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The costs of achieving climate targets depend on a number of  
uncertain factors, including the relationships between GHG  
emissions and radiative forcing, temperature change and the 

costs of reducing CO2 and other GHGs1. Many scientific assess-
ments and (multi-)model studies have been published that cover 
certain aspects of these relationships (for example, socio-eco-
nomic2–5 or biophysical6–8). Together, they provide a number of 
key insights, such as the near-linear relationship between cumula-
tive CO2 emissions and global mean temperature and the rapidly 
increasing abatement costs for more stringent climate targets. These 
relationships have been quantified by multiple models, covering a 
wide range of methods and assumptions. Still, the uncertainty space 
currently covered in model studies represents only part of the total 
uncertainty space, given the necessary model simplifications and 
the limited number of (scenario) uncertainties that can be explored. 
There is an ongoing discussion about the relevance of considering a 
wider range of scenarios going beyond the space currently covered 
by models and the need for scenario updates9–11. Nonetheless, one 
can reasonably assume that the model ranges represent a relevant 
part of the uncertainty range (based on a combination of theory, 
model calibration and expert elicitation) and they also form a key 
quantitative input in the assessments of the IPCC. Here, we intro-
duce a metamodel based on the key model outcomes in different 
parts of the IPCC assessment describing the relationship between 
temperature targets, carbon budgets and mitigation costs, including 
the associated uncertainty ranges. The strength of this model is its 
transparency and its ability to use the full model uncertainty range 
in the literature, covering a range of models, approaches and sce-
nario assumptions. As such, it goes beyond the parametric uncer-
tainty captured by single models that also describe this topic (for 
example, refs. 12,13).

A metamodel of mitigation costs
The elements used for constructing the metamodel, including the 
5–95th percentile range of output in the literature, are shown in Fig. 1.  

The first element is the transient climate response to cumulative 
CO2 emissions (TCRE), which shows the relationship between 
cumulative CO2 emissions and temperature change (Fig. 1a). This 
emergent property of Earth system model (ESM) simulations 
implies that each temperature target can be translated relatively 
easily into a carbon budget, given a specific choice of how to deal 
with uncertainty14. The TCRE relationship has been reported for 
runs with only CO2 forcing, and also for scenarios including non-
CO2 gases. The TCRE is a function of various underlying sources 
of uncertainty in the physical system. For example, Gillett et  al.15 
show how TCRE can be constructed from climate sensitivity and 
carbon cycle components. Others16 have tried to estimate the indi-
vidual role of the physical climate response and biogeochemical 
feedbacks, suggesting that both represent approximately half the 
uncertainty in the TCRE. Millar et al.8 published a slightly revised 
method to estimate carbon budgets using the TCRE, by shifting the 
outcomes of ESM simulations for the base year using the histori-
cally observed temperature and emissions data. This method is also 
used here, using an estimate for 2010 warming based on a range  
of historical time series and methods showing a range of 0.76–1.06 °C  
compared with the pre-industrial period17.

Non-CO2 GHGs also influence future temperature. In the sce-
nario literature, a correlation between non-CO2 GHG forcing and 
cumulative CO2 emissions can be found, as both partly originate 
from the same sources and are influenced by the strength of cli-
mate policy in the scenarios (nearly all scenarios assume the same 
equivalent price for both CO2 and non-CO2). We estimated the 
temperature impact of non-CO2 GHGs to capture this as a separate 
factor. This is done by using data from the Shared Socioeconomic 
Pathways (SSPs) database4,5. The reason for using this database is 
that the SSPs explicitly paid attention to the range of assumptions 
for non-CO2 gases. In Fig. 1, we compare the SSP data with the sce-
nario data of the IPCC Special Report on Global Warming of 1.5 °C 
(SR1.5)18, showing that the SSP range covers the wider model litera-
ture range very well.
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Another key determinant of total mitigation costs is the relation-
ship between the costs and the stringency of climate policy. In the 
literature, a range of models and metrics is used to express the costs 
of climate policy, including macroeconomic indicators such as con-
sumption loss, and more direct cost estimates such as abatement 
costs2,19. For our metamodel, we used this information by convert-
ing the various cost estimates in the relative costs compared to those 
for reaching a 1.6 TtCO2 carbon budget (left y axis, see Methods). 
For ease of interpretation, the index is also converted to one of the 
underlying metrics, that is, net present value of consumption loss 
(right y axis). The results show for different metrics a very similar 
exponential increase with the stringency of the emission target, here 
represented by cumulative CO2 emissions (Fig. 1c). This finding is 
consistent with the general assumption of increasing marginal costs 
as a function of the GHG reduction rate2,19 (only a few studies show 
opposite results20). We again use the more recent data of the SSPs 
for the model, as other databases, such as the one for the IPCC Fifth 
Assessment Report (AR5), represent only part of the relevant range 

