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CXCL4 as a driver of physiological processes and 
immune cell modulation

CXC chemokine ligand 4 (CXCL4), previously known as Platelet factor 4 (PF4), is one 
of the most abundant proteins released at sites of inflammation. CXCL4 is stored in 
α-granules of platelets and abundantly released upon platelet activation1,2. Besides, 
CXCL4 is also produced by immune cells, such as mast cells3, dendritic cells (DCs)4–6, 
monocytes7 and activated T-cells 8. Normal levels of CXCL4 present in plasma are 
approximately 2-10ng/ml, whereas in serum (enriched by thrombin-mediated 
platelet aggregation and coagulation) CXCL4 levels are about 5-10µg/ml. Strikingly, 
human platelets store about 20µg of CXCL4/109 platelets9. Local levels of CXCL4 
are likely to be high in wounds or inflamed tissues, as these are sites of platelet 
activation. Indeed, increased platelet frequency and activation are implicated in the 
presence of an injured endothelium, extensive activation of the immune system and 
amplified inflammation in several autoimmune diseases10–12. 
	 Most of the chemokines play a critical role in the recruitment of cells to 
inflammatory sites. However, rather than chemotactic activity, CXCL4 plays a key role 
in biological processes and pathological conditions13 like inhibition of hematopoiesis 
and angiogenesis14–18, platelet coagulation, wound healing19–22, atherosclerosis 
development23–26 and immune cell activation and differentiation. 
	 CXCL4 plays a critical role in modulating the function of endothelial cells,  
monocytes, macrophages, DCs and T-cells27–37. For instance, CXCL4 prevents monocytes 
from undergoing apoptosis, promotes their differentiation into a specialized 
subset of macrophages (M4), augments the production of inflammatory cytokines, 
and oxygen radical species (ROS) by using distinct signaling pathways29,30,34,38–40.  
Additionally, it has been described that exposure of monocyte-derived dendritic cells 
(moDCs) to CXCL4 during differentiation alters the phenotype and function of the 
cells27,28,33.
	 Furthermore, studies on T-cells indicated that CXCL4 inhibits proliferation and IL-2 
production on activated T-cells31, induces regulatory CD4+CD25+ T-cell proliferation 
while impairing CD4+CD25+ T-cell proliferation41 and drives T-cell polarization by 
inducing pro-fibrotic Th2 cytokines (IL-13) and by reducing Th1 cytokines (IFNγ) 
production by naïve CD4+ T-cells through the regulation of transcription factors 
such as T-bet and GATA-336.
	 CXCL4 is a 70-amino acid protein, located on the chromosome 4q13.3 in humans42. 
Other than many CXC-chemokines, CXCL4 does not comprise an N-terminal Glutamic 
acid-Leucine-Arginine (ELR) motif within its N-terminal portion of the protein. CXCL4 
binds strongly to heparin and negatively charged cell surface glycosaminoglycans 
(GAGs) such as chondroitin, dermatan and heparin sulfates43–46. Furthermore, CXCL4 
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modulation of endothelial and T-cell function is driven by the CXCL4-high affinity 
binding to CXCR3B36,37,47, though modulation of monocyte responses was shown 
independent of CXCL4-signaling through this receptor35. Recently, it has been 
proposed that CXCL4-induced migration on monocytes is mediated by CCR140.
 

CXCL4 role in autoimmunity

Due to its abundance at sites of platelet activation and pleotropic functions, CXCL4 is 
implicated in diverse pathological conditions including thrombosis22; cancer48, several 
autoimmune diseases such as atherosclerosis23–26, inflammatory bowel disease (IBD)49,50, 
heparin-induced thrombocytopenia51, rheumatoid arthritis (RA)52, antiphospholipid 
antibody syndrome (APS)53, sjögren’s syndrome (SS)54, and infectious diseases like 
human immunodeficiency virus (HIV)55 and malaria56. Our group was the first to 
identify CXCL4 as an early serum biomarker for systemic sclerosis (SSc)5. Later reports 
corroborated the contribution of CXCL4 to the pathogenesis of SSc6,57,58. Interestingly, 
increased platelet number and their activation are implicated also in this disease11,59,60.
	 SSc is a complex autoimmune disease of unknown etiology. The three hallmarks 
that characterizes SSc are: vasculopathy, dysfunction of immune cells that leads 
to exacerbated inflammation and production of autoantibodies, and dysfunction 
of non-immune cells such as fibroblasts that contribute to the excessive deposition 
of extracellular matrix (ECM) components. Indeed, due to the increased levels of 
inflammatory cytokines and growth factors in SSc, they have been proposed as 
diagnostic and prognostic markers, and therapeutic targets in SSc61,62. Supporting 
in vitro and in vivo studies have described that immune and non-immune cells from 
SSc patients contribute to aberrant production of inflammatory (e.g. IL-6, type-I 
interferon, IL-12 family members, IL-13, IL-17) and fibrotic (TGFβ, collagen, fibronectin) 
mediators63–69. 
	 The heterogeneous clinical manifestations contribute to the complexity of SSc, 
where extensive fibrosis results in the thickening of the skin and involvement of internal 
organs may result in mortality. A considerable improvement in diagnosis and patient 
care in the last years has made possible better clinical outcomes, although no cure has 
been discovered to date70–72. Thus, understanding how disease-biomarkers such as 
CXCL4 contribute at the molecular level to the development of SSc and targeting either 
these biomarker or CXCL4-downstream pathways may contribute to the development 
of new therapeutic strategies.
	 The research performed in this thesis aimed to assess whether CXCL4 potentiates 
pro-inflammatory and pro-fibrotic responses that contribute to the development of 
SSc, and identify CXCL4-downstream signalling. 
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Dendritic cells: the bridge between innate and adaptive immune 
responses

Human DCs comprise of several subsets with distinct origin, phenotype, transcriptome 
and transcription factor profiling, capability of Ag processing, response to stimuli 
and ability to specifically dictate T-cell activation73–76. DCs are divided in two main 
subsets: conventional or myeloid DCs (mDCs) and plasmacytoid DCs (pDCs)75,76. 
	 The ability of pDCs to produce high levels of type I interferon (IFN) upon immune 
recognition of viral antigens (specially by TLR7 and TLR9) attribute to these cells 
a critical role on antiviral responses77. pDCs are identified by high expression of 
CD303 (BDCA2) and CD304 (BDCA4)78. Steady state pDCs are not efficient on Ag 
presentation, however cells develop this function after stimulation77,79.
	 The mDCs are specialised APCs very effective on Ag presentation and stimulation 
of T-cell responses. mDCs are subdivided in two groups, CD1c+ mDCs (BDCA1 
expressing DCs) and CD141+ mDCs (BDCA3 expressing DCs), defined by the distinct 
expression of surface molecules, TLRs and CLRs expression and production of 
different cytokines. Compared to other DC subsets, mDCs are a) superior in Ag uptake, 
processing and presentation, b) characterized by high capability to migrate to the 
lymph nodes for Ag presentation and c) potent inducers of T-cell responses73,80,81. On 
one hand, CD1c+ mDCs represent a heterogeneous and complex subset that express 
high levels of CD1c and CD11c, migrate to lymph nodes in response to triggering of 
several TLRs (except TLR9) to activate CD4+ T-cell responses and produce distinct 
inflammatory cytokines73,80,82. On the other hand, CD141+ mDCs possess superior 
ability of Ag cross-presentation to CD8+ T-cells to generate cytotoxic T-lymphocyte 
(CTL) responses and express high levels of TLR3, CLEC9A and unique high expression 
of XCR180,81,83–87.
	 Notably, early in the 90s, Sallusto and Lanzavecchia88 and Romani et al.89 proposed 
that combination of GM-CSF and IL-4 induce in vitro differentiation of monocytes 
into immature DC-like cells - monocyte-derived DCs (moDCs). Besides their high 
plasticity, moDCs are also very versatile depending on the micro milieu and the 
presence of growth factors, cytokines or dangers signals during differentiation and 
stimulation90. As observed for mDCs, the triggering with danger signals induces the 
maturation of moDCs both at a phenotypic and functional level, and the ability to 
induce Th1, Th2 or Th17 responses91–96. Multiple studies in human and mouse have 
proposed that cells functionally similar to in vitro moDCs are found in tissues under 
inflammatory conditions, thus named inflammatory DCs76,83,92,97–99.
	 Throughout our research, we studied the role of CXCL4 on immune responses by 
in vitro generated moDCs due to the need of high number of cells for our functional 
experiments and transcriptomic and DNA methylation high through put profiling. 
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	 DCs are professional antigen presenting cells (APCs) that play a crucial role in 
bridging innate and adaptive immune responses. For instance, DCs initiate immune 
responses by recognizing either danger-associated molecular patterns (DAMPs) 
from damaged tissues or pathogen-associated molecular patterns (PAMPs) from 
microorganisms by pattern-recognition receptors (PRRs)100,101. Toll-like receptors 
(TLRs) are one subtype of PPRs, expressed on cell surface, endosomes or lysosomes, 
that sense components of bacteria, viruses and parasites101. Other subtypes of PPRs 
are the cytosolic NOD-like receptors (NLRs) that sense bacterial products, RIG-I-
like receptors (RLRs) that bind to nucleic acids and C-type lectin receptors (CLRs) 
that recognize β-glucans100,102. The triggering of PRR signalling in DCs leads to the 
activation of several downstream pathways that culminate in a mature phenotype, 
inflammatory cytokine production and activation of T-cell responses. Thus, signalling 
through PRRs in DCs instructs adaptive immune responses.
	 Furthermore, the recognition of microbial components by phagocytosis, 
macropinocytosis or receptor-mediated endocytosis is pursued by antigen (Ag) 
processing. Processed peptides are then loaded onto the major histocompatibility 
complex (MHC) molecules and presented on DC surface to T-cells. Indeed, DCs are 
potent inducers of T-cell proliferation and polarization into Ag specific effector T-cells 
(Th1, Th2, Th17, Th22) in the presence of three signals: 1) co-stimulatory molecules, 
2) cytokines (e.g. IL-12, TNF, IL-23); 3) TCR engagement (T-cell recognition of peptide 
bound to MHC molecules of the surface of DCs)102–104.
	 Multiple studies reported that CXCL4 modulates the phenotype and function of 
immune cells, including DCs and T-cells. 
	 In fact, disturbed DC frequencies in circulation and in inflammatory tissues, 
impaired immune function and aberrant TLR-mediated responses have been 
associated with several inflammatory autoimmune conditions105–107, including 
SSc108–112. Strikingly, in vitro triggering of mDCs and moDCs from SSc patients with 
TLR2, TLR3 and TLR4 agonists results in aberrant production of IL6, TNF and IL12. 
Also, stimulation of pDCs with TLR9 agonist induced increased production of type-I 
interferon (IFN-I)5,6,57,111,113–118. Endogenous ligands of TLR2 (serum amyloid A (SAA)) 
and TLR4 (S100A8/9) were shown to be increased in patients with SSc119–121. The 
expression of TLR4-pathway associated molecules were found increased in SSc skin 
and lungs, and were associated with several SSc hallmarks122,123. In line with these 
findings, studies in murine models of chronic inflammation and fibrosis confirmed 
the implication of immune activation driven by TLR signalling, especially TLR3-
mediated responses124–127. 
	 Moreover, deregulated T-cell responses, namely by Th1, Th2 and Th17 subsets, 
contribute to tissue fibrosis and inflammation and represent also hallmarks of SSc 
pathogenesis64,128–133. 
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Thus, both innate and adaptive immune responses are compromised in SSc patients, 
however the contribution of CXCL4 to this aberrant phenotype remains poorly 
described. Therefore, we investigated how CXCL4 modulates DC innate and adaptive 
immune responses that culminate in chronic inflammatory responses in SSc and 
other autoimmune diseases.

Tolerogenicity and Immunogenicity: a balance 
required for immune homeostasis

DCs are sentinel cells crucial for the initiation of immune responses and the 
maintenance of immune tolerance134–137. The plasticity in phenotype and function 
confers to DCs two distinct roles: i) in response to inflammatory triggers, immunogenic 
DCs act as potent activators of T-cells thereby promoting inflammatory responses; 
ii) conversely, tolerogenic DCs (tol-DCs) in response to self-antigens may deplete 
self-reactive T-cells promoting the generation of regulatory T-cells, and drive T-cell 
anergy to maintain the balance of peripheral tolerance102,138,139.
	 In steady state, DCs express on cell-surface Ag presenting molecules (MHC 
class I and II), co-stimulatory molecules and chemokine receptors such as CCR7 
in order to promote homing to the lymph nodes. Furthermore, they express low 
levels of chemokine receptors for local inflammatory mediators (e.g. CCR5 and 
CCR6) and phagocytic competence. However, when DCs encounter either foreign- 
or self-danger signals, they initiate, modulate and sustain either immunogenic 
or tolerogenic responses, according to the presence or absence of inflammatory 
signals103,139.
	 Exposure of immunogenic DCs to inflammatory mediators leads to dramatic 
upregulation of MHC and co-stimulatory molecules (e.g. CD86, CD80, CD40), cell 
adhesion molecules such as ICAM1 and pro-inflammatory cytokines. Ag presentation 
to T-cells, co-stimulation and secretion of cytokines and chemokines that attract 
T-cells culminates with the expansion and differentiation into effector T-cells with 
a particular cytokine profile (e.g. Th1, Th2, Th17)103,140. However, in the absence of 
inflammatory mediators tol-DCs are poorly immunogenic, they express low levels of 
co-stimulatory molecules and do not produce pro-inflammatory cytokines. Presentation 
of self- or harmless- Ag by tol-DCs to T-cells generates regulatory T-cells (Tregs), which 
suppress effector functions of CD4+ and CD8+T-cells103,104,135,141,142. Moreover, the 
production of mediators such as IL-10, TGF-β, indolamine 2,3-dioxygenase (IDO) and 
retinoic acid (RA) by DCs promotes adaptive immune responses by regulatory T-cells 
(Tregs) rather than effector T-cells143–147.
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	 Tolerogenic or immunogenic responses are critical for the maintenance of 
immune homeostasis. Though, when these responses are prolonged and amplified 
may contribute towards the development of immunodeficiency or autoimmune 
diseases.
	 Multiple protocols were established for the in vitro generation of DCs with 
immunogenic and tolerogenic properties104,148–151. Recent transcriptomic and 
proteomic studies provided new understanding of their molecular profiles, and 
identified several candidate molecules associated with immunogenic and immune-
regulatory functions despite the diversity of mediators used to generate these 
cells152–158. Remarkably, the generation of tolDCs represent an attractive target 
for immunotherapy, especially for the treatment of autoimmune diseases159–162. 
Alternatively, current investigation on discovering candidate biomarkers implicated 
on immunogenic responses may provide potential targets for therapeutically 
intervention in multiple immune and non-immune diseases.
	 In our research, we observed that CXCL4 exposure during moDC differentiation 
instructs moDCs to distinct phenotype and T-cell activation. Thereby, we explored 
the role of CXCL4 in the modulation of immunogenic and tolerogenic signatures in 
order to identify therapeutically targetable markers, which would rescue cells, back 
to a homeostatic equilibrium.

Transcriptional and post-transcriptional regulation 
of gene expression by CXCL4

In our functional experiments performed in the first part of this thesis, we observed 
dramatic changes on the morphology and phenotype of moDCs, and enhanced 
immunogenic response as result of exposure to CXCL4. Therefore, in the second 
part, we further investigated the underlying signalling pathways and master 
regulators implicated in cell reprogramming to elucidate how CXCL4 potentiates 
pro-inflammatory cytokine production and the association with fibrotic responses 
implicated in the pathogenesis of SSc.
	 Exposure to danger signals results in loss of cellular and tissue homeostasis and 
culminates in complex transcriptional reprogramming which initiates, maintains 
and lately confines inflammatory responses. For instance, genes associated with cell 
migration, Ag presentation, tissue remodelling and metabolic reprogramming are 
some examples of the thousands of genes that are induced or repressed in response 
to self- and foreign- danger signals163,164. The transcriptional regulation of multiple 
signalling pathways may differ between species, cell type, location of the cells, 
and function in a gene-specific manner. Transcription factors and transcriptional 
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co-regulators are crucial players in the regulation of these signalling pathways 
or transcriptional modules165,166. Interestingly, genes belonging to a specific 
transcriptional module are functionally associated, and regulated in a coordinated 
manner by master regulators of this module165,166. 
	 Alongside to the tight control at the transcriptional level, inflammatory cytokines 
are also regulated at post-transcriptional levels which includes regulation of mRNA 
stability167,168. Adenosine uridine (AU)-rich elements (AREs) present on the 3 prime 
untranslated region (3’UTR) of many cytokines mediate the regulation of mRNA 
decay. The binding of trans-acting ARE-binding proteins (ARE-BPs) to AREs in the 
3’UTR of inflammatory cytokines ultimately defines the stability or instability of 
mRNA167–169. Deregulation of mRNA regulatory mechanisms have been associated 
with autoimmune conditions and cancer170–174.
	 Furthermore, epigenetic mechanisms such as DNA methylation and histone 
modifications also regulate gene repression175 and epigenetic imprinting176, for 
instance by modulating the access of transcription factors to DNA regulatory 
elements177,178. DNA methylation is mediated by the addition of a methyl group to 
the fifth carbon of cytosine (C), forming 5-methylcytosine (5mC) catalysed by DNA 
methyltransferases (DNMTs)179,180. DNMTs comprise of 5 enzymes: DNMT1, DNMT2, 
DNMT3a, DNMT3b and DNMT3L, that play distinct roles181,182. In vertebrates, DNA 
methylation predominantly occurs in CpG dinucleotides sites (CpGs), however in 
pluripotent stem cells it has been found also non-CpG sites180,183,184.
	 One of the mechanisms that result in transcriptional suppression is accomplished 
when methyl groups interfere with the binding of transcription factors to CpG 
sequences. Methylation of gene promoter regions is associated with down-regulation 
of gene expression by altering the chromatin structure and blocking transcription 
initiation185. Recent studies have shown that environmental perturbations drive 
rapid changes on DNA methylation and gene regulation, and modulate immune 
responses178,186–188. Indeed, aberrant hyper- or hypo-methylation levels have been 
associated with autoimmunity189 and cancer190,191.
	 The potential reversibility of epigenetic marks makes them an attractive 
therapeutic target in several diseases192–194, including autoimmune conditions189,195, 
although much remains to be elucidated. Thus, exploring the transcriptional, 
post-transcriptional and epigenetic mechanisms implicated in CXCL4 immune-
modulatory effects may open new possibilities for therapeutic applications.
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Aim and Scope of the Thesis

In this thesis, I aimed to investigate the role of CXCL4 on remodelling the immune 
landscape of human monocyte-derived dendritic cells (moDCs) and the underlying 
transcriptional, post-transcriptional and epigenetic mechanisms. 
	 Firstly, in Chapter 2 we differentiated moDCs in the presence of CXCL4 and 
explored the effects of CXCL4 exposure on the morphology and phenotype of 
moDCs. By exposing moDCs and CXCL4-moDCs to a large panel of TLR agonists 
and by evaluating both the phenotype and pro-inflammatory cytokine production, 
we further investigated how CXCL4 affects TLR-mediated responses. Moreover, we 
studied how CXCL4 primes moDCs to activate autologous and Ag specific T-cells.
	 In Chapter 3, we studied the contribution of CXCL4 on the activation of Th17 
responses, either directly on CD3/CD28-activated CD4+ T-cells or indirectly via 
antigen presenting cells (APCs), such as plasmacytoid dendritic cells (pDCs), 
myeloid dendritic cells (mDCs), monocytes and B cells. Furthermore, we assessed 
the implication of our findings in a Th17-mediated disease context by studying the 
relationship of CXCL4 with Th17 cytokine levels in synovial fluid of PsA patients.
	 To further elucidate how CXCL4 reprograms moDC’s innate and adaptive immune 
responses, in Chapter 4 we performed high-throughput transcriptome sequencing 
and DNA methylation profiling on 65 paired longitudinal samples from moDCs and 
CXCL4-moDCs during differentiation (day 0, 2, 4 and 6) and TLR3-mediated stimulation 
(0, 4 and 24 hours stimulation). Besides extensively studying the downstream 
pathways affected by CXCL4 on the transcriptional and DNA methylation levels, we 
validated multiple candidate molecules modulated by CXCL4 on the protein level. We 
found an upregulation of pro-inflammatory and pro-fibrotic mediators implicated in 
diseases where CXCL4 has been implicated, such as Systemic Sclerosis. Notably by 
applying our new developed methodology (RegEnrich), we created gene regulatory 
networks based on co-expression and co-methylation patterns of clustered genes in 
distinct modules. We identified key transcriptional regulators that modulate CXCL4-
signature genes.
	 Chapter 5 reveals how the exposure of moDCs to CXCL4 affects the immunogenic 
and tolerogenic gene signature on the transcriptional and DNA methylation level in 
moDCs.
	 In Chapter 6, we investigated the transcriptional and post-transcriptional 
mechanisms underlying the augmented pro-inflammatory cytokine production in 
TLR3-stimulated CXCL4-moDCs. We analyzed the expression of primary and mature 
transcripts of inflammatory cytokines and performed mRNA decay experiments to 
investigate whether CXCL4 regulates these cytokines on the mRNA stability level. 
Additionally, we studied the implication of AU-rich element binding proteins (ARE-
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BPs) on mRNA stability regulation by CXCL4.  Finally, we explored the upstream 
regulation of the ARE-BP TTP by MAPK-p38 signaling and the consequences of TTP 
knockdown on inflammatory cytokine production in moDCs. 
	 Finally, the findings of all the research performed in this thesis are summarized 
and discussed in Chapter 7.
	 Overall, the work performed throughout this thesis provides new insights on the 
impact of CXCL4 in priming immunogenic innate and adaptive immune responses 
in moDCs, but also in promoting pro-inflammatory and pro-fibrotic responses that 
culminate in autoimmune conditions.
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Abstract
Chemokines have been shown to play immune-modulatory functions unrelated to 
steering cell migration. CXCL4 is a chemokine abundantly produced by activated 
platelets and immune cells. Increased levels of circulating CXCL4 are associated with 
immune-mediated conditions, including systemic sclerosis. Considering the central 
role of dendritic cells (DCs) in immune activation, in this article we addressed the 
effect of CXCL4 on the phenotype and function of monocyte-derived DCs (moDCs). 
To this end, we compared innate and adaptive immune responses of moDCs with 
those that were differentiated in the presence of CXCL4. Already prior to TLR- or 
Ag-specific stimulation, CXCL4-moDCs displayed a more matured phenotype. We 
found that CXCL4 exposure can sensitize moDCs for TLR-ligand responsiveness, as 
illustrated by a dramatic upregulation of CD83, CD86, and MHC class I in response 
to TLR3 and TLR7/8-agonists. Also, we observed a markedly increased secretion of 
IL-12 and TNF-α by CXCL4-moDCs exclusively upon stimulation with polyinosinic-
polycytidylic acid, R848, and CL075 ligands. Next, we analyzed the effect of CXCL4 
in modulating DC-mediated T cell activation. CXCL4-moDCs strongly potentiated 
proliferation of autologous CD4+ T cells and CD8+ T cells and production of IFN-γ 
and IL-4, in an Ag-independent manner. Although the internalization of Ag was 
comparable to that of moDCs, Ag processing by CXCL4-moDCs was impaired. Yet, 
these cells were more potent at stimulating Ag-specific CD8+ T cell responses. 
Together our data support that increased levels of circulating CXCL4 may contribute 
to immune dysregulation through the modulation of DC differentiation.

