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Purpose: Patients who have medical metallic implants, e.g. orthopaedic implants 
and pacemakers, often cannot undergo an MRI exam. One of the largest risks is 
tissue heating due to the radio frequency (RF) fields. The RF safety assessment of 
implants is computationally demanding. This is due to the large dimensions of the 
transmit coil compared to the very detailed geometry of an implant.
Methods: In this work, we explore a faster computational method for the RF safety 
assessment of implants that exploits the small geometry. The method requires the RF 
field without an implant as a basis and calculates the perturbation that the implant 
induces. The inputs for this method are the incident fields and a library matrix that 
contains the RF field response of every edge an implant can occupy. Through a low‐
rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the 
EM response of arbitrary implants can be computed within seconds. We compare the 
solution from full‐wave simulations with the results from the presented method, for 
two implant geometries.
Results: From the comparison, we found that the resulting electric and magnetic 
fields are numerically equivalent (maximum error of 1.35%). However, the computa-
tion was between 171 to 2478 times faster than the corresponding GPU accelerated 
full‐wave simulation.
Conclusions: The presented method enables for rapid and efficient evaluation of 
the RF fields near implants and might enable situation‐specific scanning conditions.
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1  |   INTRODUCTION

The group of patients with medical implants that require an 
MRI scan is constantly growing. However, MRI scanning of 
a patient with metallic implants bears a potentially severe 
safety risk. The electromagnetic (EM) fields produced by an 
MRI scanner can couple to the metallic implant resulting in 
image degradation and serious health hazards. The largest 
risk is tissue heating due to the radio frequency (RF) fields. 
The implant can locally enhance the RF fields causing tem-
perature hotspots1,2 with potentially severe consequences.3,4 
Therefore, people with an implant are either exempted from 
MRI scanning or scanned with very conservative RF power 
limitations degrading the achievable image quality severely.

In order to quantify the risks associated with a particular 
implant EM simulations are often performed. These EM sim-
ulations can compute the RF fields for a given transmit coil, 
patient model, and implant. The electrical properties, con-
ductivity and permittivity, of both the patient5 and implant6,7 
affect the resulting RF fields. The geometry and location with 
respect to each other of the transmit coil, patient model, and 
implant are relevant for assessing the RF fields. Finally, the 
drive settings for the transmit coil are required to correctly 
quantify the RF fields.8-13 The simulated RF fields are often 
used in thermal simulations to quantify tissue heating.

A popular method for EM simulations is the finite‐dif-
ference time‐domain (FDTD) method.14 With the FDTD 
method a single configuration of source, patient and implant 
can be computed at a time. These FDTD simulations are 
time‐consuming due to the large domain (the whole MRI RF 
system) that needs to be simulated, even though the implant 
only affects a small domain within the patient. On top of this, 
hundredths of thousands of these FDTD simulations, for all 
the different possible configurations, are required to obtain a 
conditional label for an implant with the most lenient restric-
tions on scanning (i.e. the tier 4 approach as specified by ISO/
TS 10974:201815). For this reason, investigating RF safety for 
a particular implant in a patient model is a computationally 
demanding task. This has been demonstrated by B. Guerin 
et al16 recently for different deep brain stimulation implants. 
The full‐wave simulation, performed with the finite element 
method, took up to 6 hours with 13 processors and ∼300 GB  
of RAM for a single simulation. For FDTD simulations,  
E. Cabot et al17 showed that similar types of simulations can 
take up to 43 hours for a single simulation, even with GPU 
acceleration.

To alleviate the computational complexity substitute 
models are used. One such model used for EM simulations 
including implants is the Huygens’ box.18,19 This method 
takes a two‐step approach to compute the RF fields. First, 
a simulation without an implant is done where the RF fields 
are computed and used to construct a box around the implant. 
Surface currents running on the Huygens’ box are computed 

that create the same incident RF field inside this box. After 
this, the implant is placed inside the Huygens’ box and the 
surface currents found are applied, on its boundaries, to the 
simulation which results in the total RF fields. Everything 
outside of the Huygens’ box is ignored in this second simu-
lation resulting in a smaller computational domain. A chal-
lenge with this is making the Huygens’ box large enough 
such that the scattered RF fields created due to the implant 
are not reflected back into the box by something that is out-
side of the box (i.e. there should be no crosstalk between the 
two domains).