for climate targets4,5. Nonetheless, Fig. 1c compares the range of the 
SSPs with the literature overviews in AR5 (ref. 2) and SR1.5 (ref. 18), 
showing similar ranges (the SR1.5 data are not representative for 
high carbon budgets due to the low number of scenarios included). 
The range in abatement costs for similar cumulative CO2 emission 
targets is substantial. Important factors contributing to this range 
are differences in (1) assumptions on socio-economic and technol-
ogy development, (2) the feasibility of upscaling critical low-carbon 
technologies, (3) the extent to which climate policies induce further 
economic impacts, (4) the type of policies applied and (5) the ability 
to reduce emissions in hard-to-abate sectors2,4,21,22.

Based on the results for mitigation costs shown in Fig. 1, it is pos-
sible to derive the following simple metamodel on mitigation costs:

Costs ¼ aþ b ´ e
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Fig. 1 | Key relationships in the literature relevant to the costs of achieving climate targets. a–c, The relationship between cumulative CO2 emissions 
and temperature (TCRE), based on the 2010 estimate for global mean temperature17 and the relationship found by IPCC AR5 (ref. 29; a), the relationship 
between cumulative CO2 emissions and forcing of non-CO2 GHGs, as reported in the SSP and SR1.5 databases4,5,18 (b) and the relationship between 
cumulative CO2 emissions and the cost index (relative costs for various metrics relative to the average costs of achieving an emission target of 1.6 TtCO2 
over the 2010–2100 period), based on the SSP database4,5, AR5 (ref. 2) and SR1.5 (c) (see Supplementary Information). Note that the SR1.5 cost curve is 
truncated, since the corresponding database mainly focuses on low emission scenarios. In all cases, the mean relationship as used in the model and the 
5–95th percentile range is shown. RCP, representative concentration pathway.
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where the parameters a, b and c are determined using the SSP 
cost data; Ttarget, the target temperature; T2010, the temperature in 
2010; and σnCO2

I
, the contribution of non-CO2 gases. The values of 

each of these factors and the associated range (5–95th percentile) 
can be directly derived from the panels of Fig. 1 (see Methods), 
allowing a Monte Carlo analysis (assuming a log-normal distribu-
tion) to estimate the costs of achieving different climate targets with 
associated uncertainties. Consistent with most long-term scenarios, 
we focused on the period up to 2100. It should be noted that this 
model describes a time-independent problem (assuming that the 
underlying time dynamics are already captured in the individual 
factors, see Limitations of the metamodel).

Costs and the contribution of uncertainty
Based on the model results (Fig. 2a), carbon budgets can be derived 
for the various temperature targets (Fig. 2b). The derived budgets 
are 837 GtCO2 (5–95th percentile: 539–1,580) and 1,600 GtCO2 
(1,219–2,700) for the 1.5 °C and 2 °C temperature targets, respec-
tively. The results compare well to those of IPCC SR1.5 (ref. 18), that 
is, 746 GtCO2 and 1,496 GtCO2 for the 2010–2100 period: the differ-
ence is mostly caused by the choice in the IPCC report to account 
for the additional uncertainty beyond model results (see Methods). 
Other differences come from different treatments of uncertainty in 
temperature and non-CO2 emissions. The results also depend on 
the assumptions regarding the form of the uncertainty distribution 

