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General introduction

GeneRal IntRoduCtIon

The cardiac cycle induces variations in blood pressure that drive tissue deformation in the brain. 
As the pulsatile blood pressure waves are transmitted through the vascular tree all the way to 
the level of the brain’s microvasculature, it causes the surrounding tissue to swell and stretch 
elastically, resulting in a pulsating brain. Due to the rise of the intravascular blood volume during 
systole, the cerebral tissue expands and cerebral spinal fluid (CSF) is squeezed out of the brain to 
compensate for the additional blood volume. As the blood leaves the brain during diastole, the 
vessels relax and CSF returns. It is important to note that brain tissue in the context of this thesis 
includes the microvasculature embedded in the tissue.

These pulsatile tissue deformations in the brain are of interest as they carry information on both 
blood supply and vessels that drive the pulsations and on the surrounding tissue that deforms 
in response to the vascular pulse. For example, it is known that tissue expansions from dias-
tole to systole are smaller in white matter than in grey matter [1; 2; 137]. Differences in tissue 
expansion may be due to an overall lower blood flow to the white matter compared to the grey 
matter, but may also reflect differences in tissue stiffness, tissue integrity and vessel wall stiffness. 
For instance, ex-vivo studies have shown that white matter could be stiffer than grey matter, 
which could lead to reduced tissue expansion for a given blood flow [80]. On the other hand, 
blood vessel condition and tissue integrity are generally affected in disease. Indeed, studies have 
shown that brain tissue becomes less stiff with age, which probably reflects change in the tissues 
microstructures [132]. Diseases such as cerebral small vessel disease (cSVD) are associated with 
stiffening of the arterial walls. cSVD is a major cause of stroke and dementia that can currently 
only be detected when macroscopic, mostly irreversible, tissue lesions have been developed [121; 
166; 168]. Assessment of changes in the microvascular- and tissue properties prior to the devel-
opment of such damage might yield insight in the underlying disease processes. Quantifying 
brain tissue deformation could be an important piece of the puzzle to assess microvascular and 
tissue properties directly.

Apart from the fact that tissue deformations reflect tissue condition and properties, these defor-
mations may also be of interest for their potential role in physiological processes. The mechanical 
deformation of brain tissue and its pulsatile nature evoke mechanotransductive responses in 
endothelial cells, which constitute the blood-brain barrier [33; 35; 37]. Endothelial cells exposed 
to regular mechanical pulsations constitute better organized cellular structures than cells that 
do not [35]. In addition, the pulsations drive CSF around the brain that plays an important role 
in the drainage of cerebral waste [101; 141]. Tissue deformation can therefore be considered an 
important factor to waste clearance in the brain.
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Brain tissue deformation is very subtle and involves relative changes in tissue length of typically 
less than 1%. Moreover, brain tissue is shielded by the skull, which poses a challenge from a 
measurement point of view. Magnetic resonance imaging (MRI) is a powerful, non-invasive tech-
nique that can be used to measure these deformations. This thesis addresses the major objective 
to non-invasively measure brain tissue deformation with MRI to pave the way to non-invasive 
in-vivo assessment of the impact of disease and physiological stressors (such as hypertension and 
ageing) on the properties of the brain tissue and vasculature.

HIstoRy of MeasuRInG bRaIn PulsatIons

At the end of the 19th century, Angelo Mosso (1846-1910) studied the pulsating brain (or in 
his words the cerebral pulse) with a device he developed for graphical recordings of the in vivo 
cerebral blood flow. He performed his experiments in patients with skull openings. In his lat-
est of four major articles on the link between blood flow and neural activity, he presented the 
interesting case of a 37-year-old farmer named Michele Bertino [178]. In his report entitled Sulla 
circolazione del sangue nel cervello dell’uomo (On the circulation of blood in the human brain) 
Mosso writes about Bertino [107; 124]:

“On July 30, 1877, as he stood below the bell tower of his village, a brick that had slipped from 
the hands of a mason working near the roof fell on his head. Under the impact of this 3-kg mass 
dropped from a height of 14 m, Bertino fell on the ground unconscious.”
Bertino survived and all that remained was a crushed laceration, shaped like an irregular triangle 
of 7cm long and 4cm wide. The fractured bones were removed, revealing a bone breach in the 
skull of approximately 20 mm in diameter. Bertino did not suffer from apparent brain damage; 
memory and language remained unimpaired. Dr. De Paoli, who at the time had been Bertino’s 
attending physician, invited Mosso almost 3 months after the incident to collaborate on the 
experiments Mosso describes in his report. He writes [107; 124]:

“I believe it would have been difficult to produce intentionally in animals a cranial defect more 
profitably designed for this, because when the skull is trephined(1), as Mr. Salathé(2) correctly 
pointed out, one often encounters an insurmountable obstacle to the recording of the cerebral 
movements.”

The obstacle Mosso refers to is the fact that the recordings of the pulsating brain fail when the 
brain swells during the experiment and obstructs the cranial opening through which the mea-

1 Trephine: to perform a surgical intervention in which a hole is drilled in the skull
2 Salathé: Recherches sur les mouvements du cerveau. Paris, 1877, p. 74
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surements are obtained. Such an obstruction could not happen for Bertino’s breach, since his 
brain had an indentation of 5cm3 underneath the skull defect, allowing for additional brain swell-
ing. Mosso could therefore record the pulsations of Bertino’s brain through a device connecting 
the air within the cerebral indentation to a recording barrel (see Figure 1-1b). Simultaneously, 
Mosso recorded the blood pulsation in the forearm by immersing the arm in a glass cylinder 
filled with water. Figure 1-1c presents a selection of paired traces Mosso obtained during the 
experiment. Of each pair, the upper trace represents the variations of blood volume recorded 
as a reference by immersing the forearm in a glass cylinder filled with water. The bottom trace 
shows the brain’s blood volume pulsations obtained through the skull breach. Mosso recorded 
the brain’s blood pulsations (i) in rest and (ii, iii) during cognitive stimuli. For instance, trace (ii) 
shows the response of brain volume change when the pendulum clock in the room struck 12, 
and was accompanied by the sound of the bell of the neighboring church. He wrote [107; 124]:

 “If I had reproduced in the present figure the direct continuation of trace 2(3), one would notice 
such an increase in the inflow of blood to the brain that the 20th pulsation of line C indicated by 
the symbol ⇓ (which corresponds to the first peal of the clock striking noon) went so far beyond 
the upper line A of the forearm pulsations that I was forced to open the release valve (clarinet) in 
order to prevent excessive tension of the tambour membrane.”

3 Figure 1-1c, trace (ii)

Plate 1.2 M. Bertino.

Raichle, M. E., & Shepherd, G. M. (2014). Angelo mosso's circulation of blood in the human brain. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from uunl on 2021-02-04 06:51:04.
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conditions of the experiment and the method of recording for both body parts 
were the same (Fig. 2.2).

The hydrosphygmograph consists of a cylindrical glass container A B, similar 
to the glass cylinder of my plethysmograph.3 I  introduce the forearm into the 
container and close the latter by means of an elastic rubber sleeve A, the same 
as I do using the plethysmograph. The apparatus is suspended from the ceiling 
of the room to eliminate the harmful influence of involuntary movements. To 

G F

B

C

D E

A

Figure 2.1 Arrangement of the instrument used on Bertino for the recording of the 
cerebral pulse.

Raichle, Marcus E., and Gordon M. Shepherd. Angelo Mosso's Circulation of Blood in the Human Brain, Oxford University Press,
         Incorporated, 2014. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/uunl/detail.action?docID=1784096.
Created from uunl on 2021-02-10 06:30:45.
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a. Michele Bertino b. Mosso’s device c. Brain pulsation traces

i

iii

ii

figure 1-1 The experimental setup and results of the cerebral blood flow as measured by Angelo Mosso. The de-
vice of Angelo Mosso (b) was connected to the skull breach of Michele Bertino (a). Pairs of traces were recorded 
(c) in (i) resting state, (ii) when Michele Bertino was asked to multiply 8 times 12 and (iii) when the clock in 
the room struck noon. The bottom trace of each pair represents the brain pulsations and the upper trace shows 
the blood volume changes in the forearm for reference. This reference trace was obtained through the ‘hydro-
phygmograph’ that recorded the blood volume changes in the forearm by positioning the arm in a glass cylinder 
filled with water. The figure is reproduced with permission from Raichle et al. (2014) [124].
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Mosso later continued with a mental task where he asked Bertino to multiply 8×12. At the time 
denoted by α in trace (iii), the task was posed on Bertino and at ω he provided the response. 
Besides an increase in cerebral volume, Mosso also observed a larger amplitude of the pulsations 
during both mental stimuli. From these observations, it is evident that the brain pulsates over 
the cardiac cycle, which is of interest to assess. Mosso’s methods, however, require a lot of effort 
to be put in before hemodynamics in the brain can be measured. The approach also relies on the 
availability of patients to connect to the device called the hydrophygmograph (see Figure 1-1b). 
It makes Mosso’s method intrinsically invasive, which poses a challenge for interpretation of the 
findings, since the observations are performed with different boundary conditions compared to 
healthy subjects.

MaGnetIC ResonanCe IMaGInG of bRaIn PulsatIons

In the past 150 years, the rise of imaging modalities have played a crucial role for improved in-
vestigation of the brain’s hemodynamics [50]. MRI is a powerful, non-invasive technique which 
signal is acquired as a distribution of spatial frequencies, represented in k-space. The acquired 
k -space relates to the MRI image data by the mathematical operation ‘Fourier transform’. The 
image data is described by both magnitude and direction (called phase), implying that the signal 
is similar to a vector. Both magnitude and phase can be harnessed to track tissue motion. The 
most widely used motion tracking MRI techniques are myocardial tagging and phase-contrast 
MRI (PC-MRI) [75]. Tagging sequences modulate the magnitude signal by vector fields that 
induce signal voids. The tag lines in the acquired signal provide information from which tissue 
strains can be inferred by using post-processing methods. These methods track adjacent tag-line 
intersection points to calculate the strain. Although the technique is capable to track sub-voxel 
motion, its sensitivity is low [177]. Because signal voids need to be identified over neighbor-
ing voxels, the sensitivity of tagging methods reduces even more for lower spatial resolutions. 
This poses a challenge to assess more subtle tissue motion in the brain with this technique [59]. 
Instead, phase-contrast methods for MRI are often used. These methods manipulate the phase-
signal such that it becomes proportional to motion which facilitates increased sensitivity and 
accuracy of the motion field maps compared to tagging sequences. Unlike for tagging methods, 
the sensitivity of phase-based methods does not depend on voxel-size directly. Lower resolution 
in this case only implies lower spatial resolution to identify anatomical structures in the obtained 
motion field maps.

Principle of cine MRI
Cine MRI refers to MRI sequences designed to capture motion, for which the reconstructed 
images resemble a movie when played consecutively. For the heart, each movie frame is also 
referred to as a cardiac phase. Furthermore, the temporal resolution indicates how many cardiac 
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phases constitute the cardiac interval; the more cardiac phases are acquired, the higher the tem-
poral resolution.

Cardiac phases are obtained by synchronizing the MRI acquisition with the ECG of the subject. 
The data acquisition is then performed during several heartbeats. In each heartbeat – also referred 
to as R-R interval – multiple radiofrequency (RF) excitations are performed that each provide a 
line of k-space data at different time-points along the R-R interval. To acquire all cardiac phases 
in a reasonable amount of R-R intervals, in general sequences are required to have a very short 
echo time (TE) and repetition time (TR). These short times (1-2ms) permit multiple consecutive 
acquired lines of k-space to be combined within a single cardiac phase [102].

Alternatively, sequences suitable for cine MRI utilize acceleration techniques such as echo-planar 
imaging (EPI) [131; 145]. The main principle of EPI is that for each RF-excitation, multiple lines 
of k-space can be acquired (see Figure 1-2) [123]. For very small datasets (e.g. low resolution 2D 
image), only one excitation may be enough to fill the complete k-space. Such acquisitions are 
referred to as single-shot EPI acquisitions and resemble a snapshot image. For larger datasets, 
however, multiple excitations may still be required. These acquisitions are referred to as multi-
shot EPI and often involve 3D and/or high resolution data. Although EPI offers some major ad-
vantages, it may introduce geometric distortions in the final image that need to be compensated 
for by using a correction method [53; 79].

1 2 3 4 5 6 7 8

Cardiac cycle 

RF

GR

1 2 3

TR

TE

1 2 3 4 5 6 7

Cardiac phase:

figure 1-2 Cine MRI routine for gradient-echo multi-shot EPI MRI sequence. In this example, 8 cardiac phases 
are acquired and the EPI factor is set to 7. The EPI acceleration technique is used to acquire all cardiac phases 
in a reasonable amount of R-R intervals. The total number of cardiac intervals required to acquire the full k-
space is typically 10 – 40+ cardiac intervals, but varies per application and depends, among other things, on 
resolution and FOV.
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Principle of motion encoding
The MRI signal can be represented as the net magnetization of isochromats4. The magnitude of 
the net magnetization is normally represented on a voxel-by-voxel basis in a MR image. The 
principle of motion encoding involves manipulating the relative frequency of isochromats and 
is depicted in Figure 1-3. In this figure, the top row represents a collection of isochromats all 
precessing at the initial (Larmor) frequency. An additional magnetic gradient (indicated by the 
read bar) now ensures that isochromats on the right side precess with a slightly higher frequency 
compared to isochromats on the left. As the magnetic gradient is stopped, isochromats precess 
in the Larmor frequency again, yet are no longer spinning in-phase. Instead, isochromats on 
the right (that preceded at a higher frequency when the gradient was applied) are front runners 
compared to isochromats on the left, as indicated by the arrows. To get the isochromats back 
in-phase, an equal but opposite gradient is required. Isochromats on the left (that previously 
experienced a lower field) will now precede at a higher frequency so that they ‘catch up’ with the 
front runners on the right, as shown in the bottom row.

4 Isochromat: microscopic collection of spins, all resonating at the same frequency.

+
0
-

+
0
-

a.

b.

c.

figure 1-3 Schematic representation of motion encoding principle. (a) Isochromats are represented as tiny 
gyroscopes that initially precede in-phase with the Larmor frequency. (b) For a given duration δ of an applied 
gradient, normally in the order of a few milliseconds, spins on the right have obtained a positive phase shift 
and can be regarded ‘front runners’ whereas spins on the left have obtained a relative negative phase shift and, 
thus, are fallen behind. (c) Applying an equal but opposite magnetic gradient field ensures that isochromats 
will return in-phase, provided no motion has occurred in the meantime. In-phase is visualized by the vector 
of the isochromat returning to its initial position. Isochromats 3 and 5 show how displacement results in ac-
cumulated phase depending on the displacement’s magnitude and direction. The arrow indicating the vector 
of the isochromat does not return to its initial position, but instead accumulates a phase-shift indicated by the 
dotted light-blue arrow.
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Isochromats will obtain a phase-shift when they have moved in the time between the two applied 
gradients. For instance, after the first gradient, isochromat 3 moved to the left and will conse-
quently experience a stronger second gradient field than necessary to catch up with the spins on 
the right. As a result, isochromat 3 will ‘run too fast’ and become a front runner compared to 
the stationary spins when the second magnetic gradient field is stopped. Meanwhile, isochromat 
5 moved to the right, experiencing a lower field than necessary to catch up with spins on the 
right. Consequently, isochromat 5 will ‘run too slow’ to make up for the phase difference, and 
therefore remain a rear runner compared to isochromats that did not move. In this particular 
case, isochromats that moved to the left obtain a positive phase-shift, while isochromats moving 
to the right yield a negative shift. Apart from the displacement of isochromats, the phase shift 
also depends on the applied gradients. The stronger the gradients or the longer its duration, the 
larger the obtained phase shift for a given displacement of isochromats. Note that the size of the 
final phase shift is not related to the initial or final position of the isochromats.

Phase shifts may be confounded by many factors, including, but not limited to, inhomogeneity 
of the static magnetic field and RF phase. In practice, motion field maps are therefore computed 
from two motion encoded images with opposite encoding direction. This implies that isochro-
mats moving to the right, for instance first accumulate a motion-induced positive phase shift 
in the first image and an equal but negative phase shift in the second image, while confounding 
phase contributions remain unchanged for both images. By subtracting the second phase image 
from the first and dividing the result by 2, a motion encoded map is then obtained where static 
confounding phase factors have vanished. Only an eddy current component remains, because 
this confounding factor follows the polarity of the motion sensitizing gradient. This component 
becomes more pronounced as the motion sensitizing gradients increase in strength [93]. Espe-
cially for increased motion sensitivity, it may therefore be necessary to remove these effects, for 
which several approaches exist [96]. One approach is, for example, to subtract the first acquired 
cardiac phase image from all images, thereby setting the first cardiac phase to 0 and subtracting 
the eddy current component from the remaining cardiac images.

PC-MRI
Phase contrast MRI (PC-MRI) is probably the MRI sequence most widely used to obtain motion 
field maps [104; 105]. In general, the sequence consists of an excitation RF pulse followed by 
two motion sensitizing gradients, as shown in Figure 1-4a. Since the time between the gradients 
is short and varies between sequences, it is more convenient to normalize for these effects and 
express the resulting maps in terms of velocity. This way, the sequence provides velocity maps 
of, for example, blood flow in larger vessels or CSF stroke volumes in the neck and spinal canal. 
The sequence is particularly suited for flows of 1cm/s or higher. Lower velocities require larger 
gradients that result in technical limitations, but are also associated with longer echo times (TE), 
which is an important limiting factor for PC-MRI as the signal decays with T2*.



Chapter 1

16

In the early 1990s, Greitz et al. already used PC-MRI to capture the brain pulsations [15; 58]. 
These early observations showed a resultant movement in a funnel-shaped fashion, directed 
towards the foramen magnum. Transverse slices encoded in the Head-to-Feet direction are re-
produced in Figure 1-5. At the time, gradient performance was less and combined with increased 
motion sensitivity resulted in TEs ranging between 35 and 47 ms. Therefore, they used PC-MRI 
in combination with a spin-echo acquisition, to ensure that the signal decayed with T2 instead 
of T2*. Calibrated encoding sensitivities were found to be equivalent to VENCs ranging between 
7.7 and 10.5 mm/s.

dense
Displacement Encoding with Stimulated Echoes (DENSE) was initially proposed by Aletras et 
al. in 1999 to obtain motion field maps in the heart and combines principles of both cardiac 
tagging and PC-MRI [5; 83]. The main advantage of DENSE compared to cardiac tagging is that 
the sequence can be optimized independently of voxel-size. This way, DENSE provides motion 
field maps with increased sensitivity without the need for high spatial resolution. Compared with 
PC-MRI, the main advantage of DENSE is its stimulated echo acquisition mode (STEAM), which 
facilitates longer times between encoding and decoding (indicated by mixing time) because 
STEAM ensures that the signal loss during the mixing time is predominantly proportional to 

a. PC-MRI
Gdec

TE

Genc

Gradients

RF
α˚

ADC

b. DENSE

Gdec

TE/2

Genc

Mixing Time

TE/2

Gradients

RF
90˚90˚ α˚

ADC

figure 1-4 Comparison between the motion encoding sequences (a) PC-MRI and (b) DENSE. The main ad-
vantage of DENSE compared to PC-MRI is that the signal loss is predominantly proportional with T1. The 
time between the encoding gradient (Genc) and decoding gradient (Gdec) can therefore be prolonged without 
much signal loss. Furthermore, for DENSE, the signal decays with T2 as function of TE as compared with the 
much faster T2* for PC-MRI. Hence, DENSE is better suited for measuring very subtle motions that develop 
over relatively long time scales, like tissue displacement in the human brain during heartbeat and respiration.
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T1, and decays with T2 as a function of TE (see Figure 1-4b) [49]. The extended delay between 
the bipolar gradients provides more time for tissue to displace, and hence, has increased mo-
tion sensitivity. In addition, the DENSE sequence allows for non-selective motion encoding. 
Combined with selective decoding, this approach requires a lower gradient duty cycle and thus 
has fewer technical constrains.

The STEAM approach in DENSE produces three signals (see Figure 1-6). The motion encoding 
gradient produces a stimulated echo (STE) signal and stimulated anti-echo (STAE) signal, of 
which the stimulated echo contains the displacement information of interest [83]. As a result, 
STEAM intrinsically distributes the available magnetization over the two stimulated echoes, 
thereby reduced the MRI magnitude signal by a factor of 2. The third signal consists of a free 
induction decay (FID) peak that accumulates during the mixing time. It is important to acquire 
the stimulated echo that contains the displacement information, without being corrupted by 
the other echoes. Here, two factors play a role. First, larger encoding sensitivities increase the 
separation between the STE and FID signal. Second, increased spatial resolution is reflected by 
a larger FOV in k-space, which increases the risk of the FID peak contaminating the acquisition. 
Brain tissue motions are very subtle, which requires large encoding sensitivities that naturally 
separate the STE signal from the FID peak. This illustrates that it depends on the study objective 
which MRI sequence is optimal to obtain motion field maps.

aa. bb. c. d.
figure 1-5 Transverse phase-images demonstrate motion in the Head-to-Feet direction (brighter areas move 
in Feet direction) of the central and caudal parts of the brain in systole (delay time after R-top is 125-150 ms). 
The most pronounced movement is at the level of corpus callosum. The figure is reproduced with permission 
from Greitz et al. (1992) [58].
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analysIs of MeCHanICal defoRMatIon and stRaIn

The mathematical description of brain tissue deformation can be derived by considering the 
brain as a continuum. A continuum is an ideal material object, for which the neighborhood of a 
material point is dense and fully occupied with other material points. Modeling objects this way 
ignores the fact that matter is made of atoms, but still yields highly accurate results on length 
scales much larger than inter-atomic distances [86]. In the following example, we derive the 
definitions required to describe deformation. Here, we use the term object for generalization 
purposes, but this refers to the brain tissue in the context of this thesis. Furthermore, brain 
tissue includes the microvasculature embedded in the tissue. This way, brain tissue deformation 
provides an indirect window into blood volume pulsations, which do not include the larger ves-
sels surrounding the brain tissue.

deformation
Consider the object as represented in Figure 1-7, in which a material point P moves from 
position X at time t = 0 to position x at time t = t. The coordinate x relates to X as follows: 
x(X, t) = X + u(X, t), where u is the displacement field, that includes rigid-body rotations and 
translations of the complete object.

Displacement 
Encoding

FIDSTAE STE

figure 1-6 The k-space representation of the three signals generated in DENSE: stimulated echo (STE), stimu-
lated anti-echo (STAE) and free induction decay (FID) signal. The STE signal contains the displacement infor-
mation of interest, while other signals are to be suppressed. The larger the displacement encoding sensitivity, the 
larger the separation between the STE signal and the FID peak. Especially for brain motion field maps, encoding 
sensitivities are generally high, which results in displacement-encoded image not corrupted by other signals. 
Figure is adapted with permission from Ibrahim et al. (2011) [75].
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Now consider Q in the neighborhood of P and at position X + dX. Our concern is what the 
relative position of Q and P is in the current (deformed) position of the object. To obtain this 
relative position, we determine the position where P and Q will arrive, that is at x and x + dx, 
respectively:

x = X + u(X, t)
x + dx = X + dX + u(X + dX, t)

(1-1a)
(1-1b)

Substituting Eq. 1-1a in Eq. 1-1b yields the relative position of P and Q in the current confi gura-
tion

dx = dX + ∇u dX
 = (J + I)dX = f dX and J = ∇u

(1-2)

where I is the identity matrix, J is the displacement gradient tensor and f is the deformation gradi-
ent tensor that relates the line element dX in the undeformed state to its deformed counterpart 
dx. Although f is independent of rigid-body translations, it still depends on rigid-body rotations 
(dX and dx typically can point in diff erent directions): f = R · u, where R is the rotation vector 
and u is the stretch tensor. Th ese tensors have the following properties:

R: Proper orthogonal: R−1 = RT and det(R) = 1
(1-3)

u: Symmetric: u = uT

stretch and strain
Th e fact that f depends on rigid-body rotations makes it less suitable for purposes of brain 
physiology. While it is conceivable that the physiology is diff erent for a subject in lying or up-
right position, characterizing the pulsations should also not depend on the angle from which the 
observation is obtained. A rotation of the coordinate system in which the analysis is performed, 

P(t0)

Q(t0) Q(t)

P(t)

dxdX

u(X + dX, t)

u(X, t)

x
X

0

figure 1-7 Deformation of a continuum body object. At time t=t0 the object is in the undeformed state. For 
every material point P, the displacement fi eld describes the new location aft er deformation.
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directly influences the appearance of f. To circumvent this limiting factor, ds (the length of dx) 
and dS (the length of dX) are considered instead. These quantities define stretch and strain, 
which are normalized measures of deformation that characterize the change of distances and 
angles between particles:

Stretch:
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where I is the identity matrix, J is the displacement gradient tensor and F is the deformation gradient 
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To find the relationship between dS and ds, we derive

ds2 = dx · dx = FdX · FdX = dX (fTf) dX (1-5)

and

ds2 − dS2 = dX fTf dX − dX I dX
 = dX (fTf − I)dX =def 2dX e dX

(1-6)

from where we obtain the Green-Lagrangian strain tensor e

E =
1
2

(fTf − I) (1-7)

e is a symmetric tensor and independent of rigid body motion. Writing the stretch and strain in 
terms of the Green-Lagrangian strain tensor results in

λ = √ 1 + 2t e t and ε √ 1 + 2t e t −1 (1-8)

where t is the unit vector in the direction of dX, such that dX = tdS.

Infinitesimal strain theory
The infinitesimal strain theory is a mathematical approach that relies on the assumption that the 
displacements of the material particles of a body are much smaller compared to the body’s size. 
In other words, the geometry of the body is assumed unchanged during the deformation process. 
Although this may be perceived as inconsistent, brain tissue deformations are very subtle and 
as such are considered not to change the macroscopic geometry of the brain. This assumption 
considerably simplifies the equations of continuum mechanics as described in the previous sec-
tion. The initial and current coordinates of the body can now be assumed to coincide, that is 
x = X + u ≈ X, yielding a simplified expression of the Green-Lagrangian strain tensor, called the 
infinitesimal strain tensor:
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Here, ε is the infinitesimal strain tensor, also known as Chauchy’s strain tensor, that – like E – is a 

symmetric tensor. Furthermore, the expressions for stretch and strain can be simplified in the following 
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The assumption of small strains makes it possible to simplify the stretch tensor U  
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Here, ε is the infinitesimal strain tensor, also known as Chauchy’s strain tensor, that – like e – is 
a symmetric tensor. Furthermore, the expressions for stretch and strain can be simplified in the 
following way

Stretch: λ = √ 1 + 2t e t ≈ 1 t · ε · t 0 < λ < ∞
(1-10)

Strain: ε √ 1 + 2t e t −1 ≈ t · ε · t −1 < ε < ∞

The assumption of small strains makes it possible to simplify the stretch tensor u
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The volumetric strain can be regarded as a direct measure for blood volume pulsations. As blood flows 

into the brain, the net volume increase due to the rise in microvascular blood is represented by an increase 

in volumetric strain (see Figure 1-8a). However, it may also happen that a voxel deforms while its net 

volume remains unchanged. To quantify the behavior of volume preserving deformation, we use the 

octahedral shear strain  (see Figure 1-8b) [98] 
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Figure 1-8 Example demonstrating the concepts of volumetric strain and shear strain. Isotropic swelling 

(a) results in increased volumetric strain without inducing shear strain. Isovolumic deformation (b, 

preserving its volume) yields non-zero octahedral shear strain. 

 

(1-11)

strain invariants
Certain scalar quantities derived from the strain tensor give the same result regardless of the 
orthonormal coordinate system used to represent the strain tensor. These scalar quantities are 
called strain invariants, of which several exist. Yet, not all of these quantities have a straight-
forward physiological interpretation. Here, we introduce two invariants. The most commonly 
used strain invariant is the volumetric strain εv (see Figure 1-8a). For the infinitesimal strain 
approximation, the volumetric strain is the trace of ε:

εv = tr(ε) = εxx + εyy + εzz (1-12)

The volumetric strain can be regarded as a direct measure for blood volume pulsations. As blood 
flows into the brain, the net volume increase due to the rise in microvascular blood is represented 
by an increase in volumetric strain (see Figure 1-8a). However, it may also happen that a voxel 
deforms while its net volume remains unchanged. To quantify the behavior of volume preserving 
deformation, we use the octahedral shear strain εoss (see Figure 1-8b) [98]

21 
 

 
 	               ∙  
 ≈      ≈           

(1-11) 

 

 

1.3.4  Strain invariants 

Certain scalar quantities derived from the strain tensor give the same result regardless of the orthonormal 

coordinate system used to represent the strain tensor. These scalar quantities are called strain invariants, 

of which several exist. Yet, not all of these quantities have a straightforward physiological interpretation. 

Here, we introduce two invariants. The most commonly used strain invariant is the volumetric strain  

(see Figure 1-8a). For the infinitesimal strain approximation, the volumetric strain is the trace of ε: 

 

   tr  ε  ε  ε (1-12) 

 

The volumetric strain can be regarded as a direct measure for blood volume pulsations. As blood flows 

into the brain, the net volume increase due to the rise in microvascular blood is represented by an increase 

in volumetric strain (see Figure 1-8a). However, it may also happen that a voxel deforms while its net 

volume remains unchanged. To quantify the behavior of volume preserving deformation, we use the 

octahedral shear strain  (see Figure 1-8b) [98] 

 

   23 −    −    −   6      (1-13) 

 

 

 

 

 

 

 

 

Figure 1-8 Example demonstrating the concepts of volumetric strain and shear strain. Isotropic swelling 

(a) results in increased volumetric strain without inducing shear strain. Isovolumic deformation (b, 

preserving its volume) yields non-zero octahedral shear strain. 

 

(1-13)



Chapter 1

22

aIM and outlIne of tHe study

Th e aim of this study is to introduce non-invasive in-vivo MRI methods that quantitatively map 
brain tissue pulsations from physiological animators such as heartbeat and respiration. Such 
MRI methods will allow clinical investigations to assess the impact of disease and physiological 
processes on the properties of the brain tissue and vasculature.

PC-MRI and DENSE have both been used in the past to measure brain tissue motion [58; 70; 
140]. Strain measurements can be inferred from these motion fi eld maps, yet this involves the 
use of spatial derivatives which amplifi es the noise present in these maps. Even at 7T, strain 
measurements remain corrupted by noise, which requires averaging over large ROIs [1; 70]. Th e 
aim of Chapter 2 was to investigate which motion encoding method yields the highest signal 
to noise ratio (SNR) in the motion fi eld maps. To this end, we described the SNR behavior of 
PC-MRI and DENSE and compared their performance using computer simulations. For DENSE, 
the simulated SNR behavior was validated with phantom measurements.

It is currently unclear whether brain tissue deformation is dominated by cardiac or respiratory 
cycles. Chapter 3 aims to unravel cardiac- and respiration-induced brain tissue deformations 
by introducing a single-shot DENSE sequence and a linear model that uses the physiological 
information regarding heartbeat and respiration. By using this dedicated linear model, initial 
entangled cardiac and respiratory contributions to the motion encoded in the snapshot images 
are unraveled.

Chapter 4 uses the results of Chapter 2 and Chapter 3 to build an SNR-optimized sequence that 
can capture the cardiac-induced strain tensor on a voxel-wise level. Th e 2D single-shot DENSE 
sequence from Chapter 3 is extended to be compatible with a simultaneous multi-slice acquisi-
tion approach, that can acquire data with full brain coverage. By acquiring multiple DENSE 

a. b.

εV > 0

εS = 0

εV = 0

εS > 0

figure 1-8 Example demonstrating the concepts of volumetric strain and shear strain. Isotropic swelling (a) 
results in increased volumetric strain without inducing shear strain. Isovolumic deformation (b, preserving its 
volume) yields non-zero octahedral shear strain.
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series with different acquisition orientations and encoding directions, the 3D strain tensor is 
reconstructed.

Chapter 5 represents the Mosso experiment in modern days, where brain pulsations are mea-
sured in a patient with a partially removed cranial vault. Unlike the Mosso experiment, we did 
not pose any task upon the patient. Yet, we present a first ever case study showing that our 
method as developed in Chapter 4 is capable to detect abnormalities in cardiac-induced brain 
tissue deformation on an individual level.

Thus far the focus has been on brain tissue deformation as such. Yet, brain tissue deformation 
is considered to propel CSF around the brain [101; 141]. In Chapter 6 we take a first step to 
assess the relation between tissue deformation and interstitial fluid flow. To this end, we illustrate 
how DENSE can be harnessed to simultaneously measure brain tissue strain and the apparent 
diffusion coefficient (ADC) variation over the cardiac cycle, which shows that DENSE can also be 
regarded as a diffusion sequence. The DENSE magnitude data provides the information on ADC, 
which we correct for artificial ADC variations arising from tissue deformation. Given that the 
artificial ADC variation is relatively small compared to the measured ADC variation, this chapter 
suggests that strain indeed is related to accelerated mixing of interstitial fluids.

Finally, Chapter 7 provides the summary, general discussion and conclusion.
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abstRaCt

Magnetic Resonance Imaging (MRI) is a powerful, non-invasive technique that provides  motion 
encoding techniques to obtain tissue motion field maps. Brain tissue deformations as induced 
by physiological animators are very subtle and involve strains of typically less than 1%. There-
fore, accurate measurements of motion field maps are crucial, especially as the required spatial 
derivatives amplify the noise present in these maps. Yet, in this regime of very small motion, the 
performance and sensitivity of the motion encoding techniques provided by MRI are unknown. 
In this work, we consider two MRI motion encoding techniques: PC-MRI and DENSE. For both 
techniques, we optimize the signal to noise ratio (SNR) in the motion field maps by using simula-
tions. In optimizing the SNR, we use the assumption of small strains to solve phase aliasing that 
arises from increased motion sensitivity. Simulations showed that DENSE holds the best potential 
to study brain tissue strains in the brain. We therefore performed SNR simulations for repeated 
DENSE measurements and substantiated these simulations with measurements obtained in a 
phantom. We also tested the optimized settings in one volunteer and found a factor of 1.6 SNR 
increase compared to previously reported experiments. The optimized DENSE sequence thereby 
shows its potential for voxel-wise assessment of brain tissue strains in humans.
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IntRoduCtIon

Variations in blood pressure and blood volume induce pulsatile brain tissue deformations. These 
blood volume variations are mainly induced by cardiac and respiratory cycles, of which the car-
diac cycle recurs with the highest frequency. Vasomotion is another recently proposed potential 
driver of blood volume variation in the brain [162]. Vasomotion refers to spontaneous arterial 
diameter fluctuations initiated by vascular smooth muscle cells that occurs at a frequency of ap-
proximately 0.1 Hz, which is even lower than respiration frequencies. Brain tissue deformations 
reflect the interplay of local blood volume change in the microvasculature and tissue properties 
such as stiffness. Moreover, these tissue deformations are considered one of the main drivers for 
the drainage of cerebral waste [101]. Brain tissue deformation is therefore an important physi-
ological process to assess.

