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Subgroup analyses are an essential part of fully understanding the complete
results from confirmatory clinical trials. However, they come with substantial
methodological challenges. In case no statistically significant overall treatment
effect is found in a clinical trial, this does not necessarily indicate that no patients
will benefit from treatment. Subgroup analyses could be conducted to investi-
gate whether a treatment might still be beneficial for particular subgroups of
patients. Assessment of the level of evidence associated with such subgroup find-
ings is primordial as it may form the basis for performing a new clinical trial or
even drawing the conclusion that a specific patient group could benefit from a
new therapy. Previous research addressed the overall type I error and the power
associated with a single subgroup finding for continuous outcomes and suit-
able replication strategies. The current study aims at investigating two scenarios
as part of a nonconfirmatory strategy in a trial with dichotomous outcomes:
(a) when a covariate of interest is represented by ordered subgroups, eg, in case
of biomarkers, and thus, a trend can be studied that may reflect an underlying
mechanism, and (b) when multiple covariates, and thus multiple subgroups, are
investigated at the same time. Based on simulation studies, this paper assesses
the credibility of subgroup findings in overall nonsignificant trials and provides
practical recommendations for evaluating the strength of evidence of subgroup
findings in these settings.
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1 INTRODUCTION

Traditionally, patients enrolled in confirmatory clinical trials should “closely mirror the target population. Hence, in these
trials it is generally helpful to relax the inclusion and exclusion criteria as much as possible within the target population,
while maintaining sufficient homogeneity to permit precise estimation of treatment effects [… ] Subsequently, if hetero-
geneity of treatment effects is found, this should be interpreted with care.”1 Tanniou et al recently published a review
of marketing authorisation application (MAA) dossiers relating to medicinal products containing new active substances
and evaluated by the European Medicines Agency over the period 2012-2015.2 The review showed that subgroup-related
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so-called Major Objections and/or Other Concerns are prominent (68%) in the so-called day 80 assessment reports. This
result emphasises the essential role of subgroup analyses in the assessment of MAAs.

When the overall treatment effect is significant, subgroup analyses are typically performed to investigate whether this
effect is consistent across subgroups. On the contrary, if the overall treatment effect does not reach (a priori defined)
statistical significance, any subgroup analysis finding(s) can only be seen as exploratory. This latter scenario is of par-
ticular interest as a potential new relevant treatment may only benefit a certain subpopulation.3-5 Claiming efficacy of a
drug based on an apparent positive subgroup finding in an overall nonsignificant trial and without replication is usually
considered as a no-go decision because of the well-known increase of the type I error rate.

The recent EU draft guidance on the investigation of subgroups in confirmatory clinical trials reinforces that con-
clusions on positive subgroup findings are possible in very exceptional instances and that amongst others biologi-
cal/pharmacological rational, (at least partial) replication of this finding is mandatory and of paramount importance.6

This guidance also underlines that, in specific situations, such as for the clinical setting of high unmet medical need or for
situations where trials are usually of considerable size, careful assessment of the overall available evidence could excep-
tionally lead to a positive (subgroup) licensing decision. In conditions where there are no or few treatments available,
a new drug could be licensed for a subpopulation or conditionally approved with post-approval commitment. Similarly,
when, for instance, the feasibility of an additional confirmatory trial is highly questionable, the assessment of the totality
of evidence for decision-making might be less driven by statistical considerations.

Current practice in many clinical trials is that a number of subgroup analyses is pre-defined in the protocol, although
often without clear statement whether they are intended for consistency checks or because of a prior expectation of dif-
ferential effect, unless they are planned as part of a confirmatory testing strategy protecting the overall type I error.7 In
addition, when primary results of clinical trials are published, they often include a (large) number of subgroup analyses,8,9

with at least some conclusions drawn based on these.
Recently, Tanniou et al investigated the statistical level of evidence for promising subgroup findings in overall non-

significant trials with continuous outcomes.3 They considered the overall type I error and the power associated with such
findings and also suitable replication strategies. In case of a single trial, the inflation of the overall type I error is sub-
stantial, especially in relatively small subgroups. They also showed, unexpectedly, that testing a subgroup when there is a
so-called “tendency” for effect in the overall population, defined as a one-sided p-value for the overall test between 0.025
and 0.05, is bad practice with substantial overall type I error inflation. The replication strategies investigated substan-
tially improved the level of evidence.3 In absence of other evidence, replication of promising subgroup findings in a new
trial should be the standard approach if the trial is overall statistically nonsignificant. Replication of trials may incur sub-
stantial investments, importantly from participating patients, and should therefore only be undertaken if the biological
plausibility as well as the statistical level of evidence is sufficiently convincing.

Some literature exists about control of the overall type I error in the specific situation where one is (a priori) interested
in the effect of a given study treatment on a subgroup of patients with certain clinical or biological attributes, ie, when
the subgroup of interest is part of the confirmatory testing strategy.10-12 Especially, Song and Chi proposed a method that
(strongly) controls the familywise type I error rate considering an overall pre-specified trend as expressed with a p-value.10

This paper, however, investigates a practical approach for two scenarios as part of a nonconfirmatory strategy (ie, no a
priori control of overall type I error) in a trial with dichotomous outcomes: (a) when a covariate of interest is represented by
ordered subgroups, eg, in case of biomarkers, and thus, a trend can be studied that may reflect an underlying mechanism,
and (b) when multiple covariates, and thus multiple subgroups, are investigated at the same time. Even though not part of
a confirmatory strategy setting, both situations may raise relevant questions. Practical advice on how to properly judge the
level of evidence is therefore of importance in view of the conclusion and actions that may follow evaluation of subgroups.