Abbreviations used in this article: CL075, thiazoloquinoline; CTV, CellTrace Violet; DC, dendritic cell; HV, 
healthy volunteer; MFI, median fluorescence intensity; MHC-I, MHC class I; moDC, monocyte-derived 
DC; O/N, overnight; PAMP, pathogen-associated molecular pattern; poly(I:C), polyinosinic-polycytidylic 
acid; R848, resiquimod; SSc, systemic sclerosis.
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Introduction
Stored in α-granules of platelets and released upon platelet activation, CXCL4 is a 
7.8 kDa chemokine1,2. CXCL4 is also produced and released by various immune cells 
including mast cells3, dendritic cells (DCs)4,5, monocytes6 and activated T-cells7. It 
has been described that CXCL4 plays a role in several physiological processes8–10. 
However, increased levels of CXCL4 have been implicated in pathological conditions 
such as cancer11 and infectious12,13 and inflammatory diseases14–19. Indeed, a 
strong correlation was found between elevated CXCL4 levels in the circulation 
and the clinical features of patients with systemic sclerosis (SSc)5. Monocytes and 
professional APCs are essential players in both innate defense and in the initiation of 
adaptive immune responses, thereby contributing to both immune activation and 
the maintenance of immune peripheral tolerance20,21. Accordingly, upon detection 
of pathogen (PAMPs) or danger-associated molecular patterns, DCs undergo further 
maturation into potent APCs now able to prime and induce the clonal expansion of 
antigen (Ag)-specific T-cells22.
	 The imbalance of homeostasis because of the presence of inflammatory mediators 
such as CXCL4 lead to the modulation of phenotype and function of immune 
cells23–32. In monocytes, for instance, CXCL4 not only functions as a chemoattractant 
mediator but also promotes survival the production of TNF-α, release of reactive 
oxygen species (ROS) and differentiation into macrophage-like phenotype cells26,31,33. 
Gleissner et al.34 found that the exposure of monocytes-derived macrophages to 
CXCL4 induces unique transcriptomic changes, in comparison with M1 and M2 
macrophages, and named these M4 macrophages. Genes involved in inflammatory 
responses, Ag presentation and lipid metabolism were overexpressed in M4 
macrophages. In addition, monocytes exposed to CXCL4 and IL-4 alone or in the 
presence of GM-CSF for 6 d were shown to result in a functionally distinct APC24,25,31.
	 To date, it is not clear how CXCL4 might affect DC function, and thus influence 
innate and adaptive immune responses. In this study, we hypothesized that 
CXCL4 may modulate the phenotype and potentiate the innate function of DCs, as 
triggered by recognition of danger-associated molecular patterns and PAMPs. Such 
recognition occurs via germline-encoded immune receptors including TLRs, which 
represent the frontline of innate defense. Indeed, dysfunction of TLR-mediated 
responses has been associated with immune and nonimmune cell reprograming35,36 
and several autoimmune diseases such as atherosclerosis37, rheumatoid arthritis 
(RA)38, psoriasis39 and SSc40–45. Notably, CXCL4 has been described as being involved 
in the same set of diseases5,14,17,19. 
	 We found that CXCL4 reprograms monocytes as they differentiate into DCs, 
imprinting a more mature phenotype and an augmented responsiveness to TLR 
ligands: CXCL4-moDCs showed a dramatic increase in IL-12 and TNF-α production 
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upon stimulation with TLR3, TLR7/8 and TLR8 ligands. Moreover, CXCL4-moDCs were 
more potent at inducing the proliferation of polyclonal CD4+ T and CD8+ T cells and 
cytokine production. Finally, Ag processing was impaired in CXCL4-moDCs, as they 
exhibited a superior ability to cross-present endocytosed Ags to HCMV-specific CD8+ 
T-cells. Altogether, here we reveal novel functions of CXCL4 both in innate as well as 
adaptive immune responses.

Materials and Methods 
Monocyte isolation
Blood from healthy volunteers (HV) was obtained following institutional ethical 
approval. PBMCs were isolated from heparinized venous blood by density-gradient 
centrifugation over Ficoll Paque Plus (GE Healthcare). Fresh monocytes were isolated 
by Ab-based positive separation according to the manufacturer’s protocol, using 
anti-CD14 magnetic beads and auto-MACS assisted cell sorting (Miltenyi Biotec). 
Purity of isolated monocytes was > 95% for all the independent samples. Negative 
fractions following monocyte isolation consisting of PBLs were cryopreserved in FCS 
containing 20% (v/v) DMSO and thawed after 6 d to be used for CD3+ T-cell isolation 
and autologous co-culture experiments.

MoDC differentiation
Monocytes were cultured at a density of 1 x 106 cells/ml using complete medium: 
RPMI 1640 with GlutaMAX (Life Technologies), supplemented with 10% (v/v) heat-
inactivated FCS (Biowest) and 1% (v/v) antibiotics (penicillin and streptomycin) 
(both from Life Technologies). To generate moDCs, recombinant human IL-4 (500 U/
ml; R&D Systems) and GM-CSF (800 U/ml; R&D Systems) were added to the medium, 
in the presence or absence of recombinant human CXCL4 (10 μg/ml; PeproTech). 
The MoDCs were differentiated for 6 d at 37°C in the presence of 5% CO2. At day 3, 
medium supplemented with the same concentration of IL-4, GM-CSF and CXCL4 was 
added. 

Confocal microscopy 
Nunc Lab-Tek II chamber slides (Thermo Scientific) were pre-coated with 1% (w/v) 
Alcian blue 8GX (Klinipath) in PBS for 30 min at 37°C, washed with PBS and air-dried 
inside culture hood prior to moDC differentiation culture (as described in the MoDC 
differentiation section). On day 6, the chamber slide was spun for 2 min at 500 x 
g. Next, 75% of the culture medium was removed, and cells were incubated with 
500 μl of the Fixation/Permeabilization solution (eBioscience) for 30 min at room 
temperature (RT). Fixed cells were washed twice with Permeabilization buffer 



35

CXCL4 exposure alters immune responses by DCs

2

(eBioscience) and incubated with phalloidin-labeled FITC (0.5 mg/ml; ENZO) and 
Hoechst 33342 (1 µM; Invitrogen) in Permeabilization buffer for 30 min in dark 
(RT). Afterwards, cells were washed once with Permeabilization buffer and the last 
wash with 1% (w/v) BSA and 0.1% (v/v) sodium azide (NaN3; Sigma-Aldrich) in cold 
PBS (designated here as FACS buffer). At last, chambers were removed and dried 
slides were mounted in Mowiol (Sigma-Aldrich) and coverslipped. Slides were left 
at 4°C (O/N) until the measurement. Acquisition of imaging data was performed 
on a Zen2009 LSM 710 (Zeiss) confocal microscope. To determine the cell area 
and perimeter, confocal images were obtained with the x63 1.40 oil objective and 
analyzed using ImageJ software.

TLR stimulation 
A total of 50 x 103 immature moDCs (day 6 of differentiation) were plated in a 96-well 
flat-bottom plate (Thermo Scientific) in medium (0.5 x 106 moDCs/ml) and rested O/N. 
Next, cells were left unstimulated or stimulated for 24 h at 37°C with the following 
TLR ligands: Pam3CSK4 (5 µg/ml), polyinosinic-polycytidylic acid [poly(I:C); 25 µg/
ml], LPS (100 µg/ml), flagellin (2 µg/ml), resiquimod (R848; 1 µg/ml), loxoribine (500 
µM), imiquimod (R837; 3 µg/ml), thiazoloquinoline (CL075; 0.3 µg/ml), and CpG-B 
(ODN684; 5 μM), all purchased from InvivoGen. Surface expression of maturation 
markers and MHC molecules on moDCs after TLR stimulation was measured by flow 
cytometry. Cell-free supernatants were stored at -20°C for measurement of cytokine 
levels by Luminex technology, as described before 46 at the MultiPlex Core Facility of 
the Laboratory of Translational Immunology, University Medical Center of Utrecht. 

Stimulation of polyclonal T-cells 
One day prior to moDC coculture with polyclonal T cells, 50 μl of anti-CD3 Ab (0.01 
μg/ml) in PBS (clone OKT3; eBioscience) was immobilized to the surface of 96-well 
round-bottom plate (Thermo Scientific) at 37°C O/N. Unbound Ab was removed by 
washing the wells three times with PBS. Autologous CD3+ T-cells were purified by 
positive selection according to the manufacturer’s protocol using anti-CD3 magnetic 
beads and autoMACS-assisted cell sorting (Miltenyi Biotech). Purity of CD3+ T-cells 
was >95% for all the samples. CD3+ T-cells were labeled with CellTrace Violet (CTV) 
fluorescent dye (1.5 µM; Invitrogen) and cocultured with moDCs or CXCL4-moDCs 
(1:5 ratio) in a final volume of 150 μl. After 5 d of coculture, CD4+ T and CD8+ T cell 
proliferation and cytokine production was assessed by flow cytometry. The division 
index was calculated as a measure of proliferation, following FlowJo guidelines and 
previous publications47,48.
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BSA uptake and processing 
The moDC and CXCL4-moDCs were pulsed with BSA-labeled Alexa Fluor 647 (0.1 
μg/ml, Invitrogen) or DQ-Green BSA (0.1 µg/ml), a self-quenched dye conjugate of 
BSA (Life Technologies) for 10 min at 37°C to measure specific uptake or processing, 
respectively; or at 4°C to assess non-specific cell surface binding. Cells were 
subsequently washed with cold medium and chased at 37°C for 10, 20, 40 or 100 
min or left at 4°C. Next, cells were washed twice with FACS buffer and analyzed by 
flow cytometry. Ag uptake and processing were determined by analysis of median 
fluorescence intensity (MFI) for Alexa Fluor 647- or FITC-expressing cells. MFI 
measured at starting point t = 0 (0 min chase) was established as 100%. To calculate 
the percentage of BSA uptake or processing, the MFI for the time points: 10, 20, 40 
and 100 min of chasing were normalized to the respective t = 0.

Direct Ag presentation and cross-presentation
MoDCs from HLA-A2+ HV were differentiated as described above with or without 
CXCL4. Direct presentation of recombinant NLVPMVATV (NLV)-pp65 peptide 
(ProImmune) or cross-presentation of soluble recombinant HCMV-pp65 protein 
(Miltenyi Biotec) to HCMV-specific CD8+ T cell clones that we have generated, was 
performed as previously described49. Briefly, 50 x 103 moDCs or CXCL4-moDCs were 
loaded either with the peptide NLV-pp65 (100 - 10-3 μM) or with 30 μg/ml of the full 
protein HCMV-pp65 in 96-well round-bottom plates (on a final volume of 100 μl) 
O/N at 37°C. Where indicated, cells were pre-treated with MG132 (2 µM; Calbiochem), 
hydroxychloroquine (50 μM; Sigma), brefeldin A (2.5 µg/ml; Sigma), or DMSO (Sigma) 
as control vehicle, for 30 min before Ag loading. The next day, cells were washed 
vigorously with complete medium and cocultured with 50x103 HCMV-specific CD8+ 

T cells in the presence of GolgiStop (1/1500; BD). After 5 h of coculture, activation of 
CD8+ T cells was assessed by flow cytometry analyses.

Flow cytometry
Prior to Ab staining, moDCs were incubated with fixable viability dye eFluor780 or T 
cells with eFluor506 (eBioscience) in PBS, to allow exclusion of dead cells. After washing 
with FACS buffer, cells were treated with 10% (v/v) mouse serum (Fitzgerald) in FACS 
buffer to prevent non-specific Ag binding. MoDC sets were stained for 20 min at 4°C with 
the following anti-human fluorochrome-conjugated mAbs: CD1a (clone HI149), CD11b 
(clone ICRF44), CD205 (clone DEC-205), CD206 (clone 19.2), CD80 (clone L307.4), HLA-
DR (clone G46-6), HLA-ABC (clone G46-2.6) obtained from BD; CD14 (clone M5E2), CD1c 
(BDCA1; clone L161), CD83 (clone HB15e), CD86 (clone IT2.2) obtained from Biolegend; 
CD11c (clone 3.9) and CD40 (clone 5C3) obtained eBioscience and CD141 (BDCA3; clone 
AD5-14H12) obtained from Miltenyi or the isotype control-matched Ab. 
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	 To measure intracellular cytokine expression by polyclonal T cells after 5-d 
coculture with moDCs, cells were restimulated for 5 h with PMA (50 ng/ml; Sigma) 
and ionomycin (1 μg/ml; Sigma) in the presence of GolgiStop (1/1500, BD). After 
incubation with fixable viability dye and mouse serum, cells were stained for 20 
min with the anti-human mAbs: CD3 (UCHT1, eBioscience), CD4 (clone RPA-T4, 
eBioscience) and CD8 (clone RPA-T8, Biolegend) in FACS buffer. To analyze intracellular 
cytokine production, cells were fixed and permeabilized for 30 min using Fixation/
Permeabilization solution (eBioscience), according to the manufacturer’s instructions, 
and washed twice with Permeabilization buffer (eBioscience). Intracellular staining 
for IL-10 (clone JES3-19F1) and IL-4 (clone MP4-25D2) obtained from BD; IL-22 
(clone IL22JOP) and IFN-γ (clone 4S.B3) obtained from eBioscience; and IL-13 (clone 
JES10-5A2) obtained from BioLegend, was performed for 30 min in Permeabilization 
buffer. Finally, cells were washed twice with Permeabilization buffer, and the last 
wash with FACS buffer. Autologous CD4+ T and CD8+ T cell proliferation and cytokine 
production was measured by flow cytometry. To analyze the cytokine expression 
by HCMV-specific CD8+ T cells after coculture with pp65-loaded moDCs, we used a 
staining protocol to similar to the above. The following anti-human mAbs were used 
for extracellular staining: CD3 (clone UCHT1; Biolegend), CD8 (clone RPA-T8; BD) and 
CD107a (LAMP1; clone H4A3, BD), followed by intracellular staining of IFN-γ (clone 
4S.B4, BD) and TNF-α (clone MAB11; Sony Biotechnology). The cell acquisition of flow 
cytometry data was performed using LSR Fortessa (BD), and FlowJo software (Version 
7.6.5; Tree Star. Inc.) was used for data analyses. In all flow cytometry analyses, cell 
debris were first excluded, then CD3+CD4+ T and CD3+CD8+ T cells were gated, and 
analyzed for the expression of activation markers, or dilution of CTV in proliferation 
experiments. Data was represented as MFI or the percentage of positive cells for a 
specific cell marker, as mentioned in the figures.

Statistical analysis
Graphs and statistical analyses were performed with GraphPad Prism software 
(version 6.0). Paired t test were used to compare two groups, and one-way ANOVA 
when more than two groups were compared. In all cases, the significance was 
defined as P-value ≤ 0.05. 
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Results
CXCL4 exposure alters differentiation of moDCs
To examine the contribution of CXCL4 to moDC differentiation, we generated moDCs for 
6 d, with our without CXCL4 (Fig. 1A). We observed that CXCL4-treated moDC formed 
plate-adherent cell aggregates, with very heterogeneous morphology and extended 
dendrites, in contrast to moDCs  (Fig. 1B). As a quantitative measurement to determine 
the cell size and formation of branched protrusions we analyzed the area and perimeter 
of the cells based on the expression f-actin. We observed that moDCs exposed to CXCL4 
display a bigger perimeter (Fig. 1C) and area (Fig. 1D).
	 In addition, CXCL4-moDCs showed downregulation of the lipid-presenting molecules 
CD1a and CD1c, whereas the integrin CD11b involved in cell adhesion and migration, 
myeloid marker CD141, endocytic receptor CD205, maturation markers CD86 and CD83, 
MHC class I (MHC-I) and class II (MHC-II) molecules were expressed at higher levels 
(Fig. 1C,D). No differences were observed for the lineage marker CD11c, the mannose 
receptor CD206, the costimulatory molecules CD80 and CD40, and macrophage 
markers CD14, CD64, and CD163 (data not shown). These results demonstrate that 
CXCL4 exposure alters the differentiation and maturation of moDCs, suggesting that 
CXCL4-moDCs might perform differently on innate and adaptive immune responses in 
comparison with moDCs.

CXCL4 enhances TLR-mediated responses of moDCs
As DCs from SSc patients have been shown to display augmented response to TLR 
agonists, we next explored whether this could be attributed to the increased levels 
of CXCL4 observed in these patients41.  With this purpose, moDCs and CXCL4-moDCs 
were challenged for 24 h with TLR agonists or left unstimulated (Fig. 2A). Stimulation 

Figure 1. CXCL4 exposure alters moDC morphology and phenotype. (A) MoDCs from HVs 
were differentiated for 6 d with IL-4 and GM-CSF (moDCs) or in the additional presence of CXCL4 
(CXCL4-moDCs). (B) Fluorescence-confocal microscopy analyses of representative images from 
the morphology of moDCs and CXCL4-moDCs. Top panels show images acquired with original 
magnification ×40; lower panels, original magnification ×63 1.40 oil objective. Cells were stained 
with phalloidin, which binds to f-actin (green), and Hoechst 33,342 to show the nuclear DNA (blue). 
(C) Quantification of cell perimeter and (D) area on day 6 of differentiation by confocal microscopy 
was determined for three HV, using 75 cells per condition for each HV. Data are shown as mean and 
SD. (E) Representative flow cytometry histograms for one experiment, in which black lines show 
the expression of several APC and maturation markers, as well as HLA-ABC and HLA-DR by moDCs 
(left panel) and CXCL4-moDCs (right panel). Gray-shaded histograms show the respective isotype 
controls. (F) Flow cytometry analyses showing the MFI expression for several markers by moDCs 
and CXCL4-moDCs (10 HVs). Boxes show upper and lower quartiles (interquartile range), with the 
horizontal line within the boxes indicating the median. Whiskers represent the highest and lowest 
values. Paired t test. **P<0.01, ***P<0.001.
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with poly(I:C) (TLR3), LPS (TLR4) and R848 (TLR7/8) resulted in upregulation of co-
stimulatory and MHC molecules on both moDCs as well as CXCL4-moDCs (Fig. 2B). 
However, these TLR ligands induced upregulation of CD86, CD83 and MHC-I expression 
to a greater extent on CXCL4-moDCs compared to moDCs (Fig. 2B). We compared the 
ability of CXCL4-moDCs to produce proinflammatory cytokines in response to a panel 
of nine different TLR ligands. Stimulation with poly(I:C),  R848, and CL075 resulted in 
a markedly higher production of IL-12 (an average 64-fold, 5-fold and 6-fold increase, 
respectively) and TNF-α (an average 15-fold, 7-fold and 6-fold increase, respectively) 
by CXCL4-moDCs as compared with moDCs. Stimulation with Pam3CSK4 (TLR2), 
LPS, flagellin (TLR5), loxoribine or imiquimod (both TLR7) did not result in significant 
differences on IL-12 and TNF-α production (Fig. 2C,D). Altogether, these results point 
towards CXCL4 as a modulator of TLR3 and TLR8-mediated innate responses in moDCs.

CXCL4-moDCs are strong inducers of CD4+ T and CD8+ T cell responses
DCs are crucial for the initiation of T cell responses; thus they function as a bridge 
between the innate and adaptive immune system. To evaluate if CXCL4-moDCs 
were more potent in activation of T cell responses, immature moDCs and CXCL4-
moDCs were cocultured with autologous CD3+ T cells. CXCL4 strongly potentiated 
the proliferation of CD4+ T cells and CD8+ T cells (Fig. 3A,B), in this study determined 
as division index (Fig. 3C). In addition, the frequencies of CD4+IFN-γ+ (Fig. 3D,E) as 
well as CD8+IFN-γ+ and CD8+IL-4+ (Fig. 3F,G) expressing T-cells were significantly 
higher after coculture with CXCL4-moDC, in comparison to conventional moDCs. 
No differences were observed for CD8+IL-10+, CD8+IL-22+ and CD8+IL-13+ T cells (data 
not shown). Based on these results, we propose CXCL4-moDCs as potent inducers of 
both CD4+ T cell and CD8+ T cell responses in an Ag-independent manner.

