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A B S T R A C T   

We propose a new model of exploration and exploitation, in which firms rely on local search for exploitation and 
on imitation for exploration. We assume that firms imitate the knowledge base of successful competitors, with 
imitation errors taking place depending on the social distance between the imitating firm and imitated firm in the 
network. The key model outcome, consistent with earlier empirical findings, holds that successful imitation 
generally occurs at an intermediate level of cognitive proximity because imitation at high cognitive distance is 
too error-prone, while for imitation at low cognitive distance there are typically no firms to imitate. A second 
outcome holds that social and cognitive proximity are substitutes. The model further shows that exploration by 
imitation is more beneficial in highly complex industries than in less complex industries, and that small-world 
networks yield the highest benefits for collective learning.   

1. Introduction 

The distinction between exploration and exploitation has proven 
helpful in understanding how firms innovate, and the tensions they need 
to balance within and outside their boundaries (Lavie, Stettner, & 
Tushman, 2010; March, 1991). In the context of innovation, the 
distinction between exploration and exploitation is often mapped onto 
the notions of radical versus incremental innovation in firms, but in 
essence exploration and exploitation refer to two generic modes of 
learning at the level of individuals, teams, and organizations alike 
(Gupta, Smith, & Shalley, 2006; Wilden, Hohberger, Devinney, & Lavie, 
2018). When reasoning about firms, exploitation can generally be well 
managed within the firm’s boundaries as exploitation leverages existing 
knowledge as to incrementally improve a firm’s activities and outputs 
(Benner & Tushman, 2003; March, 1991). By contrast, exploration in
volves a search for new and distant knowledge through recombination, 
experimentation and risk-taking (March, 1991; Savino, Messeni Pet
ruzzelli, & Albino, 2017). 

When both exploration and exploitation are undertaken in-house, 
conflicts tend to arise given that exploitation routines are so different 
from exploration routines (Stettner & Lavie, 2014). Instead, firms often 
engage in exploration by looking externally for new knowledge, for 
example, by imitating knowledge held by other firms (Csaszar & 

Siggelkow, 2010). Indeed, as empirical research has shown, imitation is 
a salient feature of firms’ learning strategies (for a review, see Ordanini, 
Rubera, & De Fillippi, 2008). 

It is common to assume that imitation is not a blind process, but 
biased towards successful competitors (Lieberman & Asaba, 2006; 
Nelson & Winter, 1982). What distinguishes imitation from other ways 
of engaging in exploration, then, holds that the intended outcome of 
exploration is well-defined (imitate the solution held by a successful 
competitor). However, imitation is difficult and failure-prone as the 
knowledge required to successfully imitate is generally quite distinct 
from the knowledge already present in a firm (Baumann, Schmidt, & 
Stieglitz, 2019). Especially in the context of high product complexity, 
small copying errors can lead to drastic reductions in performance 
(Rivkin, 2000). Given the original formulation by March (1991, p. 85) 
that exploration concerns “experimentation with new alternatives” with 
its returns being “uncertain” and “often negative”, imitation can be 
considered a form of exploration. In an exploration–exploitation 
framework, then, one can view exploitation as involving local search, 
building on a firm’s existing knowledge yielding predictable increments 
in performance, and exploration through imitation as a jump away from 
its existing knowledge, with uncertain and often negative results on 
performance (Csaszar & Siggelkow, 2010, p. 674). 

The key question that follows holds what makes a firm successful in 
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imitation. Or, more specifically, the question holds under what condi
tions firms can avoid making copying errors when they intend to imitate 
a superior solution of a competitor. In the past, the question of successful 
imitation has been primarily approached from two angles. One strand of 
literature looks at the firm’s knowledge base by investigating what 
properties of a firm’s knowledge base adds to its absorptive capacity 
(Cohen & Levinthal, 1990; Nooteboom, 2000). The more relevant 
knowledge a firm already possesses, the easier it will be to absorb new 
knowledge by imitation. A second strand of literature looks at the social 
relations between the imitating and imitated firm. Here, one can further 
distinguish between formal ties such as licenses that purposefully sup
port imitation (Laursen, Leone, & Torrisi, 2010) versus informal social 
networks between employees of firms as channels for knowledge spill
overs (Breschi & Lissoni, 2009). 

The theory of exploration and exploitation we propose aims to 
combine the knowledge base perspective and the relational perspective 
in a single stylized model. We look at firms in different industry contexts 
characterized with different levels of complexity to understand whether 
the relative value of exploration and exploitation varies for products 
with different levels of complexity. While learning is especially difficult 
for firms dealing with complex products, innovation in such industries 
nevertheless relies a lot on inter-firm learning (Miller, Hobday, Leroux 
Demers, & Olleros, 1995; Powell, Koput, & Smith-Doerr, 1996). Firms 
that fully rely on their internal knowledge in innovating complex 
products are bound to end up in poor local optima (Levinthal, 1997). 
Hence, such firms would especially benefit from supplementing their 
internal innovation efforts (exploitation) with learning by imitating 
knowledge from others (exploration) as to escape such poor optima 
(Csaszar & Siggelkow, 2010). Given the importance of absorptive ca
pacity, though, imitation is more likely to be successful if the knowledge 
bases of the imitating and imitated firms overlap considerably (Noote
boom, 2000). 

Regarding social relations between the imitating and imitated firm, 
we are agnostic about the specific type of ties that would support 
imitation, nor do we want to limit our perspective to direct ties only. 
Instead, aiming for generalizability, we want to look at the effect of 
social networks on imitation attempts between any pair of firms, be 
them with direct ties (at social distance of 1) or indirect ties (at social 
distance larger than 1), while acknowledging that imitation will become 
more error-prone at longer social distances. In adopting this generalized 
social network perspective, we move beyond earlier exploration- 
exploitation models (Lazer & Friedman, 2007; Miller, Zhao, & Cal
antone, 2006) and related models on inter-firm learning (Cowan & 
Jonard, 2003, 2004, 2009; Cowan, Jonard, & Özman, 2004). In these 
models, firms only copy solutions through direct ties as it would occur in 
formal inter-firm strategic alliances, while in our model solutions can be 
imitated among any two firms which are all part of a single social 
network. 