In general, if a statistically significant trend, based on a test with a suitably small p-value, is observed across subgroups
that results from a categorical covariate (eg, different age classes, biomarker levels), it could be perceived as more convinc-
ing. It should be highlighted that the purpose of this paper is not to add a “tick-box” in this decision-making process that
could lead to a treatment approval for a particular subpopulation, but rather as a first step to objectively decide whether the
(statistical) level of evidence associated with the observed trend is convincing enough to undertake any further investiga-
tions, such as a new (replication) trial dedicated to that subgroup. It aims subsequently to describe the data appropriately
and discern if a signal could be separated from noise, keeping in mind that all those investigations are exploratory. From
the perspective of efficacy (“benefit”), we are questioning whether it is justified to focus on the subgroup(s) for either
establishing benefit risk in more detail and/or initiate a follow-up trial. Of note and when dealing with a quantitative
variable ordered into categories, the (pre-) definition of cut-points to define the different subgroups is an important point
to consider when assessing such ordered categories. In the eventuality of replication of the subgroup finding, this aspect
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should be further investigated in order to confirm the adequacy of the subgroup definition. The choice of the cut-points
is, however, beyond the scope of this study.

The remainder of this paper is organised as follows. In Section 2, an empirical example is presented. In Section 3, we
present our approach and results for the situation where a trend in a categorical subgrouping variable is observed, while
Section 4 deals with the investigation of multiple subgroups. This paper ends with a discussion in Section 5.

2 THE DEXAMETHASONE FOR CARDIAC SURGERY TRIAL EXAMPLE

The Dexamethasone for Cardiac Surgery trial was a multicentre, randomised, double-blind, placebo-controlled trial
comparing high-dose intravenous Dexamethasone to placebo treatment in patients undergoing cardiac surgery.13 The
objective was to quantify the effect of intraoperative high-dose Dexamethasone on the incidence of major adverse events
in patients undergoing cardiac surgery. The primary outcome was the composite of death, myocardial infarction, stroke,
renal failure, or prolonged postoperative mechanical ventilation, within 30 days after surgery. Several subgroup analyses,
as well as the categories used, were pre-planned for the primary outcome and its separate components: age with proto-
col defined categories (< 65, 65-74, 75-79, and ≥ 80 years), sex, diabetes, chronic pulmonary disease, high (≥ 5) versus
low (≤ 4) EuroScore pre-operative risk estimate, and prolonged cardiopulmonary bypass (CPB) duration (defined as CPB
duration >150 minutes). It is important to note that these analyses were pre-planned for the conventional objective of
checking consistency. Logistic regression was used to assess whether any interaction existed between Dexamethasone
and the subgroups mentioned above, with a pre-defined 0.10 threshold for significance of an interaction term. The com-
posite primary study endpoint occurred in 157 of the 2235 patients (7.0%) randomised to Dexamethasone and in 191
of the 2247 patients (8.5%) randomised to placebo (RR, 0.83; 95% CI, 0.67-1.01; absolute risk reduction, −1.5%; 95% CI,
−3.0% to 0.1%; p = 0.07). Therefore, the primary endpoint was formally not statistically significant. The subgroup anal-
yses suggested an age-dependent effect of Dexamethasone on the primary study endpoint (test of interaction; p = 0.08).
In patients younger than 65 years, Dexamethasone was associated with lower likelihood for the primary endpoint (RR,
0.65; 95% CI, 0.44-0.96; p = 0.03). For patients between 65 and 75 years of age, the RR was 0.78 (95% CI, 0.56 to 1.09),
and for patients between 75 and 80 years of age, the RR was 0.88 (95% CI, 0.59 to 1.33). However, in patients older than
80 years, the direction of the effect reversed toward an increased risk with an RR of 1.69 (95% CI, 0.92-3.10; p = 0.09).
The qualitative interaction of effect with age appeared to be predominantly caused by the mortality component of the pri-
mary composite endpoint, which showed a significant interaction (p = 0.05). In patients younger than 65 years, the RR
for mortality was 0.42 (95% CI, 0.13-1.34; p = 0.13), but it gradually increased with age to 3.87 (95% CI, 1.10-13.6; p = 0.02)
in patients aged 80 years or older. There was no (statistically significant) differential treatment effect in the subgroup
analyses on sex, diabetes, chronic obstructive pulmonary disease, EuroScore, or prolonged CPB duration, even though
point estimates were slightly different for EuroScore (with one of the subgroups being significant), COPD, and prolonged
CPB duration. Hence, even though the treatment effect was not statistically significant for the overall population, this
study in cardiac surgical patients might be considered to suggest a trend toward a beneficial effect in part of the popula-
tion. In their publication, the authors mentioned that a subsequent study could also be considered with patient selection
for the therapy, based on a larger beneficial effect in younger patients and no apparent benefit in those aged 80 years
or older.