Another substitute model that is applicable to elongated 
implants, e.g. pacemaker leads, is the electric field transfer 
function (TF). This transfer function describes the electric 
field enhancement at the tip of an elongated implant for a 
given incident tangential electric field exposure,20 where 
the incident tangential electric field is acquired by an FDTD 
simulation without the implant geometry present. This effec-
tively entails that the scattered RF field due to the implant is 
superimposed on the incident field, thereby decoupling the 
concurrent simulations of transmit coil, human model and 
implant into concurrent simulations with only the transmit 
coil and human model.

The use of a TF drastically decreases the number of full‐
wave simulations that need to be performed. However, as 
mentioned before, the transfer function is only valid for elon-
gated implants, which is a subset of a large number of differ-
ent possible implants. Furthermore, the TF can only predict 
the electric field enhancement at the tip of the implant. The 
idea of the transfer function was extended to a transfer matrix 
in the work of J. P. Tokaya et al.21 The transfer matrix can 
predict the electric field enhancement at any location along 
the elongated implant, rather than only at the tip.

Although the TF enables quick calculation of the RF field 
enhancement due to an elongated implant, its use comes at 
the price of a loss of accuracy compared to a full‐wave simu-
lation. This was shown by E. Cabot et al22 where it was found 
that there is a difference (up to 48%) between the concurrent 
full‐wave simulation of the implant and the patient model 
compared to computing the response of the implant by the 
use of the TF.

Due to the aforementioned problems with the current 
methods, very long simulation times or sub‐optimal accu-
racy of substitute models, there is a need for a new and more 
efficient method. Therefore, in this work, we will investi-
gate a fast and accurate generalized methodology to do RF 
safety assessment for arbitrary implant geometries. This is 
derived from the work of J. van Gemert et al23 that describes 
a method for efficiently computing the scattered RF fields 
produced by dielectric pads. Here we use the same methodol-
ogy for medical implants, thus, instead of computing the EM 
response of an object near the patient we are interested in the 
EM response of an object (i.e. an implant) within the patient.
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In this method, the RF fields are simulated without the 
implant present and the scattered RF field produced by  
the implant is computed and afterward superimposed onto the 
incident field. The computation to include the EM response 
of the implant is achieved through a small domain inversion, 
using the Sherman–Morrison–Woodbury formula.24 We as-
sume that the matrix that needs to be inverted is non‐singular, 
which is normally satisfied.23 The inversion is computed on a 
much smaller domain than the initial simulations. Therefore, 
the effect of the implant can be computed almost instantly. 
Furthermore, since the simulation with the source and pa-
tient is decoupled from the implant, the electrical properties, 
geometry, and location of the implant can easily be altered 
without doing another full‐wave simulation, making this an 
efficient method for a tier 415 safety assessment.

To compute the scattered RF field due to an implant, a li-
brary and the RF fields without the implant are required. The 
library consists of the EM response for a unitary current den-
sity for each location (i.e. voxel edge) that can be occupied by 
an implant, which can, for example, be simulated using the 
FDTD method. Computing this library is a one‐time effort 
and once available it facilitates computing the effect of differ-
ent materials (i.e. electrical properties) and locations of these 
implant geometries within the patient can be computed in an 
extremely fast manner. This decreased computational effort 
allows for efficient evaluation of the RF safety assessment 
for implants.

In comparison to existing full FDTD simulations, the 
presented method achieves unprecedented acceleration fac-
tors. This may enable RF safety assessment of implants at 
much lower costs, may benefit the design of implants, and 
ultimately may even enable online RF safety assessment of 
implants.

