
AI-based Analysis of 
Cardiovascular Disease Risk 

in CT of Breast Cancer Patients

Sanne G.M. van Velzen



AI-based Analysis of Cardiovascular Disease

Risk in CT of Breast Cancer Patients

Sanne G.M. van Velzen



Financial support by the Dutch Heart Foundation for the publication of this thesis is gratefully
acknowledged.

ISBN: 978-94-6419-173-8

Copyright © S.G.M. van Velzen 2021. All rights reserved.

No part of this publication may be reproduced or transmitted in any form by any means without
prior permission from the copyright owner. The copyright of the articles that have been published
has been transferred to the respective journals.

Printed by Gildeprint.



AI-based Analysis of Cardiovascular Disease Risk
in CT of Breast Cancer Patients

Analyse van Cardiovasculair Risico op CT Beelden
van Borstkankerpatiënten met behulp van Kunstmatige Intelligentie

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. H. R. B.M. Kummeling,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op donderdag 8 april 2021 des middags te 2.30 uur

door

Sanne Geertruida Margaretha van Velzen
geboren op 29 december 1992

te Castricum



Promotoren: Prof. dr. I. Išgum
Prof. dr. H.M. Verkooijen
Prof. dr. ir. M. A. Viergever





Contents

CHAPTER 1

Introduction 9

CHAPTER 2

Deep learning for automatic calcium scoring in CT 17

CHAPTER 3

Arterial calcifications in Western and Asian breast cancer patients 39

CHAPTER 4

Identification of breast cancer patients at risk of cardiovascular disease from
radiotherapy planning CT scans 53

CHAPTER 5

Generative models for reproducible coronary calcium scoring 73

CHAPTER 6

Direct prediction of cardiovascular mortality from low-dose chest CT 95

CHAPTER 7

AI for estimation of radiotherapy-related risk of ischemic heart disease in breast
cancer survivors 105

CHAPTER 8

Summary and discussion 129

Nederlandse samenvatting 139

Bibliography 147

Acknowledgments 167

Publications 171

Biography 175



1



CHAPTER 1

Introduction
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1.1 Cardiovascular disease in breast cancer patients

Rising incidence of breast cancer, early diagnosis due to screening and advances in
treatment have led to an increasing number of breast cancer survivors. Accordingly,
awareness regarding importance of quality of life after breast cancer is increasing.
Cardiovascular disease (CVD) is common in cancer survivors1,2 and in older women
diagnosed with breast cancer it is the primary cause of death.3 In relation to this, the
risk of CVD events is increased by breast cancer treatments. For instance, patients
that received treatment with anthracyclines have a five time higher risk of chroninc
heart failure than breast cancer patients that were treated with chemotherapy without
anthracyclines.4 Patients that received radiotherapy are at increased risk of CVD events
compared with patients that did not receive radiotherapy.5,6 Moreover, patients with
pre-existing CVD risk factors have the highest risk of cardiotoxicity due to breast
cancer treatment.7 Therefore, identification of patients at increased risk may provide
options for cardio-prevention, such as lifestyle intervention, pharmaco-prevention or
opting for less cardiotoxic treatment.

A frequent underlying cause of CVD is atherosclerosis.8 Atherosclerosis is the
process of thickening of the innermost layer of the artery wall. This thickening consists
of fat build-up in the artery wall and an accompanying inflammation reaction. In this
process fatty plaques are formed that, in a later stadium, are tranformed into fibrotic
tissue and calcium deposits, i.e. calcifications. Subclinical atherosclerosis can smolder
for years, without symptoms. However, plaques can become unstable, rupture and
induce thrombosis, which can cause life-threatening events, such as heart attack and
stroke.8,9

CVD risk is determined based on the presence of traditional risk factors. For
instance, several large studies carried out in the general population showed that based
on age, blood pressure, cholesterol levels, presence of diabetes and smoking history,
a risk profile can be determined.10,11 The risk profile is directly linked to the risk of
experiencing a CVD event within the next 10 year. However, one in three breast
cancer patients with subclinical atherosclerosis does not have any traditional risk
factor and wouldn’t be identified as high risk according to these criteria.12 Therefore,
identification of patients at increased risk of developing CVD events, may be done
more accurately by detecting (subclinical) atherosclerosis. Imaging with computed
tomography (CT) provides an opportunity for precise identification of patients at risk,
because it visualizes calcified atherosclerotic plaque.

1.2 Visualization and quantification of atherosclerosis

CT images visualize calcifications in the arteries and can be used to identify patients at
risk. Quantification of calcifications in the arteries is also known as calcium scoring. Of
all aterial calcifications throughout the body, calcification in the coronary arteries (CAC)
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(a) ECG-synchronized cardiac CT scan (b) Radiotherapy planning CT scan

Figure 1.1: Examples of CT scans that visualize calcified atherosclerotic plaque. Even though the

CT scans are made for entirely different purposes, both visualize the heart and large vessels. In

both scans calcified lesions on the coronary arteries are visible.

is most predictive for CVD events.13,14 Therefore, quantification is typically focused
on CAC. In clincial practice the amount of CAC is measured by identifying lesions
in the coronary arteries with an intensity of > 130 Hounsfield units.15 Subsequently,
the amount of CAC can be quantified into volume, calcium mass or Agatston score.
The Agatston score is most widely applied and can be used to assign patients to a
cardiovascular risk category.16,17 CVD risk categories range from very low CVD risk,
indicated by an Agatston score of 0, to a very high risk of CVD, with an Agatston score
of >400.

In clinical practice, cardiac CT without contrast enhancement is used for quan-
tification of CAC, because it provides a high-resolution and non-invasive view of the
coronary arteries. Acquisition of these scans is synchronized with electrocardiogra-
phy (ECG). ECG-triggering during scanning minimizes the effect of cardiac motion
on the scan and minimizes motion artefact in the scan, which allows optimal visu-
alization of the coronary arteries. Given the clinical relevance, calcium scoring is
increasingly applied to non-cardiac CTs showing the heart.18 This includes CT scans
that are made for other purposes than calcium scoring and are often not acquired with
ECG-synchronization. Because the heart is moving during acquisition of these scans,
they often contain cardiac motion artefacts. Moreover, because these scans are made
for a wide variety of clinical indications, the field of view often contains the whole chest
or body, which leads to a lower resolution. These limitations provide extra challenges
for CVD risk prediction.

Clinically, calcium scoring is done manually by a medical expert who identifies
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lesions in the CT scan using dedicated interactive software. Although this is not
considered a difficult task for experts, it is tedious and time consuming, especially when
large numbers of scans are involved. Therefore, automation of CVD risk prediction
may be preferred for large scale studies and wide application in clinic.

1.3 Radiotherapy treatment planning

The majority of patients with breast cancer is treated with adjuvant radiotherapy.
During clinical routine of radiotherapy treatment, a non-ECG-synchronized CT scan is
made to determine the 3D irradiation dose distribution in 3D CT radiation planning.
On this treatment planning CT scan the tumor is delineated by a clinician to evaluate
the tumor coverage. Also, several organs in the radiation field are delineated to monitor
the potential harm to healthy tissue that should not be irradiated. Subsequently, using
dedicated irradiation planning software, the optimal plan is calculated for each patient
individually. This plan is a careful balance between optimal tumor coverage and
minimal harm to healthy tissue.

Because radiation exposure to the heart is known to increase the risk of CVD and
ischemic heart disease,19 several measures are taken to minimize the dose to the heart.
For instance, the heart is delineated on the planning CT to take it into account as organ
at risk for calculating the irradiation plan. Moreover, for patients with breast cancer
on the left side the deep inspiration breath-hold technique is applied. This means that
during irradiation, the patient holds her breath to maximize the distance between the
tumor and the heart. Left sided breast cancer patients, therefore, also receive a second
CT scan for planning where the deep-inspiration breath-hold technique is applied.

(a) Right-sided radiotherapy (b) Left-sided radiotherapy

Figure 1.2: Examples of planning CT scans with an illustrative heatmap of the planned dose in a

patient with a right-sided tumor (a) and a patient with a left-sided tumor (b). The heart is delineated

as organ at risk in blue.



Introduction 13

The routine CT scans made for 3D CT planning provide a way to monitor the
planned radiation exposure of the heart in radiotherapy. Moreover, because CT vi-
sualizes atherosclerosis, they provide an opportunity for identification of patients at
increased CVD risk by means of calcium scoring.12 Furthermore, besides CAC, more
information is present in CT images that is possibly predictive for CVD events.

1.4 Machine learning

In this thesis machine learning techniques are used for automatic analysis of CT images.
In machine learning a model is trained with examples (data) to map an input to an
output value. Mapping is done based on information that is extracted from the input.
In conventional machine learning the information representations, i.e. features, are
designed to describe the information in the input that is relevant for the problem. This
manner of handcrafting features is based on expert domain knowledge and requires
considerable human effort. After training the model with examples and corresponding
labels (outputs), the model can be applied to new cases.

In deep learning, complex models are used that are able to intrinsically learn from
the data to extract relevant information directly from the input and, thereby, skipping
the feature computation.20 The basis of current deep learning methods lies in artificial
neural networks (ANNs). ANNs are inspired by the way the human brain processes
information and consist of a number of artificial neurons connected to form a certain
architecture. The value of a neuron is determined by the sum of the connected previous
neurons, each multiplied by a trainable weight. Thereafter the value is passed through
a nonlinear function. By combining multiple layers of nonlinear neurons, a highly
nonlinear relationship between input and output can be modeled.

The type of ANN that is most used and most researched in medical image analysis,
are convolutional neural networks (CNNs). CNNs share the weights at each location
of the image. This way the layers of the network form trainable convolution kernels
that move over the image. The activation patterns in the deeper layers form a complex
feature representation of the input that is used for prediction.

A CNN can be trained in two manners: supervised and unsupervised. In supervised
learning an often manually created label is provided for each training input example.
The CNN is trained perform to a certain task with examples of input and label pairs.
In supervised learning the final performance of the CNN is highly dependent on the
quality of the training data and labels.21 In unsupervised learning no label is provided
for the input. For instance the input image itself is used as target for training the model
to recognize patterns and clusters in the dataset.

It is not only possible with CNNs to output one label per input image, but whole
images can be predicted, containing either discrete values like segmentation labels or
continues values like intensity values. An example of the latter are CNNs that predict
realistic medical images. Very popular over the past years are generative adverserial
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networks (GANs).22 GANs combine a generator CNN with a discriminator CNN: the
generator outputs an image and the discriminator distinguishes generated images from
real images. This system is trained in such a way that the CNNs compete with each
other: the discriminator tries to spot the generated images among the real images and
the generator tries to ’fool’ the discriminator by predicting very realistic images.

1.5 Outline of the thesis

This thesis presents automatic methods for identification of breast cancer patients at
increased risk of CVD events. The methods are based on analysis of CT scans made
during radiotherapy treatment planning. These images are used for automatic detection
of atherosclerosis and prediction of CVD risk, but also for investigating the effect of
breast cancer treatments on the risk of CVD.

CHAPTER 2 evaluates a deep learning method for automatic calcium scoring. In this
chapter the performance of the method is extensively evaluated in a large set containing
five different types of CT scans. The performance of the originally trained deep learning
method was evaluated on other unseen types of CT and the effect of selection of training
data on the performance in the five types of CT scans was assessed.

In CHAPTER 3 we applied the automatic calcium scoring method described in Chapter 2
to CT scans of two cohorts of breast cancer patients: Western breast cancer patients
and Asian breast cancer patients. In this chapter we evaluate the differences in calcium
burden between these two groups of patients.

CHAPTER 4 evaluates whether CAC quantified on planning CT scans is associated with
increased risk of CVD in breast cancer patients. The method described and evaluated
in Chapter 2 is used to automatically measure CAC on CT scans of a large cohort of
18,316 breast cancer patients from three hospitals. Subsequently, CAC scores were
related to risk of CVD events using survival analysis.

Because the interscan reproducibility of clinically used calcium scores is limited,
CHAPTER 5 describes an automatic method for quantification of CAC in non-ECG-
synchronized CT scans with increased interscan reproducibility compared to clinical
calcium scoring methods. This method uses a generative model to decompose an image
containing CAC into an image without CAC and an image visualizing only CAC. The
method is able to segment whole lesions, including parts below the clinical intensity
level threshold.

CHAPTER 6 describes a machine learning method for direct prediction of cardiovascular
mortality from an CT image. The method uses an autoencoder CNN to extract image
features in an unsupervised manner, without hand-crafting them. Subsequently, 5-year
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cardiovascular mortality is predicted based on the extracted image features.

Because the radiation exposure is not homogenious in radiotherapy for breast cancer,
CHAPTER 7 describes a deep learning method for calculating radiation exposure of
cardiac substructures and coronary arteries during radiotherapy. Additionally, the
association of dose delivered to the cardiac substructures and arteries, and ischemic
heart disease is evaluated.

Finally, CHAPTER 8 summarizes the presented methods and findings and discusses the
results as well as future directions.
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CHAPTER 2

Deep learning for automatic calcium scoring

in CT

BASED ON: S. G.M. van Velzen, N. Lessmann, B. K. Velthuis, I. E. Bank, D. H. van den Bongard, T.

Leiner, P. A. de Jong,W. B. Veldhuis, A. Correa, J. G. Terry, J. J. Carr,M. A. Viergever, H.M. Verkooijen,

and I. Išgum. “Deep learning for automatic calcium scoring in CT: validation usingmultiple cardiac

CT and chest CT protocols”, Radiology, vol. 295 (2020), pp. 66–79.
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Abstract

BACKGROUND Although several deep learning (DL) calcium scoring methods achieve
excellent performance for specific CT protocols, their performance on a range of CT
exams is unknown.

PURPOSE To evaluate the performance of a DL method for automatic calcium scoring
across a wide range of CT and to investigate whether the method can adapt to different
types of CT when representative images are added to the existing training dataset.

MATERIALS AND METHODS The study included 7240 subjects who received various
types of non-contrast CT including the heart: coronary artery calcium (CAC)-scoring,
diagnostic chest, PET attenuation correction, radiotherapy treatment planning, CAC-
screening and low-dose chest CT. CAC and thoracic aorta calcifications (TAC) were
quantified using a convolutional neural network trainedwith (1) 1181 low-dose chest CT
(baseline); (2) a small set of the respective exam type supplement to the baseline (data-
specific); and (3) a combination of all available exam types (combined). Supplement
training sets contained 199-568 CTs, depending on the populations calcium burden.
The performance was evaluated with intraclass correlation coefficients (ICC) between
DL and reference (Agatston) CAC and (volume) TAC scores and linearly weighted
kappa for cardiovascular risk categories (Agatston score, CVD risk categories: 0,1-10,11-
100,101-400,>400).

RESULTS At baseline, the DL model achieved an ICC between 0.79-0.97 for CAC and
0.66-0.98 for TAC over the different types of CT exams. ICCs improved to 0.84-0.99
and 0.92-0.99 for data-specific training, and to 0.85-0.99 and 0.96-0.99 for combined
training, for CAC and TAC respectively. For assignment of CVD risk category, kappa
(95% CI) for all test CT scans was 0.90 (0.89-0.91) for the baseline training. It increased
to 0.92 (0.91-0.93) for both data-specific and combined training.

CONCLUSIONS A deep learning calcium scoring method to measure calcified atheroscle-
rotic plaque is robust to substantial differences in image acquisition protocol and subject
population. Augmenting the DL training data with a set of data-specific images im-
proved the performance to that of current calcium scoring methods.
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2.1 Introduction

Coronary artery calcium (CAC) scoring in dedicated CT examinations is frequently
performed for measuring coronary atherosclerotic plaque burden and prediction of
cardiovascular disease (CVD) risk. The CAC score may have increasing application as
noted in the 2018-2019 AHA/ACC Guidelines for Cholesterol and Prevention where
CAC score is a tool to refine the 10-year risk of atherosclerotic cardiovascular disease
when the CVD risk may be uncertain.23 CAC scoring is performed using non-contrast
enhanced ECG-synchronized cardiac CT, but, multiple reports indicate that application
of coronary calcium scoring in CT scans made with non-dedicated protocols, allows
CVD risk prediction.24 Accordingly, in addition to automatic methods for calcium
scoring in non-contrast enhanced ECG-synchronized cardiac CT,25–28 methodswere also
developed for automatic scoring in low-dose chest CT for lung cancer screening,29–32

radiotherapy treatment planning CT12,33 and PET attenuation correction CT.34 These
CT exams all include the heart; however vary widely in resolution, field of view,
reconstruction kernels, noise characteristics and the presence of ECG-synchronization
(Figure 2.1). Moreover, calcifications in the thoracic aorta (TAC) are predictors of
CVD35 and hence, several methods for automatic quantification of TAC in CT have
been developed,32,36 as well. Although a number of these methods achieved close to
human level performance in the type of CT they were developed for, their performance
in different types of CT has not been established.

In spite of many efforts supporting the development of robust DL software,37,38

an established limitation of DL algorithms is that performance can rapidly degrade
and fail with what appears to humans as only slight variations in the input data.39

Therefore, the purpose of this study was to evaluate the performance of a DL method
for automatic calcium scoring32 across a wide range of CT exams that visualize the
heart and the thoracic aorta. Furthermore, we investigated whether addition of a low
number of representative examples to the baseline training data is sufficient for the DL
method to adapt to different types of CT exams.

2.2 Materials and Methods

2.2.1 Image datasets

We included six existing datasets with 7240 subjects who received a non-contrast CT
exam visualizing the heart (Table 2.1). These were 902 consecutive ECG-triggered
cardiac CTs for calcium scoring (CAC-CT)28 used in clinical practice, 399 cardiac
PET attenuation correction (ACPET) CTs from the MYOMARKER study40 acquired in
rest condition during radionuclide myocardial perfusion imaging, 1409 consecutive
radiotherapy treatment planning (RadTherapy) CTs of breast cancer patients from
the UMBRELLA cohort,33 470 consecutive diagnostic chest CTs, 2879 ECG-gated CAC
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CAC-CT ACPET

Diagnostic chest RadTherapy

NLST

JHS

Figure 2.1: Examples of lung screening CT from the National Lung Screening Trial (NLST), coronary

artery calcification (CAC) scoring CT, PET attenuation correction (ACPET) CT, diagnostic chest CT,

radiotherapy treatment planning (RadTherapy) and CT exams from the Jackson Heart Study (JHS).

Indication of CAC in the LAD (red), LCX (green), RCA (blue) and aorta (yellow).

screening CTs from the Jackson Heart Study (JHS)41,42 and 1181 lung screening low-dose
chest CTs from the National Lung Screening Trial (NLST).43

The ACPET, JHS, RadTherapy and NLST examinations were acquired as part of
Ethics Committee approved studies where informed consent was obtained from all
subjects. The CAC-CT and diagnostic chest CT exams originate from the University
Medical Center Utrecht and were retrospectively and anonymously collected, the need
for informed consent was therefore waived by our institutional review board.
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RCA?
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LCX?

TAC?CNN1 CNN2

Input CT exam Candidates + labels Detected calcifications

LAD
LCX

Figure 2.2: Architecture of the DL calcium scoring algorithm. The algorithm consists of two con-

volutional neural networks (CNN). The first CNN has a large field of view and detects candidate

calcifications (voxels) in the image and labels them according to their anatomical location. The

second CNN has a smaller field of view and detects true calcified voxels among the candidates

resulting from the first CNN.

2.2.2 Reference calcium scores

CAC and TAC were semi-automatically labelled by four trained observers, each with
prior experience in over 500 exams, without overlap in the sets between observers The
observers were supervised by an expert radiologist (PdJ, 10 years of experience), who
was consulted in case of doubt. In-house custom-built software for semi-automatic
calcium scoring was used.12,44 In brief, the software for calcium scoring shows all
regions of ≥ 3 adjacent voxels with attenuation above 130HU with a colored overlay.
The observer manually identifies lesions with a mouse click and labels them according
to their anatomical location i.e. left anterior descending (LAD, including the left
main coronary), left circumflex (LCX), right coronary artery (RCA) and thoracic aorta
(TAC). Subsequently, three-dimensional component labelling is performed to mark all
connected voxels in the lesion as calcification. Calcifications in the Diagonal and Obtuse
Marginal branches were included in the LAD and LCX, respectively. Excessive image
noise and large metal implants interfered with semi-automatic segmentation of calcium
in 16/291 (5%) diagnostic chest CTs. These exams were therefore excluded from the test
set. In the JHS, reference CAC scores were obtained by semi-automatically determining
the artery trajectory and segmenting calcifications within this trajectory(21). TAC was
not quantified in the JHS and reference TAC scores were therefore not available for
this dataset. As representative examples for training the automatic method, 400 exams
were re-annotated using the standard protocol described above.

In the NLST CT examinations, we used the manual calcium annotations as pre-
viously published.32 In these exams, there was poor signal-to-noise ratio, making
semi-automatic segmentation infeasible.
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2.2.3 Automatic calcium scoring using deep learning

The DL network (Figure 2.2) for automatic calcium scoring32 consisted of two con-
secutive convolutional neural networks (CNN) that detected, quantified and labeled
calcifications according to their anatomical location (LAD, RCA, LCX and TAC). Off-
target calcifications in the heart such as valvular calcification were assigned anatomic
locations but were not included in this study. The code is publicly available at
https://github.com/sgmvanvelzen/calcium-scoring.

Two modifications were made to the previously published DL method:32 To stan-
dardize the field of view, exams with a field of view larger than originally used NLST
exams (RadTherapy, ACPET and diagnostic chest CT) were preprocessed with a CNN-
based localization method.45 Next, to match the standard calcium scoring protocol in
which calcifications are defined as lesions above 130 HU,13 we postprocessed the results
by identifying 3D connected clusters of voxels above 130 HU. We discarded lesions
with less than 25% of the voxels labeled as calcium by the network, as these were likely
false positive findings. Moreover, lesions larger than 10,000 mm3 were discarded as
these were likely connected to bone or foreign objects such as pacemaker wires.

CAC and thoracic aorta calcifications (TAC) were quantified using the DL method
trained with (I) 1181 low-dose chest CT from the NLST (baseline); (II) a small set
of the respective exam type supplemented to the baseline (data-specific); and (III) a
combination of all available exam types (combined, Figure 2.3)1. The baseline training
set was used for the original development of the DL algorithm for calcium scoring in
NLST CT.32 For data-specific training a number of randomly selected exams in each
dataset was reserved (Table 2.1). To ensure sufficient CAC and TAC examples from
the target CT type are available for training and validation, the number of reserved
exams was based on the calcium burden in the respective population (Table 2.1). For
each dataset, a data-specific network training was performed combining the baseline
with the training exams from the respective dataset. To evaluate whether a single
DL network could be applied to all types of CT, a combined training was performed
with all available training exams except the diagnostic chest exams, since these often
contained severe pathologies that did not appear in other exams. To allow for direct
comparison, the performance of the baseline, data-specific and combined network was
evaluated using the same test set. There was no overlap between training and test data.

The network was trained using parameters as described by Lessmann et al.32 In
brief, CNN1 was trained for 1000 iterations (batch size of 32) and CNN2 was trained for
750 iterations (batch size of 64), after which training was converged in all cases. During
training, batches of examples were randomly selected from the training exams. Owing
to the very low calcium burden of women undergoing radiotherapy for breast cancer,

1Although the architecture of the network remained unchanged, we refer to the network with baseline
training, data-specific training and combined training as ‘baseline’, ‘data-specific’ and ‘combined’ network,
respectively.
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Figure 2.3: Training and evaluation of the baseline, data-specific and combined algorithms. The

baseline is trained with NLST scans and its performance is evaluated in each CT protocol type.

Five data-specific algorithms are trained, one specifically for each CT protocol type, and evaluated

in the respective CT type. The combined algorithm is trained with a combination of all available

CT protocol types (excluding diagnostic chest CT) and its performance is evaluated in all available

CT protocol types. The CTs used for training are National Lung Screening Trial (NLST), coronary

artery calcification (CAC) scoring CT, PET attenuation correction (ACPET) CT, diagnostic chest CT,

radiotherapy treatment planning (RTP) and CT exams from the Jackson Heart Study (JHS)

we enforced 20% RadTherapy examples per batch during RadTherapy-specific training

2.2.4 Statistical analysis

The volume of calcification was determined (mm3). The calcium score was computed
using the Agatston method.46 Based on the Agatston score, subjects were stratified into
five commonly used CVD risk groups: 0, 1-10, 11-100, 101-400, >400.47

For each network, average sensitivity and average false positive calcium volume
per CT type were calculated. Reliability of volume and Agatston scores was assessed
with the intraclass correlation coefficient (ICC) between automatically and manually
obtained scores and their agreement by examining Bland-Altman plots with 95% limits
of agreement. Since the errors tend to increase with increasing CAC, in the Bland-
Altman plots regression for non-uniform differences was used to model the variation of
the absolute differences between manual and automatic scoring.48 To calculate the 95%
limits of agreement the predicted absolute differences were multiplied by 1.96 ∗ (π/2)0.5,
since the absolute differences have a half-normal distribution. Reliability of the CVD
risk categorization was assessed with Cohen’s linearly weighted kappa, and agreement
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was assessed by proportion of subjects assigned to the same category manually and
automatically. To test whether differences in absolute errors in quantified per label
calcification volume and Agatston score between algorithms are significant, a Wilcoxon
signed rank test for paired samples was used with a significance level of 0.05. Analyses
were performed with IBM SPSS statistics version 23 and an online statistical tool.49

2.3 Results

2.3.1 Demographics, prevalence and extent of coronary and thoracic cal-

cifications

Median age in test sets ranged from 52 years for CAC-CT to 67 years for ACPET CT
(Table 2.1). Percentage of women in the test populations ranged from 28% in CAC-CT to
100% in RadTherapy CT. The prevalence (CAC 15-92%, TAC 33-91%) and extent of CAC
and TAC (CAC: median Agatston score 18-671m3, TAC: median volume 174-1522m3)
differed substantially across the data sets.

2.3.2 Deep learning evaluation of Agatston score and CAC volume

For CAC volume, the baseline network achieved an ICC (95% CI) of 0.97 (0.96-0.97)
for CAC-CT, 0.84 (0.80-0.88) for ACPET, 0.90 (0.88-0.92) for diagnostic chest and 0.85
(0.83-0.87) for RadTherapy exams (Table 2.2). ICCs (95% CI) of the dataset-specific net-
work improved to 0.98 (0.98-0.99) for CAC-CT, 0.97 (0.96-0.98) for ACPET, 0.98 (0.97-0.98)
for diagnostic chest and 0.92 (0.91-0.93) for RadTherapy exams. The combined network
showed similar detection performance as the data-specific network. In line with this,
Bland-Altman plots in Figure 2.4 show improved agreement of Agatston scores for the
combined network with respect to the baseline network.