3 OBSERVED TREND ACROSS SUBGROUPS

Practical decisions about the validity of subgroup findings have to be made on a day-to-day basis by different stakehold-
ers, such as treating physicians, regulators, and pharmaceutical companies. If a trend in effect is observed over different
subgroups, this could be assessed through various methods. Logistic regression analysis is commonly performed when
analysing binary outcomes, providing (log) odds ratios (OR). Binomial and Poisson regression analysis, respectively refer-
ring to risk difference (RD) and (log) relative risk (RR), are considered more appropriate in some situations, particularly in
case of randomised clinical trials. For studying interaction effects, the choice of the effect measure matters as no interac-
tion on one scale likely implies interaction on another scale.14 In other words, if a treatment effect truly exists, homogeneity
in one measure, eg, RR, implies heterogeneity in at least one other, eg, RD. While testing for interaction is not sufficient
on its own and can be criticised because of its lack of power, the concept of interaction can serve as a starting point for
investigating the trend across subgroups. Based on the above, three post hoc strategies (all with three different scenar-
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ios) to assess the evidence for a subgroup effect were considered, all with an overall statistically nonsignificant treatment
effect based on a chi-square test (pOT ≥ 0.05; OT referring to “Overall Test”). In the following, RR·, OR·, and RD· are the
estimates of the (log) relative risk, the (log) odds ratio, and the risk difference, respectively. Of note, the subscript refers
to one of the three subgroups, subgroup 1 having the most promising result.

• Scenarios 1-3: observed trend in the data across subgroups:

1. RR1 < RR2 < RR3;
2. OR1 < OR2 < OR3;
3. RD1 < RD2 < RD3.

The observed trend is only based on the ordering between subgroups of the point estimates for the effects (and not on any
confidence intervals). This should constitute weak evidence.

• Scenarios 4-6: observed trend in the data across subgroups supported by an statistically significant interaction test
(pIT < 0.10; IT referring to “Interaction Test”):

4. RR1 < RR2 < RR3 and a statistically significant interaction (Poisson regression analysis using a robust covariance
matrix estimator);

5. OR1 < OR2 < OR3 and a statistically significant interaction (logistic regression analysis);
6. RD1 < RD2 < RD3 and a statistically significant interaction (binomial regression analysis).

The observed trend is evaluated on the chosen scale and within the same model. Results for pIT < 0.05 and pIT < 0.20 are
provided in the supplementary material.

• Scenarios 7-9: observed trend in the data across subgroups supported by a statistically significant test for the effect in
the most promising subgroup (pST1 < 0.05 with the chi-square test; ST referring to “Subgroup Test”):

7. RR1 < RR2 < RR3 and a statistically significant effect for subgroup 1;
8. OR1 < OR2 < OR3 and a statistically significant effect for subgroup 1;
9. RD1 < RD2 < RD3 and a statistically significant effect for subgroup 1.

The observed trend is evaluated on the chosen scale and within the same model.
Finally scenario 10, where only a statistically significant subgroup without looking at a trend, is presented and compared

to strategies 7-9 in order to clarify the potential added benefit of incorporating the trend in the decision strategy. For
this comparison to be fair with scenarios 7-9, only subgroup 1 is tested (pST1 < 0.05), ie, we do not compare this with
the data-dredging strategy of testing each of the three subgroups (which would, of course, perform even worse than
scenario 10).

For these three assessment strategies, four different values for the size of subgroup 1 (G1·), denoted by rG1· , as proportions
of the total sample size were studied:

• rG1. = 0.1
(

rG2. = rG3. = 0.45
)
;

• rG1. = 0.33
(

rG2. = rG3. = 0.33
)
;

• rG1. = 0.5
(

rG2. = rG3. = 0.25
)
;

• rG1. = 0.9
(

rG2. = rG3. = 0.05
)
.

Of note, the second subscript refers to either c for control or t for treatment.
The population proportions of responders of the binary outcome are denoted by 𝜋c and 𝜋t for the control and treatment

arms, respectively. These proportions of responders are assumed known for sample size calculation with an alpha of
0.05 (two-sided) and a power of 80%.15 Three different proportions of responders for the control and the treatment group
were investigated (Table 1) to reflect different sizes of clinical trials. Following Cohen's h effect sizes based on the arcsine
transformation, they can be classified as very small, small, and medium effect sizes.16

Note that the subgroups are assumed to have equal sizes within the treatment and control groups, ie, being perfectly
stratified. In order to assess the overall type I error and the power of each strategy, different proportions of responders
have been simulated for all subgroups, ie, G1T, G2T, G3T, G1C, G2C, and G3C. Table 2 provides an exhaustive summary of
these parameters.
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TABLE 1 Parameters used at the design stage of randomized controlled
trial for the sample size calculations

Parameters Values
Significance level of the overall test 0.05 (two-sided)
Power of the overall test 0.80

𝜋c = 0.2 h = 0.12 N = 1091
𝜋t = 0.25

Proportions of responders, effect 𝜋c = 0.5 h = 0.25 N = 244
size, and sample size per arm 𝜋t = 0.625

𝜋c = 0.2 h = 0.44 N = 79
𝜋t = 0.4

Note: 𝜋c: proportion of responders control arm; 𝜋t: proportion of responders treatment
arm; h: Cohen's effect size; N: sample size per arm.