on the TCRE (see also ref. 23). Similar to the IPCC SR1.5 budgets, 
the climate feedbacks not covered in the models used in the fifth 
round of the Coupled Model Intercomparison Project (CMIP5) 
could lead to a reduction of 100 GtCO2 in the budgets mentioned 
here18. The model finally shows how abatement costs increase for 
more stringent emission (Fig. 2c) and temperature targets (Fig. 2d). 
Costs are low for high targets, but increase rapidly for stringent tar-
gets. For the Paris Agreement targets (limiting the increase in global 
mean temperature to well below 2 °C and pursuing efforts to limit it 
to 1.5 °C) this leads to median abatement cost estimates (in terms of 
present value using a 5% discount rate) of US$16.4 trillion for 2 °C 
and US$30.5 trillion for 1.5 °C, but with a 5–95th percentile range of 
US$4.1–63.4 and US$9.8–103.5 trillion, respectively. The low side 
of these ranges is based on favourable socio-economic development 
for mitigation, low-cost models, a favourable TCRE and relatively 
low non-CO2 gases, while on the high side the opposite conditions 
are true. The impact of socio-economic development can be shown 
by breaking up the costs range in the SSP database (Fig. 1c) for 
different SSPs, grouped by their challenge to mitigation (Fig. 3b). 
Interestingly, the reported range in abatement costs caused by all  
of these factors is a factor 10 (Fig. 2d), which is much larger than  
the difference in mean cost estimate between the 1.5 °C and 2 °C 
target (a factor 2).

The unique contribution of the metamodel is that it allows one to 
estimate an uncertainty range consistent with the model literature. 
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Fig. 2 | Application of the metamodel. a–d, Temperature change as a function of cumulative emissions (a), the normalized histogram of carbon budgets 
for the different temperature targets (b), abatement costs as a function of cumulative emissions (c) and abatement costs as a function of temperature 
targets (d). The costs are expressed as the net present value of abatement costs, using a 5% discount rate. In the Monte Carlo analysis, 6,500 data  
points were drawn.
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By calculating the relative variance originating from the uncertainty 
of each individual factor, it is also possible to determine which 
uncertainties contribute most to the uncertainty range in abatement 
costs (Fig. 3). We focus here on the direct contribution of each factor 
(ignoring the interaction terms, see Supplementary Fig. 11; the con-
tribution of interaction terms is larger for high temperature targets 
but trends are similar as for the direct contributions). For relatively 
high temperature targets (for example, between around 2.5 and 
3 °C), an important part of the uncertainty about costs is associated 
with that on TCRE, that is, our limited understanding of the climate 
system and carbon cycle. For stringent targets, the dominating fac-
tor is the uncertainty in mitigation costs. Although the contribu-
tion of non-CO2 gas and 2010 temperature uncertainty also become 
increasingly important for stringent climate targets for carbon bud-
gets, regarding costs this trend is swamped by the increasing mitiga-
tion cost uncertainty. The increasing importance of mitigation cost 
uncertainties with more ambitious climate targets is consistent with 
the philosophical understanding that a 3 °C warmer climate would 
represent an energy economy that is relatively close to that of today 

and a very different climate system, while a 1.5 °C warmer climate 
would represent a very different energy economy and a climate sys-
tem that is closer to today’s system. A few earlier studies have high-
lighted the dominant role of socio-economic uncertainty or choices 
for stringent targets13,24–26. These studies, however, focused on the 
sensitivity of a specific model. Here, we confirm this finding based 
on the literature ranges of climate and integrated assessment model 
results, also relating the dynamics to tangible parameters currently 
used in the literature, such as the TCRE.

Limitations of the metamodel
While the strength of the metamodel is the representation of differ-
ent forms of uncertainty, the analysis also has a number of limita-
tions. The most important is that the model is obviously limited by 
the available literature on which it is based. Earlier, we discussed 
how current model results only cover part of the real-world uncer-
tainty. For instance, nearly all mitigation scenarios in the literature 
assume optimal climate policies. Non-optimal strategies (for exam-
ple, delayed mitigation) could lead to higher costs or a different 
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functional relationship. At the same time, under-representation of 
induced technical change could lead to lower costs. The scenarios 
also do not cover the impact of climate change on socio-economic 
development. One other aspect of this is that the quantitative lit-
erature focuses only on the aspects of climate policy that can eas-
ily be quantified. Clearly, there are other factors contributing to the 
uncertainty of costs, such as the assumed level of good governance 
and processes of social learning. Another limitation is that the miti-
gation problem in the metamodel is assumed to be time-indepen-
dent (see equation (1)). Partly, the time-dependency is captured 
implicitly in the mitigation cost estimates, such as the fact that more 
stringent climate targets will require early action (also associated 
with different technology dynamics). Other time-dependent fac-
tors, however, are ignored, particularly for short-lived GHGs and 
non-optimal emission profiles. The model also aggregated all emis-
sions (positive or negative) over time. While real ‘expert’ models 
can explore the impacts of dynamic factors, the results from the 
metamodel need to be used with more care if the timing of emis-
sions becomes more dominant, that is, for very stringent targets 
such as those below 1.5 °C. Finally, the model does not capture the 
costs of climate impacts or adaptation costs (although, in principle, 
these could be included), which could clearly also influence both 
the shape of costs and the contribution to uncertainty25,27.