On average, the total computation time ranged between 2 – 7 minutes, depending
on the exam type, image volume and the extent of calcium burden in the exam. The
agreement of the automatically detected TAC volumes improved in 3 out of 4 datasets
when adding representative data to the training. The baseline network had an ICC
(95% CI) for TAC volume of 0.85 (0.83-0.87) for CAC-CT, 0.66 (0.57-0.73) for ACPET, 0.96
(0.95-0.97) for diagnostic chest and 0.98 (0.97-0.98) for RadTherapy exams (Table 2.2).
ICCs (95% CI) for CAC-CT, ACPET and RadTherapy increased to 0.96 (0.95-0.96), 0.96
(0.94-0.97) and 0.99 (0.98-0.99) for the data-specific network and to similar ICCs for the
combined network. ICC (95% CI) for diagnostic chest CT was lower than baseline for
the data-specific network, but similar to baseline for the combined network, with 0.97
(0.96-0.98).

Bland-Altman plots (Figure 2.5) show that the limits of agreement for TAC are nar-
rower for the combined network with respect to the baseline for CAC-CT, RadTherapy
and ACPET exams. However, the 95% limits of agreement for the combined training do
not visibly differ from the baseline for diagnostic chest CT.
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Table 2.2: Volume-wise performance evaluation of the baseline, data-specific and combined train-

ing in Coronary Artery Calcification (CAC) scoring CT, PET attenuation correction (ACPET) CT, diag-

nostic chest CT and radiotherapy treatment planning (RadTherapy) CT.

Baseline Data-specific

Reference Sensitivity FP Volume Sensitivity FP Volume BDp-value†

Volume (mm3) vol ICC (mm3) vol ICC

(mm3) %, 95%CI mm3 %, 95%CI mm3

CAC-CT

CAC 140 122 8 0.97 130 4 0.98 <0.01

(88, 85-91) (0.96-0.97) (93, 91-95) (0.98-0.99)

LAD 69 67 17 0.91 67 5 0.97 <0.01

(97, 96-99) (0.89-0.93) (97, 96-99) (0.96-0.97)

LCX 21 9 0 0.69 14 1 0.64 0.2

(41, 37-45) (0.63-0.74) (66, 62-70) (0.59-0.69)

RCA 50 37 1 0.91 45 2 0.97 <0.01

(74, 70-78) (0.90-0.93) (91, 89-94) (0.97-0.98)

Aorta 253 175 23 0.85 226 24 0.96 <0.01

(69, 65-73) (0.83-0.87) (89, 86-92) (0.95-0.96)

ACPET

CAC 1093 837 116 0.84 1011 155 0.97 0.9

(77, 71-82) (0.80-0.88) (93, 89-96) (0.96-0.98)

LAD 420 395 155 0.80 390 63 0.89 <0.01

(94, 91-97) (0.71-0.85) (93, 89-96) (0.86-0.92)

LCX 256 118 15 0.69 197 40 0.89 <0.01

(46, 39-53) (0.58-0.77) (77, 71-83) (0.85-0.91)

RCA 416 241 29 0.61 397 79 0.96 0.91

(58, 51-65) (0.51-0.70) (95, 93-98) (0.95-0.97)

Aorta 3373 2206 270 0.66 2766 453 0.96 <0.01

(65, 59-72) (0.57-0.73) (82, 77-87) (0.94-0.97)

Diagnostic chest

CAC 477 404 86 0.90 439 84 0.98 0.93

(86, 81-90) (0.88-0.92) (93, 90-96) (0.97-0.98)

LAD 203 191 93 0.89 186 75 0.93 <0.01

(95, 92-98) (0.86-0.91) (93, 90-96) (0.91-0.95)

LCX 106 45 5 0.46 76 14 0.91 <0.01

(43, 37-49) (0.36-0.55) (73, 68-78) (0.89-0.93)

RCA 169 137 19 0.84 153 19 0.97 <0.01

(82, 78-87) (0.81-0.88) (92, 88-95) (0.96-0.97)

Aorta 1985 1786 301 0.96 1797 414 0.92 0.95

(90, 86-93) (0.95-0.97) (90, 87-94) (0.90-0.94)

RadTherapy

CAC 19 14 2 0.85 16 1 0.92 0.03

(75, 72-78) (0.83-0.87) (86, 84-89) (0.91-0.93)

LAD 11 10 1 0.98 10 1 0.97 0.93

(98, 97-99) (0.97-0.98) (98, 97-99) (0.97-0.98)

LCX 4 1 0 0.34 3 0 0.99 0.01

(29, 26-32) (0.27-0.39) (87, 85-89) (0.99-0.99)

RCA 5 2 1 0.52 3 0 0.59 <0.01

(44, 40-47) (0.47-0.57) (54, 51-56) (0.54-0.63)

Aorta 407 381 66 0.98 386 47 0.99 <0.01

(94, 92-95) (0.97-0.98) (95, 93-96) (0.98-0.99)

For the CT exams from the Jackson Heart Study this analysis was not possible because only total Agatston scores were

available. Volume, sensitivity and false positive (FP) volume are averages of the respective dataset.

P-values of difference in absolute errors of per label calcium volumes between:
† baseline and data-specific
‡ baseline and combined
§ data-specific and combined
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continued...

Combined

Sensitivity FP vol Volume BCp-value‡ DCp-value§

(mm3) (mm3) ICC

(%, 95% CI)

130 2 0.99 <0.01 0.58

(93, 91-95) (0.99-0.99)

64 1 0.97 <0.01 <0.01

(93, 91-96) (0.97-0.98)

18 2 0.91 <0.01 <0.01

(87, 84-90) (0.89-0.92)

45 1 0.98 <0.01 <0.01

(91, 89-93) (0.98-0.99)

218 26 0.96 0.11 0.53

(86, 83-89) (0.96-0.97)

1010 124 0.97 0.04 0.07

(92, 89-96) (0.97-0.98)

395 60 0.90 <0.01 0.73

(94, 91-97) (0.89-0.93)

200 50 0.82 0.06 0.67

(78, 72-84) (0.78-0.87)

382 47 0.97 0.02 <0.01

(92, 88-96) (0.97-0.98)

2838 509 0.97 0.28 0.22

(84, 79-89) (0.96-0.98)

439 89 0.98 0.27 0.71

(92, 90-96) (0.97-0.98)

188 71 0.93 0.03 <0.01

(93, 91-96) (0.92-0.95)

77 25 0.91 0.34 <0.01

(72, 96-79) (0.89-0.93)

153 20 0.97 0.82 <0.01

(90, 88-95) (0.96-0.98)

1785 426 0.97 0.24 0.71

(90, 86-93) (0.96-0.98)

16 1 0.92 0.06 0.59

(86, 83-88) (0.91-0.93)

10 0 0.99 0.22 0.15

(95, 93-96) (0.99-0.99)

3 0 0.99 0.28 0.81

(92, 90-94) (0.99-0.99)

3 1 0.59 0.06 1

(57, 54-60) (0.54-0.63)

388 39 0.99 0.05 0.06

(95, 94-97) (0.98-0.99)
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2.3.3 Risk category assignment

The reliability and accuracy of the CVD risk categories was high (>0.81) for all three
networks (Table 2.3). The baseline network achieved a linearly weighted κ of 0.95,
0.88, 0.90, 0.85, and 0.85 for CAC-CT, ACPET, diagnostic chest, RadTherapy and JHS
exams, respectively. For all test sets combined the κ (95% CI) was 0.90 (0.89-0.91).
Reliability increased with the data-specific network to 0.98, 0.91, 0.89 and 0.90 for CAC-
CT, diagnostic chest, RadTherapy and JHS exams, respectively. These values are similar
to the reported reliability in NLST (0.91)(10). However, reliability of the data-specific
network in ACPET was slightly lower than baseline (0.84). For the combined network
reliability was excellent in all exam types with a κ of 0.97 for CAC-CT, 0.92 for ACPET,
0.91 for diagnostic chest, 0.91 for RadTherapy, and 0.89 for JHS exams. Overall, κ
(95% CI) was 0.92 (0.91-0.93) for all test sets combined for both the data-specific and
combined network.

The majority of patients were assigned to the correct CVD risk category (2194/2479
(89%) - 507/529 (96%)), and 14/529 (3%) - 172/2479 (7%) ended up in the neighboring
risk group (Figure 2.6). Points along the axes present zero-score subjects for which the
algorithm falsely detected CAC lesion or subjects with a non-zero score for which the
algorithm missed a CAC lesion. These errors mostly comprised lesions in the coronary
ostia labeled as TAC or mitral valve calcifications labeled as LCX.

2.3.4 Detection of presence versus absence of CAC

Many studies have demonstrated the negative predictive value of a zero CAC score.50,51

Accuracy (%, 95% CI) of detecting zero-score patients was 263/273 (96%, 94-99), 23/32
(72%, 56-87), 95/113 (84%, 77-91), 690/713 (97%, 95-98) and 1068/1268 (84%, 82-86) for the
baseline algorithm in CAC-CT, ACPET, diagnostic chest, RadTherapy and JHS exams,
respectively (Table 2.4). For the data-specific algorithm accuracy (%, 95% CI) was
268/273 (98%, 97-100), 12/32 (38%, 21-54), 94/113 (83%, 76-90), 691/713 (97%, 96-98) and
1168/1268 (92%, 91-94) for the baseline algorithm in CAC-CT, ACPET, diagnostic chest,
RadTherapy and JHS exams, respectively. For the combined algorithm accuracy (%,
95% CI) was 269/273 (99%, 97-100), 22/32 (69%, 53-85), 98/113 (87%, 80-93), 701/713
(98%, 97-99) and 1149/1268 (91%, 89-92) for the baseline algorithm in CAC-CT, ACPET,
diagnostic chest, RadTherapy and JHS exams, respectively. Errors that assigned a
subject with zero-score to the neighboring risk category, or vice versa, occurred mostly
in voxels representing noise in the direct proximity of a coronary artery, or in small
lesions affected by motion. Larger errors that assigned a zero-score subject to a higher
risk category are described above.
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Figure 2.4: Bland-Altman plots of coronary artery calcification (CAC) Agatston scores with 95%

limits of agreement (dotted lines) comparing manual scoring with automatic scoring in CAC-CT,

PET attenuation correction (ACPET) CT, clinical chest, radiotherapy treatment planning (RadTherapy)

and CAC research CT from the Jackson Heart Study (JHS). Outliers are indicated by an arrow with

the difference. 95% limits of agreement are represented by the following formula: Difference = =

±1.96(π/2)
0.5
(b+aMean

0.5
). For the baseline algorithm coefficients a andbwere 4.6 and -7.1 for CAC-

CT, 18.2 and -178.0 for ACPET CT, 10.6 and -46.5 for diagnostic chest, 7.2 and -3.2 for RadTherapy,

and 10.6 and -24.3 for JHS CT exams. For the combined algorithm coefficients a and b were 1.8

and -1.9 for CAC-CT, 7.9 and -76.2 for ACPET CT, 3.4 and 2.7 for diagnostic chest CT, 4.8 and -2.4 for

RadTherapy, and 6.6 and 10.8 for JHS exams.
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Figure 2.5: Bland-Altman plots of thoracic aorta calcification volumes (mm3) with 95% limits of

agreement (dotted lines) comparingmanual scoring with automatic scoring in CAC-CT, attenuation

correction CT (ACPET), clinical chest and radiotherapy treatment planning (RadTherapy). Outliers

are indicated by an arrow with the difference. 95% limits of agreement are represented by the

following formula: Difference = ±1.96(π/2)
0.5
(b +aMean

0.5
). For the baseline algorithm coefficients

a and b were 21.9 and -38.3 for CAC-CT, 40.4 and -859.2 for ACPET CT, 11.9 and -18.0 for diagnostic

chest, and 8.1 and 17.5 for RadTherapy exams. For the combined algorithm coefficients a and b

were 11.5 and -20.5 for CAC-CT, 17.2 and -226.1 for ACPET CT, 11.4 and -3.9 for diagnostic chest CT,

and 6.7 and -27.1 for RadTherapy exams.
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Figure 2.6: Agatston scores calculated automatically with the combined algorithm plotted against

manually calculated Agatston scores for scoring in coronary artery calcification (CAC) scoring CT, at-

tenuation correction CT (ACPET), clinical chest, radiotherapy treatment planning (RadTherapy) and

CAC research CT from the Jackson Heart Study (JHS). Difference between risk categories (RC) as-

signed by manual and automatic calcium scoring is indicated by colored blocks. CVD risk cate-

gories: 0, 1-10, 11-100, 101-400, >400. For JHS exams a random selection of 500 exams is shown

for visualization purposes. Note that the scale is a log scale.
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2.4 Discussion

Calcium scoring is commonly used for CVD risk prediction from non-contrast enhanced
ECG-triggered cardiac CT. Alternatively, calcium scores can be derived from routine
chest CT obtained for other purposes, such as lung cancer screening. In this study, we
demonstrated that a deep learning method for automatic calcium scoring is robust to
substantial differences in CT type (e.g., PET attenuation correction vs. low-dose chest
CT) and patient population (e.g., breast cancer patients vs. heavy smokers older than 55
years) without additional training. The DL method achieved an ICC between automatic
and manual reference scores of 0.79-0.97 for CAC and 0.66-0.98 for TAC over different
CT protocols. Additionally, by augmenting the baseline training data with a relatively
small data-specific set improved the performance to the level achieved on the data the
network was originally developed for (ICC range 0.84-0.99 for CAC and 0.92-0.99 for
TAC). Furthermore, training one instance with a combination of all included image
types resulted in a network with similar performance (ICC range 0.85-0.99 for CAC
and 0.96-0.99 for TAC).

Calcium scoring is a challenging task in several of the included image types. While
in literature interobserver agreement is high in dedicated CAC-CT (Agatston ICC=0.99
and risk category κ=0.99),44 it is lower in ACPET (κ=0.94 for 4 risk categories).52 Similarly,
the performance of the baseline network varied over the datasets. We demonstrated
that in various types of CTs, the agreement of automatically and manually assigned
CVD risk categories was high (κ range 0.85-0.95) and it approached interobserver
agreement.44,52,53

After CT protocol-specific training, the DL method performed similarly to previous
methods (κ 0.84 vs. 0.85 for ACPET

34) or outperformed those (κ 0.98 vs. 0.91 for
CAC-CT, 0.89 vs 0.80 for RadTherapy, 0.91 vs 0.80 for chest CT12,44,54). Note that
due to different datasets a direct comparison cannot be made, except for CAC-CT, in
which the same test set was used.44 While the use of CT protocol-specific training
resulted in improved risk category assessment for CAC-CT, RadTherapy and JHS
exams, for ACPET, agreement of risk categories slightly decreased. Visual inspection
of the results revealed that the ACPET-specific network segmented small false positive
lesions, mostly representing noise in the vicinity of the coronaries, more often than the
baseline, resulting in the incorrect CVD risk categorization in the lowest risk categories.
The ACPET exams suffered more from noise than the other types of evaluated exams.
Moreover, since for ACPET only 199 representative exams were added to the training
set, a possible explanation of degrading performance could be insufficient variation in
the representative training examples. By combining different types of exams into one
training set the network is able to score all included types of CTs with high reliability
compared with manual scoring.

For assessment of CVD risk, it is relevant to distinguish presence and absence
of CAC.51 Since the accuracy for detecting zero-score patients is excellent (268/273
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(98%) for the data-specific algorithm) and the false positive rate is low (1/256 (0%)), the
presented method would be suited to rule out presence of calcifications in patients in
dedicated CAC-CT. In other CT protocols, errors occurred more frequently (accuracy
from 12/32 (38%) in ACPET to 691/713 (97%) in RadTherapy), but one should note that
in these more challenging exams, such errors are not uncommon for human readers
either.

Multiple strategies have been proposed for adapting DL networks to a different
task or different input data. One well-known and well-performing approach is fine-
tuning a pretrained network.55,56 In our study the baseline training set was available,
therefore, instead we retrained the networks from initialization with a combination of
CT protocol-specific data and the baseline. This approach improved the performance
of the network compared with the baseline. In situations where the baseline dataset is
not available, fine tuning could be an interesting alternative.

This study has several limitations. Firstly, instead of using pixel-wise annotation, as
in the NLST exams,32 we annotated lesions by identifying 3D clusters of voxels above
130 HU matching standard calcium scoring. Since the training set mostly consists of
NLST scans, this difference in training and test references might have influenced the
performance of the networks. However, given the automatically obtained segmenta-
tions are postprocessed matching standard calcium scoring, we expect this influence
to be marginal. Secondly, reference calcium scores in the JHS exams were obtained
with a different protocol.42 However, since both manual and automatic scoring meth-
ods identified 3D clusters of voxels above 130 HU, we expect the discrepancy to be
negligible. Thirdly, since most CTs were acquired for other purposes than calcium
scoring, not all scans were acquired according to SCCT/SRT guidelines for calcium
scoring in non-cardiac chest CT.57 However, updated AHA/ACC guidelines23 focus
on presence vs. absence and risk categorization. Relatively small shifts in absolute
score are of uncertain clinical significance. Moreover, since the performance of the DL
method is excellent, it can potentially help radiologists report CAC in non-contrast
chest CT as SCCT/SRT guidelines advice. Lastly, we did not investigate how many
representative exams should be added to the training set to ensure optimal performance,
but estimated the amount of data-specific exams based on the calcium burden in the
relevant population.

In conclusion, this study presents the validation of a deep learning algorithm in
large and diverse sets of CT exams. The results show that the method adapted well to
a previously unseen CT type when a few representative training examples were added
to the large training set. A single combined deep learning model trained with all CT
types performed as well as specialized models, indicating potential for use in clinical
practice.
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Abstract

PURPOSE This study automatically quantified calcifications in coronary arteries (CAC)
and thoracic aorta (TAC) on breast planning computed tomography (CT) scans and
assessed its reproducibility compared to manual scoring.

MATERIAL AND METHODS Dutch (n = 1199) and Singaporean (n = 1090) breast cancer
patients with radiotherapy planning CT scan were included. CAC and TAC were
automatically scored using deep learning algorithm. CVD risk categories were based
onAgatston CAC: 0, 1–10, 11–100, 101–400 and >400. Reliability between automatic and
manual scoring was assessed in 120 randomly selected CT scans from each population,
with linearly weighted kappa for CAC categories and intraclass correlation coefficient
for TAC.

RESULTS Median agewas higher in Dutch patients than Singaporean patients: 57 versus
52 years. CAC and TAC increased with age and were more present in Dutch patients
than Singaporean patients: 24.2% versus 17.3% and 73.0% versus 62.2%, respectively.
Reliability of CAC categories and TAC was excellent in the Netherlands (0.85 (95%
confidence interval (CI) = 0.77–0.93) and 0.98 (95% CI = 0.96–0.98) respectively) and
Singapore (0.90 (95% CI = 0.84–0.96) and 0.99 (95% CI = 0.98–0.99) respectively).

CONCLUSIONS CAC and TAC prevalence was considerable and increased with age.
Deep learning software is a reliable method to automatically measure CAC and TAC
on radiotherapy breast CT scans.
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3.1 Introduction

Cardiovascular disease (CVD) is an important cause of death in women with breast
cancer, with 24% of patients over 65 years dying of this disease.58,59 The risk of CVD fol-
lowing breast cancer is increased by exposure to cardiotoxic breast cancer therapies such
as radiation therapy,60–62 anthracycline-based chemotherapy,4 and trastuzumab.63,64

Breast cancer patients with pre-existing CVD risk factors have the highest risk of
treatment induced cardio toxicity.65

Coronary artery calcification (CAC) and thoracic aorta calcification (TAC) are
markers of atherosclerosis.66–69 In clinical practice, these calcifications are measured
on cardiac computed tomography (CT) scans.70,71 CAC, measured on cardiac CT scans,
is an independent predictor of CVD events and mortality.72,73 Similarly, TAC, measured
on cardiac CT scans, is associated with an increased risk of coronary heart disease,
independent of CAC and other CVD risk factors.74,75 The majority (>60%) of breast
cancer patients undergoes radiation therapy after surgery and receives a non-contrast
enhanced CT scan of the breasts including the heart for individual radiation treatment
planning. CAC and TAC can be visualized and quantified on these scans.12 Information
on CAC and TAC can be used to estimate the risk of CVD in the individual breast
cancer patient, and thus to indicate who could benefit from cardiac monitoring, cancer
therapy with reduced cardiotoxicity and/or cardioprotective medication.2,76

In the present study, we applied a new deep learning algorithm for automated
quantification of CAC and TAC on planning CT scans.32 Differences in prevalence
of (subclinical) atherosclerosis, coronary artery calcifications, and CVD risk factors
have been observed among Western and Asian women without breast cancer, with the
highest prevalence in the Western population.77–79 This study aimed to investigate the
prevalence and quantity of CAC and TAC, as well as CAC based CVD risk in Western
(i.e. the Netherlands) and Asian (i.e. Singapore) breast cancer patients.

3.2 Methods

3.2.1 Design and study population

This cross-sectional study included women diagnosed with in situ or invasive breast
cancer who underwent a radiotherapy planning CT scan at the Radiation Oncology
Departments of the University Medical Center Utrecht (UMCU) in the Netherlands or
the National University Hospital of Singapore (NUHS) in Singapore. At the UMCU,
breast cancer patients were included in the context of the Utrecht cohort for Multiple
BReast cancer intErvention studies and Long-term evaLuAtion (UMBRELLA) study,
which includes all breast cancer patients referred to the Radiation Oncology Department
of the UMCU since 2013.80 Here, patients gave informed consent for use of their routine
clinical, imaging, pathology, and follow up data. 1199 patients, who were enrolled in
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UMBRELLA between 2013 and 2016, were included in the current study. At NUHS,
1090 breast cancer patients with a radiotherapy planning CT scan were included from
January 2005 (date of introduction of digital planning CT scan) to September 2015. We
excluded one patient’s CT scan as severe anatomical deformities of the chest limited the
calcification detection. Information on date of birth was extracted from the patient’s
CT scan. The Medical Ethical Review Board waived the need for informed consent of
patients in Singapore.

3.2.2 Imaging data

At the UMCU, planning CT scans were conducted with a Philips Brilliance Big Bore
CT scanner using 16 x 0.75 mm collimation, 120 kVp, 3 mm slice thickness. At NUHS,
all planning CT scans were conducted with a Philips Brilliance Big Bore CT scanner
using 16 x 1.5 mm collimation, 120 kVp, 5 mm slice thickness. All breast cancer patients
received a CT scan during free breathing, without contrast enhancement or ECG-
synchronization. At the UMCU, the majority of patients planned for left-sided and/or
parasternal irradiation underwent an additional deep inspiration breath-hold scan. For
patients with multiple CT scans (49.5% at UMCU and 2.1% at NUHS, the first CT scan
was used. In the UMCU, if two scans were made on the same day (i.e. one with and one
without deep inspiration breath-hold technique), the scan with breath-hold technique
was used.

3.2.3 Manual annotation

To define the reference for training and evaluation of the automatic calcium scoring
algorithm, CAC and TAC were manually annotated in 803 planning CT scans (i.e.
683 CT scans from UMCU and 120 CT scans from NUHS). A random selection of 240
CT scans (i.e. 120 CT scans from UMCU and 120 CT scans from NUHS) was done
for comparing manual annotation with automatic annotation. Manual annotation
was performed using 3D region growing of voxels representing calcifications above
the standard threshold of 130 Hounsfield Units (HU). The reference annotation was
conducted by trained medical students (AJ and SM) and PhD students (SGMvV and
SAMG), each with experience in over 500 CT scans prior to performing the automatic
segmentations.

For training of the CNN based localization algorithm bounding boxes around the
chest, similar to the field of view in low-dose chest CT scans, 45 CT scans from the
UMCU were manually annotated. These training scans were not part of the test
data for calcium scoring in this study and selected to have a variety in field of view
representative for the whole dataset.
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3.2.4 Automatic calcification quantification

All CT scans were automatically scored for atherosclerotic calcifications in the thoracic
aorta and coronary arteries, i.e. left coronary artery (LAD) including the left main
coronary artery, left circumflex (LCX), and right coronary artery (RCA), using a method
based on deep learning described by Lessmann et al.32

Briefly, the algorithm consists of two consecutive convolutional neural networks
(CNN) labeling voxels as calcium in the LAD, LCX, RCA, the aorta or cardiac valves.
To identify calcified voxels and label them according to their anatomical location, the
network needs to learn from larger spatial context, but it does not necessarily require
analysis of detailed local information. Therefore, the first CNN exploits a large field of
view (105 mm x 105 mm). To keep the number of trainable parameters limited, dilated
convolutions are used. To accurately determine which of the identified voxels represent
calcifications, the second network analyzes detailed local texture. Hence, the receptive
field of this CNN is 52 mm x 52 mm. This network performs two-class classification
to identify true calcifications among the potential calcifications detected by the first
network. This second CNN does not alter anatomical labels of calcified voxels. Because
the accuracy of calcium detection in the cardiac valves was not highly accurate in the
original work, it was not utilized in the present study.

This algorithm was developed to analyze low-dose chest CT scans. Therefore, to
apply the method to the data used in this study, all radiotherapy treatment planning
scans were cropped to a standardized field of view similar to the field of view of chest
CT scans. This was performed using CNN based localization described by de Vos et
al..81 This localization algorithm was trained with 45 UMBRELLA scans (40 for training
and 5 for validation), with manually annotated bounding boxes.

Thereafter, the CAC scoring algorithm was trained with data originally used to
develop the algorithm (1181 low-dose chest CT scans from the National Lung Screening
Trial)82 and with 563 cropped radiotherapy planning CT scans of breast cancer patients
within UMBRELLA). The first CNN was trained using 340 epochs (5 batches, 50 mini-
batches of size 86) and the second CNN using 80 epochs (10 batches, 100 minibatches
of size 512), with a learning rate of 0.0005 and 0.001 respectively. During training a
batch ratio of 20% UMBRELLA and 80% NLST examples was enforced. Note that the
algorithm identified voxels representing calcifications and not lesions as standardly
performed in clinic. Hence, to identify calcified lesions following clinical standard
and our manual annotation protocol, 3D region growing with 130 HU threshold was
applied to all automatically identified calcification voxels. For lesions with multiple
labels, the label with the largest volumewise contribution was chosen for the whole
lesions.