TABLE 2 Simulated proportions of responders for all scenarios

k 𝝅c = 0.2; 𝝅t = 0.25; 𝝅c = 0.5; 𝝅t = 0.625; 𝝅c = 0.2; 𝝅t = 0.4;
N = 1091 N = 244 N = 79

0 pG1T
= 0.2 pG1T

= 0.5 pG1T
= 0.2

pG2T
= 0.2 pG2T

= 0.5 pG2T
= 0.2

pG3T
= 0.2 pG3T

= 0.5 pG3T
= 0.2

pG1C
= pG2C

= pG3C
= 0.2 pG1C

= pG2C
= pG3C

= 0.5 pG1C
= pG2C

= pG3C
= 0.2

0.5 pG1T
= 0.225 pG1T

= 0.5625 pG1T
= 0.3

pG2T
= 0.2125 pG2T

= 0.53125 pG2T
= 0.25

pG3T
= 0.2 pG3T

= 0.5 pG3T
= 0.2

pG1C
= pG2C

= pG3C
= 0.2 pG1C

= pG2C
= pG3C

= 0.5 pG1C
= pG2C

= pG3C
= 0.2

1 pG1T
= 0.25 pG1T

= 0.625 pG1T
= 0.4

pG2T
= 0.225 pG2T

= 0.5625 pG2T
= 0.3

pG3T
= 0.2 pG3T

= 0.5 pG3T
= 0.2

pG1C
= pG2C

= pG3C
= 0.2 pG1C

= pG2C
= pG3C

= 0.5 pG1C
= pG2C

= pG3C
= 0.2

1.5 pG1T
= 0.275 pG1T

= 0.6875 pG1T
= 0.5

pG2T
= 0.2375 pG2T

= 0.59375 pG2T
= 0.35

pG3T
= 0.2 pG3T

= 0.5 pG3T
= 0.2

pG1C
= pG2C

= pG3C
= 0.2 pG1C

= pG2C
= pG3C

= 0.5 pG1C
= pG2C

= pG3C
= 0.2

2 pG1T
= 0.3 pG1T

= 0.75 pG1T
= 0.6

pG2T
= 0.25 pG2T

= 0.625 pG2T
= 0.4

pG3T
= 0.2 pG3T

= 0.5 pG3T
= 0.2

pG1C
= pG2C

= pG3C
= 0.2 pG1C

= pG2C
= pG3C

= 0.5 pG1C
= pG2C

= pG3C
= 0.2

Note: πc: proportion of responders control arm; πt: proportion of responders treatment arm; N: sam-
ple size per arm; k: parameter related to the simulated proportion of responders for each subgroup
(under the null: k = 0; under the alternative: k = {0.5, 1, 1.5, 2}).

The parameter k relates to the simulated proportion of responders for G1T (pG1T ) and G2T (pG2T ) as regards 𝜋c and 𝜋t
based on the following formulas:

pG1T = 𝜋c + k (𝜋t − 𝜋c)

pG2T = 𝜋c +
k
2
(𝜋t − 𝜋c),

and pG3T , pG1C , pG2C , and pG3C are always equal to 𝜋c. For instance, with proportions of responders of the binary outcome
𝜋c = 0.2 in the control group and 𝜋t = 0.25 in the experimental group, a difference (𝜋t − 𝜋c) of 0.05 is anticipated. For
k = 2, the simulated proportions of responders are pG1T = 0.3, pG2T = 0.25, and pG3T (as well as pG1C , pG2C , and pG3C ) = 0.2.
The case where k = 0 relates to the evaluation of the overall type I error, whereas the remaining cases (k = 0.5, 1, 1.5, 2)
relate to power.

Per proportion of the subgroup, the overall type I error and the power are assessed by means of simulations for the
three combinations of success rates mentioned above. Under the null hypothesis (parameters via k = 0), the following
events are counted as a false-positive finding: either the overall test is statically significant or the overall is not statistically
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significant but a trend, as described above (scenarios 1-9), is present. For instance, in scenario 1, if the overall test is
statistically significant, or if the overall test is not statistically significant but RR1 < RR2 < RR3, then this situation is
counted as a false-positive finding. Similarly for scenario 4, if the overall test is statistically significant, or if the overall test
is not statistically significant but RR1 < RR2 < RR3 and the test of interaction (pIT < 0.10) is statistically significant, this
situation is counted as a false-positive finding. Regarding the power computation under the alternative hypothesis, the
same principle has been applied. Under the alternative hypothesis, a positive finding is when the overall null hypothesis is
not rejected and a trend is found as defined as per the scenario considered. All simulations (data generation and analyses)
were done with R version 3.1.1.17 To report the results with a precision of two digits, the standard error needs to be ≤ 0.005
(1.96 × 0.005 ≈ 0.01). To reach this precision, the number of simulations, with both a statistically nonsignificant overall
result and a “positive” trend as defined for each scenario, is 10 000. In order to make this study reproducible, R code
(scenarios 1, 4, and 7) is provided in the supplementary material.

3.1 Results of the observed trend across subgroups
Results regarding the overall type I error (k = 0) and the power (k = 0.5; 1; 1.5; 2) of each strategy are presented in Table 3.
For the sake of clarity, only results for subgroup proportions rG1· = 0.33 and rG1· = 0.5 are presented. As regards the power
results, only k = 1 and k = 2 were considered in Table 3. All other results can be found in the supplementary material.