CXCL4-moDCs display impaired Ag processing
To study whether CXCL4 could affect Ag presentation, we analyzed the ability of 
moDCs to uptake and process Ag, using BSA as a model. Uptake of Alexa Fluor 647 
BSA by both moDC and CXCL4-moDCs was comparable over the 100 min duration 
of the pulse-chase experiment, with the greatest increase on uptake seen at 40 min 
of Ag exposure (Fig. 4A). Moreover, CXCL4-moDCs displayed impaired processing 
of Ag (DQ-BSA) compared to moDCs at 10, 20 and 40 minutes of chase. The 
highest Ag processing level was observed at the time point 20 min (Fig. 4B). Taken 
together, whereas uptake of Ag by moDCs is not affected by the exposure to CXCL4, 
exogenous Ag, when taken up by early stages of maturated DCs might be retained 
intracellularly longer, thus kept preserved for slower degradation, implying that 
CXCL4 might modulate Ag cross-presentation capacities of moDCs.
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Figure 2. CXCL4-moDCs are more sensitized to TLR reactivity. (A) After O/N resting with new complete 
medium without cytokines, both day 7 moDCs and CXCL4-moDCs were either left unstimulated or 
stimulated with TLR ligands for 24 h. Phenotype was analyzed by flow cytometry, and supernatants were 
used to measure cytokine levels by a Luminex-based assay. (B) Flow cytometry analyses on day 8 show the 
MFI of DC maturation markers as well as HLA-ABC and HLA-DR expressed by both moDCs and CXCL4-moDCs 
upon stimulation with poly(I:C), LPS, and R848 (data are shown for eight HVs). Boxes show upper and lower 
quartiles (interquartile range). Horizontal line within the boxes indicate median. Whiskers represent the 
highest and lowest values. (C) Gray scale profile shows for five representative HVs the concentration levels 
of IL-12 and TNF-α produced by moDCs and CXCL4-moDCs upon stimulation with a panel of TLR ligands. 
Concentration of cytokines is shown in log10 scale. (D) Production of IL-12 and TNF-α by moDCs and CXCL4-
moDCs upon stimulation with poly(I:C), LPS, R848, and CL075 is shown for each paired individual sample. 
Each symbol represents an individual donor; lines connect the same donor. Results were obtained from a 
total of 12 HVs. Paired t test. * P<0.05, **P<0.01, *** P<0.001. lig., ligand; Med., medium.
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CXCL4 potentiates pp65 presentation and cross-presentation 
CXCL4-moDCs display increased expression of MHC-I, and our data proposes that 
these cells process Ag more efficiently, suggested by the longer Ag preservation on 
processing compartments. To investigate whether CXCL4-moDCs may be superior 
on direct Ag presentation or cross-presentation, we analyzed the response of 
HCMV-specific CD8+ T cell clones to their cognate peptide (NLV-pp65 or HCMV-pp65 
protein after processed into peptides), either pulsed or endogenously processed by 
the moDCs. The moDCs and CXCL4-moDCs were first loaded with NLV-pp65 peptide 
or HCMV-pp65 protein and then co-cultured with HCMV-specific CD8+ T cells  
(Fig. 5A). CD8+ T cells in the absence of NLV-pp65 or HCMV-pp65 protein did not 
produce IFN-γ and TNFα (Fig. 5B-D). To control for differences on MHC-I expression, 
we assessed direct presentation of NLV-pp65 peptide. We observed a trend for it to 
be increased, but not significantly so, upon CD8+ T cell activation, which showed as 
frequency of CD8+IFN-γ+ T cells and CD8+ TNFα+ T cells after presentation of NLV-
pp65 (100 – 10-3 µM) by CXCL4-moDCs (Fig. 5B,C). Strikingly, CXCL4-moDCs induced 
potent activation of HCMV-specific CD8+ T cell responses after cross-presentation 
of HCMV-pp65 protein, measured as the production of IFN-γ and TNF-α (Fig. 5D-F).
Next, to better understand the effects of CXCL4 on Ag processing pathways, 
moDCs were treated with proteasome or endosomal inhibitors prior to Ag loading. 
The moDCs and CXCL4-moDCs conserved their ability to direct present NLV-pp65 
peptide and stimulate CD8+ T-cells after treatment with the inhibitors (data not 
shown). Treated moDCs and CXCL4-moDCs with proteasome (MG132) or endosomal 
(hydroxychloroquine) inhibitors displayed a reduced ability to stimulate HCMV-
specific CD8+ T cells (Fig. 5G). Nevertheless, CXCL4-moDCs were still superior in 
activating CD8+ T cells, despite the inhibition of processing in both compartments. 
Blocking the transport of newly synthesized molecules from the endoplasmic 
reticulum (ER) to the golgi with brefeldin A completely abrogated Ag cross-
presentation by moDCs and CXCL4-moDCs (Fig. 5E). Overall, these results indicate 
that CXCL4-moDCs potentiate the activation of Ag-specific CD8+ T cells.
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Figure 3. CXCL4-moDCs are more potent activators of polyclonal CD4+ and CD8+ T cells. (A) Flow 
cytometry dot plots show the expression of diluted CTV by live CD3+CD4+ T cells (upper panel) and 
CD3+CD8+ T cells (lower panel), and represent cell proliferation after 5-d coculture with autologous 
moDCs or CXCL4-moDCs. Outlined areas indicate the percentage of T cells gated accordingly to increasing 
dilution of CTV, representing subsequent generations of divided cells. (B) Representative histograms of 
one experiment show CTV expression by CD4+ T cells (upper graph) and CD8+ T cells (lower graph), with 
each pick indicating one subsequent generation of proliferating cells. (C) Proliferation was analyzed as 
division index of CD4+ T cells (upper graph) and CD8+ T cells (lower graph) after coculture for eight HVs. 
(D) Flow cytometry dot plots show the production of IFN-γ and IL-4 by CD4+ T cells and (F) CD8+ T cells 
after coculture with moDCs or CXCL4-moDCs, for one representative experiment. Numbers indicate the 
percentage of cells expressing IFN-γ+ (upper panel) or IL-4+ (lower panel). (E) IFN-γ– and IL-4–producing 
CD4+ T cells and (G) CD8+ T cells were measured for eight HVs. Symbols represent each donor, and the 
same donor is connected with lines. Paired t test. * P<0.05, ** P<0.01.
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Figure 4. CXCL4-moDCs exhibit 
comparable rates of Ag uptake but 
restrained processing capacity. 
Immature moDCs and CXCL4-moDCs 
were pulsed with BSA conjugates for 
10 min and chased for 10, 20, 40, or 100 
min at 37°C. (A) Uptake of Alexa Fluor 
647–conjugated BSA and (B) processing 
of DQ-BSA were followed over chasing 
by flow cytometry. Results are shown as 
percentage of increase normalized to 
the MFI obtained at the starting point 
(0 min). Mean and SDs from six HVs are 
shown. One-way ANOVA. * P<0.05.
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Figure 5. Stimulation of HCMV-specific CD8+ T cell responses is potentiated by prior exposure of 
moDCs to CXCL4. (A) Immature HLA-A2+ moDCs and CXCL4 moDCs on day 6 of differentiation were loaded 
O/N with NLV-pp65 peptide or HCMV-pp65 protein and cocultured with HCMV-pp65–specific CD8+ T cells 
for 5 h in the presence of GolgiStop. The moDCs not loaded with pp65 were used as a negative control. 
Activation of HCMV-specific CD8+ T cells was assessed by flow cytometry. (B) Shown are the percentages of 
HCMV-specific CD8+IFN-γ+ T cells and (C) CD8+TNF-α+ T cells after coculture with moDCs or CXCL4-moDCs 
loaded with several concentrations of NLV-pp65 peptide. Data are shown as mean and SD. (D) Dot plots 
illustrate for one representative experiment the production of IFN-γ (upper panel) and TNF-α (lower panel) 
by HCMV-specific CD8+ T cells after 5-h coculture with moDCs or CXCL4-moDCs loaded or not with HCMV-
pp65 protein. Numbers indicate the percentages of CD8+IFN-γ+ T cells or CD8+TNF-α+ T cells, respectively. 
(E) IFN-γ and (F) TNF-α production by HCMV-specific CD8+ T cells was assessed after cross-presentation 
for 10 HV. Symbols represent each donor, and the same donor is linked with lines. (G) MoDCs and CXCL4-
moDCs were pretreated with hydroxychloroquine or MG132 or brefeldin A for 30 min before loading 
with HCMV-pp65. DMSO was used as vehicle control. Box plots show the percentage of CD8+IFN-γ+ T cells 
after cross-presentation of HCMV-pp65. Boxes show upper and lower quartiles (interquartile range), with 
horizontal lines within the boxes displaying the median. Whiskers represent the highest and lowest values. 
All experiments were measured for eight HVs. Paired t test. * P<0.05, ** P<0.01.
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Discussion 
Inflammatory mediators such as cytokines, chemokines or PAMPs are found in 
circulation and localized at affected tissues from patients suffering from autoimmune 
diseases or infections, driving inflammation and modulating immune responses. 
CXCL4, a chemokine involved in several physiological processes has been implicated 
in many diseases, and was recently proposed as a biomarker in SSc5,17,50. Indeed, 
evidences of its immune-modulatory function on both immune and non-immune 
cells have emerged in the last decade.
	 In the current study, we explored the effects of CXCL4 on moDC differentiation 
and on the initiation of innate and adaptive immune responses. 
	 We showed by confocal microcopy images, that in comparison to conventional 
differentiated moDCs, most of the CXCL4-moDCs are very heterogeneous, are bigger, 
and display branched protrusions. These observations suggest that CXCL4 may have 
an effect on the remodeling of cytoskeleton components, such as f-actin. As a result, 
CXCL4-moDCs might perform differently in important APC functions—for instance 
on cell mobility and migration but in cell-cell contact, as well. 
	 Besides the effects on moDC morphology, we also observed that CXCL4 exposure 
results in downregulation of the lipid-presenting molecules CD1a and CD1c. On 
the contrary, CD141, CD11b, CD205, maturation markers and MHC molecules were 
upregulated on CXCL4-moDCs. Partially, these effects were described in previous 
studies, in which different approaches were used24,25,31. To our knowledge, this is the 
first study to describe that CXCL4 sensitizes moDCs to triggering with several TLR 
ligands. Expression of maturation and MHC-I molecules were additionally upregulated 
on CXCL4-moDCs, specifically when triggered with poly(I:C) and R848. Moreover, 
we also found that CXCL4-moDCs are more potent producers of pro-inflammatory 
cytokines upon triggering with the poly(I:C), R848 and CL075, compared with moDCs. 
Proliferation and cytokine production by autologous CD4+ T cells and CD8+ T cells were 
potentiated by CXCL4-moDCs, in an Ag-independent manner. In a previous study by 
Xia et al.24, opposite effects were shown on the activation of CD4+ T cell responses, in 
a very distinct allogeneic culture system. We expanded these findings, showing that 
CXCL4-moDCs displayed impaired Ag processing in comparison with moDCs, and 
suggesting that CXCL4 might affect the functional ability of cells to perform Ag cross-
presentation. CXCL4-moDCs loaded with HCMV-pp65 were able to potentiate the 
activation of HCMV-specific CD8+ T cells, in contrast to moDCs. These results suggest 
that CXCL4-moDCs display improved ability to activate adaptive immune responses.
	 When molecules resulting from tissue damage and inflammation are sensed 
by innate recognition receptors such as TLRs, IFN signaling pathway is activated. 
Accumulating evidences from both human and mouse studies implicate TLR and 
type I IFN signaling in the pathogenesis of SSc and may be one of the causes leading 
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to and sustaining autoimmunity and fibrosis5,36,40,41,43,44,51. On the basis of this, we 
hypothesized that CXCL4 could alter TLR-mediated responses and contribute to 
immune-mediated diseases such as SSc. In this study, we found that CXCL4 exposure 
enhances TLR3- and TLR8-mediated moDC maturation and pro-inflammatory 
cytokine production. 
	 Several studies have suggested that activation of TLR responses, like TLR3 
(Myd88-independent) and MyD88 signaling on APCs can improve cross-priming 
and Ag cross-presentation52–55. Therefore, our findings showing that CXCL4 exposure 
modulates TLR signaling may point towards a contribution of these innate effects on 
the adaptive immune responses.
	 In addition, the greater stimulating signals provided by the CXCL4-moDCs 
and T cells during coculture, such as: TCR signaling, CD40-CD40L and other co-
stimulating signals, as well as cytokines released by DCs, most likely contribute 
to the potentiation of  T-cell responses by CXCL4-moDCs56,57. We also found that 
CXCL4 exposure upregulated the expression of CD11b. Previous studies showed 
that CD11high cells, besides expressing a mature phenotype, are potent chemokine-
producing cells, both in homeostasis and after stimulation with airway Ag or TLR 
ligands, and efficiently prime T-cell responses58,59. 
	 Internalization, processing and presentation of Ag or dangerous molecules 
resulting from dying cells by DCs as peptide/MHC complexes is critical to the 
priming of T-cells against tumors, virus infections and inflammation. In our 
experimental setting, several molecules involved on these adaptive mechanisms 
were upregulated on CXCL4-moDC. For instance, we found upregulation of CD141 
and CD205 expression on CXCL4-moDCs, in comparison to moDCs. DCs expressing 
these molecules were described to efficiently uptake Ags or molecules derived from 
dying cells, process, and cross-present via peptide-loaded MHC molecules60–65. Of 
note, CD205 plays a crucial role in these processes as endocytic or non-endocytic 
receptor on both immature and mature cells66. These features also most likely 
facilitate the efficient activation of Ag-specific CD8+ T-cell responses.
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Although it has been described that micropinocytosis is downregulated in mature 
DCs, the capacity to capture Ag by moDCs and CXCL4-moDCs was not affected, as 
seen in other studies67,68. We propose that due to the mature phenotype of CXCL4-
moDCs and the capacity to store Ag for prolonged time, these cells may more 
efficiently process Ag for continuous supply to MHC-I, as well as promote the stability 
of these molecules, leading to potentiation of cross-presentation capacities69–71. In 
addition, it was described that increase of immunoproteasome subunit expression 
during DC maturation72 and modifications of proteasome and transporter-associated 
with Ag processing (TAP) activities can promote the presentation of peptide/MHC-I 
complexes73,74. We hypothesize that these pathways may be more activated in 
CXCL4-moDCs, due to their maturated phenotype, thus contributing also to higher 
ability for the activation of Ag-specific CD8+ T-cells. Attempts to understand the 
contribution of endosomal and proteasome compartments for Ag processing by 
CXCL4-moDCs were confounded with the reduction to the same extent of CD8+ 
T-cell activation when moDCs and CXCL4-moDCs were treated with MG132 and 
hydroxychloroquine. Clarification of how CXCL4 impacts Ag processing on early 
or late endosomes, lysosomes and proteasome compartments requires further 
investigation since these pathways are crucial for the effective cross-presentation 
of exogenous Ag to CD8+ T-cells and activation of adaptive immune responses75. 
Further research could make use of more specific inhibitors on cross-presentation 
assays, perhaps including selective immunoproteasome inhibitors76,77. 
	 Although the sensitization of DCs by CXCL4 might improve responses against 
dangerous molecules resulting from dying cells and pathogens, and efficient 
priming of T-cells contributes to protection against infections and tumors, on the 
other side, the homeostatic balance of these immune responses have a critical role 
in the maintenance of self-tolerance 78,79.
	 Taken together, our findings corroborate and expand upon earlier studies 
showing that increased circulating levels of CXCL4 modulates inflammatory immune 
responses 5,24–27,29,32. 
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Abstract

CXCL4 regulates multiple facets of the immune response and is highly upregulated 
in various Th17-associated rheumatic diseases. However, whether CXCL4 plays a 
direct role in the induction of IL-17 production by human CD4+ T cells is currently 
unclear. Here, we demonstrated that CXCL4 induced human CD4+ T cells to secrete 
IL-17 that co-expressed IFNγ and IL-22, and differentiated naïve CD4+ T cells to 
become Th17-cytokine producing cells. In a co-culture system of human CD4+ T cells 
with monocytes or myeloid dendritic cells, CXCL4 induced IL-17 production upon 
triggering by superantigen. Moreover, when monocyte-derived dendritic cells were 
differentiated in the presence of CXCL4, they orchestrated increased levels of IL-17, 
IFNγ, and proliferation by CD4+ T cells. Furthermore, the CXCL4 levels in synovial 
fluid from psoriatic arthritis patients strongly correlated with IL-17 and IL-22 levels. 
A similar response to CXCL4 of enhanced IL-17 production by CD4+ T cells was also 
observed in patients with psoriatic arthritis. Altogether, we demonstrate that CXCL4 
boosts pro-inflammatory cytokine production especially IL-17 by human CD4+ 
T cells, either by acting directly or indirectly via myeloid antigen presenting cells, 
implicating a role for CXCL4 in PsA pathology.
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CD4 T

Graphical abstract

CXCL4 is highly increased in autoimmune and inflammatory 
disorders. Here we show that CXCL4 directs activated human CD4 
T cells toward Th17 cells, by acting directly or indirectly via antigen 
presenting cells, in healthy and psoriatic arthritis patients. Our 
findings implicate a novel role for CXCL4 as a Th17 driver.
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Introduction

CD4+ T cells orchestrate immune responses in physiological and pathological 
conditions by secreting a wide array of cytokines. To gain effector functions, CD4+ 
T cells require the engagement of T cell receptor and costimulatory molecules, in 
the presence of specific cytokines and chemokines, resulting in distinct subsets of 
T helper cells (Th). The interferon gamma (IFNγ)-secreting type 1 cells (Th1) and 
IL-4/IL-5/IL-13-producing type 2 cells (Th2) form the classical subsets of CD4+ T 
cells, that have been expanded by discoveries of other T helper cells, such as the 
IL-17-secreting type 17 cells (Th17 cells)1. Characterized by expression of IL-17, IL-
21, IL-22 and other pro-inflammatory mediators, Th17 cells are potent inducers 
of immune responses needed for pathogen clearance, but are also pivotal in the 
development of autoimmunity. Psoriasis (Pso), psoriatic arthritis (PsA), systemic 
lupus erythematosus, rheumatoid arthritis, and systemic sclerosis, are amongst the 
diseases where IL-17 involvement in the pathogenesis is evident2–6. In PsA, IL-17 
producing cells accumulate in skin lesions and synovial fluid and play a destructive 
role by inducing tissue inflammation and bone erosion7–9. Therefore, it is important 
to understand the key upstream drivers of IL-17 activation in PsA.
	 CXCL4, previously known as platelet factor 4 (PF4), is an immunomodulatory 
chemokine produced by multiple immune cells that can target virtually all cells in 
the vasculature10. Besides the crucial role of CXCL4 in maintaining homeostasis, it 
has been implicated in many inflammatory conditions11. We and others reported 
elevated levels of CXCL4 in various Th17-associated rheumatic diseases12–16, yet the 
role of CXCL4 in driving the Th17 pathway is largely unexplored. While it has been 
indicated previously that blocking CXCL4 in human platelet-CD4+ T cells co-cultures 
led to a reduction of IL-17 production17,18, direct effects of CXCL4 on Th17 responses 
have never been studied. Also, these findings of CXCL4 promoting Th17 activity 
were not supported by mouse studies19,20. 
	 Here we sought to investigate whether CXCL4 contributed to Th17 activation in 
human CD4+ T cells and by which mechanisms it acted, directly on CD4+ T cells or 
indirectly via antigen presenting cells (APCs). To support these findings, we went on 
to assess whether CXCL4 was also related to Th17 cytokines in a disease setting-in 
the inflamed joints of patients with PsA, a prototypical Th17 mediated disease.  
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Results

CXCL4 increases IL-17 producing cells in CD3/CD28-activated  
CD4+ T cells
To investigate CXCL4 effect on T helper cell responses, CD4+ T cells isolated from 
peripheral blood of healthy individuals were stimulated with α-CD3/CD28 in the 
absence or presence of CXCL4. CXCL4 significantly increased IL-17 production 
by CD4+ T cells as compared to CD3/CD28 stimulation alone (Fig. 1A,B). This was 
supported by de novo synthesis of IL17A mRNA in CD4+ T cells upon CXCL4 treatment 
(Fig. S1 in Supporting Information). CXCL4 did not significantly alter the levels of 
other T helper cytokines (Fig. 1C, Fig. S2A in Supporting Information) nor did it affect 
proliferation (Fig. S3A in Supporting Information). In contrast, CXCL4 treatment 
induced co-expression of IFNγ and IL-22 in IL-17 positive cells (Fig. 1D,E). Therefore, 
our data indicates that CXCL4 directly induces human CD4+ T cells to produce IL-17 
in co-expression with other pro-inflammatory cytokines such as IFNγ and IL-22.
	 To further dissect CXCL4 effect on Th17 differentiation, we purified naïve CD4+ T 
cells from peripheral blood of healthy individuals, and stimulated them with α-CD3/
CD28 in the absence or presence of CXCL4. Similar to bulk CD4+ T cells, CXCL4-
treated naïve CD4+ T cells showed an increased IL-17 production as compared to 
CD3/CD28 stimulation alone (Fig. 2A,B). CXCL4 did not change the levels of other 
T helper cytokines (Fig. 2C), however CXCL4 elevated the ratio of IL-17+ IL-22+ 
expressing cells (Fig. 2D). Thus, naïve CD4+ T cells preferentially differentiate into 
Th17 cells when exposed to CXCL4.

CXCL4 induces IL-17 production by CD4+ T cells when co-cultured with 
myeloid antigen-presenting cells
Next we addressed whether CXCL4-induced IL-17 induction was APCs-dependent. 
For this purpose, human CD4+ T cells were co-cultured with antigen-presenting 
cells loaded with superantigen SEB. In an autologous co-culture of monocytes and 
CD4+ T cells, we found that CXCL4 increased the secretion of IL-17 as compared 
to superantigen SEB alone (Fig. 3A). CXCL4 treatment also seemed to slightly 
induce IL-5 and IL-22 production. We further assessed the effect of CXCL4 on CD4+ 
T cell cytokine production using three other APCs: myeloid dendritic cells (mDCs), 
plasmacytoid dendritic cells (pDCs) and B cells. We observed that CXCL4 significantly 
enhanced IL-17 production of CD4+ T cells when co-cultured with mDCs (Fig. 3B), 
but not with pDCs or B cells. Previous data from others and our group indicate 
clear immunomodulatory effects of CXCL4 at higher doses21,22. In co-culture with 
monocytes, increasing amount of CXCL4 up to 5 µg/ml did not additionally enhance 
the IL-17 induction (Fig. S4 in Supporting Information). The effect of CXCL4 on CD4+ T 
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Figure 1

Figure 1. CXCL4 increases the percentage of IL-17 producing cells in CD3/CD28-stimulated 
human CD4 T cells. CD4 T cells were isolated from healthy donors and cultured with CD3/CD28 coated 
Dynabeads and  CXCL4 for five days. (A, B) The effect of CXCL4 on IL-17 production by CD4 T cells was 
assessed by (A) flow cytometric intracellular cytokine staining and (B) enzyme-linked immunosorbent 
assay. (C) The percentage of of IFNγ-, IL-4- and IL-22-producing CD4 T cells were measured by flow 
cytometry. (D, E) The amount of IL-17 producing cells co-expressing IFNγ (D) or IL-22 (E) were measured 
by flow cytometry. Cells were gated on live, single cells. Means (bars) and values from each donor 
are shown. Data are pooled from two to four independent experiments, except for panel B from 14 
independent experiments, with one to four donor samples per experiment. Each dot on the bar graphs 
represent a single donor and paired t-test was used for statistical analysis. * P<0.05, ** P<0.01.
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cell proliferation upon activation with superantigen SEB-loaded APCs was minimal (Fig. 
S3B,C in Supporting Information). Thus, also in the presence of myeloid APCs, CXCL4 
promotes the production of the pro-inflammatory IL-17 production by CD4+ T cells.

Figure 2. CXCL4 induces IL-17 producing cells differentiated from naïve human CD4 T cells. 
Naïve CD4 T cells were purified by fluorescence-activated cell sorting and cultured with CD3/CD28 
coated Dynabeads and CXCL4 for seven days. (A, B) The effect of CXCL4 on IL-17 production by CD4 
T cells was assessed by (A) flow cytometric intracellular cytokine staining and (B) enzyme-linked 
immunosorbent assay . (C) The levels of IFNγ-, IL-4-, IL-22-, and IL-17/IFNγ-producing CD4 T cells 
were measured by flow cytometry. (D) The amount of IL-17 producing cells co-expressing or IL-22 
was measured by flow cytometry. Cells were gated on live, single cells. Means (bars) and values from 
each donor are shown. Data are pooled from four to 10 independent experiments, with one to two 
donor samples per experiment. Each dot on the bar graphs represent a single donor and paired 
t-test was used for statistical analysis. * P<0.05, ** P<0.01.
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Figure 3. CXCL4 induces IL-17 production in autologous antigen-presenting cells (APCs)-
CD4 T cells co-culture. Monocytes, B cells, myeloid dendritic cells (mDCs), plasmacytoid dendritic 
cells (pDCs), and CD4 T cells were isolated from healthy individuals, co-cultured in the absence or 
presence of superantigen from Staphylococcal enterotoxin B (SEB) and  CXCL4 for three days and 
restimulated with PMA and ionomycin. (A) Supernatant from co-culture of monocytes and CD4 T 
cells stimulated with superantigen SEB and CXCL4 were measured for IL-17, IL-22, IFNγ, and IL-5. (B) 
The effect of CXCL4 treatment on 100 pg/ml superantigen SEB-activated CD4 T cells co-cultured 
with myeloid dendritic cells (mDCs), plasmacytoid dendritic cells (pDCs), or B cells, on IL-17, IL-22, 
IFNγ, and IL-5 production was assessed. Cytokines produced were determined using a Luminex-
based assay. Means (bars) and values from each donor are shown. Data are pooled from two to five 
independent experiments, with one to four donor samples in duplicate per experiment. Each dot 
on the bar graphs represent a single donor Paired t-test was used for statistical analysis. * P<0.05, 
** P<0.01.
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CXCL4-primed monocyte-derived dendritic cells enhance CD4+ T cell 
activation
Previous works have shown that during monocyte differentiation into dendritic 
cell or macrophage, the addition of CXCL4 resulted in an altered expression of cell 
surface markers and a distinct transcriptomic profile22–24. They also differed in their 
capacity to activate T cells, yet the effect on IL-17 production was not assessed. 
We added CXCL4 to monocytes differentiating into dendritic cells (moDCs) during 
culture with GM-CSF and IL-4. After differentiation, moDCs were co-cultured with 
autologous CD4+ T cells in the presence of SEB. CXCL4-treated moDCs induced  
a higher IL-17 production by CD4+ T cells as compared to conventional moDCs  
(Fig. 4A,B). CXCL4 treatment also increased the percentage of IFNγ-producing cells 
(Fig. 4C), but not IL-4 or IL-10 producing cells (Fig. 4D). Interestingly, CXCL4-treated 
moDCs increased the percentage of co-expressing IL17+ IL-22+ cells (Fig. 4E). CXCL4-
treated moDCs also significantly potentiated CD4+ T cell proliferation (Fig. 4F, Fig. 
S3D in Supporting Information). Therefore, our data suggest that CXCL4 modulates 
moDCs to induce proliferation of CD4+ T cells and production of pro-inflammatory 
cytokines, especially IL-17.