CAC was expressed in the Agatston score, calculated by multiplying density score
(corresponding to the highest HU of the calcification area) and calcification area (mm2),
and each patient was assigned to one of five CVD risk categories: 0, 1–10, 11–100,
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101–400, >400.46,47,53,83 TAC was expressed in volume scores (mm3). Scans with ex-
tremely high automatically detected CAC score (>1000) (n = 10) and TAC volume
(>10,000 mm3) (n = 4) were manually inspected and corrected if needed.

To quantitatively evaluate reproducibility of the automatic and manual calcium
scoring methods, 120 CT scans were randomly selected from the UMCU and NUHS. As
such, the total test set included 240 CT scans. Note that test scans were not used for
training the calcium scoring methods in any way.

Recommended slice thickness for CAC scoring is 3mm, whichwas used for planning
CT scans from the Netherlands. However, planning CT scans from Singapore were
conducted with 5 mm slice thickness. To evaluate the influence of slice thickness
on the automatic CAC score, we resampled the CT scans from UMCU to 5 mm slice
thickness with weighted average to increase approximate image acquisition. To ensure
that there were no differences between the identified calcifications in the acquired and
resampled CT scans, calcium maps were resampled accordingly. Only calcification
voxels exceeding 130 HU threshold in the 5 mm CT scans were retained. Subsequently,
CAC scores and corresponding CVD risk categories were calculated for the CT scans
with 5 mm slice thickness and compared with the scores of the original CT scans with
3 mm slice thickness.

3.2.5 Statistical analysis

Median (interquartile range (IQR)) was used to describe continuous variables with
skewed distributions. The number of breast cancer patients with CAC Agatston scores
above zero and above 100 was calculated per age category for Dutch and Singaporean
patients separately. In addition, median (IQR) volume (in mm3) of TAC was calculated
per age category. Differences between breast cancer patients from the Netherlands and
Singapore were tested with Chi-Square Test (or Fisher’s exact test when the cell count
was less than five) in case of categorical variables, and with Mann-Whitney U Test
in case of continuous variables with skewed distributions. To maximize the number
of images, and thereby obtain most reliable insight in calcification prevalence, this
analysis was performed utilizing the complete set of available images.

The performance of the software, i.e. reproducibility, was evaluated with reliability
and agreement measures using 240 CT scans from the test set. Reliability (agreement be-
yond chance) of CAC categories was assessed with Cohen’s linearly weighted kappa.84

Reliability of continuous CAC Agatston score and TAC volume was assessed with
intraclass correlation coefficient (ICC). The two way random effects and absolute agree-
ment ICC was used to assess reliability between automatic and manual calcification
scoring, taking into account the variance between patients and structural differences
between automatic and manual calcification scoring. Agreement (degree to which
CAC categories are identical between automatic versus manual CAC scoring method)
was assessed with proportional agreement. Analyses were performed with IBM SPSS
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Table 3.1: Distribution of age and cardiac calcification in 2288 breast cancer patients by country

of residence.

The Netherlands Singapore P-value

Western population Asian population

n = 1,199 n = 1,089

Age at time of CT scan, years, median (IQR) 57 (50–66) 52 (45–60) <0.01

Age at time of CT scan in categories, years, % (n) <0.01†

<41 5.7 (68) 12.6 (137)

41-50 20.9 (250) 32.2 (351)

51-60 32.8 (393) 32.4 (353)

61-70 28.9 (346) 16.1 (174)

>70 11.8 (142) 6.7 (73)

Coronary artery calcification in Agatston score categories, % (n) <0.01‡

0 75.8 (909) 82.7 (901)

1-10 8.8 (106) 3.9 (43)

11-100 8.8 (106) 7.1 (77)

101-400 4.4 (53) 3.9 (43)

>400 2.1 (25) 2.3 (25)

Thoracic aortic calcification

Median (IQR) in volume (mm3) 91 (0–692) 41 (0–495) <0.01

Patients with calcifications, % (n) 73.0 (875) 62.2 (677) <0.01

Abbreviations: CT = computed tomography, IQR = interquartile range.

* Statistically significant differences between countries were tested with the Chi-Square Test in case of a

categorical variable (or Fisher’s exact test when the cell count was less than five) andwith theMann–Whitney

U Test in case of a continuous variable.
†
All categories except for 51–60.

‡
Categories 0 and 1–10.

statistics version 23 and an online statistical tool.49

3.3 Results

Median age at time of planning CT scan was higher in breast cancer patients from the
Netherlands than from Singapore: 57(IQR = 50–66) versus 52 years (IQR = 45–60), p <
0.01 (Table 3.1). The prevalence of CAC was higher in patients from the Netherlands
than from Singapore: 24.2% versus 17.3% (p < 0.01). Among these, 6.5% and 6.2%
of patients from the Netherlands and from Singapore had a CAC score above 100.
Similarly, the prevalence of TAC was higher among patients from the Netherlands than
from Singapore (73.0% versus 62.2%, p < 0.01). Three CT scans, with an automatically
determined CAC score exceeding 1000 were corrected. Two were corrected to a higher
CAC score (from 4761 to 5473 and from 1243 to 1310) and one CT scan was corrected
to a lower CAC score (from 1191 to 721).

The prevalence of CAC increased with higher age from 3% for patients younger
than 41 years to 38% for patients between 41 and 70 years (Figure 3.1). The prevalence
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Figure 3.1: Distribution of breast cancer patients with a coronary calcification (Agatston) score

above zero by age category and country of residence.

of CAC was higher in breast cancer patients of 70 years or older from Singapore than
the Netherlands (70% versus 55%, p < 0.05). CAC scores over 100 were present in 10%
to 15% for patients between 61 and 70 years, and in 18% to 29% for patients of 70 years
and older (Figure 3.2). Median TAC volumes (mm3) increased with age from 41 mm3

for patients between 51 to 60 years to almost 2000 mm3 for patients of 70 years or older
(Figure 3.3).

3.3.1 Impact of difference in slice thickness

Using the resampled CT scans from the Netherlands (5 mm), the prevalence of CAC was
13.3% and 4.1% of breast cancer patients had a CAC score above 100 compared to 24.4%
and 6.5% respectively, using the originally acquired CT scans from the Netherlands (3
mm).

3.3.2 Performance of automatic analysis

Using the test set from the Dutch population, reliability of CAC categories assessed
with linearly weighted kappa was 0.85 (95% confidence interval (CI) = 0.77–0.93) and
slightly higher for scans with deep inspiration breath-hold (Table 3.2). Proportion of
agreement for CAC categories was 0.87 (95% CI = 0.79–0.92) and slightly higher for
scans with deep inspiration breath-hold. For continuous CAC score, the ICC was 0.95
(95% CI = 0.93–0.97) and slightly higher for scans with deep inspiration breath-hold.
For TAC volume, the ICC was 0.98 (95% CI = 0.96–0.98). Using the test set from the
Singaporean population, linearly weighted kappa was 0.90 (95% CI = 0.84–0.96) and
proportion of agreement was 0.90 (95% CI = 0.84–0.95) for CAC categories. The ICC
was 0.99 (95% CI = 0.98–0.99) for TAC volume.
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Figure 3.2: Distribution of breast cancer patients with a coronary calcification (Agatston) score

above 100 by age category and country of residence.

Figure 3.3: Median thoracic aortic calcification (interquartile range) in breast cancer patients by

age category and country of residence.
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3.4 Discussion

The prevalence of CAC and TAC in breast cancer patients from the Netherlands and
Singapore is considerable and increases with age. Up to one third of breast cancer
patients aged under 70 years has CAC. More than half of patients aged over 70 years
has CAC with higher prevalence in patients from Singapore than the Netherlands
(70% versus 55%). TAC is present in two thirds of patients from the Netherlands and
Singapore. This study also showed that the new evaluated automatic scoring method
based on deep learning algorithm is a reliable method to measure CAC and TAC on
radiotherapy planning CT scans.

Knowing a breast cancer patient’s CVD risk is important, especially when treatment
with cardiotoxic chemotherapy is considered, which occurs mainly among patients
aged under 70 years. In these cases, together with the patient, physicians may decide
to timely start with cardioprotective medication or opt for cancer therapy with reduced
cardiotoxicity.2,76,85 Patients with a high risk of CVD can be monitored before, during,
and after treatment, to reduce their risk of CVD by treatment with antihypertensives,
statin therapy or adopting a healthier lifestyle.2,76 The information can be used for
patient counseling prior to radiotherapy and would help patients understand their
individual CVD risk as compared to their risk of breast cancer recurrence. This would
be especially significant in elderly patients with early stage breast cancer.86

When using originally acquired CT scans, the present study found a lower preva-
lence of CAC in Singaporean patients compared to Dutch patients which was mainly
originating from differences in CVD risk categories 0 and 1–10. This may be explained
by the difference in slice thickness, which was larger in scans from Singapore (5 mm)
than the Netherlands (3 mm). Studies, both in phantoms and in patients, showed that
the CAC score decreased with increasing slice thickness.87,88 An estimation of the
prevalence of CAC in Dutch patients showed that the prevalence of CAC would likely
be lower when scans would have been acquired with 5 mm thick slices. This indicates
that the prevalence of CAC in Singaporean breast cancer patients might have been
underestimated in this study.

The present study shows high reproducibility of automatic compared to manual
CAC and TAC scoring on breast planning CT scans of both populations. As such, the
deep learning method can be used to measure CAC and TAC in different populations
with different disease characteristics and scan protocols. The automatic CAC scoring
algorithm using deep learning performed better than the previous software based
on supervised pattern recognition: reliability between automatic and manual CAC
scoring ranged from 0.94 to 1.00 in the present study and from 0.66 to 0.95 in a previous
study using radiotherapy planning CT scans.12 Planning CT scans performed with
deep inspiration breath-hold have a higher reproducibility of automatic calcification
detection, probably due to the fact that these scans have less motion artifacts compared
with scans performed during free breathing. The use of deep inspiration breath-hold



50 Chapter 3

is a technique that significantly reduces the irradiated volume and dose to the heart
compared to free breathing, especially for patients with left-sided local or internal
mammary lymph node radiotherapy.89

Both the software based on supervised pattern recognition (Išgum et al.90) and
the deep learning algorithm (Lessmann et al.32) were developed for low-dose, non-
dedicated chest CT scans acquired in a lung cancer screening trial. However, there
is a major difference in the employed technology. The method described by Išgum
et al.90 exploits a conventional machine learning approach where the discriminative
features describing potential calcifications are handcrafted and subsequently used by
a classifier that discriminates true coronary artery calcifications from other potential
calcifications. In contrast, the method proposed by Lessmann et al.32 employs a deep
learning approach where a network learns discriminative features directly from the
data itself. Moreover, the two methods differ in tasks. While the method proposed by
Išgum et al.90 detects only coronary calcifications, the algorithm proposed by Lessmann
et al.32 identifies coronary calcifications as well as calcifications in the thoracic aorta.
Since TAC is a stronger predictor for non-coronary cardiovascular events than CAC,
this is valuable additional information.

Typically, a large set of CT scans is needed to train deep learning algorithms. As
manual calcium scoring is cumbersome and time consuming due to image acquisition
without ECG-triggering, it was not feasible in the present study to manually annotate all
planning CT scans. The deep learning algorithm, however, identified CAC and TAC on
all available planning CT scans to increase evaluation of the prevalence and distribution
of CAC and TAC in breast cancer patients from the Netherlands and Singapore. This
may have introduced a small bias toward manual annotations in the CT scans used for
training.

Our results are in contrast with those of another Dutch study looking at CAC in
patients with noninvasive or invasive breast cancer treated with breast-conserving
surgery between 2008 and 2010.91 This study reported a CAC prevalence of 47% (unad-
justed for age), which is almost double the prevalence reported in the current study.
Both study populations were of comparable age. Unlike the present study, Mast et al.
(2012) manually detected CAC.91 It is, however, unlikely that the difference in CAC
scoring (automatic versus manual) explains the difference in CAC prevalence between
the current study and those reported by Mast et al.,91 as we showed high reproducibility
of automatic versus manual CAC scoring on radiotherapy planning CT scans. As the
breast cancer population of Mast et al. consisted only of 80 patients, their reported CAC
estimates are less precise than those CAC estimates reported in the current study.91

The Multi-Ethnic Study of Atherosclerosis (MESA) investigated CAC and TAC
in women free from clinically apparent CVD with different ethnic origins living in
the United States.70 MESA used electrocardiogram (ECG)-triggered cardiac CT scans
to detect calcifications.70 CAC was more present in white women (44.6%) than in
Chinese women (36.6%) (unadjusted for age).78 Compared to our study, this study
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population was older which may (partly) explain the higher CAC prevalence.78 Kanaya
et al. compared prevalence of CAC in white women and in South Asian women using
data from a community-based cohort of asymptomatic women in the United States.92

Non-contrast enhanced cardiac CT scans were used to assess the CAC.92 Similarly to
our study, South Asian women aged over 70 years had higher CAC scores than white
women aged over 70 years. Furthermore, the prevalence of TAC has been evaluated in
women aged between 42 and 50 years participating in the Healthy Women Study in
the United States.93 CAC was measured on electron beam tomographic scans.93 This
study reported a prevalence of TAC (volume not specified) of 78% which is comparable
to the prevalence of TAC reported in the current study (73%).93

We acknowledge that the association between CAC and TAC (automatically) de-
tected on radiotherapy planning CT scans and the risk of cardiovascular events has
not been established. Studies that have investigated CAC scores detected in ungated
low-dose chest CT scans acquired in screening of heavy smokers, found that these CAC
scores were independently associated with CVD events and all-cause mortality.94–96

The Bragatston study is a study on Automated Quantification of Coronary Artery
Calcifications on Radiotherapy Planning CTs for Cardiovascular Risk Prediction in
Breast Cancer Patients (NCT03206333). Bragatston is an ongoing multicenter study led
by the University Medical Center Utrecht,97 with the aim to quantify the association
between TAC and CAC and risk of CVD, and to optimize and validate the newly UMCU
developed automated software based on deep learning.32

To conclude, the prevalence of CAC and TAC is considerable in breast cancer
patients both from the Netherlands and Singapore, and increases with age. Up to
one third of breast cancer patients aged under 70 years has CAC and these patients
often receive cardiotoxic breast cancer treatments. Early identification of breast cancer
patients at high risk of CVD may help physicians find a good balance between optimal
tumor control and minimal treatment induced CVD.
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Abstract

IMPORTANCE Cardiovascular disease (CVD) is common in patients treated for breast
cancer, especially in patients treated with systemic treatment and radiotherapy and
in those with pre-existing CVD risk factors. Coronary artery calcium (CAC), a strong
independent CVD risk factor, can be automatically quantified on radiotherapy planning
computed tomography (CT) scans and may help identify patients at increased CVD
risk.

OBJECTIVE To evaluate the association of CAC with CVD and coronary artery disease
(CAD) in breast cancer patients.

DESIGN, SETTING, AND PARTICIPANTS Multicenter cohort study of 15,915 breast cancer
patients receiving radiotherapy between 2005-2016 who were followed up through
December 31, 2018. Age, calendar time and treatment adjusted Cox proportional hazard
models were used to evaluate the association of CAC with CVD and CAD.

EXPOSURES CAC scores were automatically extracted from planning CT scans using
a deep learning algorithm. Patients were classified into Agatston risk categories
(0,1-10,11-100,101-399,>400 units).

MAIN OUTCOMES AND MEASURES Occurrence of (non-)fatal CVD and CAD were ob-
tained from national registries.

RESULTS Seventy percent (n=11,179) had no CAC. CAC scores of 1-10, 11-100, 101-400
and >400 were present in 10.0% (n=1,584), 11.5% (n=1,825), 5.2% (n=830) and 3.1%
(n=497) respectively. After a median follow-up of 51.2 months, CVD risks increased
from 5.2% in patients with no CAC to 28.2% in patients with CAC>400. After adjust-
ment, CVD risk increased with higher CAC score: HRCAC=1-10=1.2 (95%CI=1.0-1.5),
HRCAC=11-100=1.8 (1.5-2.1), HRCAC=101-400=2.2 (1.8-2.7) and HRCAC>400=3.6 (3.0-4.4). CAC
was particularly strongly associated with CAD (HRCAC>400=7.8, 95%CI=5.5-11.2). The as-
sociation between CAC and CVD was strongest in patients treated with anthracyclines
(HRCAC>400=5.8, 95%CI=3.0-11.4).

CONCLUSIONS AND RELEVANCE CAC on breast cancer radiotherapy planning CT scans
was strongly associated with CVD, especially CAD. Automated CAC scoring on radio-
therapy planning CT scans can be used as a fast and low-cost tool to identify breast
cancer patients at increased risk of CVD, allowing implementing CVD risk mitigating
strategies with the aim to reduce the risk of CVD burden after breast cancer.
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4.1 Background

The risk of cardiovascular disease (CVD) in patients with cancer is increasingly being
acknowledged.98 CVD is common in patients diagnosed with breast cancer, where
survival is relatively favorable.1,2,98 In older women treated for breast cancer, CVD
competes with breast cancer as the leading cause of death.3 Some treatments, such as
anthracyclines, targeted therapy and radiotherapy are associated with an increased
risk of CVD.99,100 Patients treated with anthracyclines have a five times higher risk of
developing chronic heart failure or reduced left ventricular ejection fraction (LVEF)
compared with those treated without.4 The risks of coronary artery disease and my-
ocardial infarction are increased in patients who received radiotherapy.5,6 Breast cancer
patients with pre-existing CVD risk factors (e.g. hypertension, obesity, diabetes) have
the highest risk of treatment-induced cardiotoxicity.7

The presence and amount of coronary artery calcium (CAC), as quantified on
CT scans, is an independent risk factor for CVD.101,102 The majority of breast cancer
patients are treated with radiotherapy and undergo planning CT scans of the chest.
A study including 939 breast cancer patients found an association between CAC on
radiotherapy planning CT scans and acute coronary events.103 CAC scoring is usually
performed manually and therefore time-consuming. Our research group developed
a deep-learning calcium scoring algorithm for automated CAC scoring on dedicated
cardiac computed tomography (CT) scans.15,104 Automatic quantification of CAC offers
the opportunity for routine, fast, and low-cost identification of breast cancer patients
with an increased CVD risk without additional diagnostic radiation exposure.

We conducted the Bragatston study to evaluate whether automatically measured
CAC on radiotherapy planning CT scans is associated with an increased risk of CVD
and death in patients treated for breast cancer.97

4.2 Methods

4.2.1 Study population

Radiotherapy planning CT scans and clinical data were collected for patients who
were irradiated for primary breast cancer between January 2005 and December 2016
in the University Medical Center Utrecht, Utrecht, the Erasmus MC, Rotterdam, and
the Radboudumc, Nijmegen, the Netherlands. Patients were excluded when they had
metastasis at presentation or when planning CT scans were obtained ≥1 year after
breast cancer diagnosis. For patients with multiple planning CT scans, the first scan
was used. When two scans were made on the same day, the scan with breath-hold
technique was used because of higher reproducibility of CAC scoring (i.e., less motion
artifacts).33

Through linkage with the Netherlands Cancer Registry (NCR), information was
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obtained on laterality, TNM stage, grade, receptor status, type of surgery and chemother-
apy, endocrine therapy, targeted therapy and occurrence of other cancers.105

The Institutional Review Boards of the participating hospitals decided that the
Medical Research Involving Human Subjects Act did not apply. Requirement for
informed consent was waived.

4.2.2 Automatic calcification quantification

Planning CT scans without contrast enhancement and without ECG-synchronization
were acquired as part of clinical routine (typical parameters: 120 kVp, in-plane resolu-
tion 0.51–1.56 mm, and 1.5-5.0 mm slice thickness). CT scans were reconstructed to 3.0
mm slice thickness and 1.5 mm increment. CAC was measured automatically using a
deep-learning calcium scoring algorithm which detects and quantifies calcifications in
the coronary arteries.32,104 Reproducibility of automatically versus manually measured
calcium scores was high (linearly weighted kappa value 0.91 and intraclass correlation
coefficient 0.85)104

CAC was expressed as modified Agatston score, calculated by multiplying the
calcification area (in mm2) by the weight (1, 130–199 Hounsfield Units (HU); 2, 200–299
HU; 3, 300–399 HU; 4, >399 HU) determined by the maximum density of the area and
summing the lesion scores over slices. A minimal lesion definition of 1.5 mm3 was
maintained to eliminate noise. Patients were categorized into five categories: 0, 1–10,
11–100, 101–400, >400 Agatston units.15

4.2.3 Outcome assessment

The primary outcome was incidence of (non-)fatal CVD events, i.e., hospitalization or
death from CVD, between date of the CT scan and end of follow-up (December 31, 2017).
Other outcomes were hospitalization or death from coronary artery disease (a subset
of CVD), and all-cause mortality (including CVD deaths; follow-up until December 31,
2018).

For each patient, data on hospitalization for CVD and cancer (recurrence), and
death was collected through linkage with national registries by Statistics Netherlands.
Each hospital sent individual patient data to Statistics Netherlands and a pseudonym
of the combination of national personal identification number, sex, date of birth, and
postal code was used for linkage with national registries. Data on hospital admis-
sions, including inpatient hospital care, day care and long-standing observation (i.e.,
≥four hours), were obtained by linkage to the national basic registration hospital care
(Landelijke Basisregistratie Ziekenhuiszorg, LBZ; and before 2013 Landelijke Medische
Registratie, LMR), managed by Dutch Hospital Data (DHD). DHD used the International
Classification of Disease 9th revision (ICD-9) before 2013 and the 10th revision (ICD-10)
from 2013 onwards for disease classification.106 Diagnoses registered according to
ICD-9 were converted to ICD-10 using the conversion table of the Dutch WHO-FIC
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Collaborating Centre.107 CVD was defined by ICD-10 I00-199. Lymphedema (ICD-10:
I88-89) and varicose veins (ICD-10: I83-86) were not considered CVD events. Coronary
artery disease was defined by ICD-10 codes I20-25, e.g. myocardial infarction and
angina pectoris. Cancer, including recurrent disease or metastases, was defined by
ICD-10 codes C00-99, and non-melanoma skin cancer (ICD-10: C44) was not considered
for analysis. Breast cancer hospitalizations in the LBZ/LMR within one year after the
radiotherapy planning CT scan were considered as belonging to the initial breast cancer
diagnosis and therefore not considered as recurrence or new breast cancer.

Mortality data were obtained from the National Death Register, which contains
information on primary cause of death from all the deceased persons registered in the
Netherlands. Causes of death were classified according to the ICD-10.106

4.2.4 Statistical analysis

Follow-up time started at date of radiotherapy planning CT scan and ended at date of
the event, censoring, or end of follow-up, whichever came first. Censored observations
included non-cardiovascular death for the CVD analyses and death other than death
from coronary artery disease for the coronary artery disease analyses. In the CVD and
coronary artery disease analyses, patients were also censored at time of diagnosis of
breast cancer recurrence or other cancers, or at end of follow-up (December 31, 2017).
For the all-cause mortality analyses, patients who did not die during follow-up were
censored at the end of follow-up (December 31, 2018).

CVD, coronary artery disease and all-cause mortality rates per 1000 person years
were calculated for each CAC category (0, 1-10, 11-100, 101-400, >400). Cox propor-
tional hazards models were used to examine the association between CAC scores and
(non-)fatal CVD events, (non-)fatal coronary artery disease events and all-cause mortal-
ity. Results were expressed as hazard ratios (HRs) with corresponding 95% confidence
intervals (CIs). Models were stepwise adjusted for age at CT scan, calendar year of
CT scan (i.e., before 2012 versus 2012 and later), left- versus right-sided radiotherapy,
treated with anthracyclines versus not (i.e., no chemotherapy, chemotherapy without
anthracyclines or type of chemotherapy unknown), and treated with trastuzumab yes
versus no. The proportional hazards assumption was assessed using visual inspection of
Kaplan–Meier curves and Schoenfeld residuals for calendar year of CT scan, radiother-
apy, chemotherapy with anthracyclines, and trastuzumab. Because the proportional
hazards assumption was not met for calendar year of CT scan, cox proportional hazards
models were stratified by calendar year. To test the linearity assumption, Martingale
residuals against age at CT scan were plotted. Because of a nonlinear association
between age and mortality, natural splines with 3 knots were included in the all-cause
mortality model.

The association between CAC scores and CVD was examined for patients with left-
versus right-sided breast cancer and with anthracyclines versus without. The number
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Table 4.1: Baseline characteristics of the Dutch multicenter cohort of 15,919 patients receiving

radiotherapy for breast cancer between 2005-2016

CAC score (Agatston units)

Total 0 1-10

N (%) 15915 11179 (70.2) 1584 (10.0)

Sex, female, n (%) 15879 (99.8)

Age, mean (SD) 59.0 (11.2) 56.1 (10.4) 62.4 (10.4)

Follow-up time in months, median (IQR)† 51.2 (27.9 - 81.1) 53.0 (29.4 - 81.7) 53.0 (28.1 - 87.5)

Pathological tumor stage, n (%)

DCIS/T0 2152 (13.5) 1595 (14.3) 200 (12.6)

T1 9540 (59.9) 6561 (58.7) 1010 (63.8)

T2 3436 (21.6) 2456 (22.0) 302 (19.1)

T≥3 567 (3.6) 401 (3.6) 50 (3.2)

Unknown 220 (1.4) 166 (1.5) 22 (1.4)

Pathologic nodes stage, n (%)

N0 10760 (67.6) 7471 (66.8) 1080 (68.2)

N1m 986 (6.2) 700 (6.3) 101 (6.4)

N1 2369 (14.9) 1728 (15.5) 231 (14.6)

N2 840 (5.3) 605 (5.4) 69 (4.4)

N3 460 (2.9) 320 (2.9) 49 (3.1)

Unknown 500 (3.1) 355 (3.2) 54 (3.4)

Laterality, n (%)

Left-sided‡ 8223 (51.7) 5780 (51.7) 831 (52.5)

Radiotherapy, n (%)

Local 4179 (26.3) 2657 (23.8) 438 (27.7)

Local with boost 4503 (28.3) 3495 (31.3) 362 (22.9)

Loco regional (with and without boost) 1824 (11.5) 1323 (11.8) 155 (9.8)

Other 67 (0.4) 42 (0.4) 7 (0.4)

Unknown 5342 (33.6) 3662 (32.8) 622 (39.3)

Chemotherapy, n (%)

None 9680 (60.8) 6116 (54.7) 1078 (68.1)

With anthracyclines 4333 (27.2) 3554 (31.8) 325 (20.5)

Without anthracyclines 1119 (7.0) 903 (8.1) 95 (6.0)

Type of chemotherapy unknown 783 (4.9) 606 (5.4) 86 (5.4)

Hormonal therapy, n (%)

None 8778 (55.1) 6038 (54.0) 917 (57.9)

Aromatase inhibitor 592 (3.7) 361 (3.2) 68 (4.3)

Tamoxifen 4671 (29.3) § 3442 (30.8) 404 (25.5)

Other or type unknown 1878 (11.8) 1338 (12.0) 195 (12.3)

Trastuzumab, n (%)

Yes 1257 (7.9) 1034 (9.2) 103 (6.5)

CAC = coronary artery calcium; IQR = interquartile range; SD = standard deviation. item[†] Time from radio-

therapy planning CT scan until date of (non-)fatal cardiovascular disease or censoring (non-cardiovascular

disease, diagnosis of breast cancer recurrence or other cancers, or end of follow-up (December 31, 2017).
‡
Information about laterality was missing for 3 patients.