Implications for research and assessment
Despite the limitations, the metamodel offers a whole-system assess-
ment, taking into account the state-of-the-art from key climate 
research communities. The metamodel does not rely on the particular 
characteristics of a single model and can be easily updated with new 
results (for example, CMIP6 model results or new economic model 
runs). Finally, it can also be easily extended; for instance, by distin-
guishing the climate sensitivity and carbon cycle component in TCRE.

The model’s outcome that large uncertainty ranges are related to 
the carbon budgets and mitigation costs emphasizes the need to be 
careful with precise numbers and to focus in communication more on  
the uncertainty ranges28. Clearly, it is also helpful to reduce the uncer-
tainty on the information, as this reduces the risk of making wrong 
decisions. If the costs of achieving the 1.5 °C target are as low as US$10  
trillion, it would probably pay to implement stringent policies to avoid 
the risks related to higher temperature targets. If, in contrast, the costs 
are as high as US$100 trillion or more, incentivizing sufficient invest-
ment flows will be more difficult (and it might be important to invest 
more in adaptation strategies). The finding that, for climate targets 
associated with the Paris Agreement, the abatement cost uncertainty 
is largely driven by uncertainty in the ‘economic’ system rather than 
natural system is of key importance. This implies that, if one aims to 
reduce the uncertainty range, it is much more important to reduce the 
‘economic uncertainty’ rather than the ‘climate science uncertainty’. 
This emphasizes the need to invest in research on mitigation costs. 
Such research may focus on the critical factors mentioned before: 
(1) socio-economic and technology development, (2) the feasibil-
ity to upscale critical technologies, (3) induced economic impacts, 
(4) the effectiveness of policy instruments and (5) the reductions in 
hard-to-abate sectors2,4,21,22. Moreover, the fact that the uncertainty in  
socio-economic factors can have a stronger impact on the mitigation  
costs than the difference between the 1.5 and 2 °C target emphasizes  
the importance on focusing on development policies beyond strict 
climate policy and the need to consider multiple scenarios in assess-
ments. In the future, the simple metamodel can also be used to explore  
other possible implications of research uncertainty, and support initial  
quick-scan ‘narratives’ on research priorities (for example, possible 
implications of a climate sensitivity of 5 °C).
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Methods
Analytical model. The metamodel used in this paper describes the mitigation costs 
for reaching global mean temperature targets as a function of uncertainty in the 
climate system, the uncertainty in the estimate for 2010 temperature, the non-CO2 
forcing and the costs of reducing CO2 emissions.

The geophysical component of the metamodel used throughout this paper 
assumes a linear relation between cumulative CO2 emissions and the transient 
temperature change30. The temperature sensitivity is quantified through the TCRE. 
This parameter includes the mean effect of both CO2 and non-CO2 emissions 
to the total forcing. However, the TCRE distribution as estimated in the IPCC 
AR5 report does not cover the uncertainty in non-CO2 emissions. Accounting 
for this can be done using an extra term in the relationship between temperature 
and emissions (equation (2)), although alternative formulations are also possible 
(see below and SI). It is important to note that the forcing of non-CO2 emissions 
strongly correlates with cumulative CO2 emissions, while the range in forcing 
outcomes is constant for a wide range of cumulative CO2 emissions (Fig. 1b). 
This allows us to include a single constant factor σnon�CO2

I
, with zero mean and a 

standard deviation equal to the uncertainty in Fig. 1b. The geophysical component 
of the model therefore becomes:

T ¼ T2010 þ TCRE ´CumCO2 þ σnon2CO2 ; ð2Þ

where CumCO2 is the cumulative emission 
R 2100
2010emisðtÞdt
I

 and T2010 the 
temperature in 2010.