By looking only at the observed trend across subgroups, the overall type I error is substantial, ie, around 0.20. Irrespective
of the metric used, the results are roughly similar. The overall type I error decreases to approximately 0.09 when the

TABLE 3 Overall type I error (k = 0) and power (k = 1; 2) for scenarios 1-10

N = 1091 N = 244 N = 79
Strategy Metric k rG𝟏·

= 0.33 rG𝟏·
= 0.5 rG𝟏·

= 0.33 rG𝟏·
= 0.5 rG𝟏·

= 0.33 rG𝟏·
= 0.5

Observed RR 0 0.22 0.20 0.21 0.20 0.20 0.19
1 0.46 0.43 0.47 0.44 0.46 0.42
2 0.74 0.69 0.80 0.75 0.75 0.68

OR 0 0.22 0.20 0.21 0.20 0.20 0.18
1 0.44 0.43 0.46 0.43 0.42 0.38
2 0.72 0.68 0.78 0.73 0.69 0.61

RD 0 0.21 0.19 0.21 0.19 0.18 0.17
1 0.44 0.42 0.44 0.42 0.42 0.39
2 0.73 0.68 0.75 0.71 0.70 0.64

Observed + RR 0 0.09 0.08 0.09 0.09 0.09 0.08
interaction 1 0.24 0.24 0.26 0.25 0.26 0.24
(p < 0.10) 2 0.62 0.59 0.71 0.67 0.62 0.59

OR 0 0.09 0.09 0.09 0.08 0.09 0.08
1 0.24 0.22 0.25 0.23 0.22 0.20
2 0.58 0.55 0.69 0.66 0.54 0.48

RD 0 0.09 0.08 0.09 0.08 0.09 0.08
1 0.24 0.23 0.25 0.23 0.24 0.21
2 0.60 0.57 0.66 0.64 0.59 0.54

Observed + RR 0 0.06 0.06 0.06 0.06 0.06 0.06
subgroup 1 0.17 0.19 0.18 0.19 0.17 0.16

2 0.56 0.58 0.65 0.67 0.51 0.54
OR 0 0.06 0.06 0.06 0.06 0.06 0.06

1 0.17 0.19 0.17 0.19 0.17 0.17
2 0.56 0.57 0.64 0.66 0.51 0.51

RD 0 0.06 0.06 0.06 0.06 0.06 0.06
1 0.17 0.19 0.17 0.19 0.17 0.16
2 0.56 0.57 0.64 0.65 0.51 0.53

Subgroup NA 0 0.09 0.09 0.10 0.08 0.10 0.08
1 0.25 0.29 0.25 0.29 0.24 0.27
2 0.66 0.73 0.75 0.84 0.61 0.71

Note: N: sample size per arm; rG1·
: proportion (over the total sample) of the subgroup of interest G1·; k: parameter

related to the simulated proportion of responders for each subgroup (under the null: k = 0; under the alternative:
k = {0.5, 1, 1.5, 2}); NA: not applicable; OR: odds ratio; RD: risk difference; RR: relative risk.
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observed trend across subgroups is supported by an interaction test when investigating RR, OR, or RD. Depending on the
choice of the test of interaction significance level, this value can be lowered to 0.07 when pIT < 0.05 and increases to 0.12
when pIT < 0.20. Finally, the overall type I error is almost controlled, ie, 0.06, irrespective of the metric chosen, when
the observed trend across subgroups is supported by a statistically significant test for the effect in the most promising
subgroup.

By looking only at the observed trend across subgroups, the power is about 0.45 when k = 1 and about 0.75 when
k = 2. The power is about 0.25 (k = 1) and 0.60 (k = 2) when the observed trend across subgroups is supported by an
interaction test. The power slightly decreases to around 0.18 (k = 1) and 0.55 (k = 2) when the observed trend across
subgroups is supported by a statistically significant test for the effect in the most promising subgroup. Of note, it seems
that the RR metric provides slightly better results than the OR and RD metrics. Moreover, and for k = 2, the results are
slightly better when the population proportions of responders of the outcome for the control and treatment arms, 𝜋c and
𝜋t, are respectively equal to 0.5 and 0.625. It is also interesting to observe that the scenario where the observed trend
across subgroups is supported by a statistically significant test for the effect in the most promising subgroup has a better
control of the overall type I error as well as a slightly higher power as compared to the scenario where the observed trend
across subgroups is supported by an interaction test with a stringent pIT < 0.05. This latter scenario should therefore not
be preferred in this setting, or only with a relaxed test of interaction significance level if power is preferred over type I
error control.

4 m(m ≥ 2) SUBGROUPS ARE INVESTIGATED

The number of subgroups analysed in practice is generally large. Thus, both multiplicity as well as correlation between test
statistics determine the type I error. According to Pocock et al, 70% (35/50) of reported trials contained multiple subgroup
analyses.8 The total number of reported subgroup analyses per published trial varied from one to 24 with a median of four.
Wang et al reviewed 59 clinical trials, of which 20 provided between one and four subgroup analyses, 17 between five and
eight subgroup analyses, 17 more than eight subgroup analyses and five were unclear about the number of subgroup anal-
yses performed.9 As not all subgroup analyses performed are always reported nor are protocol defined, we considered the
following number of investigated subgroups: 2, 3, 5, 10, and 20. For simplicity, we looked at cases where all m subgroups,
each coming from a covariate with two levels, have the same proportion r for the subgroup under investigation. We first
simulated the whole trial sample and then randomly resampled it in order to create the (m) subgroups “of interest.” As all
subgroups are based on the same overall sample, test statistics for Hi and Hj (i ≠ j; (i; j) = {1, … , m}; m ≥ 2) are positively
correlated, such as what would happen in clinical practice where the same patients are included in different subgroups.
Under the null hypothesis (no overall effect as well as no effect in any subgroup) and when the null is not rejected, if at least
one subgroup, out of m subgroups tested, reaches statistical significance, ie, at least one p(i)

ST < 0.05 (i = 1, … ,m,m ≥ 2),
it is considered as a false-positive finding, hence is taken into account for the assessment of the overall type I error. The
R code is provided in the supplementary material.