CXCL4 is increased in Th17 diseases and correlates with Th17 cytokines 
at the site of inflammation
To assess potential clinical relevance of our findings above, we measured the level 
of circulating CXCL4 in patients with Pso and PsA, both known to be type 17-driven 
autoimmune diseases. The level of CXCL4 in the circulation was previously shown 
to be increased in Pso patients14. Here we found that the plasma level of CXCL4 
was increased in both Pso and PsA patients as compared to healthy individuals 
(Fig. 5A). We then examined intra-articular level of CXCL4 from patients with PsA 

Figure 4. CXCL4-differentiated monocyte-derived dendritic cells enhance pro-inflammatory 
cytokine production and proliferation by CD4 T cells . Monocytes from healthy donors were 
isolated and differentiated into dendritic cells in the absence or presence of CXCL4 (moDCs or CXCL4-
moDCs). moDCs were then co-cultured with autologous CD4 T cells in the presence of superantigen 
from Staphylococcal Enterotoxin B (SEB) for three days and restimulated with PMA and ionomycin. 
(A-C) Comparison of co-culture with moDC or CXCL4-moDC on IL-17 or IFNγ production by CD4 T 
cells was assessed by (A, C) intracellular cytokine staining and (B) enzyme-linked immunosorbent 
assay are shown. (D) Intracellular cytokine staining was performed for the measurement of IL-4+, 
IL-10+, IL-22+, and IL-17+IFNγ+ cells gated on live CD4 T cells. (E) The amount of IL-17 producing cells 
co-expressing IL-22 as measured by flow cytometry. (F) CD4 T cells were labeled with CellTrace Violet 
prior co-culture and proliferation was analyzed as division index. Cells were gated on live, single, 
CD4 T cells. Means (bars) and values from each donor are shown. Data are pooled from two to three 
independent experiments, with two to three donor samples per experiment.  Each dot on the bar 
graphs represent a single donor and paired t-test was used for statistical analysis. * P<0.05, ** P<0.01
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Figure 5. CXCL4 expression is upregulated in Th17-mediated diseases, correlates with Th17 cytokine 
levels in the synovial fluid of psoriatic arthritis joints, and induces IL-17 production in psoriatic 
arthritis patients. Plasma was obtained from healthy controls (HC), psoriasis (Pso), or psoriatic arthritis 
(PsA) patients, and synovial fluid (SF)  from PsA and osteoarthritis (OA) patients. Monocytes and CD4 T cells 
were isolated from PsA patients and CXCL4 effect was assayed in (co-) cultures. (A) CXCL4 was measured 
in the plasma of HC, Pso, or PsA patients by enzyme-linked immunosorbent assay. Kruskal-Wallis test was 
used for statistical analysis. (B) The levels of CXCL4 was measured in SF from OA and PsA patients using 
a Luminex-based assay. Mann-Whitney test was used for statistical analysis. (C) The intraarticular levels of 
CXCL4, IL-17, and IL-22 in PsA SF were measured using Luminex-based assay. Correlation between cytokine 
levels was assessed by Spearman’s correlation. (D, E) The effects of 2 µg/ml CXCL4 on secreted IL-17 by CD4 
T cells from PsA patients upon (D) CD3/CD28 stimulation or (E) co-culture with autologous monocytes in 
the absence or presence of superantigen from Staphylococcal Enterotoxin B (SEB) as assessed by enzyme-
linked immunosorbent assay are shown. Data are pooled from three independent experiments, with one 
to two patient samples in duplicate per experiment. Means (bars) and values from each patient are shown 
and paired t-test was used for statistical analysis. * P<0.05.
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and patients with osteoarthritis as a non-autoimmune disease control group. In SF, 
we found a trend toward increased CXCL4 levels in patients with PsA as compared to 
those with osteoarthritis (Fig. 5B, p=0.066). To determine whether CXCL4 mediates 
Th17 activation in vivo at the site of inflammation, we measured CXCL4 and T 
cell-derived cytokines in the SF of patients with PsA. Remarkably, CXCL4 strongly 
correlated with both IL-17 (r=0.713, p<0.01) and IL-22 (r=0.620, p<0.01) (Fig. 5C), 
whereas CXCL4 did not correlate with IFNγ, IL-5, IL-10, nor GM-CSF in the SF of PsA 
patients, clearly mimicking our in vitro results. The enhanced IL-17 production by 
CD4+ T cells upon CXCL4 treatment was also observed in PsA patients (Fig. 5D,E). 
Additionally, we had five donors from which multiple synovial fluid samples was 
collected multiple times at different time points. CXCL4 level completely mirrored 
the changes of IL-17 amount in PsA SF over time in four out of five PsA patients (Fig. 
S5 in Supporting Information). These data suggest that in PsA, higher CXCL4 levels 
are associated with increased Th17 cytokines locally at the site of inflammation.

Discussion

IL-17 producing cells have been implicated to play a major role in multiple 
autoimmune and chronic inflammatory disorders. Here we show that CXCL4 – a 
chemokine shown to be highly present in many of these disorders – directly and 
indirectly promotes the production of IL-17 by human CD4+ T cells (Fig. 6). In 
addition to that, CXCL4 enhances the levels IL-17 secreting cells that also produce 
IFNγ and IL-22. Moreover, in the Th17-mediated disease context of PsA, CXCL4 level 
in PsA SF is significantly associated with IL-17 and IL-22 levels.
	 Previous reports on CXCL4 effects on the regulation of T cells have been 
inconsistent. CXCL4 was described to inhibit the expression of IFNγ (Th1) while 
favoring IL-13 (Th2) on cultured naïve CD4+ T cells25. However, another study 
suggested that CXCL4 only induced the proliferation and cytokine production of CD4+ 
CD25+ T cells, but not CD4+ CD25- T cells26. Our data are the first evidence revealing 
a direct CXCL4 effect on driving IL-17 production by CD4+ T cells. Moreover, multiple 
studies showed that platelets, that can secrete a large amount of CXCL4, promoted 
CD4+ T cells IL-17 production in a co-culture, thus supporting our findings17,18,27. 
CXCL4 also increased the amount of IL-17+ double producers with IFNγ and IL-22. 
These cells have been found in many human inflammatory conditions28–32, therefore 
the induction of IL-17+ cells and their co-expression with IFNγ and IL-22 by CXCL4 
may exacerbate pathological processes.
	 CXCL4 is known to elicit inflammatory response on myeloid cells. On monocytes, 
CXCL4 has been shown to promote their survival and pro-inflammatory cytokines 
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production, such as IL-6, TNFα, as well as reactive oxygen species33,34. While there is 
little known about the effect of CXCL4 on mDC, we previously showed that CXCL4 
could enhance IFNα production by pDCs upon toll-like receptor stimulation12. 
We recently demonstrated that CXCL4 potentiated moDCs cytokine production 
upon toll-like receptor stimulation22. Through regulating APC function, CXCL4 can 
promote an inflammatory environment that results in an increased IL-17 production 
by CD4+ T cells.
	 SF from PsA patients contains many soluble mediators that recruit immune cells 
and promote tissue inflammation. The source of CXCL4 in PsA SF has yet to be 
identified. Macrophages have been suggested to contribute to the overexpression 
of CXCL4 in rheumatoid arthritis synovium13. mDCs and pDCs, both capable of 
producing CXCL4, are increased in PsA and rheumatoid arthritis SF35–37. Furthermore, 
in addition to CD4+ T cells, there are other type 17 cells enriched in the PsA SF, 

Figure 6. Proposed mechanisms of CXCL4 as a novel Th17 driver. CXCL4 promotes IL-17 
production in human CD4 T cells by acting (1) directly on CD3/CD28-activated human (naïve) CD4 
T cells, and (2) indirectly in a co-culture of CD4 T cells with monocytes and myeloid dendritic cells 
(mDCs). (3) CXCL4 also primed monocytes-derived dendritic cells (CXCL4-moDCs) to induce IL-17 
production and proliferation in activated CD4 T cells. These IL-17-producing cells also co-produce 
IL-22, which results in an increased immune response at the site of inflammation, such as a psoriatic 
arthritis joint.
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including the type 3 innate lymphoid cells38, CD8 T cells39, and γδ T cells40. CXCL4 
contribution to the IL-17 regulation in these cells still needs to be evaluated. 
	 Compelling evidence suggests a pro-inflammatory role for CXCL4 in multiple 
mouse inflammation models12,41–43, however it is intriguing that some studies showed 
CXCL4 to suppress IL-17 production19,20. The underlying mechanism is unclear, the 
apparent species-specific prerequisite for Th17 development in human and mice may 
contribute to this discrepancy44–46. Furthermore, human Th17 cells also did not seem 
to co-produce GM-CSF as seen in mice studies47, and our data showed that CXCL4 did 
not influence GM-CSF production by human CD4+ T cells in vitro. In support of this, no 
correlations were found between CXCL4 and GM-CSF in inflamed PsA joint.
	 In conclusion, we have identified CXCL4 as a new Th17 driver, that is able to directly 
and indirectly promote IL-17 production in human CD4+ T cells, and that it correlates 
with Th17 cytokines levels intra-articularly, at inflammatory site of PsA patients. These 
data strongly suggest CXCL4 to play a significant role in Th17 regulation in PsA. Further 
research to dissect the molecular mechanisms involved and to assess the CXCL4 
contribution in other Th17-mediated diseases are necessary.

Materials and Methods

Patients population
Peripheral blood and synovial fluid (SF) were obtained in accordance with the local 
Institutional Review Board’s approval and patients gave their written informed 
consent. For plasma measurement, blood was collected from 10 healthy controls, 
10 patients with Pso, and 10 patients with PsA. Venous blood was collected in a 10 
ml EDTA vacutainer (#367864, BD Biosciences), centrifuged at 1700xg for 10 min, 
and plasma was collected. SF samples were isolated from 17 patients with PsA and 
nine patients with osteoarthritis. All SF samples were collected from effusion of the 
knee as part of routine clinical care. For SF collection, fluids were centrifuged at 2300 
xg for 10 min at 4°C to remove cells and debris.  All samples were aliquoted and 
immediately frozen at −80°C until further use. Patients with PsA fulfilled Classification 
of Psoriatic Arthritis Study Group criteria and their characteristics are summarized in 

Table S1 in Supporting Information. 

Cell isolation
Peripheral blood mononuclear cells from healthy donors and PsA patients were 
isolated by Ficoll gradient (#17-1440-02, GE Healthcare). Cells were processed for 
further isolation using magnetic beads for plasmacytoid dendritic cells (pDCs, #130-
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090-532), myeloid dendritic cells (mDCs) and B cells (#130-094-487), monocytes 
(#130-050-201), and CD4+ T cells (#130-096-533) on autoMACS Pro Separator 
according to manufacturer’s instructions, all from Miltenyi Biotec. Naïve CD4+ T 
cells (CD127+ CD25- CD27+ CD4+5RO-) were further purified using fluorescence-
activated cell sorting on BD FACSAria (BD Biosciences). Purity was routinely above 
99% for naïve CD4+ T cells, 95% for bulk CD4+ T cells, and above 90% for other cells as 
assessed by flow cytometry. Cells were washed and cultured with complete medium 
of RPMI-GlutaMAX (#61870-010, Thermo Fisher Scientific) supplemented with 10% 
FBS (Biowest) and Penicillin-Streptomycin (#15070063, Thermo Fisher Scientific).

T cell stimulation
50,000 CD4+ T cells were cultured in a complete medium on a 96-well round bottom 
plate at 37°C for three to seven days. In CD4+ T cells monoculture, cells were activated 
with Dynabeads Human T-Activator CD3/CD28 (#111.31D, Thermo Fisher Scientific) 
at bead-to-cell ratio of 1:5. In autologous co-culture with antigen-presenting 
cells (APCs), CD4+ T cells were cultured with pDCs, mDCs, B cells, monocytes, or 
monocytes-derived DCs (moDCs) at APC-to-CD4+ T cell ratio of 1:5, in the presence 
of superantigen from Staphylococcal Enterotoxin B (SEB) (#S4881, Sigma Aldrich). 
Recombinant human CXCL4 (#300-16, Peprotech) was added as indicated. For 
restimulation, cells were stimulated with phorbol 12-myristate 13-acetate (PMA, 
#P8139) and ionomycin (#I0634, all Sigma Aldrich) overnight. For intracellular 
cytokine staining, PMA, ionomycin and GolgiStop (#554724, BD Biosciences) was 
added for the final four hours of culture. For proliferation analysis, CD4+ T cells were 
labeled with CellTrace Violet (1.5 µM; #C34557 Thermo Fisher Scientific) prior culture.

Monocyte-derived dendritic cells
Monocytes were cultured at a density of 1 million cells/ml in complete medium with 
800 IU/ml recombinant human granulocyte-macrophage colony-stimulating factor 
(GM-CSF, #204-IL, R&D Systems), 500 IU/ml recombinant human IL-4 (#215-GMP, R&D 
Systems), in the presence or absence of 10 µg/ml recombinant human CXCL4 for six 
days, with medium and cytokines refreshment on day three. Cells were harvested 
and remaining cytokines were washed in complete medium and rested for 1-2 h at 
37°C prior to co-culture with CD4+ T cells from the same donor.

Flow cytometry
For intracellular cytokine staining, cells were stained with Fixable Viability Dye (#65-
0866, eBioscience) for dead cell exclusion, then cells were fixed and permeabilized 
using Foxp3/Transcription Factor Staining Buffer Set (#00-5523, eBioscience), 
and stained for IL-17A (#11-7179), IL-22 (#17-7222), IFNγ (#45-7319, #12-7319, 
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eBioscience), IL-4 (#564112, BD Biosciences), IL-10 (#554706, BD Biosciences), GM-
CSF (#502317, Biolegend), CD3 (#48-0038), and CD4+ (#25-0049 eBioscience). Cells 
were acquired on BD LSRFortessa (BD Biosciences). Cells were gated to exclude 
debris, doublets, and dead cells and analyzed by FlowJo software (Tree Star). Division 
index was calculated as a measure of proliferation, following FlowJo guidelines. 
Alternatively, percentage of proliferated cells (CellTrace Violet-) was shown.

Cytokine measurement
Cytokines in cell-free supernatant, plasma, or synovial fluid, were measured using 
enzyme-linked immunosorbent assay (IL-17A, #88-7176, eBioscience; CXCL4, 
#DY795, R&D Systems; GM-CSF, #88-8337, eBioscience) or using a multiplex 
immunoassay based on xMAP technology (Luminex) at the MultiPlex Core Facility 
of the Laboratory of Translational Immunology, University Medical Center Utrecht48. 
For the Luminex-based assay, acquisition was performed with a Biorad FlexMap3D 
system using Xponent 4.2 software and analyzed using Bio-Plex Manager 6.1.1. 

Statistical analysis
Paired t-test, Mann-Whitney test, Kruskal-Wallis test, or Spearman’s correlation 
analysis, were calculated using GraphPad Prism 6.0 Software. Differences of P<0.05 
were considered significantly different. 
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Supporting Information

Supplementary Materials and Methods

RNA extraction and gene expression analysis
Total RNA was isolated from cell lysates using the RNeasy Mini Kit (#74106 Qiagen), 
according to the manufacturer’s instructions. Gene expression was analysed by 
quantitative PCR using a 3 ng RNA-equivalent after retrotranscription with iScript 
cDNA Synthesis Kit (#1708891 Bio-Rad). Reactions were conducted using the SYBR 
Select Master Mix with 500 nM specific primer pairs on a StepOnePlus Real-Time PCR 
System (ThermoFisher Scientific). Fold change was calculated using the comparative 
cycle threshold (ΔΔCt) method and values were normalized to the expression of 
B2M. All primers used are listed in Table S2.

Naïve CD4+ T cell isolation
Peripheral blood mononuclear cells from healthy donors were isolated by Ficoll 
gradient (#17-1440- 02, GE Healthcare). Cells were first enriched using magnetic 
beads for CD4+ T cells (#130-096-533, Miltenyi Biotec) on autoMACS Pro Separator 
(Miltenyi Biotec) according to manufacturer’s instructions. After staining with 
antibodies for 30 min at 4°C, naïve CD4+ T cells (CD3+ CD4+ CD127+ CD25- CD27+ 
CD4+5RO-) were further purified using fluorescence-activated cell sorting on BD 
FACSAria (BD Biosciences). Antibodies used are listed in Table S3.
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Figure S1. CXCL4 increases IL-17 mRNA in stimulated human CD4 T cells. CD4 T cells were 
isolated from healthy individuals and cultured with CD3/CD28 Dynabeads and 2 μg/ml CXCL4 for 
24 h. RNA was isolated, followed by cDNA synthesis, and gene expressions were assessed. The effect 
of CXCL4 on IL17A, IFNG, and IL22 mRNA in CD4 T cells was determined by quantitative PCR. Mean 
and values from each donor are shown and paired t-test was used for statistical analysis. * P<0.05.

Supplementary Figures
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Figure S2. CXCL4 effect on GM-CSF and other cytokines on human CD4 T cells. CD4 T cells 
and antigen presenting cells (APCs) were isolated from healthy individuals and CXCL4 effect was 
assessed during (co-) cultures. (A) CD4 T cells were cultured with CD3/CD28 Dynabeads and 2 μg/ml 
CXCL4 for five days. Supernatant was collected for secreted cytokine measurement and cells were 
fixed and permeabilized for intracellular cytokine staining for GM-CSF+ cells or IL-17+ GM- CSF+ 
cells. (B) Monocytes and CD4 T cells were co-cultured in the absence or presence of superantigen 
from Staphylococcal enterotoxin B (SEB) and 2 μg/ml of CXCL4 for three days and restimulated with 
PMA and ionomycin. (C) Monocytes (Mono), myeloid dendritic cells (mDC), plasmacytoid dendritic 
cells (pDC), B cells (B), and CD4 T cells were co-cultured without superantigen SEB in the absence 
or presence of 2 μg/ml CXCL4 for three days and restimulated with PMA and ionomycin. Cell-free 
supernatant was collected and secreted cytokines were assessed by enzyme-linked immunosorbent 
assay or Luminex-based immunoassay. Means (bars) and values from each different donor are shown 
and paired t-test was used for statistical analysis. * P<0.05.
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Figure S3. CXCL4 effects on proliferation of stimulated human CD4 T cells. CD4 T cells and 
monocytes were isolated from healthy individuals or psoriatic arthritis (PsA) patients, then CD4 T 
cells were stained with CellTrace Violet prior culture. (A) CD4 T cells were cultured with CD3/CD28 
Dynabeads and 2 μg/ml CXCL4 for three days and cell proliferation was assessed. (B, C) CD4 T cells 
were co-cultured with autologous (B) monocytes or (C) plasmacytoid dendritic cells in the presence 
of superantigen from Staphylococcal enterotoxin B (SEB) and 2 μg/ml of CXCL4 for three days and 
proliferated cells were determined. (D) Monocytes were differentiated into dendritic cells (MoDC) 
in the absence or presence of CXCL4 (CXCL4-MoDC) for six days, then they were co-cultured with 
autologous CD4 T cells in the presence of superantigen from Staphylococcal enterotoxin B (SEB) 
for three days, and proliferated cells were assessed. Cells were gated based on CD4 and/or CD3 
expression. Means (bars) and values from each different donor are shown and paired t-test was used 
for statistical analysis. * P<0.05, ** P<0.01.
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Figure S4. Dose response of CXCL4 on IL-17 production by CD4 T cell cultures. CD4 T cells and 
monocytes were isolated from healthy individuals and the CXCL4 effect was assessed during culture. 
(A) CD4 T cells were cultured with CD3/CD28 Dynabeads and 2 or 5 μg/ml CXCL4 for five days and 
supernatant was collected. (B) Monocytes and CD4 T cells were co-cultured in the presence of 
superantigen from Staphylococcal enterotoxin B (SEB) and 2 or 5 μg/ml of CXCL4 for three days and 
restimulated with PMA and ionomycin. The effect of IL-17 production by CD4 T cells was assessed by 
enzyme-linked immunosorbent assay. Means (bars) and values from each different donor are shown. 
Paired t-test was used for statistical analysis. * P<0.05.
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Figure S5
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Figure S5. Changes in CXCL4 and IL-17 levels in PsA synovial fluid. Cell-free synovial fluid from 
five PsA patients were collected from the same knee at different time points. The median time 
between each collection was 9.2 months (range, 2.8 - 19.1 months). The levels of intra-articular 
CXCL4 and IL-17 from PsA patients were measured by Luminex-based assay.
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Supplementary Tables
Table S1. Clinical and demographic features. 

Plasma and PBMC SF
HC Pso PsA OA PsA

Age (years) 46 ± 11 48 ± 14 47 ± 12 63 ± 8 45 ± 19
Female 40% 40% 27% 67% 18%
DMARD use - 0% 27% 0% 53%
TNF-inhibitor use - 0% 0% 0% 12%
CRP - 2.3 (0.5-15) 7.05 (1.4-41) 10.5 (2-22) 13 (3-87)
ESR - 5 (2-33) 10 (2-39) n.d. 12.5 (2-73)
SJC76 - 0 (0-0) 4 (0-22) n.a. n.a.
TJC78 - 0 (0-3) 5 (0-13) n.a. n.a.

Data are shown as mean ± standard deviation, median (range), or frequency (%). The therapies 
shown represent therapy at the time of sample collection (note: all the PsA plasma analysis was 
performed on PsA patients free from DMARDs at the time of sample collection). HC, healthy controls; 
Pso, psoriasis; PsA, psoriatic arthritis; OA, osteoarthritis; PBMC, peripheral blood mononuclear cell; 
SF, synovial fluid; DMARD, disease- modifying anti-rheumatic drug; CRP, C-reactive protein; ESR, 
erythrocyte sedimentation rate; 76SJC 76 swollen-joint count; 78TJC, 78 tender-joint count; n.a., not 
available; n.d., not detected.

Table S2. Primer sets used in quantitative PCR analysis.

Target Forward primer Reverse primer
IL17A CCGTGGGCTGCACCTGTGTC GGGAGTGTGGGCTCCCCAGA
IFNG GCAGAGCCAAATTGTCTCCT ATGCTCTTCGACCTCGAAAC
IL22 GCTGGCTAAGGAGGCTAGCTT  CATACTGACTCCGTGGAACAGTTT
B2M GATGAGTATGCCTGCCGTGT TGCGGCATCTTCAAACCTCC

Table S3. Antibodies used in fluorescence-activated cell sorting.