Despite these important implications, a large proportion of studies investigating brain clearance 
is performed in rodents. Limited non-invasive methods are available to study brain dynamics in 
humans. Tissue deformation, however, can be obtained from motion field maps by computing 
the spatial derivatives. Magnetic resonance imaging (MRI) is a powerful and non-invasive tech-
nique, that provides methods to obtain these motion field maps. Here we consider two methods: 
Phase-Contrast MRI (PC-MRI) [104; 143; 144] and Displacement Encoding with Stimulated 
Echoes (DENSE) [5]. Both techniques use motion sensitizing gradients that manipulate the MRI 
phase signal such that it becomes proportional to motion.

PC-MRI is commonly used to measure flows of blood and CSF [28]. The sequence employs two 
consecutive motion sensitizing gradients, thereby recording the motion over small time intervals 
resulting in velocity measurements. Soon after its introduction, Greitz et al. used PC-MRI to 
obtain early observations of the tissue pulsations in the brain [58]. In their study, Greitz et al. 
implemented PC-MRI using a spin-echo acquisition approach to reduce geometric distortions 
from field inhomogeneities. The spin-echo acquisition also ensured that the signal would decay 
with T2 instead of T2*. Since then, many MRI hardware improvements have been developed, 
which lead to increased gradient performance that significantly reduced the echo time. There-
fore, PC-MRI is now normally used in conjunction with a gradient echo acquisition instead of 
spin-echo [7; 36].

DENSE was initially proposed by Aletras et al. in 1999 to obtain motion field maps in the heart 
[5]. The sequence combines principles of both PC-MRI and cardiac tagging. Tagging sequences 
modulate the longitudinal magnetization with a cosine (or higher order periodic function), which 
induces signal voids, visible as stripes in successive MRI magnitude images. magnitude signal by 
vector fields that induce signal voids. These signal voids are visual as stripes in the acquired signal 
and move with the tissue as it deforms. By using dedicated post-processing methods, the tissue 
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deformation can be inferred from these stripes. However, although the technique is capable to 
track sub-voxel motion, its sensitivity is relatively low and reduces even further for lower spatial 
resolutions [177]. Instead, the main advantage of DENSE is that the motion sensitivity of the 
sequence is independent of voxel-size. Compared to PC-MRI, DENSE uses a stimulated echo 
acquisition mode (STEAM), which enables to separate the motion sensitizing gradients in time 
during which tissue motion can accumulate. DENSE was already used with a multi-shot 3D 
acquisition approach to obtain displacement field maps and strain measurements in the human 
brain [1; 140]. However, the 3D approach sometimes suffered from increasing artifact levels, 
especially towards the end of the cardiac cycle due to inter-shot phase inconsistencies (see Figure 
2-1). These artifacts were especially seen in the Feet-to-Head (FH) direction. To reduce the 
severity of these artifacts, data was obtained by using sub-optimal (lower) encoding sensitivities. 
Even then, these artifacts could still be substantial, especially in patients [179].

In this work, we propose a single-shot 2D acquisition approach to circumvent phase inconsisten-
cies, avoiding artifacts from increased motion sensitivity. This enables us to optimize for motion 
sensitivity, without the risk of increased artifacts. The aim of this study was twofold. First, we 
simulated signal to noise ratio (SNR) of the motion field maps obtained through PC-MRI and 
DENSE as function of motion sensitivity, to compare the performance of both sequences. We 
performed these simulations for both a clinical and a pre-clinical setting to investigate the 
translational capabilities of the methods. Second, we optimized and validated the SNR of the 
motion field maps obtained through DENSE, which was specifically designed to target contribu-
tions from respirations. We chose DENSE to validate in a phantom as the simulations showed 

Cardiac Cycle

Encoding

figure 2-1 DENSE artifact for multi-shot acquisition approaches that arise from phase-inconsistencies across 
the shots, especially visible at the end of the cardiac cycle. The figure represents the magnitude DENSE images 
from a DENSE acquisition with encoding in the FH direction, which is the motion encoding direction most 
prone to show these artefacts. These artefacts are commonly seen in elderly subjects and patients. They are cur-
rently mitigated by using reduced motion encoding sensitivity, which obviously is not sufficient, apart from the 
fact that it reduces the maximally obtainable SNR in the motion maps.
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that DENSE holds the best potential to study brain tissue strains in the human brain. Besides, 
PC-MRI is a well-studied and established technique for which there is a vendor-supplied 
implementation available, which is used in daily clinical practice. In performing the DENSE 
simulations, we included effects from the motion encoding sensitivity as well as the signal loss 
due to diffusion effects from the motion sensitizing gradients. Furthermore, we assumed small 
tissue strains to solve phase aliasing that arises from increased motion sensitivity. For the DENSE 
sequence designed to include respiration effects, we also included the optimization of the vari-
able flip angle scheme that was required to obtain multiple measurements from the same 2D 
slice. Furthermore, we also tested the optimized DENSE sensitivity in one volunteer versus the 
previously used encoding sensitivity [1; 140].

tHeoRy

snR behavior
The SNR of the phase of the MRI signal is related to the SNR of the magnitude by

SNRφ = φ · SNRM (2-1)

where SNRM is the SNR of the magnitude of the MRI signal and φ denotes the phase (in radi-
ans). For a given SNRM, Eq. 2-1 shows that SNRφ is proportional to φ. For simplicity, we now 
disregard confounding phase contributions such as from field inhomogeneities and RF phase. 
(These confounders do not affect the SNR behavior as function of motion sensitivity, and are 
easily resolved by obtaining acquisitions with motion encoding with opposite polarities and a 
subsequent subtraction of these two acquisitions.) The phase observed in a PC-MRI motion 
encoded image depends on the velocity encoding sensitivity (VENC, in meters per second) as 
well as on the observed velocity v:

φ =
ν

VENC
π (2-2)

The observed velocity depends on physiology and cannot be controlled. Therefore, the velocity 
encoding sensitivity therefore determines the observed SNR in the velocity maps, which is then 
proportional to

SNRν ∝
1

VENC
SNRM (2-3)

where SNRv is the SNR of the velocity map. Increased motion sensitivity yields smaller VENC and 
requires larger gradients, thereby increasing SNRv. Yet, at the same time, these larger gradients 
make the acquisition sensitive to diffusion effects that reduce the SNR of the magnitude image. 
Consequently, an optimal VENC exists, which depends on the diffusion coefficient of the tissue.

DENSE can be regarded as a PC-MRI sequence, for which the time between the motion encoding 
gradients have been extended (see Figure 1-4). The motion sensitivity of the DENSE sequences 
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are characterized by a displacement encoding (DENC in meters), which approximately relates 
the VENC by:

DENC ≈ VENC · TM (2-4)

To obtain the exact VENC of the sequence, the first order moment has to be computed over the 
motion sensitizing gradients. The first order moment is related to the VENC by [20; 112]

VENC =
1

2 · γ · M1
 (2-5)

where γ is the gyromagnetic ratio, which depends on the nucleus for imaging (for hydrogen 
nuclei: 42.58 MHz·T-1). The first order gradient moment M1 is obtained by the time-integral over 
the motion sensitizing gradients

M1 = ∫ G (t) · t dt (2-6)
where G is the gradient strength at each time t.

In general, the SNR in the magnitude of the MRI signal depends on the relaxation of the longitu-
dinal magnetization between excitations (T1 relaxation) as well as the echo time (TE). The stimu-
lated echo acquisition mode (STEAM) employed by DENSE ensures that signal loss during the 
time between the motion sensitizing gradients (mixing time, TM) is predominantly proportional 
to T1, and decays with T2 as function of the TE [49]. For a gradient echo PC-MRI sequence 
the signal decays with T2*, which is much faster. However, the STEAM intrinsically distributes 
the available magnetization over the stimulated echo and stimulated anti-echo. Because only 
the a single echo can be acquired at a time, the MRI magnitude signal of this echo is reduced 
by a factor of 2. In this work, we consider the simple case where the excitation angle for both 
PC-MRI and DENSE is 90 degrees, so that all magnetization is utilized to acquire the single-shot 
image. Consequently, the magnetization is zero after each acquisition time and recovers over 
the repetition time (TR). Then, the SNR in the magnitude image of PC-MRI and DENSE can be 
described as follows:

PC-MRI: SNRM = 
 1 − exp 

 −
TR 

 · exp 
 −

TE 
 · exp(−b · D)  (2-7)

T1 T2*

DENSE: SNRM =
1

· 
 1 − exp 

 −
TR 

 · exp 
 −

TE 
 · exp(−b · D) · exp 

 −
TM 

  (2-8)
2 T1 T2* T1

Here, D is the tissue-specific diffusion coefficient and TM is the mixing time of the DENSE 
sequence. The diffusion weighting induced by the motion sensitizing gradients is described by 
b (in s/mm2). For ordinary trapezoid shaped gradients, the diffusion weighting of the motion 
sensitizing gradients is described by [146]

b = γ2G2 
 δ2 

 ∆ −
δ 

 +
ξ3

−
δξ2


  (2-9)

3 30 6

where δ is the effective duration of the gradient (in ms), ξ is the rise time (in ms) and Δ is the 
diffusion time (i.e. time between the motion sensitizing gradients). For DENSE, Δ  is equal to the 
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TM. A full visualization of the timing parameters of the motion-sensitizing gradients is provided 
in Chapter 6, Figure 6-1.

sequence optimization and strain measurements
Deformation of tissue can be assessed by the relative displacement of neighboring voxels, which 
results in strain. Local stretch is signified by positive strain, while shortening of tissue results in 
negative strain. The one-dimensional (1D) strain ε is simply the change in length of a line seg-
ment L and defined to give the relative change in length of the line segment during deformation

ε =
L'−L

=
∆L

 (2-10)
L L

where L is the original length of the line segment and L’ is the length of the line segment after 
deformation.  The strain is calculated from motion field maps by applying spatial derivatives. 
Given Δx, the voxel size along x, we can define the 1D strain in that direction as

εxx(n) =def mx (n + 1) − mx (n − 1)
 (2-11)

2∆x

Accurate measurements of the motion field maps are crucial, since the computation of spatial 
derivatives amplifies noise present in these maps. Larger encoding gradients yield an increased 
motion sensitivity (smaller VENC), yet, at the same time increase the number of phase wraps 
present in the images. Fortunately, strain computations allow for straightforward unwrapping 
under the assumption of small strains, as any phase wrap in the original image yields unlikely 
high strain values (see Figure 2-2). A phase wrap causes a large numeric derivative ∆ϕ, which can 
be resolved by adding or subtracting 2π to ∆ϕ to bring it closer to zero if

|∆ϕ| > 1.5 π = ∆ϕmax (2-12)

For DENSE, the maximum tolerated numeric derivative ∆ϕ relates to the maximum tolerated 
strain by

εmax =
∆ϕmax Denc = 0.75

Denc  (2-13)
2∆x π ∆x

where εmax is the maximum tolerated strain. A similar relation holds for PC-MRI, where the 
maximum tolerated numeric derivative ∆ϕmax is related to the maximum strain rate εrmax by 
VENC :

εrmax = 0.75
VENC

 (2-14)
∆x

Either way, as long as the expected strains in the brain do not exceed εmax or εrmax, there are no 
additional constraints for the encoding sensitivity.
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Repeated dense measurements
In Section SNR behavior we assumed an excitation angle of 90°, so that all encoded magnetiza-
tion was used to create the image. In the current situation, we encode the relaxed magnetization 
with DENSE and then create multiple images from a single encoding. Figure 2-3 shows a specifi c 
example, where each repeated scan consist of two cardiac cycles. Encoding is performed at the 
beginning of the fi rst cardiac cycle, aft er which the 2D slice is decoded 3 times in the second 
cardiac cycle, resulting in 2D images of 3 cardiac phases. In order to obtain a stable signal across 
all acquired images, a variable fl ip angle sweep is emplyed [45]. Once the fi nal fl ip angle of the 
sweep has been determined, all other fl ip angles can be calculated as well. We incorporate the 
choice for the fi nal fl ip angle in our optimization. Th e optimal fi nal fl ip angle depends on the 
T1 of the tissue. A larger fi nal fl ip angle increases the excited signal, but prevents regrowth of 
magnetization for the next scan. For the optimization, we separate the part of the longitudinal 
magnetization containing the encoded information, QE (which forms the stimulated echo), from 
the part of the longitudinal magnetization that has relaxed aft er the application of the encoding, 
QR (see Figure 2-3). Th e encoded component of the longitudinal magnetization just before the RF 
excitation pulse of the kth

  heart phase image was derived by Fischer et al. as [45]

QEk = Mss ENC(x,y) exp 
 −

tk 
 exp(−bk  · D)

k−1

cos(αj)  (2-15)ПT1
j=0

FH

L

ΔL

L’

Strain

Derivative

Phase 
Unwrapping

figure 2-2 Principle of strain unwrapping illustrated with an example 2D slice with sagittal orientation. On 
the left , a displacement map is shown obtained through DENSE with FH displacement encoding. Taking the 
straightforward derivative of the displacement map in the FH direction yields the one-dimensional FH strain 
map, shown in the top-right corner. In this map, phase wraps are visible (indicated by the white arrow). Th ese 
phase wraps can be resolved by assuming small strains (Eq. 2-12). All strain values which absolute value is larger 
than εmax are then solved by adding or subtracting 2π to ∆ϕ to bring the strains closer to zero, which results in 
a smooth map shown in the bottom-left  corner. For DENC = 0.12 mm and Δx = 3 mm, εmax is 3%, well over the 
expected strains in the brain.
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which we adapted to include the diffusion factor. The relaxed magnetization can be recursively 
written as

QRk =
 QRk−1 =cos(αk−1) − M0

 exp  −
(tk − tk−1) + M0  (2-16)

T1

In these equations, Mss is the steady state magnetization just prior to tagging, ENC is the encod-
ing function, tk is the time of the kth heart phase after encoding, αj  is the flip angle for heart phase 

j (α0 is 0), bk the effective diffusion weighting at tk, and T1 and D are the relaxation time and 
diffusion coefficient of the tissue under consideration, respectively.

MetHods

simulation of PC-MRI and dense
Both the clinical and pre-clinical setting were considered at a field strength of 7T. Tissue con-
stants of T1 = 1200 ms and D = 0.8·10-3 mm2/s were used, equal to white matter properties of the 
human brain at 7T [66; 130]. The T1 and diffusion coefficient of white matter was chosen as this 
has a shorter T1 than gray matter and, thus, faster decay of the encoded magnetization. There-
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figure 2-3 Schematic representation of the DENSE sequence, covering two repeated scans and four cardiac 
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which forms the stimulated echo. In each scan, the cardiac phases are acquired during the second cardiac cycle 
to increase respiration induced motion. Decoding gradients are applied before each readout (green gradients). 
Inverting G was inverted between scans (dashed lines), to allow distinguishing phase errors from motion.
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fore, the main difference between the clinical and pre-clinical setting was only the difference in 
physiology of a human and a rodent, as well as scanner performance. For a human, a typical RR 
interval of 1000 ms (60 bpm) was taken, whereas the RR interval of the rodent was considered to 
be 200 ms (300 bpm, which is representative for rats). The gradient performance for the clinical 
setting was set equal to the 7T MRI scanner (Philips, Best, The Netherlands) of our institution: 
gradient strength and slew rate of 40 mT/m and 200 T/m/s, respectively. For the pre-clinical 
scanner, the performance was set to 660 mT/m and 9200 T/m/s, respectively, which corresponds 
to the pre-clinical 7T MRI scanner in the Dijkhuizen lab. For both settings, the TE was set as 
the time required by the motion sensitizing gradients plus 5 ms to reach the central echo (k0) 
of the EPI readout. SNR in the motion field maps for both PC-MRI and DENSE were simulated 
as function of motion encoding sensitivity. To this end, Eq. 2-7 and 2-8 were each substituted in 
Eq. 2-3 to obtain a direct expression for the SNR in the motion field maps, while the respective 
b-values for the various motion encoding sensitivities were computed from Eq. 2-9, always using 
the maximally available gradient strength.

A main difference of DENSE compared to PC-MRI is that DENSE applies a non-selective encod-
ing preparation, which prevented regrowth of magnetization. The repetition time of the sequence 
was therefore extended with an additional cardiac interval. In Chapter 4, we used this DENSE 
approach to acquire motion field maps with full brain coverage, where we used different mixing 
times for slices to cover the complete cardiac cycle. We separated the slices in two packages, each 
acquired during a separate cardiac cycle. As a result, relaxation per slice was limited to one RR 
interval. Because PC-MRI encodes tissue directly after a single slice-selective excitation pulse, 

Clinical setting Pre-clinical setting

RR interval (ms) 1000 200

t1 (ms) 1200 1200

d (10-3 mm2/s) 0.8 0.8

tM 1 (ms) 250 50

tM 2 (ms) 750 150

Grad. strength (mt/m) 40 660

Grad. slew rate (t/m/s) 200 9200

table 2-1 Complete overview of scan parameters for the clinical and pre-clinical setting, used for simulation of 
a single slice acquisition. Main difference between clinical and pre-clinical setting is reflected in physiological 
properties (e.g. RR interval and mixing times) and scanner gradient performance (e.g. gradient strength and 
slew rate). Tissue constants and relaxation times were constant for both settings. Relaxation times were set to 
2000 ms and 1000 ms for PC-MRI and DENSE, respectively, to account for the differences which are realistic 
for use with an acquisition scheme with whole brain coverage (see Chapter 4).
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relaxation starts immediately and is not affected thereafter. Here, we set Trelax to 2 s and 1 s for 
PC-MRI and DENSE, respectively, to reflect this main difference in relaxation between excita-
tions. Furthermore, we evaluated the effect of the mixing time by simulating TMs of both 25% 
and 75% of the cardiac interval length. A complete overview of the parameters for simulation is 
provided in Table 2-1.

simulation and validation of repeated dense measurements
Simulations of the repeated DENSE measurements were performed by implementing the for-
mula’s from Eq. 2-13 and 2-14 in MATLAB R2018b. All combinations of DENC factors (range: 
0.05-0.35 mm) and αmax (range: 5-90 degrees) were simulated for a spherical phantom filled with 
2% agar gel (T1 = 1700 ms, D = 1.9·10-3 mm 2/s). Simulations were verified in the phantom for 
which we used a multi-shot 3D EPI imaging protocol with imaging parameters: EPI factor: 19; 
SENSE factor: 2.6 × 2.5 (AP × RL); resolution: 3 × 3 × 3 mm3; FOV: 150 × 150 × 150 mm3; TR: 
2000 ms; and TE/2: 15 ms. Two phantom measurement series were performed: one for a static 
DENC = 0.45 mm and varying αmax and the other for static αmax = 45° and varying DENC. The 3D 
multi-shot EPI acquisition was performed to obtain a larger volume to compare SNR behavior 
with the simulations. This was possible because the phantom did not move and therefore showed 
no phase inconsistencies. In comparing the actual measurements to the simulations, we scaled 
the measurements by a single scaling factor for the unknown noise level in the measurements, 
which depend, amongst others, on the receive coil sensitivity.

Additional validation was performed in one volunteer (male, age 27 years). Here, the cardiac 
triggered, 2D single-shot DENSE sequence as previously described (Figure 2-3), was applied. A 
key feature included mixing times extended with one cardiac cycle to make the sequence more 
sensitive for respiration induced motion contributions. Simulations showed optimal settings of 
DENC = 0.15 mm and αmax = 50° (white matter: T1 = 1200 ms, D = 0.8·10-3 mm2/s at 7T [66; 
130]). Written informed consent was obtained in accordance with the Ethical Review Board of 
our institution. Two datasets were obtained: one with a displacement sensitivity DENC of 0.35 
mm as was previously used in multi-shot approaches for the FH encoding direction [1; 140], and 
one with the theoretically optimal DENC of 0.15 mm. Other scan parameters of the single-shot 
acquisition were: EPI factor: 33; SENSE factor: 2.5 (AP); resolution: 3 × 3 × 3 mm3; FOV 250 × 
250 mm2; TR: 2 RR intervals; TE/2: 12 ms and EPI band width in the readout/phase encoding 
direction; 3.7 kHz/pixel; 62 Hz/pixel.



Chapter 2

36

0 0.2 0.4 0.6 0.8 1
VENC (mm/s)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
N

R 
(a

u)

DENSE
PC-MRI

0 0.2 0.4 0.6 0.8 1
VENC (mm/s)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
N

R 
(a

u)
a. Clinical setting

TM = 250.0 ms TM = 750.0 ms

0 0.2 0.4 0.6 0.8 1
VENC (mm/s)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
N

R 
(a

u)

0

75

75

100

0 0.2 0.4 0.6 0.8 1
VENC (mm/s)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
N

R 
(a

u)

0

100

b. Pre-clinical setting

TM = 50.0 ms TM = 150.0 ms

50

25

75

50

0

100

TE
 (m

s)

25

75

50

0

100

25

75

50

b-
va

lu
e 

(1
01  s/

m
m

2 )

TE
 (m

s)
b-

va
lu

e 
(1

01  s/
m

m
2 )

TE
 (m

s)
b-

va
lu

e 
(1

01  s/
m

m
2 )

TE
 (m

s)
b-

va
lu

e 
(1

01  s/
m

m
2 )

figure 2-4 Simulation results for SNR in motion field maps for clinical and pre-clinical setting. SNR curves 
(blue) are normalized to range between 0 and 1 and can be compared between the clinical and pre-clinical 
setting. Echo times (TEs, green) and diffusion weighting (b-values, orange) are provided as well, with scaling 
along the y-axis provided at the right hand side of each graph. Scaling ranges between 0 and 100 ms for TEs and 
0 and 1000 s/mm2 for b-values. Motion encoding sensitivities between PC-MRI and DENSE are harmonized 
using VENC values. These VENC values can be multiplied with TM to obtain an approximation for the equiva-
lent DENC values (see Eq. 2-4). Figure 2-4a (top row) represents the clinical setting, with simulated mixing 
times (TM) for the DENSE sequence of 250 ms and 750 ms, representative for peak systole and mid diastole 
of the human heartbeat, respectively. Figure 2-4b (bottom row) shows the results for the pre-clinical setting, 
with DENSE TM of 50 ms and 150 ms, representative for peak systole and mid diastole of the heartbeat of a 
rat, repsectively. For the clinical setting, DENSE shows a clear advantage compared to PC-MRI. Especially for 
longer TM, DENSE has increased SNR. This advantage, however, evaporates when TM becomes very short, as 
is the case for the pre-clinical setting. Here, PC-MRI and DENSE perform comparably, with an advantage for 
PC-MRI at TM = 50 ms.
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indicating the standard deviation. Figure 2-5a and 2-5b present simulated SNRM with the SNRM observed in the 
phantom. Th e simulated SNR line was linearly scaled to match the measured SNRM in the phantom. Th e results 
show that the course of the line matches the measured SNR behavior. Figure 2-5c shows the simulated SNRM 
divided by the displacement encoding (DENC), which yields the SNR in the displacement map. Th e optimum is 
shown for both the phantom and white matter in humans at 7T. Th e fi gure is adapted from Chapter 3.
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figure 2-6 Strain maps in the Feet-to-Head direction acquired in the volunteer together with the residuals 
obtained aft er subtraction of the mean. Th e area as indicated in Figure 2-5a represents the region for which the 
mean strain and residuals were analyzed. Displacement encoding was DENC = 0.35 mm (top row) and DENC 

= 0.15 mm (bottom row), for which the cardiac related strain was 2.2±1.46‰ and 2.1±1.03‰, respectively. 
Th e distribution of the residuals for DENC = 0.35 mm and DENC = 0.15 mm had a standard deviation of σ = 
4.01·10-3 and σ = 2.42·10-3, respectively. From the standard deviations, an SNR increase of 1.66 can be inferred.
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Results

Comparing PC-MRI and dense simulations
The results from computer simulations on the SNR in the motion field maps obtained through 
PC-MRI and DENSE are presented in Figure 2-4. Echo times (TE) of the sequences are indicated 
as well. The clinical setting (Figure 2-4a) shows that DENSE outperforms PC-MRI, especially 
when TM increases, which yields larger first order moments for DENSE. For the pre-clinical set-
ting (Figure 2-4b), PC-MRI outperforms DENSE, however, the difference becomes less apparent 
as TM increases. Furthermore, PC-MRI shows some increase in performance for the pre-clinical 
setting, with its optimum shifting towards a larger VENC.

simulation and validation of repeated dense measurements
Phantom validation
We found SNRM to be consistent with computer simulations for both a variable final flip angle 
αmax and encoding sensitivity DENC (see Figure 2-5a and 2-5b, respectively). The simulated SNR 
in the displacement fields (SNRdispl) for both the phantom and white matter is shown in Figure 
2-5c as a function of displacement encoding. All sequence dependent SNR behavior not related 
to DENC or αmax (e.g. coil array sensitivity, B1 effects etc.) is represented in a linear scaling 
parameter to match the simulated SNRM curve with the measured SNRM with the SNRM from the 
phantom.

In-vivo validation
Imaging was successful in our volunteer; 59 of the 60 repeated scans could be used for analysis 
in both experiments. One scan was omitted due to false ECG triggering. Consistent cardiac-
induced strain maps were obtained for both encoding sensitivities, which are presented in Figure 
2-6. Residuals from averaging were obtained from the region of interest (ROI) indicated in 
Figure 2-6a. The distribution of the residuals are presented in Figure 2-6b and 2-6d, and show a 
reduced standard deviation for DENC = 0.15 mm compared to DENC = 0.35 mm (σ = 2.4·10-3 
and σ = 4·10-3, respectively). This implies an SNR increase of 1.66.

dIsCussIon

In this work, we simulated the behavior of SNR in motion field maps obtained through PC-MRI 
and DENSE. We found that DENSE outperforms PC-MRI in a clinical setting, especially when 
mixing times increase. Furthermore, we validated simulations of repeated DENSE measurements 
in a phantom. We used these validated simulations to optimize the DENSE settings and tested 
these settings in a healthy volunteer. We found a factor of 1.66 SNR increase compared to the 



39

Comparing PC-MRI with DENSE for accurate brain tissue strain measurements

motion encoding sensitivity as reported in previous experiments [1; 140]. The optimized DENSE 
sequence thereby shows its potential for voxel-wise assessment of brain tissue strains in humans.

The single-shot approach was a key feature to optimize the motion sensitivity for strain measure-
ments, as it abolishes the risk for artifacts as are observed with multi-shot approaches [1; 140]. 
We think that the single-shot approach is especially an advantage for the DENSE sequence, as 
DENSE generally has longer times between the motion sensitizing gradients compared to PC-
MRI, which provides more time for phase inconsistencies to accumulate. Since time between 
the motion sensitizing gradients in PC-MRI is generally much shorter, future studies should 
investigate whether a combination of PC-MRI with a multi-shot acquisition holds potential for 
brain tissue strain measurements. Similar 3D multi-shot PC-MRI studies have already been 
performed, yet these studies use the minimum VENC of 1 cm/s made available by the vendor 
[48; 56]. Lower VENC may be limited due to hardware constraints. Here it should be mentioned 
that we did not take into account limitations from the gradient duty cycle. If multiple acquisi-
tions are obtained consecutively, gradient duty cycles may limit temporal resolution or motion 
sensitivities because PC-MRI applies two motion sensitizing gradients for each excitation pulse. 
This is in contrast to DENSE, which applies a non-selective encoding gradient, after which only 
one gradient is applied for each excitation pulse.

A second important aspect of the successful optimization of the DENSE method was to take 
into account the diffusion effects. These effects cause the SNR to degrade when the motion 
sensitivity increases (lower VENC). For the pre-clinical setting, gradient performance increased, 
which resulted in increased maximum SNR for the PC-MRI sequence due to a shorter TE. Yet, 
at the same time, the SNR degraded faster at lower VENC compared to the clinical setting. The 
results showed that this was caused by enhanced diffusion effects. Let us assess the relationship 
between the first order moment and the diffusion weighting by considering two gradients for 
different gradient performance,. Here, we start from Eq. 2-5 and substitute the different gradient 
performances that relates as Gmax,1 = a · G  max,2. The boundary condition is to obtain equal M1 (i.e. 
equal VENC) for both gradients in the shortest time possible. For simplicity, we consider these 
gradients to be of rectangular shape. We then obtain the relation:

Gmax,1 · δ1
2 = Gmax,2 · δ2

2

 (2-17)δ1 =
1

· δ2√ α

where δ (in ms) is the duration of each gradient. To determine the diffusion weighting (b-value) 
we have from Eq. 2-8:

b ∝ G2 · δ3 (2-18)

and substituting 2-17 in 2-18 we obtain

b1 = (Gmax,1)2 · δ1
3 = α2 · (Gmax,2)2 ·

δ2
3

=√ α · b2  (2-19)
α√ α
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From Eq. 2-19 it can be inferred that for an increased gradient performance of factor α, the 
associated b-value for a given VENC at shortest TE increases with factor √ α. Although the 
derivation of the relationship between gradient performance, M1 and diffusion is simplistic, it 
illustrates that there exists an optimum where increasing gradient performance will not reduce 
TE sufficiently to compensate for the loss in SNR due to a higher b-value. The tradeoff between 
TE and gradient performance needs to be considered especially in pre-clinical settings, where 
gradient performance is generally higher. Furthermore, the relation between M1 and diffusion 
weighting shows that one can in principle obtain any diffusion weighting for a given VENC, pro-
vided the availability of unlimited gradient performance. This shows why DENSE is so successful 
at increased TM, which actually reduces diffusion weighting for constant M1. Furthermore, the 
results suggest that using lower Gmax (but maximum slew rate) might allow for further optimiza-
tion. This is expressed by Eq. 2-9, which shows that the diffusion weighting is proportional to G2 
and decreases with δ3 (for constant Δ). Consequently, reduced gradient performance (G reduces, 
δ increases) for constant TM might increase SNR, as long as longer TE does negate these effects.

The simulations presented in this work are representative for constant strain rates only. Particu-
larly PC-MRI relies on this assumption. While results from DENSE can be interpreted as net 
displacements accumulated between the motion sensitizing gradients, regardless of trajectory, 
PC-MRI requires multiple acquisitions to capture the entire trajectory, and needs subsequent 
integration to obtain the net result. This might lead to cumulative errors, especially as the lowest 
temporal resolution of PC-MRI is worse than that for DENSE, given that each PC-MRI acquisi-
tion requires two gradients, while DENSE only requires one decoding gradient. Moreover, large 
gradients are accompanied by increased eddy currents, which induce confounding phase errors. 
These errors add to a cumulative offset and need therefore to be addressed in dedicated post-
processing software. We did not consider how noise in the phase signal propagates in estimating 
net motions over longer durations, and the resulting effects on the accuracy of strain (rate) 
measurements. These errors will contribute less to strain (rate) errors as TM increases.

In the assessment of the simulations, it is important to note that we used tissue property values 
from white matter in humans at 7T, also to simulate SNR behavior in rodents. Furthermore, it 
remains an open question whether brain tissue strains are similar as observed in humans. This 
is important, because the SNR in the strain maps are affected by the magnitude of the strains 
itself. Although the validated repeated DENSE measurements provide confidence in the correct-
ness of the simulations, it is a limitation of this study that we did not validate the comparison 
between PC-MRI and DENSE by the use of phantom measurements. When motion field maps 
are desired to compute the tissue strain in a pre-clinical setting, these validation measurements 
should be obtained to investigate the validity of the simulations. The validation should also 
determine whether the SNR in motion field maps (whether obtained with PC-MRI or DENSE) 
is sufficient to acquire these with the high resolution that is common and desired in pre-clinical 
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MRI research. These preliminary results can help to assess the feasibility to acquire brain tissue 
strain maps in rodents. In the meantime, DENSE outperforms PC-MRI for the clinical setting, 
even with favorable conditions used for PC-MRI (such as longer repetition times), which favors 
the use of the DENSE sequence in humans.

In conclusion, the choice for PC-MRI or DENSE to provide tissue motion field maps for strain 
computations depends on the setting in which the research is conducted. Although additional 
validation in phantoms is required, PC-MRI seems to have better performance compared to 
DENSE in a pre-clinical setting. For a clinical setting, however, DENSE outperforms PC-MRI. 
We validated the simulations for repeated DENSE measurements and tested the results in a 
healthy volunteer. The results indicate that the optimized DENSE sequence has potential for 
voxel-wise assessment of brain tissue strains in humans.
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abstRaCt

Microvascular blood volume pulsations due to the cardiac and respiratory cycles induce brain tis-
sue deformation and, as such, are considered to drive the brain’s waste clearance system. We have 
developed a high-field magnetic resonance imaging (MRI) technique to quantify both cardiac 
and respiration-induced tissue deformations, which could not be assessed noninvasively before. 
The technique acquires motion encoded snapshot images in which various forms of motion and 
confounders are entangled. First, we optimized the motion sensitivity for application in the hu-
man brain. Next, we isolated the heartbeat and respiration-related deformations, by introducing 
a linear model that fits the snapshot series to the recorded physiological information. As a result, 
we obtained maps of the physiological tissue deformation with 3mm isotropic spatial resolution. 
Heartbeat- and respiration induced volumetric strain were significantly different from zero in the 
basal ganglia (median (25-75% interquartile range): 0.85·10-3 (0.39·10-3 – 1.05·10-3), p = 0.0008 
and -0.28·10-3 (-0.41·10-3 – 0.06·10-3), p = 0.047, respectively). Smaller volumetric strains were 
observed in the white matter of the centrum semi ovale (0.28·10-3 (0 – 0.59·10-3) and -0.06·10-3 
(-0.17·10-3 – 0.20·10-3)), which was only significant for the heart beat (p = 0.02 and p=0.7, re-
spectively). Furthermore, heartbeat induced volumetric strain was about three times larger than 
respiration induced volumetric strain. This technique opens a window on the driving forces of 
the human brain clearance system.
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IntRoduCtIon

Cardiac and respiratory cycles induce blood volume changes resulting in subtle brain tissue 
deformations. These deformations are known to propel the cerebral spinal fluid (CSF) flow 
which fulfills an important role in the drainage of cerebral waste [101; 141]. Therefore, brain 
tissue deformation is considered an important driver of the clearance system of the brain [153]. 
Furthermore, brain tissue deformation affects cellular function. In-vitro studies have shown that 
the arterial waveform is crucial to regulate the formation and function of endothelial cells which 
constitute the blood-brain barrier [35]. Brain tissue and vessel stiffness naturally change with 
age [133; 158], which not only plays a role in age-related processes but may also have profound 
effects on tissue deformation of the brain and, thus, brain homeostasis. Unlike the larger arteries 
of the brain, the small cerebral vessels themselves are difficult to study in vivo with current neu-
roimaging techniques. This is an important knowledge gap. We hypothesize that the brain tissue 
deformation is dominated by the microvascular bed embedded in the tissue, and, thus provides 
a window to the small vessel function. We have developed a method to quantify brain tissue 
deformation that may form a valuable source of information on small vessel function as driving 
force in waste clearance, and may also allow for future assessment of the brain’s biomechanics 
during both healthy and diseased state [57].

The dynamic relationship between intracranial blood volume changes, tissue deformation and 
CSF flow is complex [90]. As the brain’s vessels are exposed to blood pressure waves, they swell 
and stretch elastically, displacing the surrounding tissue. Due to the rise of the intravascular 
blood volume during systole, the cerebral tissue expands inwards towards the ventricles [43; 
58; 143]. Given the fixed intracranial volume as stated by the Monro-Kellie doctrine, the CSF 
is squeezed out of the brain into the CSF spaces towards the spinal canal to compensate for the 
additional blood volume [90; 103]. As the blood leaves the brain during diastole, the vessels 
relax and CSF returns. Similarly, the respiration cycles induce variations in thoracic pressure that 
cause variations in venous blood volume, which induces tissue deformation and CSF flow as well.