2  |   THEORY

We follow similar steps as23 and start with the Maxwell equa-
tions, given by 

 

here H is the magnetic field, E is the electric field, σ is the con-
ductivity, ɛ is the permittivity, ω is the angular frequency at the 
Larmor frequency, μ is the magnetic permeability, and Jext is 
the external current density, i.e. the current running through 
the RF coil. In an MRI environment, all materials have a mag-
netic permeability of μ = μ0. Equations 1a and 1b are defined 
on a continuous domain. For numerical analysis the domain is 
typically discretized into a voxelized grid. The discretization of 
Equations 1a and 1b can be written in matrix vector notation as 

where D contains the curl operators and Cbg, the electromag-
netic properties matrix, contains the electrical properties and is 
defined as Cbg = diag(cbg), where the vector cbg is written as 

where bg is used as shorthand notation for background, indi-
cating that there is no implant present. The subscripts k and l 
indicate the number of edges and faces of the discretized do-
main respectively. The vector f bg contains the E and H fields 
and q contains the external current densities. Equation 3 can 
be written more compact as 

where A = (D + Cbg). Solving the field distributions for a 
given external current density is performed through the inver-
sion of A 

It should be noted that A encompasses the complete simula-
tion domain, which can be dozens of millions of voxel edges 
for realistic situations. Therefore, this inversion is not feasible 
and the fields can only be computed using numerical meth-
ods (e.g. FDTD or FEM).

However, we are now interested in a small perturbation in 
this A matrix created by a change in the dielectric properties, 
for example, due to an implant.

If we were to add this implant to the simulation domain 
and keep the discretization the same, we would need to solve 

where Cimp contains the change in electrical properties be-
tween the newly added implant and the background. Similar to 
Equation 4 we write Cimp = diag(cimp), where cimp is defined as 

(1a)−∇×H+σE+ jω�E=−Jext,
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where the superscript imp is used as shorthand notation for 
implant. This operation is equivalent to deleting the electrical 
properties of the background and adding those of the implant. 
Since the magnetic permeability of objects in an MRI should 
be, approximately, equal to μ0 the bottom half of the vector in 
Equation 8 is equal to zero. Furthermore, at locations where the 
implant is not present the change in conductivity and permittiv-
ity is zero too. Therefore, the change in the medium property 
matrix is confined to a very small (low‐rank) domain within the 
matrix A. This small domain consists of M edges whereas the 
entire domain on which A is defined has N edges.

To map quantities from this large domain to the small do-
main the support matrix S is introduced. The S matrix has  
N by M entries where, 

here i and j indicate the row and column numbers respectively. 
Furthermore, (xN , yN , zN)i and (xM , yM , zM)j describe the coor-
dinates of the ith edge within the large and jth edge within the 
small domain, respectively. Effectively, this entails that there 
are M nonzero entries that indicate when an edge in the large 
domain coincides with an edge in the small domain as shown 
in Figure 1. To go from the large domain to the small domain 
we use 

where C̃imp now describes a diagonal M by M sparse matrix 
with the values of the electrical properties for each voxel edge 
occupied by the implant as described by Equation 8. To go from 
the small domain to the large domain, we use 

Substituting Equation 11 into Equation 7. and solving for the 
field distributions results in 

Solving this still requires an inverse operation on the large do-
main. This is not possible for realistic simulation domains due to 
the number of edges in the simulation domain. However, there 
is a matrix identity that allows us to rewrite this equation to our 
advantage. This is called the Sherman–Morrison–Woodbury 
matrix identity24 and is given for Equation 12 by 

where IM is an M by M identity matrix. We will now introduce 
a new matrix called the library matrix Z 

This matrix is an N by M matrix where every column is the 
field response for a unitary current density of the corresponding 
edge in the support matrix S. This matrix needs to be simulated 
before computing the response of any implant. Building the  
library matrix poses an extensive simulation effort, M numeri-
cal simulations need to be performed. However, each separate 
simulation converges quickly because there is only a single edge 
source present. The library only needs to be computed once for 
a given dielectric background environment (e.g. for a specific 
patient model). After this, the response of any arbitrary implant 
can be calculated almost instantly.