Antigen Fluorochrome Company Catalog #
CD27 BV510 BD Biosciences 563090
CD25 PE BD Biosciences 555432
CD45RO PE-Cy7 BD Biosciences 337168
CD127 Alexa Fluor 647 Sony Biotechnology 2356590
CD3 Alexa Fluor 700 Biolegend 300424
CD4 APC-eFluor 780 eBioscience 47-0049
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Abstract
Fibrosis is a condition shared by numerous inflammatory diseases. Our incomplete 
understanding of the molecular mechanisms underlying fibrosis has severely 
hampered effective drug development. CXCL4 is associated with the onset 
and extent of fibrosis development in systemic sclerosis (SSc), a prototypic 
inflammatory and fibrotic disease. Here, we integrated 65 paired longitudinal 
whole genome transcriptional and methylation profiles from monocyte-derived 
cells responding to CXCL4 exposure. Using data-driven gene regulatory network 
analyses, we demonstrate that CXCL4 dramatically alters the trajectory of monocyte 
differentiation, inducing a novel pro-inflammatory and pro-fibrotic phenotype 
mediated via key transcriptional regulators including CIITA. Importantly, pro-
inflammatory cells exposed to CXCL4 directly trigger a fibrotic cascade by producing 
ECM molecules and inducing myofibroblast differentiation. Inhibition of CIITA 
mimicked CXCL4 in inducing a pro-inflammatory and pro-fibrotic phenotype, 
validating the relevance of the gene regulatory network. Our study unveils CXCL4 as 
a key secreted factor driving innate immune training and forming the long-sought 
link between inflammation and fibrosis.
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Transcriptional and epigenetic reprogramming of DCs by CXCL4

4

Introduction
Fibrosis is an uncontrolled accumulation of extracellular matrix (ECM) in multiple 
organs and accounts for one third of deaths worldwide1, 2. Fibrosis is considered to 
be a result of complex cellular and molecular interplay following tissue inflammation 
and injury. Across a wide range of diseases, fibroblasts inappropriately synthesize and 
release increased amounts of ECM components, suggesting a conceptual framework 
in which myofibroblast transition is the key event leading to fibrosis1. Recent studies 
however, strongly implicate the innate immune system as a critical contributor 
to fibrosis development3, in line with clinical observations that an inflammatory 
phase precedes fibrosis by years. Hence, identification of the molecular pathways 
linking inflammation to fibrosis will provide unprecedented opportunities for drug 
development to treat or even reverse tissue fibrogenesis2, 3.
	 CXCL4, a chemokine initially identified as a product of activated platelets, is now 
known to be secreted by a variety of immune cells4, 5, 6. CXCL4 drives a broad spectrum 
of immune-modulatory effects in both hematopoietic stem and progenitor cells, as 
well as differentiated immune cells, and has been implicated in the pathology of 
a variety of inflammatory diseases7, 8, 9. Systemic sclerosis (SSc) is an archetypical 
fibrotic disease in which hypoxia, followed by endothelial cell damage and 
immune activation, typically culminates in fibrosis of the skin and internal organs. 
Previously, we identified CXCL4 as an early biomarker of this process5. Monocytes are 
indispensable for inflammation and tissue repair. Monocyte-derived dendritic cells 
(moDCs) can be differentiated in vitro by culturing monocytes isolated from human 
donors and are considered as DC model that mimics in vivo inflammatory DCs. 
Previously, we investigated whether circulating CXCL4 potentiates aberrant TLR-
mediated responses and T-cell dysregulated responses observed in autoimmune 
diseases including SSc (Silva-Cardoso et al. J Immunol 2017, 199:253; Affandi et al. 
Eur J Immunol. 2018, 48(3):522-531). Considering the presence of CXCL4 during 
early inflammation and its role in modulating key immune functions, we postulated 
that CXCL4 might constitute the link between inflammation and fibrosis. Therefore, 
here, we tested this hypothesis by examining the transcriptional and epigenetic 
effects of CXCL4 on monocytes during and after differentiation, integrating 65 
paired time courses of whole genome transcriptional and methylation profiles, and 
reconstructed CXCL4-dependent gene regulatory networks.

CXCL4 drastically impacts monocyte differentiation
To study the role of CXCL4 on the possible imprinting of immune cells towards 
fibrosis, we examined the effects of CXCL4 on the differentiation of monocyte-
derived dendritic cells (moDCs)8. We cultured monocytes obtained from five healthy 
donors in the presence of IL-4 and GM-CSF to differentiate them in the absence 
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(conventional moDCs) and presence of CXCL4 (“CXCL4-moDCs”). To systematically 
study the effects of CXCL4 on the trajectory of monocyte differentiation into moDCs, 
we obtained longitudinal transcriptional (RNA-seq) profiles at days 0 (monocytes), 
2, 4, and 6. To examine the effects of CXCL4 on moDC maturation, we stimulated the 
cells on day 7 with the toll-like receptor 3 ligand polyI:C and obtained transcriptional 
profiles before stimulation (day 7), 4 hours (day 7 + 4 hours) and 24 hours (day 8) 
after stimulation (Fig. 1a). 
	 The differentiation of moDCs from monocytes was accompanied by extensive 
transcriptional changes, as 13,192 genes underwent significant (likelihood ratio 
test; FDR corrected p-value ≤ 0.05) alterations in their expression levels (Fig. 1b). 
Nearly half of the differentially expressed genes (6,350) were upregulated. CXCL4-
moDCs also underwent widespread transcriptional changes, as 13,110 genes were 
differentially expressed compared to monocytes, nearly half of those were found 
to be upregulated (Fig. 1b and S1). Remarkably, most of this transcriptional shift 
happens between day 0 and day 2, in both conventional moDCs and CXCL4-moDCs 
(Fig. 1d). Genes characteristic of monocyte differentiation (such as CD14, CD163, 
TLR2, TLR4, and TLR7)10 and cell adhesion molecules (including LGALS2, LGALS9, 
and ICAM2) were down-regulated in both conventional moDCs and CXCL4-moDCs 
on day 2 (Table S3). After day 2, cells continued to differentiate, as evidenced by 
their shifting transcriptional profiles (Fig. 1d). Genes encoding pattern recognition 
proteins MRC1, MRC2, growth factors such as CSF1, and the chemokine receptors 
CCR1, CCR5, and CCR7, were upregulated over time in both conventional moDCs and 
CXCL4-moDCs (Table S3). Together these results indicate that the differentiation 
of monocytes (with or without CXCL4) leads to massive transcriptional changes as 
reported by several previous studies11, 12.
	 To elicit the transcriptional signature unique to CXCL4 exposure, we compared 
differentiating CXCL4-moDCs with conventional moDCs from day 2 to day 6 and 
found differential expression of 5,775 genes (likelihood ratio test, FDR corrected 
p-value ≤ 0.05; Fig. 1b, S1, and Table S1 and S3). CXCL4-moDCs follow a distinct 
molecular differentiation trajectory that progressively diverges from conventional 
moDCs (Fig. 1d, right panel). The CXCL4 signature genes belong to several crucial 
innate immune system pathways including cytokine signaling, interferon signaling, 
and antigen processing and presentation (Fig. S1e). For instance, CXCL4-moDCs, in 
the absence of further stimulation, up-regulate expression of several inflammatory 
molecules such as CTSL, FLT1, CD86, LAMP1, CHI3L1, and down-regulate signaling 
receptors such as CLEC10A, IL1R1, IL1R2 compared to moDCs (Fig. 1g-i and S1a-d). 
Strikingly, CXCL4 exposure also leads to dramatic changes in expression of genes 
regulating metabolism and transcription (Fig. S1e), reminiscent of changes 
previously observed in myeloid cells undergoing immune training13. Thus, CXCL4 
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4

Fig. 1. Transcriptomic programing of CXCL4-moDCs. (a) Schematic overview of the experimental 
setup: (i) differentiation of monocytes to conventional moDCs or CXCL4-moDCs; (ii) stimulation 
with polyI:C on day 7, for 4 hours or 24 hours. Overlap of differentially expressed genes (DEGs) 
during (b) differentiation and (c) after polyI:C stimulation of: monocytes into conventional moDCs 
(blue); monocytes into CXCL4-moDCs (green); and between CXCL4-moDCs and moDCs during 
differentiation (yellow). In (b) and (c) pie charts showing the number of upregulated (orange) 
and down-regulated (purple) genes. Multi-dimensional scaling (MDS) plot (d) differentiating and 
(e) stimulated conventional moDCs (left panel), CXCL4-moDCs (middle panel), and CXCL4-moDCs 
vs conventional moDCs (right panel). In (d) and (e) dotted lines indicate trajectories over time. 
(f) Overlap of DEGs between CXCL4-moDCs and conventional moDCs, during differentiation and 
upon stimulation. Gene expression of example genes differential during (g) differentiation and (j) 
stimulation between CXCL4-moDCs and conventional moDCs. Validation of (h) protein expression 
(flow cytometry) and (i) cytokine production (Luminex) on day 6. (k) Validation of cytokine production 
(Luminex) on day 8. Gene expressions are shown as mean±SEM. CPM, count per million. In panels I 
and K, lines connect individual donors (n=5). *P<0.05; **P< 0.01, paired two-sided Student’s t-test.
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orchestrates a differentiation process dramatically different than that of the 
conventional moDCs.

Mature CXCL4-moDCs are functionally distinct from conventional 
moDCs
To study the effects of CXCL4 on moDC maturation, we stimulated the cells with 
polyI:C on day 7. This perturbed the expression of 8,949 and 7,767 genes in CXCL4-
moDCs and conventional moDCs, respectively, compared to the day 7 transcriptional 
profiles of their unstimulated counterparts (Fig. 1c and 1e, left and middle panels). 
2,397 genes responded differently to polyI:C stimulation in CXCL4-moDCs compared 
to conventional moDCs (Fig. 1c and S2). Several pathways involved in inflammatory 
responses such as TLR signaling, interferon signaling, and cytokine signaling, were 
significantly upregulated in CXCL4-moDCs compared to conventional moDCs (Fig. 
S2e). Confirming our previous findings8, these transcriptional changes were followed 
by increased production of pro-inflammatory mediators such as IL-1β, IL-6, IL-12, 
IL-23, IL-27, TNF and CCL22, and down-regulation of immune-suppressive mediator 
CCL18 (validated using Luminex assays; see Fig. 1j-k and S2a-d). Pathways involved 
in cellular adhesion, integrin signaling, ECM organization, and collagen formation, 
among others, were upregulated in CXCL4-moDCs upon polyI:C stimulation 
compared to stimulated moDCs (Fig. S2e), indicating that CXCL4 exposure induces 
a pro-inflammatory and pro-fibrotic phenotype. Because most of the altered genes 
were already differentially expressed in immature CXCL4-moDCs (Fig. 1e, f and S2b), 
the unique molecular program induced by CXCL4 is suggestive of genetic imprinting.

CXCL4 alters epigenetic imprinting during differentiation but not 
maturation of moDCs
To comprehensively examine whether CXCL4 signaling might alter moDC phenotype 
via epigenetic modifications12, 14, 15, we studied genome wide alterations in DNA 
methylation. Similar to the transcriptome analysis, we found that a large number 
of genes, regions and sites were differentially methylated between monocytes and 
differentiating moDCs and CXCL4-moDCs (Fig. 2a, S3 and S4). Interestingly, most of 
the differentially methylated genes were hypomethylated compared to monocytes 
(2,617 in conventional moDCs and 2,156 in CXCL4-moDCs) (Fig. 2a, b, S3a and c, 
and Table S4).
	 To discern the epigenetic footprint of CXCL4 during differentiation, we compared 
the methylome profiles of differentiating CXCL4-moDCs with differentiating 
conventional moDCs (from day 2 to day 6). CXCL4 exposure led to substantial 
changes in the DC methylome as 1,065 genes were differentially methylated between 
CXCL4-moDCs and conventional moDCs (Fig. 2a and S3). Most of the differentially 
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Fig. 2. DNA methylation analysis of CXCL4-moDCs and conventional moDCs. (a) Overlap 
between differentially methylated genes (DMGs) found during differentiation similar to Fig. 1b. A 
gene is considered differentially methylated if any region on the gene is differentially methylated. 
Smaller Venn diagram graphs display the overlap of hyper-methylated (orange) and hypo-methylated 
(purple) genes for each comparison. Note some genes are classified as both hyper-methylated and 
hypo-methylated based on different regions. (b) Distribution of differentially methylated regions 
(1500 and 200 base pairs upstream of the transcription start site (TSS), 5’ untranslated region (UTR), 
1st exon, other exons (ExonBnd) and 3’ UTR) between CXCL4-moDCs and conventional moDCs during 
differentiation. (c) MDS analysis using DMRs, similar to Fig. 1d. (d) Overlap between DMGs found 
during stimulation similar to Fig. 1c. (e) MDS analysis using all DMRs between CXCL4-moDCs and 
conventional moDCs during stimulation. (f) Top enriched pathways from DMGs between CXCL4-
moDCs and conventional moDCs during differentiation and stimulation. (g) DNA methylation β 
values (see Methods) of CCL22 and CLEC10A. Lines represent mean β values and shading represents 
95% confidence interval.
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methylated genes were hypermethylated in CXCL4-moDCs. The hypermethylation 
was not restricted to promoter regions, indicating that CXCL4 influences chromatin 
accessibility at a more global level (Fig. 2b). Alterations in DNA methyltransferases 
and DNA demethylases are known to cause global hypermethylation, which 
have been implicated in SSc pathogenesis previously16. Interestingly, we found 
transcriptional upregulation of DNA methyltransferases (such as DNMT3A) and 
downregulation of DNA demethylases (TET2 and TET3) that together can cause 
global hypermethylation in CXCL4-moDCs (Fig. S4a). As in the transcriptional 
analysis, CXCL4-moDCs progressively diverge from moDCs (Fig. 2c, right panel). This 
progressive and temporal divergence of DNA methylation patterns caused by CXCL4 
alters several crucial innate immune system pathways including cytokine signaling, 
co-stimulatory molecules, and ECM organization (Fig. 2f). Thus, we provide direct 
mechanistic evidence that CXCL4 programs a pro-inflammatory and pro-fibrotic 
phenotype via epigenetic imprinting that corroborates the transcriptional results 
(Fig. S3e and 3f).
	 We also studied the role of epigenetic remodeling in mature moDCs. Surprisingly, 
stimulation of conventional moDCs and CXCL4-moDCs with polyI:C on day 7 hardly 
affected the DNA methylation (Fig. 2d, g, S3b and 3d), an observation confirmed 
by multivariate analysis as the samples did not exhibit any temporal clustering 
(Fig. 2e). Thus, the altered functional responses exhibited by CXCL4-moDCs were 
epigenetically imprinted during differentiation rather than maturation (Fig. S3).

Gene regulatory network driving the CXCL4-specific transcriptome
Since CXCL4 exposure caused massive alterations in both DNA methylation and 
transcriptional factors, we next studied the regulatory mechanisms behind the 
CXCL4 signature. We first assessed the concordance of DNA methylation and mRNA 
expression and found that the changes in DNA methylation did not correlate with 
the changes in corresponding gene’s expression for majority of the CXCL4 signature 
genes (Fig. 3a and S4b-e). Surprised by the lack of correlations for most CXCL4 
signature genes, we checked if levels of DNA methylation reflect upon the overall 
gene expression levels, rather than their differential expression. We indeed found 
that levels of DNA methylation play a role in overall gene expression levels (Fig. S4f 
and g). Given the lack of concordance between individual transcriptional and DNA 
methylation changes, DNA methylation of individual genes may be a poor guide for 
further association studies.
	 Genes rarely work in isolation, and their expression is typically regulated 
via a complex molecular network17, 18. To systematically identify the underlying 
complexity and inter-connectivity of molecular changes caused by CXCL4, we 
developed a new methodology (RegEnrich) to integrate the transcriptional and 
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epigenetic layers and identify the important transcription factors modulated 
by CXCL4 (see Methods). Using RegEnrich, we first constructed weighted gene 
correlation networks, which allowed us to cluster genes into distinct modules (or 
sets of genes) based upon either their co-expression or co-methylation patterns 
(Fig. S5a-b)19, 20. Modular analysis segregated the differentially expressed genes into 
27 modules, each exhibiting a distinct co-expression pattern (Fig. 3b, c and S5c). 
Of these 4 were CXCL4-moDCs-specific modules (RM24-RM27) and contained genes 
belonging to ECM organization, ion channel transport, IFNα signaling and metabolic 
pathways, highlighting the impact of CXCL4 upon the DC phenotype (Fig. 3b and 
S6b). Similarly, modular analysis segregated all differentially methylated genes into 
10 distinct co-methylation modules (Fig. 3b). CXCL4-moDC-specific modules (DM5 
and DM9) contained genes belonging to transcriptional and translational pathways, 
antigen presentation pathways, and the innate immune system (Fig. 3b and S6c; 
Table S8). However, we did not find much overlap between the CXCL4-moDC-
specific co-expression and co-methylation modules (Fig. 3c). Thus, DNA methylation 
only partially influences the transcriptional changes of CXCL4 signature genes.
	 To test whether transcription regulators are the central players (hubs) in our 
networks17, 18, we calculated module memberships as a measure to determine the 
importance of a gene in a given module19, 20. Interestingly for both co-expression 
and co-methylation modules, we found that the transcription regulators typically 
exhibited higher module membership than the other genes (Fig. 3d, e and S5d). 
That transcription regulators are typically the hubs in our networks highlights 
their crucial regulatory function in modulating the expression dynamics of their 
downstream target genes. Thus, alterations in the expression and activity of a 
few key transcription regulators can potentially precipitate the large phenotypic 
differences observed between moDCs and CXCL4-moDCs. Using RegEnrich, we 
ranked the transcription regulators most prominently dysregulated between 
CXCL4-moDCs and conventional moDCs during differentiation (Fig. 4a), and post 
stimulation (Fig. 4b). Using these gene regulatory networks, we found that key 
transcription regulators such as CIITA, TLE1, PTRF, MAPK13, CRABP2, IRF8, regulate a 
large number of the CXCL4 signature genes, including pro-inflammatory and ECM 
pathway genes (Fig. 4a and b). We confirmed that these key transcription regulators 
were significant for CXCL4 signature genes using two independent approaches: 
i) random forest-based gene regulatory networks (see Methods, and Fig. S7a-b), 
and ii) literature-derived gene regulatory networks (data not shown). Together, the 
data-driven gene regulatory networks identified a direct mechanistic link between 
CXCL4, inflammation and ECM modeling in moDCs.
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Fig. 5. CXCL4 induces production of ECM components in moDCs and fibroblasts. (a) Expression of 
genes implicated in ECM remodeling (mean±SEM). (b) Validation (luminex) of ECM protein production 
in CXCL4-moDCs and conventional moDCs on day 6. (c) Fibronectin (FN1) expression (tubulin as loading 
control) determined using Western blot on days 4 and 6 (representative of 5 independent experiments). 
(d) Fibronectin (red) synthesis determined using confocal imaging on day 6 (green: f-actin; and blue: 
nucleus staining using Hoechst). (e) Pearson correlation between gene expression of CIITA and FN1 during 
differentiation (i.e. on day 2, 4 and 6). (f) FN1 and TGFB1 expression measured by qPCR and (g) FN1 expression 
measured by western blot on day 6 moDCs obtained from monocytes transfected with siControl and siCIITA 
(see Fig. 4d). (h) FN1 and TGFB1 expression measured by qPCR on day 3 in conventional moDCs, CXCL4-
moDCs and CXCL4-moDCs exposed to DNMT inhibitor (100nM 5-Aza-2′-deoxycytidine). (i) Expression of 
ECM genes measured using qPCR in healthy dermal fibroblasts (one representative donor; for others see Fig. 
S9) co-cultured with supernatants from CXCL4-moDCs and moDCs that were stimulated for 24 hours with 
polyI:C. qPCR data were normalized using mean expression of RPL32 and RPL13A. In panels b, f, h and i, lines 
connect individual donors. *P<0.05; **P<0.01, ***P<0.001, paired two-sided Student’s t-test.
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CIITA is a key target of CXCL4 signaling
We found that the key transcriptional regulatory proteins exhibit different mRNA 
expression patterns over time. For example, TLE1, PTRF and CRABP2 were expressed 
at low levels in monocytes but were upregulated during the differentiation of both 
conventional moDCs and CXCL4-moDCs (Fig. 4c). However, these genes exhibited 
persistently higher expression in CXCL4-moDCs during both differentiation and 
following polyI:C stimulation (Fig. 4c). Another example is the interferon regulatory 
factor 8 (IRF8), a transcription factor typically associated with pro-inflammatory 
gene expression in monocytic lineages, which is markedly upregulated in immature 
CXCL4-moDCs compared to conventional moDCs (Fig. 4c). Class II MHC transactivator 
(CIITA), a transcription co-factor associated with regulation of MHC class II gene 
expression, was the most significantly down-regulated regulator in CXCL4-moDCs 
(Fig. 4c). 
	 To validate the inter-connectivity of important regulators inferred from the 
gene regulatory network, we performed siRNA-mediated knockdown to silence 
CIITA expression. At day 6 following introduction of siRNA, monocyte-derived cells 
remained viable, and displayed the anticipated phenotype: CIITA-silencing down-
regulated expression of both CD74 and HLA-DR (Fig. 4d and S7c-d)21. While IRF8 has 
not been reported to be regulated by CIITA, our gene regulatory networks predicted 
direct or indirect regulatory interactions between CIITA and IRF8. Silencing of CIITA 
led to upregulation of IRF8, mimicking the effects of CXCL4 and validating the 
prediction of our gene regulatory networks (Fig. 4d and S7c-d). Hence using our 
gene regulatory networks, we have elucidated novel gene regulatory interactions in 
moDCs and found that CXCL4 alters the fate of moDCs by modulating the expression 
of the key transcription regulator CIITA.

CXCL4 induces fibrotic pathways in moDCs mediated via epigenetic 
imprinting and CIITA 
Our data-driven methodology allowed us to identify several novel regulators and 
pathways that are differentially regulated due to CXCL4 during moDC differentiation 
(Fig. 2f, 4a-c and Table S7). As a result, we observed that even unstimulated CXCL4-
moDCs exhibit a pro-fibrotic phenotype, as characterized by the increased gene and 
protein expression of several crucial ECM-related molecules including FN1, SPP1, 
IL1RN and TGFB1 (for transcriptional changes see Fig. 5a, S8a and b; for protein 
validations see Fig. 5b-d). Importantly, silencing CIITA mimicked the effects of 
CXCL4 leading to upregulation of FN1 along with other molecules involved in ECM 
remodeling validating the relevance of this network in the pro-fibrotic cascade (Fig. 
5e-g, S8c and d). Since in CXCL4-moDCs we found that majority of the differential 
genes were hypermethylated (Fig. 2a and b) and that ECM genes were up-regulated 
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(including FN1 and TGFB1; see Fig. 5a and b), we next examined whether modulating 
DNA methylation affects FN1 and TGFB1 expression. In line with our hypothesis, 
inhibition of DNMTs using 100nM 5-Aza-2’-deoxycytidine restored the expression of 
FN1 and TGFB1 which were upregulated by CXCL4 in moDCs (Fig. 5h), suggesting that 
CXCL4 associated epigenetic imprinting also plays a role in promoting expression of 
pro-fibrotic genes. Although our data provides unprecedented data for the direct 
implication of CXCL4 in tissue fibrogenesis via CXCL4-moDCs, we next examined 
the possible implication of these CXCL4-moDCs on fibroblast behavior. By culturing 
fibroblasts with the supernatant of CXCL4-moDCs stimulated with polyI:C, we 
demonstrate that these fibroblasts expressed markedly higher levels of inflammatory 
mediators associated with fibrosis and above all, myofibroblast transition, considered 
indispensable for fibrosis, compared to conventional moDCs stimulated with the 
same TLR3 ligand (Fig. 5i and S9). Together, this data unequivocally demonstrates 
that CXCL4 alters the fate of moDCs differentiation into cells that drive fibrogenesis 
both directly and, via myofibroblast activation, indirectly. 