The mitigation costs component of the metamodel is parametrized by an 
exponential relationship with the cumulative emissions, with the uncertainty 
captured in a single parameter p:

costs ¼ costs
Z 2100

2010
emisðtÞdt; p

 
: ð3Þ

By solving for the cumulative emissions, we obtain the full metamodel:

costsðTÞ ¼ costs
T � T2010 � σnon2CO2

TCRE
; p

� �
: ð4Þ

Alternative model formulations. Equation (2) is based on the observed 
relationship between temperature increase and cumulative CO2 emissions for 
the RCP scenarios (TCRE), superimposing the contribution of non-CO2 gases as 
an uncertainty term that represents the wider non-CO2 forcing range in the full 
literature compared with the default relationship found for the RCPs (σnon-CO2).  
This simple model (used in this paper) thus assumes a linear relationship between 
CO2 and non-CO2 forcing, with a constant uncertainty range around the default 
value (as indicated in Fig. 1b). An alternative, equivalent model would use a 
(lower) TCRE value for CO2-only scenarios and add a positive non-CO2 forcing 
term. The advantage of the latter model is that it can easily be adapted to different 
representations for the non-CO2 forcing as a function of cumulative CO2 (for 
example, introducing a minimum non-CO2 forcing term as a result of hard-
to-abate emission sources). Different models are tested in the Supplementary 
Information (the SI provides equations and results; see first discussion). As the 
results were found to be similar (Supplementary Table 1), we used the simplest 
model, that is, as represented by equation (2).

Model parameters. The distribution of the four parameters used in the metamodel 
(TCRE, T2010, σnon�CO2

I
 and p) are fully derived from currently available literature 

as used in key assessments focusing on multi-model outcomes. This means that 
the metamodel is able to go beyond the simple parametric uncertainty ranges of 
single models and also captures more structural differences across models. In the 
calculations, we base the range of each parameter on the literature range.

TCRE. The TCRE values are obtained directly from the uncertainty ranges 
indicated in the IPCC AR5 report1, starting from the pre-industrial values. In 
the IPCC calculations in AR5 and, more recently, in the special report on the 
1.5 °C target, it is assumed that the TCRE distribution is symmetric and normal. 
Interestingly, the underlying data (with a limited number of data points) suggests 
that the uncertainty range could be asymmetric. In combination with the fact that 
the TCRE is generally assumed to be strictly positive, it is possible to represent 
this using a β-PERT distribution31. Here, we tested both models and found that the 
model using an asymmetric TCRE distribution increases the carbon budget by 3% 
and decreases the mitigation costs by around 3%. Because the exact form of the 
probability distribution of TCRE is unknown, here we decided to stick to the IPCC 
assumption for consistency and used a symmetric distribution.

By choosing the distribution parameters such that the TCRE best represents the 
AR5 pink plume, we obtain the following normal distribution:

TCRE  Nð0:62; 0:12Þ; ð5Þ

where TCRE is expressed in °C per TtCO2. These numbers are similar to those 
reported in the literature, that is, TCRE of 0.2–0.7 °C per TtCO2 (ref. 7) and  
0.23–0.66 °C per TtCO2 (ref. 15).

The information presented by the IPCC on the relationship between 
cumulative CO2 emissions and temperature increase (represented in Fig. 1a) allows 
the 5–95th percentile range for TCRE to be estimated. In AR5, the formal 5–95th 
percentile range of model results is assumed to represent the 16–84th interval 
(one s.d.) in order to represent the possibility that the models do not cover the full 
uncertainty range. In the SI, we tested both interpretations of the range in model 
outcomes (see the section on comparison of model outcomes with IPCC SR1.5 
results). In the main article we aim to compare the impact of different uncertainty 
factors with the overall outcomes. As for each factor (mitigation costs, TCRE, 
non-CO2 forcing and 2010 temperature) one could argue that current models do 
not adequately represent the true uncertainty, we aim to use a similar method for 
all factors. Therefore, for all factors we used only the observed range in model 
outcomes (without ex-post adjustments).

