can be realised.

Proposition A.3. There exist a conic Q ∈ Q and a point t ∈ C ∩Q such that degFp2 (t) =
2(p + 1).

Construction. We first consider the case p = 2. Let ζ be a primitive fifth roof of unity 
in F2. Since (Z/5Z)× � 〈2 mod 5〉, we have F2(ζ) = F24 . One computes that (1 + ζ)3 =
1 + ζ + ζ2 + ζ3 �= 1 and (1 + ζ)5 = ζ + ζ4 �= 1. Therefore 1 + ζ generates the cyclic 
group F×

24 � C15. Choose x, y, z ∈ F2 such that x = 1, y3 = ζ and z3 = 1 + ζ, and 
put t := (x : y : z); we have 1 + ζ + (1 + ζ) = 0. Since F2(z) contains F2(ζ) = F24 , we 
have F2(z) = F24(z). Since 〈1 + ζ〉 = F×

24 , by Kummer’s Theorem, F2(z) = F24(z) = F212

and hence degF4
(t) = 6 = 2(p + 1). Since x, y ∈ F24 , there exist a, b, c ∈ F22 such that 

ax2 + bxy + cy2 = 0. Let Q ⊆ P 2 be the (degenerate) conic defined by the equation 
aX2

1 + bX1X2 + cX2
2 . Then the point t ∈ C ∩Q satisfies the desired property.

Assume now that p > 2. We would like to find solutions t = (x : y : z) with x ∈
F×
p4(p+1) , y ∈ F×

p4 \ F×
p2 , and z ∈ F×

p2 satisfying the desired properties.
Let

f : F×
p4 → F×

p4/(F×
p4)2(p+1)

be the natural projection; one has F×
p4/(F×

p4)2(p+1) � C2(p+1) as p �= 2. Consider the 
following three sets:

Z := {zp+1 : z ∈ F×
p2} � F×

p ;

Y := {yp+1 : y ∈ F×
p4} \ Z;

X := {ξ ∈ F× : f(ξ) generates the cyclic group C }.

(72)
p4 2(p+1)
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The sets Y and Z are equipped with an F×
p -action and we have

|Z| = p− 1, |Y | = p2(p− 1), |X| = (p4 − 1) · ϕ(2(p + 1))
2(p + 1) . (73)

Let g be the composition

g : F×
p4

N−−−−→ F×
p2

proj.−−−−→ F×
p2/(F×

p )2 � C2(p+1),

where N(α) = αp2+1 is the norm map. The map f can be identified with g by a suitable 
choice of the generators. Since the image g(F×

p ) is trivial, the image f(F×
p ) is also trivial. 

Thus, X is also equipped with an F×
p -action and hence −X = X.

We would like to find

η + ζ = ξ (74)

for some η ∈ Y , ζ ∈ Z and ξ ∈ −X = X.
Note that X, Y and Z are mutually disjoint: that Y ∩ Z = ∅ follows by definition, 

and X ∩Z = ∅ follows from the fact that F×
p ⊆ ker(f). Since f((F×

p4)p+1) is the 2-torsion 

subgroup of F×
p4/(F×

p4)2(p+1) � C2(p+1) and f(Y ) ⊆ f((F×
p4)p+1), the image f(Y ) contains 

no generator of C2(p+1). Therefore, we also have Y ∩X = ∅.
We are working on the space P := F×

p4/F×
p � P 3(Fp). The images of X, Y and Z in 

P are written as X, Y and Z, respectively. So Z = {ζ̄} and

|Z| = 1, |Y | = p2, |X| = (p2 + 1) · ϕ(2(p + 1))
2 .

For each point η̄ ∈ Y (η̄ �= ζ̄), denote by Lη̄ ⊆ P the line joining the points η̄ and ζ̄. 
To solve (74), it suffices to prove that⎛⎝⋃

η̄∈Y

Lη̄

⎞⎠ ∩X �= ∅. (75)

This is because if ξ̄ ∈ Lη̄∩X for some η̄ ∈ Y , then we have aη+bζ = cξ with a, b, c ∈ F×
p

and hence η′ + ζ ′ = ξ′ with η′ ∈ Y, ζ ′ ∈ Z and ξ′ ∈ X.

Lemma A.4. For any two distinct points η̄1 and η̄2 of Y , one has Lη̄1 ∩ Lη̄2 = {ζ̄}.

Proof. Suppose that Lη̄1 ∩ Lη̄2 � {ζ̄}. Then Lη̄1 = Lη̄2 and η̄2 ∈ Lη̄1 . Therefore, −η2 =
aη1 + bζ for a, b ∈ F×

p and hence we have

η2 + η′1 + ζ ′ = 0
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for some η′1 ∈ Y and ζ ′ ∈ Z. Now write

η2 = (y2)p+1, η′1 = (y′1)p+1, ζ ′ = (z′)p+1,

with y2, y′1 ∈ F×
p4 \F×

p2 and z′ ∈ F×
p2 . That is, we get a point (y2 : y′1 : z′) ∈ C(Fp4). Since 

C(Fp4) = C(Fp2) by Lemma 3.8, we have y2, y′1 ∈ Fp2 , contradiction. �
By Lemma A.4, ⋃

η̄∈Y

Lη̄ = {ζ̄} �
∐
η̄∈Y

Lη̄ − {ζ̄},

and hence

|
⋃
η̄∈Y

Lη̄| = 1 + |Y | · p = p3 + 1, and |P −
⋃
η̄∈Y

Lη̄| = p2 + p.

To show (74), we check the inequality

|X| = (p2 + 1) · ϕ(2(p + 1))
2 > p2 + p (76)

for all p �= 2. If p = 3, then |X| = 20 > 12 holds. For p ≥ 5, by the inequality 
ϕ(n) ≥

√
n/2, it suffices to show

(p2 + 1) ·
√
p + 1
2 > p2 + p.