Despite the important role of the cardiac- and respiration-induced brain tissue deformation in 
the intracranial dynamics, no methods are available to directly assess these deformations. Instead, 
most studies have focused on CSF and blood flow to assess the intracranial volume dynamics [7; 
36]. For instance, Dreha-Kulaczewski et al. used Magnetic Resonance Imaging (MRI) with phase 
contrast velocity encoding to study CSF flow and found upward CSF flow through the spinal 
canal during inspiration [39; 40], which they relate to an enhanced venous outflow. Furthermore, 
T2* weighted blood oxygen level dependent (BOLD) MRI signal fluctuations in the brain have 
been studied in relation with physiological signals like heartbeat and respiration [21; 81; 122]. 
These T2* weighted signals, however, are not specific and depend on blood oxygenation levels 
(spontaneous neuronal activity), inflow of blood and CSF into the slice, and tissue motion. As a 
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result, T2* weighted signal variations in the brain are hard to interpret, and only weakly correlate 
with physiological cycles like heartbeat and respiration [21]. Quantitative measurements of T2* 
variation induced by the cardiac cycle have also been reported, either with or without injection of 
a blood pool contrast agent [129; 163]. These quantitative T2* measurements are much more spe-
cific for blood volume pulsations compared to BOLD MRI, but still did not assesse the changes 
due to respiration. The overall deformation of brain tissue is subtle and involves submillimeter 
displacements that can be tracked by an MRI technique that is called Displacement Encoding 
with Stimulated Echoes (DENSE) [5; 45; 126]. The cardiac-gated DENSE method was shown to 
be capable of capturing the displacement field maps over the cardiac cycle [1; 119; 140]. However, 
these data were acquired over several minutes, which prohibits to study the respiration-induced 
tissue motion and deformation.

In the present study, we propose a newly developed DENSE sequence at 7 tesla MRI, dedicated 
and optimized to disentangle and quantify cardiac and respiratory contributions to brain tissue 
deformation in humans (Figure 3-1). A key feature is its single-shot approach, which not only is 
required for unraveling the cardiac and respiratory contributions, but also allows for an optimi-
zation of the sequence without introducing additional data artifacts. The main advantage of our 
sequence is the separate assessment of both cardiac and respiratory tissue strain contributions 
with high sensitivity, which provides insight into the physiological brain tissue deformations in 
relatively small regions of interest (ROIs).

MateRIals and MetHods

Displacement images are required to derive the tissue deformation and can be provided by the 
DENSE MRI sequence [1; 5; 45; 138; 140]. DENSE, analogous to phase contrast velocity encod-
ing, manipulates the phase information such that it becomes proportional to the displacement 
of brain tissue with respect to the point of encoding. The single-shot approach of our sequence 
captures the momentary physiological ‘state’ of tissue motion. We assume that this physiological 
‘state’ of the tissue is an independent, linear combination of the cardiac and respiratory con-
tributions. By repeating the measurements multiple times, we acquired different combinations 
of states. Next, we use a linear model, together with the associated physiological information, 
such as cardiac interval position and respiration trace, to disentangle the cardiac and respiratory 
contributions (Figure 3-1).

dense sequence
A cardiac triggered DENSE sequence was designed to measure heart beat and respiration related 
brain tissue motion (Figure 3-2)  [1; 5; 45; 138; 140]. Key features included its 2D single-shot EPI 
approach to capture the momentary physiological ‘state’ (heart- and respiration induced motion) 
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and secondly, an additional time-delay of one cardiac cycle between encoding and decoding to 
make the sequence more sensitive for respiration induced motion contributions.
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figure 3-1 Example for data acquisition and analysis of one of the volunteers. Th e DENSE MRI sequence was 
used to encode motion into the phase of the MRI signal.
(1) Data was recorded over 100 dynamics (one slice, Feet-to-Head motion encoding direction) with alternating 
encoding direction sign to distinguish between phase contributions due to motion and motion independent 
phase confounders. Per dynamic scan, three snapshot DENSE images were acquired at diff erent moments in the 
cardiac cycle together with the associated physiological data (see example traces). Also, a reference image was 
acquired directly aft er encoding to allow for corrections of potential eddy current eff ects.
(2) Time-series of displacement-encoded phase images were used to derive the strain maps by computing the 
spatial derivative along the encoding direction. Together with the associated physiological data, these strain maps 
were used in a linear model to isolate the components of cardiac and respiration induced strain. Including the 
confounders, the linear model produced seven maps.
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The DENSE sequence [5] consists of a motion encoding and -decoding part. The encoding part 
encodes the tissue’s current position in the longitudinal magnetization by using two RF pulses 
with an encoding gradient (Genc) in between. After a given mixing time, the decoding part reads 
out the prepared longitudinal magnetization by using another RF pulse followed by a decoding 
gradient (Gdec) that is equal to Genc. Any tissue displacement along the direction of these gradients 
that occurred between Genc  and Gdec leads to a corresponding phase shift in the resulting phase im-
age. The encoding- and decoding gradient alternated in sign every other dynamic to distinguish 
between phase contributions due to motion and confounding phase contributions from other 
sources (static RF phase, phase induced by off-resonance effects, and dynamic phase variation in-
duced by respiration related B0 fluctuations [55]). The signal from fat tissue was avoided through 
the use of low bandwidth (500 Hz) RF pulses during encoding, yielding water-selective tagging. 
Thus, we avoided artifacts from high fat signal close to the receiver elements of the head coil.

data acquisition
The Ethical Review Board (ERB) of the University Medical Center Utrecht approved the use of 
healthy volunteers for MRI protocol development. Nine healthy volunteers (6 males, 3 females, 
age 29±3 years) were included and written informed consent was obtained in accordance with 
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figure 3-2 Schematic representation of the developed 2D single-shot DENSE sequence, covering two dynamic 
scans (n and n+1) that each comprise two cardiac cycles. The tissue’s initial position is encoded in the longitu-
dinal magnetization at the beginning of the dynamic scan, by the encoding gradient Genc in the preparation part 
of the sequence. The prepared magnetization is decoded in the next cardiac cycle by the acquisition part of the 
sequence, which uses another RF pulse for signal excitation, followed by a decoding gradient (Gdec) that is equal 
to Genc. Any tissue displacement along the direction of these gradients that occurs between Genc  and Gdec (dur-
ing the so-called ‘mixing time’) leads to a corresponding phase shift in the resulting phase image. The DENSE 
images are acquired during the next cardiac cycle to increase the sensitivity to respiratory motion together with 
a reference phase directly after encoding to allow for potential eddy current corrections. Both encoding and 
decoding gradients G were inverted every two dynamics (dashed lines), to distinguish phase contributions due 
to motion from phase contributions due to confounding factors.
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the ERB approval. Th e volunteers were scanned at 7T (Philips Healthcare, Best, Th e Netherlands) 
using a 32-channel head coil (Nova Medical). A single DENSE dataset consisted of 100 dynamic 
scans with 4 motion decoding snapshots per dynamic, resulting in 400 snapshots over time, 
and a scan-duration of 2.5-5 min, depending on the heart rate (80-40 bpm). Other acquisition 
parameters were: EPI factor: 33; SENSE factor: 2.5 (AP or RL); resolution: 3 × 3 × 3 mm3; FOV: 
250 × 250 mm2; TE/2: 12 ms and BW: 61.9 Hz/pixel. A sagittal and perpendicular coronal slice 
were planned, and displacement images were separately acquired with two in-plane encoding 
directions. As a result, four 1D motion-encoded datasets were recorded: two datasets from a 
sagittal slice with 1D motion encodings in the Feet-to-Head and Anterior-to-Posterior direction 
respectively, and two datasets from a coronal slice with 1D motion encodings in the Feet-to-
Head and Right-to-Left  direction, respectively. Th e sagittal slice was planned 10 mm from the 
interhemispheric fi ssure of the brain and aligned with the brain stem (Figure 3-3 for planning 
details). Th e volunteers were asked for a calm abdominal breath during the experiment. Physi-
ological data was simultaneously recorded by using a vector cardiogram (VCG) for triggering 
and a respiration belt to trace abdominal breathing. Additionally, a pulse oximeter was placed 
on the left  index or middle fi nger as additional input in the analysis to cope with missed VCG 
triggers.

A
nt

er
io

r Posterior

Ri
gh

t Le�

Coronal slice planninga. DENSE magnitude
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figure 3-3 Slice planning of the 2D DENSE scans with respect to the whole-brain 3D T1-weighted TFE plan-
ning scan. Th e yellow lines indicate the planned slices with respect to the interhemispheric fi ssure, which is 
indicated by the white dotted line. (a) Th e coronal slice was planned through the brain stem as indicated in the 
fi gure (parallel to the brain stem; subject dependent RL angulation of 12-14 degrees). (c) Th e sagittal slice was 
planned perpendicular to the coronal slice, 10mm from the interhemispheric fi ssure towards the left . (b,d) Th e 
DENSE magnitude image as acquired, averaged over all acquisitions.
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After encoding of the signal, three frames were acquired in the next cardiac cycle at respectively 
0, 25 and 50% of the average cardiac interval. To allow for corrections of potential eddy current 
effects, an additional reference frame was acquired directly after encoding. Although the signal 
intensities of the successive frames are affected differently by T1 relaxation and diffusion-related 
signal attenuation, this does not affect the displacement information. Yet, the SNR present in the 
displacement images relates to the SNR in the magnitude images. To obtain a stable SNR over the 
acquired frames, a variable excitation flip angle scheme was recursively calculated [139], starting 
from the final flip angle αmax. Furthermore, the tag spacing Tenc (in units mm/π) summarizes the 
sensitivity for the spatial displacement encoding. Large encoding gradients yield an increased 
displacement sensitivity (smaller Tenc), yet, they reduce the SNR of the magnitude image due to 
their large b-values (diffusion sensitivity) [16].

sequence optimization for strain estimates
The tissue deformation is physically described as strain, which signifies local stretch (positive 
strain) and shortening (negative strain) of tissue. The one-dimensional (1D) strain ε is simply 
the change in length of a line segment L and defined to give the relative change in length of the 
line segment during deformation

ε =
L'−L

=
∆L

 (3-1)
L L

where L is the original length of the line segment and L’ is the length of the line segment after 
deformation.  The strain is obtained from displacement images by calculating spatial derivatives. 
Given Δx, the voxel size along x, we can define the 1D strain in that direction as

εxx (n)  =def  
Dx(n+1) − Dx(n+1)

 (3-2)
2Δx

Accurate measurements are crucial, since the computation of spatial derivatives amplifies noise 
present in the displacement images. Larger encoding gradients yield an increased displacement 
sensitivity (smaller Tenc), yet, increase the number of phase wraps present in the displacement 
maps. Fortunately, strain computations allow for straightforward unwrapping under the assump-
tion of small strains, as any phase wrap in the original image yields unlikely high strain values. 
A phase wrap causes a large numeric derivative ∆ϕ, which was resolved by adding or subtracting 
2π to ∆ϕ to bring it closer to zero if

|∆ϕ| > 1.5 π = ∆ϕmax  (3-3)

The maximum tolerated numeric derivative ∆ϕ relates to the maximum tolerated strain by

εmax = 
∆ϕmax Tenc

= 0.75
Tenc

 (3-4)
2∆x π ∆x
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Thus, as long as the expected strains in the brain do not exceed αmax, there are no additional 
constraints for the encoding sensitivity. However, although larger encoding gradients yield an 
increased displacement sensitivity, they reduce the SNR of the magnitude image due to their 
larger diffusion sensitivity (expressed by its b-values). Similarly, a larger final flip angle increases 
the excited signal, but prevents regrowth of magnetization for the next encoding. Consequently, 
an optimal Tenc and final flip angle exists for a given apparent diffusion coefficient (ADC) and 
longitudinal relaxation time constant (T1) of the tissue.

We simulated the DENSE sequence for different settings of Tenc and αmax and found optimal 
DENSE sequence settings of Tenc = 0.15 mm/π and αmax = 50° (white matter: T1 = 1200 ms and 
ADC = 0.8·10-3 mm2/s at 7T [66; 130]) for acquiring strain images [139]. The T1 and apparent 
diffusion coefficient (ADC) of white matter was chosen as this has a shorter T1 than gray matter 
and, thus, faster decay of the tagged magnetization. We verified our simulations in a phantom 
[139] for which we used a multi-shot 3D EPI imaging protocol with imaging parameters: EPI 
factor: 19; SENSE factor: 2.6 × 2.5 (AP × RL); resolution: 3 × 3 × 3 mm3; FOV: 150 × 150 × 150 
mm3; and TE/2: 15 ms.

linear Model
The linear model will be described starting from the two example images outlined in Figure 
3-2. These two images represent the phase of the DENSE images acquired at 50% of the cardiac 
interval. Due to an alternating encoding direction, the second acquired image has an opposite 
phase contribution due to motion compared to the first image. This way, we can distinguish 
between phase contributions due to motion and static phase confounders. The phase image 
is converted to a displacement image by multiplying the phase image with Tenc/π. The cardiac 
related displacement map can be separated from the confounding background by modelling each 
of the two example images as a linear combination of the cardiac related displacement map (Dc3) 
and the static displacement confounder (D0):

dn,3 = x0D0 + xc3Dc3  (3-5)

The above equation represents the apparent total tissue displacement dn,i of snapshot i acquired 
in dynamic scan n (for the current example, dn,3 represents the apparent motion in the only snap-
shot in dynamic n as shown in Figure 3-2). D0 is the apparent displacement due to static RF phase 
errors and Dc,3 is the cardiac related displacement at the third time point in the cardiac cycle 
(which corresponds to 50% of the cardiac interval). The  associated coefficients x are known, 
and required to estimate the displacement maps from the measured data. The coefficient x0  is 1 
for both images, whereas xc,3 alternates in sign depending on the sign of the motion encoding 
gradient. The  matrix formulation of the model for the two example images then yields
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dn,3 
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1 1 






D0 



 (3-6)
dn+1,3 1 − 1 Dc3

The equation in this example is easily solved by simple inversion. However, we will acquire many 
more measurements than unknowns, which will result in the descriptive matrix not being square. 
Therefore, we solve this equation for D0 and Dc3 using the Least-Squares estimation method if 
more than two dynamic scans are performed. The method thereby provides the displacement at 
50% of the cardiac cycle (Dc3) together with the apparent displacement induced by static phase 
errors (D0).

The model easily expands to incorporate the additional displacement images at 0 and 25% of the 
cardiac cycle. In addition to the displacement induced by the cardiac cycle, we incorporate de 
displacement induced by respiration. We assume that the respiration related displacement de-
pends linearly on the difference in respiration trace between encoding and decoding of the signal 
and is independent of the cardiac related displacement. We base this assumption on preliminary 
results where we analyzed the residuals of a model without respiration adaptation and found 
that the residual tissue displacements showed a linear dependence on the difference in respira-
tion trace (between encoding and decoding). The term Dresp represents this linear respiration 
contribution. Furthermore, we include two additional correction terms. Firstly, an eddy-current 
offset term Deddy to account for phase errors induced by the high decoding gradient and secondly, 
a respiration induced B0 offset term D0,resp  [55]. The complete model then yields
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The physiological data and sequence design provide the values of the weighting factors x. The weighting 

factors xeddy, xc,i and xresp have alternating signs related to the alternating sign of the motion encoding 

gradients. If coefficient ξ represents this sign, then xc,i=ξ for i is 1, 2 or 3, for a frame acquired at 0, 25 or 

50% of the associated actual cardiac interval, respectively. Still, due to a varying heart rate during 

acquisition, frames can fall between these intervals. In that case, cardiac weighting factors are linearly 

interpolated such that 
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The physiological data and sequence design provide the values of the weighting factors x. The 
weighting factors xeddy, xc,i and xresp have alternating signs related to the alternating sign of the 
motion encoding gradients. If coefficient ξ represents this sign, then xc,i=ξ for i is 1, 2 or 3, for 
a frame acquired at 0, 25 or 50% of the associated actual cardiac interval, respectively. Still, due 
to a varying heart rate during acquisition, frames can fall between these intervals. In that case, 
cardiac weighting factors are linearly interpolated such that
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The respiration weighting factors are described by xresp=ξ∆r (which accounts for respiration induced 

motion, with alternating sign ξ) and x0,resp=∆r (which accounts for respiration induces resonance shifts 

[55]), where ∆r is the normalized difference in abdominal respiration position between encoding and 

decoding. For clarity, we provide the matrix formulation for the extended linear model representing the 8 

motion-encoded snapshot images in Figure 3-1.1. This extended model is used to unravel cardiac and 

respiratory contributions to the displacement of brain tissue.  
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3.2.5  Analysis 

The acquired time series were analyzed offline with custom MATLAB R2018b software (The 

MathWorks, Inc., Natrick, MA, USA). The VCG and POx trigger moments as recognized by the scanner 

software were used to deduce the positions of the snapshot images relative to the cardiac interval. VCG 

triggering sometimes failed due to magneto hemodynamic effects. The associated images were 

retrospectively discarded by using only the images for which the related VCG triggers were accompanied 

by a POx trigger occurring within 200ms and 400ms after the VCG trigger. The respiration change 

between encoding and decoding was deduced from the recorded respiration trace, which was filtered with 

a band-pass filter with cut-off frequencies at 0.1 and 1 Hz. Furthermore, the respiration was normalized by 

using the interval between the minimum and maximum observed value of the respiration trace, after 

discarding the lowest and highest 2.5% of its values. The remaining interval is referred to as the 95% 

range of the respiration trace, which served as normalization. Thus, the respiration related coefficients in 

design matrix X had values ranging from just under -1 to just over 1. The estimated Dresp map, thus, 

represents the induced motion for a – by definition – ‘full’ inspiration (change of respiration coefficient 

 (3-8)

The respiration weighting factors are described by xresp=ξΔr (which accounts for respiration 
induced motion, with alternating sign ξ) and x0,resp=Δr (which accounts for respiration induces 
resonance shifts [55]), where Δr is the normalized difference in abdominal respiration position 
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between encoding and decoding. For clarity, we provide the matrix formulation for the extended 
linear model representing the 8 motion-encoded snapshot images in Figure 3-1.1. This extended 
model is used to unravel cardiac and respiratory contributions to the displacement of brain tissue.
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analysis
The acquired time series were analyzed offline with custom MATLAB R2018b software (The 
MathWorks, Inc., Natrick, MA, USA). The VCG and POx trigger moments as recognized by 
the scanner software were used to deduce the positions of the snapshot images relative to the 
cardiac interval. VCG triggering sometimes failed due to magneto hemodynamic effects. The 
associated images were retrospectively discarded by using only the images for which the related 
VCG triggers were accompanied by a POx trigger occurring within 200ms and 400ms after the 
VCG trigger. The respiration change between encoding and decoding was deduced from the 
recorded respiration trace, which was filtered with a band-pass filter with cut-off frequencies at 
0.1 and 1 Hz. Furthermore, the respiration was normalized by using the interval between the 
minimum and maximum observed value of the respiration trace, after discarding the lowest and 
highest 2.5% of its values. The remaining interval is referred to as the 95% range of the respiration 
trace, which served as normalization. Thus, the respiration related coefficients in design matrix X 
had values ranging from just under -1 to just over 1. The estimated Dresp map, thus, represents the 
induced motion for a – by definition – ‘full’ inspiration (change of respiration coefficient from 0 
to 1). Similarly, the effect of expiration can be found by multiplying the estimated Dresp map by -1 
(change of respiration coefficient from 0 to -1).

The dynamic scans of DENSE images were registered with a rigid in-plane whole-voxel trans-
formation using elastix [82]. All sagittal slices were registered to the last sagittal dynamic scan, 
whereas all coronal slices were registered to the first coronal dynamic scan, which was acquired 
subsequently to the last sagittal dynamic scan. No corrections for geometric EPI-distortion were 
performed, as we analysed only small ROIs in regions with very low B0 inhomogeneity. Strain 
images were obtained by computing the spatial derivative from the displacement images along 
the encoding direction, where derivatives larger than 0.75·Tenc/Δx were unwrapped. From the 
unwrapped strain images, the various motion contributions and confounders were unraveled 
voxelwise by computing the pseudoinverse (least-squares) of X that contained the physiological 
information at each measurement.
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Here, d is the measured data (either (apparent) displacement or strain images) and W represents 
the weighting matrix accounting for the variable SNR in the different snapshots in each voxel. 
The values in the weighting matrix W consisted of the normalized SNR (proportional to the mag-
nitude signal squared) in each voxel associated with the measurement for the displacement data. 
For the strain data, these values corresponded to the mean SNR of the two voxels that were used 
to compute the derivative. This way, W corrects for SNR differences caused by, among others, 
the spatial variation in flip angle due to the dieletric effects present at 7T. The model was solved 
voxel-wise which resulted in seven maps: 4 maps of displacement or strain (depending on the 
input data) and 3 maps of confounders as illustrated in Figure 3-1. An inter-subject comparison 
was then performed in two ROIs; one in the centrum semi ovale (CSO) and one in the basal 
ganglia (BG). To reduce the effect from noise in the strain maps, the median in each ROI was 
used for the analysis. Furthermore, the dependence of the strain in the Feet-to-Head direction 
on the ROI selection was tested by evaluating the FH strain along the entire intersection line of 
the sagittal and coronal slice.

Results

The linear model: example for displacement maps
For illustrative purposes, the linear model was applied to the motion-encoded snapshot images, 
following the procedure of Figure 3-1 without computing any derivatives. An important con-
straint for correctly fitting the displacement maps is that the motion-encoded snapshot images 
are correctly unwrapped. To this end, the images were acquired with lower encoding sensitivity 
(Tenc = 0.25 mm/π) than optimal for strain (optimal for strain: Tenc = 0.15 mm/π) to avoid phase 
wraps.

The linear fit resulted in four smooth displacement maps (cardiac- and respiration-induced) and 
three confounding factors: a static RF phase offset, phase induced by off-resonance effects and 
a respiration-induced B0  offset fluctuation ranging typically between 0 and 10 Hz from the base 
of the brain to the top of the brain (Figure 3-4). In the displacement map associated with a full 
inspiration, we observed a translation of the complete head in the Feet direction together with 
a slight rotation, where the back of the head moves in de Head direction and the front of the 
head moves in the Feet direction. However, mere translations and rotations of the head are not 
considered to drive any brain clearance. Therefore, tissue deformation will be considered for the 
remainder of this study.
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Validation of dense optimization
We found SNRM to be consistent with computer simulations for both a variable fi nal fl ip angle 
αmax and encoding sensitivity Tenc (Figure 3-5a and 5b, respectively). Th e simulated SNRdispl for 
both the phantom and white matter is shown in Figure 3-5c as a function of the tag spacing. All 
sequence-depended SNR behavior not related to Tenc or αmax is represented in a linear scaling 
parameter that matches the measured SNRM with the SNRM observed in the phantom.
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figure 3-4 Feet-to-Head motion maps of subject 1, produced with a dataset that had lower encoding sensitivity 
(tag spacing: 0.25 mm/π) than optimal for strain (optimal for strain: 0.15 mm/π) to avoid phase wraps. Th e im-
ages are from the same subject as in Figure 3-1. For the current fi gure, the spatial derivative was not performed 
before fi tting the linear model, in order to obtain motion maps rather than strain maps. Th e top row shows the 
cardiac and respiratory motion, respectively, whereas the bottom row represents the phase confounders. Th e 
dynamic B0 off set fl uctuations due to respiration are scaled in Hz, for comparison with literature [55].
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figure 3-5 Signal to noise ratio of the magnitude image (SNRM) and displacement map (SNRdispl) with error 
bars indicating the standard deviation. (a,b) Simulated SNRM with the SNRM observed in the phantom. Th e 
simulated SNR line was linearly scaled to match the measured SNRM in the phantom. Th e results show that the 
course of the line matches the measured SNR behavior. (c) Simulated SNRM divided by the tag spacing, which 
matches the SNR in the displacement map. Th e optimum is shown for both the phantom and white matter in 
humans at 7T.
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strain anisotropy
Cardiac related strain was largest at peak systole (25% of the cardiac interval) and was compared 
with strain induced by a full inspiration (95% range of the respiration trace). Figure 3-6 represents 
the resulting strain maps at peak systole for volunteer 1, two of which are in the sagittal plane 
and the other two in the coronal plane. Th e ROIs for inter-subject comparison are indicated as 
well. To capture the physiological 3D anisotropic tissue deformations, we combined the results 
in these ROIs along the intersection line from two orthogonal slices with diff erent encodings.

Figure 3-7a-b shows the strain in the three orthogonal directions separately. Th e dependence of 
FH strain on the ROI on the ROI selection was tested by evaluating the FH strain along the entire 
intersection line of the sagittal and coronal slice. Th e results showed a smooth curve and narrow 
interquartile ranges in regions where no CSF was present (see Supplementary Figure 3-S1). In 
the selected ROIs, the cardiac-induced tissue deformation at peak systole (Figure 3-7a) shows 
anisotropic strain with expansion in the Feet-to-Head direction and minor compression in the 
other two directions. Th is observation is also known as the Poison eff ect, where axial expansion 
of an object in the direction of the expansion load is accompanied by transverse compression. 
Although much smaller, we observed a similar but opposite trend for the respiration-induced 
strain (Figure 3-7b). For a full inspiration, the tissue contracts in the Feet-to-Head direction and 
expands in the other two directions. By design of the model, a full expiration would invert this  
trend. Th e tissue strains induced by the cardiac cycle are much larger compared to the strains 
induced by respiratory cycle.
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figure 3-6 Four fi tted 1D strain maps of one volunteer in three motion encoding directions for sagittal (left  
column) and coronal (right column) slice at peak systole. Two ROIs, one in the centrum semi ovale (CSO) and 
one in the basal ganglia (BG) (top-row), were manually selected per subject and used for further strain analysis. 
Each map represents the 1D strain calculated as the spatial derivative along the associated motion encoding di-
rection, which is indicated by the black arrows. Th e one-dimensional strain is illustrated in the circled area and 
represents the change in length, ΔL, of a line segment L. Th e strain ε is defi ned as the relative change in length 
of the line segment during deformation:
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Figure 3-7a-b shows the strain in the three orthogonal directions separately. The dependence of FH strain 

on the ROI on the ROI selection was tested by evaluating the FH strain along the entire intersection line of 

the sagittal and coronal slice. The results showed a smooth curve and narrow interquartile ranges in 

regions where no CSF was present (see Supplementary Figure 3-S1). In the selected ROIs, the cardiac-

induced tissue deformation at peak systole (Figure 3-7a) shows anisotropic strain with expansion in the 

Feet-to-Head direction and minor compression in the other two directions. This observation is also known 

as the Poison effect, where axial expansion of an object in the direction of the expansion load is 

accompanied by transverse compression. Although much smaller, we observed a similar but opposite 

trend for the respiration-induced strain (Figure 3-7b). For a full inspiration, the tissue contracts in the Feet-

to-Head direction and expands in the other two directions. By design of the model, a full expiration would 

invert this trend. The tissue strains induced by the cardiac cycle are much larger compared to the strains 

induced by respiratory cycle.  
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Volumetric strain
The volumetric strain is obtained by summing the observed strains over the three orthogonal 
directions. Figure 3-7c shows the volumetric strains, which are largest in the deep brain (basal 
ganglia). Here, we observed cardiac induced tissue expansion with median volumetric strain of 

a. Peak Systole

St
re

tc
h

Sh
or

te
ni

ng
St

ra
in

 (1
0-3

)

-1.5

-1

-0.5

0

0.5

1

1.5 BG CSO

COR
RL

SAG
AP

COR
FH

SAG
FH

COR
RL

SAG
AP

COR
FH

SAG
FH

b. Full Inspiration

6

4

2

0

2

4

6

COR
RL

SAG
AP

COR
FH

SAG
FH

COR
RL

SAG
AP

COR
FH

SAG
FH

BG CSO

BG CSO

Ex
pa

ns
io

n
C

om
pr

es
sio

n
St

ra
in

 (1
0-3

)

-1.5

-1

-0.5

0

0.5

1

1.5

Peak 
Systole

Full 
Inspiration

Peak 
Systole

Full 
Inspiration

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9

c. Volumetric Strain

figure 3-7 Strain measurements results at peak systole and for a full inspiration. The model was designed such 
that a full expiration would contribute the same as minus a full inspiration. 
(a-b) 1D strains (ROI medians) shown for the three perpendicular motion encoding directions in the BG and  
CSO. The FH direction was measured twice, once in the sagittal oriented slice (SAG), and once in the coronal 
oriented slice (COR). The similar results for both FH acquisitions indicate good reproducibility of the mea-
surements. The different colors represent different subjects. Figure 3-a and b show the cardiac and respiration 
contributions, respectively. Please note the difference in scale along the y-axis. For cardiac induced strain, the 
Feet-to-Head direction shows relatively large expansion, whereas the other two directions show some compres-
sion (this is known as the Poisson effect). The effect is most pronounced in the BG, yet is of the same trend in the 
CSO. Interestingly, the respiration induced strain shows a similar but opposite trend, consistent with outflow of 
(venous) blood with inspiration, due to lower thoracic pressure.
(c) Volumetric strain analysis for nine subjects. The volumetric strain was obtained by summing over the 1D 
strains from all 3 encoding directions. For each 1D strain direction, the median over the associated ROI indi-
cated in Figure 3-6 was used. (For the Feet-to-Head direction, the median of the combined ROIs of both the 
coronal and sagittal slice was used). The left two boxes represent the results in the BG (green ROI in Figure 3-6), 
whereas the right two boxes represent the results in the CSO (purple ROI in Figure 3-6). In each region, both 
the cardiac and respiratory related contributions are represented.
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0.85·10-3 (IQR: 0.39·10-3 to 1.05·10-3). For inspiration, a slight compression was observed with a 
median strain of -0.28·10-3 (IQR: -0.41·10-3 to 0.06·10-3). A one-sided t-test revealed that both 
these observations were significantly different from zero (p = 0.0008 and p = 0.047, respectively). 
Although less pronounced, similar trends were observed in the CSO with cardiac induced volu-
metric tissue expansion (median strain 0.28·10-3 (IQR: 0 to 0.59·10-3) and respiration-induced 
volumetric tissue compression (median strain -0.06·10-3 (IQR: -0.17·10-3 to 0.20·10-3)). Only the 
cardiac-induced volumetric tissue expansion was significantly different from zero in this region 
(p = 0.02 and p = 0.7, respectively).

dIsCussIon

We developed a non-invasive method to measure brain tissue deformations resulting from car-
diac and respiratory pulsations in the microvasculature that likely drive the brain’s waste clear-
ance system. The single-shot approach not only enabled us to unravel cardiac and respiratory 
contributions, but also allowed for an optimization of the tag-spacing for strain measurements 
without introducing additional artifacts as are observed with multi-shot approaches [1; 140]. 
This optimization made analysis possible in small ROIs, despite the amplified noise resulting 
from the use of spatial derivatives. For the CSO, we measured strain values comparable with 
values reported by Hirsch et al [70]. We found larger strain values in the BG, which may reflect 
regional heterogeneity in tissue volumetric strain (and blood volume). We observed that the 
cardiac induced strain in the microvasculature is larger than the respiration induced strain, both 
for the volumetric strain as well as the 1D strain components in the three directions separately. 
B0 offset fluctuations related to respiration decreased from the base of the brain to the top of 
the brain, and ranged typically between 0 and 10 Hz (Figure 3-4), which compares well to the 
literature [55]. This finding substantiates the credibility of the proposed model.

The observed systolic cardiac-induced tissue expansion is induced by the blood volume pulsa-
tions of the microvascular bed embedded in the tissue. Rivera et al. reported average relative vol-
ume pulsations of 0.3·10-3 for gray matter and 0.1·10-3 for white matter, respectively [129]. These 
values are somewhat lower than our measurements, which is probably related to differences in 
methodology. We measured in small ROIs, while the 1D strain maps suggest considerable spatial 
variation in strain. Besides, we measured the tissue deformation directly, while Rivera at al. 
needed additional modeling to translate a measured T2* change induced by the injected contrast 
agent into a blood volume change via an estimated change in magnetic susceptibility. Mestre et 
al. reported a radius increase over the cardiac cycle of ~1% for arterioles (approximately 60μm in 
diameter) in mice [100]. The volumetric tissue strain ε associated with expansion of the micro-
vascular bed is related to the relative cerebral blood volume (rCBV) by
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change of 1% in arterioles is representative for the entire microvascular bed, and that the blood volume 
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related relative blood volume change is ~2%. Together with a rCBV of approximately 4% in gray matter 

and 2.5% in white matter [30], the resulting volumetric tissue strains for gray and white matter are 0.8·10-3 
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where Vblood/Vtissue is the rCBV and δ is the relative change in blood volume. Assuming that 
the diameter change of 1% in arterioles is representative for the entire microvascular bed, and 
that the blood volume expansion is only due to the diameter increase of the blood vessels (i.e. 
elongation is negligible), the related relative blood volume change is ~2%. Together with a rCBV 
of approximately 4% in gray matter and 2.5% in white matter [30], the resulting volumetric tis-
sue strains for gray and white matter are 0.8·10-3 and 0.5·10-3, respectively. Given the difference 
in species and the rather coarse estimation, these values estimated from observations in mice 
compare remarkably well with the volumetric strain we observed in humans, in the ROIs in BG 
(gray matter) and CSO (white matter), respectively.

In the interpretation of the observed volumetric strain values, it is important to note that these 
reflect in fact the net effect of both blood volume increase (microvascular expansion) and po-
tential simultaneous compression of the interstitial space. The volumetric strain can be regarded 
as a lower bound estimation of the underlying blood volume pulsations, as any simultaneous 
compression of the interstitial space would reduce the amount of observable volumetric tissue 
strain. Comprehensive computer models that take the interaction between blood, CSF and tissue 
as porous medium (cells and interstitial fluid) into account could help to gain further insight into 
this effect [91; 92].