In our investigation, we will distinguish between two levels of 
analysis. First, at the network level, we will compare a range of network 
structures that differ in terms of the average social distance between 
firms and the average clustering between firms using the ‘small-world’ 
parameter (Watts & Strogatz, 1998). This parameter tunes the structure 
of a network from fully regular to ‘small-world’ to fully random. The 
small-world network combines the feature of high clustering of a regular 
network with that of short distances of a random network. Comparing 
these networks allows us to investigate whether high clustering and 
short distances are complementary for imitation, as found in other 
models where firms only learn direct partners (Cowan & Jonard, 2003, 
2004) and in empirical studies on the role of networks on innovation 
(Capaldo, 2007; Fleming, Chen, & Mingo, 2007; Schilling & Phelps, 
2007). Second, at the level of dyads concerning each pair of firms, we 
investigate whether successful instances of imitation between two firms 
occur at an intermediate cognitive distance as implied by the thesis of 
optimal cognitive proximity (Cowan & Jonard, 2009; Nooteboom, 
2000). We further analyze whether socially proximate firms may be 

better able to learn cognitively distant knowledge as compared to so
cially distant firms, that is, whether social proximity can compensate for 
cognitive distance (Boschma, 2005; Huber, 2012). 

Our contributions, then, are two-fold. First, in the analysis of 
exploration by imitation, we integrate insights from absorptive capacity, 
social network and complexity theories into a single modelling frame
work. We analyze how effective imitation between firms is affected by 
both cognitive distance and social distance, while also taking into ac
count the complexity of the knowledge base at hand. Second, we aim to 
reproduce a diverse set of empirical findings regarding (i) the existence 
of an optimal level of cognitive proximity in imitation, (ii) the substi
tution effect between cognitive and social proximity, (iii) the high 
benefits of exploration in complex-product industries compared to 
simple-product industries, and (iv) the benefits of small-worlds for col
lective learning, 

2. Theory 

In processes of learning, it is customary to distinguish between 
exploration and exploitation. In this view, firms learn both by exploiting 
their existing knowledge and by exploring new knowledge (March, 
1991). While exploitation activities build closely on a firm’s internal 
knowledge, exploration activities often rely on knowledge found outside 
a firm’s own organization. In particular, firms have the tendency to 
imitate better performing competitors (Nelson & Winter, 1982). In this 
sense, the imitation of better performers underlies the evolutionary logic 
of markets ensuring the diffusion of superior solutions at the expense of 
inferior solutions in a population of competing firms (Lieberman & 
Asaba, 2006). 

Imitation, however, should not be equated with a simple copying 
process among firms (Nelson & Winter, 1982). Imitation attempts are 
prone to errors, as firms may struggle to correctly interpret knowledge 
from others (Rivkin, 2000). The efforts involved in learning from other 
firms may be in vain if such attempts result in only partial understanding 
with limited economic return. In particular, the effectiveness of inter- 
firm learning depends on the complexity of knowledge to be learnt 
(Rivkin, 2000). The complexity of a product, a technology or service can 
be judged from the number of interdependencies between the compo
nents that make up a product, technology or service (Gatti, Volpe, & 
Vagnani, 2015; Levinthal, 1997; Simon, 1996 [1969]). High complexity 
requires finely tuned component assemblies to yield high performance. 
In imitating complex artefacts, a small error in understanding can have 
large repercussions, as the economic value of complex artefacts lies 
precisely in the complementarities between its parts (Rivkin, 2000). 
While learning is especially difficult for firms dealing with complex 
products, innovation in complex product industries nevertheless relies a 
lot on inter-firm learning (Miller et al., 1995). Firms going alone by 
relying fully on their internal knowledge are bound to end up in poor 
local optima. Hence, though difficult, firms in complex product envi
ronments benefit from supplementing their internal innovation efforts 
(exploitation) with learning by imitating knowledge from others 
(exploration). 

Errors are also more likely to occur, the more two firms differ in their 
knowledge (Nooteboom, 2000). Indeed, to understand and use new 
knowledge from others, a certain level of absorptive capacity is required. 
Organizations will find it much easier to learn from firms that have 
much knowledge in common, as the new knowledge learnt will be more 
easily understood and combined with the existing knowledge base 
(Cohen & Levinthal, 1990; Solís-Molina, Hernández-Espallardo, & 
Rodríguez-Orejuela, 2018). Yet, as theorized by Nooteboom, a funda
mental trade-off is implied in inter-organization learning “between 
cognitive distance, for the sake of novelty, and cognitive proximity, for the 
sake of efficient absorption. Information is useless if it is not new, but it is also 
useless if it is so new that it cannot be understood” (Nooteboom, 2000, p. 
72). The trade-off captures the two sides of exploration: on the one hand 
a firm seeks to learn from others exactly by exploring very new 
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knowledge suggesting it should look for cognitive distant firms, while on 
the other hand a firm wants to avoid copying errors by looking at 
cognitive proximate firms from which it can easily absorb knowledge. 
Hence, one expects that there exists an optimal cognitive distance be
tween two firms that maximizes the benefits of learning by one firm 
from the other firm (Nooteboom, 2000, p. 74). 