4.1 Results when m(m ≥ 2) subgroups are investigated
Irrespective of the size of the trial, the results are roughly similar (Table 4). They only differ when the subgroups of interest
are very small, ie, for r = 0.1. Practically, the most encountered scenario is expected when r= 0.4, 0.5, or 0.6. When two
subgroups are investigated, the overall type I error is around 0.08. When five subgroups are investigated, this number
reaches 0.13. For 10 and 20 subgroups, the associated overall type I errors are respectively around 0.17 and 0.23.

These results directly relate to the multiple testing problem. Despite a substantial inflation of the overall type I error
across all scenarios, these results are, however, more conservative than it would be with independent tests, as the posi-
tive correlation between the subgroup test statistics attenuates the type I error inflation. For instance, when 10 subgroups
are tested after an overall statistically nonsignificant result, the overall type I error is approximately 0.17, ie, an infla-
tion of 0.12 based on 10 subgroup tests given the overall statistically nonsignificant setting. However, if these tests had
been completely independent, the inflation would have been approximately 0.22. Therefore, given the positive corre-
lation between the subgroup test statistics, the inflation for multiple testing is less dramatic than one would expect.
Obviously, this observation is not a convincing argument to make firm conclusions about a subgroup finding. In order
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TABLE 4 Overall type I errors

Sample Number of Proportion of the Subgroup G1
Size Subgroups 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Per Arm

2 0.093 0.090 0.087 0.085 0.082 0.078 0.074 0.069 0.063
3 0.113 0.109 0.105 0.102 0.096 0.090 0.084 0.077 0.068

N = 1091 5 0.154 0.146 0.136 0.131 0.120 0.111 0.100 0.090 0.076
10 0.239 0.226 0.205 0.188 0.171 0.149 0.132 0.112 0.089
20 0.383 0.337 0.300 0.272 0.234 0.201 0.172 0.138 0.102
2 0.109 0.096 0.097 0.090 0.081 0.083 0.073 0.070 0.065
3 0.136 0.117 0.118 0.106 0.095 0.096 0.082 0.077 0.070

N = 244 5 0.186 0.155 0.154 0.137 0.117 0.118 0.097 0.088 0.078
10 0.298 0.237 0.231 0.202 0.162 0.160 0.127 0.109 0.090
20 0.455 0.360 0.338 0.283 0.230 0.214 0.160 0.134 0.104
2 0.074 0.094 0.092 0.086 0.083 0.080 0.076 0.069 0.065
3 0.085 0.113 0.112 0.103 0.098 0.093 0.087 0.075 0.069

N = 79 5 0.107 0.151 0.145 0.132 0.123 0.114 0.104 0.088 0.077
10 0.159 0.235 0.219 0.189 0.173 0.154 0.135 0.108 0.089
20 0.245 0.359 0.322 0.272 0.241 0.206 0.174 0.134 0.104

Note: Small inflation of the type I error: 0.05 ≤ p < 0.06; Medium inflation of the type I error: 0.06 ≤ p < 0.07 ; Large
inflation of the type I error: 0.07 ≤ p < 0.08 ; Very large inflation of the type I error: p ≥ 0.08 .

TABLE 5 Adjusted overall type I errors with a Holm-Bonferroni correction

Sample Number Proportion of the Subgroup G1
Size Per of 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Arm Subgroups

2 0.064 0.062 0.061 0.059 0.058 0.058 0.055 0.053 0.051
3 0.065 0.064 0.062 0.060 0.059 0.057 0.055 0.052 0.051

N = 1091 5 0.067 0.066 0.063 0.062 0.059 0.056 0.054 0.051 0.050
10 0.067 0.066 0.065 0.060 0.058 0.056 0.052 0.051 0.050
20 0.067 0.065 0.063 0.058 0.057 0.054 0.051 0.050 0.050
2 0.067 0.067 0.065 0.063 0.062 0.059 0.056 0.055 0.053
3 0.071 0.065 0.064 0.062 0.061 0.059 0.056 0.055 0.052

N = 244 5 0.068 0.066 0.065 0.063 0.060 0.057 0.056 0.053 0.052
10 0.074 0.067 0.065 0.064 0.058 0.057 0.054 0.053 0.052
20 0.073 0.067 0.065 0.060 0.060 0.057 0.054 0.052 0.052
2 0.055 0.066 0.062 0.061 0.058 0.057 0.054 0.054 0.052
3 0.056 0.057 0.062 0.062 0.060 0.058 0.055 0.053 0.051

N = 79 5 0.057 0.062 0.061 0.061 0.058 0.056 0.055 0.052 0.050
10 0.053 0.056 0.064 0.059 0.057 0.054 0.053 0.051 0.051
20 0.053 0.056 0.061 0.056 0.055 0.054 0.052 0.051 0.051

Note: Small inflation of the type I error: 0.05 ≤ p < 0.06; Medium inflation of the type I error: 0.06 ≤ p < 0.07 ;
Large inflation of the type I error: 0.07 ≤ p < 0.08 ; Very large inflation of the type I error: p ≥ 0.08 .

to have more confidence in the subgroup finding(s), adjustment for multiplicity should be undertaken. The step-down
Holm-Bonferroni procedure18 could be a first option. Table 5 provides the corresponding adjusted overall type I error.