§
In combination with tamoxifen, 268 patients were also treated with aromatase inhibitor and 118 patient

with other types of hormonal therapy.
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continued...

CAC score (Agatston units)

11-100 101-400 >400

1825 (11.5) 830 (5.2) 497 (3.1)

65.8 (9.5) 69.5 (8.2) 71.0 (7.9)

48.7 (27.0 - 81.5) 42.2 (22.2 - 66.9) 34.9 (18.9 - 60.9)

216 (11.8) 92 (11.1) 49 (9.9)

1157 (63.4) 507 (61.0) 305 (61.4)

379 (20.8) 189 (22.8) 110 (22.1)

55 (3.0) 31 (3.7) 30 (6.0)

18 (1.0) 11 (1.3) 3 (0.6)

1267 (69.4) 594 (71.6) 348 (70.0)

109 (6.0) 48 (5.8) 28 (5.6)

247 (13.5) 104 (12.5) 59 (11.9)

96 (5.3) 42 (5.1) 28 (5.6)

53 (2.9) 22 (2.7) 16 (3.2)

53 (2.9) 20 (2.4) 18 (3.6)

938 (51.4) 426 (51.4) 248 (49.9)

556 (30.5) 321 (38.7) 207 (41.6)

388 (21.3) 175 (21.1) 83 (16.7)

194 (10.6) 91 (11.0) 61 (12.3)

13 (0.7) 3 (0.4) 2 (0.4)

674 (36.9) 240 (28.9) 144 (29.0)

1376 (75.4) 675 (81.3) 435 (87.5)

308 (16.9) 109 (13.1) 37 (7.4)

71 (3.9) 32 (3.9) 18 (3.6)

70 (3.8) 14 (1.7) 7 (1.4)

1050 (57.5) 470 (56.6) 300 (60.4)

92 (5.0) 50 (6.0) 18 (3.6)

461 (25.3) 237 (28.6) 127 (25.6)

222 (12.2) 73 (8.8) 52 (10.5)

75 (4.1) 30 (3.6) 15 (3.0)
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of patients treated with trastuzumab was too small for subgroup analysis. Tests for
interaction were performed by comparing models with an interaction term of CAC
with covariates to the model without the interaction term using the likelihood ratio
test.

Treatment of newly diagnosed cancers or recurrence may change the probability of
developing CVD. Also, death other than from CVD precludes the occurrence of CVD.
To assess the effect of these competing events, sensitivity analyses were conducted com-
prising competing risk survival analysis.108 New cancers, recurrences and/or all-cause
mortality (excluding death from CVD) were considered as competing risks. Results
were presented as subdistribution hazard ratios (sHR) with 95% CIs and represent the
instantaneous CVD risk in patients who had not yet experienced the event. Statistical
analyses were conducted in SPSS version 25 and R Statistical Software version 3.6.2.

4.3 Results

Between 2005 and 2016, we identified 18,316 patients with 22,477 planning CT scans.
After deduplication, linkage with the NCR and Statistics Netherlands, and excluding
ineligible patients, 15,915 patients were available for analysis. Mean age at CT scan was
59.0 years (Table 4.1). A total of 11,179 (70.2%) patients had no CAC, 10% (n=1,584), 11.5%
(n=1,825), 5.2% (n=830) and 3.1% (n=497) had CAC scores of 1-10, 11-100, 101-400 and
>400 respectively. Patients with higher CAC scores were on average older compared to
patient without CAC.

4.3.1 CAC and cardiovascular disease

After a median follow-up time of 51.2 months (IQR=27.9-81.7), 1,341 (8.2%) patients
were hospitalized for CVD and 113 (0.7%) patients died of CVD (Table 4.2). The risk of
(non-)fatal CVD events increased with increasing CAC score (Table 4.3). Five percent
of the patients without CAC (n=579/11,179) had a CVD event (hospitalization or death
from CVD) during follow-up, while 28.0% of the patients with a CAC score of >400
(n=140/497) had a CVD event. The incidence rate of CVD increased from 10.7 per 1000
person-years in patients without CAC to 77.8 per 1000 person-years in patients with a
CAC score of >400.

After adjustment for age at planning CT scan and stratification for calendar year of
CT scan, CAC was associated with CVD risk (Table 4.3). Compared to patients without
CAC, patients with a CAC score of 1-10, 11-100, 101-400 and >400 had a 1.2, 1.8, 2.2
and 3.6 higher risk of (non-)fatal CVD, respectively (Table 4.4).

When treated with anthracyclines, patients with a CAC score of >400 had a 5.8
times higher risk (95%CI=3.0-11.4) than patients without CAC (Table 4.5). In patients
not treated with anthracyclines, this risk was 3.5 times higher (95%CI=2.8-4.3). The
interaction between CAC and anthracyclines was significant. We did not observe a
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Table 4.2: Number of hospitalizations of cardiovascular disease and coronary heart disease, and

deaths by CAC score category

CAC score (Agatston units)

Total

n = 15,915

0

n = 11,179

1-10

n = 1,584

11-100

n = 1,825

101-400

n = 830

>400

n = 497

Hospital admission for CVD, n (%)

1,341 (8.4) 643 (5.8) 146 (9.2) 260 (14.3) 154 (18.6) 138 (27.7)

Hospital admission for coronary artery disease, n (%)

336 (2.1) 127 (1.1) 37 (2.3) 70 (3.8) 51 (6.1) 51 (10.3)

All-cause mortality, n (%)

1100 (6.9) 581 (5.2) 146 (9.2) 162 (8.9) 108 (13.0) 103 (20.7)

Death from CVD, n (%)

113 (0.7) 28 (0.3) 16 (1.0) 23 (1.3) 18 (2.2) 28 (5.6)

difference in the association between patients with left- and right-sided breast cancer
(HR>400=3.8, 95%CI=2.9-5.0 and HR>400=3.4, 95%CI=2.5-4.5 respectively).
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Table 4.4: Risk of cardiovascular disease, coronary heart disease and all-cause mortality by CAC

score category

Unadjusted Model 1 Model 2 Model 3

CAC score

(Agatston units)
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Cardiovascular disease

0 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

1-10 1.6 (1.4-2) 1.2 (1.0-1.5)† 1.2 (1.0-1.5)† 1.1 (0.9-1.4)

11-100 2.7 (2.4-3.2) 1.8 (1.5-2.1) 1.8 (1.5-2.1) 1.8 (1.5-2.1)

101-400 4.1 (3.4-4.9) 2.2 (1.8-2.7) 2.2 (1.8-2.7) 2.1 (1.7-2.6)

>400 7.1 (5.9-8.6) 3.6 (2.9-4.4) 3.6 (3-4.4) 3.4 (2.8-4.2)

Coronary heart disease

0 1.0 (ref) 1.0 (ref) 1.0 (ref)

1-10 2.1 (1.4-3.0) 1.7 (1.2-2.5) 1.7 (1.2-2.5)

11-100 3.8 (2.8-5) 2.9 (2.1-3.9) 2.8 (2.1-3.9)

101-400 6.3 (4.5-8.8) 4.3 (3.0-6.2) 4.3 (3.0-6.1)

>400 12.2 (8.8-16.8) 7.9 (5.5-11.3) 7.8 (5.5-11.2)

All-cause mortality

0 1.0 (ref) 1.0 (ref) 1.0 (ref)

1-10 1.6 (1.4-1.9) 1.3 (1.1-1.6) 1.4 (1.2-1.7)

11-100 1.8 (1.5-2.0) 1.3 (1.1-1.5) 1.3 (1.1-1.6)

101-400 2.9 (2.4-3.5) 1.7 (1.4-2.1) 1.8 (1.5-2.2)

>400 5.1 (4.2-6.1) 2.7 (2.3-3.3) 2.8 (2.3-3.4)

CAC = coronary artery calcium; CI = confidence interval; HR = hazard ratio; ref = reference.

Cardiovascular disease included all cardiovascular disease hospitalizations and death (ICD-10

codes I00-199, Lymphedema and varicose veins excluded (I88-89 and I83-86 respectively))

Coronary heart disease included all coronary heart disease hospitalizations and death (ICD-10

codes I20-25, including angina pectoris and myocardial infarction)

Model 1: adjusted for age at time of CT scan and stratified by calendar year of CT scan

Model 2: adjusted for age at time of CT scan, laterality, treated with anthracyclines and treated

with trastuzumab, and stratified by calendar year of CT scan

Model 3: adjusted for age at time of CT scan, laterality, treated with anthracyclines and treated

with trastuzumab, and stratified by calendar year of CT scan; model included interaction between

CAC and anthracyclines

Mortality model 1 and 2: age was transformed (natural spline with df=3)
†
95% CI lower limit >1.0
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4.3.2 CAC and coronary artery disease

Patients with a higher CAC score had a higher risk of coronary artery disease. One
percent of the patients without CAC had a coronary artery disease event and 10.3%
of the patients with a CAC score of >400 had a coronary artery disease event (Table
4.2). The incidence rate increased from 2.2 for patients without CAC to 26.7 per 1000
person-years for patients with a CAC score of >400 (Table 4.3), corresponding to an
age adjusted 8-fold increased risk of coronary artery disease (HR=7.8, 95%CI=5.5-11.2)
(Table 4.4). The association between CAC and coronary artery disease was not different
for patients with CT scans before 2012 versus 2012 and later, when treated with left-
versus right-sided radiotherapy when treated with anthracyclines yes versus no (i.e.,
interactions were not significant; Table 4.7).

4.3.3 CAC and all-cause mortality

The incidence rate of all-cause mortality increased from 10.9 deaths per 1000 person-
years in patients without CAC to 52.8 deaths per 1000 person-years in patients with
CAC >400 (Table 4.3). Also in relative terms, patients with a CAC score of >400 had a
higher risk of dying than patients without CAC (HR=2.8, 95%CI=2.3-3.4; Table 4.4). The
association between CAC and all-cause mortality was not different for patients with
CT scans before 2012 versus 2012 and later, when treated with left- versus right-sided
radiotherapy when treated with anthracyclines yes versus no (i.e., interactions were
not significant). The association between CAC and all-cause mortality was stronger in
patients treated with anthracyclines compared to patients treated without (HR>400=4.6,
95%CI=2.4-8.6 and HR>400=2.8, 95%CI=2.2-3.4, respectively; Table 4.8), but test for
interaction was not significant.

4.3.4 Competing risks

When taking competing risks into account, CVD risk remained strongly associated
with CAC (Table 4.6; Figure 4.1). Results were consistent with the results from the Cox
proportional hazards analyses described above.
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Table 4.6: Competing risks survival analysis of cardiovascular disease by CAC category

Subdistribution HR (95% CI)†

CAC score (Agatston units) Model 1 Model 2 Model 3

0 1.0 (ref) 1.0 (ref) 1.0 (ref)

1-10 1.2 (1.0-1.5)‡ 1.2 (1.0-1.5)§ 1.2 (1.0-1.5)§

11-100 1.8 (1.5-2.1) 1.8 (1.5-2.1) 1.8 (1.5-2.1)

101-400 2.2 (1.8-2.7) 2.2 (1.8-2.7) 2.2 (1.8-2.6)

>400 3.5 (2.9-4.3) 3.5 (2.8-4.3) 3.4 (2.8-4.2)

CAC = coronary artery calcium; CI = confidence interval; HR = hazard ratio; ref

= reference

All models were adjusted for age at time of CT scan and stratified by calendar

year of CT scan

Model 1: competing risk was all-cause mortality

Model 2: competing risk was cancer hospitalization

Model 3: competing risks were all-cause mortality and cancer hospitalization

Cardiovascular disease included all cardiovascular disease hospitalizations and

death (ICD-10 codes I00-199, Lymphedema and varicose veins excluded (I88-89

and I83-86 respectively))
†
Competing risk survival analysis as described by Fine and Gray (Fine 1999 J Am

Stat Assoc) provides subdistribution hazard ratios.
‡
95% CI lower limit <1.0

§
95% CI lower limit >1.0
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Competing risk: cancerCompeting risk: breast cancer

Competing risk: all-cause mortality Competing risk: cancer and 
all-cause mortality
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Figure 4.1: Cumulative incidence curves for CVD by CAC category in the presence of competing

risks (Aalen-Johansen estimates and 95% intervals).

Cardiovascular disease included all cardiovascular disease hospitalizations and death (ICD-10

codes I00-199, Lymphedema and varicose veins excluded (I88-89 and I83-86 respectively)).

CAC = coronary artery calcium
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4.4 Discussion

CAC measured on radiotherapy planning CT scans of patients with breast cancer is
strongly associated with (non-)fatal CVD, especially in patients treated with anthracy-
clines.109 The association between CAC and coronary artery disease was even stronger.
Because patients with breast cancer planned for radiotherapy routinely undergo a
planning CT scan, automated CAC scoring can be used as a fast and low-cost tool to
identify patients at increased risk of CVD. Patients with an increased risk may be re-
ferred for complete CVD work up, lifestyle advice and/or initiation of cardioprotective
pharmacotherapy.

A meta-analysis including five population-based cohorts showed that 63.9% of 6,739
low-risk women had no CAC, which is somewhat lower compared to our cohort.102

After a median follow-up ranging from 7.0 to 11.6 years, the risk of coronary artery
disease was increased in women with a CAC score of >0-100 (HR=1.8) and a CAC
score above 100 (HR=4.4). We found slightly stronger associations in our breast cancer
population.

Our results are in line with a Dutch study including 939 breast cancer patients (mean
age of 58.4 years).103 The proportion of patients with CAC (manually quantified on
radiotherapy planning CT) was lower than in our cohort (21.1% and 28.8%, respectively).
Breast cancer patients with a CAC score ≥100 had a five times higher risk (HR=5.0)
of acute coronary events compared to patients without CAC. This is in line with our
study, where a strong association between CAC and coronary artery disease was found:
HR101-400=4.3 and HR>400=8.2 compared to patients without CAC.

The association of CAC with CVD and coronary artery disease was similar in
patients treated with left- and right-sided radiotherapy. Women treated with left-sided
radiotherapy have an increased risk of CVD compared to women treated with right-
sided radiotherapy, and this risk increases with time since diagnosis.5,19 Our median
follow-up of 51.6 months (i.e., 4.3 years) may be too short to draw conclusions on a
potential interaction between CAC and left- versus right-sided radiotherapy. Because
of increased awareness of the potential damage of radiation dose to the heart and the
introduction of the deep inspiration breath-hold technique in left-sided radiotherapy
around 2010, the mean heart dose has been reduced and the effect of radiotherapy on
the risk of CVD may have decreased over years.110–112

Completeness of the registry on hospital admissions varied over the years. Not
all hospital admissions were registered, and missing hospitalizations increased from
10.5% in 2006 to 25% in 2013. From 2014 onward, around 90% of all hospital admis-
sions were covered. As such, the absolute risk of hospitalization was underestimated.
However, since the probability of incomplete data on hospitalization was most likely
non-differential (i.e., similar for patients with low and high CAC scores), the association
between CAC and CVD events is unlikely to be distorted. Second, until 2011, linkage
was based on sex, date of birth and postal code and the combination of variables was
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not unique. Therefore, 3% of the hospital admissions could not be uniquely linked to
one person and these patients had to be excluded. Third, until 2015, CVD events that
required hospitalization for ≥ four hours without overnight stay were not registered as
hospitalization, which may have resulted in an underestimation of CVD incidence.

Information on traditional CVD risk factors such as smoking, body mass index,
low physical activity, and family history of CVD was lacking. In a previous study, we
demonstrated that 28% of the breast cancer patients with a CAC score above 100, had
no other traditional CVD risk factors.12 Based on traditional risk factors, these patients
would not have been identified as high risk patients. This implies that CAC scoring
may be of added value for the screening of patients at increased risk of CVD.

Given the strong association between automatically measured CAC on radiotherapy
planning CT scans and the risk of CVD in patients with breast cancer, future research
should focus on how to use CAC quantification in clinical practice, with the ultimate
aim to lower CVD burden in (ex) breast cancer patients. Until now, there is no evidence
indicating that measuring CAC, and taking action in case of increased risk, improves
patient outcomes. We do not know whether cardiovascular evaluation, followed by
lifestyle or pharmaceutical interventions, reduces the risk of (death from) CVD. Neither
do we know whether the benefits of de-escalation of treatment in order to reduce
the risk of CVD (e.g. changing radiotherapy technique or comprising target volumes,
or chemotherapy dose reduction) outweigh the potential benefits in terms of tumor
control and prevention of breast cancer recurrence.

To conclude, with our in-house developed deep learning algorithm, the presence and
extent of CAC can be automatically and accurately quantified on routinely performed
radiotherapy planning CT scans. The CAC score is a strong predictor for CVD that can
be fast and ‘freely’ obtained from planning CT scans, which may enable identification
of patients at increased or even high risk of CVD. Timely and accurate identification of
high-risk patients might allow mitigation of cardiovascular risk, including management
of CVD risk factors and switching to less cardiotoxic treatment regimens.
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Abstract

Coronary heart disease (CHD) is among the leading causes of death worldwide. A
strong and independent predictor of (non-)fatal cardiac events is the amount of coronary
artery calcification (CAC) quantified in CT. However, quantification of CAC (calcium
scoring) suffers from limited interscan reproducibility, which is mainly due to the use
of a fixed intensity level threshold for segmentation. This is especially pronounced
in CT exams without ECG-synchronization where lesions are more subject to cardiac
motion and partial volume effects. To address the limited interscan reproducibility of
CAC quantification, we propose a CAC quantification method that does not require a
segmentation threshold. Our method uses a CycleGAN to decompose an image with
CAC into an image without CAC and an image showing only CAC. To simplify the
task, we analyze only the heart in slices with CAC. The method was trained using
626 low-dose chest CTs and 514 radiotherapy treatment planning CTs. Evaluation
was performed in radiotherapy treatment planning CTs of 1,662 patients, each having
two scans. A lower relative interscan difference in CAC mass was achieved by the
proposed method: 47% compared to 89% for manual clinical calcium scoring and 114%
for automatic clinical calcium scoring. The increased interscan reproducibility achieved
by our method may lead to increased reliability of CHD risk categorization and, thus,
improved accuracy in the prediction of CHD events.
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5.1 Introduction

Coronary heart disease (CHD) is among the leading causes of death worldwide.113

A clear manifestation of CHD is calcification of the coronary arteries. The amount
of coronary artery calcifications (CAC), i.e. coronary calcium score, is a strong and
independent predictor of cardiac events, e.g. myocardial infarction or heart failure.13,14

In CT, CAC is defined as a high density area of ≥130 HU15 in the artery. Using this
definition CAC is commonly quantified into CAC volume, mass or Agatston score.15

The Agatston score is used most because it directly indicates a patient’s risk of CHD
events.

In a clinical setting the amount of CAC is routinely quantified in non-contrast-
enhanced cardiac CT exams with ECG-synchronization. Given its clinical relevance, the
guidelines of the Society of Cardiovascular Computed Tomography and the Society of
Thoracic Radiology18 recommend to quantify and report CAC on all non-contrast CTs
showing the heart, including non-ECG-synchronized scans. However, the interscan
reproducibility of calcium scores is limited. For example, the reported mean interscan
variability of Agatston scores in cardiac CT with ECG-synchronization ranges from
15% to 41%.114–117 Hence, in non-ECG-synchronized scans the limited interscan repro-
ducibility is further emphasized due to increased influence of partial volume effect and
cardiac motion. For instance, Jacobs et al.118 reported an average interscan variability
of 71% for Agatston scores in non-triggered chest CT scans, that led to assignment of
different cardiovascular risk category in 24% of subjects.

The use of a single intensity level threshold has been identified as one of the
major causes of the limited reproducibility of CAC quantification,119 which may lead
to under- or overestimation of the amount of CAC. This is especially pronounced
in CT exams without ECG-synchronization where visualization of the calcifications
is often extremely affected by cardiac motion. As a consequence, the calcifications
are blurred or completely remain below the threshold. Nevertheless, common to all
manual and automatic calcium scoring methods is the use of the clinical definition that
identifies voxels in the coronary arteries above the 130 HU threshold as CAC in an
explicit manner (through segmentations)32,104 or implicit manner (through regression
of the CAC amount).54,120 To address this issue, automatic methods have been proposed
that either use automatic adaptive thresholds or omitted thresholding for segmentation
of calcified lesions. Groen et al.121 proposed using an adaptive threshold dependent
on the maximum intensity value of each CAC lesion. Song et al.122 proposed to adapt
the threshold based on the intensity of the background in the vicinity of lesions in
combination with deconvolution of the image, using a scanner-specific point spread
function to decrease partial volume effect. Saur et al.123 omitted the intensity threshold
for segmentation by employing a mesh-based algorithm that segmented CAC lesions
by refining their boundary based on the intensity value profile. A different method that
circumvents thresholding for segmentation, was proposed by Šprem et al.,124 who built
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on work by Dehmeshki et al.125 Both used an expectation-maximization algorithm to
determine the partial calcium content in each voxel of a CAC lesion and its vicinity.

While the aforementioned methods all show improved interscan reproducibility of
CAC quantification, they require the clinically used threshold for initial lesion detection,
thereby missing lesions below the intensity level threshold. This is particularly a
problem with small lesions and scans with motion artefacts, where complete lesions
may remain under the detection threshold. Altough motion detection126 in CAC lesions
has been proposed, this does not include correction that would allow quantification of
such CAC lesions.

Image with CAC Healthy tissue Calcium lesion

Figure 5.1: An image containing coronary artery calcium (CAC) is decomposed into a healthy tissue

image without CAC and an image containing only CAC.

To address the limited interscan reproducibility of CAC detection and quantification,
we propose a method that does not require an intensity level threshold. Our method
takes an image with CAC and decomposes it into an image without CAC and a CAC-
map, i.e. an image showing only CAC (Figure 5.1).

Several earlier studies proposed to use an autoencoder for generating healthy
counterparts of images with pathology in an unsupervised manner.127–129 Subsequently,
the pixel-wise intensity difference between the original image and the reconstruction
was used to e.g. detect brain lesions in MRI scans,127 brain CT,129 or detected anomalies
in head CT.128 Alternative approaches used generative adverserial networks (GAN) for
translating an image containing pathologies to a healthy image. Baur et al.130 and Seah
et al.131 used conditional GANs to generate healthy images and used the difference with
the input image for multiple sclerosis lesion segmentation, and visualizing features of
congenital heart failure in chest X-rays, respectively. Furthermore, Baumgartner et al.132

proposed to use a Wasserstein GAN to directly generate a difference map that indicates
changes in the brain related to Alzheimer’s disease. The map is added to the input
image to create a healthy brain image from an image containing Alzheimer’s disease.
To tackle the instability and mode collapse problems that often arise during training
of GANs, Zhu et al.133 proposed to use a cycle-consistensy loss in their CycleGAN
for image-to-image translation using natural images. Sun et al.134 proposed to use a
CycleGAN implementation for translating images containing lesions to healthy images.
Subsequently, the pixel-wise intensity difference was used to detect brain lesions in
MRI and liver tumors in CT scans.



Generative models for reproducible coronary calcium scoring 77

To decompose an image with CAC into an image without CAC and CAC-map, we
employ a CycleGAN to translate images between the containing CAC domain and not
containing CAC domain. To our knowledge, our method is the first to use a generative
model for accurate segmentation of CAC lesions. The method builds on our preliminary
work,135 in which we presented a semi-automatic method for segmentation of CAC,
that analyzed the vicinity of manually identified CAC lesions. The method was trained
using clinical threshold-based calcium scores as reference and hence, was not able
to detect lesions below the threshold. In the current work, we extend the method
to perform fully automatic CAC detection and quantification, including CAC lesions
below the standard detection threshold. The method is aimed at scans where the low
interscan reproducibility is most dire and therefore, experiments were performed in
non-ECG-synchronized scans, with and without breathing motion, that often contain
excessive cardiac motion artefacts and have a low spatial resolution. To simplify
the challenging task and allow the method to focus on the region of interest only,
CAC quantification was performed in the heart slices containing CAC. The method
is developed and evaluated using 4,038 CT scans of 2,276 breast cancer patients and
626 CT scans of lung screening participants. Moreover, we show that it outperforms
clinically used calcium scoring methods in terms of interscan reproducibility of CAC
quantification.

5.2 Data

We included 4,038 radiotherapy treatment planning (RTP) CTs of 2,276 breast cancer
patients.97 In this set 1,762 patients had two scans made on the same day: one with and
one without breathhold. Therefore, this set allows evaluation of CAC scoring interscan
reproducibility. The remaining 514 patients had one CT scan made without breathhold.
Scans were acquired in the University Medical Center Utrecht with a Philips Brilliance
Big Bore scanner. Intravenous (IV) contrast was not induced and the acquisition was
not ECG-synchronized. The CTs were acquired with 120 kVp and reconstructed to
0.92-1.37 mm in-plane resolution and 3.0 mm slice thickness and increment. The need
for informed consent was waived by the local institutional review board.

Additionally, we included 626 low-dose chest CT images of 626 subjects included in
the National Lung Screening Trail (NLST). Scans were acquired in 29 different hospitals,
on scanners from all major vendors.32,82 Tube voltage was either set to 120 or 140 kVp,
depending on the subjects weight. IV contrast was not induced and acquisition was
not ECG-synchronized. Images were reconstructed to 0.49-0.98 mm in-plane resolution
and 1.0-2.5 mm slice thickness and 0.6-2.5 mm increment.