Now substituting Equations 6 and 14 into Equation 13, 
we obtain 

Note that the inverse in this equation only needs to be computed 
on the small domain. This allows the computation of the E and 
H to be possible with this methodology. From Equation 15, two 
key points can be observed. The first is that the total field is the 
sum of the two different RF fields, the incident fields and a field 
that is dependent on the scatterer (i.e. the implant). The sec-
ond is that a generalized form of the transfer matrix21 is defined 
within this equation. This can be seen when realizing that the 
library matrix, Z, has to be multiplied by the scattered current 
density within the implant. Furthermore, we can observe from 
Equation 1a that the conductivity and permittivity, the quanti-
ties we are changing, are only multiplied with the electric field 
within f bg. Therefore, the terms in between Z and f bg must be 
equivalent to the transfer matrix. This point is explained in more 
detail in Appendix A. The generalized transfer matrix can help 
provide insight into what implant characteristics significantly 
influence the scattered RF field. The above‐mentioned key 
points show another way of looking at how and why this low‐
rank inverse computation works and more specifically which 
electromagnetic quantities affect the total RF field.

(8)Sij =

{
1, if (xN , yN , zN)i = (xM , yM , zM)j

0, otherwise
,

(9)STCimpS= C̃imp,

(10)SC̃impST =Cimp.

(11)f =−(A+SC̃impST )−1q.

(12)f =−A−1q+A−1S(IM + C̃impSTA−1S)−1C̃impSTA−1q,

(13)Z =−A−1S.

(14)f = f bg+Z(IM − C̃impSTZ)−1C̃impSTf bg.

F I G U R E  1   A representation of the S matrix for a 2D grid. The 
left shows the values inside the support matrix for the corresponding 
edges in the grid on the right. The red edges define the small domain 
while the red plus the black edges define the large domain. The blue 
arrows indicate to which edge in the grid each ‘1’ corresponds to
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Within Equation 15 all the interactions between the elec-
tric field components and the resulting current density are 
defined. Whereas the transfer matrix only uses the Einc

z
 com-

ponent of the electric field and results in only the Iz compo-
nent of the current.21 This generalized transfer matrix could 
compute the current running on any arbitrary implant for any 
incident electric field.

3  |   METHODS

In order to compute the scattered RF field created by an im-
plant using the presented method, a simulation with the trans-
mit coil and patient model is required (i.e. the implant is not 
present). The RF field computed in this simulation represents 
the incident/background RF field, f bg. Further, the library 

matrix, Z, needs to be computed. The columns of the library 
matrix represent the RF fields on the edges in the large do-
main for a unitary current density, J = 1A∕m2. All the edges 
that can be occupied by the implant need to be simulated. 
Therefore, constructing the library matrix requires a consid-
erably large set of simulations. The described inputs have 
been computed using an FDTD software package (Sim4Life, 
ZMT, Zurich, Switzerland).

To validate the method, a separate simulation is performed 
with the transmit coil, patient model, and implant present. 
This simulation will produce the total electric and magnetic 
fields, f, which are compared to the total fields produced by 
the computation performed with the presented method.

Three different implant structures are used to test the 
method. The first represents an orthopaedic surgical implant: 
a metallic screw. The geometry of the orthopaedic screw is 

F I G U R E  2   The geometry and location of the passive implant inside Duke

(A)

(B) (C)

F I G U R E  3   The geometry and location of the DBS lead inside Duke. Duke's position inside the birdcage coil is the same as for the setup with 
the orthopaedic implant

(A)

(B)
(C)
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shown in Figure 2A, while the location with respect to Duke 
and the birdcage coil in the transverse and sagittal plane are 
shown in Figure 2B,C, respectively. The second implant re-
sembles a deep brain stimulator (DBS) lead structure and 
the third is a DBS lead structure that is tilted with respect to 
the FDTD grid axes. Both of these DBS lead structures are 
shown in Figure 3.

The FDTD simulations for the passive implant are simu-
lated at 128 MHz (3T) and for the DBS implants the simula-
tions were done at 298 MHz (7T). For all implant types, the 
convergence level of the simulation with and without implant 
was set at −50 dB, while the library matrix simulation had a 
convergence level of −30 dB.

The simulations for all three implants were calculated 
on a 1mm isotropic grid. The orthopaedic screw was 

simulated with a conductivity of 2.38 ⋅106 S/m, the conduc-
tivity of titanium, and a relative permittivity of 1. The DBS 
electrode consists of two different materials, a conductive 
lead and an insulation layer around the lead. For the lead 
2.38 ⋅106 S/m, and �r = 1 was chosen, while for the insu-
lation material the electrical properties were chosen to be 
σ = 0 S/m and �r = 4.