Discussion
Although the role of inflammation in fibrosis is increasingly recognized, the 
underlying molecular links between these processes remain elusive and their 
identification is paramount for the development of medicines to not only halt 
progression but prevent fibrosis. Using whole genome transcriptional and epigenetic 
profiling, we find that CXCL4 drives the development of a pro-inflammatory and 
pro-fibrotic phenotype in moDCs, characterized by the excessive production of ECM 
components and capacity to promote myofibroblast differentiation. As these are 
two key mechanisms contributing to tissue fibrogenesis, our study introduces the 
novel concept that CXCL4-induced inflammatory moDCs constitute the driving force 
behind both the initiation and progression of fibrosis in diseases where CXCL4 levels 
are increased such as SSc. 
	 TGF-β is considered a key regulator during fibrosis in physiological and 
pathological conditions22. For instance, TGF-β drives mesenchymal responses during 
wound healing, where its transiently increased expression promotes myofibroblast 
transition. However, the initial stage of wound healing is the formation of a platelet 
plug, followed by monocyte recruitment and monocyte differentiation into M1 
macrophages. After this primarily inflammatory phase, a switch to resolution, 
accompanied by tissue repair and fibrosis, occurs23. Platelets, crucial players in the 
pathogenesis of several diseases including SSc, contain large amounts of CXCL44, 5, 24. 
Activation of platelets early on in the wound healing process is likely to precede the 
synthesis and secretion of TGF-β. Notably, CXCL4 was found to play an important role 



98

in lung inflammation and tissue damage25, and has been identified as a biomarker 
for early rheumatoid arthritis where it was co-localized with inflammatory cells 
and platelets in synovial tissue26. In contrast to other inflammatory mediators 
that appear at later stages of disease, CXCL4 levels are also increased in patients 
at risk for SSc, a disease in which clinical inflammation precedes fibrosis by years5. 
Together, these observations indicate an early role for CXCL4 in inflammatory and 
subsequent fibrotic processes, placing CXCL4 upstream of TGF-β. This possibility 
is further substantiated by our finding that CXCL4 clearly induces TGF-β RNA and 
protein expression (Fig. 5a and b).
	 Multiple studies provide compelling evidence for the presence of inappropriately 
activated and/or trained innate immunity in patients with inflammatory diseases. 
Recently, several crucial studies have highlighted the molecular basis, relevance and 
pathological consequences of innate immunity trained by various exogenous ligands 
and endogenous ligands the latter contributing to atherosclerosis and gout27, 28, 29, 

30. Following a seminal study which observed enhanced collagen synthesis in SSc 
patient skin fibroblasts compared to those of healthy control31, this phenomenon 
was observed in SSc patient DCs, which had potentiated responses to various 
TLR agonists5, 32. Our study now reveals that differentiating monocytes undergo 
massive transcriptomic and epigenetic reprogramming upon CXCL4 exposure, and 
we propose that CXCL4 is a clinically relevant and important endogenous ligand 
bridging inflammation with fibrosis via trained immunity and provides a rationale 
for therapeutic targeting of CXCL4 in SSc and other fibrotic diseases.

Methods
Differentiation and stimulation of CXCL4 moDCs
Blood from healthy donors (HDs) was collected in accordance with institutional ethical 
approval. Peripheral blood mononuclear cell (PBMC) and monocyte isolation, as 
well as differentiation of monocyte-derived dendritic cells (moDCs) were performed 
as described previously8. Briefly, PBMCs were isolated from heparinized venous 
blood using Ficoll PaqueTM Plus (GE Healthcare) density gradient. Monocytes were 
purified with anti-CD14 magnetic beads-based positive isolation using autoMACS 
Pro Separator-assisted cell sorting (Miltenyi Biotec), according to the manufacturer’s 
protocol. Monocyte purity was above 95% for all of the samples (data not shown). For 
the differentiation of moDCs, monocytes were cultured at a density of 1x106 cells/
ml in culture medium comprised of RPMI 1640 with GlutaMAX (Life Technologies) 
supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS; Biowest) 
and 1% (v/v) antibiotics (penicillin and streptomycin; Life Technologies). In order to 
generate moDCs, GM-CSF (800 U/ml; R&D) and IL-4 (500 U/ml; R&D) were added. For 
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the experiments where we investigated the effects of CXCL4, we added 10 µg/ml of 
recombinant human CXCL4 (PeproTech) on day 0 and day 3. Medium and cytokines 
were refreshed on day 3. Differentiated moDCs were obtained after 6 days from 
monocytes cultured at 37oC in the presence of 5% CO2. After differentiation, cells 
were washed, plated at a density of 0.5x106 cells/ml and left overnight (O/N) in new 
culture medium. Cells were stimulated with 25 µg/ml of polyinosinic-polycytidylic 
acid (polyI:C; InvivoGen) for 4 hours or 24 hours, or kept unstimulated, as shown in 
Fig. 1a.

DNA and RNA extraction for DNA methylation and RNA sequencing 
analysis
For DNA methylation and RNA sequencing analysis cells were collected from 5 
HDs: on the first day of culture (monocytes, day 0); during differentiation on day 
2, day 4 and day 6. After O/N resting, unstimulated cells (day 7), cells stimulated 
with polyI:C for 4 hours (day 7 + 4h)  and 24 hours (day 8) were also lysed in RLTplus 
buffer (Qiagen) containing 1% (v/v) beta-mercaptoethanol (Sigma). In total, we 
obtained 65 paired samples for RNA sequencing and DNA methylation profiling. 
DNA and RNA were extracted using the Allprep Universal Kit (Qiagen) following 
the manufacturer’s instructions. For the experimental validation using transfected 
moDCs and fibroblasts, due to the limiting number of cells, the total RNA was isolated 
using an RNeasy Micro Kit (Qiagen) according to the manufacturer’s instructions. 
The concentration of DNA and RNA was assessed using the Qubit RNA HS Assay Kit 
and Qubit dsDNA HS Assay Kit (Life Technologies), respectively, and measured in the 
Qubit 2.0 fluorimeter (Invitrogen). 

RNA sequencing
RNA Sequencing (RNA-seq) was performed at the Genomic Facility from the 
University Medical Center of Utrecht. RNA integrity was first evaluated using a 
Bioanalyzer (Agilent). RNA-seq library was prepared using 100ng total RNA using the 
TruSeq kit (Illumina). Oligo(dT) magnetic beads were used to enrich for messenger 
RNAs which were then fragmented (about 200 bp). Random hexamer-primers were 
used to reverse transcribe mRNA into double stranded cDNA, which was then end-
repaired followed by addition of 3’-end single nucleotide adenine. Sequencing 
adaptors were ligated to the resulting cDNA that was subsequently amplified using 
PCR. Agilent 2100 Bioanaylzer and the ABI StepOnePlus Real-Time PCR System were 
used to assess the quality and quantity of RNA-seq libraries. The library products 
were sequenced on an Illumina NextSeq  500 sequencer using 75bp single-end 
reads, generating on average 26.2 million clean reads per sample. 
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Transcriptional data analysis
For each of the 65 transcriptional profiles, reads were aligned using STAR aligner 
using the default parameters to the 65,217 annotated genes obtained from the 
GrCh38 (v79) built from the human genome (http://www.ensembl.org). On average 
22.5 million uniquely mapped reads were obtained per sample. The read counts per 
gene were quantified by the Python package HTSeq33 using annotations from the 
GrCh38 (v79) built from the human genome (http://www.ensembl.org). Differentially 
expressed genes (DEGs) were identified by using the DESeq2 (1.8.2) Bioconductor/R 
package34 using likelihood ratio test (LRT), and genes with FDR adjusted p-value 
< 0.05 were considered differentially expressed. Raw count data were transformed 
to count per million (CPM) for gene expression visualization. Variance stabilizing 
transformation (VST) was applied to obtain the VSD data for further analysis34.

DNA methylation profiling
DNA methylation profiling was performed at the GenomeScan (GenomeScan B.V., 
Leiden, The Netherlands). Genomic DNA was bisulfite-converted using the EZ 
DNA Methylation Gold Kit (Zymo Research) and used for microarray-based DNA 
methylation analysis on the HumanMethylation850 BeadChip (Illumina, Inc.), 
according to the manufacturer’s instructions. Beadchip images were scanned on 
the iScan system and the data quality was assessed using the minfi (version 1.20.2) 
package35 using default analysis settings. 

DNA methylation data analysis
Illumina Infinium HumanMethylation850 BeadChip fluorescent data (>850,000 CpG 
sites) were imported and transformed to methylated (M) and unmethylated (U) 
signal by minfi package35. CpG probes were quality-checked and filtered using the 
following criteria: (i) probes that failed in at least 5% samples were removed, (ii) probes 
with bead count < 3 in at least 5% of samples were removed, (iii) probes targeting 
SNP sites were removed, and (iv) probes that aligned to multiple locations were 
removed as described36. We further removed the probes for the sex chromosomes. 
One sample (102920-001-17, moDC differentiation sample from donor 4 on day 
2) did not pass the quality check and was removed from the subsequent analysis. 
Approximately 558,000 CpG sites located in six regions (TSS1500, TSS200, 5’UTR, 
1stExon, Exon boundaries and 3’UTR) remained after the quality checks. The intra-
array data normalization for the bias introduced by two types of Infinium probes 
was performed by Beta-mixture quantile normalization (BMIQ) method in ChAMP 
(version 2.6.0) package37. The DNA methylation level of each CpG was depicted 
by the ratio of methylated (M) signal relative to the sum of both methylated and 
unmethylated (U) signal:

β =
M

M + U +100
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We studied the alterations of DNA methylation considering: i) individual CpG sites, 
ii) region of the CpG site (including 1500 base pairs before TSS or TSS1500, TSS200, 
5’UTR, 1st Exon, Exon boundaries and 3’UTR), and iii) proximal genes. To find the 
differentially methylated CpGs (DMPs) of moDC or of CXCL4 moDC associated with 
time, a linear regression model with two variables (donor and time) was fitted at each 
probe. We analyzed DMPs separately for differentiation and stimulation experiments. 
CpG sites with time-associated FDR corrected p-value <0.05 were considered DMPs. 
Similarly, DMPs between moDCs and CXCL moDCs were identified using a linear 
regression model with three variables (donor, time and condition). To obtain region-
specific β-values, we calculated the average β-values using all probes that mapped to 
the same region (including TSS1500, TSS200, 5’UTR, 1stExon, ExonBnd and 3’UTR38) 
for a given gene. We then applied the same regression models to find differentially 
methylated regions (DMRs). If any of the regions around the gene were significantly 
altered, we considered that the gene was differentially methylated (DMGs).

Multidimensional scaling (MDS) analysis
Transcriptional data (VSD) and DNA methylation data (β) were utilized to visualize 
the differences of cells during differentiation and polyI:C stimulation. The Euclidean 
distances between samples were calculated based on VSD or β. Multidimensional 
scaling was performed using these distances in R (cmdscale function from stats 
package) to project (visualized using ggplot2 package) the high dimensional 
transcriptional or DNA methylation data onto two dimensions. MDS plots were 
generated using the DEGs or DMGs.

Comparison of gene expression and DNA methylation
To compare the relationship between expression and methylation data, we analyzed the 
two-layered data from genes that were both differentially expressed and methylated. 
We calculated Spearman correlation coefficients (for Fig. 3a, and S4b-d) between the 
expression (VSD) and methylation (β values) data for the genes using the cor function 
in R. To ensure paired analysis, we removed the corresponding expression profiles for 
the sample which failed the DNA methylation quality checks. Thus, we performed all 
correlation-based analysis using 64 pairs of samples. To study the global relationship 
between gene expression and DNA methylation, contour plots were constructed for 
paired expression (VSD) and methylation (β values) data using geom_density2d function 
in R (Fig. S4f and g). For Fig. S4f we used the paired data from all the genes, while for Fig. 
S4g we used the paired data from all the genes that were both differentially expressed 
and differentially methylated. We further analyzed the relationship between the paired 
expression (VSD) and methylation (β values) data using linear regression models and by 
fitting smoothing curves using generalized additive model (GAM).
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Pathway enrichment analysis 
Pathway enrichment analysis, for DEGs, DMGs or module genes, was performed 
using hypergeometric test in ReactomePA package39. The compareCluster function 
in the ReactomePA package (with parameters fun=”enrichPathway”, pAdjustMethod 
= “fdr”, and pvalueCutoff = 0.05) was used to compare and plot the pathways 
enriched in different sets of genes.

CIITA-silencing in monocytes
Freshly purified monocytes were cultured in medium without antibiotics at a 
density of 2x106 cells/ml. Transfection mix was prepared with 40nM of Silencer® 
pre-designed siRNA against human CIITA (targeting exon 3 and 4; siCIITA) or the 
SilencerTM Negative Control No.1 (siControl) (Life technologies), Lipofectamine 
2000 and Plus Reagent (both from Invitrogen), diluted in Opti-MEM® I Reduced-
Serum Medium (Life Technologies). After 5 hours, transfected cells were washed 
with culture medium and were differentiated into moDCs as described above.

Fibroblast cultures  
Dermal fibroblasts (DF) were isolated from healthy skin biopsies. Skin biopsies were 
obtained from unused material after cosmetic surgery from anonymous donors 
who had given prior informed consent to use the biopsies for research. The use 
of this material is exempted from ethical review processes. DF were isolated using 
the Whole Skin Dissociation Kit (MiltenyiBiotec) following the manufacturer’s 
instructions, cultured in DMEM medium (Life Technologies) supplemented with 10% 
(v/v) FBS, and 1% (v/v) antibiotics (used for experiments between passages 4 and 
5). Prior to the treatment, DF were cultured O/N with DMEM medium containing 1% 
FBS. Supernatants collected from moDCs and CXCL4 moDCs stimulated with polyI:C 
for 24 hours were added to the DF for 24 hours. Medium and polyI:C were also added 
to the DF as controls (data not shown).

Real-time quantitative PCR 
Purified RNA was retro-transcribed with iScript Reverse Transcriptase Kit (Bio-Rad). 
Gene expression was measured by Real-Time quantitative-PCR (RT-qPCR) on the 
QuantStudio 12k flex system using SybrSelect Mastermix (Life Technologies). To 
calculate the ratio between the expression of a gene of interest and housekeeping 
genes (mean between RPL32 and RPL13A for moDCs cultures; RPL13A for the 
fibroblasts cultures), we used either the 2-DCt or the 2-DDCt method. Primer 
sequences are listed in the online Table S2.
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Cytokine production measurement 
To validate secreted targets at the protein level, we collected cell-free supernatants 
after moDC and CXCL4 moDCs differentiation (day 6) and after 24 hour stimulation 
with polyI:C (day 8) from the same 5 HDs that were used for RNA sequencing and 
DNA methylation profiling. Cytokine measurements were assessed using Luminex 
assay as previously described8 at the MultiPlex Core Facility of the Laboratory of 
Translational Immunology (University Medical Center Utrecht). Data were acquired 
using Bio-Rad FlexMap3D system and the Xponent 4.2 software, and analyzed using 
Bio-Plex Manager (version 6.1).

Flow cytometry 
Cells were first incubated with Fixable Viability Dye eFluor780 (eBioscience) in PBS to 
exclude dead cells and were further treated with 10% (v/v) mouse serum (Fitzgerald). 
Next, cells were stained with the following anti-human fluorochrome-conjugated 
mAbs: CD14 (clone M5E2), CD86 (clone IT2.2) and CLEC10A (H037G3) obtained from 
BioLegend, CD1a (clone HI149) and LAMP1/ CD107a (clone H4A3) obtained from BD. 
Cells were acquired on the LSR Fortessa (BD) and data was analyzed using the FlowJo 
software (version 7.6.5; Tree Star. Inc.). 

Western blot 
Cells were washed with PBS and lysed in Laemmli buffer. Protein concentration was 
quantified using the Pierce BCA Protein Assay Kit (Thermo Scientific) according to 
the manufacture’s protocol. Equal amounts of protein from different lysates were 
separated by electrophoresis on a 4-12% Bis-Tris SDS NuPAGE gels (Invitrogen) and 
transferred to a PVDF membrane (Millipore). After blocking the membranes with 
Tris-buffered saline (pH 8) containing 0.05% Tween-20 and 4% milk (Bio-Rad) for 1 
hour at room temperature (RT), the membranes were probed with the antibodies 
recognizing FN1 (Abcam ) and tubulin (Sigma-Aldrich) O/N at 4oC. Afterwards, 
membranes were washed and incubated for 1 hour at RT with the secondary anti-
rabbit or anti-mouse antibodies, both HRP-conjugated (Dako). Protein detection 
was assessed using a ChemiDoc MP System (Bio-Rad). Protein visualization and 
densitometry analysis of band intensity were performed using the Image Lab 
software (version 5.1, Bio-Rad). We calculated the ratio between the expression of 
FN1 and tubulin to determine the relative expression of FN1 in different conditions.

Confocal microscopy 
As an alternative way to validate the expression and production of  FN1, we 
performed microscopy analyses as described before8, with minor modifications. For 
the differentiation of moDCs, we used Nunc® Lab-Tek® II chamber slides (Thermo 
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Scientific) pre-coated with 0.01% (v/v) poly-L-lysine (Sigma-Aldrich) in sterile water. 
After differentiation, cells were incubated with fixation/permeabilization solution 
(eBioscience) supplemented with 5% (v/v) normal goat serum (Cell Signaling) for 30 
minutes at RT, followed by two washes with permeabilization buffer (eBioscience). 
Cells were incubated for 1 hour with primary antibody recognizing FN1 (Abcam). 
After washing twice, cells were incubated with secondary antibody Alexa 594 anti-
rabbit (Life Technologies) and phalloidin-labeled FITC (ENZO) for 1 hour. Cells were 
washed and incubated with Hoechst 33342 (1 µM; Invitrogen) for 15 minutes. Next, 
cells were washed with permeabilization buffer twice, and at last washed with 
1% (w/v) BSA and 0.1% (v/v) sodium azide (NaN3; Sigma-Aldrich) in PBS. Mowiol 
(Sigma-Aldrich) was used to mount the dry slides and coverslips. Image acquisition 
was performed on a LSM710 (Zeiss) confocal microscope using the Zen2009 (Zeiss 
Enhanced Navigation) acquisition software. Confocal images were obtained with 
the objective 63x 1.40 oil and analyzed using the ImageJ software.

RegEnrich pipeline
We developed a data driven pipeline (RegEnrich) to integrate CXCL4 specific 
transcriptional and DNA methylation signatures and to predict the key TFs driving 
the differential transcriptional profile of CXCL4 moDCs compared to moDCs (Fig. 3b-
e, and 4a-b). RegEnrich pipeline involves three steps: 1) construction of data-driven 
networks; 2) deducing genes of interest; and 3) enrichment of transcriptional factors 
or regulators (henceforth called “TF”). The aim of RegEnrich pipeline is to rank TFs 
based on their differential expression and the enrichment of their own downstream 
targets in a given gene set. RegEnrich pipeline can be made available upon request 
from the authors.

Co-expression/co-methylation network construction
For co-expression network, VSD data of all DEGs were used to construct a co-
expression network by R package WGCNA (version 1.51)19 as described in https://
labs.genetics.ucla.edu/horvath/CoexpressionNetwork. Briefly, we used unsigned 
correlations and a soft thresholding power of 6 to construct networks with scale 
free topology. We calculated the adjacency matrix which was further used to 
calculate Topological overlap matrix (TOM) to identify modules of co-expressed 
genes. Modules were identified using cutreeDynamic function with the minimum 
module size of 30. Modules were further merged if the Pearson correlation of their 
eigengene was <0.25. Using this methodology, we obtained 27 co-expression 
modules (Fig. S5a). Nodes (genes) and edges (connections of genes) in each module 
were exported by exportNetworkToCytoscape function (threshold >=0.02). 
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To build co-methylation network, we first assigned a unique β value to a given gene 
of a sample by setting priority to four regions: TSS200>TSS1500>5’UTR>1stExon 
as described in Jiao et al.38. If for a gene TSS200 region is differentially methylated 
(DM), we considered the β value of TSS200 as the methylation level of this gene. 
Similarly, for a gene without DM TSS200 but with DM TSS1500, β value of TSS1500 
region was used, and so on. Then these regions, representing corresponding genes, 
were used to build co-methylation networks using the methodology described for 
the co-expression network. To achieve topological scale-free networks, standard 
parameters were set to a soft thresholding power of 12, “unsigned” network,  
minimum module size of 30,  merged module threshold < 0.25, and an exporting 
network threshold of 0.02. In total, 10 modules were reserved in the end (Fig. S5b).

Integration of co-expression and co-methylation network 
Spearman correlation coefficients were calculated using the co-expression and 
co-methylation module eigengenes to integrate the two networks (Fig. S5c). We 
calculated the number of genes shared between co-expression and co-methylation 
modules and two-tailed fisher exact test was used to evaluate the significance of 
each overlap (Fig. 3c). Pearson correlation coefficients were used to relate gene 
modules to sample traits i.e., CXCL4+/-, time and polyI:C+/- (Fig. 3c). 

Gene regulatory network (GRN) construction based on random forest 
(RF) algorithm
To obtain potential transcription (co-)factor/regulators (TF) for each gene in a 
data-driven manner, we constructed a TF-target GRN using random forest machine 
learning algorithm (modified from40, 41 and is part of RegEnrich package developed by 
us; see below). This TF-target GRN is a directed network of two types of components: 
a) TFs and b) their potential targets. Here targets might not necessarily be direct 
downstream targets that the TFs might bind to, rather the genes that are inferred 
to be directly/indirectly regulated by the TFs based on the transcriptional data. 
The construction of TF-target GRN consisted of four steps. First, the VST normalized 
data from 17,709 DEGs (same genes in co-expression network), including 1,172 
differentially expressed TFs (Table S9), were selected for the analyses. Second, we 
removed all the target genes that are expressed in less than 10 samples. Third, for 
every target gene, a random forest model was built to predict its expression based on 
TF expression (the parameters are: K = “sqrt”, nb.trees = 1000, importance.measure 
= “IncNodePurity”). As a last step, models with low performance (MSE < 0.5) were 
removed to achieve a robust TF-target GRN. 
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TF enrichment analysis
In this study, TF enrichment analyses were performed on two data-driven networks, 
a co-expression network and a GRN network. For the co-expression network, we 
ranked the edges between TFs and their potential targets based on the edge weight. 
Top 5% edges were then selected and were considered for further analyses. This 
resulted in 1,037,689 TF-target connections. Similarly for the GRN network, we 
used top 5% of edges (688,559 TF-target connections). One-tailed hypergeometric 
test was used to calculate the enrichment p-values (Pε) for each TF in a given set of 
genes (here genes differential between CXCL4 moDCs and moDCs). Those TFs that 
exhibited significant differential expression (Po < 0.05) and had significant enrichment 
(Pε < 0.05) were considered as key TFs. In other words, TFs that were differentially 
expressed along with their own targets were considered to be enriched in a given 
gene set. The overall scores of TFs were calculated by:
score = norm(-log (Pε)) + norm(-log(Po)), where   norm(x) =

x-min (r)
max (r) - min(r)

.