For development and training of the method, RTP CT scans of 514 patients with a
single CT and all 626 NLST scans were used. The latter were used to enhance training
with a diverse set of scans of heavy smokers with high CAC burden. In method
development, a validation set of 100 patients with two available RTP scans (200 scans)



78 Chapter 5

was used. We divided the test scans into two sets with patient scan pairs: Test-set 1, a
set consisting of scans of 119 patients totalling 238 RTP CTs with manually segmented
CAC allowing detailed evaluation of calcium scoring; and Test-set 2, a set consisting of
scans of 1543 patients of in total 3086 RTP CTs without reference CAC scores, used for
assessment of interscan reproducibility.

To allow training, an experienced observer labelled axial slices of all training CTs,
validation CTs and CTs from Test-set 1 as containing CAC or not containing CAC, based
on visual assessment. Moreover, for a subset of 199 RTP scans of the training set,
manual segmentations of the heart were available from clinical practice.

To define reference standard for CAC, lesions were annotated and assigned coronary
artery label using manual voxel-painting in Test-set 1. This was only done in the 34 scan
pairs in which both scans had CAC, because pairs without CAC and discordant pairs
are not informative for measuring interscan reproducibility. Next, to allow comparison
with calcium scoring used in clinic, manual annotations from a previous study for
Test-set 1 were available.104

GR

CAC map
Synthetic

noCAC

D

GS

D

Synthetic
CAC

Removing CAC

Synthesizing CAC
Figure 5.2: Schematic overview of the proposed CycleGAN: In the pathway that removes CAC, a

CAC map is predicted by the generator (GR) and subtracted from the image to obtain a synthetic

image without CAC. In the pathway that synthesizes CAC the CAC map predicted by the generator

(GS) is added to the image. Synthetic images are compared to real examples by discriminators (D).
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5.3 Method

We propose an automatic method that detects and segments CAC by decomposing a
CT slice into an image without CAC and an image showing a CAC map, i.e. only CAC.
The method allows segmentation of whole lesions, including parts below the 130 HU
threshold, leading to increased interscan reproducibility of CAC quantification.

The need for improved interscan reproducibility of CAC quantification is highest
in non-ECG-synchronized scans. However, non-ECG-synchronized scans are typically
made for other purposes than calcium scoring, thus, the field of view in these scans is
highly variable. Therefore, before generating the CAC-map, we define the region of
interest to simplify the CAC detection task by initial heart segmentation, and subsequent
identification of CT slices with CAC.
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Heart segmentation is performed with a 3D convolutional neural network (CNN),
which, for efficiency, analyses the full image in a patch based manner. The network
architecture is based on ResNet136 and is detailed in Table 5.1, left. The Dice loss is used
during training and Adam optimization algorithm (lr = 0.001) is used for optimization.
During inference, overlapping patches were analysed and the results were averaged
for final prediction.

We classify each slice in the heart mask according to the presence of visible CAC
with a 2D CNNwith ResNet136 based architecture (Table 5.1, middle). The CNN analyses
axial image slices centered and cropped around the heart. For cropping, the center of
mass of the heart segmentation is used. The network is trained with per slice labels
indicating the presence of CAC, using the crossentropy loss and Adam optimization
algorithm (lr = 0.001).

In the identified slices, we generate a CAC-map. Generating the CAC-map in a
supervised manner, where a CNN directly predicts the map, is hardly feasible, since
identifying voxels with visible CAC is difficult and extremely time consuming. Hence,
we propose to obtain a CAC-map using weakly supervised labels, i.e. labels indicating
whether CAC is present in the image. In our approach a CAC-map is obtained by
subtracting a generated healthy tissue image from an image containing CAC. Because
it is not possible to obtain paired CT scans of the same patient, where one would
contain CAC and the other not, a paired approach for image generation is not feasible.
Therefore, an unpaired approach is used to generate synthetic noCAC images from
images containing CAC. For this, images are assigned to two domains based on weak
labels: one domain consisting of images containing visible CAC and the other domain
containing images without visible CAC. Hence, to generate a healthy tissue image
for subtraction, a 2D CycleGAN133 for unpaired image-to-image translation is used to
translate images from one domain to another. The CycleGAN is a type of GAN22 that
improves in training stability and performance over the traditional GAN, by adding
cycle-consistency.133

The CycleGAN consists of two generators, and two discriminators that compete
with each other. The generators are CNNs that convert an input image from either
domain to a realistic image from the other domain. The discriminator CNNs compare
the synthesized images against ’real’ examples from the other domain. In contrast
to a conventional CycleGAN, that directly translates an input image to an image of
the target domain, we use an adjusted CycleGAN (Figure 5.2) that adds an extra step:
images with CAC are translated to the noCAC domain by predicting a CAC map and
subtracting it from the input image. In the synthesizing pathway the CAC map is
added to the input image to generate a synthetic image containing CAC from an image
without CAC. The generator in the pathway that removes CAC is used to obtain the
CAC map and, subsequently, the CAC map can be used to quantify the amount of CAC
in the image.

The generators used in the CycleGAN for generating the CAC map have a ResNet-
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based architecture,136 with 6 ResNet blocks using ReLU activation and no downsampling
in between blocks (Table 5.1, right). To ensure the CAC maps only contain positive
values, the generators have a sigmoid activation in the last layer. For the discriminator
networks we use PatchGANs, which classify 70x70 overlapping image patches as real or
synthetic, described in detail by.137 The PatchGANs are able to capture high-frequency
structure and have fewer parameters than a full-image discriminator and are therefore,
easier to train.137 The patch-level discriminators are applied to the image in a fully
convolutionalmanner, averaging all responses to provide the output of the discriminator.
The system is trained using the loss terms traditionally used for training a CycleGAN
(discriminator loss, cycle-consistency loss and identity loss133). Additionally, a sparsity
(L1) loss on the CAC map is used to encourage the generator to predict sparse CAC
maps.

To make the method more robust to noise, during training images are augmented
by reducing or amplifying noise. To reduce the noise, images are smoothed with a
Gaussian filter with σ = 0.5 pixels. To amplify noise, a noise image is obtained by
subtracting the smoothed image from the original input image that is, subsequently,
added to the input image. Moreover, during training random cropping and rotation are
used for augmentation.

Despite the sparsity loss, the generated CAC-map may contain low levels of noise,
because of excessive image noise. Noise in the CAC map may lead to unrealistically
low values for soft tissue in the synthetic noCAC image. Therefore, we mask voxels in
the CAC-map that lead to a value of < -10 HU in the synthetic noCAC image, as those
are likely noise voxels in the CAC-map.

Finally, CAC was quantified by CAC pseudo-mass and adjusted Agatston score.
The pseudo-mass was calculated by multiplying the sum of HU values of the voxels
in the lesions by the voxel volume. The adjusted Agatston score was calculated by
multiplying the area of a lesion with a density score (1, <199 HU; 2, 200–299 HU;
3, 300–399 HU; 4, >399 HU) determined by the maximum density of the area, and
summing over axial slices. Please note that the adjusted Agatston score is equal to the
conventional Agatston score for methods using the 130 HU intensity threshold.

5.4 Evaluation

Detection of CAC lesions was evaluated using accuracy, sensitivity, rate of false positive
scans and F1-score, between the automatic and reference labels that indicated visible
CAC.

The reproducibility of the CAC score was evaluated in scan pairs, using absolute rel-
ative differences of quantified CAC pseudo masses. To measure the interscan agreement
of adjutsted Agatston scores, the two-way random intraclass correlation coefficient
(ICC) for absolute agreement was computed and Bland Altman plots with 95% limits of
agreement were examined.48 Moreover, patients were assigned one of four CHD risk
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categories (I-IV: 0–10, 11–100, 101–400, <400) based on their adjusted Agatston score.
Agreement between risk categories of each patient determined from the patient’s two
scans was evaluated using Cohen’s linearly weighted kappa (κ).

5.5 Experiments and Results

We evaluate the detection performance of visible CAC and the interscan reproducibility
of the proposed method. Moreover, we compare the performance of our method with
two clinical calcium scoring methods that use the 130 HU threshold for segmentation
of CAC: manual calcium scoring and automatic calcium scoring with a validated deep
learning method.104 Finally, we perform an ablation study to evaluate the different
components of the method.

Prior to heart segmentation all scans were resampled to 1.5 mm in-plane resolution
for standardization across the dataset and 3.0 mm slice spacing, the slice spacing of
manual reference annotations. The heart segmentation CNN was trained and evaluated
using a subset of 199 radiotherapy treatment planning CT scans of the training set, for
which reference heart segmentations were available. Of this subset, 100 scans were
used for training, 20 scans for validation and 79 scans for evaluation. The CNN was
trained for 250,000 iterations with batches of 10 patches of 64x64x64 voxels. Batches
were balanced for presence of the heart during training. After training, the heart
segmentation CNN achieved a median Dice score of 0.95 (interquartile range 0.94-0.96).

After the heart segmentation, images were resampled to 1.0 mm in-plane resolution,
which was the average resolution of the training set, and 1.5 mm slice spacing, for
comparison with clinical calcium scoring.104 Moreover, slices were clipped between
-50 HU and 950 HU, for optimal contrast between soft tissue and CAC, and scaled
between 0 and 1. The training set of 626 low dose chest CTs and 314 radiotherapy
treatment planning CTs was used. Given that the method is aimed for analysis of RTP
CT, the validation set of 200 such scans of 100 breast cancer patients (100 pairs) was
used. During training manually defined reference labels indicating the presence of
CAC in axial CT slices were used.

The slice classification CNN was trained for 1,500,000 iterations using batches of
20 axial CT slices of 224x224 voxels. Batches were randomly sampled and balanced
for presence of visible CAC. After training, the slice classification CNN achieved a per
slice accuracy of 0.93, with a sensitivity of 0.78 for visible CAC and a false positive rate
of 0.06, on all 17.450 CT slices containing the heart of Test-set 1.

The adjusted CycleGAN for generating the CAC map was trained with the same
dataset and preprocessing as the slice classification CNN. The adjusted CycleGAN
was trained for 375,000 iterations using batches of 4 axial CT slices of 224x224 voxels.
Batches were balanced for both the presence of CAC and relative slice position in the
heart, using the heart segmentations. Finally, the predicted CAC maps were resampled
to the original in-plane resolution prior to evaluation.
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Table 5.2: Per artery detection performance (A) and interscan reproducibility (B) of clinical manual

(ClinicalM) and automatic (ClinicalA) calcium scoring, and the proposed method in Test-set 1. CAC

detection is shown for pairs and for single scans. Reproducibility is evaluated with the absolute

relative difference in CAC pseudo-mass in scan-rescan artery pairs for concordant positive artery

pairs (ΔRPos) as well as all artery pairs (ΔRAll).

Detection interscan Reproducibility

Single (%) Pairs (%) ΔR All ΔR Pos†

Proposed

CAC 81 (79) 34 (67) 0.95 0.55

LAD 57 (92) 26 (84) 0.84 0.61

RCA 16 (57) 5 (36) 1.25 0.35

LCX 8 (67) 3 (50) 0.99 0.33

ClinicalM

CAC 70 (69) 30 (59) 1.05 0.77

LAD 53 (85) 23 (74) 1.00 0.75

RCA 10 (36) 4 (29) 1.42 1.14

LCX 7 (58) 3 (50) 0.84 0.46

ClinicalA

CAC 64 (63) 26 (51) 1.15 0.76

LAD 48 (77) 21 (68) 1.07 0.81

RCA 9 (32) 2 (14) 1.63 0.74

LCX 7 (58) 3 (50) 0.86 0.48

(A) (B)

†
Pairs in which CAC was detected in the artery in both scans by the

respective method.

5.5.1 CAC detection per scan

In the clinic CAC is routinely detected on a scan-level and used for CVD risk prediction.
To provide insight in the detection performance of visible CAC on a scan-level, Figure 5.4
illustrates the results and Figure 5.3A (proposed) shows the sensitivity, rate of false
positive scans (FPR) and F1-score in Test-set 1. The proposed method achieved a
sensitivity for visible CAC of 0.83, with an FPR of 0.14, meaning 21 out of 150 scans
without visible CAC, and an F1-score of 0.80. In comparison, the sensitivity was 0.69
and 0.67 for manual and automatic clinical calcium scoring, respectively. The F1-score
of the clinical calcium scoring methods was comparable with our method, due to a low
FPR. Among our false positive cases, in 10 cases a lesion in the aorta was erroneously
detected (Figure 5.4, FP Aorta), among which 6 were located in the ostia of the coronary
arteries. In 9 scans noise was detected as CAC by the proposed method. In 5 of these
9 scans, the false positive lesion was located near the edge of the heart segmentation
(Figure 5.4, FP Noise).

As is shown in Figure 5.4, the proposed method also segments the parts of the
calcium lesions that remain below the threshold. Particularly in lesions severely affected
by motion, e.g. commonly lesions in the RCA, the difference between the proposed
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%

higher /     lower  =  better

Sensitivity FPR F1-score ΔR All ΔR Pos

Clinical Man
Clinical Auto

A B

Proposed (HS+ CL+)
HS+ CL-

HS- CL+
HS- CL-

Figure 5.3: The results of the ablation study for the method with and without heart segmentation

(HS -/+) and with and without slice classification (CL -/+). We evaluated the detection performance

(A) with sensitivity, false positive rate (FPR) and F1-score. We evaluated the interscan reproducibil-

ity (B) with absolute relative difference in CAC mass for all pairs (ΔR All) and concordant positive

pairs (ΔR Pos). For comparison, the performance of clinical threshold-basedmanual and automatic

calcium scoring are shown with horizontal lines.

method and manual clinical calcium scoring is especially pronounced.

5.5.2 CAC detection per artery

Because the impact of cardiac motion is different per location, we additionally evaluate
the detection performance per artery. A subset of 34 concordant scan pairs from Test-set
1 that contain CAC with per artery CAC annotations were used for evaluation. Overall,
the proposed method detected CAC in 81 out of 102 arteries with lesions (Table 5.2A,
left). Out of 51 lesion pairs, the method detected both lesions in 34 pairs (Table 5.2A,
right). In comparison, manual clinical calcium scoring detected 70 out of 102 single
lesions, and automatic clinical calcium scoring detected 64 out of 102. Manual clinical
calcium scoring detected CAC in both lesions in 30 out of 51 lesion pairs and automatic
clinical calcium scoring detected 26 pairs out of 51. The achieved improvement of our
method over the clinical methods was largest in the RCA, in which 64% of the lesions
remained below the 130 HU threshold due to blurring caused by cardiac motion.
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Generative models for reproducible coronary calcium scoring 87

Table 5.3: Reproducibility of CAC pseudo mass and Agatston scores for automatic clinical calcium

scoring and the proposed method in Test-set 2.

CAC mass AG score

1543 pairs n (%) ΔR ICC ICC

All pairs

Proposed 1543 (100%) 0.88 0.97 (0.96-0.97) 0.96 (0.96-0.96)

Clinical 1543 (100%) 0.92 0.93 (0.92-0.94) 0.91 (0.91-0.92)

Concordant positive pairs

Proposed 515 (34%) 0.44 0.96 (0.96-0.97) 0.95 (0.95-0.96)

Clinical 375 (24%) 0.58 0.92 (0.90-0.93) 0.90 (0.88-0.92)

5.5.3 Interscan reproducibility of CAC quantification

To make CAC quantification in non-ECG-synchronized CT scans useful for clinical
application the interscan reproducibility ideally should be high. Therefore, the interscan
reproducibility of CAC pseudo mass was evaluated in Test-set 1. First, we evaluated
the absolute relative difference in CAC pseudo mass in 51 artery pairs using per artery
annotations of lesions described in Section 5.2. The interscan difference was 95% on
average in all artery pairs (Table 5.2B, left). In concordant positive artery pairs, i.e. pairs
in which the method detected CAC in both arteries, the interscan difference was 55%
using the proposed method (Table 5.2B, right). Second, we evaluated the reproducibility
of total CAC pseudo mass in scan pairs. The interscan difference was 94% on average in
all scan pairs (Figure 5.3B, left). For concordant positive scan pairs the absolute relative
difference was 47% (Figure 5.3B, right). The higher absolute relative difference in CAC
pseudo mass (i.e. lower reproducibility) in all scan pairs compared to positive pairs,
is partly explained by the presence of 21 discordant pairs. In these pairs the method
shows a high absolute relative difference, since a CAC lesion is only visible in one of
the two scans. Additionally, we compared our results to clinical calcium scoring. Both
clinical methods show a lower interscan reproducibility than our proposed method in
artery pairs as well as in scan pairs. For manual clinical calcium scoring the interscan
difference was 77% in concordant positive artery pairs and 89% in concordant positive
scan pairs. For automatic clinical calcium scoring the interscan difference was 76% and
114% in artery pairs and scan pairs, respectively. For similar reasons as for our method,
the relative interscan difference is high when all scan pairs are considered.

Moreover, the reproducibility of the proposed method is evaluated in Test-set 2,
in which manual annotations are not available. Hence, the results of our method are
compared with automatic clinical calcium scoring. The results are listed in Table 5.3.
The relative difference in CAC mass for positive pairs with detected CAC in both scans
was 44%. For all scan pairs this was 88%. Moreover, the interscan agreement of CAC
mass was high with an ICC of 0.96 (95% CI 0.96-0.97) in positive pairs and 0.97 (95%
CI 0.96-0.97) in all pairs. In comparison, the relative difference was 58% in concordant
positive pairs and 92% in all pairs when using the automatic clinical method. Moreover,



88 Chapter 5

Pr
op

os
ed

Cl
in

ic
al

Interscan average

In
te

rs
ca

n
di

ff
er

en
ce

 

Interscan average

In
te

rs
ca

n
di

ff
er

en
ce

(404, 805)
(2418, 972)
(2398, 983)
(2438, 1178)

Figure 5.5: Bland-Altman plots for adjusted Agatston scores of the proposed and automatic clini-

cal method. For comparison purposes the adjusted Agatston scores of the proposed method are

scaled to the range of scores of the clinical method. Please note that, since the same linear scaling

is used for all scores, this does not influence the agreement. 95% limits of agreement are indi-

cated by dashed lines. Because the errors tend to increase with increasing CAC, regression for

nonuniform differences was used to model the variation of the absolute differences in scan pairs.

To calculate the 95% limits of agreement, the predicted absolute differences were multiplied by

1.96 × (π/2)
1/2
, because the absolute differences have a half-normal distribution.

48

the ICC for the quantified CAC mass was significantly lower for the clinical automatic
method than for the proposed method (Table 5.3).

The proposed method achieved an interscan agreement for adjusted Agatston scores
with an ICC of 0.96 (95% CI 0.96-0.96). This is significantly better than for the automatic
clinical method that achieved an ICC of 0.91 (95% CI 0.91-0.92). This improvement is
clearly visible in the Bland-Altman plots (Figure 5.5), where the 95% limits of agreement
are narrower for the proposed method than for automatic clinical calcium scoring.
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Table 5.4: Interscan agreement of risk categorization based on (adjusted) Agatston score. The risk

categories are I: 0-10, II: 11-100, III: 101-400, IV: ≥400.

Proposed† ClinicalM ClinicalA

Test-set 1

κ 0.82 (0.71-0.94) 0.63 (0.42-0.84) 0.64 (0.41-0.87)

Accuracy 0.92 0.92 0.95

Test-set 2

All pairs

κ 0.84 (0.82-0.87) - 0.81 (0.78-0.84)

Accuracy 0.90 - 0.92

Concordant positive pairs‡

κ 0.77 (0.72-0.82) - 0.67 (0.61-0.72)

Accuracy 0.79 - 0.68

†
For comparison purposes, the adjusted Agatston scores obtained with the proposed

method were linearly scaled to the range of the scores obtained with automatic clinical

(ClinicalA) calcium scoring, using the mean score of both methods.
‡
Pairs in which the ClinicalA method found CAC in both scans.

5.5.4 Ablation Study

To investigate the benefits of prior heart segmentation and slice classification, we
evaluated performance using the following settings: 1 - using the settings as proposed,
2 - the proposed method without slice classification, where all CT slices of the heart
were analysed, 3 - the proposed method without heart segmentation, 4 - the proposed
method without heart segmentation and without slice classification. When heart
segmentation was not used, we standardized the field of view over the datasets to
include the heart and chest wall. CAC detection, FPR and absolute relative interscan
difference of the quantified CAC mass was evaluated on Test-set 1. Figure 5.3 shows
the results. The proposed method achieved the best performance, with an F1-score of
0.80 and an absolute relative difference in CAC mass of 47%. While both approaches
without slice classification show a high sensitivity, the false positive rate is high: with
settings 2 the method found false positive lesions in all negative scans and with settings
4 in 57% of the negative scans. The effect of defining the region of interest by heart
segmentation is not only reflected in a better detection, but also in a higher interscan
reproducibility of CAC mass, i.e. lower absolute relative difference.

5.5.5 Risk category assignment

Because CVD risk stratification based on the Agatston score is clinically relevant, we
evaluate the interscan reproducibility of risk categorization. The interscan agreement
of CVD risk categories is shown in Table 5.4. The agreement in Test-set 1 was higher
using scores derived with the proposed (κ = 0.82) method than with manual of automatic
clinical calcium scoring, with κ of 0.63 and 0.64 respectively. In concordant positive
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pairs of Test-set 2 the κ was 0.77 for the proposed method. In contrast, for automatic
clinical calcium scoring this was 0.67.

5.6 Discussion

We presented a method for calcium scoring that does not depend on the clinically
accepted intensity value threshold of 130 HU for segmentation of CAC. Hence, the
method can identify CAC that may remain undetected by the clinical threshold due
to e.g. partial volume effect in small lesions or blurring due to cardiac motion. We
achieve this by separating an image containing CAC into an image without CAC and
an image only containing CAC. For this we exploit a CycleGAN that translates images
between the CAC and noCAC domain. We have shown that segmentation of lesions
using our method enables increased interscan reproducibility of CAC quantification,
compared to clinically used manual and automatic CAC scoring, that both use intensity
level thresholding for CAC segmentation.

Previous research shows that interscan reproducbility in non-ECG synchronized
CT scans is lower than in dedicated cardiac CT.114–117 Because of limitations in the
acquisition of radiotherapy treatment planning CTs, our method does not exceed the in
literature reported reproducibility in dedicated cardiac CT. However, CAC scoring is in-
creasingly performed in non-dedicated CT scans, hence, the need for more reproducible
CAC quantification is growing, especially for quantification in challenging scans like
the ones used in this work. Our proposed method shows potential for increasing the
interscan reproducibility in non-ECG synchronized scans to the level of dedicated
cardiac CT.

In contrast to clinical methods, the proposed method is able to detect visible CAC
lesions that remain below the threshold. Owing to a more accurate segmentation that
includes pairs of lesions below the threshold, our method outperforms clinical CAC
scoring methods in interscan reproducibility of CAC quantification. The results of per
artery evaluation show that this improvement was especially pronounced for CAC in
the RCA. This is probably due to the ability of the proposed method to detect parts of
lesions that are heavily affected by motion artefacts, which occurs more for the lesions
in the RCA than in the LAD and LCX.

Errors were made in a number of scans. False positive detections mostly consisted
of noise in the proximity of an artery or other types of calcifications than CAC, such
as calcifications in the aorta or cardiac valves. Despite noise augmentation during
training and post processing, the CAC map contained noise in a few cases. This was
often located close to the apex and near the RCA, where the noise level was most severe.
Noise reduction strategies described in e.g. Wolterink et al.138 could offer a solution.
False positives in the aorta or valves were often close to the ostia of the coronaries or
occured in the mitral valve. Since in scans without ECG triggering it is often difficult
to distiguish CAC from calcifications in the thoracic aorta or mitral valce calcifications,
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these type of errors are also not uncommon for human observers139 and are also present
in other automatic methods.32,104,120 False negative lesions were typically small with
very low voxel intensities, making them difficult to distinguish from noise and soft
tissue, also for experts.

Similarly to our preliminary work,135 the method without heart segmentation
and slice classification suffered from a large amount of false positives in the CAC
map, which made fully automatic quantification of CAC infeasible. In our ablation
experiment, we showed that adding slice classification with respect to CAC presence
and heart segmentation solves this issue. Using classification to identify the slices
containing CAC, prevents false positive errors in slices that do not contain CAC.
By adding heart segmentation, we prevent anatomical structures outside the heart
in the data from influencing the CAC segmentation, resulting in more reproducible
quantification. Likewise, in previous methods for CAC quantification in scans with
high noise levels, a false positive reduction step was used to decrease the number of
false positive findings.32,104 Possibly, if a very large amount of training data would
be available, the method would be able to learn to avoid these errors. However, in
the medical field this is often challenging to obtain. In this work, heart segmentation
and slice classification are performed independently. Although they are relatively
straightforward, future work will investigate merging these steps into a single network.

Other approaches for increasing the reproducibility of CAC quantification have
previously been proposed.121–125 Since the true amount of CAC is not available for
patients, often a phantom is used for development and evaluation of the method. This
makes direct comparison of ourmethod infeasible. Šprem et al.124 additionally evaluated
their approach in a set of 293 subject CT scans and showed an improved reproducibility
of CAC volume between different CT images. However, different reconstructions of
the same acquisition were used, excluding interscan differences, in contrast to two
separate acquisitions used in our study. Moreover, in contrast to our approach a major
drawback of previously proposed methods is the use of the standard 130 HU intensity
threshold for detection of CAC prior to partial volume correction, inevitably missing
lesions below the threshold.

Risk categorization of subjects is typically done using total CAC Agatston scores.
However, the proposed method also includes parts of lesions below the clinical thresh-
old, and thus, the Agatston score tends to be (substantially) higher than for the clinical
methods. Therefore, assigning risk categories based on the Agatston score derived
with the proposed method would necessarily lead to different definitions of CVD risk
categories. In order to estimate the performance of risk categorization of the proposed
method, the obtained Agatston scores were scaled to the range of clinical Agatston
scores. The results showed an improved agreement for the proposed method, compared
to automatic clinical calcium scoring. However, to establish the clinical relevance,
further research relating the adjusted Agatston scores with CHD events is warranted.
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5.7 Conclusion

We have proposed a method for detection and quantification of CAC in non ECG-
synchronized chest CT scans that that does not require the application of the clinically
used intensity level threshold. Hence, the method allows detection of visible CAC that
may not exceed the standardly used 130 HU threshold due to e.g. partial volume effect
or blurring due to cardiac motion. This leads to more reliable quantification of CAC
and increased interscan reproducibility of risk categorization compared to the current
clinical standard.
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CHAPTER 6

Direct prediction of cardiovascular mortality

from low-dose chest CT
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Abstract

Cardiovascular disease (CVD) is a leading cause of death in the lung cancer screening
population. Chest CT scans made in lung cancer screening are suitable for identification
of participants at risk of CVD. Existing methods analyzing CT images from lung cancer
screening for prediction of CVD events or mortality use engineered features extracted
from the images combined with patient information. In this work we propose a method
that automatically predicts 5-year cardiovascular mortality directly from chest CT
scans without the need for hand-crafting image features.