The results of the Holm-Bonferroni correction are rather good, irrespective of the number of subgroups investigated.
A significant subgroup finding after Holm-Bonferroni multiplicity correction could be considered as promising and
therefore be a good candidate for identifying subgroups that could be considered for a replication study, if not yet avail-
able. Of course, the number of subgroups tested should be known, or otherwise, it should be stated that the subgroup
finding should not be outside the list of those mentioned in the protocol.

In previous research, Tanniou et al suggested that, if the p-value for the subgroup of interest is very low (< 0.004
one-sided), this is not consistent with the null hypothesis of no subgroup effect across a range of scenarios, despite the
type I error inflation.3 We acknowledge that pragmatic decisions based on thresholds, such as the classic “p < 0.05,” are
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TABLE 6 Overall type I errors with a subgroup significance level of 0.004 (one-sided)

Sample Number Proportion of the Subgroup G1
Size Per of 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Arm Subgroups

2 0.053 0.053 0.053 0.052 0.051 0.051 0.050 0.050 0.050
3 0.055 0.055 0.053 0.053 0.052 0.051 0.051 0.050 0.050

N = 1091 5 0.057 0.057 0.056 0.054 0.054 0.052 0.052 0.050 0.050
10 0.063 0.063 0.061 0.060 0.057 0.054 0.053 0.051 0.050
20 0.080 0.079 0.072 0.069 0.063 0.058 0.054 0.052 0.050
2 0.055 0.054 0.054 0.054 0.053 0.053 0.052 0.052 0.052
3 0.056 0.056 0.055 0.055 0.053 0.053 0.053 0.052 0.052

N = 244 5 0.060 0.059 0.058 0.056 0.055 0.054 0.053 0.052 0.052
10 0.068 0.064 0.062 0.061 0.057 0.056 0.055 0.053 0.052
20 0.079 0.076 0.074 0.068 0.064 0.060 0.058 0.053 0.052
2 0.051 0.052 0.052 0.052 0.052 0.052 0.051 0.050 0.050
3 0.051 0.052 0.053 0.053 0.053 0.052 0.051 0.050 0.050

N = 79 5 0.051 0.055 0.054 0.054 0.053 0.053 0.051 0.051 0.050
10 0.053 0.056 0.056 0.058 0.058 0.055 0.052 0.051 0.051
20 0.054 0.064 0.063 0.066 0.064 0.059 0.054 0.052 0.050

Note: Small inflation of the type I error: 0.05 ≤ p < 0.06; Medium inflation of the type I error: 0.06 ≤ p < 0.07 ;
Large inflation of the type I error: 0.07 ≤ p < 0.08 ; Very large inflation of the type I error: p ≥ 0.08 .

often more consensus-based than purely scientifically-based. In the same spirit, we do not recommend to base a subgroup
finding only on the pragmatic boundary proposed in previous research. This pragmatic threshold should rather be seen as
one of the many factors playing a role to come to a scientifically informed decision, which necessarily needs to include the
biological plausibility as well as other nonstatistical considerations. We were therefore interested in studying the impact
on the overall type I error by applying this very practical adjusted criterion (Table 6). In the same spirit, Benjamin et al
have recently made a plea for smaller p-value thresholds, ie, 0.005.19

By applying the strict threshold of 0.004, the correction of the overall type I error for small subgroups (r ≤ 0.5) provides
closer results to the intended control of type I error than the Holm-Bonferroni correction. When the number of inves-
tigated subgroups increases (≥ 20), the Holm-Bonferroni provides a better correction of the type I error. Both presented
multiplicity correction approaches have good results, can be implemented in practice in a straightforward way, and can
be used post hoc, or even when assessing a paper in which multiple subgroup analyses are presented. Moreover, one addi-
tional advantage is that the criterion based on a stricter subgroup significance level (0.004) remains the same, regardless
the number of subgroups investigated, eg, 10, 50, or 100. Both approaches could potentially be applied to decide whether
a replication study should be undertaken or not. However, more powerful methods taking into account the correlation
between the test statistics could apply, such as resampling-based approaches. For more details about these approaches,
we refer to the work done by Bretz et al.20 The principal drawback of these more advanced methods is the practical
implementation and limitations in post hoc application.