Cytoscape 3.4 (www.cytoscape.org) was used to visualize the networks. In TF-TF 
networks, we only plot the edges connecting the enriched key TFs in both co-
expression and GRN network. For better visualization, only TFs with |log2(fold 
change)| > 0.6 were shown (Fig. 4a, b, S7a and b). 

Data availability: RNAseq count matrices and BAM files have been deposited in the 
National Center for Biotechnology Information’s Gene Expression Omnibus under 
accession number GSE115488. Raw and processed DNA methylation data has been 
deposited in the National Center for Biotechnology Information’s Gene Expression 
Omnibus under accession number GSE115201.



107

Transcriptional and epigenetic reprogramming of DCs by CXCL4

4

References

1.	 Rinkevich, Y. et al. Skin fibrosis. 
Identification and isolation of a dermal 
lineage with intrinsic fibrogenic potential. 
Science 348, aaa2151 (2015).

2.	 Zeisberg, M. & Kalluri, R. Cellular 
mechanisms of tissue fibrosis. 1. Common 
and organ-specific mechanisms associated 
with tissue fibrosis. Am. J. Physiol. Cell 
Physiol. 304, C216-225 (2013).

3.	 Wick, G. et al. The immunology of fibrosis: 
innate and adaptive responses. Trends 
Immunol. 31, 110-119 (2010).

4.	 Levine, S.P. & Wohl, H. Human platelet 
factor 4: Purification and characterization 
by affinity chromatography. Purification of 
human platelet factor 4. J. Biol. Chem. 251, 
324-328 (1976).

5.	 van Bon, L. et al. Proteome-wide analysis 
and CXCL4 as a biomarker in systemic 
sclerosis. N. Engl. J. Med. 370, 433-443 
(2014).

6.	 Schaffner, A., Rhyn, P., Schoedon, G. & 
Schaer, D.J. Regulated expression of 
platelet factor 4 in human monocytes - 
role of PARs as a quantitatively important 
monocyte activation pathway. J. Leukoc. 
Biol. 78, 202-209 (2005).

7.	 Affandi, A.J. et al. CXCL4 is a novel inducer 
of human Th17 cells and correlates with 
IL-17 and IL-22 in psoriatic arthritis. Eur. J. 
Immunol. 48, 522-531 (2018).

8.	 Silva-Cardoso, S.C. et al. CXCL4 exposure 
potentiates TLR-driven polarization of 
human monocyte-derived dendritic cells 
and increases stimulation of T cells. J. 
Immunol. 199, 253-262 (2017).

9.	 Scheuerer, B. et al. The CXC-chemokine 
platelet factor 4 promotes monocyte 
survival and induces monocyte 
differentiation into macrophages. Blood 
95, 1158-1166 (2000).

10.	 Schinnerling, K., Garcia-Gonzalez, P. & 
Aguillon, J.C. Gene expression profiling 
of human monocyte-derived dendritic 
cells - searching for molecular regulators 
of tolerogenicity. Front. Immunol. 6, 528 
(2015).

11.	 Gleissner, C.A., Shaked, I., Little, K.M. & 
Ley, K. CXC chemokine ligand 4 induces 
a unique transcriptome in monocyte-
derived macrophages. J. Immunol. 184, 
4810-4818 (2010).

12.	 Vento-Tormo, R. et al. IL-4 orchestrates 
STAT6-mediated DNA demethylation 
leading to dendritic cell differentiation. 
Genome Biol. 17, 4 (2016).

13.	 Saeed, S. et al. Epigenetic programming of 
monocyte-to-macrophage differentiation 
and trained innate immunity. Science 345 
(2014).

14.	 Zhang, X. et al. DNA methylation 
dynamics during ex vivo differentiation 
and maturation of human dendritic cells. 
Epigenet. Chromatin 7 (2014).

15.	 Broen, J.C., Radstake, T.R. & Rossato, M. 
The role of genetics and epigenetics in the 
pathogenesis of systemic sclerosis. Nat. 
Rev. Rheumatol. 10, 671-681 (2014).

16.	 Altorok, N., Tsou, P.S., Coit, P., Khanna, 
D. & Sawalha, A.H. Genome-wide DNA 
methylation analysis in dermal fibroblasts 
from patients with diffuse and limited 
systemic sclerosis reveals common 
and subset-specific DNA methylation 
aberrancies. Ann. Rheum. Dis. 74, 1612-
1620 (2015).

17.	 Ramirez, R.N. et al. Dynamic gene 
regulatory networks of human myeloid 
differentiation. Cell Syst. 4, 416-429 (2017).

18.	 Goode, D.K. et al. Dynamic gene 
regulatory networks drive hematopoietic 
specification and differentiation. Dev. Cell 
36, 572-587 (2016).

19.	 Langfelder, P. & Horvath, S. WGCNA: an R 
package for weighted correlation network 
analysis. BMC Bioinformatics 9, 559 (2008).

20.	 Langfelder, P., Luo, R., Oldham, M.C. 
& Horvath, S. Is my network module 
preserved and reproducible? PLoS Comp. 
Biol. 7 (2011).



108

21.	 Landsverk, O.J.B., Ottesen, A.H., Berg-
Larsen, A., Appel, S. & Bakke, O. Differential 
regulation of MHC II and invariant chain 
expression during maturation of monocyte-
derived dendritic cells. J. Leukoc. Biol. 91, 
729-737 (2012).

22.	 Massague, J. TGF beta signalling in context. 
Nat. Rev. Mol. Cell Biol. 13, 616-630 (2012).

23.	 Xue, M. & Jackson, C.J. Extracellular matrix 
reorganization during wound healing and 
its impact on abnormal scarring. Adv. Wound 
Care (New Rochelle) 4, 119-136 (2015).

24.	 van Bon, L. et al. Low heme oxygenase-1 
levels in patients with systemic sclerosis 
are associated with an altered Toll-like 
receptor response: another role for CXCL4? 
Rheumatology 55, 2066-2073 (2016).

25.	 Hwaiz, R., Rahman, M., Zhang, E.M. & 
Thorlacius, H. Platelet secretion of CXCL4 is 
Rac1-dependent and regulates neutrophil 
infiltration and tissue damage in septic lung 
damage. Br. J. Pharmacol. 172, 5347-5359 
(2015).

26.	 Yeo, L. et al. Expression of chemokines 
CXCL4 and CXCL7 by synovial macrophages 
defines an early stage of rheumatoid 
arthritis. Ann. Rheum. Dis. 75, 763-771 
(2016).

27.	 Cheng, S.C. et al. mTOR- and HIF-1α–
mediated aerobic glycolysis as metabolic 
basis for trained immunity. Science 345 
(2014).

28.	 Mourits, V.P., Wijkmans, J.C., Joosten, L.A. 
& Netea, M.G. Trained immunity as a novel 
therapeutic strategy. Curr. Opin. Pharmacol. 
41, 52-58 (2018).

29.	 Bekkering, S. et al. Oxidized low-
density lipoprotein induces long-term 
proinflammatory cytokine production 
and foam cell formation via epigenetic 
reprogramming of monocytes. Thrombosis 
34, 1731-1738 (2014).

30.	 Crisan, T.O. et al. Soluble uric acid primes 
TLR-induced proinflammatory cytokine 
production by human primary cells via 
inhibition of IL-1Ra. Ann. Rheum. Dis. 75, 
755-762 (2016).

31.	 LeRoy, E.C. Increased collagen synthesis 
by scleroderma skin fibroblasts in vitro: a 
possible defect in the regulation or activation 

of the scleroderma fibroblast. J. Clin. Invest. 
54, 880-889 (1974).

32.	 van Bon, L. et al. Proteomic analysis of plasma 
identifies the Toll-like receptor agonists 
S100A8/A9 as a novel possible marker for 
systemic sclerosis phenotype. Ann. Rheum. 
Dis. 73, 1585-1589 (2014).

33.	 Anders, S., Pyl, P.T. & Huber, W. HTSeq--a 
Python framework to work with high-
throughput sequencing data. Bioinformatics 
31, 166-169 (2015).

34.	 Love, M.I., Huber, W. & Anders, S. Moderated 
estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol. 15 
(2014).

35.	 Aryee, M.J. et al. Minfi: a flexible and 
comprehensive Bioconductor package for 
the analysis of Infinium DNA methylation 
microarrays. Bioinformatics 30, 1363-1369 
(2014).

36.	 Nordlund, J. et al. Genome-wide signatures 
of differential DNA methylation in pediatric 
acute lymphoblastic leukemia. Genome Biol 
14, r105 (2013).

37.	 Morris, T.J. et al. ChAMP: 450k Chip Analysis 
Methylation Pipeline. Bioinformatics 30, 428-
430 (2014).

38.	 Jiao, Y., Widschwendter, M. & Teschendorff, 
A.E. A systems-level integrative framework 
for genome-wide DNA methylation and 
gene expression data identifies differential 
gene expression modules under epigenetic 
control. Bioinformatics 30, 2360-2366 (2014).

39.	 Yu, G.C. & He, Q.Y. ReactomePA: an R/
Bioconductor package for reactome pathway 
analysis and visualization. Mol. Biosyst. 12, 
477-479 (2016).

40.	 Huynh-Thu, V.A., Irrthum, A., Wehenkel, L. & 
Geurts, P. Inferring Regulatory Networks from 
Expression Data Using Tree-Based Methods. 
PLoS One 5 (2010).

41.	 Walley, J.W. et al. Integration of omic 
networks in a developmental atlas of maize. 
Science 353, 814-818 (2016).



109

Transcriptional and epigenetic reprogramming of DCs by CXCL4

4

Acknowledgments: We thank Dr. Kris Reedquist and Prof. Linde Meyaard for their 
critical comments, Dr. Marzia Rossato for discussions about RNAseq and other 
members of our lab for the fruitful discussions. Funding: SCSC was supported by 
Portuguese FCT No.SFRH/BD/89643/2012; WT was supported by China Scholarship 
Council (CSC) No.201606300050; AP was supported by Netherlands Organisation for 
Scientific Research (NWO) grant number: 016.Veni.178.027; TRDJR was supported by 
ERC starting grant (CIRCUMVENT) and Arthritis foundation grant. 

Author contributions: Conceptualization (TRDJR, MB, SCSC, WT, AP on the 
conceptualization SCSC), Methodology (SCSC, BG, MC, WT, CA, APL, CPJB), Formal 
Analysis (WT, AD, AP), Resources (TRDJR), Writing original draft (SCSC, WT, AP, 
TRDJR), Writing reviewing and editing (SCSC, WT, CA, APL, CPJB, AD, JL, WM, EH, RJB, 
MB, AP, TRDJR), Visualization (WT, SCSC, AP), Supervision (TRDJR, MB, AP), Project 
Administration (TRDJR), Funding Acquisition (TRDJR, AP).



110

Fig. S1. Differentially expressed genes during differentiation. (a) Heatmap showing normalized 
expression (VSD) of top 500 DEGs between CXCL4 moDCs and moDCs during their differentiation 
(day 0 to day 6). Heatmap color schemes are based on z-scores. Hierarchical clustering dendrograms 
were calculated using Euclidean distance.  (b) Gene expression profiles for example genes from 
top 500 DEGs that were further validated at the protein level. Data are shown as mean of count 
per million (CPM) ± SEM. (c) Flow cytometry dot plot showing expression of CD86 and CD1a. 
Representative data from 5 HDs are shown. (d) Cytokine production of selected example proteins 
measured by Luminex using cell-free supernatants collected on day 6. Each symbol represents an 
individual donor; lines connect the same donor. (e)  Pathway enrichment analysis for the genes 
which were significantly up- and down-regulated during differentiation, as shown in Fig. 1b. Up 
to 30 most significant pathways (FDR adjusted p < 0.05) were shown for each set of genes. The size 
of the circle depicts the gene ratio of DEGs in the pathway to the total number of DEGs in each set  
of genes. Circle color represents FDR adjusted p values. The full lists of pathways are available in 
Table S5. Paired two-sided Student’s t-test; * P<0.05.
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Fig. S2. Differentially expressed genes upon polyI:C stimulation. (a) Heatmap same as Fig. S1 for 
top 500 DEGs between CXCL4 moDCs and moDCs upon polyI:C stimulation (day 7 to day 8). (b) Gene 
expression profiles for example genes from top 500 DEGs that were further validated on protein 
level. Data are shown as mean±SEM. (c) Flow cytometry analysis showing the relative expression 
of CLEC10A and LAMP1 between CXCL4 moDCs and moDCs, unstimulated and stimulated with 
polyI:C for 24 hours (on day 8). Representative data from 5 HDs are shown. (d) Cytokine production 
was measured by Luminex on cell-free supernatants after 24 hours stimulation with polyI:C (day 8). 
Each symbol represents an individual donor; lines connect the same donor. (e) Pathway enrichment 
analysis for the genes that were significantly up- and down-regulated upon polyI:C stimulation, 
shown in Fig. 1c. Up to 30 most significant pathways (FDR adjusted p < 0.05) were shown for each 
set of genes. The size of the circle depicts the gene ratio of DEGs in the pathway to the total number 
of DEGs in each set of genes. Circle color represents FDR adjusted p values. The full lists of pathways 
are available in Table S6. Paired two-sided Student’s t-test; * P<0.05, ** P < 0.01.
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Fig. S3. Dynamics of DNA methylation on region and CpG levels. (a) Venn diagram shows the 
overlaps of differentially methylated regions (DMRs) and CpG sites (c) during differentiation of: 
monocytes into moDCs (blue); monocytes into CXCL4 moDCs (green), and DMRs between moDCs 
and CXCL4 moDCs (yellow). (b) Venn diagram showing DMRs and CpG sites (d) in moDC (blue), CXCL4 
moDCs (green) and DMR/CpG between moDCs and CXCL4 moDCs (yellow) after polyI:C stimulation. 
In (a-d) pie charts represent the number of hyper-methylated regions (orange) and hypo-methylated 
regions (magenta). (e) Venn diagram showing the overlap of DMRs during differentiation (yellow 
circle in panel a) and upon polyI:C stimulation (yellow circle in panel b). (f) Heatmap reporting top 
500 regions in overlapping DMRs in panel d. (g) Temporal methylation patterns of selected regions 
and CpG sites (h) found to be differential in different comparisons. Lines represent mean of β values 
and shades represent 95% confidence interval. 
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Fig. S4. Comparison of transcriptome and DNA methylome. (a) Gene expression profile 
alterations of DNA methyltransferases and DNA demethylases. Data are shown as mean±SEM. 
(b) The distribution of Spearman correlation coefficients between the methylation levels of all 
regions (including the regions that are not differentially methylated) and the corresponding gene 
expression. (c) The distribution of Spearman correlation coefficients between the methylation levels 
of all CpG sites (including the CpGs that are not differentially methylated) and the corresponding 
gene expression. (d) The distribution of Spearman correlation coefficients between the methylation 
levels of differentially methylated CpGs and the corresponding gene expression. In (b to d) the cut-
offs (two vertical lines at R = ±0.32) indicate significant correlation coefficients (P < 0.01). Overlap 
between differentially expressed genes (DEGs) and differentially methylated genes (DMGs) during 
differentiation and upon polyI:C stimulation. A gene is considered differentially methylated if there 
is at least one region within this gene that is differentially methylated. (e) Venn diagram shows 
the overlapping genes between DEGs and DMGs in all comparisons which were used for further 
analysis. (f) Contour plots show global comparison of β values (x-axis) and VSD values (y-axis) for 
all the genes. (g) Contour plots show global comparison of β values (x-axis) and VSD values (y-axis) 
for genes that are differentially expressed and methylated. The black straight lines were obtained 
by fitting a linear regression model and the smoothing curves were obtained by fitting a non-linear 
model (see Methods).
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Fig. S5. Modules of co-expression and co-methylation networks. Hierarchical clustering 
dendrogram of genes generated using topological overlap matrix (TOM) obtained from (a) gene 
expression or (b) methylation data. The co-expression and co-methylation modules were obtained 
using WGCNA package and are shown with different colors independently. (c) Network of co-
expression and co-methylation modules based on the correlation of module eigengenes. Each circle 
(node) represents either co-expression or co-methylation module. Co-methylation modules are 
denoted as a node with a black circle in the middle, while the other nodes denote co-expression 
modules. The size of each node depicts the number of genes within that module. Different time 
and conditions are represented by the colors shown in the legend. The colored pie chart within 
each node represents the eigengene profile of that module. The edges (lines between two nodes) 
represent spearman correlation coefficient (r) of eigengenes between two modules. The thickness 
of edge depicts the absolute value of r and edges with absolute value of r<0.65 are not shown. 
Colored shades in the background depict strongly positively correlated modules. (d) Violin/box 
plots comparing the connectivity, normalized by the total connectivity in the corresponding 
module, for transcription (co-)factors (TF) and other genes (NonTF) in the co-expression (left) and 
co-methylation (right) networks.
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4

Fig. S6. Characteristics of co-expression and co-methylation modules. (a) Bar charts show 
the eigengene of representative co-expression modules. (b) Pathway enrichment analyses for the 
modules shown in (a). (c) Bar charts of the eigengene of representative co-mehtylation modules. (d) 
Enriched pathways analysis for the modules shown in (c). In (b) and (c) the size of the circle depicts 
the gene ratio of DEGs in the pathway to the total number of DEGs in each set of genes; the colors 
of the circle represent FDR adjusted p values. In brackets, below the graph, we show the number of 
genes in each module. The full lists of pathways are available in Table S8.
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Fig. S8. Identification of genes implicated in ECM remodeling. (a) Heatmap showing differentially 
expressed genes that play a role in ECM remodeling, identified from pathway enrichment analysis 
(Fig. S1b and Fig. S2b), and CXCL4 responsive co-expression modules (Fig. S5b). Each column 
represents a sample and the colors on the bottom denote different time and conditions. The color 
schemes in the heatmap are shown as z-scores. (b) Expression profiles of example genes implicated 
in ECM remodeling. Data are shown as mean±SEM. (c) After transfection of monocytes with Silencer 
negative control siRNA (siControl) and Silencer CIITA siRNA (siCIITA), cells were differentiated into 
moDCs for 6 days. Genes involved in ECM remodeling/fibrosis analyzed by qPCR on day 6. Data 
are normalized by the mean expression of RPL32 and RPL13A; fold change relative to siControl. 
(d) Fibronectin (FN1) and tubulin expression measured by western blot on day 6. Signal intensity 
of 5 independent experiments was quantified by densitometry analysis. To determine the relative 
expression of FN1 between siControl and siCIITA, the ratio between the expression of FN1 and 
tubulin was first calculated. In panels (c) and (d) each symbol represents an individual moDC donor; 
lines connect the same donor. Paired two-sided Student’s t-test. * P <0.05, ** P < 0.01, *** P < 0.001.
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Transcriptional and epigenetic reprogramming of DCs by CXCL4
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Fig. S9. Gene expression analysis of healthy myofibroblasts after exposure to cell-free 
supernatants from CXCL4 moDCs and moDCs. CXCL4 moDCs and moDCs on day 7 were 
stimulated with polyI:C for 24 hours. Cell-free supernatants were added to healthy myofibroblasts 
for 24 hours. Inflammatory and fibrotic gene expression was analyzed by qPCR. Each symbol 
represents an individual moDC donor (n=4). Lines connect the same moDC donors. (a) shows the 
gene expression for the first fibroblast donor. The remaining measured genes are shown in Fig. 5h. 
The gene expression for the (b) second and (c) third independent fibroblast donors. Paired two-
sided Student’s t-test. * P <0.05, ** P < 0.01, *** P < 0.001.
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Supplementary Tables
In request, complete version of all Supplementary tables will be available online 
in https://bitbucket.org/systemsimmunology/cxcl4_modcs/downloads/CXCL4_
moDC_Tables.zip

Differentiation (I) Stimulation with polyI:C (ii)
mono to 

conventional 
moDCs

mono to 
CXCL4-
moDCs

CXCL4-moDC VS 
conventional 

moDCs

conventional 
moDCs

CXCL4-
moDCs

CXCL4-moDC VS 
conventional 

moDCs
Gene 
transcription

Total DEG 13192 13110 5775 7767 8949 2397
Upregulated 6350 6390 3091 4161 4551 1325
Downregulated 6842 6720 2684 3606 4398 1072

DNA 
methylation

Total DMG 2804 2930 1065 1 1 5944
Hypermethylated 206 810 863 1 1 5493
Hypomethylated 2617 2156 207 0 0 529

 Show are the comparisons between: 1. monocytes (day 0) and moDCs (day2, 4 and 6); 2. monocytes 
(day 0) and CXCL4-moDCs (day2, 4 and 6); 3. moDCs (day2, 4 and 6) and CXCL4-moDCs (day2, 4 and 6); 
4. unstimulated and polyI:C stimulated (4h and 24h) moDCs; 5. unstimulated and polyI:C stimulated 
(4h and 24h) CXCL4-moDCs; 6. polyI:C stimulated (4h and 24h) moDCs and CXCL4-moDCs.

Table S1. Number of differently expressed genes (DEGs) and differently methylated genes (DMGs).
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Table S2. Sequences of primers used for RT-qPCR analysis.