The respiratory effect found in this study implies loss of tissue volume due to venous outflow 
and is in accordance with the upward CSF flow through the spinal canal observed by Dreha-
Kulaczewski et al. The observed tissue deformation due to respiration can only explain a small 
portion of the CSF flow found by Dreha-Kulaczewski [40]. However, in literature quite different 
results exist of the relative contributions of heartbeat and respiration cycles to CSF flow; some 
studies report dominant cardiac-related CSF flow [36; 148; 175], while others identify respiration 
as the main driver of CSF flow [39; 172], especially in the spinal canal [40]. Moreover, one should 
note that the CSF flow does not only occur because of loss of tissue volume, but probably also 
due to compression of the larger veins that are embedded in the CSF (e.g. cortical veins and 
cavernous sinus) [58]. Venous compression seems to occur even during the cardiac cycle because 
the cortical veins behave as a Starling resistor, which facilitates backpropagation of the increased 
CSF pressure along the veins, thus preventing excessive pressure gradients across the capillary 
bed inside the brain tissue [135]. Previous flow studies of respiration related CSF flows, nor the 
current study assessed the volume of the larger veins. Future work should verify whether defla-
tion of larger veins indeed dominate (upward) CSF flow during inspiration. Nevertheless, the 
current method helps to distinguish between the larger and smaller veins by providing a window 
to the microvasculature embedded in the tissue.
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The proposed method allows for local assessment of tissue deformation and, thus, shows strong 
potential for studying mechanobiological processes of the brain. The results reveal interesting 
details of the deformation experienced by the brain’s tissue including anisotropic strain that is 
consistent with the Poisson effect, which could be observed in a local ROI of only 3 × 3 pixels. 
Given that the brain is a porous medium [57], we speculate that large tissue deformation could 
locally ‘choke’ the tissue by systolic compression of the (venous) microvasculature [171]. If such 
a choke-mechanism exists, it is conceivable that this may contribute to the appearance of white 
matter hyper intensities (WMH) as observed in patients with cerebral small vessel disease [166; 
167]. These WMH tend to form at the corners of the brain’s ventricles, exactly at the location 
where we observe large tissue deformations in the coronal slice (see Figure 3-6), and where 
intravascular pressures are relatively low, at the end of the vascular tree [26]. It is less speculative 
to state that the observed deformations play an important role in cellular gene expression and, 
thus, in maintaining brain tissue and vascular integrity [35; 57; 154]. Moreover, the brain tissue 
deformations are one of the drivers of the clearance system, as the deformation of the interstitial 
space contributes to the mixing and flow of the interstitial fluid and CSF [10; 12; 100; 153]. Brain 
clearance is currently mainly studied in animals. Mestre et al. found in mice that the relative 
contribution of the cardiac cycle to the flow velocity of the perivascular fluid was approximately 
a factor of five larger than the contribution of the respiration cycle [100]. We found a compatible 
difference in the contribution to the tissue volumetric strain between cardiac and respiratory 
cycles. Although further research is needed to justify direct comparison between tissue deforma-
tion and perivascular fluid flows, these results suggest that our method has potential to reduce 
the gap between invasive preclinical research and non-invasive observations in humans.

At the same time, it must be acknowledged that the driving forces of clearance are still under de-
bate. The wavelength of the cardiac related pulsations appears to be too long to induce significant 
spatial gradients that are needed for transport [4]. Vasomotion (spontaneous arterial diameter 
fluctuations initiated by vascular smooth muscle cells) occurs at a much lower frequency of ap-
prox. 0.1 Hz and with much shorter wavelengths. Indeed, recent animal work has shown that 
vasomotion is an important driver in clearance [162]. Still, vascular pulsations may contribute 
to the clearance process through dispersion, which is a combined effect of mixing and diffusion 
[10]. It is unclear whether vasomotion is sufficiently spatially coherent to lead to measureable tis-
sue strains, and whether our method would be sensitive enough to detect those low frequencies. 
The duration between motion encoding and decoding is limited by the T1 tissue relaxation time, 
which is less than 2 seconds in the human brain at 7T. Still, we were also able to detect respiration 
related effects, which have a frequency of approx. 0.25 Hz, not too far from the vasomotion 
frequency. Targeting potential vasomotion effects with our method would be an interesting topic 
for future investigations.
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The results showed different tissue deformation between gray matter (ROI in BG) and white 
matter (ROI in CSO) in healthy volunteers. The fact that the technique is sensitive enough to see 
normal regional differences in physiology in healthy people indicates that it also has potential 
for detecting abnormalities in tissue deformation in disease. As such, the technique may help in 
advancing our understanding of diseases like cerebral small vessel disease and the vascular con-
tributions to neurodegenerative diseases. Currently, it is a limitation of this study that we could 
assess the tissue strain in a 2D slice and perform a volumetric strain analysis along a single line 
only. We therefore cannot infer respiration-related strains of the complete brain, as were recently 
performed for cardiac-induced strains [2]. The sequence, however, holds the potential to extend 
the current 2D approach to a multi-slice acquisition, where the time between the cardiac phases 
is used to acquire additional slices at different locations in the brain. Such an approach would 
enable the acquisition of a 3D volume, without sacrificing any SNR and preserving the single-
shot approach. It should also be investigated whether the proposed method – possibly extended 
to a multi-slice acquisition approach – can tolerate a 3/7 factor reduction in SNR, so that it can 
be implemented on 3T clinical scanners. A further limitation of this study is that no additional 
geometric EPI distortion corrections were performed, apart from 2nd order image based shim-
ming. Although the analysis was performed in homogenous regions of the brain, geometric EPI 
distortion corrections would be nesscesarry for regions with significant B0 inhomogeneities (e.g. 
near the nasal cavities) through the use of an acquired B0-field map.

In conclusion, the developed single-shot 2D DENSE method is capable to consistently disentan-
gle cardiac related brain deformations from respiration-induced brain tissue deformations. We 
have successfully measured the separate contributions in small ROIs, despite the amplified noise 
induced by the use of spatial derivatives and found results that are consistent with physiological 
blood volume changes. This novel method provides a tool to directly study tissue dynamics that 
reflect fundamental aspects of the microvascular function and that holds potential to serve as a 
physiological marker of the waste clearance system of the brain.
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figure 3-s1 Dependence of strain results on location of region of interest. Upper panels) FH strain along the 
Feet to Head intersection line between the acquired coronal and sagittal slices, represented for each volunteer 
separately. Th e black line indicates the median in a 3x3 pixel area for both the coronal and sagittal slice together. 
Th e gray area indicates the 25%-75% interquartile range in the associated area. Lower panels) Relative tissue 
probabilities in the area for which the FH strain was computed, which was obtained from the segmentation 
of the T1 scan (mean probability in ROI). As expected, strains have a higher variance in regions where CSF is 
dominant over tissue, due to fl ow eff ects.
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abstRaCt

The cardiac cycle induces blood volume pulsations in the cerebral microvasculature that cause 
subtle deformation of the surrounding tissue. These tissue deformations are highly relevant 
as a potential source of information on the brain’s microvasculatur e as well as of tissue con-
dition. Besides, cyclic brain tissue deformations may be a driving force in clearance of brain 
waste products. We have developed a high-field magnetic resonance imaging (MRI) technique 
to capture these tissue deformations with full brain coverage and sufficient signal-to-noise to 
derive the cardiac-induced strain tensor on a voxel by voxel basis, that could not be assessed 
non-invasively before. We acquired the strain tensor with 3mm isotropic resolution in 9 subjects 
with repeated measurements for 8 subjects. The strain tensor yielded both positive and negative 
eigenvalues (principle strains), reflecting the Poison effect in tissue. The principle strain associ-
ated with expansion followed the known funnel shaped brain motion pattern pointing towards 
the foramen magnum. Furthermore, we evaluate two scalar quantities from the strain tensor: 
the volumetric strain and octahedral shear strain. These quantities showed consistent patterns 
between subjects, and yielded repeatable results: the peak systolic volumetric strain (relative to 
end-diastolic strain) was 4.19·10-4 ± 0.78·10-4 and 3.98·10-4 ± 0.44·10-4 (mean ± standard devia-
tion for first and second measurement, respectively), and the peak octahedral shear strain was 
2.16·10-3 ± 0.31·10-3 and 2.31·10-3 ± 0.38·10-3, for the first and second measurement, respectively. 
The volumetric strain was typically highest in the cortex and lowest in the periventricular white 
matter, while anisotropy was highest in the subcortical white matter and basal ganglia. This 
technique thus reveals new, regional information on the brain’s cardiac-induced deformation 
characteristics, and has the potential to advance our understanding of the role of microvascular 
pulsations in health and disease.
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IntRoduCtIon

Blood flow into the brain is pulsatile, driven by variation in blood pressure over the cardiac cycle. 
The pulsatile pressure waves, generated by the heart, are transmitted through the arterial tree all 
the way to the level of the microvasculature [64; 134]. As the arterial pressure wave reaches the 
microvascular bed, these microvessels swell and stretch elastically causing the surrounding tissue 
to be displaced [126; 140; 180]. These ensuing subtle tissue deformations show regional variation, 
depending on the amount of blood that is delivered locally, but also on tissue properties and the 
tissue’s position relative to, for example, the ventricles.

Measuring brain pulsatility is of interest, as it carries information of both the blood vessels that 
drive these pulsations, and of the surrounding tissue that deforms in response to the vascu-
lar pulse. Indeed, it has been shown that brain tissue stiffness can be derived by performing 
magnetic resonance elastography (MRE) reconstructions on measured heartbeat-related tissue 
motions [169; 181]. Conventional MRE has shown that the brain tissue softens (becomes less 
stiff) with age, which probably reflects change in the tissues microstructure [132]. Also, one can 
compute the volumetric strain accompanying the brain tissue displacement, which is defined as 
the relative change in volume of an elementary piece of tissue [1; 2; 70; 137]. Regional variation 
in this volumetric strain most likely reflects (at least partially) regional variation in the arterial 
blood fraction of the tissue [1]. This notion is corroborated by observed white matter tissue 
swelling during systole, which is much smaller than the gray matter tissue swelling [1; 2; 137]. 
It is conceivable that combining dedicated computer models with precise measurements of the 
brain tissue deformation would yield insight in mechanical properties of both the vasculature 
(such as local blood volume and its compliance) and the tissue (such as the bulk- and shear 
modulus) [91; 92].

Apart from offering a window to microvascular and tissue microstructural features, brain tissue 
pulsations are also of interest for their potential role in essential physiological processes. Flow-
induced shear stress and its pulsatility evoke mechanotransductive responses in endothelial 
cells, which constitute the blood-brain barrier [33; 35; 37]. Moreover, tissue deformations propel 
cerebral spinal fluid (CSF) around the brain. As CSF fulfills an important role in the drainage 
of cerebral waste, tissue deformation is considered to contribute to waste clearance in the brain 
[101; 141]. Although the exact mechanism of brain waste clearance are still controversial, it is 
likely that tissue deformations contribute this process by mixing of the interstitial and para-
arterial fluids [10; 12]. Non-invasive assessment of brain tissue pulsations may therefore be of 
value for studying brain physiology, and could also be relevant for brain disease. For instance, 
stiffening of the vascular walls is known to be associated with increased risk of stroke and the de-
velopment of cerebral small vessel disease (cSVD). cSVD is a major cause of stroke and dementia 
that can currently only be detected when macroscopic, mostly irreversible, tissue lesions have 
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been developed [121; 167]. Assessment of changes in the microvascular- and tissue properties 
prior to the development of such damage might yield insight in the underlying disease processes.

Despite the apparent relevance of cardiac-induced brain tissue deformations, there are currently 
limited methods to study these deformations in a non-invasive way in humans. The phenomenon 
of physiological brain tissue deformation is subtle, with typically maximal stretch along a single 
direction in the order of 0.3% [119; 137]. Volumetric strains are even more subtle, typically 
less than approx. 0.1% [1; 2; 137]. These deformations can be derived from motion field maps 
through the use of spatial derivatives. MRI techniques that in principle can provide these motion 
field maps include amplified MRI (aMRI) [73; 156] and phase-contrast MRI (PC-MRI) [43; 143]. 
Yet, aMRI is designed for standard anatomical cine images, which are not optimized to capture 
the subtle brain motion. Besides, the aMRI algorithms do not provide deformation fields directly, 
meaning that additional registration algorithms have to be used that only add to uncertainty. On 
the other hand, PC-MRI requires velocity sensitivities (VENCs) in the order of 1mm/s, which 
require bipolar gradients that are too large to be practically feasible with reasonable TRs and 
TEs (practically feasible VENCs are in the order of 1cm/s) [2]. Therefore, we use Displacement 
Encoding with Stimulated Echoes (DENSE) [5] to quantify these motion field maps [126; 140; 
180]. However, the computation of spatial derivatives amplifies the noise present in these motion 
field maps. As a result, the signal to noise ratio (SNR) in the strain measurements are typically 
low. Even at 7T, current strain measurements as obtained with a time-resolved multi-shot 3D ap-
proach, require an increase in SNR by approximately a factor of 10, in order to perform a voxel-
wise analysis of the tissues volumetric strain [1]. The lack in SNR in the multi-shot 3D approach 
mainly originated from the use of suboptimal encoding sensitivities of the DENSE sequence. 
In these studies, less-than optimal motion encoding sensitivity already induced considerably 
ghosting artifacts due to phase inconsistencies between the shots, which were due to involuntary 
subject motion resulting from, among other things, respiration [1; 140]. This sensitivity to invol-
untary motion prohibited the use of the theoretically optimal motion encoding sensitivity. The 
recently proposed DENSE sequence [137] circumvents these phase inconsistencies by using a 
single-shot approach, thereby enabling to increase the motion sensitivity that yields higher SNR 
in the motion field maps [139]. Moreover, as this approach is less sensitive to subject motion it 
may be more advantageous to use in patients. Yet, this technique was limited in brain coverage 
by the 2D acquisitions.

In this work, we present a comprehensive single-shot DENSE sequence with optimized sensitiv-
ity that combines the benefit of high SNR for a voxel-wise strain analysis, and a simultaneous 
multi-slice (SMS) acquisition approach for whole-brain coverage. We use the technique to derive 
the cardiac-induced tissue deformations and characterize this deformation across the brain. 
Specifically, we derive the full strain tensor and map it for the entire brain. Besides, we present 
two scalar maps derived from the tensor: volumetric strain and octahedral shear strain. First, 
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a brief background on the derivation of the strain tensor is provided, which summarizes the 
established relevant theory. The heart of this work, however, is the acquisition of deformation 
gradient fields with sufficient SNR that make the strain tensor reconstruction feasible, without 
suffering from excessive noise. We acquire the strain tensor in multiple subjects to investigate its 
inter-subject consistency and also include repeated measurements to assess its repeatability. By 
combining the data from 9 subjects to MNI space, we aim to quantitatively describe the typical 
pattern of cardiac-induced brain tissue deformation.

MateRIals and MetHods

dense sequence
The DENSE sequence [5] consists of a motion encoding and decoding part (see Figure 4-1). The 
encoding part consists of a gradient between two 90 degrees RF pulses, which imposes a sinusoid 
on the longitudinal magnetization of which the local phase encodes the current position of the 
tissue. After a given time, the decoding part reads out the prepared longitudinal magnetization. 
Any tissue displacement along the direction of the encoding gradient leads to a corresponding 
phase shift in the resulting phase image. This way, DENSE – analogue to velocity encoding – 
manipulates the phase information such that it becomes proportional to the displacement of 
brain tissue that occurred between encoding and decoding.

Tissue displacement maps (ux, uy, uz) can be derived from motion-sensitive phase images ac-
quired through DENSE by

 ux = 
DENC

ϕx  (4-1)
π

where ϕx is the phase of the DENSE MRI signal acquired after motion encoding in the x-direction 
and DENC is the displacement encoding value in units of meters (similar to the VENC param-
eter used in phase-contrast MRI, which has units of meters/second). At this point, the MRI 
phase signal contains both phase contributions due to cardiac-induced motion, subject motion 
and phase confounders from respiration and the RF coils, which are later regressed out after 
computing the deformation gradients.

simultaneous multi-slice dense
Our previous developed cardiac triggered, single-shot DENSE sequence [137] was modified to 
be compatible with a simultaneous multi-slice (SMS) acquisition approach to obtain time- and 
SNR-efficient whole brain DENSE acquisitions [17]. While the encoding part of the DENSE se-
quence (first two RF pulses) remained unchanged and non-selective, the third RF pulse for slice 
selective excitation needed modification to be compatible with a multiband SENSE acquisition 
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approach [17]. We achieved this by replacing the standard excitation pulse with a SMS excitation 
pulse as implemented by the vendor on the scanner for other sequences. This SMS excitation 
pulse combines a standard two-lobe sinc pulse with two frequency offsets to obtain a user defined 
spacing (72 mm in our case) between the slices. The duration of the multiband RF pulses was 
longer compared to the standard RF-pulse (3.39 ms vs 1.13 ms). The simultaneously acquired 
volumes were reconstructed by the standard reconstruction platform of the MRI scanner. A full 
evaluation of the SMS method for the proposed DENSE sequence is provided in the supplemen-
tary file (Figures 4-S1 and 4-S2).

data acquisition
The Ethical Review Board (ERB) of the University Medical Center Utrecht approved the use of 
healthy volunteers for MRI protocol development. Nine healthy volunteers (6 males, 3 females, 
age 30 ± 4 years) were included and written informed consent was obtained in accordance with 
the ERB approval. The volunteers were scanned at 7T (Philips Healthcare, Best, The Nether-
lands) using a 32-channel receive head coil within an 8 channel transmit/receive head coil (Nova 
Medical) operated in quadrature mode. In each volunteer, 6 DENSE series with in-plane motion-
encoding in the Right-to-Left (RL), Anterior-to-Posterior (AP) and Feet-to-Head (FH) direction 
were obtained. The series were acquired with different orientations: 2 sagittal series (in-plane 
FH and AP encoding), 2 coronal series (in-plane FH and RL encoding) and 2 transverse series 
(in-plane AP and RL encoding). The purpose of each of these DENSE series was to provide 
two components of the deformation gradient tensor (see Eq. 4-5), by taking the in-plane spatial 
derivatives from the motion encoded data (see Table 4-S1 in the supplementary files for complete 
overview). Each DENSE series consisted of 72 slices and had the following imaging parameters 
(see Figure 4-1): acquired resolution: 3 × 3 × 3 mm3; FOV: 250 × 250 × 216 mm3 (72 slices); 

 figure 4-1 Simultaneous multi-slice (SMS) DENSE acquisition principle, combined with an example for 
data acquisition and analysis of one DENSE series. In the current example, motion encoding was in the Feet-
to-Head direction with a sagittal acquisition orientation. Repeating the DENSE MRI sequence for additional 
in-plane encoding directions with sagittal, coronal and transverse orientation, resulted in 6 datasets.
(1) SMS DENSE consists of 2 non-selective 90° RF pulses to encode the tissue. After a given mixing-time, a 
selective 90° multi-band RF pulse is employed to excite and acquire (in the current method) a slice group of 3 
2D slices.
(2) Data was recorded over 24 repeated acquisitions with alternating encoding direction sign to distinguish 
between phase contributions due to motion and a motion independent phase confounders. Each repeated ac-
quisition consisted of 12 excitations in each package with a multi-band factor of 3, which equals to 72 slices. 
Odd slices (associated with excitations s1, s3 … s23) were acquired in the first package whereas the even slices 
(associated with excitations s2, s4 … s24) were acquired in the second package. Slice order was permuted over 
the repeated acquisitions to obtain each slice at different moments in the cardiac cycle.
(3) Time-series of displacement-encoded phase images (d) were used to derive displacement gradient maps (g, 
two maps for each encoding direction). The current sagittal example yields the 

δuFH
δFH  and 

δuFH
δAP

 displacement gra-
dients, which are shown here in transverse orientation to illustrate the full brain coverage with isotropic voxels. 
Using the physiological data, these gradient maps were fitted in a linear model to obtain the displacement maps 
and confounders (G) in 8 interpolated cardiac phases across the 0 - 52.5% of the cardiac cycle.
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multi-band factor: 3 (24 excitations); slice gap: 0 mm; displacement encoding (DENC): 80 μm; 
2 packages (12 excitations per package; odd slices in first package and even slices in the second); 
single-shot EPI readout (EPI factor: 33); SENSE factor: 2.6 (AP or RL, depending on acquisi-
tion orientation); TE/2: 20 ms and EPI band width in the readout/phase encoding direction; 
2.7 kHz/pixel; 47 Hz/pixel. Furthermore, each DENSE series consisted of 24 repeated scans, in 
which 12 slice order permutations were applied together with 2 opposite encoding directions 
(to distinguish between motion-induced phase and phase confounders). Saturation effects from 
neighboring slices were remedied by acquiring odd and even slices in two separate packages. 
Slice order permutations for each repeated scan ensured that each slice was acquired at different 
time-locations into the cardiac cycle. Physiological data were simultaneously recorded by using 
a vector cardiogram (VCG) and a pulse oximeter (POx) for backup. Acquisition of each DENSE 
series had a duration of 48 heartbeats: 2 slice packages (odd vs. even slices; each package covering 
one cardiac interval) × 12 permutations over the cardiac cycle × 2 encoding polarities, resulting 
in a scan time of 48 s for 60 beats per minute (bpm) and 4:48 min total scan time to produce a 
complete set. Each slice package consisted of 12 slice groups, which, together with a MB factor of 
3, resulting in 36 slices per cardiac interval. The temporal slice spacing depended on the heartrate 
of the volunteer and was chosen such that the 11 intervals between the 12 slices covered at least 
50% of the cardiac cycle (which implies a temporal slice spacing of 45 ms for 60 bpm). The 
minimum temporal slice spacing required to perform the EPI acquisition was 42 ms, regardless 
of the heartrate. Furthermore, the time required between encoding and decoding the first slice 
was 30 ms, regardless of heart rate.

Time-resolved 2D CSF flow measurements were acquired using retrospectively-gated phase-
contrast MRI (PC-MRI) to compare the CSF stroke volume with the brain volumetric strain as 
an independent means for validation of the DENSE measurements. The 2D slice was planned 
at the C2-C3 level of the spinal canal. Motion-encoding was in the FH direction towards the 
spinal canal. Two different encoding sensitivities of 5 and 10 cm/s were acquired to obtain ac-
curate measurements while avoiding phase wraps. Other imaging parameters included: acquired 
resolution 0.45 × 0.45 × 3 mm3; FOV: 424 × 408 mm2; SENSE: 2 (RL) and 30 reconstructed 
cardiac phases over the cardiac interval. The scan duration of the PC-MRI was 1:43 min for a 
heart rate of 60 bpm.

Two additional scans were acquired for data processing purposes. First, a T1-weighted (T1w) 
turbo field echo (TFE) scan (acquired resolution 1.00 × 1.00 × 1.00 mm3; FOV 250 × 250 × 190 
mm3; TFE factor 600; inversion delay 1292 ms, SENSE 2 (AP direction); FA 5˚; TR 4.2 ms; TE 
1.97 ms; acquisition time 2 min) was acquired as anatomical reference. Second, two B0 field maps 
were obtained: the first was acquired at the beginning of the scanning session, and was used to 
perform second order image-based B0 shimming; the second was acquired after shimming to al-
low us to correct for remaining geometric distortions in the acquired DENSE images. A single B0 
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field map was reconstructed from the phase difference of two successive gradient echo scans with 
fixed TR, and different TE, as available from the vendor (acquired resolution 3.50 × 3.50 × 3.50 
mm3; FOV 224 × 224 × 224 mm3; FA 8˚; TR 3.9 ms; TE 1.57 ms and 2.57; scan duration: 25 s).

strain tensor reconstruction

From DENSE series to displacement gradient fields
The acquired DENSE series were analyzed offline with custom software written in MATLAB 
R2018b (The MathWorks, Inc., Natrick, MA, USA). The positive and negative encoded slices in 
one DENSE series were registered using Elastix with a rigid transformation [82]. Linear inter-
polation on the complex data was performed to transform the data. Since slices were acquired 
at different time-locations into the cardiac cycle, only in-plane translations and rotations were 
allowed during registration, preventing interpolation between adjacent slices that were not ac-
quired at the same time location. The shimmed B0-map was then registered to the DENSE series 
and used for EPI distortion correction [79]. Registration and distortion corrections were applied 
to the real and imaginary components of the complex data of the DENSE series. After these 
initial corrections to the data, apparent displacement field maps were obtained from the phase 
signal for the positive and negative polarities of the encoding gradient (see Eq. 4-1). These fields 
still included confounding factors from non-motion related phase contributions such as the RF 
phase. Gradients were derived from these apparent displacement field maps by computing spatial 
derivatives along the two in-plane coordinate axes. Each DENSE series thereby produced two 
apparent displacement gradient fields (which still contained phase confounders). As a result, 12 
apparent displacement gradient fields for the 6 DENSE series were produced (see Supplementary 
Table 4-S1). Phase wraps in the phase images caused a large numeric derivative Δφ, which was 
resolved by adding or subtracting 2π to Δφ to bring it closer to zero if
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which represents a maximum tolerated strain of

εmax =
∆φmax DENC

=
3 DENC

 (4-3)
2∆x π 4 ∆x

For a resolution of 3mm isotropic and an encoding sensitivity DENC of 80μm, this results in a 
maximum strain of 2%, which is well over the maximum expected tissue strains of 0.6%. The 
VCG and POx trigger data as recognized by the scanner software were used to deduce the posi-
tions of the acquired slices relative to the cardiac interval. Each apparent displacement gradient 
map was fitted voxel-wise to the physiological data in a linear model as described before [137]. 
To account for differences in heart rate between subjects, and between repeated scans, the linear 
model was defined for 8 cardiac phases at fixed relative positions in the cardiac cycle, in a way 
that is equivalent to linear interpolation between the 12 acquired heart phases. As a result, 8 
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displacement gradient maps were obtained, distributed over the over the cardiac cycle at 0, 7.5, 
15, 22.5, 30, 37.5, 45 and 52.5% of the cardiac interval. The 8 displacement gradient maps over 
the cardiac cycle, show these displacement gradients with reference to end-diastole, which has by 
definition zero strain (and, thus, zero displacement gradients).

From displacement gradient fields to strain tensor
The displacement gradient fields were obtained from all 6 motion-encoded DENSE series that 
were acquired for each subject. Next, magnitude data of these DENSE series were used to register 
the displacement gradient fields by using Elastix in a group-wise rigid registration in combina-
tion with third order b-spline interpolation [82]. Each DENSE series provided two components 
of the displacement gradient tensor. For instance, the sagittal oriented dataset with FH encoding 
direction from Figure 4-1 provides the displacement gradient fields  

δuFH
δFH  and 

δuFH
δAP  (see Eq. 

4-5). The diagonal elements of the displacement gradient tensor were obtained twice, each for 
a different acquisition orientation. We inspected the consistency between the pairs of diagonal 
elements and confirmed that they showed reasonable agreement and no systematic differences 
(see Figure 4-S3 in the supplementary files for consistency). Hence, we averaged the pairs of data 
before the strain tensor was obtained from Equation 4. In this work, we reconstructed the strain 
tensor of tissue relative to diastole (e.g. the R-top in the ECG signal). The strain tensor describes 
the stretch and compression behavior of an image-voxel along three orthogonal directions. In 
principle this can be any direction, yet, for three dimensions, the eigenvalue decomposition 
returns the three directions in which only pure stretch or compression occurs, without shear 
strains. The accompanying eigenvalues are the respective strains in these directions, and known 
as the principal strains. We will mainly focus on two of these directions: the first principle direc-
tion of dominant stretch and the third principle direction of dominant compression. The prin-
ciple strains are visualized by using directionally encoded color (DEC), known from diffusion 
tensor imaging, enabling qualitative visual comparisons [120]. Figure 4-2 shows this principle, 
where the direction of the eigenvector in each voxel is depicted by the RGB color scheme, while 
the intensity represents the magnitude of associated principle strain.

Volumetric strain and octahedral shear strain
The Lagrangian strain tensor strain tensor e can be written as follows [52]:
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or shortening (negative) of the tissue in the associated direction, while the off-diagonal elements 
describe the shear components. The deformation gradient tensor f is given by
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where I is the identity matrix and ux, uy and uz are the measured displacements in Right-to-Left, 
Anterior-to-Posterior and Feet-to-Head, respectively. From e we derive two scalar quantities: 
the volumetric strain and octahedral shear strain. The volumetric strain reflects net expansion or 
compression of the voxel, relative to (in the present study) end-diastole. Under the assumption 
of very small deformations, the volumetric strain εV can be approximated by summing over all 
eigenvalues [1]:
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Octahedral shear strain signifies how much the voxel deforms and is independent of volumetric 
strain. The octahedral shear strain can be considered as a measure for the differences between of 
the three principal strains, indicating the deviation from isotropic swelling (three equal, positive 
principal strains) of a voxel during the heartbeat and is given by Eq. 4-7 below [98].
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While the octahedral shear strain is zero for isotropic swelling (or shrinkage), it is larger than 
zero for  deformations (either isovolumic or non-isovolumic) with different principal strains (e.g. 
stretch in one direction and compression in a perpendicular direction). The octahedral shear 
strain is a positive number, while a value of 0 indicates isotropic deformation of the voxel (i.e. the 
same amount of stretch or compression in each orthogonal direction).

Repeatability
DENSE series were repeated with repositioning of the subject to assess the test-retest reliability 
of the measurements. The total scan session including both repeated measurements lasted less 
than 90 minutes. Comparing the original measurement with the repeated measurement was 
done by rigid registration of the T1w scan associated with the repeated measurement to the 
T1w scan associated to the original dataset. The resulting transformation was then performed 
on the displacement gradient fields belonging to the repeated measure using third order b-spline 
interpolation. Both T1w scans were segmented using Computational Anatomy Toolbox (CAT12, 
version 1615, Jena University Hospital, Departments of Psychiatru and Neurology) for Statistical 
Parametric Mapping (SPM12, version 7771, Wellcome Trust Centre for Neuroimaging, Univer-
sity College London) and a combined brain mask was created out of the tissue probability maps, 
where voxels containing any CSF in the original or the repeated T1w scan were discarded. An 
additional city-block erosion step was included to assure that no partial volume effects from CSF 
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were present in the deformation gradient maps, as neighboring voxels would influence values in 
a given voxel via the derivative calculations. All remaining voxels were used to assess regional 
repeatability.

Per subject, repeatability analysis was performed on the eigenvalues, volumetric strain and oc-
tahedral shear strain measures deduced from the two strain tensor reconstructions. The analysis 
was separately performed for seven brain regions of interest (ROIs): cerebellum, brain stem, 
basal ganglia, temporal lobe, occipital lobe, parietal lobe and frontal lobe. MNI labels registered 
to the original T1w scan were used to distinguish between the different regions. The repeated 
measurements were evaluated using the voxel-wise SNR as the reciprocal of the coefficient of 
variation:
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where µ is the mean of the two measurements averaged over all voxels in the ROI and σ the standard 

deviation over the voxel-wise difference between the measurements. 
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where μ is the mean of the two measurements averaged over all voxels in the ROI and σ the 
standard deviation over the voxel-wise difference between the measurements.

external validation
Per subject, the volumetric strain measurements were validated against the CSF in/outflow in the 
foramen magnum. To this end, we compared the average volume change of brain tissue resulting 
from the volumetric strain to the change in CSF volume obtained at the C2-C3. This method 
was used previously to validate the multi-shot 3D DENSE method and an approximately linear 
relationship was reported between CSF flows and brain tissue volume pulsations over the cardiac 
cycle [2]. Here we use the same approach to validate the current single-shot SMS DENSE method.

The average volume change over the cardiac cycle can be obtained from the whole-brain average 
volumetric strain by solving Eq. 4-6 for ΔV. The absolute volume of white matter and gray matter 
was obtained through brain segmentation of the T1w scan (registered to the mean DENSE magni-
tude image resulting from the group-wise registration) using CAT12. From the tissue probability 
maps, a mask was created where all voxels containing any CSF in the original or the repeated T1w 
scan were discarded. An additional city-block erosion step was included to assure that no partial 
volume effects from CSF were present. This way, the analysis was exclusively due to the rise in 
volume of the tissue, as all CSF and large vessels embedded in the CSF, like the circle of Willis, 
were excluded by using such a stringent mask. The average volumetric strain was obtained over 
the same eroded, CSF free tissue mask, that was generated for assessing the regional repeatability. 
Multiplying the volume of grey and white matter with the average volumetric strain, resulted in 
the volume change over the cardiac phases.
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The volume of CSF was calculated by integrating the CSF velocity maps over the cardiac cycle 
and multiplying the result by the area of the spinal canal. Furthermore, the volume curves were 
shifted in time to compensate for the encoding delay in the DENSE series. The encoding delay 
is defined as the time between an observed R-top trigger by the MRI system and the encoding 
gradient applied to encode the signal. The encoding delay was 20ms, resulting in a shift of 2-3%, 
depending on the heartrate. Both the tissue volume curve and CSF stroke volume curve were 
independently corrected so that they both would intersect the origin at point (0 , 0).

average strain tensor
The overall behavior of the strain tensor was assessed by combining the results of the first mea-
surement for all individual subjects in MNI space (ICBM 2009c Nonlinear Symmetric [46; 47]). 
Per subject, the reconstructed strain tensor was registered to MNI space using the associated T1w 
scan: First, the T1w scan was registered to the mean DENSE magnitude image resulting from the 
group-wise registration of the six DENSE series, after which it was registered to MNI space by us-
ing Elastix using an affine registration followed by a non-linear b-spline regularized registration 
[82]. The resulting transformation was then applied to the strain tensor with third order b-spline 
interpolation for the eigenvalues and nearest neighbor interpolation for the (unit) eigenvectors. 
Furthermore, the direction of the eigenvectors were corrected using the rotation component of 
the affine registration step [88]. The volumetric strain and octahedral shear strain were computed 
in native space before transforming the maps to MNI space. Third order b-spline interpolation 
was used when transforming these scalar maps to MNI space. The resulting maps were averaged 
over all subjects, resulting in average maps for the first eigenvector (most expansion), the third 
eigenvector (most compression), the volumetric strain and octahedral shear strain. SNR maps 
representing the voxel-wise SNR derived from the repeated measurements, were also included 
for the volumetric strain and octahedral shear strain (see Eq. 4-6 and 4-7).

Results

strain tensor
Figure 4-2 represents an example of the strain tensor map for subject 4 at peak systole (specifi-
cally 30% of the cardiac cycle for the current subject) in the native space of this subject. Only the 
first principal strain (maximum expansion, Figure 4-2b) and third principle strain (maximum 
compression, Figure 4-2c) are represented together with its associated eigenvalue. In rare oc-
casions an eigenvector decomposition of a voxel resulted in either three positive (< 1% of the 
voxels) or three negative eigenvalues (< 0.3% of the voxels). In these cases respectively, the as-
sociated compression (third component) or expansion direction (first component) were set to 0. 
The first principle strain and third principle strain will be referred to as the positive strain and 
negative strain, respectively.
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Brain regions with large expansions (positive strain) were generally accompanied by large com-
pressions (negative strain) in a direction perpendicular to the expansion direction. Th is observa-
tion, where axial expansion of an object in the direction of the expansion load is accompanied by 
transverse compression, is also known as the Poisson eff ect (See Figure 4-2).

Volumetric strain and octahedral shear strain
Peak systole, defi ned as the moment of largest mean volumetric strain, ranged between 30 – 
37.5% of the cardiac interval, depending on the subject. Figure 4-3 shows the volumetric strain 
and octahedral shear strain at peak systole for subject 5 at diff erent locations in the brain. Cortical 
regions show mostly isotropic expansion (low shear strain). Volumetric strain and shear strain 
did not substantially correlate (average R2 = 0.003). On average, peak volumetric strain and peak 
shear strain were reached at the same time. However, in subject 5 the volumetric strain peak 
came aft er the peak in octahedral shear strain, at 37.5% and 22.5%, respectively. Th is observation 
was consistent between the fi rst and repeated scan.