While the concept of absorptive capacity emphasizes the cognitive 
differences between firms, the extent to which firms can gain access to 
knowledge held by firms also depends on social contacts (Uzzi, 1996). 
Many employees of firms maintain social ties with employees in 
competing firms, and use such relations for informal knowledge sharing 
(Bouty, 2000). What is more, mutual sharing practices are reinforced by 
professional and academic norms in communities of practices (Lissoni, 
2001). Acquaintanceships may stem from having been colleagues in the 
past, having been fellow students in the same school or university, or 
having been collaborators in joint projects (including past license 
agreements and strategic alliances). Employees engage in informal 
knowledge sharing as it raises their own expertise despite a possible loss 
of competitive advantage of the imitated firm. Such losses may anyway 
be small, as employees who share knowledge unilaterally do so with the 
expectation that the favor will be returned at a later moment in time 
(Bouty, 2000). 

Informal knowledge sharing among employees supports imitation 
processes between firms (Uzzi, 1996). Given the importance of networks 
as a source of knowledge spillovers, the position of firms within net
works channeling knowledge spillovers will thus affect its ability to 
learn and to innovate (Breschi & Lissoni, 2009; Powell et al., 1996; Pyka, 
2002). Indeed, there is ample empirical evidence that the characteristics 
of firm networks through which knowledge flows take place, and the 
position of firms within such networks, are relevant to firm performance 
(for reviews: Özman, 2009; Phelps, Heidl, & Wadhwa, 2012). 

Past research highlighted two distinct network characteristics as 
relevant to inter-organizational learning. First, learning depends on the 
extent to which an organization has access to knowledge held by others. 
From a network perspective, however, access does not only depend on 
an organization’s direct ties (‘friends’ at social distance 1), but also on its 
indirect ties (‘friends of friends’ at social distance larger than 1) (Ahuja, 
2000; Breschi & Lissoni, 2009). In general, one can expect that knowl
edge from socially proximate firms is more accessible than knowledge 
from socially distant firms. This has been confirmed by empirical 
research showing that inter-firm patent citations occur less often, the 
more distant two firms are in the social network of co-inventors (Breschi 
& Lissoni, 2009). Hence, regarding access to knowledge, the value of 
organization’s network position can be expressed by the average social 
proximity to all other firms. 

Second, it has been argued that network clustering in triangle re
lationships matters (‘friends of friends being friends’). Triangle re
lationships support trust as actors have fewer incentives to behave 
opportunistically, as opportunistic behavior towards one partner may 
jeopardize the relation with the other partner in a triangle (Granovetter, 
1985). Trust, in turn, supports the exchange of valuable knowledge and 
collaborative problem-solving (Uzzi, 1996). Thus, while short distances 
provide access to a wide range of different ideas, clustering provides a 
complementary structure allowing organizations to elaborate upon 
selected ideas in close collaboration. That is, short distances and clus
tering in networks are likely to be complements: short distances are 
associated with the exploration of new ideas and clustering with the 

further detailed elaboration of such ideas (Capaldo, 2007; Fleming, 
Chen, et al., 2007; Schilling & Phelps, 2007). 

Another strand of literature, mainly in the field of economic geog
raphy, has further unpacked different forms of proximity. In particular, 
it has been argued that cognitive and social proximity may act as sub
stitutes (Boschma, 2005; Huber, 2012). If cognitive proximity between 
firms is high, social networks may not be required for effective transfer 
to take place, as the imitating firm can easily grasp and ‘reverse engi
neer’ the solution of its competitor. If cognitive proximity is low, by 
contrast, social networks may be crucial for the imitating firm as its 
employees have informal access to knowledge residing in the other firm. 
Hence, next to the positive effect of cognitive proximity and social 
proximity on imitation, one can further hypothesize that high social 
proximity is especially supportive of imitation in context of low cogni
tive proximity and, vice versa, that low social proximity is sufficient for 
imitation in context of high cognitive proximity (Huber, 2012). 

To combine the absorptive capacity and social network arguments in 
a single exploration-exploitation framework, we will propose a model in 
which firms, cyclically, engage in local search (exploitation) and then 
imitate competitors with higher performance (exploration), and so on. 
All firms are assumed to be part of a single social network. The network’s 
structure, stemming from the informal social networks maintained by 
their employees outside the control of the firm, is exogenously given. We 
investigate the effect of network structure on the average performance 
of firms, by comparing networks that differ in terms of the average 
distance between firms and the average clustering between firms using 
the ‘small-world’ parameter (further explained below). We also analyze 
dyads (pairs of firms) to see if the model can replicate the empirical 
findings that successful imitations typically occur at an intermediate 
cognitive distance and that (rarer) successful imitations between 
cognitively distant firms require high social proximity. 

3. The model 

To investigate the role of social networks in imitation efforts among 
firms, we use a simulation model starting from the NK-model of fitness 
landscapes (Levinthal, 1997) in which firms innovate while being part of 
a small-world network (Watts & Strogatz, 1998). A simulation model 
allows one to systematically evaluate the effect of exogenous parameters 
on the individual firm-level and collective industry-level performance, 
which are the foci of management and economics scholars, respectively. 
The key parameters here are the complexity of the problem at hand (as 
expressed by K in the NK-model) and the degree of randomness in the 
small-world network (as expressed by β in the small-world model). 

We approach the innovation logic of exploration and exploitation as 
follows. Each firm performs innovation on an object of a certain 
complexity, with object and complexity being the same for all firms. We 
thus consider the complexity of a firm’s product or service as exogenous 
to a firm, while specific to industries. For example, aerospace, auto
mobile and information technology industries are generally considered 
complex product industries, where the final product consists of many 
different parts and underlying knowledge bases, while products such as 
furniture, toys and clothing can be considered to be less complex 
products (Marsili, 2002). The different levels of complexity as expressed 
by parameter K can thus be understood as representing different in
dustry contexts. 