A set of 1,583 participants of the National Lung Screening Trial was included
(1,188 survivors, 395 non-survivors). Low-dose chest CT images acquired at baseline
were analyzed and the follow-up time was 5 years. To limit the analysis to the heart
region, the heart was first localized by our previously developed algorithm for organ
localization exploiting convolutional neural networks. Thereafter, a convolutional
autoencoder was used to encode the identified heart region. Finally, based on the
extracted encodings subjects were classified into survivors or non-survivors using a
neural network. The performance of the method was assessed in eight cross-validation
experiments with 1,433 images used for training, 50 for validation and 100 for testing.
The method achieved a performance with an area under the ROC curve of 0.73.

The results demonstrate that prediction of cardiovascular mortality directly from
low-dose screening chest CT scans, without hand-crafted features, is feasible, allowing
identification of subjects at risk of fatal CVD events.
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6.1 Purpose

Besides lung cancer, cardiovascular disease is a leading cause of death in the lung cancer
screening population82. Moreover, it has been shown that chest CT scans used for lung
cancer screening are suitable for identification of participants at risk of cardiovascular
disease (CVD)140–143. Previous methods that investigated prediction of CVD events and
all-cause mortality used known quantitative CVD image markers and combined them
with subject data. Using weighted Cox proportional hazards regression, Chiles et al.141

showed that quantitative as well as visually assessed coronary artery calcium (CAC)
scores extracted from screening low-dose chest CT are predictive for CVD and all-cause
mortality in the National Lung Screening Trial (NLST). Similarly, Mets et al.142 used
Cox regression based on semi-automatically detected CAC scores and thoracic aorta
calcium (TAC) volume as well as subject data, to perform prediction of CVD events
and all-cause mortality in the Dutch-Belgian lung cancer screening trial (NELSON).
De Vos et al.143 performed prediction of CVD events in the same population using a
support vector machine (SVM) classifier that employed automatically extracted CAC
and TAC scores as features.

These approaches relied on hand-crafted features that are already established as
CVD biomarkers. However, besides these known biomarkers, chest CT scans may
contain yet unknown features predictive of CVD mortality. Hence, we propose a
method based on unsupervised feature learning which is able to automatically predict
CVD mortality directly from chest CT scans and is therefore not limited to known
quantitative image markers related to CVD.

6.2 Data

This study included 1,583 participants of the National Lung Screening Trial. NLST
included current and former heavy smokers between the age of 50 and 7482. All 395
participants who died of CVD within 5 years from acquisition of the baseline CT scan
(non-survivors) were included. In addition, 1,188 participants who were still alive after
this period (survivors) were randomly selected.

For each subject a CT scan acquired at baseline was analyzed. Low-dose chest CT
scans were made with breath-hold, without contrast enhancement and without ECG
synchronization. Scans were acquired using helical scanning mode and a tube voltage
of 120 kVp or 140 kVp, depending on the subject’s weight. In-plane resolution ranged
from 0.49 mm to 0.98 mm with a slice thickness between 1.0 mm and 2.5 mm. The
scans were acquired in 32 different medical centers with 13 different scanner models.
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6.3 Methods

To investigate whether analysis of the heart visualized in chest CT enables prediction
of CVD mortality, the method first extracts a bounding box around the heart. This is
done with our previously designed and trained algorithm81 that employs a CNN to
determine the presence of the heart in axial, coronal and sagittal slices of the chest CT
image and subsequently combines these to define a 3D bounding box around the heart.
Thereafter, to ensure equal image resolution in our data set, we resample all extracted
heart volumes to isotropic resolution of 1.0 mm. Moreover, to enhance differentiation
among soft tissues in the heart (e.g. fat, muscle) and to preserve influence of high
density structures (e.g. CAC, TAC), extracted volumes are clipped between [-160, 840]
HU.
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Because of the relatively low number of the available samples, prediction using e.g.
a CNN that would extract features and perform classification of subjects into survivors
and non-survivors was not feasible. Therefore, similar to the work of Zreik et al.144, a
convolutional autoencoder (CAE) is used to encode the volumes containing the heart
in an unsupervised fashion. Thereafter, a conventional machine learning classifier
exploiting the extracted encondings is employed to classify subjects into survivors and
non-survivors.

The CAE used in this work (Figure 6.1) consists of an encoder that compresses
the images into representative encodings and a decoder that reconstructs the images
during training. The encoder analyzes images, cropped to the heart volume, zero-
padded to 128 × 128 × 128 voxels and consists of 5 convolutional layers with 4 × 4 × 4
kernels. A stride of 2 was applied to achieve spatial downsampling without the need
for deterministic spatial functions such as max-pooling. The encoder ends in a dense
layer with 100 units, which represents the encodings vector. The decoder consists of 5
upsampling layers and 5 convolutional layers with 3 × 3 × 3 kernels and a stride of 1.
All convolutional layers are followed by batch normalization and LeakyReLu activation
(α = 0.3).

Typically, in training the CAE, the mean squared error (MSE) between the recon-
structed image and the original image is used as a loss function. However, to capture the
contrast among soft tissues in low-dose CT without intravenous contrast enhancement,
in this work the loss function of the CAE is defined employing the feature perceptual
loss (FPL), which captures perceptual differences and spatial correlations better145. To
compute the FPL, both the input image and reconstructed image are separately fed
into a fixed VGG16146 network pretrained on ImageNet147 (Figure 6.1). The FPL is then
defined as the MSE between the feature maps in this network derived from the input
image and the reconstructed image. Because VGG16 is a network designed for 2D
images, the loss was calculated over 2D axial slices of the 3D image volumes.

Thereafter, three different classifiers are trained using the encodings obtained with
the CAE: a neural network (NN), a random forest classifier (RFC) and a support vector
machine (SVM) classifier. For the RFC and SVM a grid search on the validation set was
performed to find the optimal parameter settings.

6.4 Experiments and results

To assess the performance, eight cross-validation experiments were performed. In each
experiment, 100 images were selected as test set, 50 images were selected as validation
set and the remaining 1,433 images were used as training set. Test and validation sets
were balanced with respect to classes. In the test sets, images of the non-survivors
were sampled such that each non-survivor was included once in the test sets. Images
of the survivors were randomly selected from the available set.

To augment the training set for the CAE, random rotations around all three image
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Figure 6.2: Example of an input image and reconstructed images generated by two different CAEs:

one trained with a standard MSE loss and one trained with the FPL calculated with VGG16 pre-

trained with ImageNet (top). Corresponding error maps depict the absolute reconstruction error

between the reconstructed image and the input image (bottom).

Input

Absolute reconstruction 
error with MSE Loss

200

100

0

Reconstructed with 
MSE loss

Reconstructed with 
FPL

Absolute reconstruction 
error with FPL

axes were used. The angle of rotation was randomly chosen from a normal distribution
with a mean of 0 and a standard deviation of 10 degrees. The CAE was trained in
100,000 iterations, with a batch size of 2 images zero-padded to the required input size.
The Adam optimization algorithm was used with a learning rate of 0.001.

To classify subjects into survivors and non-survivors, the classifiers were trained
using the encodings obtained with the CAE. The NN (6 units dense layer and 2 units
output, dropout p=0.5, categorical crossentropy loss, learning rate=0.0001) was trained
in 25,000 iterations with balanced batches of 100 examples, using the Adam optimization
algorithm. The RFC consisted of 75 trees and for the SVM the γ and c were set to 0.0001
and 100, respectively.

To determine the influence of FPL on the reconstructions, we trained an additional
CAE with standard MSE as loss function. Using MSE as a loss function resulted in a
mean absolute error of 19 (± 5) HU and training with FPL resulted in mean absolute
error of 20 (± 6) HU. While the mean absolute reconstruction errors are similar, the
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Figure 6.3: Average ROC curves and their standard deviation for prediction of cardiovascular mor-

tality with three different classifiers: SVM, NN and RFC, over 8 cross-validation experiments.

CAE trained with FPL learned sharper contrast between structures, as shown in Figure
6.2.

In each cross-validation experiment a CAE was and the classifiers were trained
and the performance of the method evaluated. The performance of the method was
assessed with a receiver operating characteristic (ROC) curve. The neural network
achieved the best performance with an area under the curve (AUC) of 0.73 (± 0.07
standard deviation, Figure 6.3). The ROC of the SVM and the RFC had an AUC of 0.72
(± 0.07) and 0.70 (± 0.06), respectively.

6.5 Discussion and conclusion

In this work, a method for prediction of cardiovascular mortality from lung screening
chest CT scans has been proposed. Unlike previous predictive models, the proposed
method does not use hand-crafted image features, but performs prediction directly
from the images containing the heart.

The experiments show that the CAE using FPL preserves structures likely containing
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important information for prediction of CVD mortality, such as the coronary arteries,
aorta, and fat around the heart (Figure 6.2). The CAE was trained to reconstruct heart
images and was agnostic to the subsequent classification task. It would be interesting
to investigate end-to-end training where the CAE is trained while optimizing for a
subsequent classification task. Besides likely improvement in the performance by end-
to-end training, such an approach might allow identification of image areas important
for prediction and thereby allow the confirmation of known and possibly the discovery
of novel image markers of CVD mortality. Alternatively, a CNN could be employed
to perform classification directly. However, our preliminary experiments showed that
end-to-end training and direct classification require a larger data set, which is often
not available.

The three evaluated classifiers show a similar performance for prediction of CVD
mortality based on the extracted encodings. Furthermore, the presented method shows
a similar performance to previous methods proposed by Mets et al. and De Vos et al.
(AUC = 0.71),142,143 that describe prediction of CVD events. This is remarkable since the
CAE is unsupervised and does not incorporate prior knowledge about the image, the
subsequent classification task or relevant biomarkers. Moreover, the proposed method
achieved similar performance to work by Mets et al. and De Vos et al.142,143, without
adding subject data like age, smoking history or sex, as they proposed. However,
comparison with these methods is somewhat limited by different outcome definitions
and populations. Although image analysis without additional subject data may be
simpler in application, future work could investigate whether incorporating subject
data in the proposed method would improve the performance.

In conclusion, this work demonstrates that the prediction of cardiovascular mor-
tality directly from low-dose screening chest CT scans is feasible. This might allow
identification of subjects undergoing lung screening with CT who are at risk of fatal
CVD events and who might benefit from preventive treatment.

6.6 New or breakthrough work

A machine learning system is presented that is able to predict cardiovascular death
within five years from a low-dose chest CT scan, without prior information about the
image or subjects.
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Abstract

PURPOSE To investigate whether dose planned to cardiac structures is associated
with the risk of ischemic heart disease (IHD) in breast cancer patients treated with
radiotherapy, and whether this association is modified by presence of coronary artery
calcification (CAC).

MATERIALS AND METHODS Radiotherapy planning CT scans and corresponding dose
distribution maps of 5,561 patients were collected, of whom 1,899 patients received
their CT scan before 2011 (which ensures long follow-up). CAC was detected auto-
matically. An artificial-intelligence-based method to automatically segment cardiac
structures (heart, cardiac chambers, large arteries, three main coronary arteries) was
developed. Segmentations allowed determining the planned radiation dose to each
structure separately, as well as the mean dose planned to the heart. Patients were
assigned to a low-, medium-, or high-dose group based on the dose to the respective
heart structure. Per patient, information on IHD hospitalization and mortality was
obtained. The association of planned radiation dose to cardiac structures with risk of
IHD was investigated in patients with and without CAC using Cox proportional hazard
analysis in the long follow-up population. Tests for interaction were performed.

RESULTS After a median follow-up of 96.0 months (IQR 84.2-110.4) in the long follow-
up group, 135 patients were hospitalized for IHD or died from IHD. For every 1 Gy
increase on cardiac structures, the IHD risk increased by 3% -11%. The absolute increase
in IHD risk was substantially higher in patients with CAC (event-ratelow-dose=14-15
vs. event-ratehigh-dose=15-34 per 1,000 person-years) than in patients without CAC
(event-ratelow-dose=6-8 vs. event-ratehigh-dose=5-17 per 1,000 person-years). No interac-
tion between CAC and radiation-dose was found.

CONCLUSIONS Radiation exposure of cardiac structures is associated with increased
risk of IHD. Automatic segmentation of cardiac structures enables spatially localized
dose estimation, which may aid in prevention of radiotherapy-induced cardiac damage.
This may be especially valuable in breast cancer patients with CAC.
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7.1 Introduction

Increasing incidence of breast cancer and advances in its treatment lead to increasing
number of women living with the treatment consequences.61,148 Cardiovascular disease
is among the leading causes of death in breast cancer survivors and in most older
women with breast cancer it is the primary cause of death.3 The majority of patients
with breast cancer is treated with adjuvant radiotherapy.149 Radiation exposure of the
heart is known to increase the risk of ischemic heart disease (IHD).19

Multiple studies have reported an increased risk of IHD with increasing mean heart
dose (MHD).19 However, the dose distribution within the heart is not homogeneous. A
study by Jacob et al. showed that the dose delivered to the left ventricle and the three
main coronary arteries may differ substantially from the MHD.150 Van den Bogaard et al.
showed that replacing the MHD in a prediction model by the dose to the left ventricle
improved prediction of acute coronary events.151 Moreover, previous research showed
that a high dose to the coronary arteries can lead to an increased risk of stenosis in
these arteries.152,153

Taking into account the irradiation dose to specific heart structures during treat-
ment planning may reduce the risk of IHD.150 However, CT scans used for radiotherapy
treatment planning are acquired without contrast agent and without ECG-triggering.
Hence, visualization of cardiac structures (including the coronary arteries) is subop-
timal, which hampers manual delineation of those structures. On the other hand,
cardiac structures can be visualized with high accuracy in coronary CT angiography
(CCTA) scans. Jacob et al. used registration to transfer delineations made in CCTA
scans to the planning CT.150 However, CTTA is not part of routine clinical care for
breast cancer patients. Accordingly, other methods have been proposed that use atlas
registration to delineate cardiac structures directly on the planning CT scan.154–156

Although several automatic methods for delineation of cardiac structures for dosimetry
have been proposed, a large-scale study investigating the doses on these structures and
relating these to IHD risk has not been conducted.

The risk of cardiotoxicity, including IHD, is higher in patients with pre-existing
risk factors.157 The presence of coronary artery calcification (CAC), which indicates
the presence of atherosclerosis, is a strong and independent predictor of IHD events,
even in individuals that have no traditional IHD risk factors.13 CAC is visible and can
be quantified on radiotherapy planning CT scans and, hence, can be used to identify
breast cancer patients at risk of IHD.12,33,104

In this study we build on a deep learning method described by Bruns et al.158 to de-
velop a method for segmenting cardiac chambers and large arteries (the left ventricular
myocardium, right ventricle (RV), left atrium (LA), right atrium (RA), ascending aorta,
and pulmonary artery trunk) and localizing the trajectories of the three major coronary
arteries in planning CT scans. Next, we investigate the association between radiation
exposure of cardiac structures with risk of IHD in patients, and evaluate whether this
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association is modified by the presence of CAC.

7.2 Material and Methods

7.2.1 Study population and data collection

This study included patients in the Utrecht Region who received radiotherapy treat-
ment between 2005 and 2016 for primary breast cancer at the University Medical
Center Utrecht.97 For each patient, a standard CT scan (no contrast-enhancement,
no ECG-triggering, free breathing, 120 kVp, 0.78-1.37 mm in-plane resolution, 3 mm
slice thickness and 3 mm slice spacing) of the chest used for treatment planning for
irradiation of the breast was collected. Dose distribution maps were obtained from the
radiotherapy treatment planning software used in clinic. 3D-CT radiotherapy treat-
ment planning was performed using Plato-RTS (Nucletron B.V.; 2005-2012), XiO (Elekta;
2012-2016) or Monaco (Elekta; 2016). If patients had two or more dose distribution
maps, e.g. because of irradiation for recurrent breast cancer, the first map was used for
analysis. Patients were excluded when they had metastasis at presentation or when
planning CT scans were obtained ≥1 year after breast cancer diagnosis. Since all data
of breast cancer patients were retrospectively and anonymously collected, the need for
informed consent was waived by the local institutional review board.

For development of the segmentation method, 18 contrast-enhanced cardiac CT
scans from the CLARITY study were included.159 Scans were acquired on a dual-layer-
detector CT scanner (IQon, Philips Healthcare, Best, The Netherlands). By using the
dual-energy information, a CCTA and a virtual non-contrast (VNC) image, resembling
a non-contrast-enhanced CT, could be reconstructed from the contrast-enhanced ac-
quisition. To obtain the reference for training, the cardiac structures and the three
main coronary arteries were segmented in the CCTA scans. Reference segmentations
of the cardiac chambers and large arteries were made in a semi-automatic manner
as described by Bruns et al.158 and included the left ventricular (LV) myocardium, LV
blood cavity, right ventricle (RV), left atrium (LA), right atrium (RA), ascending aorta,
and pulmonary artery trunk. For reference segmentations of the coronary arteries, we
employed an automatic artery tracking method in the CCTA scans.160 Subsequently, an
expert selected the main branches of the left anterior descending (LAD), left circumflex
(LCX) and right coronary artery (RCA), verified the segmentations, and if needed
manually corrected them.

7.2.2 Coronary artery calcium scores

Presence of atherosclerosis was measured by automatic CAC detection on radiotherapy
treatment planning CT scans of all breast cancer patients using a validated deep learning
method.104 Patients were categorized as having CAC and not having CAC.161
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7.2.3 Segmentation of cardiac structures

We build on a segmentation method, that was proposed for segmentation of cardiac
chambers and large arteries in non-contrast-enhanced ECG-synchronized cardiac CT.158

Cardiac structures are generally poorly visible in non-contrast-enhanced CT scans,
which renders it practically infeasible to segment them manually. On the other hand,
CT scans with contrast clearly visualize cardiac chambers, large arteries and coronary
arteries, and allow their segmentation. Hence, to segment cardiac chambers and
large arteries in non-contrast-enhanced CT, Bruns et al.158 proposed to leverage the
dual-energy information provided by a dual-layer-detector CT scanner, which allows
reconstruction of a virtual non-contrast (VNC) CT image from the contrast-enhanced
acquisition. The VNC mimics a non-contrast-enhanced image and is perfectly aligned
with the contrast-enhanced image, because both scans are reconstructed from the same
acquisition. Therefore, segmentations made on the contrast-enhanced image can be
transferred with voxel accuracy to the VNC image. The method is trained using VNC
images with reference segmentations (Figure 7.1A, Training) and, thereafter, it can be
applied to planning CT images (Figure 7.1A, Application).

Inspired by the method of Bruns et al,158 our method employs a 3D convolutional
neural network (CNN). The coronary arteries are small structures compared with the
other heart structures and are barely visible in non-contrast-enhanced CT, especially
in non-ECG-triggered scans. Therefore, simply adding the arteries to the segmentation
maps would not provide optimal results. Hence, our network architecture has two
output branches: a branch for structure segmentation and a branch for localizing the
coronary arteries. Contrary to the branch that segments cardiac structures, the artery
localization branch does not predict voxel labels, but predicts per voxel the inverse
distance to the target artery segmentation using regression. This renders a heatmap-
like prediction of the artery trajectories. For training, we converted the reference
segmentations of the coronary arteries to a heatmap by applying an inverse Euclidean
distance transform.

The CNN architecture used in this work consists of an encoding path, which is
connected to the output branches by six ResNet136 blocks that exploit skip connections
for optimal information propagation (Figure 7.2). Because an ensemble of CNNs
provides more robust predictions than a single CNN,162 the final segmentation method
consists of an ensemble of 18 CNNs.158 The dataset of VNC images is randomly split
into six folds with 15 scans for training, and 3 for validation. In each fold, three CNNs
are trained with different random initializations, totalling 18 CNNs. The input of the
CNNs consists of slabs, consisting of 5 stacked axial image slices of 256x256 voxels.
For optimal performance in the target CT images, the VNC images are resampled to
the average resolution of the radiotherapy planning CTs, namely 1.0 mm in-plane
resolution and 3 mm slice spacing. All 18 CNNs are trained for 10,000 iterations with
mini-batches of 32 randomly sampled image slabs, using Adam163 for optimization.
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Figure 7.1: A) Schematic overview of the deep learning segmentation method. B) Examples of seg-

mented cardiac structures and localized coronaries. Segmentations overlaid on dose distributions

are shown for right-sided and left-sided radiotherapy. Please note that the dose distributionmaps

are log-transformed for visualization purposes
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The loss function for segmentation of the cardiac chambers and large arteries is defined
as the negative sum of soft Dice similarity coefficients over all classes. Additionally, for
the coronary artery localization an L1 loss of the predicted heatmap with the reference
heatmap is calculated. For more details regarding the training, we refer to Bruns et
al.158 To obtain the final prediction, predictions of all 18 CNNs are averaged. Coronary
artery heatmaps are thresholded to obtain a segmentation.

After training, the segmentation method was applied to all available radiotherapy
treatment planning CT scans (Figure 7.1A, Application).

Figure 7.2: CNN Architecture
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7.2.4 Dose calculations

By combining the automatically obtained segmentations of the different anatomies with
the dose distribution maps, derived from the same CT scan, we calculated the planned
dose to these structures (Figure 7.1B). For each patient, the average dose was calculated
for each segmented heart structure (including the whole heart), and expressed in Gray
(Gy).

7.2.5 Outcome assessment

The primary outcome was hospitalization for, or death from ischemic heart disease
(IHD), as defined by the International Classification of Disease 10th revision (ICD-10)164

codes I20-25, e.g. myocardial infarction and angina pectoris.
Data on hospitalization for IHD was obtained by linkage with the National Basic

Registration Hospital Care (LBZ) from Dutch Hospital Data (DHD). Before 2013, DHD
used ICD-9 for registration and from 2013 onwards ICD-10. Therefore, all diagnoses
classified according to ICD-9 were converted to ICD-10 codes using the conversion
table CVZ’80-ICD-10 2006 of the Dutch WHO-FIC Collaborating Centre.
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Data on cancer hospitalization were collected from the LBZ registry and the Nether-
lands Cancer Registry (NCR). Cancer, including metastases, was defined by ICD-10
codes C00-99; non-melanoma skin cancer (ICD-10 code C44) was excluded. Recurrence
of breast cancer was defined by the NCR or as a hospitalization for breast cancer more
than 1 year after the radiotherapy treatment planning CT by the LBZ.

Data on death were obtained from the National Cause of Death Register that
registers causes of death from all diseased persons in The Netherlands. In this register,
the causes of death are classified according to ICD-10.

7.2.6 Statistical analysis

Continuous baseline variables are presented as mean values with standard deviations
or medians with interquartile ranges. Categorical baseline variables are presented as
total numbers with percentages.

The relation between the MHD and the mean dose on the structures was modelled
using linear regression. To decrease the influence of outliers, patients with an MHD
above the 95th percentile were excluded. To investigate the predictive value of the
MHD for the dose on different structures in a linear model, R squared (R2) provided
by the regression analysis was examined. R2 indicates the proportion of variance
in the dose on the structure that is predictable from MHD. R2 < 0.70 indicates an
inhomogeneous dose distribution within the heart, making the MHD not suitable
for surrogate parameter purposes.150 Pearson’s correlation coefficients were used for
correlation analyses between MHD and mean doses to the different structures.

Follow-up time started at the date of the planning CT scan and ended at the date
of the event or censoring. Censoring observations include death from other causes
than IHD, diagnosis of breast cancer recurrence, diagnosis of other cancers, or end of
follow-up (December 31, 2017).

Since radiotherapy-induced cardiac damage is found to have a long-term effect,6

analysis of this damagewas performed in a subgroup of patients with a CT scan acquired
before 2011, which we refer to as the long follow-up population. Patients were assigned
to a low-, medium-, or high-dose group based on the dose on the respective heart
structure. For theMHD the dose groups were 0-4 Gy, 4-8 Gy and >8 Gy. The dose groups
of cardiac structures were determined based on the dose distributions to the respective
structure. Cox proportional hazard models were used to examine the association
between dose on cardiac structures and IHD events. The analysis was performed for
dose groups as well as for continuous dose variables. All models were adjusted for age
at time of the planning CT scan and for treatment with anthracyclines (yes/no). Results
were expressed as hazard ratios (HRs) with corresponding 95% confidence intervals
(CIs).

To examine whether the association between dose to the cardiac structures and
risk of IHD was modified by presence of CAC, a test for interaction was performed by
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comparing models with an interaction term of dose with CAC to the model without
the interaction term using the likelihood ratio test. Also, the association between dose
and IHD was examined in patients without CAC and in patients with CAC.

7.3 Results

7.3.1 Population characteristics

Dose distribution maps and corresponding planning CT scans of in total 5,561 patients
were collected. After removing duplicates, linking with NCR and Statistics Netherlands,
and exclusion of ineligible patients, 5,301 patients were available for analysis. The long
follow-up population consisted of 1,871 patients that received the planning CT scan
before 2011.

For the long follow-up population mean age at time of planning CT was 58.7 years
(SD = 10.7) and 52.9% received treatment for left-sided breast cancer (Table 7.1). In the
long follow-up population 35.4% had CAC and in the full cohort 30.7% had CAC.

7.3.2 Planning dose on heart structures

Figure 7.4 shows the planned radiation dose for each evaluated anatomy together with
the MHD. In right-sided radiotherapy, the MHD was on average 1.13 Gy and the mean
dose to each cardiac structure was lower than 2 Gy (Table 7.2, Figure 7.3). The most
exposed structures were the right atrium and the ascending aorta, with a mean dose
of 1.70 Gy and 1.50 Gy, respectively. Regression analysis showed that for every 1 Gy
increase in MHD the dose on the aorta on average increased by 1.19 Gy and the dose to
the right atrium increased by 1.39 Gy. In left-sided radiotherapy the average MHD was
2.96 Gy and three out of nine structures received more than 2 Gy. The myocardium
and LAD were the most exposed structures in left-sided radiotherapy with a mean dose
of 4.87 Gy and 7.42 Gy, respectively. Regression analysis showed that for every 1 Gy
increase in MHD the dose to the myocardium on average increased by 1.90 Gy and the
dose to the LAD increased by 2.77 Gy.