Per subject
Th e individual strain maps are provided in Figure 4-4 for all subjects. Th e results show similar 
trends for all subjects, where the positive principal strain direction follows the known brain 
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figure 4-2 (a) Top fi gure: A deformed voxel at peak systole relative to end-diastole serves as an example to il-
lustrate how a voxel stretches along a certain 1D direction (blue arrows), while at the same time it compresses 
along another orthogonal direction (red arrows). Bottom fi gure: Th e RGB color coding of directionality [120]. 
Red: Right-to-Left  (RL); green: Anterior-to-Posterior (AP) and blue: Feet-to-Head (FH). Figure 4-b and c show 
the direction and magnitude of largest expansion (fi rst principal strain) and largest compression (third princi-
pal strain) in each voxel for subject 4, respectively (unsmoothed data from measurement 1 in its native space). 
Top fi gure: the direction of the eigenvector in each voxel using the directionally encoded color scheme. Bottom 
fi gure: gray-scale maps representing the magnitude of the associated principle strain. For the third principle 
component, the absolute value of the eigenvalues was taken, resulting in a map with only positive values. Mul-
tiplying the eigenvectors with the eigenvalues results in an intensity color map.
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figure 4-3 Volumetric strain and octahedral shear strain for subj ect 5 (unsmoothed data from measurement 1). 
(a) Example demonstrating the concepts of volumetric strain and shear strain. Th e fi rst example (top) shows a 
voxel with isotropic swelling at peak systole. Th is voxel increases its volumetric strain without inducing shear 
strain. Th e second example (bottom) represents a voxel with isovolumic deformation (preserving its volume), 
which yields non-zero octahedral shear strain [98]. (b) Peak volumetric strain (with respect to diastole) shows 
an increase at the cortical surface and near sulci. (c) Peak shear strain is most pronounced in regions near the 
ventricles. Th e volumetric strain and octahedral shear strain barely correlate (R2 < 0.0001 for current subject), 
illustrating that they refl ect diff erent aspects of the deformation of the voxel.

T1
 w

eig
ht

ed
Ex

pa
ns

io
n

Co
m

pr
es

sio
n

Sh
ea

r S
tra

in

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

Vo
lu

m
et

ric

-1.5 0 1.5

Expansion

10

εS (10-3)εV (10-3)Compression

0

figure 4-4 Transverse slice in the middle of the brain represented for each subject (columns) and the various 
outputs from the strain tensor analysis (rows). Th e color scaling of the principle strains is the same as illus-
trated in Figure 4-2. Th e T1-weighted image is shown as anatomical reference (top row). A similar trend in all 
subjects can be observed. Th e positive principal strain tensor (second top row, expansion) follows the known 
funnel shaped pattern pointed towards the foramen magnum [58]. Th e negative principal strain tensor (middle 
row, compression) is more heterogeneous across subjects, but is locally of the same magnitude as the positive 
principal strain, refl ecting the Poisson eff ect. Th e volumetric strain (second bottom row) is larger towards the 
periphery of the brain compared to regions where white matter is present. Furthermore, the volumetric strain 
is weakly correlated to the octahedral shear strain (bottom row), which shows large shear strains in the white 
matter, around the ventricles.
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motion pattern, which is funnel shaped and pointing towards the foramen magnum [58]. The 
negative principal strain direction is somewhat heterogeneous across subjects, but its magnitude 
correlates with the magnitude of the positive principal strain, reflecting the Poisson effect in all 
subjects. The volumetric strain is larger in regions where more gray matter is present. On the 
other hand, the octahedral shear strain is more pronounced in regions in the white matter, near 
the ventricles. Data quality was high in all subjects with some visible artifacts (stripes) in subject 
3 and 6, presumably due to subject motion during scanning.

Repeatability
Repeated measurements were performed for all subjects, except subject 3, who opted out after 
the first scan as he felt uncomfortable. Subject 3 could therefore not be included in the repeat-
ability study.

The comparison between the initial measurement and the repeated measurement is shown in 
Figure 4-5, which consists of a summarized Bland-Altman plot for each individual subject, for 
seven spatial brain regions. The mean of the two repeated scans is shown as a black dot, with 
surrounding error bars representing the non-parametric reproducibility coefficient (± 1.45 × in-
terquartile range). The mean voxel-wise SNR (see Eq. 4-8) over all subjects per ROI is presented 
as well. The complete set of Bland-Altman plots for the volumetric strain and octahedral shear 
strain of one of the subjects, is shown in the supplementary files (see Figures 4-S4 and 4-S5).

Of the quantities that were assessed, the octahedral shear strain shows the best voxel-wise repeat-
ability and also has the highest SNR in all regions compared to the other quantities. Volumetric 
strain has the lowest SNR and showed poor voxel-wise repeatability.

external validation
A good agreement was found between volumetric tissue strains and the changes in the CSF flow 
through the spinal canal over the cardiac cycle, between 0 and 52.5% (see Figure 4-6). Linear 
regression of volumetric tissue strain versus CSF yielded a mean slope of 0.78 ± 0.10 with R2 
of 0.91 ± 0.08. The peak CSF stroke volume occurred at 43% of the cardiac interval and was on 
average 0.58 ± 0.09 mL. The peak in brain tissue volume increase was on average 0.46 ± 0.11 mL 
and occurred at 34% of the cardiac interval.
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figure 4-5 Representation of the voxel-wise analysis of the repeated measurements for seven separate brain 
regions. Each error bar in fact represents a summarized Bland-Altman plot  of one subject for each brain region 
(see Figure 4-S4 and S5 for complete Bland-Altman plots). The mean of the two repeated scans is shown as a 
black dot. The reproducibility coefficient and systematic offset from the voxel-wise difference between the two 
scans in the indicated brain region are indicated as follows: the error bar represents the non-parametric repro-
ducibility coefficient (+/- 1.45 · IQR) and systematic offset is captured by a shift of the error bars with respect to 
the mean. As a result, repeated measurements without a systematic difference have a positive and negative error 
bar of equal length. The systematic offset between the two scans was at most 0.4·10-3 for the octahedral shear 
strain and 0.2·10-3 for the volumetric strain. The listed SNRs represent the SNR within each brain region derived 
from the voxel-wise difference between the repeated scans (see Eq. 4-8), averaged over all subjects.
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figure 4-6 Per subject comparison of CSF volume expelled from the intracranium (measured at the C2-C3 
level) with tissue volume change obtained from the volumetric strain measurements. The expelled CSF volume 
(in mL) is shown over the cardiac cycle interval running from 0 to 60%. Tissue volume measurements were 
obtained only for 0 to 52.5% of the cardiac interval. Numbers in the title of each graph represent the average 
heartrate of the subject for the associated measurements (CSF stroke volume in blue and tissue volume in red, 
in beats per minute). Additionally, we provide a correlation graph that shows the relation between expelled CSF 
volume and tissue volume change. Each subject is represented by a different colored line; the black line indicates 
the identity relation.
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average strain
The overall behavior of the strain tensor, volumetric strain and octahedral shear strain in MNI 
space, averaged across subjects, is shown in Figure 4-7. This Figure 4-clearly shows distinct strain 
patterns. These patterns are already discernable at the individual subject level in Figure 4-4, but 
can be better explored in relation to brain anatomy on the averaged data. While tissue expansion 
roughly follows the typical macroscopic, funnel-like direction towards the foramen magnum, 
some white matter bundles can be distinguished due to a different expansion direction compared 
to its surroundings. The location that might be the corona radiata [3], for example, has a differ-
ent expansion direction compared to its surrounding white matter tissue (see Figure 4-7). The 
same fiber tract is also observed in the octahedral shear strain, where this bundle has reduced 
anisotropy compared to its surrounding. Furthermore, tracts like the cerebral peduncles and 
corpus callosum also show distinct expansion from surrounding tissue, which is accompanied 
by large shear strains. The rostral slices indicate increased shear strain in the deep white matter 
structures (i.e. centrum semiovale and cingulum) relative to the cortical gray matter.

Volumetric strain, on the other hand, is most pronounced at the cortical gray matter and basal 
ganglia. Here, it should be noted that the mask overlaying the results was derived from the CSF 
probability map, but did not include an additional erosion step to assure no partial volume effects 
from CSF. As a result, regions adjacent to CSF (e.g. ventricles or sulci) may suffer from artefacts 
due to free moving water. This is reflected by extreme values in these areas, especially visible in 
the volumetric strain map, and is shown in more detail in the supplementary files (Figure 4-S6). 
Voxel-wise SNR maps of the volumetric strain and octahedral shear strain are added to the figure 
in the bottom two rows, where the standard deviation was calculated over the nine subjects. The 
average SNR across voxels for the volumetric strain and shear strain in the brain’s tissue was 0.82 
and 3.4, respectively. Again, virtually no correlation between volumetric strain and octahedral 
shear strain was found (R2 = 0.0004).
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dIsCussIon

In this work, we presented a comprehensive single-shot DENSE sequence that combines the 
benefit of sufficient SNR to perform a voxel-wise strain analysis, with a simultaneous multi-slice 
acquisition approach that enables whole-brain coverage within approximately 5 minutes of scan 
time. We used the developed sequence to reconstruct the strain tensor of brain tissue resulting 
from cardiac pulsations in the microvasculature and explored its behavior across the brain [1; 2; 
140]. Additionally, we derived two scalar maps: volumetric strain and octahedral shear strain. 
We acquired the strain tensor in nine subjects, with repeated measurements in eight subjects to 
assess test-retest reliability. An external validation of the volumetric strain was performed by 
correlating the results to the CSF flow at the C2-C3 level. By combining the data from all subjects 
to MNI space, we documented the behavior of tissue deformation as for an average brain and 
investigated the inter-subject consistency of the observations. To the best of our knowledge, this 
is the first time that the full strain tensor from cardiac-induced deformation is measured in the 
human brain with full brain coverage.

The cardiac-induced 3D strain tensor was visually represented by the first principle strain 
(expansion) and third principle strain (compression). These deformation maps reflect neuroana-
tomical details of the brain’s structure; parts of white matter bundles like the cerebral peduncles, 
corpus callosum and corona radiata in the centrum semiovale can be distinguished due to a 
different expansion direction compared to their surrounding tissue. Regions with large positive 
eigenvalues, often show large negative eigenvalues as well, reflecting the Poisson effect. Given the 
random orientation of the microvasculature, we initially expected a more isotropic deformation 
pattern (less shear strains) as a result of the non-oriented swelling of the microvascular bed. 
However, the first principle strain is predominantly directed both towards the ventricles and 
downwards towards the brain stem, which could reflect low resistance towards CSF spaces. We 

 figure 4-7 Voxel-wise average of the positive and negative strain in MNI space over all 9 subjects (taking 
measurement 1 only, without smoothing of the data). 
A T1-weighted image is included for anatomical reference. The voxel-wise average of the volumetric strain 
and octahedral shear strain are shown as well, including an SNR map of the volumetric strain and shear strain, 
where the standard deviation per voxel was calculated over the nine subjects in MNI space. Color scaling for 
the positive and negative principle strain is different from Figure 4-2 and is limited to 2·10-3 to better capture 
the anterior and posterior structures. Color scaling for the volumetric strain and shear strain is equal to the 
scaling presented in Figure 4-3. Please note that voxels adjacent to CSF may suffer from artefacts due to free 
moving water. Especially the extreme values in the volumetric strain maps are probably artefacts due to partial 
volume effects.
The figure shows how specific tracts and other anatomical structures clearly emerge from the strain maps, with 
distinct patters for different adjacent structures. The bundle that looks like the corona radiata, for example, can 
be distinguished due to a different expansion direction compared to its surrounding white matter tissue and is 
indicated with white arrows (expansion map), and a lower octahedral shear strain, as indicated with gray arrows 
(anisotropy map).
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found principle strains ranging from 0.09 – 0.43% (Figure 4-5), with largest strains in the brain 
stem (range: 0.23% – 0.43%) and lowest strains in the occipital lobe (range: 0.09% – 0.12%), indi-
cating regional heterogeneity of tissue deformation. Pahlavian et al. mention 0.38% as maximum 
principle strain observed in the brain stem [119; 142], which compares well to our findings. Yet, 
they derived f under the assumption of volume conservation, which relies on the false assump-
tion of no volumetric strain fluctuations [1; 70; 138]. As a result, it is necessary to measure f in 
all directions. Furthermore, it is not directly apparent to what extent regional microstructure 
affects the strain tensor’s behavior. While tissue expansion roughly follows the typical directions 
of white matter fiber bundles pointing towards the foramen magnum, the corpus callosum, for 
example, mainly expands in directions perpendicular to the fiber bundles running from the left 
to right hemisphere [18; 106]. It should be noted that we implicitly assumed that the strain tensor 
would not change principal directions during the cardiac cycle, so we could limit our analysis to 
the strain tensor at peak systole. The exact time course of the strain tensor over the cardiac cycle 
and its relation to the microstructure of the brain remain topics for future research.

The different locations for which volumetric strain and shear strain are most pronounced, show 
that these quantities depict different aspects of the local mechanical behavior of the tissue. Es-
pecially shear strain showed good repeatability and relative high SNR. Volumetric strain, on the 
other hand, was most difficult to repeat on a voxel by voxel basis. This is due to the summation 
over all three eigenvalues, of which the first (positive) and the last (negative) eigenvalues largely 
cancel each other, while the noise increases by a factor of  √ 3  from the summation. Yet, averag-
ing over a small ROI already leads to enough noise reduction to detect regional physiological 
differences reflected by the volumetric strain. For instance, individual volumetric strain maps 
already show regional differences in subjects between the insula and white matter. Comparing 
the SNR to previous work shows that we gained at least a factor of 1.8 in SNR of the volumetric 
strain maps [1]: Adams et al. reported a voxel-wise standard deviation of the volumetric strain of 
1.4·10-3, while we measured an SNR for strain of 0.39 (mean over all regions), which corresponds 
to a standard deviation of 0.74·10-3 (given an average volumetric strain of 2.9·10-4). In compar-
ing these numbers one should note that Adams’ estimation was theoretically derived from SNR 
measurements of the magnitude images, while we obtained the noise estimate from voxel-wise 
comparison between repeated scans after repositioning. Our noise estimation, thus, includes 
contributions from physiological noise and imperfections in the registration. Most importantly, 
the 3D approach used by Adams et al. often suffered from increasing artifact levels towards the 
end of the cardiac cycle due to inter-shot phase inconsistencies, which we avoided by the single-
shot approach. These artifacts cannot easily be quantified and prohibits in depth comparison of 
the gain in SNR and image quality. Nevertheless, we obtained the gain in SNR in less than half 
of the scan time (4.8 min vs 13.5 min), albeit at the cost of an increased voxel size (3 mm versus 
2.2 mm isotropic resolution).
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The rise in blood volume that enters the cranium from the heart during systole, is compensated 
by an outflow of CSF into the spinal canal. We measured the cerebral tissue expansion with 
DENSE and assessed the outflow of CSF at the C2-C3 level. Given the incompressibility of CSF, 
this approach is justified under the Monro-Kellie doctrine, which implies a fixed intracranial 
volume [58]. We analyzed the 0-50% cardiac interval and found an approximate linear relation-
ship between CSF and volumetric strain over the cardiac cycle, which is consistent with current 
concepts of intracranial volume change [2]. Since the phase difference between the two curves is 
known to be minimal, no additional challenges were posed on this analysis [2]. Yet, the method 
does not take into account contributions from both larger arteries and veins embedded in the 
intracranial CSF. The C2-C3 location is often used to measure CSF outflow, since the narrow 
spaces ensure higher and more homogeneous flows, mainly directed Feet-to-Head, which can be 
measured more reliably [6; 15; 58]. The choice of this location by us and in previous literature, 
implicitly assumes that CSF volume buffering between the foramen magnum and this level is 
negligible compared to the volume buffered by the rest of the spinal sac below the C2-C3 level, 
which seems reasonable given the relative proximity to the foramen magnum. The internal vali-
dation of our method with CSF stroke volumes confirms the correct implementation and scaling 
of the strain measurements obtained through DENSE. The effect on volumetric strain due to 
partial volume effects was addressed by including a stringent mask to calculate the volumetric 
strain. Still, it remains a limitation of this method that we could assess the DENSE series only 
with a rather coarse resolution of 3mm isotropic. The effective resolution of the derived strains 
is further reduced by the spatial derivative operation, which uses the displacement information 
from two neighboring voxels to compute the strain. These artifacts are particularly seen at CSF-
tissue boundaries as shown in Figure 4-S6, and also visible around the ventricles of other work 
(e.g. Figure 4-2 in reference [119]). We mitigated these effects as much as possible by using a 
stringent mask. Computing the derivative on the complex signal through the Fourier transform 
could possibly avoid smoothing through the spatial derivative, albeit at even higher noise ampli-
fication than the spatial derivative operation [89]. Nevertheless, we are hampered in our analysis 
by partial volume effects, especially in regions near free moving water like sulci, and in structures 
that fall below the current resolution, like the cerebral cortex. Cortical regions tend to contribute 
more to the average volumetric strain compared to the deep white matter structures. Excluding 
these voxels from the analysis by the stringent masking, probably led to a slight underestima-
tion of the tissue volume compared to the CSF. Although the ability to study the swelling of the 
microvasculature bed with DENSE remains advantageous over ‘mass-balance’ approaches that 
study blood- and CSF flows at the spinal canal [15; 165], the proposed method has currently 
limited capabilities to avoid partial volume effects with medium- to large-sized vessels at the 
cortex, which may hamper accurate assessment of cortical gray matter volumetric strains. In the 
meantime, the rather good correlation between CSF flows and total brain tissue volumetric strain 
shows the potential of 2D CSF measurements at the spinal canal as a straightforward approach to 
assess the average pulation of the brain’s blood volume. Since CSF measurements are easily done 
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and have less SNR constraints, it may be attractive to perform these measurements at 1.5 or 3T 
[13]. One caveat, however, is the open question whether it will faithfully reflect cerebral blood 
volume pulsations in disease, as the relative contribution from the vessels embedded in the brain 
tissue and the larger vessels in the CSF might be different in disease.

The DENSE method has some intrinsic properties that are important to consider when comparing 
DENSE with other methods (e.g. PC-MRI) or for different field strengths. The stimulated echo 
acquisition employed by DENSE ensures that signal loss during the time between encoding and 
decoding is predominantly proportional to T1, and decays with T2 as function of the TE [49]. As 
a result, the time between encoding and decoding can be extended significantly with DENSE com-
pared to PC-MRI, resulting in increased motion sensitivity [169]. Besides, tissue T1 time-constants 
are considerably longer at higher field strengths, yielding a better performance of this sequence at 
high-field for longer encoding-decoding delays. When optimizing the DENSE motion sensitivity 
for assessing strain like we did in the current paper,  the largest source of signal loss is due to 
diffusion effects arising from the large b-values induced by the large encoding gradients combined 
with long decoding times, which does not change with field strength. In studies that used DENSE 
for tissue displacement only, diffusion effects did not play a key role since the encoding sensitivity 
(and thus the associated b-value of the encoding gradients) was limited to avoid phase wraps [140; 
180]. In this study, the high sensitivity of the DENSE sequence resulted in raw displacement images 
corrupted with many phase wraps, which prohibits the reconstruction of displacement images. 
Furthermore, the high sensitivity of the sequence prohibits the use of a multi-shot approach to 
potentially increase the resolution. Phase inconsistencies between shots from involuntary subject 
motion may then lead to artifacts. While we mitigated this effect by using a single-shot approach, 
we are limited in the spatial resolution. Furthermore, we do not think the proposed method can 
tolerate a 3/7 factor reduction in SNR resulting from a translation to 3T clinical scanners without 
compensating this SNR loss by, for example, further increasing the voxel size.

Volumetric strain reflects both blood volume increase (microvascular expansion) and tissue 
stiffness. For instance, white matter could be stiffer [80] and has reduced blood-volume to tis-
sue ratio compared to gray matter [9; 30; 164]. These combined properties result in volumetric 
strain increase being dominant in the cortical gray matter compared to white matter regions. 
Extensive elastography reconstructions could help to unravel blood volume change from tissue 
elasticity [150], providing a window to tissue integrity as well as perfusion pressure [68]. Yet, it 
is important to note that, besides microvascular expansion and tissue stiffness, the volumetric 
strain also reflects potential simultaneous compression of the interstitial space and draining 
veins that act as Starling resistors [135]. Comprehensive computer models that take into account 
the interaction between blood and CSF, while correcting for tissue stiffness, could help to gain 
further insight into these effects [91; 92; 133]. In the meantime, the observed volumetric tissue 
strain can be regarded as a lower bound estimation of the underlying blood volume pulsations 
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and may help in advancing our understanding of diseases like cerebral small vessel disease and 
vascular contributions to neurodegenerative diseases [137].

The mean spatial pattern of high octahedral shear strain roughly follows the distribution of 
deep medullary veins as reported previously [85]. The presence of these medullary veins may 
reduce the apparent shear stiffness of these regions. The deep medullary veins support the venous 
drainage of the brain and have shown abnormalities in the context of different cerebrovascular 
diseases [60; 108; 174]. Although the current young population is not a representative group to 
study these types of diseases, these results show that the technique is sensitive enough to detect 
regional normal differences in tissue deformation that can be compared with other structural 
brain maps. This indicates that the technique has potential for studying abnormal tissue defor-
mation in disease.

The technique proposed in this study is prone to EPI distortion. To mitigate the effects, we used 
2nd order image-based B0 shimming. To address remaining geometric distortions, we used a 
shimmed B0 field map to correct these. Registration to a reference volume or blip-up blip-down 
acquisition are alternative methods that aim to solve EPI distortion corrections, and are in prin-
ciple suited to implement as an alternative [8]. Since the spatial derivative used to obtain strain 
maps depends on an accurate distance between adjacent voxels, it is important to correct for EPI 
distortions before the strain is computed from the displacement fields. Moreover, the different 
acquisition orientations also require correct EPI distortion correction, especially as they do not 
all share the same phase encoding direction. Here, it must be acknowledged that the correction 
and registration steps used in this method are prone to error propagation due to multiple inter-
polation steps. Although we tried to mitigate these effects by linear interpolation on the complex 
data and limited degrees of deformation freedom in the groupwise registration, especially the 
MNI registration may have induced additional noise. Furthermore, it should be mentioned that 
the proposed technique relied on single-shot 2D acquisitions, that are prone to blurring in the 
slice direction due to thickened slices as a result of imperfect slice profiles.

In conclusion, the developed single-shot SMS DENSE method is capable of consistently assessing 
the brain tissue strain tensor on a voxel-wise level, despite the amplified noise introduced by 
the use of spatial derivatives. Through a principle component analysis, we successfully derived 
the principal strain directions, and illustrated the Poisson effect in vivo in brain tissue. Besides, 
we derived the volumetric strain and octahedral shear strain. Volumetric strain measurements 
were consistent with physiological blood volume change and CSF flow through the spinal canal. 
Shear strain can be interpreted as a metric of inequality of the three principal strains, indicating 
to what extent an induced volumetric strain is achieved by equal expansion of the tissue element 
in all directions. This novel method provides a tool to visualize and study tissue dynamics that 
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reflect fundamental aspects of both the microvascular function as well as mechanical properties 
of tissue and holds potential to serve for detecting abnormalities in tissue deformation in disease.

suPPleMentaRy MateRIal

simultaneous Multi-slice validation
We validated the slice profile of the simultaneous multi-slice acquisition approach in Subject 1 
using a standard multi-shot gradient echo sequence with in-plane resolution of 0.3 × 0.3 mm2 
and FOV 250 × 250 mm2. The slice thickness was set to 3 mm. Two datasets were acquired: one 
with the SMS excitation pulse and one with the conventional 2D excitation pulse for validation. 
For the SMS excitation, the gap between the slices was set to 69mm (equal as for the DENSE 
sequence). Further imaging parameters included: coronal acquisition orientation; EPI factor: 5; 
SENSE factor: 1; flip angle 90 degrees; TR: 4 s; TE: 16 ms. Readout gradients were placed on the 
slice selection axis to obtain slice profiles (see Figure 4-S1 top-left for example). Slice profiles 
were obtained by analyzing the intensity projection along the RL direction and are provided in 
Figure 4-S1. The results show well defined slice profiles without significant sidebands that could 
lead to cross-talk.

Additional validation was performed by comparing DENSE datasets acquired with conventional 
multi-slice and simultaneous multi-slice acquisitions. We obtained DENSE datasets with these 
sequences for Subject 1 and Subject 2 with sagittal orientation and in-plane encoding (AP and 
FH) according to the protocol described in the paper. Acquisition of the conventional multi-slice 
DENSE series took 3 times longer compared to the simultaneous multi-slice approach (48 s ver-
sus 2:24 min for 60 bpm). From the motion encoded DENSE series, we computed displacement 
gradient fields and interpolated the data to obtain 8 cardiac phases between 0 and 52.5% of the 
cardiac interval as described in the Methods section. We compared the values voxel wise at peak 
systole (37.5% of cardiac interval for both subjects). The results are provided in Figure 4-S2 and 
consist of 4 Bland-Altman plots per subject (one Bland-Altman plot for each obtained displace-
ment gradient field at peak systole).

The obtained reproducibility coefficients are smaller than the ones obtained from comparing 
the same parameter as obtained from DENSE series with different acquisition orientations (see 
Figure 4-S3), illustrating that the SMS implementation works well and contributes negligible 
additional uncertainty to the measurements.
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 figure 4-s1 Slice profiles for a conventional 2D acquisition (top row) and simultaneous multi-slice acquisi-
tion with factor 3 (middle row), together with the complete FOV for the simultaneous multi-slice acquisition 
(bottom row). For illustration purposes, we show the acquired image that was used to obtain the slice profile 
for the 2D acquisition in the top-left corner. Slice profiles were obtained by projecting the intensity along the 
RL direction. The intensity for each slice was normalized. This normalization varied over the FOV depending 
on the magnitude intensity of the slice. The relative normalization denominator is indicated by the dotted red 
line (bottom row). Especially the Anterior and Posterior slice had low intensity, since these slices were only just 
inside the head, where B1+ (flip angle) is relatively low. Full width at half maximum (FWHM) for each slice 
profile are provided in the top right corner of the figure.
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Remaining supplementary figures and tables

 figure 4-s2 Bland-Altman plots for data obtained with conventional multi-slice (Conv. MS) and simultane-
ous multi-slice (Sim. MS) in Subject 1 and Subject 2. Measurements obtained with conventional multi-slice are 
considered the ‘ground truth’. The dotted lines intersecting the y-axis indicate the non-parametric reproduc-
ibility coefficient (RPCnp). The RPCnp  is defined as 1.45·IQR, which is ~RPC if the distribution of differences is 
normally distributed. Any systematic offset between conventional multi-slice and simultaneous multi-slice is 
defined as the median of the difference between the datasets and indicated by the solid line intersecting the y-
axis. Since these methods should yield similar results, a systematic offset of 0 is to be expected. The colors in the 
scatter plot indicate the density of points relative to the total number of points, determined by using Gaussian 
moving average with σ = 1·10-3 as weighting kernel.

acq. orientation Motion encoding direction displacement gradient

tRa AP δuAP/δAP

δuAP/δRL

RL δuRL/δRL

δuRL/δAP

saG FH δuFH/δFH

δuFH/δAP

AP δuAP/δAP

δuAP/δFH

CoR RL δuRL/δRL

δuRL/δFH

FH δuFH/δFH

δuFH/δRL

table 4-s1 Overview of the displacement gradient field components obtained from the different DENSE series 
to fill the full displacement gradient tensor 
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Figure 4-S2 Bland-Altman plots for data obtained with conventional multi-slice (Conv. MS) and 

simultaneous multi-slice (Sim. MS) in Subject 1 and Subject 2. Measurements obtained with conventional 

multi-slice are considered the ‘ground truth’. The dotted lines intersecting the y-axis indicate the non-

parametric reproducibility coefficient (RPCnp). The RPCnp is defined as 1.45·IQR, which is ~RPC if the 

distribution of differences is normally distributed. Any systematic offset between conventional multi-slice 

and simultaneous multi-slice is defined as the median of the difference between the datasets and indicated 

by the solid line intersecting the y-axis. Since these methods should yield similar results, a systematic 

offset of 0 is to be expected. The colors in the scatter plot indicate the density of points relative to the total 

number of points, determined by using Gaussian moving average with σ=1·10
-3

 as weighting kernel. 

4.5.2  Remaining supplementary figures and tables 

Acq. Orientation Motion encoding direction Displacement gradient 

TRA AP / 

  / 

 RL / 

  / 

SAG FH  / 

  / 

 AP / 

  / 

COR RL / 

  / 

 FH / 

  / 

 

Table 4-S1 Overview of the displacement gradient field components obtained from the different DENSE 

series to fill the full displacement gradient tensor  from which the deformation gradient tensor F is 

obtained (see Eq. 4-2). The components on the diagonal are obtained twice in this scheme, for different 

acquisition orientations. These double components were averaged before further analysis. 

 

 from which the deformation gradient tensor f is obtained (see 
Eq. 4-5). The components on the diagonal are obtained twice in this scheme, for different acquisition orienta-
tions. These double components were averaged before further analysis.
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figure 4-s3 Bland-Altman plots for the diagonal elements of the deformation gradient tensor (see Eq. 4-2), 
which were obtained twice, as a result of the acquisition scheme (see Table 4-S1). The Bland-Altman plots 
are given for Subject 1-3, and show the consistency between deformation measurements using different slice 
orientations during acquisition. The non-parametric reproducibility coefficient (RPCnp) is defined as 1.45·IQR 
(which is ~RPC if the distribution of differences is normally distributed). Although the δuAP

δAP
 deformation gradi-

ent field was obtained with phase-encoding direction in the AP direction for both the transverse and sagittal 
slice orientation, the consistency of  δuAP

δAP
 is similar to that of δuRL

δRL
 and δuFH

δFH
, where the phase encoding directions 

were different between the respective slice orientations (the phase-encoding direction for coronal slices is RL). 
This indicates that the different phase-encoding direction (and related water-fat shift or deformation) is not the 
main source of variability between different orientations. The colors in the scatter plots indicate the density of 
points relative to the total number of points, determined by using Gaussian moving average with σ = 1·10-3 as 
weighting kernel.
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figure 4-s4 Full Bland-Altman plots for the volumetric strain of Subject 7 serve as an example for how Figure 
4-5 was constructed. The mean of Scan 1 and Scan 2 is indicated with the dashed line intersecting with the x-
axis and is used as the middle of the error bar plotted in Figure 4-5. The dotted lines intersecting with the y-axis 
indicate the non-parametric interval of agreement, which is indicated as error bars in Figure 4-5. The non-
parametric reproducibility coefficient (RPCnp) is defined as 1.45·IQR (which is ~RPC if the distribution of dif-
ferences is normally distributed). Any systematic offset is defined as the median of the difference between Scan 
1 and Scan 2, indicated by the solid line intersecting the y-axis. Since the methods between Scan 1 and Scan 
2 do not differ, a systematic offset of 0 is to be expected. Nevertheless, Figure 4-5 in the main text represents 
potential systematic offsets by a shift of the error bars relative the mean of Scan 1 and Scan 2. The colors in the 
scatter plots indicate the density of points relative to the total number of points, determined by using Gaussian 
moving average with σ = 1·10-3 as weighting kernel.
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figure 4-s5 Full Bland-Altman plots for the octahedral shear strain of Subject 7 serves as an example of how 
Figure 4-5 was constructed. The colors in the scatter plots indicate the density of points relative to the total 
number of points, determined by using Gaussian moving average with σ = 1·10-3 as weighting kernel. See for 
full explanation legend of Figure 4-S4.
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b.a.
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-1.5 0 1.5

ExpansionεV (10-3)Compression

figure 4-s6 Volumetric strain maps in MNI space. Note that strain values in regions close to CSF can be un-
reliable due to partial volume eff ects and registration imperfections. Th is is refl ected by the extreme values as 
indicated by the red arrows and red circle. Regions with relatively high volumetric strain were observed in the 
cortical gray matter, compared to the underlying subcortical white matter (black arrow, Figure 4-S6a). Th e basal 
ganglia are another area with relatively high volumetric strain (black arrow, Figure 4-S6c).





5
strain tensor Imaging: abnormalities 

in cardiac-induced brain tissue deformation 
detected on an individual subject level

J.J. Sloots
G.J. Biessels

G.J. Amelink
J.J.M. Zwanenburg

In preparation



Chapter 5

100

abstRaCt

We present a first ever case study showing abnormal cardiac-induced brain tissue deformations 
after a craniectomy using a novel 3D strain tensor imaging method at 7T MRI.
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STI: abnormalities in cardiac-induced brain tissue deformation detected on an individual subject level

IntRoduCtIon

Variations in blood pressure and blood volume over the cardiac cycle induce pulsatile brain tissue 
deformations reflecting the interplay between local blood volume change, tissue properties and 
tissue position relative to, for example, the ventricles [1; 58]. This causes brain tissue to expand 
inwards towards the ventricles, thereby showing a funnel-shaped pattern directed towards the 
foramen magnum [58].

Recently, we developed a magnetic resonance imaging (MRI) method that enables quantification 
of these tissue deformation patterns [136]. Here we show that the technique is sensitive enough 
to detect abnormal patterns of cardiac-induced tissue deformations on an individual subject level 
in a patient who had undergone a craniectomy after severe head injury.

MateRIals and MetHods

Patient
An 18-year-old man had suffered a traumatic brain injury from a serious motor cycle accident. He 
was diagnosed with an acute left-sided subdural hematoma and was treated with a craniectomy. 
A cranial opening was created with a maximal diameter of 12 cm to reduce cranial pressure. At 
the time of MRI, one year after the accident, the patient had fully recovered and was about to get 
an operative skull reconstruction.

data acquisition
Written informed consent was obtained from the patient, according to a protocol approved by 
our Institutional Review Board. Data was acquired at 7T (Philips Healthcare, Best, The Nether-
lands) using a 32-channel receive head coil within an 8 channel transmit/receive head coil (Nova 
Medical), operating in quadrature mode.

Strain tensor imaging (STI) was employed with 3mm isotropic resolution to capture cardiac-
induced brain tissue deformations. Additional time-resolved 2D flow measurements were ac-
quired at the C2-C3 level using retrospectively-gated phase-contrast MRI (PC-MRI) to compare 
CSF volume with whole brain tissue volume change. Scan protocols were employed as previously 
described [136]. However, for the patient, two encoding sensitivities were used (80 μm and 90 
μm) to account for possible larger strains. Furthermore, additional data was acquired for which 
encoding started halfway of the cardiac cycle, enabling us to reconstruct the strain tensor over 
the complete cardiac cycle for this patient. Thereby, the scan time for the patient took 4 times 4:48 
min, resulting in 19:12 min total (for a heartrate of 60 bpm).
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Comparison data
We included reference data from our previous study introducing STI for comparison [136]. The 
reference data originated from STI measurements in nine healthy subjects (6 males, 3 females, 
age 30 ± 4 years) that was averaged in standard MNI space (ICBM 2009c Nonlinear Symmetric 
[46]). Out of these nine subjects, the data of the youngest male participant (age 26 years) was 
selected as single subject comparator.

Results

Figure 5-1 shows the STI maps. Tissue deformation maps of the healthy control are in accordance 
with the group reference maps. In the patient, however, tissue deformation follows a fundamental 
different direction. Here, tissue shear strains are high at the frontal edge of the craniectomy, with 
pulsatile expansion of tissue in the frontal lobe towards the craniectomy. Moreover, the tissue 
that protrudes from the craniectomy expands parallel to the skin surface, similar to a bulging 
bicycle tire. Consequently, the other parts of the brain also show patterns that differ substantially 
from the reference.