The computations for the FDTD simulations were calcu-
lated using a GPU, NVIDIA TITAN X. The update was per-
formed with the Julia programming language25 using a CPU, 
Intel Xeon E3‐1270 v5 (@ 3.60 GHz), and 64GB of RAM 
available. To solve the inverse in Equation 15, the generalized 
minimal residual method (GMRES) was used.

As a sanity check that GMRES finds the correct solution, 
we look at the physical interpretation of the solution of the 

F I G U R E  4   Comparison of the electric field components obtained by FDTD and the proposed inverse computation method from a surgical 
screw. The three rows show the magnitude of the Ex, y, z components respectively. The first column shows the magnitude of the electric field if there 
is no implant present. The second column shows the electric fields with the implant present computed by the FDTD method. For the same implant, 
the third column shows the output of the computations performed with the presented methodology. The last column shows the error percentage as 
computed by Equation 18
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system Ax  =  b in our case. As shown in Appendix A, the  
solution of our system, x, is the scattered current density 
given by 

However, we can also write the scattered current density, per 
definition, as 

when written in this form, the scattered current density can be 
computed using quantities from the FDTD simulations for the 
incident and total RF fields.

4  |   RESULTS

To validate the presented method, we compare the results 
from Equation 15 with the simulation from the FDTD solver 
when the implant is present. For the orthopaedic screw, the 
results are shown in Figures 4 and 5 for the E and H fields 
respectively. In both figures, the magnitude of the x, y, z com-
ponents of the fields is shown. Furthermore, error plots are 
shown where we defined the error between FDTD fields and 
the fields as computed by Equation 15 as 

(15)Jsc = (IM − C̃impSTZ)−1C̃impSTEinc.

(16)
Jsc =

(
σimp−σbg+ jω�0(�imp

r
−�

bg
r

)
)

Etot,

=CimpEtot.

(17)Err=
||fFDTD− finv

||
max (fFDTD)

⋅100%,

F I G U R E  5   Comparison of the magnetic field components obtained by FDTD and the proposed inverse computation method from a surgical 
screw. The three rows show the magnitude of the Hx, y, z components respectively. The first column shows the magnitude of the magnetic field if 
there is no implant present. The second column shows the magnetic fields with the implant present computed by the FDTD method. For the same 
implant, the third column shows the output of the computations performed with the presented methodology. The last column shows the error 
percentage as computed by Equation
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Field component Orthopaedic screw (%) Straight DBS electrode (%) Tilted DBS electrode (%)

Ex 0.05 1.23 0.57

Ey 0.04 1.29 0.45

Ez 0.04 1.25 0.47

Hx 0.67 1.06 0.26

Hy 0.62 1.16 0.23

Hz 1.35 0.37 0.31

T A B L E  1   Maximum error percentage in E and H fields for the passive and DBS electrode

F I G U R E  6    Comparison between the RF fields computed with the FDTD and the presented method for the straight deep brain stimulator lead 
(aligned with grid axes). On the left, the location of the computed domain within the model is indicated with a red contour. The top row of figures 
shows the magnitude of the electric field for the FDTD simulation, the inverse computation and the error percentage as computed by Equation 18. 
Equivalent plots are shown for the magnetic field in the bottom row
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where fFDTD and finv are substituted for the x, y, z components 
of the E and H fields, fFDTD are the fields obtained from the 
FDTD solver, whereas finv denotes the RF fields obtained from 
the inverse computation. The error is scaled by the maximum 
value in the field, rather than the local field value. This was 
performed to suppress errors in regions where the magnitude 
of the fields are very small (e.g. inside the implant). Otherwise, 
these small deviations inside the implant would result in large 
error values although they are of minor concern because the 
peak values in the electric field contribute significantly more 
to the heating of the tissue. The ratio between the peak value 

of the electric field and the electric field inside the implant is 
a few orders of magnitude. In Table 1, the maximum errors as 
computed by Equation 18 are shown.