We assume that firms are all engaging in both exploration and 
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exploitation, yet in a temporal order (Gupta et al., 2006). Each firm 
starts innovating by internal local search thus exploiting its existing 
knowledge base. Once exploitation reaches a local optimum, the inno
vation process turns to exploration in an attempt to escape the local 
optimum through a ‘long jump’ (Levinthal, 1997). In our model, we 
approach exploration as gaining knowledge from other firms by imita
tion (Csaszar & Siggelkow, 2010). Once incorporated, this new knowl
edge provides a basis for another cycle of exploitation, which again will 
end once a new local optimum is reached, triggering exploration by 
imitation again, and so on. A firm engaging in exploration imitates 
another firm, where the imitated firm is selected on the basis of its 
relative performance (Nelson & Winter, 1982), while imitation is error- 
prone (Rivkin, 2000). We assume that such errors are more likely to 
occur if two firms are socially more distant. The social distance between 
each pair of firms is derived as the shortest path (‘geodesic distance’) 
between two firms in the social network at hand. To explain the model, 
we first describe below how a focal firm exploits its knowledge inter
nally until it reaches a local optimum (exploitation) and then how this 
firm acquires new knowledge by imitating another firm (exploration) 
with a certain degree of fidelity depending on the social distance be
tween the imitating firm and the imitated firm. 

3.1. Exploitation 

Exploitation is modelled here using the NK-model (Kauffman, 1993). 
This model was originally developed in the context of biology for the 
study of interdependence between genes in a genome, known as epis
tasis. Epistatic structures are not confined to biological systems, but are 
also typical for technological components making up a technology and 
organizational tasks making up a production process (Levinthal, 1997). 
By now, the NK-model has become a generic model of search in the 
management literature as systematically reviewed by Granco and 
Hoetker (2009), Puranam, Stieglitz, Osman, and Pillutla (2015) and 
Baumann et al. (2019). 

In the NK-model, a firm’s knowledge base is represented as a string of 
N components. The level of complexity faced by a firm depends on the 
number of interdependencies between components modelled by 

parameter K and ranging from K = 0 to K = N − 1. Complexity here 
implies that the performance, or fitness, of each component depends on 
the state of K other components. The performance P of a string is given 
by the average performance over all components, with the performance 
value of each component depending on the state of the component in 
question and the K components it depends on. Without loss of generality, 
components can be in two states: either 1 or 0. Performance values, 
randomly drawn from a uniform distribution [0, 1], are assigned to each 
of the 2 K+1 unique combinations of the state of a component and the 
states of the K components it depends on. With K = 0, this means that for 
each component, performance values are only drawn for each of its two 
possible states. With K = 1, this means that for each component, per
formance values are randomly drawn for each of the two possible states 
of that component combined with each of the two possible states of the 
component it is depending on, and so on (see, for an example, Fig. 1). 

With N components, each having two possible states, there are 2N 

possible configurations. Each configuration is represented in our model 
as a bitstring. The difference between any two configurations is 
expressed by the number of components with a different state. This 
difference is called the Hamming distance H between two bitstrings 
(Hamming, 1950). For example, for bitstring 01011 and bitstring 00011, 
we have H = 1, while for bitstring 01011 and bitstring 10100, we have 
H = 5. In our model, the Hamming distance H between two bitstrings 
captures the cognitive distance between two firms, with its reverse (N – 
H) denoting the cognitive proximity between firms. 

The 2N possible configurations of bitstrings can be used to construct a 
‘landscape’ (Wright, 1932), with the height of each bitstring given by its 
performance and the distance between bitstrings in the landscape by the 
Hamming distance. A peak in the landscape is a bitstring that has a 
superior performance compared to all its N neighbors at a Hamming 
distance equal to 1. The highest peak corresponds to the configuration 
with the best performance, which is the global optimum, while other 
peaks correspond to configurations that are local optima. For example, 
in Fig. 1, for K = 2, bitstring 100 is the global optimum and bitstring 111 
is a local optimum. It follows that the minimum Hamming distance 
between two optima is two. 

Assuming that firms exploit their knowledge base through local 

Fig. 1. Examples of performance calculations for K 
= 0, K = 1 and K = 2 (N = 3). For K = 0, no in
terdependencies between components exist, so 
each component has only two performance values – 
one for each of its own states. For K = 1, in this 
example, component 1 depends on component 2, 
component 2 on component 3, and component 3 on 
component 2. For each component, there are four 
possible performance values. For K = 2, all com
ponents depend on all other components, resulting 
in eight possible performance values for each 
component. The overall performance P of each 
string is the average of the performance values of 
the component states (Kauffman, 1993).   
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search by successively moving to neighboring bitstrings with higher 
fitness, a firm is bound to end up at a local optimum, where it ends its 
exploitation activity. The key insight derived from the NK-model holds 
that, for a given N, the number of local optima increases with complexity 
K. This implies that the more complex the knowledge base of a firm, the 
more likely it will get quickly ‘stuck’ on a suboptimal performance level 
(Levinthal, 1997). Exploitation, then, will only be effective in finding a 
local optimum and subsequent exploration is needed for search to 
continue. Exploration, then, can be metaphorically thought of as a ‘long 
jump’ away from a local optimum (Levinthal, 1997). 

3.2. Exploration 

In our model, exploration activities concern efforts of firms to imitate 
better performing firms. We thus assume that firms cannot protect 
themselves from imitation by others. One may think of imitation as 
reverse engineering benefitting only the imitating firm. Alternatively, 
imitation can be thought of as following from a transaction between the 
two firms (e.g., through licensing), which would decrease the current 
profits of the imitating firms and would increase the profits of the 
imitated firm. Hence, the performance values in the model refer to the 
value of the knowledge base (e.g., technical efficiency of a technology) 
and not to the economic value of the firm as such (e.g., the profitability 
of a firm). The exact mechanism underlying imitation, however, does 
not bear any implications for the model setup. 