Reference temperature. Second, the reference temperature T2010 is also obtained 
from current literature using a set of independent datasets for the increase in global 
mean temperature17, giving the normal distributed parameter:

T2010  Nð0:909; 0:075Þ; ð6Þ

where T2010 is expressed in °C.

The impact of non-CO2 gases on temperature. Third, the distribution of σnon�CO2

I
 

is obtained from the SSP database4,5. While this database only reports the forcing 
for CO2 and non-CO2 separately, the forcing can be converted to long-term 
temperature increases using the relation as used in the MAGICC climate model32. 
As shown in Fig. 1b, the non-CO2 temperature change contribution exhibits an 
almost linear behaviour as function of the cumulative CO2 emissions for each 
scenario in the SSP database. Moreover, as mentioned before, the variability is 
almost constant as a function of cumulative CO2 emissions. Using an ordinary least 
squares regression, we calculate this variability as the mean squared error of the 
residuals. This yields a normal distribution:

σnon2CO2  Nð0; 0:121Þ: ð7Þ

Again, the results are expressed in °C.

Mitigation costs. Finally, the mitigation costs are also obtained from the SSP 
database. In the literature, various costs metrics are used, partly because the models 
can only express certain cost types. Three costs measures often used (and included 
in the SSP database) are: (1) consumption losses, (2) abatement costs—often 
measured as the area under an abatement curve—and (3) carbon prices. From the 
carbon price, abatement costs can be estimated by multiplying the carbon price 
and avoided CO2 emissions and a constant, and sum these over the 2010–2100 
period (basically making an ex-post estimate of the area under abatement curve) 
(we used a value for the constant of 0.4, but its exact value is irrelevant as we only 
looked at relative costs). We have used these different metrics to include most data 
points as well as a wide range of possible models in the SSP database. However, 
the results were used following a preference order: if available for a scenario, 
consumption losses were used; if not, preferably reported abatement costs were 
used if available; only if both were not available, the metric based on carbon price 
and reduction volume was used. In each case, we calculated the net present value 
of the cumulative costs across the century using a 5% discount rate. The latter is 
based on the notion that nearly all integrated assessment models used for the SSP 
database use a discount rate of 5% per year33. The results for the different models 
are shown in Supplementary Fig. 12. Subsequently, they have been transformed 
to a cost index: for each metric, the cost values are divided by their average cost 
of achieving a 1.6 TtCO2 carbon budget. The resulting values are shown as dots in 
Fig. 1c. The figure shows that the relative increase in costs for the different costs 
metrics across the climate targets is very similar. Therefore, a single exponential 
curve has been fitted to these points using the data of all metrics. We assume that 
any carbon budget above 5.5 TtCO2 can be reached without making any mitigation 
costs. The parametrized form of the costs is chosen to be:

costsðCumCO2; a; bÞ ¼
a e�bCO2 � a e�5:5b CumCO2<5:5

0 CumCO2≥5:5

(
; ð8Þ

where the parameters a and b are determined using the SSP data. Specifically, the 
above function is fitted through the minimum of the indexed abatement costs 
points, giving amin = 0.89 and bmin = 3.48. Similarly, it is fitted through the maximum 
of the indexed points, giving amax = 15.01 and bmax = 0.55. To capture the full 
uncertainty of the mitigation costs in a single parameter, and not in both a and b, 
we define the parameter p, with values between 0 and 1, used to calculate the linear 
combination of costs (CumCO2; amin, bmin) and costs (CumCO2; amax, bmax):

costsðCumCO2; pÞ ¼ costsðamin; bminÞ þ p costsðamax; bmaxÞ � costsðamin; bminÞ½ ;
ð9Þ

where we used costs(a, b) instead of costs(CumCO2; a, b) for notational purposes.
Due to the asymmetry of the cost uncertainty, and the restriction that p 

should take strictly positive values, the log-normal distribution is used. Since this 
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distribution has a tail with too much weight than present in the SSP cost data, we 
truncate the distribution at p = 1.5:

p  log normalðμ ¼ ln 0:20615½ ; σ ¼ 0:83555; truncated at 1:5Þ; ð10Þ

with μ and σ being the mean and variance of the underlying distribution.  
More details and information about the exact fitting methods for each parameter 
can be found in ref. 34.

To interpret the magnitude of the abatement costs, the cost index is expressed in 
US$ by multiplying the cost index by the median net present value for consumption 
losses of the SSP scenarios with a carbon budget between 0.95 and 1.55 TtCO2.