For the DBS electrodes, the magnitude of the E and H 
fields are shown in Figures 6 and 7. Again the maximum 
errors, as defined by Equation 18, are shown in Table 1. 
Between the three different implants shown, we find that the 
range of the maximum errors is given by 0.04% to 1.35%.

In Table 2, we compare the dimensions of the problem 
and the computation time for the FDTD method and the in-
verse computation. Here the number of edges in the entire 

F I G U R E  7   Comparison between the RF fields computed with the FDTD and the presented method for the tilted deep brain stimulator 
lead (not aligned with grid axes). On the left, the location of the computed domain within the model is indicated with a red contour. The top row 
of figures shows the magnitude of the electric field for the FDTD simulation, the inverse computation and the error percentage as computed by 
Equation 18. Equivalent plots are shown for the magnetic field in the bottom row
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domain for the FDTD simulation is given. Furthermore, the 
number of edges that the implants consist of is shown. This 
determines both the dimensions of the square matrix that 
needs to be inverted according to Equation 15 and the num-
ber of columns of the library matrix. The computation time, 
i.e. on the GPU, per column for the library matrix and the 
total computation time are also given. Finally, the computa-
tion times for both methodologies are given together with the 
acceleration factor. The latter is defined as 

with Acc as the acceleration factor, tFDTD as the computation 
time for the FDTD simulation (using either the CPU or GPU) 
and tinv for the proposed inverse updating method (CPU based), 
without the calculation of the library matrix and incident field 
included. The acceleration factor that is found between the two 
methods is between 2478 and 171 times faster for the proposed 
method. This acceleration in simulation time entails that the 
break even point (BEP) of simulations, meaning that using the 
proposed method with its corresponding precomputation step is 
as fast as FDTD, when 22 and 55 simulations are done for the 
case of the first and second implant, respectively. When more 
implant geometries/locations with varies incident field expo-
sures are required, which for implant safety assessment stan-
dards is certainly the case, the proposed method is faster than 
FDTD. The BEP is calculated as, 

Finally, to show that the minimization process finds the 
correct solution of the system the scattered current den-
sity is computed for both implant geometries according to 

Equations 16 and 17. The current density is summed for all 
the transverse slices (xy‐plane) of the implant to make the 
plots readable. The result is shown in Figure 8, where it is 
clearly seen that the minimization process finds the correct 
solution, i.e. the blue and black line are directly on top of 
each other and the difference between them is two orders of 
magnitude smaller than the actual magnitude of the current 
density.

5  |   DISCUSSION

This work has demonstrated an alternative approach to calcu-
late the RF field response of a medical implant in an MRI. As 
an input, the method requires the incident RF field distribu-
tion (RF field without an implant present) and a library con-
sisting of the unitary current density response of every voxel 
edge on the discretized implant geometry. To demonstrate 
the validity of the method, the method is tested for a screw 
and a deep brain stimulator lead where the input fields are 
determined by FDTD simulations.

From the maximum errors shown in Table 1, it is clear 
that this methodology is very accurate. The accuracy is 
only subject to the numerical precision of the supplied inci-
dent and library fields. This is further substantiated by the 
results shown in Figures 4-8, where the RF fields and scat-
tered current densities computed by the presented method 
are shown to be equivalent to those computed by the FDTD 
method.

One major difference between the presented method and 
the Huygens’ box is that the reduced domain in the pre-
sented method is only as large as the implant itself, whereas 
with the Huygens’ box the reduced domain should be large 
enough that there is no crosstalk between the full and re-
duced domain.