In the population of F firms, we thus assume that each firm can 
observe the performance P of all other F − 1 firms. In its exploration 
activities, a firm focuses its attention only to the subset of F’ better 
performing firms fk. A firm engaging in exploration imitates another 
firm, where the imitated firm is selected on the basis of its relative 
performance (Nelson & Winter, 1982). In an act of exploration, then, a 
firm fi imitates another firm fj with a probability πij proportional to the 
latter’s relative performance among all F’ better performing firms: 

πij =
P(fj)

∑F’
k=1P(fk)

also known as ‘roulette wheel selection’ (Goldberg, 1989). 

If firm fi decides to imitate firm fj, firm fi will attempt to copy each bit 
from the string occupied by firm fj that is different from its own. Under 
the assumption of perfect imitation, the imitating firm fi will simply 
substitute all the H component states in its bitstring that are different 
from the bitstring of imitated firm fj, and consequently the imitating firm 
will attain the same performance level as the imitated firm This means 
that the higher the cognitive distance between two firms (that is, the 
Hamming distance H between their bitstrings), the more the imitating 
firm will learn from the imitated firm, the longer its ‘jump’ in the fitness 
landscape will be. 

In a setting of perfect imitation, the outcome of our model of 
exploitation and exploration will be rather unsurprising. If all firms start 
from a randomly assigned string, they will first engage in exploitation by 
local search until they reach a local peak, and then start imitating better 
performing firms by exploration. It follows that the best performing firm 
will not engage in imitation and that the second best performing firm 
will always aim to imitate the best performing firm. It also follows that 
in the absence of copying mistakes, all firms will eventually converge to 
the highest local optimum found by some firm in the first stage of 
exploitation. Note that the chance this local optimum is also the global 
optimum will increase with the number of firms in the population F and 
will decrease with the complexity K. 

The assumption, however, that firms can imitate without errors is a 
very strong one. As argued before, firms generally make mistakes when 
imitating other firms due to their limited absorptive capacity (Cohen & 
Levinthal, 1990; Rivkin, 2000). This means that imitation here is the 
attempt by firm fi to copy all the H bits from the bitstring of firm fj that are 
different from fi’s own bitstring. However, while attempting to perfectly 
copy the H bits of the other firm, it may makes mistakes in doing so. 
Hence, given a certain probability of any copying mistake occurring, it 
follows that the higher the cognitive (Hamming) distance between two 
firms is, the more likely that at least one copying mistake will occur. This 
thus captures the idea that cognitive distance between firms renders 
imitation less effective (Nooteboom, 2000). 

The complexity of the knowledge imitated also matters (Rivkin, 
2000). If there exist few interdependencies between components (low 
K), one copying error affects only few other components, while if there 
are many interdependencies between components (high K), a single 

Fig. 2. Three examples of networks of firms (F = 20, D = 4). Regular networks have high clustering. Networks are created by following the method of Watts and 
Strogatz (1998), varying the ‘rewiring factor’ β between 0 and 1. 
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copying mistake will affect many other components. In the extreme case 
of maximum complexity (K = N − 1), a single copying mistake will lead 
a firm to discover a string with a performance level uncorrelated to the 
performance level of the string it attempted to copy, because, in the case 
of maximum complexity, the fitness values of all components are 
redrawn moving from one string to a neighboring string. The expected 
fitness value, then, of the wrong string discovered is then simply the 
expected value of any random draw, being 0.5. 

Rather than assuming that copying mistakes occur with some con
stant positive probability, we assume that the social distance between 
the imitating and the imitated firm affects the probability of errors 
occurring in imitation. Personal ties between firms, be them direct 
(‘friends’) or indirect (‘friends of friends’) ties, are assumed to support 
informal knowledge sharing and to enhance the accuracy of imitation 
(Bouty, 2000; Breschi & Lissoni, 2009). The lower the social distance 
between two firms, then, the less likely the imitating firm will make 
mistakes in copying a bit from the string the imitated firm. 

The social distance between any two firms in the social network is 
defined by the shortest path length between firm fi and firm fj indicated 
by δij. The probability of an error occurring in copying a bit, then, is 
given by the shortest distance between the two firms divided by the 
shortest path between the two most distant firms in the network Δ 
(known as the network’s diameter). Thus, each bit that firm fi attempts 
to imitate from firm fj will be copied with error with probability δij

Δ. It 
follows that neighboring firms make such errors only at a rate of 1Δ, while 
two firms at the maximum distance of Δ will be unable to imitate each 
other, as all the bits will be copied with error. It also follows that for a 
firm to make a perfect copy, it should avoid to make any mistake in the 
copying of H bits. One can thus express the probability of a perfect copy 
as (1 −

δij
Δ )H. 

Note that with the introduction of social proximity in the model, the 
detrimental role of cognitive distance still remains intact. For any value 
of social proximity, the probability of copying mistakes applies to any of 
the bits that a firm tries to copy. Hence, the number of copying mistakes 
in imitation still remains proportional to the Hamming distance between 
the bitstring of the imitating firm and the bitstring of the imitated firm. 

We consider four different types of networks ranging from a perfectly 
regular network, to two ‘small-world networks’, to a completely random 
network. We look at sparse networks where the number of ties of each of 
the firms (called ‘degree’ D) is rather small compared to the number of 
firms F. We start from a regular network arranging firms on a circle with 
each firm having the same degree and the same average distance to all 
other firms. Starting from this regular network, irregularity is intro
duced by randomly rewiring a certain fraction β of links between firms, 
with rewiring factor β tuned between β = 0 (fully regular network), to β 
= 0.01 and β = 0.1 (small-world), to β = 1 (fully random network) 
(Watts & Strogatz, 1998). 

As demonstrated by Watts and Strogatz (1998), the rewiring of links 
in a regular network has a profound effect on the average path length 
between every two firms (i.e., the average social distance). Small-world 
networks, in particular those with a rewiring factor between β = 0.01 
and β = 0.1, maintain the high degree of clustering characteristic of 

regular networks, but have a much shorter average path length than 
regular networks, as the small fraction of rewired ties function as ‘short- 
cuts’ (Fig. 2). When further rewiring all ties as to obtain a random 
network, the clustering of nods in triangles gets lost while distance be
tween nodes become even shorter. Thus, small-world networks combine 
the feature of high clustering from regular networks and the feature of 
short distances from random networks. 