The distributions are therefore all assumed to be normal or log-normal.  
The reason is that each of the factors used in the metamodel is influenced by a 
range of underlying parameters that are mostly independent. For instance, the 
TCRE range is a function of the CO2 forcing, ocean heat uptake, carbon cycle 
feedbacks and several other factors. Relative abatement costs are a function of  
the costs uncertainty of individual technologies, the degree of participation of 
sectors and countries in climate policy, learning rates, preferences, and so on. 
While each unique combination of values for the underlying parameters could  
be equally likely, the full distribution of all combinations is likely to follow  
a representation close to a normal or log-normal distribution based on the  
central limit theorem. We have tested for the non-CO2 forcing and relative costs 
whether the distribution could be consistent with the assumed distribution  
using a Q–Q plot (see SI. D). It was found that the assumed distribution was 
indeed consistent with the data.

Monte Carlo sampling. We use a sampling method to obtain the model  
result since it is not possible to calculate the resulting distribution of the  
costs analytically, given the four input parameters and their distributions, 
Specifically, for a range of values of CO2, we sample a total of N values from  
the distributions of TCRE, T2010, σnon�CO2

I
 and p, and separately calculate  

the resulting temperature using equation (2) and the abatement costs using 
equation (3). The resulting point has then as abscissa the temperature, and as 
ordinate the costs. This is shown in Fig. 2a,c,d for 6,500 values of CO2 between  
0.5 and 6 TtCO2. It should be noted that we could also have sampled without  
the separation step using the CO2 with equation (4). In fact, by choosing N  
values of the temperature T, and sampling the parameter distributions for every 
point, we directly obtain the empirical distribution of the costs as a function of 
temperature. We do not use the outcomes of the model for values lower than 
0.5 TtCO2. The reason is that most of the empirical data, especially on costs,  
are available only for cumulative emissions above this level. Using the model 
for lower values would therefore lead us outside the realm of expert model 
runs. Therefore, in Fig. 2d, that there is a smaller point density towards lower 
temperature goals is not just because of the higher variance in costs, but also  
since we exclude samples with CO2 values lower than 0.5 TtCO2.

Carbon budgets. The carbon budgets in Fig. 2b are calculated as the cumulative 
emissions from 2010 to 2100 such that 66% of the sampled values of the 
temperature of equation (2) are below or equal to a chosen target temperature.

Partial uncertainty estimation. The partial uncertainties are estimated using 
variance-based sensitivity analysis35. Let Y be a random variable with input 
variables Xi,…,Xn, in our case, TCRE, T2010, σnon�CO2

I
 and p. The total variance 

Var(Y) is decomposed into a sum of partial variances (variances of the expectation 
value of Y conditional on the set of variables X):

VarðYÞ ¼
Xn

i¼1

Vi þ
X

i< j

Vij þ    þ V12:::n; ð11Þ

where

Vi :¼ VarXi ðE½Y jXiÞ;
Vij :¼ VarXij ðE½Y jXi;XjÞ � Vi � Vj

..

.
: ð12Þ

These conditional variances are then converted to relative partial variance  
by dividing them by the total variance Var(Y). In our analysis, we only consider  
the first order terms Vi and ignore the higher order interaction terms. The second 
and third order terms Vij and Vijk are shown in the SI. The variance terms are 
estimated using a Monte Carlo method36. For each temperature value, we sample 
one million values from each distribution, which are then used as input for the 
Monte Carlo method. The calculations are then repeated 50 times and averaged  
for increased accuracy.

Data availability
The data used to assess the impact of non-CO2 emissions and the mitigation costs 
that support the findings of this study are publicly available online at the scenario 
databases hosted by IIASA: https://tntcat.iiasa.ac.at/SspDb/dsd (ref. 4), https://
tntcat.iiasa.ac.at/AR5DB/dsd (ref. 2) and https://data.ene.iiasa.ac.at/iamc-1.5c-
explorer/#/workspaces (ref. 18). The data for each figure are available at the  
PBL/IMAGE website.

Code availability
Model codes are available at https://github.com/kvanderwijst/
variancedecomposition-IAM (https://doi.org/10.5281/zenodo.3633944).
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