(18)Acc=
tFDTD

tinv

(19)BEP=
tFDTD of Z

tFDTD(GPU)− tinv

Orthopaedic screw Straight DBS electrode Tilted DBS electrode

Total edges FDTD 3.1 ⋅10

6 9.9 ⋅10

6 9.9 ⋅10

6

N 1.3⋅10

5 73032 73032

M 3804 8794 6583

Length (z) 3 cm 9 cm 8 cm

RAM Z 8 GB 9 GB 9 GB

tFDTD for one column of Z 20 s 15 s 15 s

tFDTD of Z 21.1 hrs 36.6 hrs 27.4 hrs

tFDTD (CPU) 14760 s 22790 s 23441 s

tFDTD (GPU) 3420 s 2414 s 2483 s

tInv (CPU) 1.38s 14.1 s 6.8 s

Acceleration (CPU) 10696 1616 3423

Acceleration (GPU) 2478 171 362

Break even point 22.2 54.9 53.2

T A B L E  2   Comparison computation time, t, between the FDTD method and the inverse computation
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Due to the nature of the inverse computational complexity, 
(M3), the acceleration factor for this method is dependent 
on the number of edges that the implant occupies. Therefore, 
the larger the number of edges the implant occupies the lon-
ger the simulation time becomes. This occurs when either the 
implant size is increased or if the discretization is performed 
on a finer grid. This is also shown in23 and can be observed 
by Table 2. The computation time of the inverse, however, is 
independent of the frequency of the RF fields and the voxel 
size, i.e. geometric resolution, while FDTD simulations are 
dependent on these properties. This means that very small 
implants on a very fine grid would require a precomputation 

step, i.e. computing the library matrix and incident fields, 
that is slower while computing the EM response of the im-
plant will be equivalently fast for a similar number of edges 
that need to be updated.

Another, potentially more restricting factor is the mem-
ory requirement. The library matrix grows linearly with the 
number of edges. For the orthopaedic implant given here, 
the library matrix is already 4GB for the electric fields (and 
another 4GB for the magnetic fields, however only the elec-
tric fields are needed for the computation). On top of this, 
the memory requirements for the inversion that needs to be 
computed grows with the square of the number of edges the 

F I G U R E  8   Comparison between the true solution, as computed by Equation 17, and the solution found by the inverse computation, as 
defined by Equation 16. The current density is summed for the transverse (xy‐plane) slices. The top row shows the result for the orthopaedic 
implant and the second row shows the result for the straight DBS implant and the bottom row shows the result for the tilted DBS lead
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implant occupies, i.e. 0.1 GB for the orthopaedic implant in 
this work and 0.6 GB for the DBS electrode. Therefore, while 
theoretically possible, in the current state of the presented 
method, it would be difficult to compute the response of 
highly realistic lead structures. Both due to the large structure 
of such an implant and the high resolution required to cap-
ture all the details, i.e. the helical lead structure. This would 
increase the simulation time for the incident field and the li-
brary matrix. The resulting matrices required for our method 
would become too large, both M and N grow cubed with the 
factor increase in resolution. The memory requirements of 
the library matrix and the inverse scale with N by M and M 
by M, respectively, i.e. with the 6th power of the factor in-
crease in resolution. We are currently investigating ways to 
decrease the memory requirements for the presented method. 
Some of the ideas are discussed below. The current setup and 
implementation of the presented method would serve well 
for orthopaedic implants which usually are not tested for RF 
safety and are either smaller in size or can be modelled on a 
coarser grid.

To tackle the previously mentioned memory problems, 
we could approximate the library matrix, Z, by exploiting 
two properties to introduce sparsity into the library matrix. 
First, the presented method involves the simulation of a full 
library matrix, while simulations of current density sources 
that are spatially located near each other have very similar 
EM responses due to the equivalent dielectric surrounding. 
Second, the magnitude of the RF fields decays very rapidly 
for increasing distances away from the source location. This 
implicates that the value of the current density at any edge of 
the implant is dominated by the edges that are located close 
to it. By either interpolating between columns of the library 
matrix or truncation of the data if the magnitude becomes too 
small, sparsity can be introduced into the library matrix at 
the cost of the accuracy of the computation. These and other 
alterations for improved performance will be investigated in 
subsequent studies.

Assuming that the limitations described above can be 
addressed sufficiently, the presented method bears strong 
potential for applications in RF safety assessment of im-
plants in MRI, since the calculation time of the RF fields 
is now in the order of seconds. One example is the safety 
assessment of implants according to the ISO/TS 10974 
technical specification. The output of this technical speci-
fication is a conditional label for the implant that specifies 
the maximum B+, rms

1
 and/or other RF power‐related settings 

a patient with the particular implant can safely undergo an 
MRI examination. For the most rigorous RF safety assess-
ment level (tier 4) of this technical specification concurrent 
simulations of the implant, patient and transmit coil are 
required for a wide variety of potential implant locations 
and trajectories. Although this method will result in the 
least restrictive scanning constraints, it is often considered 

too demanding. With the presented method, the field re-
sponse of every voxel edge in the domain only needs to be 
calculated once after which the RF field distribution for 
any potential lead wire trajectory can be computed almost 
instantly. This may greatly reduce the workload for tier 4 
safety evaluations of implants, given that we have access to 
a library of different RF field exposures and the libraries of 
different human models.