There is extensive empirical evidence that social networks between 
acquaintances and between firms exhibit the small-world features of 
short distances and high clustering (Fleming, King, & Juda, 2007; Lis
soni, Llerena, & Sanditov, 2013; Newman, 2003; Uzzi, Amaral, & Reed- 
Tsochas, 2007). Given the empirical relevance of small-world networks, 
we will focus in the simulation results primarily on the intermediate 
values of the rewiring parameters, while considering the minimum and 
maximum value of theoretical relevance, mainly. 

3.3. Simulation 

In each simulation, firms start from randomly assigned bitstrings and 
engage in search for alternating periods of exploitation and exploration. 
Exploitation consists of local search until a local peak is reached. Once a 
local peak is reached, a firm tries to imitate a better-performing firm. If 
exploration is successful, a firm reverts again to exploitation, and the 
cycle repeats. 

In our model, exploitation implies local search which means a one- 
bit mutation (from 0 to 1 or from 1 to 0). We apply an algorithm that 
is known as ‘greedy search’ (Goldberg, 1989), meaning that a firm in 
each hill climbing step will mutate the component that will generate the 
best performance gain when changed. In other words, a firm takes the 
steepest way up from its current position in the landscape, hoping to 
follow the shortest route to a nearby peak. Greedy search steps are 
repeated until no more improvements can be found. 

Once a firm has reached a local optimum, only exploration may yield 
higher fitness. Imitation attempts will only be accepted if fitness in
creases. Yet, as imitation is failure prone, an imperfect imitation may 
well result in finding a bitstring with a lower fitness than the firm’s 
current local optimum. In that case, a firm remains at its current position 
and attempts again in the next time-step. Also note that in some cases, 
imperfect imitation may actually lead to a higher fitness that initially 
envisaged (Posen, Lee, & Yi, 2013). In that case, the firm will accept the 
newly found bitstring as the fitness of the new string is higher than the 
previous string. 

In each simulation, firms are allowed to innovate in a series of greedy 
search and imitation steps, limited to a maximum of 200 steps.1 Based on 
the model as described above, we have carried out a series of simulations 
with parameters values and output variables as given in Table 1. We set 
the parameters values for the number of firms (F = 100), their degree (D 
= 6) and the length of the bitstring (N = 16). What we vary is the small- 
world rewiring factor β as to compare different types of network and the 
parameter K to compare different levels of complexity. To prepare our 
simulations, we have generated a set of 100 networks for each rewiring 
factor β > 0 (for β = 0, the network is a given). From these 100 networks, 
we selected ten representative networks with modal values of average 
clustering and average path length. Likewise, we have prepared a set of 
ten NK landscapes for each K-value and selected the most representative 
landscape with the modal number of optima. 

The model was implemented in NetLogo (Wilensky, 1999). For each 
simulation, with 100 runs for each combination of K and rewiring factor 
β, the model was executed according to the following pseudo code:   

Table 1 
Parameter settings and output variables.  

Parameter Description Settings 

F Number of firms 100 
D Degree 6 
β Rewiring factor 0, 0.01, 0.1, 1 
N Number of bits 16 
K Complexity 3, 7, 11, 15  

Output variable Description Range 
P Performance (‘fitness’) [0, 1] 
Cognitive distance Hamming distance H [1, N] 
Social distance Shortest path δ [1, Δ]  

1 The maximum number of time steps was determined experimentally by a 
series of trial simulations, which demonstrated that at this time step, firms have 
reached a stage in which performance gain levels have become minimal. 
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4. Results 

4.1. Network-level 

Fig. 3 provides the time evolution of the average performance of 
firms in the population for different network types and complexity 
levels. We express the performance level of firms as the percentage in
crease in fitness compared to the average fitness of a simulation run 
without exploration. The percentage expresses how much the average 
fitness of local optima found when search includes both exploitation and 
exploration, exceeds the average fitness of local optima found if firms 
only engage in exploitation, that is, a single round of greedy search. 
These results allow us to understand the value of exploration on top of 
exploitation for different types of networks and complexity levels. 

The first finding that can be derived from Fig. 3 holds that, indeed, 
exploration contributes to firm performance, as it allows a firm to escape 
a poor local optimum through imitation. The extent to which explora
tion helps to improve firm performance increases with the complexity of 
the knowledge base. This can be understood from the fact that less 
complex landscapes have fewer local optima among which the best 
optima have the largest basins of attraction (Kauffman, 1993). Exploi
tation alone, then, will often lead firms to optima with reasonably high 
fitness. More complex landscapes, by contrast, have many more local 
optima with only small basins of attraction. Exploitation alone, then, 
will often lead firms to poor local optima. The differences are quite 
pronounced: exploration adds some six to seven percent to firm per
formance for K = 3, and some 16 percent to firm performance at K = 15.2 

This finding is in line with empirical research based on patent data 
showing that the higher the level of technological interdependence in an 
industry, the more important exploration activities are to improve firms’ 
performance (Gatti et al., 2015). 

The second finding that one can derive from Fig. 3 holds that small- 
world networks outperform regular and random networks only in 
complex landscapes. Recall that small-world networks combine the 
characteristic of high clustering from regular networks and the charac
teristic of short distances from random networks. The two properties 
have different effects on exploration. Short distances have the obvious 

effect that imitation becomes more effective as fewer errors are made 
between socially proximate firms. Clustering, however, has a subtler 
effect. On the one hand, clustering leads firms to converge faster on a 
local optimum as learning takes place in triangles. At the same time, as 
the social distance between firms in more clustered networks is higher 
compared to less clustered networks, clustering inhibits imitation be
tween firms in different clusters, thus reducing premature convergence 
at the population level (Baumann et al., 2019). Put differently, clus
tering is advantageous to maintain a certain variety in knowledge to fuel 
future innovation, a logic which has been highlighted as a generic 
principle in cultural evolution (Muthukrishna & Henrich, 2016). 