The strongest correlation between planned dose to the structure and the MHD
was found for the myocardium (r = 0.93) and the right ventricle (r = 0.88) in left-sided
radiotherapy (Table 7.2). For left-sided radiotherapy, the proportion of the variance (R2)
in dose to the cardiac structure that could be explained by theMHDwas particularly low
for the left atrium (1%), right atrium (6%), pulmonary artery (2%) and LCX (1%) (Figure
7.4). For the myocardium and right ventricle the R2 was 87% and 77%, respectively.
In right-sided radiotherapy the correlation was strongest for the right ventricle (r
= 0.80) and between 0.76-0.58 for other structures. The R2 was lower than 70% for
all evaluated anatomies, which indicates an inhomogeneous dose distribution within
the heart, making the MHD not suitable to describe the dose in different structures.
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Moreover, in patients with a planned MHD < 4 Gy, the radiation exposure of other
structures could be substantially higher (Figure 7.5).

Figure 7.3: Histogram of the mean heart dose of all patients
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Table 7.1: Baseline characteristics

Full cohort Selection <2011

N 5300 1871

Age, mean (SD) 59.5 (10.8) 58.7 (10.7)

Follow-up, months, median (IQR) 53.3 (33.3-86.1) 96.0 (84.2-110.4)

Cases 265 (5.0) 135 (7.2)

Laterality, left (%) 2736 (51.6) 989 (52.9)

MHD, Gy, median (IQR) 1.34 (0.78-2.77) 1.75 (0.92-3.90)

Radiotherapy

Local 1277 (24.1) -

Local with boost 1395 (26.3) -

Locoregional with or without boost 609 (11.5) -

other 23 (0.4) -

Unknown 1997 (37.7) 1871 (100.0)†

CAC

No 3664 (69.3) 1208 (64.6)

Yes 1636 (30.7) 663 (35.4)

Pathological tumor stage, n (%)

DCIS/T0 719 (13.6) 228 (12.2)

T1 3198 (60.3) 1161 (62.1)

T2 1118 (21.1) 420 (22.4)

≥T3 160 (3.0) 43 (2.3)

Unknown 106 (2.0) 19 (1.0)

Pathological node stage, n (%)

N0 3662 (69.1) 1333 (71.2)

N1m 332 (6.3) 106 (5.7)

N1 808 (15.2) 271 (14.5)

N2 242 (4.6) 90 (4.8)

N3 121 (2.3) 50 (2.7)

Unknown 136 (2.6) 21 (1.1)

Chemotherapy

None 3314 (62.5) 1196 (63.9)

With anthracyclines 1310 (24.7) 93 (5.0)

Without anthracyclines 456 (8.6) 376 (20.1)

Type of chemotherapy unknown 221 (4.2) 206 (11.0)

Hormonal therapy

None 3972 (56.1) 1101 (58.8)

Aromatase inhibitor 129 (2.4) 19 (1.0)

Tamoxifen 1535 (29.0) 138 (7.4)

Other or unknown 665 (12.5) 613 (32.8)

†
Type of radiotherapy was not recorded by NCI before 2011
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7.3.3 Radiotherapy dose and ischemic heart disease

After a median follow-up of 96.0 months (IQR 84.2-110.4) in the long follow-up group,
135 patients were hospitalized for IHD or died from IHD.

The incidence rate of IHD increased from 9.4 events per 1000 person-years in
patients with an MHD <4 Gy to 16.0 in patients with MHD >8 Gy (Table 7.3). Likewise,
for all other cardiac structures the incidence rate was higher in patients with a high
dose to that respective structure than in patient with a low dose. For the left atrium,
right atrium, aorta, pulmonary artery, RCA and LCX, the lowest incidence rate was
found in the medium-dose group.

Adjusted Cox regression analysis showed a similar trend for all structures (Table
7.3 and 7.4): the high-dose group had an increased risk of IHD compared with the
low-dose group. Patients that had a high dose planned to the myocardium or the left
atrium had a statistically significantly higher risk of IHD (HR = 2.0, 95%CI 1.1-3.4 and
HR = 2.1, 95%CI 1.1-4.1, respectively). No association was found for the medium-dose
groups. When the dose was added as a continuous variable to the model instead of
stratified into dose groups, a significant association was found for all cardiac chambers
and large vessels except the right atrium. No association between dose and IHD was
found in a subgroup of patients that received < 4 Gy MHD (Table 7.5).

For the LAD, LCX, and RCA, the high-dose group had a respectively 2.0 (95%CI
1.2-3.6), 3.0 (95%CI 1.7-5.5), and 2.0 (95%CI 1.1-3.7) higher risk of IHD compared with
the low-dose group (Table 7.4). No association was found for the medium-dose groups.
The association between continuous dose and IHDwas significant for all three coronary
arteries; for every 1 Gy increase on the LAD, LCX and RCA, the risk of IHD increased
by 3% (95%CI 1%-5%), 11% (95%CI 4%-19%), and 8% (95%CI 1%-15%), respectively.
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Table 7.3: Number of events, incidence rates and risk of heart disease by planned dose on different

structures

Long follow up All

selection n=1871

N (%) Events (%) Rate HR (95% CI)

MHD

Low (0-4 Gy) 1424 (76) 99 (7.0) 9.4 1.00

Med (4-8 Gy) 359 (19) 28 (7.8) 10.6 1.15 (0.76-1.75)

High (>8 Gy) 88 (5) 8 (9.1) 16.0 2.29 (1.11-4.72)

Continuous 1.08 (1.03-1.14)

Myocardium

Low (0-7 Gy) 1377 (74) 93 (6.8) 9.1 1.00

Med (7-11 Gy) 348 (19) 27 (7.8) 10.3 1.12 (0.73-1.72)

High (>11 Gy) 146 (8) 15 (10.3) 16.3 1.89 (1.10-3.27)

Continuous 1.04 (1.01-1.08)

RV

Low (0-3 Gy) 1357 (73) 96 (7.1) 9.6 1.00

Med (3-6 Gy) 335 (18) 26 (7.8) 10.3 1.17 (0.76-1.81)

High (>6 Gy) 179 (10) 13 (7.3) 11.1 1.35 (0.76-2.42)

Continuous 1.06 (1.02-1.11)

LA

Low (0-1 Gy) 1394 (75) 103 (7.4) 9.8 1.00

Med (1-2 Gy) 350 (19) 21 (6.0) 8.4 1.11 (0.69-1.78)

High (>2 Gy) 127 (7) 11 (8.7) 14.9 2.22 (1.18-4.16)

Continuous 1.10 (1.03-1.18)

RA

Low (0-1.5 Gy) 1515 (81) 118 (7.8) 10.5 1.00

Med (1.5-2 Gy) 201 (11) 5 (2.5) 3.2 0.45 (0.18-1.10)

High (>2 Gy) 155 (8) 12 (7.7) 13.0 1.76 (0.97-3.20)

Continuous 1.06 (0.99-1.14)

AO

Low (0-2 Gy) 1483 (79) 112 (7.6) 10.1 1.00

Med (2-3 Gy) 267 (14) 15 (5.6) 7.8 0.97 (0.56-1.67)

High (>3 Gy) 121 (7) 8 (6.6) 11.3 1.50 (0.73-3.09)

Continuous 1.07 (1.01-1.13)

PulA

Low (0-2 Gy) 1570 (84) 114 (7.3) 9.7 1.00

Med (2-4 Gy) 199 (11) 13 (6.5) 9.6 1.27 (0.71-2.25)

High (>4 Gy) 102 (6) 8 (7.8) 13.8 1.84 (0.90-3.79)

Continuous 1.09 (1.02-1.15)

CAC = coronary artery calcium; CI = confidence interval; HR = hazard ratio;

Rate = incidence rate per 1000 person-years

Models are adjusted for age at time of CT scan and anthracyclines (yes/no).
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continued...

CAC No CAC

n=663 n=1208

N (%) Events (%) Rate HR (95% CI) N (%) Events (%) Rate HR (95% CI)

527 (80) 54 (10.2) 14.2 1.00 897 (74) 45 (5.0) 6.7 1.00

121 (18) 12 (9.9) 13.9 0.98 (0.52-1.83) 238 (20) 16 (6.7) 8.9 1.34 (0.76-2.38)

15 (2) 3 (20.0) 33.3 2.12 (0.66-6.81) 73 (6) 5 (6.8) 12.2 2.63 (1.03-6.71)

1.05 (0.96-1.14) 1.11 (1.04-1.18)

498 (75) 51 (10.2) 14.2 1.00 879 (73) 42 (4.8) 6.4 1.00

131 (19) 13 (9.9) 13.6 0.92 (0.50-1.69) 217 (18) 14 (6.5) 8.4 1.39 (0.76-2.55)

34 (5) 5 (14.7) 23.3 1.37 (0.54-3.45) 112 (9) 10 (8.9) 14.2 2.57 (1.29-5.14)

1.01 (0.96-1.08) 1.07(1.02-1.12)

513 (77) 50 (9.7) 13.6 1.00 844 (70) 46 (5.5) 7.2 1.00

105 (16) 14 (13.3) 17.3 1.26 (0.70-2.28) 230 (19) 12 (5.2) 7.0 1.11 (0.59-2.10)

45 (7) 5 (11.1) 17.2 1.20 (0.48-3.01) 134 (11) 8 (6.0) 9.0 1.52 (0.72-3.13)

1.04 (0.96-1.12) 1.08 (1.03-1.13)

542 (82) 55 (10.1) 13.9 1.00 852 (71) 48 (5.6) 7.3 1.00

89 (13) 10 (11.2) 16.3 1.21 (0.61-2.37) 261 (22) 11 (4.2) 5.9 1.08 (0.56-2.09)

32 (5) 4 (12.5) 21.0 2.02 (0.73-5.63) 95 (8) 7 (7.4) 12.8 2.35 (1.05-5.23)

1.11 (0.99-1.25) 1.10 (1.01-1.20)

580 (88) 63 (10.9) 15.1 1.00 935 (77) 55 (5.9) 7.7 1.00

44 (7) 0 (0.0) 0.0 - 157 (13) 5 (3.2) 4.3 0.73 (0.29-1.84)

39 (6) 6 (15.4) 15.4 2.29 (0.98-5.36) 116 (10) 6 (5.2) 5.2 1.45 (0.62-3.38)

1.05 (0.93-1.19) 1.07 (0.98-1.16)

565 (85) 57 (10.1) 13.9 1.00 918 (76) 55 (6.0) 7.9 1.00

67 (10) 9 (13.4) 19.2 1.54 (0.76-3.12) 200 (17) 6 (3.0) 4.1 0.63 (0.27-1.46)

31 (5) 3 (9.7) 15.7 1.36 (0.43-4.38) 90 (8) 5 (5.6) 9.6 1.59 (0.63-4.00)

1.07 (0.97-1.18) 1.07 (1.00-1.15)

582 (88) 61 (10.5) 14.3 1.00 988 (82) 53 (5.4) 7.0 1.00

55 (8) 4 (7.3) 11.4 0.86 (0.31-2.37) 144 (12) 9 (6.3) 8.9 1.63 (0.80-3.33)

26 (4) 4 (15.4) 27.6 1.98 (0.72-5.47) 76 (6) 4 (5.3) 9.2 1.80 (0.65-5.02)

1.09 (0.98-1.20) 1.09 (1.01-1.17)
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7.3.4 CAC vs no CAC

The association between planned radiation dose to any cardiac structure and IHD was
the same for patients with and without CAC, i.e. the interaction between planned
radiation dose and CAC was not significant. A higher dose is associated with IHD in
both patients with CAC and without CAC. However, incidence rates of IHD events
were higher in the group with CAC than in the group without CAC (Table 7.3 and
7.4). While the increase in relative risk due to dose may be similar in patients with and
without CAC, the absolute increase in event rate is larger in patients with CAC.

Table 7.5: Risk of heart disease in patients withMHD < 4 Gy by planned dose on cardiac structures.

Patients†with MHD <4Gy

N=1424

Model with mean dose continuous HR (95% CI)

MHD 1.04 (0.87-1.26)

Cardiac chambers and large vessels

Myocardium 1.03 (0.96-1.11)

RV 1.05 (0.83-1.33)

LA 1.24 (0.85-1.81)

RA 0.77 (0.49-1.21)

AO 0.88 (0.55-1.41)

PulA 1.13 (0.72-1.77)

Coronary arteries

LAD 1.02 (0.98-1.07)

RCA 0.80 (0.45-1.42)

LCX 1.36 (1.01-1.83)

†
Long follow-up population

7.4 Discussion

The majority of breast cancer patients are treated with radiotherapy and it is well
known that radiation exposure of the heart increases the risk of future heart disease.6,19

Our main finding is that a higher radiation dose to all individual cardiac structures
except the right atrium is associated with an increased risk of IHD events. Even
though the relative increase in risk due to radiotherapy is similar for patients with and
without CAC, the absolute increase in risk is substantially higher in patients with CAC.
Therefore, automatic segmentation of the cardiac structures could be especially helpful
in patients with CAC for adjustment of radiotherapy treatment planning to minimize
radiation-induced cardiac damage.

Previous research by Jacob et al.150 indicated that the MHD is not an adequate
surrogate parameter for dose on the myocardium and coronary arteries. In agreement
with this, our results show low correlations and R2 between planned radiation dose
for different cardiac structures and MHD. Moreover, similar to our results, Jacob et
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al. found an increase of 1.9 Gy on the left ventricle (incl. myocardium) for each 1 Gy
increase in MHD in left-sided radiotherapy. For the LAD, an increase of 3.7 Gy per 1
Gy increase in MHD was reported, which is higher than our finding (2.8 Gy per 1 Gy
increase MHD). This difference in findings could be due to the small sample size (n=89)
in the study of Jacob et al. and uncertainty in the dose to the LAD because the LAD is
a relatively small structure.

For every 1 Gy increase in MHD, we found an 8% increase in the risk of IHD. This
is in line with previous research by Darby et al.,19 who reported a 7% (95% CI 3-15)
increase in the risk of acute coronary events for every Gy increase MHD, and with
Jacobse et al.165 who reported a 6% (95% CI 1-16) risk increase per Gy. Studies by van
den Bogaard et al.151 and Lorenzen et al.166 found a stronger increase in risk of 17%
(95% CI 1-35) per Gy and 19% (95% CI 1-63) per Gy. These studies, as well as in ours,
report broad confidence intervals, which indicates that uncertainty in the data may
explain the difference in results.

In this study, no statistically significant increase of IHD risk was found between the
low and medium dose groups for any structure, including MHD. Similarly, a prediction
model designed by van den Bogaard et al.151 predicted a very minimal increase in
risk (<6%) of acute coronary events for up to 8 Gy MHD for patients with similar
characteristics as the cohort used in this paper. The minimal increase in risk for
radiation exposure below 8 Gy MHD might explain why we only found an effect in
the high dose groups of cardiac structures. Additionally, this might explain why no
association between dose and IHD was found in a subgroup of patients that received <
4 Gy MHD. The limited number of events in our cohort has likely contributed to this,
as well.

Our results show that the group with a medium planned dose for the left atrium,
right atrium, aorta, LAD, LCX, and RCA had a lower incidence rate than the group
with a low dose planned for these structures. This might be explained by the dose
distribution in these structures. Figure 7.4 shows that the low dose group for these
structures contains patients that received left-sided radiotherapy with a relatively high
MHD. For instance, a substantial number of patients with a planned dose to the left
atrium of <1 Gy receive >4 Gy on the whole heart. The medium-dose group of these
structures does not contain patients with a relatively high MHD to the same extent,
which might explain the lower incidence rates.

Our results show that a higher dose to cardiac structures is significantly associated
with (non-)fatal IHD. The association between planned radiation dose and IHD was the
same for patients with- and without CAC. Nevertheless, the absolute risk of IHD was
substantially higher in patients with CAC than in patients without CAC. Moreover,
analysis of the dose to different cardiac structures has shown that there is a group of
patients that, despite having a low MHD, receives a relatively high dose on several
structures. Because the MHD does not accurately represent the dose delivered to
the different evaluated anatomies, a more spatially localized dose calculation might
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be especially valuable for treatment planning in patients with CAC. In case it is not
possible to lower radiation exposure of the cardiac structures to a desirable level
without compromising tumor coverage, other treatment options might be considered
e.g. more accurate irradiation using protons167 or opting for treatmentwithout radiation.
Moreover, the increased risk of IHD could be normalized in these patients by referring
to a cardiologist for screening, lifestyle intervention or cardio protective medication.

The amount of CAC quantified on CT scans and the commonly used corresponding
CAC risk categories are strongly associated with IHD.16 In this study the number of
events did not allow for subgroup analysis per CAC risk category and, therefore, the
presence of CAC was used for stratification. Investigating the radiotherapy-related
IHD risk per CAC risk category would be an interesting topic for future work with a
larger data set.

The risk of IHD was different for different structures. This suggests that dose
planning using specific constraints for each cardiac structure might be beneficial for
mitigating radiation-related risk. Unfortunately, we were unable to clearly separate the
effect of irradiation for different cardiac structures from the effects of MHD due to the
co-linearity of the MHD and the dose to the respective structures. We found a higher
increase of risk per Gy for structures with a smaller range in mean dose. This needs to
be interpreted with caution, because of co-linearity between dose to different structures.
For instance, in left-sided radiotherapy, a 1 Gy increase in the MHD means an average
increase of 0.1 Gy on the left atrium and an increase of 1.9 Gy on the myocardium.
In line with this, 1 Gy increase in dose to the left atrium gives a 10% increase in the
risk of IHD (HR=1.10 95%CI 1.03-1.18), while 1 Gy increase to the myocardium leads
to a 4% increase (HR=1.04 95%CI 1.01-1.08). A population-based case-control study as
performed by Darby et al.19 might give more insight into separate risks per cardiac
substructure.

In this study, we fully automatically determined the location of the heart chambers,
large arteries and coronary arteries in >5000 radiotherapy planning CT scans. For
this, we used an ensemble of CNNs that was trained with virtual non-contrast CT
images for which reference segmentations were obtained in perfectly aligned CCTA
images, similarly to Bruns et al.158 This approach enabled us to train the method
with CT exams from another set of patients. Allowing the use of different data sets
is advantageous in comparison with existing methods150,168 that require patients to
have both a radiotherapy planning CT and a CCTA scan to segment cardiac structures
through intra-patient registration. A different approach performs automatic atlas-based
contouring of cardiac structures directly on the planning CT, without using a CCTA scan
for contouring in between.155,156,169 However, cardiac structures are barely differentiable
on non-contrast-enhanced CT, making the atlas subject to inter-observer variability.
Also, inter-patient registration may be difficult, because structure boundaries are poorly
visible. Moreover, due to the lack of contrast, the performance in small structures like
the coronary arteries is often suboptimal.155,156,170
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A limitation of this study is the inclusion of only patients who received radiotherapy.
Hence, we could not compare the risk of IHD at certain radiation exposure with
patients who did not receive radiotherapy. Second, the registry of hospital admissions
used for defining events only recorded IHD events that required hospitalization with
overnight stay. Therefore, mild IHD events that did not require hospitalization were
not included, which might have caused underestimation of the effect of dose on IHD
risk. Nevertheless, our findings provide clear data on a hard clinical endpoint during
long term follow up. Third, the exact accuracy of the automatic segmentation in
planning CT is not evaluated, because the lack of contrast-enhanced CT scans in our
population makes this evaluation infeasible. Nevertheless, previous work that used
different data showed accurate results.158 Fourth, during the follow-up time of this
study, clinical protocols for radiotherapy changed, e.g. the breath-hold technique
was implemented and different treatment planning software was used. Because we
calculated dose parameters per patient, we implicitly correct for inconsistencies in the
data and we expect the influence to be marginal. Fifth, information on cardiac risk
factor like smoking, diabetes or IHD history was not available for analysis. Finally,
due to cardiac motion and imperfect alignment of planning CT to the patient position
during irradiation, the planned dose may deviate from the actually delivered dose.171

This may be especially pronounced for smaller structures such as the coronary arteries.
Future work could investigate the extent and influence of these deviations.

To conclude, we showed that for all cardiac structures a higher dose leads to
an increased risk of IHD. Because the absolute increase in IHD event risk due to
radiotherapy is larger in patients with CAC than without CAC, precise dose planning
might be especially important in patients with CAC. Since cardiac structures are not
manually delineated in clinical practice, the automatic segmentation can offer a solution
for obtaining dose estimates for each cardiac chamber, large artery and the coronary
artery. This study presents a step towards more detailed and spatially distributed dose
planning and management of radiotherapy-induced adverse effects on the heart in
breast cancer patients.
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Summary and discussion
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In the clinical workflow for irradiation for breast cancer, patients undergo a CT scan
for planning of the radiotherapy treatment. These CT scans provide an excellent
opportunity for automatic identification of breast cancer patients at increased risk
of CVD. The previous chapters describe and evaluate automatic methods for CVD
risk prediction in CT scans. Moreover, the influence of radiotherapy on the risk of
CVD in breast cancer patients is evaluated. This chapter summarizes the methods and
findings presented in these chapters and discusses implications and possible directions
for future research.

8.1 Summary

The amount of coronary artery calcification (CAC) and the amount of thoracic aorta
calcification (TAC) are strong predictors of future cardiovascular disease events like
heart attacks and stroke. CAC is usually quantified in cardiac CT scans. Given the
clinical relevance, quantification of CAC is increasingly performed in other types of CT
scans visualizing the heart and aorta, including radiotherapy treatment planning CTs.

Owing to the clinical relevance, several machine learning methods have been de-
veloped to automate calcium scoring. Typically, these methods are developed and
evaluated in CT scans with specific acquisition characteristics. Consequently, the
performance if often suboptimal in CT scans acquired with different acquisition param-
eters, which limits the clinical applicability. In our group an automatic deep learning
calcium scoring method was developed for application in low-dose lung screening CT
scans.32 Training was originally done with a diverse set of lung screening CT scans
that originated from 31 different hospitals. However, this does not guarantee good
performance in other types of CT that allow calcium scoring, because of differences
in e.g. field of view, noise levels and population. In CHAPTER 2 we evaluated the per-
formance of the calcium scoring method. The un-adapted method, i.e. as trained for
low-dose chest CT from lung cancer screening, showed a good performance in a large
set of CT scans with diverse acquisition protocols. In general, supervised methods
perform best when they are trained on data from the same distribution as the target
data. However, collecting annotations for each new type of CT scan would require
extensive manual labor from medical experts. To limit the need for new training data,
we investigated retraining where the original training dataset was utilized. When a
relatively low number of scans with a specific scan protocol was added to the training
set for protocol-specific training, the performance of the method in that type of CT was
close or equal to the level of human observers. Moreover, for implementation in the
clinic, ideally a single method would be applicable to all available CT scans. Training
with a combination of all available types of CT scans lead to a performance comparable
to protocol-specific training. This type of generic method eliminates the need for a
specialized network for every type of CT that shows the heart, which is practical for
wide application in clinical practice.
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The automatic calcium scoringmethod described in Chapter 2was used in CHAPTER 3

to investigate the difference in prevalence and amount of CAC and TAC between
Western and Asian breast cancer patients. The prevalence of CAC and TAC in both
patient populations is considerable and increases with age. Up to one third of breast
cancer patients aged under 70 years has CAC. More than half of patients aged over 70
years has CAC and the prevalence in Asian patients is higher than the Netherlands.
TAC is more prevalent than CAC in both Asian and Western breast cancer patients.
Moreover, we showed that, despite differences in scanning parameters, the automatic
scoring method trained with a protocol-specific training set is a reliable method to
measure CAC and TAC on radiotherapy planning CT scans of both populations.

Although previous research suggests that there is a relation between CAC quantified
on planning CT scans and CVD, the exact association between the planning CT calcium
score and CVD was still unknown. To investigate this, we evaluated the association
between CAC quantified on radiotherapy planning CT scans and risk of CVD events
in breast cancer patients and the interaction with certain breast cancer treatments in
CHAPTER 4. Automatic calcium scoring (Chapter 2) enabled evaluation in a large cohort
of 15,915 breast cancer patients. Based on the scores, patients were classified into five
commonly used CVD risk categories, ranging from ’low risk’ for patients with a zero
score to ’very high risk’ for patients with a score >400. Survival analysis was used to
evaluate the association between risk categories and CVD. A strong association was
found between CAC quantified on radiotherapy planning CT scans and CVD risk. For
patients that were treated with anthracyclines, a type of chemotherapy with cardiotoxic
side effects, the association was even stronger. These results show that, because of the
strong association, automatic calcium scoring provides a solution for identification of
breast cancer patients at increased CVD risk.

Given the clinical relevance, calcium scoring is increasingly performed in CT scans
made for other purposes, including non-ECG synchronized scans such as radiotherapy
treatment planning CTs. However the interscan reproducibility of calcium scores is
compromised in CT scans without ECG-synchronization and with low image resolu-
tion. This means that if two scans of the same patient are made within a short time
interval, there can be a large difference in calcium scores between these scans. Besides
image resolution and lack of ECG-triggering, a fixed intensity level threshold used
for segmentation of calcium lesions causes low scoring reproducibility. To address
this, CHAPTER 5 describes a method for CAC quantification that does not require a
segmentation threshold. The method uses a CycleGAN to decompose an image with
CAC into an image without CAC and a CAC-map, i.e. an image showing only CAC.
Subsequently, the CAC-map is used to quantify the amount of calcium. The method
was evaluated in radiotherapy treatment planning CT scans of almost 1,700 breast
cancer patients that each had two CT scans. This set with scan pairs made it possible to
assess the interscan reproducibility of the method. Results showed that the method was
able to accurately detect calcium lesions, including those below the clinical threshold.
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Moreover, our method achieved a higher interscan reproducibility, compared with the
clinical calcium scoring procedure.

Besides CAC and other known image biomarkers, more information is present in CT
images that is possibly predictive for CVD events. Therefore, CHAPTER 6 describes an
automatic method for the prediction of CVD risk that does not need hand-crafted image
features such as calcium scores. Instead, 5-year CVD mortality is directly predicted
from the image itself. This method uses an unsupervised learning strategy to extract
image features without designing them. First, the region of interest was defined by
automatically localizing the heart and cropping the image to a bounding box around
the heart. Next, an autoencoder was used to compress the identified heart region in
an unsupervised manner into a lower dimensional space. The loss function of the
autoencoder is defined to capture perceptual differences and spatial correlations in the
heart image. Finally, the image encodings were used to classify subjects into survivors
or non-survivors with a support vector machine classifier. The performance of the
method was assessed using cross-validation experiments and the method achieved a
performance comparable with other approaches that use calcium scores and patient
data. We showed that predicting CVD mortality directly from CT scans, without
hand-crafting image features, might be feasible.