Another application could be to predict the local RF field 
enhancement prior to MRI examination of the patient. The 
implant structure and location could be revealed by the help 
of previously acquired X‐ray photos of the patient. After the 
implant is localized a quick RF field calculation could be per-
formed based on pre‐calculated RF field distributions, both 
for the incident fields and the library matrix, using generic 
body models. This calculation would result in a situation‐ 
specific power threshold by which the overestimation is re-
duced to a minimum. This could possibly be achieved for im-
plants without a conditional label, the RF safety assessments 
could be performed beforehand to verify if a patient with 
such an implant can safely undergo an MRI exam.

6  |   CONCLUSION

In this work, we have shown a new methodology for RF 
safety assessment of implants in an MRI setting without 
assumptions on the implant geometry or composition. With 
appropriate simulations done beforehand, the presented 
method can perform the RF safety assessment in a greatly 
accelerated fashion compared to full‐wave simulations, 
e.g. FDTD.

The incident fields when no implant is present and a 
library matrix, containing the EM response of every edge 
the implant can possibly occupy, need to be precomputed. 
Afterward, the effect of any arbitrarily shaped and posi-
tioned implant, with arbitrary material properties, can be 
calculated within seconds. The result of the computation is 
numerically equivalent to the solution of a full‐wave simu-
lation. For the implants shown in this work, the maximum 
error was 1.35%. However, using this method a significant 
acceleration is obtained (a factor 171 to 2478 compared to 
GPU accelerated FDTD simulations). This is excluding the 
calculation of the library matrix and the incident RF field.
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APPENDIX A

A1. Generalized transfer matrix
A generalized form of the transfer matrix as described in21 
can be extracted from Equation 15. The transfer matrix re-
lates the current in an elongated implant (i.e. a lead wire) 
with the incident electric field according to 

where M is the transfer matrix. The first column of the trans-
fer matrix is the transfer function as defined in.20 There are 
two limitations of these concepts: the first is that TFs are 

(A1)I =MEbg,

http://orcid.org/0000-0001-8277-1420
http://orcid.org/0000-0001-8277-1420
http://orcid.org/0000-0001-7531-9823
http://orcid.org/0000-0001-7531-9823
http://orcid.org/0000-0002-2692-9286
http://orcid.org/0000-0002-2692-9286
https://doi.org/10.1002/mrm.28023


      |  1809STIJNMAN et al.

only defined for elongated, linear implants. The second is 
that they only relate an Ebg

z  to an Iz. In an MRI setting, this 
part of the electric field is the main contributor to Iz (which 
in turn is also the main contributor to the total current I). 
However, the x‐ and y‐components of the electric field also 
contribute to the total current that will run on the elongated 
implant.

The transfer matrix can be obtained from Equation 15 
by observing that the library matrix consists of the field re-
sponses per unitary current density for each edge of the im-
plant. This implies that to obtain the RF fields produced by 
the implant a multiplication with the current density at each 
edge of the implant is needed, which is thus given by 

where Jsc is the current density at each edge of the implant. 
From Equation 1a, we observe that the dielectric properties in 
Cimp are only multiplied by the electric field in f bg and not the 
magnetic field (i.e. there is no change in μr). This entails that we 
can write Equation A2 as 

Further we know that the element‐wise multiplication of the 
area with the current density results in the current as shown by 

where a is the area of each edge, as defined by the Yee Cell,14 of 
the implant. Using Equation A1 it is now evident that 

(A2)(IM − C̃impSTZ)−1C̃impST f bg
≡ Jsc.

(A3)Jsc = (IM − C̃impSTZ)−1C̃impSTEbg,

(A4)I =a ◦ J,

(A5)M=a ◦
(
(IM − C̃impSTZ)−1C̃impST

)
.