5 DISCUSSION

When no significant overall treatment effect is found in a clinical trial, subgroup analyses could be conducted to inves-
tigate whether a treatment might be beneficial for particular subgroups. Following strict (frequentist) principles, if the
overall effect is not statistically significant, drawing confirmatory conclusions from any significant subgroup findings is
not possible as the type I error is exhausted. In case subgroup analyses are conducted in an exploratory way, such as
for checking consistency, they are associated with an increased overall type I error. Moreover, in case of no significant
overall treatment effect and the assumption of homogeneity, we are logically forced to retain the null hypothesis of no
effect for the whole study population, irrespective of (promising) subgroups. However, if the treatment effect is heteroge-
neous across the study population, with part of the population showing benefit and another part not, a subgroup might
still benefit from the treatment under investigation. Subgroup analyses can thus be in the interest of patients. This study
expands the results of the previous work done by Tanniou et al3 by quantifying the inflation of the overall type I error for
a range of new scenarios with dichotomous outcomes. It presents strategies when the covariate of interest is divided into
three ordered subgroups and where a potential treatment effect trend over subgroups might be anticipated. Assuming
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an overall nonsignificant result, the strategy providing the best results (amongst those investigated) is when an observed
trend across subgroups, based on point estimates only and not on any confidence intervals, and a statistically signifi-
cant subgroup treatment effect is observed. This strategy, irrespective of the metric chosen, ie, (log) ORs, RDs, or (log)
RRs, provides an overall type I error close to the initial significance level and outperforms the commonly used practice
of an interaction test. The concept of credibility is of paramount importance here. If a different (nonmonotonic) response
was to be expected, such as a U-shaped response, the concept of trends as well as the scenarios discussed in this paper
would not be appropriate and would hypothetically not outperform the test of interaction. The associated power can be
up to 65% if the subgroup effect is twice the overall anticipated effect at the design stage. It should be noted that these
results are based on simulations where one single covariate is investigated. It should also be highlighted that the scientific
(clinical) plausibility should play a major role when assessing signals based on subgroup analyses. Finally, to assess a
potential differential effect between subgroups, a test of interaction, a test of heterogeneity, or a test for trend could be
used. As these tests have different purposes, the choice of the test to be used should be properly justified by researchers. In
order to remain as close as possible to current clinical practice, we have only considered the test of interaction. However,
it is important to emphasise that the choice of the test may provide inconsistent conclusions.21

The next focus was on the investigation of scenarios where the interest is not only in one covariate, but in multiple
covariates, from 2 to 20, at the same time. This directly relates to a multiple testing problem with dependent subgroups,
ie, the test statistics of the subgroup analyses will be positively correlated, because all patients will usually appear in each
subgroup of interest. This strategy is close to the performance of data dredging when the overall test failed to show any
potential effect for the investigated sample. As expected, the higher the number of subgroups, the larger the inflation
of the overall type I error, although attenuated by the positive correlation of subgroup test statistics. Therefore, the sig-
nificance of within-subgroup treatment effects should be adjusted for multiplicity when multiple subgroup analyses are
performed simultaneously. We propose pragmatic solutions such as the Holm-Bonferroni adjustment method18 and an
adjusted criterion for a false-positive finding based on our results with continuous outcomes.3 These solutions perform
adequately, but we acknowledge that more efficient methods could be used, for example, those that exploit the positive
correlation between subgroup tests. However, these might encounter some reluctance in practice as they cannot be easily
implemented nor be applied post hoc when evaluating trials results as reported.

Based on the simulation results, it is interesting to return to the example about the Dexamethasone for Cardiac Surgery
trial presented in Section 2.13 No overall significant effect was observed, but a trend across age-related subgroups was
observed in patients younger than 65 years of age; a protective effect of prophylactic Dexamethasone on the primary
endpoint appeared statistically significant with an RR of 0.65 (95% CI, 0.44 to 0.96). Furthermore, the publication reported
six investigations related to subgroups, only one with ordered subgroups. It is interesting to note that the authors provided
the results in RRs while a logistic regression analysis, providing (log) ORs, was performed to assess if heterogeneity was
present or not. It should be emphasised that even though the metric chosen, ie, (log) ORs, RDs, or (log) RRs, provides
on average roughly the same results in the presented simulations, researchers should be aware that the choice of the
metric used should be consistent to perform a proper evaluation, as it does impact the interaction test results, ie, within
one specific clinical trial.14 According to the results presented in this study, the investigations of five subgroups would
provide an overall type I error of about 0.10-0.15. Moreover, observing a trend over the RR metric as well as a statistically
significant subgroup has a low inflation of the type I error, ie, about 0.06 (with only one subgroup investigated). The latter
result is, however, based on scenarios where ordered subgroups all have a nonnegative effect. It should also be emphasised
that other aspects, such as the definition of cut-points to define the different subgroups, were not considered, even though
those were pre-specified. Finally and based on our study, we would not discard the trend across age-related subgroups
directly. The best strategy based on our results is a trend based on point estimates and a statistically significant subgroup,
which is the case here. Hence, based on what we investigated and following our own recommended approach, the finding
on age would warrant further investigation. Also, and because we are dealing with ordered subgroups, the credibility of
this subgroup finding may be reinforced.

Our study, together with previous research, provides an understanding of subgroup findings in “failed” trials. Some
limitations need to be addressed. The main one relates to the multiple testing problem and how to evaluate the subgroup
finding knowing (or not) the number of subgroup analyses performed. Also, the model we used to investigate subgroup
findings assumes that there is a positive effect in the subgroups (or not) and that the effect in the rest of the trial population
is nonnegative, so the situation of an overall failed trial due to a positive effect in some subgroups paired with a negative
effect, ie, detrimental, in the rest of the trial population is not covered.

To conclude, subgroup analyses in overall nonsignificant trials are likely to cause statistical problems but should still
be considered as a potential new relevant treatment may benefit a subpopulation. Therefore, particular attention should
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be given to plausibility and replication in order to reassure decision makers. This study provides practical results to better
evaluate whether the level of evidence associated with subgroup findings is sufficient to perform further research.
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