This follows from

(p2 + 1)2(p + 1)− 4(p2 + p)2 = (p + 1)(p4 − 4p3 − 2p2 + 1) > 0

for p ≥ 5. Therefore, the inequality (76) holds and we have found η, ζ, ξ as in (74).
Now write

ζ = zp+1 ( for z ∈ F×
p2), η = yp+1 ( for y ∈ F×

p4 \ F×
p2).

Choose an element x ∈ Fp such that xp+1 = −ξ ∈ F×
p4 . Since the element ξ

(mod (F×
p4)p+1) is a generator in F×

p4/(F×
p4)p+1, by Kummer’s Theorem we have

[Fp4(x) : Fp4 ] = p + 1. (77)

We claim that ξ /∈ F×
p2 . Suppose for contradiction that ξ ∈ F×

p2 . Then

f(ξ) = g(ξ) ∈ g(F×
2) = (F×

2)2/(F×
p )2 � F×

2/(F×
p )2 � C2(p+1).
p p p
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Therefore, f(ξ) cannot be a generator of C2(p+1), contradiction. So since ξ ∈ F×
p4 \ F×

p2 , 
we have Fp2(x) ⊃ Fp2(ξ) = Fp4 . This shows that

Fp2(x) = Fp4(x), and [Fp2(x) : Fp2 ] = 2(p + 1)

by (77). Put t := (x : y : z) = (x/z : y/z : 1) ∈ C(Fp). Then we get

[Fp2(t) : Fp2 ] = 2(p + 1). (78)

Since y/z ∈ F×
p4 \ F×

p2 , there exist b, c ∈ Fp2 such that

(y
z

)2
+ b

(y
z

)
+ c = 0, or y2 + byz + cz2 = 0.

Let Q ∈ Q be the (degenerate) conic defined by the equation X2
2 + bX2X3 + cX2

3 = 0. 
Then t ∈ C ∩Q and degFp2 (t) = 2(p + 1). This completes the construction. �
A.2. Estimate of |C ∩Δ|

In this subsection, points in C will mean geometric points and C ∩Δ will mean the 
set-theoretic intersection. Define

Z := {(t, Q) ∈ C ×Q : t ∈ Q}

and consider the following natural maps:

Z

C Q

π

q

The degree of the map q is 2(p + 1). For each Q ∈ Q, the fibre over Q has size

2(p + 1)− εQ,

where εQ =
∑

r≥2 εQ,r with

εQ,r = #{t ∈ C ∩Q : multC∩Δ(t) = r} · (r − 1).

Thus, |Z | = 2(p + 1)(p10 + p8 + p6 + p4 + p2 + 1) − ε, where

ε :=
∑
Q∈Q

εQ (79)

is the error term coming from intersection multiplicities.
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Proposition A.5. We have |C ∩ Δ| = p11 + o(p11) − ε as p → ∞, where ε is defined 
in (79).

Remark A.6. We expect that ε = o(p11). Then we would have |C ∩Δ| = p11 + o(p11) as 
p →∞.

Proof. For any integer i ≥ 1, define

Ci := {t ∈ C(Fp) : degFp2 (t) = i}.

By Lemma 3.8, we have

|C1| = |C(Fp2)| = p3 + 1, |C3| = |C0(Fp6)| = p6 + p5 − p4 − p3,

|C4| = |C0(Fp8)| = p8 − p6 + p5 − p3, |C5| = |C0(Fp10)| = p10 + p7 − p6 − p3.

Let Fp2 [X1, X2, X3]2 ⊆ Fp2 [X1, X2, X3] denote the subspace of homogeneous polyno-
mials of degree two. For each point t = (t1 : t2 : t3) ∈ C, the fibre π−1(t) is the set 
(Wt − {0}) /F×

p2 , where

Wt := {F ∈ Fp2 [X1, X2, X3]2 : F (t) = 0}.

They fit into the following exact sequence

0 −−−−→ Wt −−−−→ Fp2 [X1, X2, X3]2
evt−−−−→ Fp2〈t21, t22, t23, t1t2, t1t3, t2t3〉 −−−−→ 0.

It follows that dim(Wt) = 6 − d(t) and π−1(t) � P 5−d(t)(Fp2), where we redefine d(t) as 
the dimension of Fp2〈t21, t22, t23, t1t2, t1t3, t2t3〉 – even for p = 2. Therefore, the numbers of 
fibres over Ci for i = 1, 3, 4, 5 are

(p8 + p6 + p4 + p2 + 1), (p4 + p2 + 1), (p2 + 1), 1,

respectively. Then the number of points in Z over the union of Ci for i = 1, 3, 4, 5 is 
given by

A := (p3 + 1)(p8 + p6 + p4 + p2 + 1) + (p6 + p5 − p4 − p3)(p4 + p2 + 1)

+ (p8 − p6 + p5 − p3)(p2 + 1) + (p10 + p7 − p6 − p3)

= p11 + 3p10 + 2p9 + p8 + 3p7 − p6 + p5 − 2p3 + p2 + 1.

Thus,

B := #{(t, Q) ∈ Z : degFp2 (t) > 5} = |Z | −A

= p11 − p10 + p8 − p7 + 3p6 + p5 + 2p4 + 4p3 + p2 + 2p + 1− ε.
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Finally,

|C ∩Δ| = |Im(π)| = |C1|+ |C3|+ |C4|+ |C5|+ B

= p11 + 2p8 + 2p6 + 3p5 + p4 + 2p3 + p2 + 2p + 2− ε. � (80)
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