Figure 5-2 shows overall volume variation of brain tissue (in red), resulting from cardiac-induced 
blood volume variations in the microvasculature that is normally compensated by outflow of CSF 
at the foramen magnum (in blue). In the patient, tissue volume variation remained comparable 
to the reference data. However, outflow of CSF no longer compensated for this volume varia-
tion because brain tissue could pulsate outward from the skull. This shows the invalidity of the 
Monro-Kellie doctrine in the patient [2; 58].



103

STI: abnormalities in cardiac-induced brain tissue deformation detected on an individual subject level

εV (10-3)

εS (10-3)

-2 0 2

0 15

RL

APFH

Expansion/
Compression 
direction:

ExpansionCompression

T1
 w

ei
gh

te
d

Ex
pa

ns
io

n
C

om
pr

es
si

on
Sh

ea
r S

tr
ai

n
Vo

lu
m

et
ri

c

Control Reference Patient

figure 5-1 Transverse and coronal slice in the center of the brain. Maps of a single control subject (left ), a 
reference set in standard space composed of the average of nine subjects (middle) and the patient (right). T1-
weighted images are shown as anatomical reference (top row), where dotted red lines indicate slice intersec-
tions. Th e second row represents the vector of primary tissue expansion: the color denotes the direction of tissue 
expansion (Red: Right-to-Left , Green: Anterior-to-Posterior, Blue: Feet-to-Head) and the saturation indicates 
the magnitude of this expansion (increased saturation indicates larger expansion). Th e complementary tissue 
compression vector is represented in the middle row. Th is vector is (by defi nition) directed perpendicular to 
the stretch vector, refl ecting the so-called Poisson eff ect. Volumetric strain and shear strain are indicated in 
the second bottom en bottom row, respectively. Volumetric strain refl ects net expansion or compression of a 
voxel. Shear strain signifi es how much a voxel deforms, i.e. the imbalance between expansion and compression, 
irrespective whether or not this deformation is accompanied by a change in volume. All maps represent peak-
systole relative to end diastole.
Th e single control subject shows deformation maps that match the group reference. However, in the patient de-
formation patterns are very diff erent. Much tissue expansion is observed around the surface of the craniectomy, 
directed parallel to the skull opening (indicated with white arrows). Th e increased inhomogeneous pattern of 
volumetric strain in the patient might refl ect local tissue damage. A main contrast to the reference group are 
the abnormal shear strains, which are most pronounced on the left  frontal part of the brain, at the edge of the 
craniectomy.
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dIsCussIon 

Th e skull defect had a major impact on brain tissue deformation. As the rigid barrier of the skull 
was no longer present, tissue strains increased substantially, particular around the edge of the 
craniectomy. Furthermore, CSF outfl ow was no longer required to compensate for the pulsatile 
volume changes of brain tissue, as tissue could swell outward from the skull. Th e prolonged 
resulted in an increased SNR of factor √2 for the patient compared to the data from healthy 
subjects.

STI thus showed, for the fi rst time, marked abnormalities in this single patient, but may have 
much wider potential applications in the evaluation of conditions with aberrant brain deforma-
tion or tissue compliance, such as hydrocephalus or brain tumors. Application of the method in 
these settings, that will likely involve more subtle abnormalities in tissue deformation, warrants 
further study.
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figure 5-2 CSF volume (blue) pushed out of the skull at peak systole (measured at the C2-C3 level) is compared 
with whole brain tissue volume change (red) obtained from the volumetric strain measurements. As reference 
data was only available to 52.5% of the cardiac interval, the interval shown here reaches from 0 and 60% of the 
cardiac cycle. Data from an individual control subject (a) shows that tissue volume increase during systole is 
compensated by an outfl ow of CSF. Th e reference data (b) was obtained from nine subjects where the shaded 
area indicates 1 standard deviation over the subjects. (a) and (b) are in line with the Monro-Kellie doctrine, 
which implies a constant intracranial volume [58; 136]. Th is doctrine is no longer valid for the patient (c), as the 
cranial opening changes the boundary conditions. Tissue volume increase is now compensated by tissue swell-
ing through the cranial opening, for which intracranial CSF volume no longer has to compensate.
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abstRaCt

The apparent diffusion coefficient (ADC) of brain tissue slightly varies over the cardiac cycle. 
Various physiological reasons have been proposed to explain this variation, including mixing or 
stirring of the interstitial fluid that is relevant for effective brain waste clearance. Yet, it is known 
from cardiac diffusion imaging that tissue deformation by itself affects the magnitude of the MRI 
signal, leading to artificial ADC variations that have no further physiological implication. This 
study   investigates to what extent tissue deformation causes artificial ADC variations in the brain. 
We implemented a high-field magnetic resonance imaging (MRI) sequence with stimulated echo 
acquisition mode that simultaneously measures brain tissue deformation and ADC. Based on 
the measured tissue deformation, we simulated the artificial ADC variation and compared the 
results to the measured ADC variation. The artificial ADC variation was simulated by combining 
established theoretical frameworks on phase dispersion, tissue deformation, and the diffusion 
coefficient. We acquired data in 8 healthy volunteers with diffusion weighting b=300 and b=1000. 
ADC variation was largest in the Feet-to-Head direction and showed the largest deviation from 
the mean ADC at peak systole. Tissue deformation accounted for an estimated artificial ADC 
variation of 0.75·10-5 ± 0.29·10-5 mm2/s in the FH direction. The measured ADC variation in 
the FH direction, however, was 2.55·10-5 ± 0.98·10-5 mm2/s, which was a factor of 3.4 ± 0.57 
larger than the artificial diffusion variation from deformation-induced measurement errors. The 
measured diffusion variations in the RL and AP direction were a factor of 2.0 ± 0.91 and 2.5 ± 
0.94 larger than the artificial diffusion variations, respectively. Consequently, ADC variations in 
the brain likely largely reflect physiology.
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Dynamic brain ADC variations over the cardiac cycle and its relation to tissue strain.

IntRoduCtIon

The diffusion coefficient reflects the random motion of water molecules as induced by intrinsic 
thermal energy. It can be measured by applying a pulsed-gradient magnetic resonance imaging 
(MRI) sequence in a certain direction, providing the apparent diffusion coefficient (ADC) in the 
associated direction [146]. This way, diffusion weighted imaging (DWI) provides a well-defined 
diffusion measurement. The magnitude and anisotropy of multiple DWI measurements is used to 
study neuroanatomical microstructures in the human brain. Previous studies have found slight 
variations of ADC in brain tissue over the cardiac cycle [94; 111]. Various physiological reasons 
have been proposed to explain these variations, including variation in amounts of intra and extra 
cellular fluids and mixing or stirring of fluids in the interstitial space [173]. As interstitial fluids 
are considered to be involved in the drainage of cerebral waste, dispersion effects like mixing or 
stirring might contribute to the clearance [65; 125].

Yet, when the targeted tissue deforms during measurements, it has been demonstrated that 
the measured ADC can vary due to strain modulation of diffusion encoding [127; 128; 159]. 
Contraction of the tissue increases the spatial frequency of the longitudinal modulation as 
imposed by the motion encoding gradient, while stretch causes a decrease in this frequency. 
These changes in spatial frequency change the effective b-value experience by the tissue [127]. 
At the same time, tissue deformation leads to imperfect refocusing of the signal resulting in a 
lower magnitude signal than if there had been no tissue deformation [170]. Especially in cardiac 
diffusion imaging, these effects have become most apparent because of the considerably high 
tissue deformations in the beating in-vivo heart [159]. Thus, measured ADC variations depend 
on at least two factors: physiological factors reflecting differences in fluid properties of the tis-
sue and “artificial” variations that arise from tissue deformation with no further physiological 
implication. It is yet unclear to what extent ADC variations in the brain can be explained by these 
“artificial” effects that tissue strains have on ADC measurements.

ADC variations in the in-vivo heart can be mitigated by imaging the diffusion tensor with a 
stimulated echo acquisition mode (STEAM) only in so-called “sweet spots” of myocardial strain 
at which the temporal mean of strain approaches zero [159]. Each cardiac interval has two such 
spots, but the temporal positions of these spots depend on the cardiac interval of the subject. 
Stoeck et al. proposed a method to correct for strain influences on diffusion measurements 
[147]. Especially at peak systole, mean diffusivity (MD) measurements increased on average 
from 0.90·10-3mm2/s before correction to 0.103·10-3mm2/s after correction, which is an increase 
of 14%. In the human brain, these ADC fluctuations are much more subtle. Nakamura et al. 
reported ADC’s over the cardiac cycle ranging between 0.71 and 0.78·10-3mm2/s, which is still 
equivalent to a measured variation of almost 10%. Although the comparison between these stud-
ies is difficult, the difference in ADC variation between cardiac and brain can be explained – at 
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least partly – by differences in tissue strain. Maximum tissue strains in the heart are in the order 
of 20%, which is two orders of magnitude larger than observed in the brain [118; 147; 155]. 
Although brain tissue deformations are much smaller compared to the heart, previous studies 
reporting ADC variations in the brain did not account for the “artificial” effects [19; 42]. Instead, 
they attributed the observed variation to physiological effects only, which may not be justified. 
Moreover, some studies included low b-values [111; 114; 117], while it is known from the intra 
voxel incoherent motion (IVIM) model that these low b-values are sensitive to variations from 
blood flow pulsations [23; 24].

Strain correction of ADC variations require tissue strain maps. For cardiac diffusion imaging, 
strain maps are obtained from separately acquired data, typically using myocardial tagging 
[147]. In myocardial tagging, the magnitude of the longitudinal magnetization is modulated by 
a sinusoidal function, which induces dark ‘taglines’ in the tissue from which tissue displace-
ments and strains can be inferred [11]. As the analysis relies on visible taglines in the magnitude 
images, the taglines need to be at least 2 voxels apart, which limits the motion sensitivity. For 
brain imaging, the sensitivity of such tagging sequences needs to be increased substantially. By 
encoding displacement information in the phase data rather than the magnitude data, arbitrary 
motion sensitivity can be obtained. Displacement Encoding with Stimulated Echoes (DENSE) is 
an MRI tagging sequence that encodes tissue displacements in the MRI phase signal [83]. At the 
same time, high motion sensitivity comes with high encoding gradients in the DENSE sequence, 
which induce considerable b-values and, thus, diffusion weighting in the magnitude images. 
Consequently, a DENSE sequence can simultaneously provide both strain data and diffusion 
data in the brain.

In this study, we investigate to what extent dynamic ADC variations over the cardiac cycle can 
be explained by artificial fluctuations in ADC induced by deformation of the tissue between the 
gradient pulses of the diffusion weighted sequence. To this end, we implemented a slice-selective 
DENSE sequence that simultaneously provides data to measure brain tissue strain and ADC 
measurements over the cardiac cycle. We acquire data with b-values 300 and 1000 s/mm2, high 
enough to exclude perfusion effects from blood flow. Furthermore, we combine established theo-
retical frameworks on phase dispersion, tissue deformation, and their effects on the measured 
ADC [127; 170]. We use the theory to simulate the artificial ADC variation based on measured 
tissue deformation and compare these artificial fluctuations in ADC to the measured ADC 
variation over the cardiac cycle. We show that tissue deformation indeed induces artificial ADC 
variations, but that these only account for a small part of the actual measured ADC variation, 
which leaves room for discussion about the physiological origin of the additional ADC variation.
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tHeoRy

Infinitesimal strain
Over time, an elementary piece of brain tissue moves from position X at time t  = 0 to position 
x at time t = t’. The coordinate x relates to X as follows: x = X + u(X,t), where u is the tissue dis-
placement that includes rigid body rotations and translations. Hereafter t is omitted for brevity.

The deformation gradient tensor f relates a line element of tissue in the undeformed state to its 
deformed counterpart:
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where  is symmetric and independent of rigid body translation or rotation [86]. The assumption of 

infinitesimal incremental strain implies that the displacements of brain tissue are small, such that the 

geometry of the brain is macroscopically unchanged during the deformation process. As a result, any 

given voxel in the deformed state at position x can be assumed to coincide with its undeformed 

counterpart at position X, such that 	  	    . Using this assumption, the stretch tensor U can be 

expressed in terms of : 
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Here, I is the identity matrix and J the displacement gradient tensor. The elements of J are the 
spatial derivatives of ux, uy and uz; the measured incremental displacements in Right-to-Left 
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where ε is symmetric and independent of rigid body translation or rotation [86]. The assumption 
of infinitesimal incremental strain implies that the displacements of brain tissue are small, such 
that the geometry of the brain is macroscopically unchanged during the deformation process. 
As a result, any given voxel in the deformed state at position x can be assumed to coincide with 
its undeformed counterpart at position X, such that x = X + u ≈ X. Using this assumption, the 
stretch tensor u can be expressed in terms of ε:
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6.2.2  Spatial frequency modulation 

Diffusion MRI encodes molecular diffusion effects in the NMR signal by using pulsed gradients (see 

Figure 6-1 for sequence design). However, tissue deformation that occurs during the time between these 

pulsed gradients leads to measurement errors, because tissue deformation induces alterations in the 

magnitude of the MRI signal. Therefore, the measured diffusion coefficient is different from the diffusion 

coefficient had there not been tissue deformation between the pulsed gradients. Given the infinitesimal 

strain assumption, the effects of deformation on the measured diffusion can be analyzed by considering 

the signal of a given voxel, without considering the deformation of the remainder of the organ. Two 

factors play a role here. First, tissue deformation leads to imperfect refocusing of the signal and, thus, 

phase dispersion. Second, deformation results in a modified spatial frequency, which induces a different 

effective b-value at the tissue level and, thus, an observed (measured) diffusion coefficient Dobs that is 

different from the actual diffusion coefficient D. Consequently, the stimulated echo signal  over a 

given voxel is affected by these two factors. Under the assumption of a short gradient duration δ compared 

to the evolution time ∆ after the second gradient lobe (see Figure 6-1),  yields 

 

   2 ∙exp ∙  − 	
 ∙ exp−Δ ∙  ∙  ∙  (6-57) 

 

where ∆ is the time between the pulsed gradients. The spatial frequency that results from the applied 

gradient pulses is represented by . It changes to  as a result of tissue deformation as will be specified 

below. The phenomenon of phase dispersion and the effective b-value were already described by Wedeen 

et al. [170] and Reese et al [127], respectively. As the effect of these two factors on diffusion 

measurements are independent and central to the work described in this paper, we revisit these factors here 

separately. Eventually, both factors will be combined to simulate the artificial ADC variation in the brain 

given a constant diffusion tensor and varying incremental strain over the cardiac cycle.  
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spatial frequency modulation
Diffusion MRI encodes molecular diffusion effects in the NMR signal by using pulsed gradients 
(see Figure 6-1 for sequence design). However, tissue deformation that occurs during the time 
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between these pulsed gradients leads to measurement errors, because tissue deformation induces 
alterations in the magnitude of the MRI signal. Therefore, the measured diffusion coefficient is 
different from the diffusion coefficient had there not been tissue deformation between the pulsed 
gradients. Given the infinitesimal strain assumption, the effects of deformation on the measured 
diffusion can be analyzed by considering the signal of a given voxel, without considering the 
deformation of the remainder of the organ. Two factors play a role here. First, tissue deformation 
leads to imperfect refocusing of the signal and, thus, phase dispersion. Second, deformation 
results in a modified spatial frequency, which induces a different effective b-value at the tissue 
level and, thus, an observed (measured) diffusion coefficient d obs that is different from the actual 
diffusion coefficient d. Consequently, the stimulated echo signal M(r) over a given voxel is af-
fected by these two factors. Under the assumption of a short gradient duration δ compared to the 
evolution time Δ after the second gradient lobe (see Figure 6-1), M(r) yields
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 (6-6)

where Δ is the time between the pulsed gradients. The spatial frequency that results from the 
applied gradient pulses is represented by κ0. It changes to κ as a result of tissue deformation as 
will be specified below. The phenomenon of phase dispersion and the effective b-value were 
already described by Wedeen et al. [170] and Reese et al [127], respectively. As the effect of these 
two factors on diffusion measurements are independent and central to the work described in 
this paper, we revisit these factors here separately. Eventually, both factors will be combined to 
simulate the artificial ADC variation in the brain given a constant diffusion tensor and varying 
incremental strain over the cardiac cycle.

Phase dispersion
Incremental tissue deformation that accumulates in the time between the pulsed gradients leads 
to imperfect refocusing of the MRI signal. This effect is known as phase dispersion and results 
in a reduction of the magnitude of the MRI signal [74]. The amount of phase dispersion not 
only depends on the incremental tissue deformation (represented by the deformation gradient 
tensor f), but also on the spatial frequency modulation (represented by κ0), leading to increased 
phase dispersion effects for a given tissue deformation as b-values increase. The initial spatial 
frequency modulation κ0 of the longitudinal magnetization in a given voxel as induced by the 
pulsed gradients is given by k0 = 2πγGδn (in mm-1, where n is the unit vector in the direction of 
encoding). The spatial frequency of the modulated magnetization changes as a result of the tissue 
deformation, yielding the following spatial frequency in the tissue just prior to the application of 
the second gradient pulse:
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where dx is the length of the voxel in the x-direction.  

 (6-7)
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If no deformation occurred in the time between the pulsed gradients, f would yield the identity 
matrix I.

Substituting r = xx + yy + zz and (k - k0) = Δkχ x + Δky y + Δkz z (x, y, and z unit vectors) in Eq. 
6-6, we rewrite the volume integral by using the linearity property
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where dx is the length of the voxel in the x-direction.  

 (6-9)

where dx is the length of the voxel in the x-direction.

From Eq. 6-7 it follows that for a given incremental tissue deformation, the difference in spatial 
frequency modulation (κ−κ0) will increase when κ0 increases. Consequently, larger κ0 leads to 
more signal attenuation due to enhanced phase dispersion effects, yielding an increased ADC 
when computed from two datasets with different spatial modulation frequencies, but equal tissue 
deformation.

Modified effective b-value
Tissue deformation induces a different effective b-value due to a modified spatial frequency. 
Reese et al [127] already derived an expression for this phenomenon. Under the assumption of 
a short gradient duration δ compared to the evolution time Δ, the factor in Eq. 6-6 related to 
diffusion can be rewritten in terms of the initial spatial frequency modulation κ0

114 
 

 

From Eq. 6-7 it follows that for a given incremental tissue deformation, the difference in spatial frequency 

modulation  −  will increase when  increases. Consequently, larger  leads to more signal 

attenuation due to enhanced phase dispersion effects, yielding an increased ADC when computed from 

two datasets with different spatial modulation frequencies, but equal tissue deformation. 

2.2.2  Modified effective b-value 

Tissue deformation induces a different effective b-value due to a modified spatial frequency. Reese et al 

[127] already derived an expression for this phenomenon. Under the assumption of a short gradient 

duration δ compared to the evolution time ∆, the factor in Eq. 6-6 related to diffusion can be rewritten in 

terms of the initial spatial frequency modulation  

 

 exp−Δ ∙  ∙  ∙   exp−Δ ∙  ∙  ∙  (6-61) 

 

Ignoring the effect of the tissue deformation on the spatial modulation frequency of the longitudinal 

magnetization would lead to an observed diffusion coefficient Dobs that is in general different from the 

actual diffusion coefficient D. The observed diffusion coefficient Dobs is related to the actual diffusion 

coefficient D by 

 

   1Δ  ∙  ∙ 
  (6-62) 

 

where U is the stretch tensor (see Eq. 6-4) [127]. From Eq. 6-11 it follows that the strain history of the 

tissue is encoded in Dobs.  Even if the tissue deforms, but is again in its initial position during readout, Dobs 

can differ from D. The observed diffusion coefficient reduces for positive strain (lower effective b-values) 

and increases for negative strain (higher effective b-values). 

  

 (6-10)

Ignoring the effect of the tissue deformation on the spatial modulation frequency of the lon-
gitudinal magnetization would lead to an observed diffusion coefficient d obs that is in general 
different from the actual diffusion coefficient d. The observed diffusion coefficient d obs is related 
to the actual diffusion coefficient d by
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where u is the stretch tensor (see Eq. 6-4) [127]. From Eq. 6-11 it follows that the strain history of 
the tissue is encoded in dobs.  Even if the tissue deforms, but is again in its initial position during 
readout, d obs can differ from d. The observed diffusion coefficient reduces for positive strain 
(lower effective b-values) and increases for negative strain (higher effective b-values).

MetHods

slice-selective dense
The DENSE sequence consists of a motion encoding and decoding part, which – analogue to 
velocity encoding – manipulate the phase of the MRI signal such that it becomes proportional 
with the displacement, relative to the point of encoding [5]. Here we introduce a slice-selective 
DENSE approach. The main difference compared to conventional DENSE is that the two encod-
ing RF pulses become slice-selective the same way as the third RF pulse (see Figure 6-1). This 
approach ensures that, the repetition time and evolution time Δ are constant, and equal for each 
slice. At the same time, the slice-selective approach requires RF pulses with high bandwidth 
(BW) to ensure proper slice profiles. The approach is therefore not well compatible with water 
selective excitation using low bandwidths for fat suppression, as used previously [136; 137]. 
Instead, fat suppression is performed by using the gradient reversal approach, where the slice-
selective gradient of the second RF pulse is reversed (see Figure 6-1) [110].

From the motion-encoded phase images acquired through DENSE, tissue displacement maps 
can be derived by

 ux = 
DENC

ϕx  (3-12)
π

Here, ϕx is the phase of the DENSE MRI signal acquired by motion-encoding in the x-direction. 
The displacement encoding value Denc in units of meters describes the sensitivity of the encoding 
(lower Denc requires larger gradients). By acquiring images with opposite gradient polarities, 
phase contributions due to cardiac-induced motion can be distinguished from phase confound-
ers such as static RF phase.

At the same time, slice-selective DENSE can be regarded as a STEAM diffusion sequence [113]. 
The pulsed gradients induce a b-value, leading to decreased signal in the magnitude images as a 
result of diffusion effects. Changing the gradient strength yields diffusion weighted images with 
different b-values, according to [146]
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 b     − 3  30 − 6  (3-64) 

 

Here, δ is the effective duration of the gradient (in ms) and ξ is the rise time (in ms). When at least two b-

values are acquired, these images can subsequently be used to derive the ADC. For two b-values ADC can 

directly be computed: 
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Here, δ is the effective duration of the gradient (in ms) and ξ is the rise time (in ms). When at 
least two b-values are acquired, these images can subsequently be used to derive the ADC. For 
two b-values ADC can directly be computed:
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to-Left (RL), Anterior-to-Posterior (AP), and Feet-to-Head (FH) direction, these series were 
acquired with different orientations: 2 sagittal series (in-plane FH and AP encoding), 2 coronal 
series (in-plane FH and RL encoding) and 2 transverse series (in-plane AP and RL encoding). 
Each DENSE series consisted of 52 non-triggered repeated scans, half of the scans (26 repeated 
scans) with k0 = 55mm-1 and the other half with k0 = 100mm-1 (diffusion and motion encoding 
equivalent: b = 300/1000 s/mm2 and DENC = 56/31 μm, respectively). The evolution time Δ 
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figure 6-1 Schematic representation of the slice-selective single-shot DENSE sequence. The tissue’s initial posi-
tion is encoded in the longitudinal magnetization using G enc. After an evolution time Δ of 100ms, the position 
of the tissue is decoded by applying Gdec (equal to Genc), which yields a signal phase that is proportional with the 
tissue displacement during Δ. At the same time, this scheme can be regarded as a STEAM diffusion sequence. 
The pulsed gradients induce diffusion weighting which changes the signal magnitude. As a result, changing 
the gradient strength not only yields different displacement encoding sensitivity, but also a different diffusion 
weighting. For the brain, the unique situation arises where the pulsed gradients both meet the requirements for 
sufficient accuracy in the tissue-motion field maps for strain computations, while at the same time reasonable 
diffusion weighting is achieved.
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was set to 100ms to limit signal loss due to relaxation effects (predominantly determined by 
T1 instead of T2 in STEAM). Different k0, i.e. different b-values, were obtained by varying the 
gradient strength G while keeping the effective gradient time parameters constant (δ = 9.5 ms, 
ξ = 0.4 ms). Each DENSE series provided two components of the deformation gradient tensor 
J by taking the in-plane spatial derivatives from the motion encoded data (see Eq. 6-2 for the 
definition of J). Alternating encoding polarities were applied to distinguish between motion-
induced phase contributions and phase confounders. To ensure a fixed repetition time (TR) and 
constant diffusion effects with respect to Δ, no fixed encoding reference was present, unlike the 
triggered DENSE sequences reported before [1; 136; 140]. Instead, the volumes were continu-
ously acquired, resulting in displacement gradient maps randomly distributed over the cardiac 
cycle. As these displacements concern only the displacement developed during the mixing time 
Δ (100 ms in our case), we refer to these displacements and strains as incremental displacements 
and incremental strains. Physiological data from a pulse-oximeter (POx) was simultaneously 
recorded to measure the cardiac interval position. Acquisition of a single DENSE series took 
7 min regardless of heart rate. Further imaging parameters were: 72 slices; resolution: 3x3x3 
mm3; FOV: 240x240x216 mm3; SENSE: 2.6 (AP or RL, depending on acquisition orientation); 
single-shot EPI (EPI factor: 35, EPI BW in the readout/phase encoding direction for sagittal and 
transverse orientation: 2.6 kHz/pixel and 47 Hz/pixel; for coronal orientation: 3.5kHz/pixel and 
56 Hz/pixel); B1: 10 μT; TR: 7.5 s and TE/2: 24 ms.

A single-shot multi-slice spin echo diffusion tensor imaging (DTI) dataset was acquired for 
each volunteer, which was required to simulate ADC variations over the cardiac cycle based on 
incremental strain measurements (see Eq. 6-11). DTI was obtained with 16 directions, b-values 
300 and 1000 mm2/s, together with an additional b=0 image. Different b-values were obtained 
by varying the pulsed-gradient strength G, while keeping time deltas constant (Δ = 36.4 ms, δ = 
17 ms, ξ = 0.3 ms). The dataset was acquired with transverse orientation and acquired resolution 
of 2x2x2 mm3. Additional imaging parameters included: FOV: 224x224x150 mm3; single-shot 
EPI readout (EPI factor: 47; EPI BW in the readout/phase encoding direction: 2.5 kHz/pixel 
and 35.9 Hz/pixel, respectively); SENSE factor: 2.4 (AP direction); TR: 8.4 s and TE: 75 ms. The 
acquisition time was 5 minutes.

Two additional scans were acquired for data processing purposes. First, a T1-weighted (T1w) 
turbo field echo (TFE) scan was acquired as anatomical reference (acquired resolution: 
1.00x1.00x1.00 mm3; FOV: 250 × 250 × 190 mm3; TFE factor: 600; inversion delay: 1292 ms; 
SENSE: 2 (AP direction); FA: 5˚; TR: 4.2 ms; TE: 1.97 ms; acquisition time: 2 min). Second, two 
B0 field maps were obtained: the first was acquired at the beginning of the scanning session to 
perform second-order image-based B0 shimming; the second was acquired after shimming to 
allow for remaining geometric distortion corrections in the acquired DENSE images. A single 
B0 field map was reconstructed online from the phase difference of two successive gradient echo 
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scans with fixed TR and different TE, as available from the vendor (acquired resolution: 3.50 × 
3.50 × 3.50 mm3; FOV: 224 × 224 × 224 mm3; FA: 8˚; TR: 3.9 ms; TE: 1.57 ms and 2.57 ms; scan 
duration: 25 s).

Post-Processing
Each acquired DENSE series was processed independently offline by using custom software 
written in MATLAB R2018b (The MathWorks, Inc., Natrick, MA, USA). Per DENSE series, 
magnitude data was used for rigid registration of each repeated scan to the first repeated scan by 
using Elastix [82] (see Figure 6-2 for analysis overview). Since adjacent slices were acquired at 
different positions in the cardiac cycle, only in-plane degrees of freedom were used for registra-
tion. Subsequently, the shimmed B0-map was registered to the DENSE series and used for EPI 
distortion correction [79]. Registration and distortion corrections were applied to the complex 
data using linear interpolation.

From the complex DENSE data, magnitude and phase data were obtained. Magnitude data (diffu-
sion weighted) was log-transformed and the phase data were transformed to displacement fields, 
from which the in-plane spatial derivatives were computed. Each DENSE series thereby produced 
two apparent displacement gradient maps. Unwrapping was performed under the assumption of 
small incremental displacement gradients (εxx << DENC/∆x), where ∆x is the voxel size [137]. 
The limit of the incremental displacement gradients detectable over the evolution time Δ without 
phase wraps for b=1000 was approximately 5·10-2, which is well over the expected incremental 
displacement gradient. At this point, the data still included static background contributions. 
Averaging the data from the opposite gradient polarities yielded this static background offset, 
which was subtracted from the data.

Retrospective binning
Per DENSE dataset, twenty cardiac phases of ADC and incremental displacement gradients were 
obtained. To this end, log-transformed magnitude data and incremental displacement gradient 
maps were ordered over the cardiac cycle by using the position of acquisition that followed from 
the recorded physiological trace. Subsequently, a moving average window with a width of 10% of 
the cardiac interval was applied to the data to generate 20 cardiac frames. Each DENSE dataset 
provided 52 frames of displacement gradient maps (both k0=55mm-1 and k0=100mm-1 data) 
distributed over the cardiac cycle for the moving average window. The log-magnitude data was 
processed separately per diffusion weighting, resulting in 26 frames per b-value for the moving 
average window. After the moving average window was applied to the individual b-values, these 
results were used to compute the ADC maps per cardiac phase. Sometimes, no data was available 
in the bin. In those cases, the values of the two neighboring data points on either side of the bin 
were averaged. This happened in <5% of cases for the diffusion weighted data and in <1% of cases 
for displacement gradient maps.
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Incremental strain tensor maps
Per subject, the incremental displacement gradient maps and ADC data from all 6 slice-selective 
DENSE series were combined by using a group-wise rigid registration with Elastix and third-
order b-spline interpolation [82]. Next, the incremental deformation gradient tensor was recon-
structed from the displacement gradient maps. Each DENSE series provided two components. 
For instance, the sagittally oriented dataset with FH encoding direction from Figure 6-2 provided 
the incremental displacement gradient fi elds 

δuFH
δFH  and 

δuFH
δAP

 (see Eq. 6-2). Th e diagonal ele-
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figure 6-2 Schematic representation of DENSE data acquisition and analysis. (1) Slice-selective single-shot 
multi-slice DENSE images were acquired with 2 encoding sensitivities (b=300 and b=1000 s/mm2). Encoding 
(light blue) and decoding (dark blue) were interleaved per 2 slices to speed up acquisition. (2) Magnitude data 
was used for registration and the B0 map was used for EPI distortion correction. Derived parameters were 
applied to the complex data. From the complex data, magnitude and phase data were derived. Th e magnitude 
data was log-transformed and the phase data was transformed into displacement maps, from which displace-
ment gradients maps were computed. Log-transformed data and incremental displacement gradient maps were 
repositioned over the cardiac cycle and twenty binned maps over the cardiac cycle were constructed for the 
log-transformed magnitude data and displacement gradient maps, using a moving average. Using the binned 
log-transformed magnitude data, ADC maps were computed for 20 cardiac phases following Eq. 6-14.
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ments of the displacement gradient tensor were obtained twice, each for a different acquisition 
orientation. Each double obtained element was averaged.

Two scalar quantities were derived from the incremental strain tensor for comparison with the 
ADC variations: the incremental volumetric strain and the incremental octahedral shear strain 
[136]. The volumetric strain reflects the net incremental expansion or compression of the voxel 
[1]. Octahedral shear strain, on the other hand, signifies the differences between the three prin-
cipal strains, which can be interpreted as the deviation from isotropic swelling or shinkage [98]. 
To reduce the inter-subject variability of strain curves due to noise in the measurements, these 
curves were overlaid between subjects over the cardiac cycle as follows. Per subject, the mean in-
cremental volumetric strain over the cardiac cycle was subtracted, resulting in volumetric strain 
curves oscillating around 0. Furthermore, the minimum incremental shear strain value over the 
cardiac cycle was subtracted from the shear strain curve, so that shear strain start and end at zero.

T1w data and diffusion tensor
Per subject, the T1w anatomical scan was registered to the DENSE data. The full diffusion ten-
sor was reconstructed offline from the DTI data by using Explore DTI [87]. Only the DTI data 
associated with b=300 and b=1000 was used to obtain a representative comparison to the ADC 
measurements obtained through DENSE. To correct for EPI distortions, non-linear b-spline 
regularized registration with the registered T1w scan as reference was used.

artificial adC Variations
Artificial ADC variations, induced by tissue deformations, were calculated based on the theoreti-
cal framework (see Section Spatial frequency modulation). The acquired DTI data and measured 
incremental displacement gradient tensor from the DENSE data over the cardiac cycle were used 
to simulate these artificial variations. Since we measured ADC variations with DENSE in the RL, 
AP and FH direction, we only simulated the artificial ADC variations for these directions.

We calculated the artificial deformation-induced magnitude variations of the MRI signal (see 
Eq. 6-6) for both b=300 (k0=55mm-1) and b=1000 (k0=100mm-1) in the associated direction. Two 
components contribute to the variation: phase dispersion and the effective b-value. Calculating 
the phase dispersion effect is straight forward and can be done by expanding Eq. 6-9 to all three 
orthogonal directions (RL, AP and FH). The terms Δk that are required to express Eq. 6-8 in 
terms of the displacement gradient tensor J were obtained by substituting Eq. 6-2 in Eq. 6-7
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  −      −  ∙  (6-66) 

 

The effective b-value contribution, however, is more complex to derive and depends on the time-

dependent inverse stretch . From the incremental displacement gradient tensor, we first computed 

the strain tensor following Eq. 6-3. By using Eq. 6-5, the stretch tensor  was obtained. In deriving the 

time-dependency of , we assumed a piece-wise constant strain rate over the evolution time ∆. From this 

 (6-15)

The effective b-value contribution, however, is more complex to derive and depends on the time-
dependent inverse stretch u-1(t). From the incremental displacement gradient tensor, we first 
computed the strain tensor following Eq. 6-3. By using Eq. 6-5, the stretch tensor u was obtained. 
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In deriving the time-dependency of u, we assumed a piece-wise constant strain rate over the 
evolution time Δ. From this assumption it follows that the incremental strain (that is, the strain at 
each time-point t over evolution time Δ) can be written as 
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Here,  and  is the measured strain after the evolution time ∆, which varies for each cardiac phase. 

For a given, constant D (measured through the ungated DTI) we obtain a prediction for Dobs that varies 

over the cardiac cycle.  

 

By combining both phase dispersion and effective b-value contributions, the magnitude of the MRI signal 

is described as 
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In predicting the ADC variation over the cardiac cycle, it is important to note that the ADC prediction 

depends on the log-transform of Eq. 6-18. Log-transforming Eq. 6-18 will result in a summation rather 

than a product, from which the predicted ADC variation can be derived by using Eq. 6-14. Consequently, 

the ADC variation does not depend on M0. The artificial (deformation-induced) component of the 

variations in ADC were computed voxel-wise for each of the three diffusion directions available from the 

DENSE magnitude images: RL, AP, and FH.   
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With this, and by substituting Eq. 6-5 into Eq. 6-11 we obtain (using Einstein summation con-
vention)

121 
 

assumption it follows that the incremental strain (that is, the strain at each time-point t over evolution time 

∆) can be written as   ∙ . The time-dependent inverse stretch tensor can then be written as  

 

     −  (6-67) 

 

With this, and by substituting Eq. 6-5 into Eq. 6-11 we obtain (using Einstein summation convention) 

 

   1Δ  −  ∙ Δ  ∙  −  ∙ Δ 
  

(6-68) 

   	 − 2 	 − 2 	  	3  
 

Here,  and  is the measured strain after the evolution time ∆, which varies for each cardiac phase. 