Looking closer at the results in Fig. 3, we see that for low complexity 
(K = 3) all networks perform equally well as firms perfectly converge in 
fitness levels (due to the consistent discovery of the global optimum in 
all simulation runs). For moderate complexity, the random networks 
perform best although differences are small. Once complexity becomes 
even higher, small-worlds start to outperform the other networks. In 
complex landscapes, the number of local optima is high leading to a 
sustained diversity of bitstrings. Clustering then, turns into a positive 
force helping firms in cliques to filter out high optima without leading to 
premature convergence ideas. This is further evident from comparing 
the two small-world networks, where the one with the highest clustering 
(β = 0.01) outperforms the one with lower clustering (β = 0.1) for the 
highest level of complexity (K = 15). 

4.2. Dyad-level 

Fig. 4 provides a heat map representing the frequencies at which 
successful imitations occurred between any two firms at a certain social 
and cognitive proximity. We show a total of sixteen of such maps cor
responding to the parameter space given by the four different network 
structures (β) and the four different complexity levels (K). 

As a preliminary observation, we find that imitation is seldom suc
cessful if firms are distant in both the social and the cognitive dimension. 
This comes naturally out of the model as cognitive distance increases the 
number of bits that a firm tries to copy and social distance increases the 
probability of a copying mistake in any bit. A second observation holds 
that for more random networks, imitation occurs at lower social prox
imity. This reflects the short distances in random networks. 

As a first substantial finding, we observe that successful imitation 
happens most often at an intermediate level of cognitive proximity. As 
expected, imitation at high cognitive distance is hardly feasible given 

2 Comparing the means of the final values (at time step 200) of simulations 
with different rewiring factors (β), we find that the differences between means 
were significant (p < 0.05), except for simulations for K = 3. 
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the higher chances of copying errors. Imitation at low cognitive dis
tance, by contrast, should be most effective in that it is likely to occur 
without mistakes. However, imitation of similar bitstrings rarely hap
pens as most nearby bitstrings will have inferior performance. Hence, we 
can understand that successful imitation occurs most often at interme
diate distance. Interestingly, this result holds regardless of the type of 
network considered. The optimal cognitive proximity pattern also holds 
for different complexity levels, except for the case of lowest complexity 
(K = 3) where no pronounced pattern is observable. As most of the 
performance gains are achieved by exploitation rather than by explo
ration in a low-complexity context as we just discussed, the inverted-U 
pattern is not well discernable. For higher complexity levels the 
inverted-U pattern is robust. Our simulation results displaying an 
optimal cognitive proximity are thus consistent with the results coming 
out of empirical studies (Fitjar, Huber, & Rodríguez-Pose, 2016; Gilsing, 
Nooteboom, Van Haverbeke, Duysters, & Van den Oord, 2008; Noote
boom, Van Haverbeke, Duysters, Gilsing, & Van den Oord, 2007; Wuyts, 
Colombo, Dutta, & Nooteboom, 2005). 

As a second substantial finding, we see that social and cognitive 
proximity act as substitutes, a thesis advanced earlier by proximity re
searchers (Boschma, 2005; Huber, 2012). We find that successful 
imitation is more common among cognitive distant firms if their social 
proximity is high, while reversely, successful imitation is also more 
common among socially distant firms if their cognitive proximity is 

high. This shows that longer jumps in the landscape are supported by 
social proximity as the chances of copying mistakes go down and, 
accordingly, the chances of finding a higher fitness go up. The results 
also show that firms can learn from unfamiliar competitors at a large 
social distance, as long as these firms work in the same knowledge area. 
As a further qualification, it is clear that the inverse relation between 
social and cognitive proximity is less apparent in random networks 
where social distances are small anyway. The model results are consis
tent with the empirical studies that found social proximity is especially 
important when cognitive proximity is low, and vice versa, that cognitive 
proximity is especially important when social proximity is low (Cassi & 
Plunket, 2015; Huber, 2012; Steinmo & Rasmussen, 2016). 

4.3. Sensitivity analysis 

In the presentation of results, we focused on differences between 
network structures (β) and complexity (K) while holding the other pa
rameters constant. This leaves open the question whether our results are 
robust when varying the other three parameters (F, N, and D). 

When we increase (decrease) the number of firms F in our network, 
the mean performance achieved by firms will improve (deteriorate). 
This result can be simply explained by the fact that once more (fewer) 
firms are active in the same landscape, the probability of a finding a high 
peak will increase (decrease). 

Fig. 3. Performance gain achieved by exploration compared to the baseline with firms only engaging in exploitation. Averages over 100 simulation runs.  
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When increasing (decreasing) N while adapting the K-values 
accordingly (keeping K-values proportional to N as in the original 
simulation), imitation will be more difficult as the Hamming distances 
between the imitating firm and the imitated firm go up. This implies that 
the number of errors goes up (goes down) and the learning rate goes 
down (goes up). 

Finally, increasing (decreasing) the degree D in the social network 
will lower the average social proximity between firms leading to fewer 
(more) errors in exploration activity. As a result, firms will learn more 
(less) effectively and will find local optima with high (lower) fitness. 

5. Conclusion 

In our theoretical model, we consider innovation as a process alter
nating between internal exploitation by local search and external 
exploration by imitation of successful others. In the model, multiple 
firms search for optima in an NK fitness landscape (Kauffman, 1993) 
while being connected in a small-world social network (Watts & 

Strogatz, 1998). A firm’s network position is assumed to affect the fi
delity of its imitation efforts, with the probability of mistakes increasing 
with the social distance between the imitating firm and the imitated 
firm. 