Finally, in CHAPTER 7 we investigated the effect of radiation exposure of the car-
diac structures and coronary arteries on the risk of ischemic heart disease (IHD) in
breast cancer patients. Additionally, we investigated whether the association between
radiation dose and IHD is different for patients with and without CAC. Cardiac struc-
tures and coronary arteries are not clearly distinguishable in planning CT. Therefore,
we used contrast-enhanced images acquired on a dual-layer detector CT scanner to
create manual reference segmentations of cardiac structures and coronary arteries.
Using the dual-energy properties of this acquisition a second, perfectly aligned virtual
non-contrast image (VNC) can be reconstructed that resembles a non-contrast image.
Because of voxel-wise correspondence, the manual reference annotations can be trans-
ferred to the VNC image, which we used to train an ensemble of CNNs for segmentation
of cardiac structures (cardiac chambers, large arteries and coronary arteries). Thereafter,
the method was applied to the radiotherapy planning CT scans and the segmentations
were used to determine the radiation exposure per structure. Subsequently, survival
analysis was used to evaluate the association between dose and IHD in breast cancer
patients with and without CAC. The results showed that a high dose to the whole heart
is associated with an increased risk of CVD. This is also true for all cardiac chambers,
large arteries and coronary arteries. Moreover, we found that the dose on the whole
heart is not an accurate surrogate parameter for the dose on the different structures.
The relative increase in risk due to radiation exposure is the same in patients with and
patients without CAC. However, the radiation-related absolute increase in IHD risk is
substantially higher in patients with CAC than in patients without CAC. Therefore,
spatially distributed dose calculations taking cardiac structures and coronary arteries
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into consideration may be especially helpful in patients with CAC.

8.2 Discussion

Recent advances in machine learning and artificial intelligence research have lead to
a multitude of automatic methods that are able to perform medical image analysis
tasks with human-level performance. Typically, these methods are developed for a
relatively uniform set of input images where the variability with respect to pathology
and acquisition is limited. However, for application in clinical routine, software tools
need to be robust to variation in image acquisition parameters and variation in the
imaged population. Themethods described in this thesis aremostly supervisedmethods,
and, therefore, their performance and robustness to variations in input data is largely
dependent on the training data. For example, in Chapter 2 we have evaluated the
performance of the automatic calcium scoring method in CT scans with multiple
different acquisition protocols and populations. The performance of the calcium scoring
method varied over the different types of CT scans. For instance, the methods showed
nearly perfect agreement with experts in cardiac CT, while the agreement was lower
in radiotherapy treatment planning CT and diagnostic chest CT. This is related to the
supervised training of the method and the quality of the annotations in the training data.
In challenging tasks, manual annotations may be subject to intra- and interobserver
variability, causing noise in the labels that affects the performance of the method. This
explains why the performance was excellent in cardiac CT, in which calcium scoring is
considered relatively easy, because the image acquisition parameters are specifically
optimized for visualizing coronary calcium. In radiotherapy treatment planning CT
and diagnostic chest CT, where calcium scoring is more challenging, the interobserver
variability was higher and likewise the performance was worse. Cardiac events or
mortality, like the outcome labels used in Chapter 6, may be more reliable labels. These
labels are defined according to strict clinical protocol and definitions,164 which may
make them less subject to interobserver variability. However, this type of data is
often obtained in retrospective settings and difficult to obtain prospectively as long
follow-up may be needed. In situations where noisy labels are inevitable, application
of methods for decreasing the impact of noise in the reference during training could be
considered.172

Related to the dependency of supervised methods on training data, one of the main
challenges in the field of medical image analysis is collecting data for development
of automatic methods. More specifically, labels for supervised training are typically
difficult to obtain since they generally require a substantial amount of manual input of
a medical expert. For development of the methods described in this thesis, different
types of labels are used for different levels of supervision during training, each with
their own advantages and challenges. First, we used voxel-level supervision with
manual annotations per voxel to train the calcium scoring method (Chapter 2) and the
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cardiac segmentation method (Chapter 7). This manner of annotating is typically labor
intensive, because an observer has to indicate a label class per voxel. However, by
training on image patches or sub-images, a large amount of examples can be generated
from a limited amount of images for training complex CNNs with a large number
of parameters. Moreover, supervised methods often lead to the best results. Second,
we used a weaker supervision with labels per image slice to train the CycleGAN for
calcium segmentation in Chapter 5. This manner of annotating images is less labor
intensive than voxel-painting. However, per image only a limited number of examples
can be generated for training. Moreover, because the labels are sparse compared to
the information of thousands of voxels in the image, training a method with good
performance may be challenging. For training a complex CNN with this type of labels,
a large number of scans may need to be annotated. Because the labels were defined
per image slice, the calcium segmentation CycleGAN we used had a 2D architecture. A
downside of this approach is that the method is not able to utilize all information from
the full 3D structures that are visualized in the image. Third, for training the method for
direct prediction of 5-year mortality described in Chapter 6 we used mortality outcome
labels that are defined per image volume. Typically, such an approach would require a
large amount of annotated scans, since one image volume only represents one training
example. Because the amount of training data was limited, training the prediction
method end-to-end was not feasible. Hence, we trained the method in two stages: a
complex 3D CNN was trained in an unsupervised manner for feature extraction. The
extracted features were substantially reduced in dimensionality, allowing for training a
classifier with outcome labels in a supervised manner. A limitation of this approach is
the fact that the unsupervised training is agnostic to the subsequent task, and therefore
may not learn to extract all information that is relevant for prediction.

The research described in this thesis is largely focused on breast cancer patients.
In addition, several other sets of CT scans of different populations are used. While
often training on data similar to the target data leads to good results, in some cases
inclusion of non-target data can be advantageous for achieving robustness of methods.
For instance, by combining different sets comprising diverse CT protocols and different
populations, we were able to create a generic calcium scoring method (Chapter 2). The
combined training led to a performance that was comparable or better than training
that was tuned to one specific type of CT scan. Subsequently, we used this generic
method to perform calcium scoring in a large multi-center cohort of breast cancer
patients. To develop the direct CVD prediction method (Chapter 6) we used scans from
lung cancer screening participants, of which outcome data was available. Moreover,
for development of the cardiac segmentation method in Chapter 6, training with non-
target data was an explicit advantage. Due to lack of contrast in the planning CT
images (target), defining the reference in planning CT images was not feasible. Because
the non-target training data was acquired on a dual-layer detector CT scanner, an
accurate segmentation reference could be determined on the contrast-enhanced image,
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and transferred to the virtual non-contrast image. This way we were able to create a
method for radiotherapy dose estimation per cardiac structure in planning CT scans.

In this thesis two methods for automatic quantification of CAC are described.
Chapter 2 describes the evaluation of a deep learning method that follows the clinical
definition of CAC. Using clinical calcium (Agatston) scores derived from radiotherapy
treatment planning CT a CVD risk profile can be determined for breast cancer patients
(Chapter 4). In Chapter 6 we describe a different method for CAC quantification in
non-ECG-synchronized scans that is able to more accurately segment lesions with
motion artefacts and quantify CAC with higher interscan reproducibility. However,
because this method does not use the clinical definition of CAC, the quantified amount
does not correspond to clinical calcium scores. Therefore, further research is needed to
determine the association with CVD events and evaluate the predictive value of the
quantified amount of CAC using this method.

The calcium scoring methods described in this thesis are developed for non contrast
chest CT scans and cardiac CT scans. These types of CT scans make up roughly 14% of
all CT scans that are acquired annually.173 Several other CT scans, made for a diversity
of clinical indications, visualize calcifications in large arteries, e.g. the aorta (abdomen
CT), carotid arteries (head and neck CT) or all large arteries (full body CT). Future
research could extend automatic calcium scoring methods to this broad range of scans
to investigate opportunities for CVD risk screening in these scans.

In Chapter 6 we presented a method for mortality prediction directly from low-
dose chest CT scans of lung screening participants. This method may be promising
for application in other screening or patient populations, e.g. breast cancer patients.
Although we show that direct prediction of CVD mortality is feasible, the method is
not accurate enough for application on individual patient level at this time. Future
research could focus on improving the performance, for instance by combining the
unsupervised image features with established image biomarkers and non-image patient
data.174 Moreover, advanced augmentation techniques like GAN-based augmentation175

may make end-to-end training with a limited dataset feasible.
For acceptance and application in clinic, the explainability of a deep learning

method is of key importance. This means that an expert has insight in the decision
making process of the method. The methods described in Chapters 2, 4 and 7 all
produce a segmentation map, i.e. an image indicating per voxel whether it belongs to
a target structure or tissue. Subsequently, the segmentation map is used for further
quantification. Although the mechanism for prediction of the segmentation map itself
is hidden in the complex network, a clinician can view the segmentation map. Based on
inspection of the segmentation map, a clinician can judge the plausibility and accuracy
of the quantified parameters. Although this is not an explicit explanation of how
the segmentation was produced, the segmentation map provides interpretability of
the subsequently quantified parameters. On the other hand, the method described in
Chapter 6 only produces an output probability per class and, as such, acts to a greater
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extent as a black box. In this method, visualization techniques for CNNs176–178 could
be used to visualize which parts of the image contributed to the decision.

In Chapter 7 we showed that in breast cancer patients the absolute radiotherapy-
related risk increase of IHD is largest in patients with CAC. Therefore, spatially dis-
tributed dose estimates may be most helpful in radiotherapy planning of these patients.
Using the automatic segmentation method described in this chapter, it is possible to
obtain estimates of planned radiotherapy dose to cardiac chambers, large vessels and
coronary arteries. However, it is yet unknown whether implementation of radiation
dose estimates per cardiac structure will benefit prevention of ischemic heart disease in
breast cancer patients. Therefore, a next step would be conducting a clinical study that
investigates whether structure- and coronary artery-specific dose estimates lead to a
lower radiation dose administered to the cardiac structures, while maintaining effective
tumor coverage. Implementation followed by evaluation in a prospective setting could
thereafter determine the long-term impact on IHD risk.

We have shown that accurate quantification of CAC in planning CT is possible
using an automatic calcium scoring method. Furthermore, we have shown that the
amount of CAC automatically quantified on planning CT is strongly associated with
risk of CVD events in breast cancer patients. Therefore, automatic calcium scoring in
planning CTs provides an excellent way to routinely identify breast cancer patients
with an increased risk of CVD. However, it is still unknown whether implementation
of automatic calcium screening, followed by targeted prevention and management of
CVD risk will lower the CVD burden in breast cancer survivors. Furthermore, potential
disadvantages of screening, such as overdiagnosis, overtreatment and patient anxiety,
need to be taken into consideration. A prospective clinical trial evaluating the value of
calcium screening in breast cancer patients could bring clarification in this matter.

The artificial-intelligence-based methods presented in this thesis allow for quantifi-
cation of disease- or treatment-related parameters in breast cancer patients that would
otherwise be cumbersome or even infeasible to quantify. These parameters may aid
medical experts in lifting the practice of personalized medicine to a new level, by more
precisely measuring a broad set of CVD parameters and monitoring treatment conse-
quences. After careful evaluation of clinical implications, the methods and evaluations
in this thesis may pave the way towards more personalized treatment of breast cancer
patients by enabling identification of patients at risk of CVD and by providing tools for
estimating treatment induced CVD risk.
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Hart- en vaatziekten bij borstkankerpatiënten

Door toename van het aantal borstkankerpatiënten, eerdere diagnose door screening en
betere behandelingen is het aantal vrouwen dat borstkanker overleeft (survivors) toe-
genomen. Door deze toename is er ook meer aandacht voor de gezondheid en kwaliteit
van leven na borstkanker. Een veel voorkomend ziektebeeld in borstkanker survivors is
dat van hart- en vaatziekten. Daarnaast kunnen behandelingen voor borstkanker, zoals
bijvoorbeeld bestraling, het risico op hart- en vaatziekten vergroten. Tevens is het zo
dat van alle borstkankerpatiënten, degene met een verhoogd risico vóór de behandeling
ook het hoogste risico hebben op cardiovasculaire bijwerkingen. Tijdig vaststellen van
een verhoogd risico op hart- en vaatziekten bij patiënten biedt de mogelijkheid om
preventief maatregelen te nemen om latere hart- en vaatziekten te voorkomen.

Atherosclerose is veelal de onderliggende oorzaak van hart- en vaatziekten. Athe-
rosclerose is een aandoening die gekenmerkt wordt door de vorming van plaque in de
vaatwanden. Plaque is een ophoping van vetten, cellen en kalk. Atherosclerose is een
sluipmoordenaar, die jarenlang kan sluimeren zonder duidelijke klinische symptomen.
Daarentegen kan de plaque plotseling instabiel worden en een trombose veroorzaken,
wat kan resulteren in een levensbedreigende hartaanval of beroerte.

Normaal gesproken wordt een cardiovasculair risicoprofiel opgesteld aan de hand
van traditionele risicofactoren, zoals bijvoorbeeld leeftijd, bloeddruk, cholesterol, diabe-
tes mellitus en roken. Echter heeft één op de vijf borstkankerpatiëntenmet sub-klinische
atherosclerose géén enkele risicofactor en zal daarom niet herkend worden als ’hoog
risico’. Het meten van (sub-klinische) atherosclerose kan een uitkomst bieden om met
meer zekerheid een verhoogd risico in individuele patiënten op te sporen.

Verkalkte atherosclerotische plaque, ook wel vaatkalk genoemd, is zichtbaar op
Röntgen-gebaseerde beeldvormende modaliteiten. Met computed tomography (CT)
wordt een 3D weergave van het lichaam gemaakt, waarbij vaatkalk goed zichtbaar is.
Deze beelden kunnen gebruikt worden om vaatkalk te kwantificeren en zo patiënten
met een verhoogd risico te identificeren. Voor het kwantificeren van vaatkalk, ook wel
calcium scoren genoemd, worden eerst laesies met een hoge dichtheid in de kransslag-
aderen (of andere relevante slagaderen) gedetecteerd. Deze laesies kunnen vervolgens
worden gekwantificeerd in volume, massa of Agatston score. De Agatston score wordt
vaak gebruikt omdat deze direct te vertalen is naar een risicocategorie. In de kliniek
wordt calcium scoren met de hand gedaan. Hoewel dit geen moeilijke taak is voor
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een medisch specialist, is het repetitief en tijdrovend, vooral wanneer er sprake is van
grote hoeveelheden scans. Met name voor grootschalige analyse, zoals bijvoorbeeld in
klinische studies, is een manier om automatisch calcium te scoren dus gewenst.

(a) Rechtszijdige radiotherapy (b) Linkszijdige radiotherapie

Figuur 8.1: Voorbeelden van planning CT scans met een illustratieve heatmap van de geplande

dosis van een patiënt met een tumor in de rechter borst (a) en van een patiënt met een tumor

in de linker borst (b). Het hart is ingetekend (in blauw) om stralingsschade aan gezond weefsel te

voorkomen.

Planning van de radiotherapie behandeling

De meerderheid van de borstkankerpatiënten krijgt radiotherapie tijdens de behande-
ling. Om de 3D radiotherapie dosisverdeling voor iedere patiënt te bepalen wordt een
planning CT scan gemaakt. Op deze CT scan wordt de tumor ingetekend om optimale
bestraling van de tumor te garanderen. Ook wordt er een aantal organen ingetekend
die in het stralingsveld kunnen liggen. Zo kan de potentiële stralingsschade aan gezond
weefsel gemonitord worden. Voor iedere individuele patiënt wordt vervolgens een
bestralingsplan gemaakt, wat een zorgvuldige balans is tussen optimale bestraling van
de tumor en minimale schade aan gezonde organen.

Omdat blootstelling van hartweefsel aan straling kan leiden tot een verhoogd
risico op hartziekten, worden verscheidene maatregelen genomen. Zo wordt het hart
ingetekend op de planning CT scan om de hoeveelheid straling op het hart zo klein
mogelijk te houden. Ook worden patiënten met een tumor in de linker borst bestraald
terwijl ze hun adem inhouden. Op deze manier wordt de afstand tussen de tumor en
het hart zo groot mogelijk gemaakt. Patiënten met linkszijdige borstkanker krijgen
daarom een tweede CT scan waarbij ze hun adem inhouden.

De planning CT scans bieden de mogelijkheid om de stralingsblootstelling van
het hart te monitoren. Omdat ze ook vaatkalk weergeven, bieden de planning CT
scans bovendien een kans om het cardiovasculair risico vast te stellen door middel van
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calcium scoren. Naast vaatkalk bevatten de CT scans nog meer informatie die mogelijk
het risico op hart- en vaatziekten van een patiënt mogelijk kan voorspellen.

Automatische beeldanalyse

Voor het automatiseren van beeldanalyse hebben we in deze thesis gebruik gemaakt
van verschillende machine learning technieken. Machine learning is een onderdeel van
kunstmatige intelligentie (AI) waarbij een computeralgoritme leert om een bepaalde
taak uit te voeren op basis van voorbeelden (data). Bij conventionele machine learning
wordt de data beschreven door bepaalde kenmerken die van tevoren ontworpen zijn
en waarvan we denken dat ze relevant zijn voor de taak. Het ontwerpen van deze
kenmerken vereist input van een expert met behoorlijke kennis van de taak. In deep
learning wordt het ontwerpen van de kenmerken niet door een mens gedaan, maar
overgelaten aan een zeer complex en krachtig computermodel. Dit model is in staat
om op basis van de data te bepalen wat de relevante kenmerken zijn voor de taak.

Een veelgebruikt model in deep learning zijn kunstmatige neurale netwerken (KNN).
Deze modellen simuleren de manier waarop neuronen in het menselijk brein informatie
verwerken. Door vele kunstmatige neuronen met elkaar te verbinden in verschillende
lagen kan een complex model gemaakt worden dat in staat is extreem non-lineaire
verbanden in de data te modelleren. Een speciale soort KNN die in deze thesis (en in
de beeldanalyse in het algemeen) veel wordt toegepast, is het convolutionele neurale
netwerk (CNN).

Automatische bepaling van cardiovasculair risico

Op basis van de hoeveelheid vaatkalk in de kransslagaderen (CAC) en in het thoracale
gedeelte van de aorta (TAC) kan nauwkeurig een risicoprofiel voor hart- en vaatziekten
worden bepaald. Om CAC en TAC te kwantificeren worden normaal gesproken hart
CT scans gebruikt, maar ook andere soorten CT scans kunnen worden gebruikt. In
HOOFDSTUK 2 presenteren we een uitgebreide evaluatie van een deep learning methode
voor calcium scoren. De methode is in eerste instantie ontworpen voor toepassing in CT
scans die zijn gemaakt voor screening op longkanker. In dit hoofdstuk laten we zien dat
de methode ook goed werkt in vijf andere typen CT scans. Verder leidt opnieuw trainen
van de deep learning methode met representatieve voorbeelden van nieuwe typen
CT scans tot een verbetering van het calcium scoren. Idealiter zou een methode voor
calcium scoren in de kliniek op alle beschikbare CT scans kunnen worden toegepast.
Wanneer alle verschillende typen CT scans gecombineerd worden tijdens het trainen,
werkt de methode even goed als gespecialiseerde modellen. Door dit soort generieke
methodes is het niet meer nodig om een gespecialiseerd model te ontwikkelen voor
ieder type CT scan.

In HOOFDSTUK 3 en HOOFDSTUK 4 hebben we de deep learning methode voor calcium
scoren gebruikt om onderzoek te doen naar de prevalentie van vaatkalk en de associatie
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met hart- en vaatziekten. Door automatisch calcium scoren was het mogelijk om
in deze studies grote groepen borstkankerpatiënten te includeren. In Hoofdstuk 3
beschrijven we de prevalentie van vaatkalk in een groep westerse borstkankerpatiënten
en in een groep Aziatische borstkankerpatiënten. In beide groepen hadden patiënten
met een hogere leeftijd vaker CAC dan jongere patiënten. Verder kwam TAC in alle
leeftijdsgroepen vaker voor dan CAC.

Verschillende onderzoeken suggereren dat er een relatie bestaat tussen CAC ge-
meten in planning CT scans en het risico op hart- en vaatziekten. Echter, de exacte
associatie tussen CAC gemeten in planning CT scans en hart- en vaatziekten in borst-
kankerpatiënten is nog onbekend. Om dit verband te onderzoeken, hebben we in
Hoofdstuk 4 deze relatie geanalyseerd in een grote populatie van meer dan 18,000
borstkankerpatiënten. De resultaten laten zien dat er een sterke associatie is tussen
CAC gemeten op planning CT scans en hart- en vaatziekten. Dit maakt automatisch
calcium scoren in planning CT een geschikte tool om borstkankerpatiënten met een
verhoogd risico op hart- en vaatziekten te identificeren. Bovendien is de associatie
nóg sterker in patiënten die behandeld zijn met antracylclines, een bepaalde vorm van
chemotherapie.

In de kliniek wordt calcium scoren gedaan in hart CT scans. Dit zijn scans die
gefocust zijn op het hart en gesynchroniseerd zijn met de hartslag door middel van
een elektrocardiografie (ECG) opname. Hierdoor is de beweging van het hart minimaal
tijdens het maken van de CT scan, waardoor het hart en de kransslagaderen optimaal
worden afgebeeld. In scans die voor andere doeleinden gemaakt worden wordt vaak
geen gebruik gemaakt van ECG-synchronisatie, waardoor bewegingsartefacten in
de scan kunnen ontstaan. Hierdoor kunnen vaatkalk laesies in het beeld vervagen.
Dit is een probleem omdat de gebruikelijke methodes voor calcium scoren gebruik
maken van een afkapwaarde voor het detecteren van vaatkalk. Vervaagde laesies
kunnen hierdoor gedeeltelijk of volledig gemist worden. Als direct gevolg hiervan is
de reproduceerbaarheid van de calcium score in niet-ECG-gesynchroniseerde scans
laag, d.w.z dat er een groot verschil kan zijn tussen calcium scores van twee scans van
dezelfde patiënt. In HOOFDSTUK 5 presenteren we een methode die geen gebruik maakt
van een threshold voor segmentatie van vaatkalk laesies. Hierdoor kan de methode
met grotere reproduceerbaarheid calcium scoren, vergeleken met methodes die wel een
afkapwaarde gebruiken. De methode bestaat uit een zeer complexe CNN die in staat
is een beeld met vaatkalk te ontleden in twee onderdelen: een beeld waarin gezond
weefsel zonder vaatkalk is afgebeeld en een beeld waarin alléén vaatkalk is afgebeeld.
Dit laatste beeld kan vervolgens gebruikt worden om vaatkalk te kwantificeren.

HOOFDSTUK 6 beschrijft een methode die het calcium scoren of een andere manier
van vooraf ontworpen informatie extractie overslaat. In plaats daarvan voorspelt de
methode cardiovasculaire mortaliteit binnen 5 jaar direct vanaf de CT scan. Zonder
kennis van de uiteindelijke taak wordt door een CNN informatie uit de scans geëx-
traheerd. Vervolgens wordt deze informatie gebruikt om een conventionele machine
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learning classifier te trainen om mortaliteit te voorspellen. Hiermee laten we zien dat
het mogelijk is om direct vanaf een CT scan risico op hart- en vaatziekten te voorspellen.

Invloed van radiotherapie op cardiovasculair risico

In HOOFDSTUK 7 hebben we het effect van bestraling van verschillende hart structuren
en kransslagaderen op het risico op ischemische hartziekten onderzocht. Daarnaast
hebben we onderzocht of het effect van bestraling anders is in patiënten met CAC dan
in patiënten zonder CAC. Op planning CT scans, waarmee het bestralingsplan gemaakt
wordt, zijn de hartstructuren en kransslagaderen niet goed te onderscheiden. Dit lukt
echter wel goed op hart CT scans met contrast vloeistof. Daarom hebben we referentie
segmentaties gemaakt in CT scans met contrast, die gemaakt zijn met een dual-layer
detector CT scanner. Met deze speciale scanner kunnen we van een scan met contrast
een virtueel non-contrast beeld maken: een beeld dat eruit ziet alsof het zonder contrast
gemaakt is. Omdat het contrast beeld en het vitruele non-contrast beeld van dezelfde
opname komen, liggen ze perfect over elkaar. Hierdoor kunnen we de segmentaties
van het contrast beeld een-op-een vertalen naar het virtuele non-contrast beeld. Deze
speciale eigenschappen hebben we gebruikt om een CNN te trainen voor segmentatie
van hartstructuren en kransslagaderen in CT scans zonder contrast, zoals de planning
CT scans. Met behulp van deze methode konden we de stralingsblootstelling van de
verschillende hartstructuren en kransslagaderen berekenen per patiënt. Vervolgens
hebben we met survival analyse de relatie tussen stralingsblootstelling en ischemische
hartziekten onderzocht. De resultaten laten zien dat patiënten die een hoge stralings-
dosis op hartstructuren of kransslagaderen hebben gehad een hoger risico hebben op
ischemische hartziekten. Bovendien is de toename van absoluut risico op ischemische
hartziekten groter voor patiënten die CAC hebben dan voor patiënten die dat niet
hebben.

Toekomstperspectief

De AI methoden die in dit proefschrift gepresenteerd zijn maken het mogelijk om
ziekte- en behandeling-gerelateerde parameters te kwantificeren, die anders moeilijk
of zelfs onmogelijk te kwantificeren zouden zijn. In de klinische praktijk zouden deze
parameters waardevol kunnen zijn om de fysieke toestand van de patiënt beter in kaart
te brengen of om de bijwerkingen van behandeling in te schatten. De methoden en
evaluaties in dit proefschrift zijn voornamelijk gefocust op toepassing in borstkanker-
patiënten. De methoden zijn echter niet beperkt tot deze doelgroep en zullen breder
toepasbaar zijn. In sommige gevallen kan dit zonder verdere aanpassingen en in andere
zal het nodig zijn om de methode opnieuw te trainen of te ”fine-tunen”. Bovendien
hebben we laten zien dat met behulp van automatische beeldanalyse studies in grote
populaties mogelijk worden gemaakt. Verder zouden de gepresenteerde methoden
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medisch specialisten kunnen helpen om diagnostiek en behandeling zo goed mogelijk
af te stemmen op het individu.
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