For a given, constant D (measured through the ungated DTI) we obtain a prediction for Dobs that varies 

over the cardiac cycle.  

 

By combining both phase dispersion and effective b-value contributions, the magnitude of the MRI signal 

is described as 

 

 

||  2 ∙ 2 sin 2  ∙ 2 sin 2 
∙ 2 sin 2  ∙ exp	− 

(6-69) 

 

In predicting the ADC variation over the cardiac cycle, it is important to note that the ADC prediction 

depends on the log-transform of Eq. 6-18. Log-transforming Eq. 6-18 will result in a summation rather 

than a product, from which the predicted ADC variation can be derived by using Eq. 6-14. Consequently, 

the ADC variation does not depend on M0. The artificial (deformation-induced) component of the 

variations in ADC were computed voxel-wise for each of the three diffusion directions available from the 

DENSE magnitude images: RL, AP, and FH.   

 (6-17)

Here, εik and εlj is the measured strain after the evolution time Δ, which varies for each cardiac 
phase. For a given, constant d (measured through the ungated DTI) we obtain a prediction for 
dobs that varies over the cardiac cycle.

By combining both phase dispersion and effective b-value contributions, the magnitude of the 
MRI signal is described as
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 (6-18)

In predicting the ADC variation over the cardiac cycle, it is important to note that the ADC 
prediction depends on the log-transform of Eq. 6-18. Log-transforming Eq. 6-18 will result in 
a summation rather than a product, from which the predicted ADC variation can be derived 
by using Eq. 6-14. Consequently, the ADC variation does not depend on M0. The artificial 
(deformation-induced) component of the variations in ADC were computed voxel-wise for each 
of the three diffusion directions available from the DENSE magnitude images: RL, AP, and FH.

Procedure for analysis of adC variations
For both measured and artificial ADC variations, ADC maps per cardiac phase (cp) were com-
puted from the log-magnitude data with diffusion weighting of b=300 and b=1000, using the 
following equation:
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6.3.5  Procedure for analysis of ADC variations 

For both measured and artificial ADC variations, ADC maps per cardiac phase (cp) were computed from 

the log-magnitude data with diffusion weighting of b=300 and b=1000, using the following equation: 

 

 ADC  	  − 1000 − 300  
(6-70) 

 

Here,   and   are the log-transformed magnitude data with diffusion weighting of b=300 and 

b=1000, respectively. The ADC deviation (dADC) from the mean ADC (ADCmean) over the cardiac cycle 

was obtained by using: 

  

 dADC  	ADC − ADC (6-71) 

 

The time dependency (cp) of dADC will be omitted in further references for brevity. 

For the inter-subject analysis, ADC variation curves were synchronized. To this end, peak incremental 

shear strains per subject were positioned at 30% of the cardiac interval and associated ADC curves were 

shifted accordingly. Furthermore, the maximum temporal ADC change over the cardiac cycle (∆ADC) 

was calculated for a region of interest (ROI): 

 

 ΔADC  	ADC − ADC (6-72) 

 

where ADCmax and ADCmin indicate the maximum and minimum ADC average in the ROI over the 

cardiac cycle, respectively. A conservative white matter tissue mask was created as ROI to avoid partial 

volume effects from large vessels and CSF. The T1w data was first registered to the DENSE data and 

subsequently segmented by using the Computational Anatomy Toolbox (CAT12, version 1615, Jena 

University Hospital, Departments of Psychiatru and Neurology) for Statistical Parametric Mapping 

(SPM12, version 7771, Wellcome Trust Centre for Neuroimaging, University College London). The 

conservative white matter tissue mask was created from the intersection of two masks. The first mask 

consisted of a tissue mask where all voxels with CSF probability larger than 0 had been disregarded, 

followed by one additional city-block erosion step. The second mask consisted of a white matter tissue 

mask obtained by using a probability threshold of 90% for white matter.   

 (6-19)
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The time dependency (cp) of dADC will be omitted in further references for brevity.

For the inter-subject analysis, ADC variation curves were synchronized. To this end, peak in-
cremental shear strains per subject were positioned at 30% of the cardiac interval and associated 
ADC curves were shifted accordingly. Furthermore, the maximum temporal ADC change over 
the cardiac cycle (ΔADC) was calculated for a region of interest (ROI):
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 (6-21)

where ADCmax and ADCmin indicate the maximum and minimum ADC average in the ROI over 
the cardiac cycle, respectively. A conservative white matter tissue mask was created as ROI to 
avoid partial volume effects from large vessels and CSF. The T1w data was first registered to 
the DENSE data and subsequently segmented by using the Computational Anatomy Toolbox 
(CAT12, version 1615, Jena University Hospital, Departments of Psychiatru and Neurology) for 
Statistical Parametric Mapping (SPM12, version 7771, Wellcome Trust Centre for Neuroimaging, 
University College London). The conservative white matter tissue mask was created from the 
intersection of two masks. The first mask consisted of a tissue mask where all voxels with CSF 
probability larger than 0 had been disregarded, followed by one additional city-block erosion 
step. The second mask consisted of a white matter tissue mask obtained by using a probability 
threshold of 90% for white matter.

Results

tissue deformation and adC
Average ADC values over the cardiac cycle obtained through DENSE compared well with the 
MD values obtained with conventional DTI scanning. Overall, a slightly lower mean ADC 
(ADCmean) was found compared with the mean diffusivity (MD) obtained with DTI: 6.97·10-4 ± 
0.38·10-4 mm2/s versus 8.02·10-4 ± 0.21·10-4 mm2/s. Figure 6-3 shows example maps for one of the 
subjects for data encoded in the FH direction. On the top left, T1w data is shown for anatomical 
reference. On the bottom left, MD and ADC maps are shown as obtained from the DTI and 
DENSE data, respectively. Since only in-plane encoding was employed, FH encoding implies that 
DENSE data was acquired with sagittal and coronal orientation.
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Th ree incremental displacement gradient maps (fi rst 3 rows) over the cardiac cycle are shown 
that were obtained through the phase data. Th e strain-induced simulated artifi cial ADC devia-
tions (dADCsim) and the actual measured deviations dADC over the cardiac cycle are represented 
in rows 4 and 5, respectively.

simulated and measured adC deviations
Simulated ADC variations consist of two components: phase dispersion eff ects and modulated 
eff ective b-value. Figure 6-4 represents the calculated artifi cial contribution of these components 
separately. Th e eff ect of phase dispersion on ADC variations is two orders of magnitude larger 
than the modulation of the eff ective b-value. Furthermore, phase dispersion is responsible for an 
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figure 6-3 ADC deviations from the mean (dADC) and incremental displacement gradient maps over the car-
diac cycle for Subject 1. Cardiac phases are represented with peak incremental shear strain at 30% of the cardiac 
cycle. Although twenty cardiac phases were obtained, ten are represented here. Slice-selective DENSE data was 
acquired with FH encoding, which implies sagittal and coronal orientation. Here, we present the data in a trans-
verse orientation. On the left , the T1-weighted image is shown as an anatomical reference. Below, the measured 
mean diff usion in the FH direction is represented by the reconstructed MD and the mean ADC maps on the 

left , obtained through the DTI and DENSE data, respectively. On the right, the upper 3 rows represent the in-

cremental displacement gradient fi elds observed over time Δ (100 ms). Th e 
duFH
dFH  component was obtained with 

both sagittal and coronal orientation and averaged. Th e additional 
duFH
dAP  and 

duFH
dRL  components were obtained 

with sagittal and coronal acquisition orientation, respectively. Th e bottom two rows show the ADC deviation 
from the mean over the cardiac cycle, as simulated (dADCsim) and measured dADC, respectively.
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increase of the diff usion coeffi  cient, whereas the eff ective b-value component results in a reduced 
diff usion coeffi  cient at peak systole.

Measured ADC values deviated from the mean ADC value over the cardiac cycle for each of the 
three investigated orthogonal directions. Figure 6-5 shows dADC for each encoding direction, 
where dADC with the same encoding direction but diff erent acquisition orientation were aver-
aged (see Figure 6-S1 in supplementary fi les for dADC curves per acquisition orientation). Mean 
ADC values over the cardiac cycle are indicated per subject in the legend. For the analysis, peak 
incremental shear strains were synchronized, which resulted in a relative shift  between subjects 
of at most 2 cardiac phases (which is equal to 10% of the cardiac interval). Th e largest dADC 
was observed at peak incremental shear strain (by defi nition at 30% of the cardiac interval) in 
the FH direction. Th e incremental shear strain curves computed from the incremental strain 
tensor are shown in Figure 6-6 together with the incremental volumetric strain. Th e maximum 
temporal ADC change (ΔADC) in the FH direction was 3.2·10-5 ± 1.0·10-5 mm2/s (mean ± SD 
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figure 6-4 Simulated phase dispersion and eff ective b-value contributions that constitute the simulated ADC 
variation (dADCsim) represented as the deviation from the MD over the cardiac cycle MD. Please note the diff er-
ence in scaling along the y-axis. ADC variations were simulated voxel-wise and the results were averaged over the 
conservative white matter mask, avoiding blood and CSF signals. From the DTI data, MD values along the associ-
ated direction are indicated per subject, in the legend. Th e dotted black line represents the mean dADCsim over all 
subjects whereas the gray shaded area indicates the standard deviation. Largest variation was observed in the Feet-
to-Head direction. Phase dispersion eff ects contributed to a dADCsim increase at peak systole whereas the eff ective 
b-value contributed to a slight decrease in simulated dADCsim at peak systole. Furthermore, phase dispersion 
eff ects were two orders of magnitude larger than the eff ective b-value contribution. Since dADC is derived from 
the log-transformed magnitude data, multiplications become summations and the overall simulated dADCsim is 
obtained by summing dADCsim  for phase dispersion with dADCsim  for the eff ective b-value.
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across subjects). Maximum temporal ADC change in the RL and AP direction were slightly 
lower: 1.2·10-5 ± 0.62·10-5 and 1.3·10-5 ± 0.76·10-5 mm2/s, respectively. Furthermore, inter-subject 
variability in dADC at peak systole (mainly observed in the FH direction) was mostly explained 
by peak incremental shear strain rather than mean ADC: the coeffi  cients of determination (R2) 
in the RL, AP and FH direction for peak shear strain were 0.69 (p = 0.01), 0.70 (p = 0.009) and 
0.70 (p = 0.01) while for mean ADC these coeffi  cients were 0.10 (p = 0.45), 0.02 (p = 0.74) and 
0.10 (p = 0.44), respectively.

Correlation tissue strain and measured adC deviation
Correlation plots for dADC with both volumetric strain and shear strain (see Figure 6-6) are 
presented in Figure 6-7. Th e coeffi  cient of determination (R2) per subject is indicated in the 
legend. Th e overall coeffi  cient of determination was calculated by using the mean traces over the 
cardiac cycle for dADC, volumetric strain and shear strain (i.e. the dotted black lines indicated in 
Figure 6-7), rather than averaging the individual coeffi  cients of determination. Th is coeffi  cient of 
determination was highest in the FH direction for both volumetric strain and shear strain: 0.65 
and 0.94, respectively. Th e ADC deviation correlated best with tissue shear strain increments in 
all three orthogonal directions, indicating that shear strain was the best predictor of the amount 
of ADC variation measured.

Corrected adC deviation
Measured ADC deviations from the mean ADC were corrected for simulated ADC deviations 
by subtracting dADCsim from the measured dADC. Th e simulated dADC resulted from the sum-
mation of both phase dispersion and eff ective b-value contributions (separately shown in Figure 
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figure 6-5 Measured ADC variation (dADC) represented as the deviation from the mean ADC over the cardiac 
cycle. Each orthogonal encoding direction was acquired two times, each with a diff erent acquisition orienta-
tion for which the average is represented here (see Figure 6-S1 for separate results per acquisition orientation). 
Curves over the cardiac cycle were obtained by averaging over the conservative white matter mask, avoiding 
blood and CSF signals. Mean ADC values over the cardiac cycle per subject and along the associated direc-
tion are indicated in the legend. Curves between subjects were synchronized such that peak incremental shear 
strain occurred at 30% of the cardiac interval. Th e dotted black line represents the mean dADC over all subjects 
whereas the gray shaded area indicates the standard deviation. Th e largest dADC was observed in the Feet-to-
Head direction.
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Dynamic brain ADC variations over the cardiac cycle and its relation to tissue strain.
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figure 6-6 Incremental curves of volumetric strain and shear strain. Peak incremental shear strains per subject 
were placed at 30% of the cardiac interval. Shift s required to obtain this result were applied to all associated 
curves (e.g. volumetric strain and dADC). Furthermore, volumetric strain and shear strain were normalized 
over the cardiac cycle. To this end, the mean volumetric strain per subject was subtracted from the associated 
curve, so that volumetric strain curves oscillated around 0. For shear strain, the minimum incremental shear 
strain over the cardiac cycle was subtracted, resulting in shear strain curves touching to zero.
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figure 6-7 Correlation plots that show the relation between dADC and tissue strain. Th e fi rst and second rows 
show the relation of dADC with volumetric strain and shear strain, respectively. Coeffi  cients of determination 
are indicated per subject in the legend. Measured dADC correlated best with shear strain. Th e coeffi  cient of de-
termination for the shear strain on the mean traces (dotted black lines, see Figure 6-5) was 0.86, 0.87 and 0.94 in 
the RL, AP and FH direction, respectively. Th ese coeffi  cients were lower for the mean dADC versus volumetric 
strain: 0.34, 0.46 and 0.65, respectively.
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6-4). Th e corrected dADC (dADCcorr) is presented in Figure 6-8 and shows similar behavior 
for individual subjects as already observed for the measured and simulated dADC. Th e ratio 
between dADC and dADCsim was on average 2.0 ± 0.91, 2.5 ± 0.94 and 3.4 ± 0.57 in the RL, AP 
and FH direction, respectively.

dIsCussIon

We developed a comprehensive method to investigate to what extent ADC variations over the 
cardiac cycle in the brain can be explained by artifi cial variations induced by tissue deformation. 
We combined principles of DENSE and DTI in a single MRI sequence to simultaneously measure 
tissue strains and diff usion. Th is sequence could be regarded as either a slice-selective DENSE 
sequence or a STEAM diff usion sequence. Th e sequence took advantage of the unique situation 
that occurs in the brain where the pulsed gradients both meet the requirements for optimal 
accuracy in the tissue-motion fi eld maps for strain computations, while at the same time reason-
able diff usion weighting is achieved. Th is way, strain and ADC measurements could be obtained 
simultaneously from the phase and magnitude data, respectively. We measured ADC variation 
over the cardiac cycle in eight subjects, for three orthogonal directions (RL, AP and FH) and 
compared the results to artifi cial ADC variations based on the measured tissue strain tensor.

Th e temporal profi le of the artifi cial dADC showed good similarities with the measured dADC, 
although the amplitude of the simulated eff ects was much lower. Th ese similarities were especially 
observed for the FH direction, because of the relatively high amplitudes in that direction. Phase 
dispersion eff ects dominated the overall artifi cial ADC variation, its eff ect being two orders of 
magnitude larger as compared to the eff ective b-value contribution. We found systematically 
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figure 6-8 Corrected measured ADC deviations (dADCcorr) over the cardiac cycle. Results were obtained by 
subtracting simulated dADC induced by tissue deformation from measured dADC. Since measured dADC de-
viations were on average 2.6 ± 0.82 times larger than simulated deviations, dADCcorr is still of the same order of 
magnitude as the measured dADCs (Figure 6-5). Th ese corrected ADC deviations from the mean ADC cannot 
be explained by intrinsic artifi cial signal variations arising from tissue deformation.
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larger MDs than ADCs obtained through DTI reconstructions and DENSE, respectively. The use 
of these slightly larger MDs in the simulations only affected the effective b-value contribution 
and resulted in a slight overestimation of this effect. Yet, because of the large difference between 
phase dispersion and effective b-value contributions, the effect on the outcome of the artificial 
ADC variation was negligible. It would have been sufficient to consider only the phase dispersion 
contribution and disregard the effective b-value altogether. As for the discrepancy between MDs 
and ADCs, this is most likely explained by differences in the time between the pulsed gradients, 
i.e. the diffusion time. The diffusion time was considerably longer for DENSE compared to DTI: 
100 ms versus 36.4 ms, respectively. Mathematical models have shown that the effective diffusion 
coefficients decrease as evolution times increase [62].

Measured ADC variation was up to 3 times larger than the artificial ADC variation, depending 
on the encoding direction. The largest ADC variation was observed in the FH direction, which is 
consistent with larger strains associated for that direction [136; 137]. Measured ADC variations 
correlated best with incremental shear strains and showed a brief peak at peak systole. Inter-
subject differences at peak systole in measured dADC were also largely explained by differences 
in incremental shear strains rather than differences in mean ADC values. The calculated phase 
dispersion effects showed that in the analysis of diffusion parameters, it is important to take 
shear strains into account. These effects might also be relevant for simultaneous DTI and MR 
Elastography (MRE) measurements, where additional shear strains are induced by an external 
actuator as is commonly used in conventional MRE [176]. Meanwhile, incremental volumetric 
strain correlated less with measured ADC variations. Volumetric strain curves were generally 
more stretched in time compared to incremental shear strain, which also indicates that volumet-
ric strain variations are not the main cause of shear strain.

The measured ΔADC ranged between 1.2·10-5 ± 0.62·10-5 and 3.2·10-5 ± 1.0·10-5 mm2/s. Largest 
ΔADC was observed in the FH direction, which was still one to two orders of magnitude smaller 
than ΔADC reported in literature [111; 114; 117]. Especially Ohno et al. and Osawa et al. have 
reported large ΔADC of approximately 0.24·10-3 mm2/s. Yet, in these studies the ΔADC was 
calculated on a voxel-by-voxel basis rather than on an ROI basis [114; 117]. Calculating ΔADC is 
sensitive to noise as it involves a difference between minimal and maximal values, and will tend 
to result in an overestimation. By using an ROI-based approach instead, the SNR will increase, 
yielding a ΔADC that is more reliable. Nakamura et al. used this approach and found a ΔADC of 
0.07·10-3 mm2/s. While this finding is more in line with the results we obtained, the difference is 
still well over a factor of 3. The remaining difference is probably explained by the use of b=0 data 
in the referenced studies [111]. It is known from the intravoxel incoherent motion (IVIM) model 
that low b-values reflect signal variations from the blood pool and perfusion [22]. By using only 
b=0 and b=1000 data, obtained ADC variations will include blood flow pulsations reflected by an 
increased ADC at peak systole. Some studies specifically targeted the blood pool using the IVIM 
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model as a surrogate for microvascular pulsatility [19; 42]. In this work, however, we used high 
b-values (300 and 1000, equivalent to displacement encoding of 56 and 31 μm) to exclude any 
contributions from blood or perfusion in the reconstructed ADC signal, which did not allow for 
a further investigation of these effects. The findings reported by Federau et al., however, indicate 
that perfusion effects in the measured signal are already reduced to less than 2% at b = 300 [42]. 
Furthermore, since there is evidence that volumetric strain reflects blood volume pulsations [1; 
70; 136], the rather poor correlation of the volumetric strain with measured ADC variations 
indicates that the measured ADC variations were not dominated by blood volume. Besides, it is a 
limitation of this study that the acquisition of a dataset with two b-values already took 7 minutes. 
Adding additional b-values would therefore result in infeasibly prolonged protocols. Moreover, 
the high bandwidths used for the RF pulses to prevent slices from bending, at the same time 
requires increased B1, particularly at high field strengths like 7T. Consequently, while scans were 
within normal specific absorption rate (SAR) limits, the accumulated specific energy dose (SED) 
at the end of the entire protocol was already nearing its limit. SED (in J/kg) specifies the total 
energy absorbed by the body during an MRI scan. Extending the protocol for additional data 
would run the protocol infeasible from a safety perspective. More advanced encoding routines 
could potentially reduce the acquisition time. For instance, chunk encoding may be a routine 
that could reduce acquisition times (and SED) [27], albeit at the cost of shorter TRs. This ap-
proach may therefore be used especially at lower field strengths, where T1s are generally shorter.

In this work, ADC and strain measurements were binned retrospectively over the cardiac cycle. 
This approach ensured a fixed TR for all slices independent of heartrate, yet resulted in data 
points being distributed randomly across the cardiac cycle. Consequently, data density and, 
thus, SNR in both strain and ADC measurements may differ for different cardiac phases, which 
was reduced by the use of the moving average window. Prospective cardiac triggering facilitates 
more direct control of SNR distribution over the cardiac cycle, because it enables fixed time 
delays with respect to the cardiac R-top [136; 137]. While this approach is frequently used in 
literature to assess ADC variation over the cardiac cycle, it makes the repetition time heartbeat 
dependent. Especially when repetition times are short (e.g. 2 R-R intervals [114; 117]) variations 
in the subject’s heart rate lead to unwanted signal variations due to T1 relaxation. Federau et 
al. already noticed this dependency between heart rate and TR, and minimized the effect by 
applying a minimum TR of 5 seconds [42]. However, T1s are generally longer at higher field 
strengths and variations in TR just over 5 seconds still may yield signal variation. Moreover, we 
were also interested in fluid contributions from CSF and ISF, which have longer T1s compared to 
tissues like gray and white matter. Although the TR in this work is still not two times the T1 of 
CSF [130], it does not vary between measurements.

The ratio between artificial and measured ADC variations implies that there is room for a physi-
ological component that can explain the difference. As measured ADC variation increased, larger 
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ratios were observed between measured dADC and artificial ADC variations. Correcting the 
measured ADC variation in the FH direction for these artificial ADC variations, still yielded an 
unexplained variation of 3% of the mean ADC. Together with the strong correlation of measured 
ADC variations with incremental shear strain, this observation points to an underlying effect 
responsible for increased ADC variation. It is conceivable that additional mixing or stirring of 
the interstitial fluid or perivascular spaces driven by tissue deformation adds to an additional 
variation in ADC.

In conclusion, the developed slice-selective DENSE sequence is capable of simultaneously mea-
suring ADC and strain variations of brain tissue. By combining these results with  a single DTI 
dataset, we were able to successfully estimate the artificial ADC variations induced by tissue 
deformation. Measured ADC variations were up to 3 times larger than these artificial variations, 
which is probably explained by a physiological effect. Here, future research is welcome to pro-
pose physiological effects that are responsible for the observed differences. We hypothesize that 
mixing or stirring of the interstitial fluid or perivascular spaces driven by tissue deformation. 
Although further investigation is required to substantiate this hypothesis, it is conceivable that 
this additional mixing adds to an additional increased ADC variation over the cardiac cycle. The 
novel method provides a tool to study this effect and holds the potential to serve for detecting 
abnormalities in ADC variations in disease.
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figure 6-s1 Measured dADC curves over the cardiac cycle separately shown per acquisition orientation and 
encoding direction. Curves over the cardiac cycle were obtained by averaging over the conservative white mat-
ter mask, avoiding blood and CSF signals. Mean ADC values over the cardiac cycle per subject, obtained for the 
associated acquisition orientation and encoding direction are indicated in the legend. Curves between subjects 
were synchronized such that peak incremental shear strain occurred at 30% of the cardiac interval. Th e dotted 
black line represents the mean dADC over all subjects whereas the gray shaded area indicates the standard 
deviation. Th e largest dADC was observed in the Feet-to-Head direction.
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suMMaRy

The objective of the work presented in this thesis was to develop non-invasive imaging tech-
niques of brain pulsations in response to the beating heart and respiration, in order to pave the 
way to non-invasive, in-vivo assessment of the impact of disease and physiological stressors on 
the properties of the brain tissue and microvasculature. Physiological brain tissue deformation is 
driven, among others, by variations in blood pressure induced by cardiac and respiratory cycles. 
As the arterial pressure wave reaches the microvasculature, the cerebral tissue expands inwards 
towards the ventricles, and the related tissue motion shows a funnel shaped pattern directed 
towards the foramen magnum [58]. At the same time, cerebral spinal fluid (CSF) is squeezed out 
of the skull to compensate for the additional blood volume change. The pulsations of brain tissue 
form a valuable source of information. The tissue deformation is not only driven by variations 
in blood volume from the microvasculature, but also reflects differences in tissue properties like 
stiffness.

Tissue deformation is physically described by strain, which is derived from motion field maps. 
In this work, we started from two MRI motion mapping methods that provide these motion field 
maps. These MRI methods, phase-contrast MRI (PC-MRI) and displacement encoding using 
stimulated echoes (DENSE), deploy the MRI phase signal to encode the respective velocity or 
displacement into the MRI signal. High signal to noise ratio (SNR) in the motion field maps is 
crucial for strain computations, as these strain computations involve the use of spatial deriva-
tives, which amplify the noise present in the motion field maps. In Chapter 2 we compared the 
performance of PC-MRI with DENSE through computer simulations and found that DENSE 
outperforms PC-MRI for small deformations in the human brain tissue, such as induced by the 
heartbeat. The difference between DENSE and PC-MRI becomes even more pronounced when, 
besides the cardiac cycle, pervasive animators with lower frequency, such as respiration, are 
targeted. Consequently, we specifically focused on the DENSE sequence and validated simula-
tions with phantom measurements. Simulations compared well to the phantom measurements. 
We used these validated simulations to optimize the DENSE settings and tested these settings 
in a healthy volunteer. We achieved a factor of 1.6 SNR increase in-vivo compared to the mo-
tion encoding sensitivity as reported in previous experiments [1; 140]. Two key aspects played 
a role here. First, the single-shot approach of the DENSE sequence avoids increased artifacts 
that plagued the 3D approach, as the motion sensitivity increases. Second, the assumption of 
small tissue strains allows for resolving additional phase wraps in the displacement maps. While 
optimizing the DENSE sequence, it is important to take into account the additional diffusion 
weighting that large encoding gradients induce on the magnitude signal. Shorter mixing-times 
between encoding and decoding will allow for stronger encoding gradients, while maintaining 
reasonable diffusion weighting. It depends on the frequencies of the targeted animators what 
mixing times may be desirable. Low frequency animators such as vasomotion or respiration 
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require extended mixing times compared to higher frequencies such as the cardiac cycle [162]. 
Once these boundary settings have been determined, optimal encoding sensitivities can always 
be computed unambiguously.

Cardiac and respiration-induced contributions to brain tissue deformation were disentangled in 
Chapter 3. The implementation of the DENSE sequence was modified to include an additional 
cardiac cycle between encoding and decoding, for increased sensitivity to tissue deformations 
induced by respiration. Furthermore, we modeled the snapshot images as a linear combination 
of both cardiac and respiratory contributions and introduced a linear model that utilized the 
physiological data to disentangle these contributions. The single-shot approach of the acquisition 
was crucial in this regard, not only for achieving optimal motion sensitivity, but also to capture 
the unique physiological ‘states’ (i.e. mixture of respiration and heartbeat related contributions 
to motion) of each acquired image. Yet, the single-shot approach limited the acquired volume to 
2D images only. We acquired two orthogonal slices and performed a 3D analysis of tissue strain 
along the intersection line. Here we observed, for the first time, the Poisson effect reflected in the 
tissue deformation, where longitudinal tissue stretch was accompanied by transverse shrinkage 
of tissue. Furthermore, the results showed that cardiac-induced tissue deformation is dominating 
respiration contributions by approximately a factor of five.

As the cardiac cycle proved to be the dominant factor in driving pulsatile brain tissue deforma-
tion, we focused the remainder of our work on cardiac-induced tissue deformations. In Chapter 
4, we extended the single-shot DENSE method by combining the approach with a simultaneous 
multi-slice (SMS) acquisition. In addition, we implemented slice-shuffling to acquire all slices 
covering the entire brain at different locations in the cardiac cycle. Because the focus was on 
cardiac-induced contributions only, we reduced the time between encoding and decoding sub-
stantially which led to a new optimal encoding sensitivity. The work was the first to report the 
full cardiac-induced strain tensor of brain tissue deformation with complete brain coverage, for 
which we found well-defined strain patterns that are consistent between subjects. We called this 
novel approach Strain Tensor Imaging (STI). STI provided a method to visualize and quantify 
tissue dynamics that reflect fundamental aspects of the interaction between tissue an blood. The 
method may be able to detect abnormalities in disease.

The potential of the STI technique to detect abnormalities in disease, was explored in a case 
study patient that was treated with a craniectomy. At the time of the MRI acquisitions, the cranial 
opening – 12 cm in diameter – had not yet been closed by a reconstructed skull part.  The case 
study therefore has an analogy with the first recordings of the brain ever, which was developed 
and carried out at the time by Angelo Mosso (1846-1910). We compared the strain maps from 
the patient with the strain maps obtained in healthy subjects, and showed distinct differences be-
tween these maps in Chapter 5. This ‘Angelo Mosso experiment in modern days’ shows that the 
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MRI technique is sensitive enough to detect abnormalities in brain tissue deformation. Although 
the loss of skull is an evident alteration in boundary conditions, the technique may hold potential 
in detecting more subtle abnormalities as well, such as from vascular disease.

The motion sensitizing gradients of the DENSE sequence induce diffusion weighting in the mag-
nitude images that need to be accounted for in optimizing the DENSE settings for application 
in the brain. Consequently, the unique situation arises that the DENSE sequence can simultane-
ously provide both strain data and diffusion data in the brain. We used this property in Chapter 
6 to investigate to what extent observed ADC variations in the brain over the cardiac cycle can be 
explained by measurement errors induced by variations in tissue strain. We found that observed 
ADC variations are at least a factor of 2 larger than could be explained by variations in the tissue 
strain. Particularly in the Feet-to-Head direction, the observed ADC variations were much larger 
compared to the simulated ‘artificial’ ADC variations, as predicted based on the observed tissue 
strain. ADC variations in the brain thus likely reflect physiological processes such as mixing or 
stirring of the interstitial fluids.

dIsCussIon

We thus developed non-invasive MRI techniques that quantitatively map brain tissue de-
formations induced by physiological animators such as heartbeat and respiration. We found 
that cardiac-induced tissue deformations are dominant over respiration contributions by ap-
proximately a factor of five. We extended the MRI technique to obtain these cardiac-induced 
tissue deformations with whole-brain coverage and observed abnormal deformations after a 
craniectomy on an individual level. The technique was also able to simultaneously quantify ADC 
variations over the cardiac cycle, which were at least a factor of 2 larger than the artificial ADC 
variation from deformation-induced measurement errors. Hence, these variations likely reflect 
mixing or stirring of the interstitial fluids. In this section, I would like to place the developed 
technique in a broader perspective of alternative methods that aim to assess blood volume pulsa-
tions and the condition of the microvasculature. I continue with an contemplation on how brain 
tissue deformation carries an intrinsic complexity, as the observations are related to the interplay 
between the microvasculature, blood volume pulsations, and tissue properties, such as stiffness. 
In separate sections that follow, we discuss the strengths and limitations of the technique, and 
address its implications and future steps.
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Considerations regarding measurements of brain tissue deformation

From whole brain approaches to voxel-wise measures
The methods proposed in this thesis provide complementary information to data obtained by 
conventional MRI ‘mass-balance’ approaches. The main difference between both approaches 
is their spatial localization. Mass-balance approaches employ established techniques such as 
PC-MRI to study the overall mass balance of blood- and CSF flows at the spinal [15; 41; 165]. 
Although these approaches have provided valuable insight in the flow dynamics to the brain, they 
reflect effects from the entire brain, including from the larger arteries and veins that reside in 
the intracranial CSF space surrounding the brain. The methods presented in this thesis provide 
information on local blood volume pulsations from vessels embedded in the tissue, which can 
help to unravel relative contributions from vessels in the tissue and the larger vessels in the 
intracranial CSF. This is an important advancement, especially in disease, because these relative 
contributions could change with disease, while the overall mass-balance remains unchanged. 
Conventional mass-balance approaches would not be able to detect such a change, while the 
technique described in this thesis is indeed sensitive to a change in blood volume pulsations from 
the microvasculature embedded in the tissue. Moreover, now that we have a tool to distinguish 
between relative contributions in blood volume pulsations from the microvasculature and the 
larger vessels that surround the brain, we can also advance our understanding of basic brain 
physiology. For instance, the close similarity between CSF volume flows and brain tissue volume 
pulsations as observed in Chapter 4, imply that the large vessels surrounding the brain exhibit 
limited volume pulsations. The limited contribution from the larger vessels in overall volume 
pulsation (reflected by CSF volume flows) may be explained by simultaneous compression of the 
cortical veins and the cavernous sinus, thereby compensating for increased blood volume [2]. 
However, a caveat to this interpretation is the validity of Monro-Kellie doctrine, which assumes 
constant intracranial volume over the cardiac cycle [58; 103], which is still debated [6; 14; 157].

Indeed, there is evidence that the skull does not behave like a truly rigid box, but slightly varies 
in volume over the cardiac cycle. Variations in skull diameter were observed by Ueno et al., who 
used cranial sonography (US) to measure variations in skull diameter over the cardiac cycle 
[160; 161]. He provided additional evidence that the skull diameter pulsates with the heartbeat 
by performing separate measurements in which he applied variable external counter pressure, 
which was found to reduce the observed skull diameter pulsations. US transmits sound waves in 
the brain and records the reflections, from which the image is reconstructed. The technique has 
high temporal resolution (up to several kHz), but suffers from a limited field of view (FOV) [38; 
152]. Generally, the transducer is placed at the temporal bone window, as it has reduced skull 
thickness. This allows the sound waves to penetrate the skull better, but at the same time reduces 
the FOV even further. Although speed, cost and convenience are some evident advantages of 
US [61], the full brain coverage of the MRI technique proposed in this thesis is advantageous, 



139

Summary and general discussion

especially in a research setting. The DENSE sequence shows potential to measure the displace-
ment of the fatty bone marrow in the skull, that is required to assess potential pulsations of the 
skull. If we could show with DENSE that skull layers facing each other are found to move apart 
over the cardiac cycle, this could help to negate the Monro-Kellie doctrine. Thus, the DENSE 
sequence shows potential to validate the Monro-Kellie doctrine and provide a more complete 
picture of the skull pulsations than US.

The eye as a window to the brain
Optical coherence tomography (OCT) is an imaging technique that can assess the condition of 
the vessels and retinal nerve fibers in the eye. The technique typically uses near-infrared light to 
study the microvessels of the eye with up to sub-micrometer spatial resolution, depending on the 
light source [151]. These microvessels originate from the brain directly and are therefore con-
sidered as a surrogate for the condition of the brain’s microvasculature. Nerve fiber and retinal 
thinning in the eye were found to be associated with both neurodegeneration (gray matter loss 
of occipital and temporal lobe) [115] and increased risk of dementia [109]. Compared to MRI, 
the technique is more convenient and has lower cost, showing potential to be applied in large 
cohorts. However, the question remains whether the central retinal blood vessels and nerve fibers 
in the eye are affected prior to the brain damage, or whether damage in the brain occurs first, 
after which alterations in the eye are observed. The methods described in this thesis provide a 
window to the brain’s microvasculature, that is crucial to gain more insight in the order in which 
neurodegeneration occurs in both the eye and in the brain.