The key result of the model holds that successful (i.e. fitness 
increasing) imitation typically occurs at an intermediate level of 
cognitive proximity, consistent with empirical studies. At low cognitive 
distance there are rarely successful firms to imitate, while at high 
cognitive distance imitation often fails due to copying errors. The second 
key result holds that social and cognitive proximity are substitutes, also 
found in empirical studies. Successful imitation is more common among 
cognitively distant firms if their social proximity is high, while reversely, 
successful imitation is also more common among socially distant firms if 
their cognitive proximity is high. Apart from these two stylized facts, the 
model reproduces two more stylized facts: the higher value of explora
tion in highly complex industries compared to less complex industries, 
and the benefits of the small-world network structure for collective 
learning compared to regular and random network structures. 

Fig. 4. Occurrence (darker color corre
sponds with higher occurrence) of suc
cessful imitation, for different complexity 
(K) levels (rows) and rewiring factors (β) 
(columns), at different cognitive and so
cial distances (reverse of proximity). 
Means taken over 100 simulation runs. 
For lower complexity (K = 3) imitation is 
less prominent, especially in more clus
tered networks. In case of more 
complexity, successful imitation is most 
common at intermediate cognitive dis
tance (inverted U-shape). For social 
proximity, the expected U-shape is most 
prominent in less clustered or more 
random networks, but absent in highly 
clustered networks.   
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The main theoretical implication of our model concerns the key role 
of social networks among firms in supporting effective imitation. A firm 
with a central network position has short social distances to other firms 
allowing it to imitate effectively a large set of firms with varying 
knowledge bases, which is shown to be of particular relevance in com
plex product industries. By comparing different network structures at 
the population level and learning at the level of two firms, we further 
have been able to integrate the theory of small-worlds in collective 
learning and the proximity theory regarding inter-firm learning. 

Our model exemplifies the usefulness of the NK-model as a frame
work to investigate exploitation as local search to a peak and exploration 
as a jump away from a peak (Csaszar & Siggelkow, 2010). We choose to 
model exploration as consisting only of imitation activities. The model 
does not address learning within strategic alliances that are set-up for 
mutual knowledge exchange. Learning within such alliances is arguably 
quite distinct from imitation, as alliances are cooperative structures 
aiming to generate new knowledge for both partners through recombi
nation (‘crossover’) rather than through imitation (Cowan & Jonard, 
2009). To investigate the generalizability of our results, a future model 
may systematically compare the outcomes of exploration via imitation 
versus exploration via alliances. 

Our model can also be extended in other ways. First, apart from 
exploration by imitation as we do here, the model may incorporate 
exploration by internal search as in the original NK-model (Levinthal, 
1997). Then, a question to address holds what optimal balance exists 
between internal and external exploration depending on a firm’s 
competitive position. In particular, well-performing firms can arguably 
learn more from exploration by internal search compared to poorly 
performing firms that can benefit more from imitating others. A second 
extension is to incorporate cost. In our model, we abstracted away from 
the cost of imitation. While we capture the higher probability of errors 
when imitation distance goes up, one could further argue that copying 
more bits does not only entail more risk, but also higher costs (Csaszar & 
Siggelkow, 2010). A final extension regards the investigation of envi
ronmental turbulence on exploration and exploitation, which can be 
integrated with the NK-model by making fitness level noisy (Uotila, 
2018). Here, a key question holds whether imitation is still as effective 
as a means to conduct exploration if fitness levels of competitors convey 
noisy information. 

The managerial implications that follow, in its most general sense, 
are threefold. First, firms profit from participating in small-world net
works in contexts of high product complexity. Hence, strategically 
maneuvering into a favorable network position combining short dis
tances with high clustering only matters in contexts where products, and 
the underlying knowledge base, are complex. Second, firms should 
refrain from attempting to imitate firms with a very similar knowledge 
base as well as from firms with a very dissimilar knowledge base. 
Instead, firms should focus their learning efforts at a particular subset of 
fellow firms that are sufficiently different to effectively learn from, but 
not too different as to avoid the risk of failure in learning. Third, firms 
who specifically aim to learn distant knowledge should invest in social 
proximity. This can be done by encouraging labor mobility of their own 
employees or poaching employees from competitors. 

Along similar lines, some general implications for government policy 
can be derived. First, in contexts of high knowledge complexity, gov
ernments can try to influence inter-firm network structures in ways that 
the overall network structure acquires small-world characteristics. As a 
public actor, government can influence the macro-level structures of 
collaboration among firms by subsidizing inter-firm networks (Van 
Rijnsoever, Van Den Berg, Koch, & Hekkert, 2015). In particular, gov
ernments can focus on creating shortcuts between two socially distant 
firms as to increase social proximity, and on promoting large consortia 
among firms in contexts where the level of clustering is low as to in
crease clustering. In addition, governments can promote social prox
imity more generally if it wants to promote learning across unrelated 
domains. For example, promoting associational life in general, and 

‘policy platforms’ and ‘innovation intermediaries’ in particular, are 
ways to bring together businesses in an open setting (Janssen & Frenken, 
2019). 

As our model is an abstract one, the implications that can be derived 
from the model may stretch beyond the immediate context in which we 
presented it. In particular, the notion of social proximity can be 
extended to any form of proximity that affects the fidelity of learning, 
including geographical proximity supportive of face-to-face interactions 
as often happens in geographic clusters (Boschma, 2005). Note here that 
geographical proximity also exhibits the small-world network logic of 
our model in that local interactions can be associated with high trust 
supportive of collaborative elaboration of existing ideas and the global 
interactions with the short cuts needed to bring in new knowledge from 
abroad. Mutatis mutandis, the policy implications for firms and govern
ments would hold that geographical proximity among firms, organized 
in ‘industrial clusters’, is especially relevant in industry contexts with 
high knowledge complexity. 
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