The complexity of brain tissue deformation
As brain tissue deformation result from the interplay between the microvascular network and 
tissue, it carries an intrinsic complexity that makes direct interpretation difficult. The interweav-
ing of tissue properties and microvasculature is best reflected in the volumetric strain, which 
describes the net expansion or compression of each voxel of tissue and thereby reflects both 
blood volume increase and tissue stiffness. Previous studies have found that gray matter exhibits 
larger volumetric strain variations over the cardiac cycle compared to white matter [1; 2; 70]. 
Since white matter could be stiffer [80] and has reduced blood-volume to tissue ratio compared 
to gray matter [9; 30; 164], both blood volume and tissue properties could contribute to this ef-
fect. Here, it is important to note that volumetric strain serves as a lower bound estimation of the 
underlying blood volume pulsation, as any simultaneously compression of the interstitial space 
would reduce the amount of observable volumetric tissue strain [91; 92]. This compression may 
occur only if the interstitial fluid is squeezed out of the tissue and drained into the veins or CSF. 
Thus, as we target the microvasculature with the developed methods, we seem to hit the intricate 
tissue-blood vessel interaction at a level where vascular contributions are difficult to distinguish 
from tissue contributions. This merger between vascular and tissue contributions in the DENSE 
measurements reflects the complexity not only of brain tissue deformation, but also of research 
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on neurodegenerative diseases in general, as the question remains to what extent these diseases 
are primarily driven by vascular or neuronal disease [35; 133; 158].

The interaction between tissue and vascular properties that constitute the measured tissue 
deformation may well be disentangled using extensive computer modeling and reconstruc-
tions on elastography [68; 150]. So far, results on these reconstructions have not always been 
as unambiguous, which may also be explained by the use of different measurements methods 
[31]. For instance, MR elastography (MRE) uses external vibrating devices to induce propagating 
shear waves in the tissue, from which the properties can be inferred. Yet, as the brain can be 
considered a porous medium (cells and interstitial fluid) [57], the brain tissue requires time 
to adapt to variations in (external) conditions. Shear waves that propagate through the brain 
thereby experience different resistance depending on their frequency, similar to a boat that can 
experience considerable increase in drag with just a small reduction in speed. Consequently, 
the use of different vibration frequencies leads to considerably different outcomes, which reflect 
the complexity of the mechanical properties of the brain [29; 34]. Methods described in this 
thesis provide tools to obtain data from ‘intrinsic’ activation [169]. This ‘intrinsic’ activation 
arises from cardiac frequencies, that are lower compared to the shear wave frequencies and better 
resemble  in-vivo brain dynamics.

technical considerations
A clear strength of the STI technique is that it can provide tissue strain maps with full brain 
coverage. In its current form, the technique provides sufficient SNR for these maps to be as-
sessed on a voxel-wise basis. Moreover, the technique is capable to detect abnormalities in brain 
tissue deformation on an individual subject level in a reasonable scan time. Furthermore, the 
single-shot technique acquires 2D slices in 50 ms and is therefore less sensitive to subject motion. 
This is particularly an advantage when applied in patients, because patients are more prone to 
(involuntary) movement as compared to healthy (young) subjects.

The main limitation of the STI technique is that we could assess the strain maps only with a rather 
coarse resolution (3mm isotropic). Consequently, the derived strain maps suffer from partial 
volume effects, which are particularly seen at CSF-tissue boundaries. The effective resolution of 
strain maps was even further reduced by the use of spatial derivatives, which uses the displace-
ment information from two neighboring voxels to compute the strain. If one of these voxels is 
located in a CSF region, the results are not reliable. We mitigated these effects by using a stringent 
mask that eliminates all voxels near CSF by adding an additional erosion step. This hampered us 
in our analysis, especially in regions near free moving water like sulci, and in structures below 
the current resolution, like the cerebral cortex. Increasing the resolution is not only limited by 
the limited sample time of the single-shot acquisition, but also requires sufficiently increased 
SNR. Each factor of resolution increase requires that same factor to the power of 4 in additional 
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SNR: 3 for the reduction in volume and an additional term for the spatial derivative. We suspect 
that increasing the SNR will require improved hardware, such as coil arrays with more elements, 
faster gradients or even higher field strengths [67]. Placing receive arrays close to the head could 
already help to obtain sufficient SNR to study the cerebral cortex in more detail, albeit at the cost 
of reduced brain coverage. Still, even with sufficient SNR, methodological improvements will be 
required to translate the increased SNR into higher spatial resolution. For instance, the simul-
taneous multi-slice approach is limited by the multi-band excitation pulse, which is prolonged 
significantly for thinner slices (higher resolution). Chunk encoding could potentially circumvent 
this effect, as it acquires thicker slabs [27]. By sampling these slabs with advanced sampling 
methods like compressed sensing, higher spatial resolution may be obtained in still reasonable 
sampling time [54; 95]. Additionally, computing the derivative on the complex signal through 
the Fourier transform could possibly avoid reducing the effective resolution through the spatial 
derivative, albeit at the cost of SNR [89].

In assessing the strain maps, it is important to note that both the principle strains and shear strain 
maps have higher intrinsic SNR as compared to volumetric strain maps. This is also evident from 
the repeated measurements reported in Chapter 4 and is due to the fact that volumetric strain 
is derived from the summation over the three principle strains. Because these principle strains 
consist of both positive and negative values – of which the first and third principle strain largely 
cancel each other – the result converges to a value close to zero while the noise increases by a factor 
of  √ 3. Diseases that result in different shear strains rather than volumetric strains are therefore 
expected to be detected more easily. It is therefore important to study how changed conditions of 
brain tissue affect volumetric strain and shear strain. Volumetric strain and shear strain are not 
correlated, and only show a weak relation in the temporal behavior. This suggests that volumetric 
increase of tissue does not (necessarily) cause tissue shear strains (Poisson effect). The two quan-
tities thereby likely reflect different aspects of both local and overall mechanical behavior of the 
tissue. In Chapter 5 we saw that a skull defect significantly impacted principle strains and shear 
strains. Although this was a major change in boundary condition, it is conceivable that STI may 
therefore have much wider potential applications in the evaluation of conditions with aberrant 
brain deformation or tissue compliance, such as hydrocephalus or brain tumors. On the other 
hand, volumetric strain predominantly reflects blood volume change. Although vascular diseases 
may affect shear strain, we expect that these diseases are predominantly reflected by changes in 
volumetric strain. Whether the technique holds also direct potential in assessing more subtle 
diseases such as vascular diseases and dementia – especially when they appear to be mainly 
reflected by changes in the volumetric strain – remains for future studies.
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future steps to apply strain tensor imaging in studies of brain health and 
disease
Now that the techniques are developed, the territory of tissue deformation in the brain can be 
explored further, in particular in patients with diseases like cerebral small vessel disease (cSVD) 
and dementia, but possibly also in other conditions such as brain tumors or people with aberrant 
CSF circulation (e.g. normal pressure hydrocephalus). Patient studies are more convenient to 
performs on 3T clinical scanners, yet SNR constraints probably will complicate the translation. 
Even in its current form, we do not think the developed method can tolerate a 3/7 factor reduc-
tion in SNR resulting from a translation to these scanners without compensating this SNR loss. 
The 4th-power relationship between SNR and voxel-size now is advantageous for compensating 
the SNR reduction, and a full compensation would still yield an isotropic resolution of only 3.7 
mm.

The strain maps indicate that the STI technique has potential to study abnormal tissue deforma-
tions in disease. Given the random orientation of the microvasculature, we initially expected a 
more isotropic deformation pattern as a result of the non-oriented swelling of the microvascular 
bed. However, in Chapter 3 we observed, for the first time, interesting details of the tissue defor-
mation including positive and negative principle strains consistent with the Poisson effect. The 
coronal slice showed large tissue deformation around the ventricles, which coincides with the 
area where white matter hyperintensities (WMH) often form in patients with vascular diseases 
[84; 167; 168]. Considering the brain as a porous medium [57], we hypothesized that large tissue 
deformations could potentially ‘choke’ the tissue locally by systolic compression of the (venous) 
microvasculature leading to this tissue damage [171]. However, the limited coverage of the 2D 
slices did not provide the full pattern of strain. In Chapter 4, we were able to acquire tissue strains 
with full brain coverage and obtained maps with regional normal differences of the octahedral 
shear strain, which reflects the Poisson effect. Yet, the mean spatial pattern of the shear strain 
does not seem to match with previously reported probability maps of WMH occurrence derived 
from patients with various degrees of ageing related degenerative and vascular pathologies [84]. 
Instead, shear strain patterns roughly followed the distribution of deep medullary veins that 
support venous drainage from the brain (see Figure 7-1) [60; 85; 108; 174]. Here, it must be ac-
knowledged that we obtained our data in a rather young population, which is not representative 
for studying these types of diseases. As deformation patterns may alter in disease, future studies 
can use the STI technique to assess whether change in shear strain is related to macroscopic 
(mostly irreversible) tissue damage, such as observed in cSVD.

future steps to measure brain waste clearance
Brain tissue deformations propel CSF around the brain and may deform the interstitial space, 
which in turn causes mixing or stirring of the interstitial fluid (ISF) [10; 12; 100; 153]. Since 
CSF and ISF flows are considered to clear metabolic waste products from the brain, brain tissue 
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deformation as such may be one of the main drivers of the brain’s waste clearance system [77; 
100]. Alterations in the microvasculature due to aging or disease may alter brain tissue deforma-
tion, which may have profound downstream eff ects on the brain’s waste clearance. Th e exact 
mechanisms of the brain’s clearance system are still under debate, but they are important to 
advance our understanding of, for instance, the clearance of amyloid beta, which is recognized as 
a primary process in Alzheimer disease [153]. It is currently believed that CSF-ISF exchange in 
perivascular spaces (PVS) facilitates the drainage of waste products from neuronal cells [76; 125]. 
Non-invasive imaging techniques, however, remain vital to further substantiate the hypotheses, 
especially in humans. Increasing eff orts to develop such methods generally propose high spatial 
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figure 7-1 Tissue shear strain maps (middle row) compared with WMH probability maps (top row) and density 
of deep medullary veins (bottom row). Per column, the location of the slices corresponds as much as possible. 
Shear strain maps were obtained in a young population (age 30 ± 4 years), while the WMH maps and deep 
medullary vein maps were originated from data acquired in an older population (mean age 70 years). Th e 
maps therefore do not originate from representative groups to be compared directly, as deformation patterns 
may alter with age and disease. Th e results merely indicate that Strain Tensor Imaging has potential to study 
abnormal tissue deformations in disease. WMH probability maps were reproduced with permission from Kuijf 
et al., IEEE Trans. Med. Imaging, 2019 [84]. Deep medullary vein maps were reproduced with permission from 
Kuijf et al., Eur. Radiol., 2016 [85].
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resolution MRI diffusion sequences to assess ISF pulsations in PVS, including those along large 
vessels such as the circle of Willes [65; 71; 72]. In Chapter 6, we proposed a multimodal approach, 
which links both diffusion and tissue strain. These methods show interesting variations of the ap-
parent diffusion coefficient (ADC) over the cardiac cycle, but lack information on the direction 
of transport. Rather, these methods focus on the clearance process through dispersion, which is a 
combined effect of mixing and diffusion [10]. However, DENSE offers the opportunity to provide 
information on both coherent (displacement) as incoherent (ADC) motion. To make DENSE 
fluid specific, a T2-preparation sequence can be incorporated between the motion sensitizing 
gradients. As the signal then only originates from water, it is no longer confounded by tissue 
motion and the spatial resolution will become less of an obstacle as a result. Once coherent 
motion – for example in PVS – can be observed, the question then becomes what animators drive 
this net transport.

The wavelength of the cardiac related pulsations appears to be too long to induce significant 
spatial gradients that are needed for transport [4]. Instead, pervasive animators at lower fre-
quency such as vasomotion may be more important drivers in clearance, [4; 162]. Vasomotion 
are spontaneous fluctuations of the arterial diameter initiated by vascular smooth muscle cells 
that occurs at approximately 0.1 Hz and have much shorter wavelengths [63]. Vasomotion is 
currently investigated in invasive preclinical studies. In humans, low-frequency fluctuations 
of CSF in the spinal canal have been observed in sleep, which correlated with both EEG and 
blood originated level dependent (BOLD) MRI [51]. Especially the CSF fluctuations indicate 
that brain tissue deformations are also involved here. It is yet unclear whether vasomotion is suf-
ficiently spatially coherent to lead to measureable tissue strains, and whether our method would 
be sensitive enough to detect those low frequencies. The duration between motion encoding and 
decoding is limited by the T1 tissue relaxation time, which is less than 2 seconds in the human 
brain at 7T. Still, we detected respiration related effects, which have a frequency of approximately 
0.25 Hz, not too far from the vasomotion frequency. A key difference, however, is the availability 
of physiological traces. While we modeled the observed tissue strain directly from these traces, 
vasomotion experiments rely on frequency spectrum data obtained from systematic acquisitions. 
The temporal resolution determines which frequencies can be analyzed. While lower temporal 
resolutions allow for larger tissue strains to accumulate over time, they cause physiological 
animators with higher frequencies to alias back as low frequencies into the spectrum. A possible 
remedy would be to first correct for the physiological frequencies from heartbeat and respiration 
by using the traces, before transforming the residuals to the frequency domain. It remains for 
future investigations to assess the potential of our methods in targeting vasomotion.

strain tensor imaging as covariate measure
MRI measurements are sometimes corrupted by unintended secondary factors like blood volume 
pulsations and inflow effects. When these secondary effects are not carefully considered, they can 
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lead to misinterpretation of the results. In Chapter 6, we discussed studies that incorporated data 
with low diffusion weighting (low b-values) in the experimental setup to assess ADC variation 
over the cardiac cycle [111; 114]. These low b-values are, however, known to be affected by blood 
volume pulsations [23; 24]. As blood flows into the brain with every heartbeat, it is therefore not 
surprising that these studies reported large ADC variations. Consequently, dispersion effects in 
tissue over the cardiac cycle were overestimated, as increased ADC variations due to perfusion 
were attributed to ADC variations in the tissue. Similarly, blood oxygen level dependent (BOLD) 
MRI signal fluctuations in the brain have been studied as a measure for physiological fluctuations 
due to the heartbeat and respiratory cycles [81]. BOLD MRI, however, depends on T2* weighted 
signals, which are not specific and depend on blood oxygenation levels that vary with neuronal 
activity related changes in venous oxygenation, perfusion, CSF flow into the slice and tissue 
motion. For the methods described in this thesis, we used TE’s ranging from 24 to 48 ms in 
combination with high b-values from the motion sensitizing gradients to ensure suppression of 
the signal from blood flow, while inflow effects were spoiled by the decoding gradient. Our mea-
surements therefore show potential to provide covariate measures for MRI techniques that – like 
BOLD MRI – are inherently sensitive to blood volume pulsations. Resting state (RS) functional 
MRI (fMRI) also relies on BOLD MRI and is used to evaluate regional interactions between 
brain regions that occur in resting-state [25; 69]. Apart from very low observed frequencies, the 
support for a neuronal basis of these RS-fMRI signals mainly comes from its correlation with 
EEG activity as covariate measure [32; 44; 99]. Although the temporal resolution of EEG is high, 
the spatial resolution remains low and is typically around 10 cm3. Our methods – especially when 
capable to target vasomotion – could provide tissue strains as an additional covariate measure in 
these cases. Especially as RS-fMRI is increasingly applied in patients, these covariate measures 
become more necessary. For instance, cerebral amyloid angiopathy (CAA) has shown to affect 
the neurovascular response [116], which directly affects RS-fMRI measurements [78]. Altered 
brain connectivity has been reported in patients multiple-sclerosis (MS) [149], which is a demy-
elinating disease that degrades the insulating covers of nerve cells. Yet, these altered connectivity 
findings should be interpret cautiously, as RS-fMRI observations in this patient group may also 
result – at least partly – from downstream effects of the underlying inflammation process on 
tissue integrity and the microvasculature [97; 149]. Here, the techniques proposed in this thesis 
may help to unravel the different physiological vascular and neuronal aspects that constitute the 
RS-fMRI signal.

In conclusion, the developed MRI methods described in this thesis enable to non-invasively 
quantify brain tissue deformation. Brain tissue deformation forms an important link in the 
complex relationship between blood volume pulsations and CSF flow, which are considered to 
play a role in maintaining brain homeostasis. Now that the techniques are available, the tissue 
territory in the brain can be explored further, in particular in patients with diseases like cSVD 
and dementia. Open questions remain whether and how brain tissue deformation is associated 
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with these diseases. Tissue deformation carries information on both tissue properties and mi-
crovessels, and thereby captures the complex mechanisms of brain dynamics. Hence, being able 
to assess brain tissue deformation may play an important role in advancing our understanding 
of the (mechanical) interaction between brain tissue, blood vessels and CSF, both in healthy 
subjects and disease.
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aCHteRGRond

Variaties in bloeddruk, gedreven door onder meer hartslag en ademhaling, veroorzaken sub-
tiele vervormingen van het hersenweefsel. Bij iedere hartslag reist de arteriële drukgolf door de 
vaatboom en bereikt het zo het niveau van de microvasculatuur – de kleine bloedvaten – in de 
hersenen. Als gevolg van het toegenomen bloedvolume zwelt het microvasculaire vaatbed op 
en wordt het omliggende weefsel vervormd, wat resulteert in een pulserend brein. Wanneer de 
microvasculatuur nu als onderdeel van het weefsel beschouwd wordt, kan men zeggen dat het 
weefsel opzwelt door het toegenomen bloedvolume als gevolg van het samentrekken van de hart-
spier. Omdat de hersenen zich in de schedel bevinden, die geen ruimte biedt aan extra volume, 
wordt ter compensatie voor de bloedvolume toename tegelijkertijd een even groot volume aan 
hersenvocht (CSF) uit de schedel geperst, richting het spinale kanaal in de wervelkolom. Als het 
hart zich weer ontspant en het bloed het brein verlaat, keert het CSF weer terug.

Deze pulsatiele vervorming van weefsel in het brein kan informatie geven over de bloedtoevoer, 
maar ook over de microvaten en het weefsel zelf. Zo is in eerder onderzoek al een kleinere weef-
selexpansie waargenomen in witte stof vergeleken met grijze stof, wat waarschijnlijk zowel door 
een lager bloedvolume als door een grotere weefselstijfheid van de witte stof wordt verklaard. 
Veranderingen in conditie van de kleine vaten of het weefsel worden in verband gebracht met 
belangrijke hersenziekten zoals beroerten of vasculaire dementie. Deze ziekten, bekend onder 
de Engelse term Cerebral small vessel disease, kunnen op dit moment enkel worden gedetecteerd 
wanneer macroscopische, meestal onomkeerbare schade is ontstaan. Het kunnen vaststellen van 
veranderingen in de eigenschappen van het weefsel en microvasculatuur die wellicht aan zulke 
schade vooraf gaat, zou inzicht kunnen bieden in de veranderde fysiologische omstandigheden 
die aan deze ziekten ten grondslag liggen.

Daarnaast kunnen hersenweefselvervormingen ook van belang zijn voor hun mogelijke rol in 
fysiologische processen. De mechanische pulsaties van het hersenweefsel wekken mechano-
transductieve reacties op – als een spier die sterker wordt wanneer men deze traint – in en-
dotheelcellen, die de bloed-brein barrière vormen.  Tevens zorgen de pulsaties ervoor dat CSF 
rond de hersen beweegt, wat weer een rol speelt bij de afvoer van afvalstoffen uit de hersenen. 
Vervorming van hersenweefsel kan daarom worden beschouwd als een belangrijke drijvende 
kracht van dit afvoersysteem.

doelstellInG

Het onderzoek zoals dat in dit proefschrift is beschreven, had als doel om non-invasieve 
meetmethoden voor MRI te ontwikkelen waarmee de vervorming van hersenweefsel in relatie 
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tot hartslag en ademhaling kan worden gekwantificeerd. Hiermee wordt beoogd de weg vrij te 
maken naar non-invasieve manieren om in-vivo de impact van ziekte en fysiologische stressoren 
op de eigenschappen van hersenweefsel en de microvasculatuur te kunnen bestuderen.

De mechanische vervorming van de hersenen wordt beschreven in termen van de relatieve 
verplaatsing van de pixels in de afbeelding van de hersenen. Om de vervorming van de hersenen 
te kunnen berekenen, meten we die verplaatsing met Magnetic Resonance Imaging (MRI). MRI 
heeft de mogelijkheid om op een unieke niet-invasieve wijze de verplaatsing van het hersen-
weefsel te meten. Tijdens de meting legt de MRI scanner daarvoor twee bewegingsgevoelige 
gradiënten in het magneetveld aan. Daarmee wordt het MRI-fasesignaal zodanig gecodeerd, dat 
hieruit de beweging van het hersenweefsel kan worden afgeleid. In de uiteindelijke afbeelding 
die de MRI scanner van de hersenen maakt, heeft elk voxel (3D pixel) een getal gekregen waaruit 
blijkt hoeveel het hersenweefsel op die plek verplaatst is.

beVIndInGen

In dit werk zijn we uitgegaan van twee MRI sequenties – een sequentie is een serie tijdelijke 
magneetvelden die in een bepaalde volgorde worden ‘afgespeeld’ – die de beweging van her-
senweefsel kunnen meten. Deze twee MRI sequenties worden fasecontrast MRI (PC-MRI) en 
verplaatsingscodering met behulp van gestimuleerde echo’s (DENSE) genoemd. Beide sequenties 
coderen het MRI-fasesignaal zodanig dat deze evenredig wordt met respectievelijk de snelheid 
of de verplaatsing van het weefsel. Voor de berekening van vervorming uit het verplaatsingsveld 
is het belangrijk om een hoge signaal-ruis verhouding (SNR) te behalen, omdat de berekening 
gebruik maakt van plaats-afgeleiden, wat de ruis in de verplaatsingsvelden versterkt. Hoofdstuk 
2 vergelijkt de SNR in verplaatsingsvelden die met PC-MRI en DENSE verkregen kunnen wor-
den. Dit wordt gedaan door middel van computersimulaties, waaruit blijkt dat DENSE beter 
presteert dan PC-MRI voor het meten van hartslag-gerelateerde pulsaties. Wanneer de focus 
verschuift van de hartslag naar de ademhaling als drijvende kracht van de vervorming, neemt de 
prestatie van DENSE in verhouding tot PC-MRI nog verder toe. Dit komt omdat DENSE beter 
geschikt is om de bewegingsgevoelige gradiënten in het magneetveld verder uit elkaar te plaatsen 
in de tijd, wat gunstiger is om ademhaling te bestuderen vanwege de lagere frequentie. Daarom 
hebben we ons verder uitsluitend gericht op de DENSE sequentie en de simulaties van deze 
sequentie gevalideerd met metingen in een fantoom. De simulaties kwamen goed overeen met 
deze metingen. Daardoor waren we in staat om van tevoren de optimale instellingen te kiezen 
en bereikten we een factor van 1,6 in SNR toename in-vivo, vergeleken met de instellingen die 
tot dan toe gebruikt werden. Hierbij speelden de aanpak om DENSE te combineren met een 
MRI-momentopnamen, en de aanname van zeer kleine vervormingen een cruciale rol.
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Zowel hartslag als ademhaling dragen bij aan vervorming van hersenweefsel. In Hoofdstuk 3 
wordt de afzonderlijke bijdrage van beide ontrafeld. Daartoe werd de DENSE sequentie zodanig 
aangepast dat er een extra hartslagcyclus tussen de twee bewegingsgevoelige gradiënten zat. De 
gevoeligheid voor weefselvervormingen als gevolg van ademhaling werd daardoor groter. Bo-
vendien werd de sequentie zodanig aangepast dat deze momentopnames kon maken (korte MRI 
opnames met een duur van slechts 50 ms). De momentopnames van de vervorming konden we 
vervolgens modelleren als een lineaire combinatie van zowel een hartslag- als ademhalingscom-
ponent, waarbij de relatieve bijdragen van deze componenten werd bepaald door de fysiologische 
gegevens die we tijdens de experimenten hadden opgenomen. Hoewel de MRI-momentopname 
in dit geval nodig was om de fysiologische ‘toestand’ van elke afzonderlijke afbeelding vast te 
leggen, beperkte deze aanpak ons tot het verkrijgen van enkel 2D-afbeeldingen. We hebben data 
opgenomen van twee orthogonale (haaks op elkaar staande) MRI plakken in negen gezonde 
proefpersonen en een 3D analyse van de vervorming uitgevoerd langs de snijlijn van de plak-
ken. Een illustratie van deze plakken is weergegeven in Figuur 8-1a. Met de resultaten konden 
we voor het eerst non-invasief een bekend fysisch fenomeen in hersenweefsel waarnemen, dat 
het Poisson-effect wordt genoemd. Dit effect houdt in dat rek van het weefsel in een bepaalde 
richting gepaard gaat met weefselkrimp in een richting die hier haaks op staat. Daarnaast lieten 
de resultaten zien dat de hartslag een factor vijf meer bijdraagt aan weefselvervorming dan de 
ademhaling.

Uit hoofdstuk 3 blijkt dat van hartslag en ademhaling, de hartslag de dominante factor is bij 
vervorming van hersenweefsel. Daarom hebben we ons in de rest van het werk uitsluitend gericht 
op deze hartslagcomponent. Hoofdstuk 4 beschrijft de verdere uitbreiding van de DENSE mo-
mentopnamen naar het gelijktijdig opnemen van meerdere plakken, zoals geïllustreerd in Figuur 
8-1b. Deze plakken rouleerden we in de tijd, zodanig dat alle plakken op verschillende locaties 
in de hartslag werden opgenomen. Omdat dit hoofdstuk is gericht op de bijdrage van alleen de 
hartslag, hebben we de tijd tussen de bewegingsgevoelige gradiënten aanzienlijk verkort, wat 
leidde tot een verder geoptimaliseerde gevoeligheid van de DENSE sequentie. Met deze aanpak is 
het gelukt om voor het eerst de vervorming van hersenweefsel als gevolg van de hartslag op elke 
plek in het brein 3D in beeld te brengen (wiskundig aangeduid met de vervormingstensor). Met 
deze techniek kunnen we kenmerken meten als mate van vervorming, maar ook de richting van 
rek en krimp. Deze metingen kunnen als input dienen voor elastografische analyses die per voxel 
de stijfheid en eventueel porositeit (ofwel het lokale bloedvolume) van het weefsel bepalen. De 
weefselstijfheid is onder meer van belang omdat het een maat is voor de vitaliteit van het weefsel, 
die verandert bij ouderdom en ziekte.
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De mogelijkheid om afwijkingen op te sporen bij ziekte met behulp van de weefselvervorming-
stensor wordt in Hoofdstuk 5 verder onderzocht bij een patiënt die eerder werd behandeld 
met een schedeloperatie waarbij een deel van de schedel tijdelijk werd verwijderd om hoge 
hersendruk na een ongeval te behandelen. Ten tijde van ons onderzoek met de MRI, was het 
stuk schedel – 12 cm in doorsnede – nog niet terug geplaatst. In het hoofdstuk vergelijken we 
de vervorming van hersenweefsel bij deze patiënt met de vervorming van hersenweefsel bij 
gezonde proefpersoenen, waarvan de resultaten in Figuur 8-2 zijn weergegeven. Dit onderzoek 
heeft  daarmee een analogie met het eerste beeldvormende onderzoek naar de hersenen ooit (zie 
Figuur 8-2), destijds ontwikkeld en uitgevoerd door Angelo Mosso (1846 – 1910). Het onderzoek 
zoals in hoofdstuk 5 beschreven, beschouwen we dan ook als het Angelo-Mosso-experiment in 
de huidige tijd. Het onderzoek laat zien dat de ontwikkelde MRI-techniek gevoelig genoeg is 
om afwijkingen in vervorming van hersenweefsel te detecteren op het individuele niveau van de 
patiënt. Echter is het weghalen van een deel van de schedel een grote wijziging van de omstan-
digheden en zal de toekomst moeten uitwijzen of de techniek ook gevoelig genoeg is om meer 
subtiele afwijkingen – zoals vaatziekten – te detecteren.

a. Tegelijk opnemen van meerdere 
plakken

Twee orthogonale plakken b.

figuur 8-1 Illustratie van 2D afb eeldingen gemaakt van plakken op verschillende locaties in de hersenen. De 
locatie van de plakken is aangegeven met kleur en zijn in het geval van onze techniek 3mm dik. Figuur (a) geeft  
twee orthogonale (haaks op elkaar staande) plakken weer op de locaties die we in hoofdstuk 3 gebruikten om 
bijdragen van hartslag en ademhaling op weefselvervorming te kunnen meten. Figuur (b) laat zien hoe we in 
hoofdstuk 4 een methode ontwikkelden waarmee meerdere plakken tegelijk opgenomen kunnen worden, zo-
dat het hele brein wordt omvat. In dit geval namen we 3 plakken tegelijk op (aangegeven met dezelfde kleur), 
waarna we direct de volgende 3 plakken opnamen. Dit proces moest worden herhaald zodat elke plak op ver-
schillende tijdstippen in de hartslag werd opgenomen. Uit die data kon vervolgens voor elke plak een tijdscurve 
over de hartslag worden gereconstrueerd.



155

Summary in Dutch (Nederlandse samenvatting)

a. Experiment van Angelo Mosso

i

ii

46 A N G E L O  M O S S O ’ S  C I R C U L A T I O N  O F  B L O O D  I N  T H E  H U M A N  B R A I N

conditions of the experiment and the method of recording for both body parts 
were the same (Fig. 2.2).

The hydrosphygmograph consists of a cylindrical glass container A B, similar 
to the glass cylinder of my plethysmograph.3 I  introduce the forearm into the 
container and close the latter by means of an elastic rubber sleeve A, the same 
as I do using the plethysmograph. The apparatus is suspended from the ceiling 
of the room to eliminate the harmful influence of involuntary movements. To 

G F

B

C

D E

A

Figure 2.1 Arrangement of the instrument used on Bertino for the recording of the 
cerebral pulse.

Raichle, Marcus E., and Gordon M. Shepherd. Angelo Mosso's Circulation of Blood in the Human Brain, Oxford University Press,
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b. Resultaten van patiënt met schedelopening

figuur 8-2 Figuur (a) geeft  het experiment van Angelo Mosso (1846 – 1910) weer. Angelo Mosso ontwikkelde 
de ‘volumemeter’, waarmee hij variaties in het volume van de hersenen kon waarnemen. De volumemeter werd 
aangesloten bij een persoon die door een ongeval een gat in zijn hoofd had opgelopen, waardoor het volume 
van de hersenen over de tijd kon worden waargenomen. Twee van deze waarnemingen zijn weergegeven in het 
fi guur, waarbij van iedere waarneming het bovenste spoor de referentie gemeten bij de voorarm is, terwijl het 
onderste spoor de pulsaties van de hersenen is. Daarmee is deze volumemeter de eerste beeldvormingstechniek 
voor het brein, ooit. Figuur (b) toont de resultaten van de patiënt die ik heb onderzocht en een deel van de 
schedel miste, analoog aan de situatie bij Angelo Mosso’s proefpersoon, hoewel nu een veel groter deel van de 
schedel was verwijderd. De kleuren geven de richting van de weefsel expansie/compressie aan: rood is de rechts-
links (RL) richting, groen de voor-achter (VA) richting and blauw de voet-hoofd (VH) richting. De resultaten 
laten duidelijke verschillen zien met de referentie (de referentie is het gemiddelde resultaat over 9 gezonde pro-
efpersonen). Terwijl het weefsel bij gezonde personen uitrekt naar het centrum van het brein, rekt het weefsel 
bij de patiënt voornamelijk op parallel aan de schedelopening. Dit is het beste te vergelijken met een uitpuilende 
fi etsband, waarbij er rek optreedt parallel aan de opening en krimp haaks op de opening (aangegeven met de 
witte pijlen in de afb eelding).
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De bewegingsgevoelige gradiënten van de DENSE sequentie induceren tegelijkertijd een dif-
fusieweging. Diffusie is een proces ten gevolge van de willekeurige beweging van deeltjes, wat 
er voor zorgt dat een druppel inkt zich in een glas water gelijkmatig verspreid. Hoe sneller de 
inkt zich verspreidt (‘diffundeert’; bijvoorbeeld door hogere temperatuur, of wanner de vloeistof 
wordt geroerd), hoe hoger de diffusiecoëfficiënt is. De mate van diffusie komt tot uitdrukking 
in de magnitudebeelden van het MRI signaal. Met dit effect dient rekening te worden gehouden 
tijdens het berekenen van de optimale gevoeligheid van de sequentie. Wanneer de DENSE se-
quentie dus in de hersenen wordt toegepast, doet zich de unieke situatie voor dat de sequentie 
tegelijkertijd zowel informatie over weefselvervorming (in het MRI-fase signaal) als diffusie (in 
het MRI-magnitude signaal) kan geven. Deze eigenschap hebben we in Hoofdstuk 6 gebruikt om 
te onderzoeken in hoeverre waargenomen variaties van de kennelijke diffusiecoëfficiënt (ADC) 
over de hartslag verklaard kunnen worden door variaties in vervorming van weefsel. Variaties 
in weefselvorming beïnvloeden namelijk de magnitude van het MRI-signaal, waardoor het lijkt 
alsof er ADC variaties optreden, terwijl dit in werkelijkheid niet zo hoeft te zijn. We ontdekten 
dat waargenomen ADC variaties minstens een factor 2 groter zijn dan de variaties die door 
weefselvervorming konden worden verklaard. Dat houdt in dat er na correctie weldegelijk ADC 
variaties over de hartslag optraden. Vooral in de voet-hoofd richting waren de waargenomen 
ADC variaties veel groter in vergelijking met de gesimuleerde ‘kunstmatige’ ADC variaties, 
zoals verwacht op basis van de waargenomen weefselvervorming. ADC variatie in de hersenen 
weerspiegelen dus waarschijnlijk ook fysiologische processen zoals het ‘mixen’ of ‘roeren’ van de 
interstitiële vloeistof.

Concluderend vormt de vervorming van hersenweefsel een belangrijke schakel in de complexe 
relatie tussen bloedvolumepulsaties en CSF stroming, waarvan wordt aangenomen dat ze een 
cruciale rol spelen bij de ontwikkeling van neurodegeneratieve ziekten. De ontwikkelde MRI 
methoden zoals beschreven in dit proefschrift, stellen ons in staat om deze vervorming van 
hersenweefsel non-invasief te kunnen kwantificeren. Nu de technieken beschikbaar zijn, kunnen 
de hersenen op het gebied van weefselvervorming verder worden bestudeerd, met name bij pati-
enten met ziekten als cerebral small vessel disease en dementie. Weefselvervorming weerspiegelt 
de complexe fysiologische mechanismen die zich in de hersenen afspelen, hoewel de vervorming 
van hersenweefsel van verschillende factoren afhangt. Dit bemoeilijkt mogelijk de interpretatie 
van veranderingen in weefselvervorming. Niettemin kan het bestuderen van de vervorming 
van hersenweefsel helpen om beter te begrijpen welke (mechanische) interactie bestaat tussen 
bloedvaten en het hersenweefsel, zowel bij gezonde als zieke mensen.
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