Gene Forward Reverse
CIITA CCTGCTGTTCGGGACCTAAA GGATCCGCACCAGTTTGG
IRF8 CGACGCGCACCATTCA GCTTGCCCCCATAGTAGAAGCT
HLA DR CGATCACCAATGTACCTCCA ACTTGCGGAAAAGGTGGTCT
CD74 ATGCACCTGCTCCAGAATG TTTCGGTGGAGCGTCAGT
CD83 TCCTGAGCTGCGCCTACAG AAGTCCACATCTTCGGAGCAA
CD86 GAGTGAACAGACCAAGAAAAGAGAA AAAAACACGCTGGGCTTCATC
FLT1 / VEGFR1 GAAGCAACAGTCAATGGGCA GCGTGGTGTGCTTATTTGGA
FN1 CTGGCCGAAAATACATTGTAAA CCACAGTCGGGTCAGGAG
SPARC GCGGAAAATCCCTGCCAGAA GGCAGGAAGAGTCGAAGGTC
αSMA CCGACCGAATGCAGAAGGA ACAGAGTATTTGCGCTCCGAA
Sm22a/TAGLN CTCATGCCATAGGAAGGACC GTCCGAACCCAGACACAAGT
CHI3L1 GGAGTGGAATGATGTGACGC CCATCCTCCGACAGACAAGA
MCP1/CCL2 TCTGTGCCTGCTGCTCATAG GGGCATTGATTGCATCTGGC
MIP1α/CCL3 TGCTCAGAATCATGCAGGTCT GCAGCAAGTGATGCAGAGAAC
CCL22 CCTGACCCCTCTAACCCATC GGGTTTAAGCAGGGGAATCG
IL8 GCTCTGTGTGAAGGTGCAGT CCAGACAGAGCTCTCTTCCA
IL6 GACAGCCACTCACCTCTTCA CCTCTTTGCTGCTTTCACAC
CXCL10 TGAAATTATTCCTGCAAGCCAA CAGACATCTCTTCTCACCCTTCTTT
RPL32 AGGGTTCGTAGAAGATTCAAGG GGA AAC ATT GTG AGC GAT CTC
RPL13A CCTGGAGGAGAAGAGGAAAGAGA TTGAGGACCTCTGTGTATTTGTCAA
GAPDH ATCTTCTTTTGCGTCGCCAG TTCCCCATGGTGTCTGAGC
LAGLS9 CCGAGGAGAGGAAGACACAC CCCGTTCACCATCACCTTGA
COL1A1 CCAGAAGAACTGGTACATCAGCA CGCCATACTCGAACTGGAAT
COL4A2 CCTGAAGGCACAGCTAACCA TGCTGTTGTCTCGTCTGTCC
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Table S7

ID Reactome pathway Description ad
ju

st
ed

 
p-

va
lu

e

G
en

e 
#

R-HSA-202433 Generation of second messenger molecules 0,015718 11
R-HSA-877300 Interferon gamma signaling 0,015718 20
R-HSA-202430 Translocation of ZAP-70 to Immunological synapse 0,015785 8

R-HSA-5660526 Response to metal ions 0,015785 6
R-HSA-5661231 Metallothioneins bind metals 0,015785 6
R-HSA-556833 Metabolism of lipids and lipoproteins 0,015785 93
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 0,025556 8
R-HSA-168256 Immune System 0,025556 208
R-HSA-389948 PD-1 signaling 0,029926 8
R-HSA-168249 Innate Immune System 0,034765 134
R-HSA-174403 Glutathione synthesis and recycling 0,064187 6
R-HSA-373755 Semaphorin interactions 0,064187 14
R-HSA-109582 Hemostasis 0,064187 73
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 0,104892 8
R-HSA-422475 Axon guidance 0,104892 65

R-HSA-1280215 Cytokine Signaling in Immune system 0,107355 82
R-HSA-2142691 Synthesis of Leukotrienes (LT) and Eoxins (EX) 0,127141 7
R-HSA-399719 Trafficking of AMPA receptors 0,127217 8
R-HSA-399721 Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity 0,127217 8

R-HSA-1474290 Collagen formation 0,127217 16
R-HSA-2132295 MHC class II antigen presentation 0,134047 19
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 0,139483 13
R-HSA-388841 Costimulation by the CD28 family 0,139483 13

R-HSA-4085001 Sialic acid metabolism 0,151171 8
R-HSA-216083 Integrin cell surface interactions 0,151171 15
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0,156699 20

R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 0,156805 12
R-HSA-6783783 Interleukin-10 signaling 0,16942 10
R-HSA-114608 Platelet degranulation 0,191733 19
R-HSA-419812 Calcitonin-like ligand receptors 0,191733 4
R-HSA-77286 mitochondrial fatty acid beta-oxidation of saturated fatty acids 0,191733 4

R-HSA-419037 NCAM1 interactions 0,191733 9
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to clathrin adapters0,191733 6
R-HSA-77289 Mitochondrial Fatty Acid Beta-Oxidation 0,191733 6

R-HSA-6798695 Neutrophil degranulation 0,191733 54

Table S7. List of significantly enriched pathways (adjusted p-value < 0.05) for the differently expressed 

genes (DEGs) overlapping from the comparisons between: 1. moDCs and CXCL4-moDCs (day 2, 4, 6) during 

differentiation, 2.  stimulated moDCs and stimulated CXCL4-moDCs (polyI:C 4h and 24h). Gene # - number of genes 

matching the pathway annotated.
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Table S8
Co-expression modules

Co-expression 
modules Module ID ID Reactome pathway Description ad

ju
st

ed
 p

-
va

lu
e

G
en

e 
#

R-HSA-6798695 Neutrophil degranulation 6,25E-08 77

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 4,31E-05 26

R-HSA-168249 Innate Immune System 0,000103 147

R-HSA-202733 Cell surface interactions at the vascular wall 0,000216 25

R-HSA-163125
Post-translational modification: synthesis of GPI-anchored 
proteins 0,000595 18

R-HSA-1474244 Extracellular matrix organization 9,15E-07 23
R-HSA-3000171 Non-integrin membrane-ECM interactions 2,07E-05 9
R-HSA-216083 Integrin cell surface interactions 4,81E-05 10

R-HSA-3000170 Syndecan interactions 5,53E-05 6
R-HSA-1660662 Glycosphingolipid metabolism 9,06E-05 7
R-HSA-556833 Metabolism of lipids and lipoproteins 0,000105 37
R-HSA-382551 Transmembrane transport of small molecules 0,000219 32
R-HSA-983712 Ion channel transport 0,000645 14
R-HSA-399719 Trafficking of AMPA receptors 0,000798 5

R-HSA-399721
Glutamate Binding, Activation of AMPA Receptors and 
Synaptic Plasticity 0,000798 5

R-HSA-3000157 Laminin interactions 0,001071 5
R-HSA-73923 Lipid digestion, mobilization, and transport 0,001515 9

R-HSA-1474290 Collagen formation 0,001783 8
R-HSA-174824 Lipoprotein metabolism 0,001835 7
R-HSA-193634 Axonal growth inhibition (RHOA activation) 0,001982 3

R-HSA-5660526 Response to metal ions 0,001982 3
R-HSA-5661231 Metallothioneins bind metals 0,001982 3
R-HSA-2187338 Visual phototransduction 0,002485 8
R-HSA-3000178 ECM proteoglycans 0,002497 7
R-HSA-193697 p75NTR regulates axonogenesis 0,002596 3
R-HSA-936837 Ion transport by P-type ATPases 0,002629 6
R-HSA-210991 Basigin interactions 0,003747 4
R-HSA-917937 Iron uptake and transport 0,003954 5
R-HSA-354192 Integrin alphaIIb beta3 signaling 0,00429 4
R-HSA-428157 Sphingolipid metabolism 0,005275 7
R-HSA-917977 Transferrin endocytosis and recycling 0,00553 4
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 0,006154 3

R-HSA-2022928 HS-GAG biosynthesis 0,006231 4
R-HSA-1474228 Degradation of the extracellular matrix 0,007398 9
R-HSA-8874081 MET activates PTK2 signaling 0,007805 4
R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,008099 5
R-HSA-1638091 Heparan sulfate/heparin (HS-GAG) metabolism 0,010229 5
R-HSA-1280215 Cytokine Signaling in Immune system 1,65E-21 192
R-HSA-168256 Immune System 3,49E-17 399
R-HSA-913531 Interferon Signaling 3,13E-15 69
R-HSA-877300 Interferon gamma signaling 4,25E-12 39
R-HSA-909733 Interferon alpha/beta signaling 5E-09 28
R-HSA-449147 Signaling by Interleukins 1,97E-08 114
R-HSA-983169 Class I MHC mediated antigen processing & presentation 4,87E-07 83

R-HSA-6783783 Interleukin-10 signaling 5,63E-06 19
R-HSA-114604 GPVI-mediated activation cascade 1,38E-05 20
R-HSA-168928 RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 1,5E-05 26
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 1,92E-05 67
R-HSA-936440 Negative regulators of RIG-I/MDA5 signaling 9,27E-05 14

R-HSA-1280218 Adaptive Immune System 9,82E-05 146
R-HSA-166166 MyD88-independent TLR3/TLR4 cascade 0,000122 27
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0,000122 27
R-HSA-937061 TRIF-mediated TLR3/TLR4 signaling 0,000122 27
R-HSA-166054 Activated TLR4 signalling 0,000127 30
R-HSA-389356 CD28 co-stimulation 0,000141 13
R-HSA-166520 Signalling by NGF 0,000173 91
R-HSA-168249 Innate Immune System 0,000245 210

R-HSA-1433557 Signaling by SCF-KIT 0,000296 67
R-HSA-6783589 Interleukin-6 family signaling 0,000325 11
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 0,000377 20
R-HSA-918233 TRAF3-dependent IRF activation pathway 0,00041 8
R-HSA-73887 Death Receptor Signalling 0,000423 16

R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0,000482 31
R-HSA-73980 RNA Polymerase III Transcription Termination 0,000491 10

R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0,000689 24
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0,000689 24
R-HSA-877312 Regulation of IFNG signaling 0,000962 7
R-HSA-186763 Downstream signal transduction 0,001092 67

R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 0,00116 70

R-HSA-975138
TRAF6 mediated induction of NFkB and MAP kinases upon 
TLR7/8 or 9 activation 0,001201 23

R-HSA-8875555 MET activates RAP1 and RAC1 0,001278 6
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0,001307 24

R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 0,001404 25
R-HSA-1169408 ISG15 antiviral mechanism 0,001443 20
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0,001443 20
R-HSA-6806834 Signaling by MET 0,001613 21
R-HSA-194138 Signaling by VEGF 0,001613 64
R-HSA-73780 RNA Polymerase III Chain Elongation 0,001675 8

R-HSA-76066
RNA Polymerase III Transcription Initiation From Type 2 
Promoter 0,002004 10

R-HSA-74158 RNA Polymerase III Transcription 0,002022 13
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 0,002022 13

R-HSA-168643
Nucleotide-binding domain, leucine rich repeat containing 
receptor (NLR) signaling pathways 0,002075 15

R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0,002226 21
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0,002226 21
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0,002226 21
R-HSA-389359 CD28 dependent Vav1 pathway 0,002274 6
R-HSA-186797 Signaling by PDGF 0,002352 70

R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 0,002475 8
R-HSA-109581 Apoptosis 0,002614 36

R-HSA-5669034 TNFs bind their physiological receptors 0,002705 10
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter0,002705 10

R-HSA-933542 TRAF6 mediated NF-kB activation 0,003141 9
R-HSA-187037 NGF signalling via TRKA from the plasma membrane 0,003279 70
R-HSA-512988 Interleukin-3, 5 and GM-CSF signaling 0,003336 52

R-HSA-5357801 Programmed Cell Death 0,003539 36
R-HSA-4420097 VEGFA-VEGFR2 Pathway 0,003656 61

R-HSA-3134963
DEx/H-box helicases activate type I IFN and inflammatory 
cytokines production 0,003759 6

R-HSA-933543
NF-kB activation through FADD/RIP-1 pathway mediated by 
caspase-8 and -10 0,003759 6

R-HSA-140534 Ligand-dependent caspase activation 0,003814 7
R-HSA-6785807 Interleukin-4 and 13 signaling 0,00415 25
R-HSA-166058 MyD88:Mal cascade initiated on plasma membrane 0,004876 22
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0,004876 22
R-HSA-76002 Platelet activation, signaling and aggregation 0,004879 52

R-HSA-389357 CD28 dependent PI3K/Akt signaling 0,00494 8
R-HSA-193692 Regulated proteolysis of p75NTR 0,005439 5

R-HSA-2465910 MASTL Facilitates Mitotic Progression 0,005439 5
R-HSA-168898 Toll-Like Receptors Cascades 0,006002 32
R-HSA-177929 Signaling by EGFR 0,006141 65

R-HSA-5689896 Ovarian tumor domain proteases 0,006169 11
R-HSA-76046 RNA Polymerase III Transcription Initiation 0,006169 11

R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0,00718 22
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0,00718 22
R-HSA-392451 G beta:gamma signalling through PI3Kgamma 0,007226 13

R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 0,007381 9
R-HSA-453274 Mitotic G2-G2/M phases 0,007784 38

R-HSA-5683057 MAPK family signaling cascades 0,008313 53
R-HSA-2424491 DAP12 signaling 0,008462 63
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 0,008685 13
R-HSA-3371378 Regulation by c-FLIP 0,008906 5
R-HSA-5218900 CASP8 activity is inhibited 0,008906 5

R-HSA-69416 Dimerization of procaspase-8 0,008906 5

R-HSA-76071
RNA Polymerase III Transcription Initiation From Type 3 
Promoter 0,009485 9

R-HSA-195253 Degradation of beta-catenin by the destruction complex 0,009677 19
R-HSA-1236974 ER-Phagosome pathway 0,011015 19

R-HSA-69275 G2/M Transition 0,011105 37
R-HSA-451927 Interleukin-2 signaling 0,011334 48

R-HSA-1251985 Nuclear signaling by ERBB4 0,011675 8
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 0,011675 8

R-HSA-983170
Antigen Presentation: Folding, assembly and peptide loading 
of class I MHC 0,011675 8

R-HSA-933541 TRAF6 mediated IRF7 activation 0,011914 10
R-HSA-187687 Signalling to ERKs 0,012129 48
R-HSA-397795 G-protein beta:gamma signalling 0,01229 13
R-HSA-446652 Interleukin-1 signaling 0,013157 12

R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 0,013851 27
R-HSA-169893 Prolonged ERK activation events 0,013927 46

R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 0,014073 37
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 0,014237 7
R-HSA-2028269 Signaling by Hippo 0,014237 7
R-HSA-2428924 IGF1R signaling cascade 0,014829 53
R-HSA-2428928 IRS-related events triggered by IGF1R 0,014829 53

R-HSA-74160 Gene Expression 0,015333 267

R-HSA-2404192
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor 
(IGF1R) 0,015759 53

R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0,016063 20
R-HSA-450294 MAP kinase activation in TLR cascade 0,016352 15
R-HSA-388841 Costimulation by the CD28 family 0,016972 16
R-HSA-912526 Interleukin receptor SHC signaling 0,01699 46
R-HSA-622312 Inflammasomes 0,017074 6

R-HSA-2172127 DAP12 interactions 0,017744 63
R-HSA-1236975 Antigen processing-Cross presentation 0,017959 21
R-HSA-5633007 Regulation of TP53 Activity 0,018097 31
R-HSA-389513 CTLA4 inhibitory signaling 0,018575 7
R-HSA-69273 Cyclin A/B1 associated events during G2/M transition 0,018575 7

R-HSA-912631 Regulation of signaling by CBL 0,018575 7
R-HSA-5663202 Diseases of signal transduction 0,018713 63
R-HSA-170968 Frs2-mediated activation 0,018811 45
R-HSA-69206 G1/S Transition 0,019315 24
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 0,019331 16
R-HSA-72306 tRNA processing 0,019807 22
R-HSA-75893 TNF signaling 0,019902 11

R-HSA-193704 p75 NTR receptor-mediated signalling 0,019968 21
R-HSA-5684996 MAPK1/MAPK3 signaling 0,02006 45

R-HSA-74751 Insulin receptor signalling cascade 0,020769 52
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 0,021577 12
R-HSA-5357905 Regulation of TNFR1 signaling 0,02259 9
R-HSA-2586552 Signaling by Leptin 0,022756 45
R-HSA-5675482 Regulation of necroptotic cell death 0,022838 6
R-HSA-936964 Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon 0,022838 6

R-HSA-8875878 MET promotes cell motility 0,023493 11
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R-HSA-168256 Immune System 6,46E-09 100
R-HSA-168249 Innate Immune System 6,84E-06 62

R-HSA-6798695 Neutrophil degranulation 3,08E-05 30
R-HSA-109582 Hemostasis 0,000185 34
R-HSA-877300 Interferon gamma signaling 0,001042 9

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 0,001055 11

R-HSA-6783783 Interleukin-10 signaling 0,000119 6
R-HSA-168256 Immune System 0,000153 54

R-HSA-1445148 Translocation of GLUT4 to the plasma membrane 0,000299 7
R-HSA-2022870 Chondroitin sulfate biosynthesis 0,000365 4
R-HSA-2022923 Dermatan sulfate biosynthesis 0,000599 3
R-HSA-389359 CD28 dependent Vav1 pathway 0,000789 3

R-HSA-1630316 Glycosaminoglycan metabolism 0,000902 8
R-HSA-168249 Innate Immune System 0,00102 35
R-HSA-73887 Death Receptor Signalling 0,001153 5

R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,001379 5
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion0,001575 3
R-HSA-418038 Nucleotide-like (purinergic) receptors 0,001916 3
R-HSA-71387 Metabolism of carbohydrates 0,002757 12

R-HSA-5358351 Signaling by Hedgehog 0,002971 8
R-HSA-109582 Hemostasis 0,000886 10

R-HSA-5696395 Formation of Incision Complex in GG-NER 0,001165 3
R-HSA-167169 HIV Transcription Elongation 0,001704 3
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 0,001704 3
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 0,001704 3
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 0,001913 3
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 0,003009 2
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 0,003114 4
R-HSA-197264 Nicotinamide salvaging 0,003375 2
R-HSA-112382 Formation of RNA Pol II elongation complex 0,003661 3
R-HSA-75955 RNA Polymerase II Transcription Elongation 0,003661 3

R-HSA-6782135 Dual incision in TC-NER 0,003994 3
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0,004526 3
R-HSA-167172 Transcription of the HIV genome 0,00593 3
R-HSA-425410 Metal ion SLC transporters 0,006475 2

R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 0,006603 3
R-HSA-73857 RNA Polymerase II Transcription 0,007144 4

R-HSA-167160
RNA Pol II CTD phosphorylation and interaction with CE 
during HIV infection 0,007529 2

R-HSA-210991 Basigin interactions 0,007529 2
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 0,007529 2

R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 0,008082 3
R-HSA-674695 RNA Polymerase II Pre-transcription Events 0,008614 3
R-HSA-72086 mRNA Capping 0,008655 2

R-HSA-196807 Nicotinate metabolism 0,009244 2
R-HSA-73772 RNA Polymerase I Promoter Escape 0,009851 2

R-HSA-196854 Metabolism of vitamins and cofactors 0,010361 4
R-HSA-73863 RNA Polymerase I Transcription Termination 0,011117 2

R-HSA-113418 Formation of the Early Elongation Complex 0,011776 2
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 0,011776 2

R-HSA-5694530 Cargo concentration in the ER 0,011776 2

R-HSA-425366
Transport of glucose and other sugars, bile salts and organic 
acids, metal ions and amine compounds 0,014702 3

R-HSA-5696400 Dual Incision in GG-NER 0,016845 2
R-HSA-5696398 Nucleotide Excision Repair 0,017021 3
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 0,017089 5

R-HSA-5362517 Signaling by Retinoic Acid 0,018436 2
R-HSA-73894 DNA Repair 0,018866 5

R-HSA-167161 HIV Transcription Initiation 0,0218 2
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 0,0218 2
R-HSA-73776 RNA Polymerase II Promoter Escape 0,0218 2
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening0,0218 2
R-HSA-75953 RNA Polymerase II Transcription Initiation 0,0218 2
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance0,0218 2

R-HSA-1989781 PPARA activates gene expression 0,022242 3
R-HSA-73762 RNA Polymerase I Transcription Initiation 0,022678 2

R-HSA-400206
Regulation of lipid metabolism by Peroxisome proliferator-
activated receptor alpha (PPARalpha) 0,02367 3

R-HSA-114608 Platelet degranulation 0,024157 3
R-HSA-383280 Nuclear Receptor transcription pathway 0,025399 2
R-HSA-162906 HIV Infection 0,026615 4
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0,026671 3

R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 0,028245 2
R-HSA-162599 Late Phase of HIV Life Cycle 0,028781 3
R-HSA-202733 Cell surface interactions at the vascular wall 0,028781 3
R-HSA-180585 Vif-mediated degradation of APOBEC3G 0,029221 2
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Table S8. List of significantly enriched pathways (adjusted p-value < 0.05) for co-expression and co-

methylation modules. Gene # - number of genes matching the pathway annotated.
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Table S8
Co-expression modules

Co-expression 
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R-HSA-6798695 Neutrophil degranulation 6,25E-08 77

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 4,31E-05 26

R-HSA-168249 Innate Immune System 0,000103 147

R-HSA-202733 Cell surface interactions at the vascular wall 0,000216 25

R-HSA-163125
Post-translational modification: synthesis of GPI-anchored 
proteins 0,000595 18

R-HSA-1474244 Extracellular matrix organization 9,15E-07 23
R-HSA-3000171 Non-integrin membrane-ECM interactions 2,07E-05 9
R-HSA-216083 Integrin cell surface interactions 4,81E-05 10

R-HSA-3000170 Syndecan interactions 5,53E-05 6
R-HSA-1660662 Glycosphingolipid metabolism 9,06E-05 7
R-HSA-556833 Metabolism of lipids and lipoproteins 0,000105 37
R-HSA-382551 Transmembrane transport of small molecules 0,000219 32
R-HSA-983712 Ion channel transport 0,000645 14
R-HSA-399719 Trafficking of AMPA receptors 0,000798 5

R-HSA-399721
Glutamate Binding, Activation of AMPA Receptors and 
Synaptic Plasticity 0,000798 5

R-HSA-3000157 Laminin interactions 0,001071 5
R-HSA-73923 Lipid digestion, mobilization, and transport 0,001515 9

R-HSA-1474290 Collagen formation 0,001783 8
R-HSA-174824 Lipoprotein metabolism 0,001835 7
R-HSA-193634 Axonal growth inhibition (RHOA activation) 0,001982 3

R-HSA-5660526 Response to metal ions 0,001982 3
R-HSA-5661231 Metallothioneins bind metals 0,001982 3
R-HSA-2187338 Visual phototransduction 0,002485 8
R-HSA-3000178 ECM proteoglycans 0,002497 7
R-HSA-193697 p75NTR regulates axonogenesis 0,002596 3
R-HSA-936837 Ion transport by P-type ATPases 0,002629 6
R-HSA-210991 Basigin interactions 0,003747 4
R-HSA-917937 Iron uptake and transport 0,003954 5
R-HSA-354192 Integrin alphaIIb beta3 signaling 0,00429 4
R-HSA-428157 Sphingolipid metabolism 0,005275 7
R-HSA-917977 Transferrin endocytosis and recycling 0,00553 4
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 0,006154 3

R-HSA-2022928 HS-GAG biosynthesis 0,006231 4
R-HSA-1474228 Degradation of the extracellular matrix 0,007398 9
R-HSA-8874081 MET activates PTK2 signaling 0,007805 4
R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,008099 5
R-HSA-1638091 Heparan sulfate/heparin (HS-GAG) metabolism 0,010229 5
R-HSA-1280215 Cytokine Signaling in Immune system 1,65E-21 192
R-HSA-168256 Immune System 3,49E-17 399
R-HSA-913531 Interferon Signaling 3,13E-15 69
R-HSA-877300 Interferon gamma signaling 4,25E-12 39
R-HSA-909733 Interferon alpha/beta signaling 5E-09 28
R-HSA-449147 Signaling by Interleukins 1,97E-08 114
R-HSA-983169 Class I MHC mediated antigen processing & presentation 4,87E-07 83

R-HSA-6783783 Interleukin-10 signaling 5,63E-06 19
R-HSA-114604 GPVI-mediated activation cascade 1,38E-05 20
R-HSA-168928 RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 1,5E-05 26
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 1,92E-05 67
R-HSA-936440 Negative regulators of RIG-I/MDA5 signaling 9,27E-05 14

R-HSA-1280218 Adaptive Immune System 9,82E-05 146
R-HSA-166166 MyD88-independent TLR3/TLR4 cascade 0,000122 27
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0,000122 27
R-HSA-937061 TRIF-mediated TLR3/TLR4 signaling 0,000122 27
R-HSA-166054 Activated TLR4 signalling 0,000127 30
R-HSA-389356 CD28 co-stimulation 0,000141 13
R-HSA-166520 Signalling by NGF 0,000173 91
R-HSA-168249 Innate Immune System 0,000245 210

R-HSA-1433557 Signaling by SCF-KIT 0,000296 67
R-HSA-6783589 Interleukin-6 family signaling 0,000325 11
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 0,000377 20
R-HSA-918233 TRAF3-dependent IRF activation pathway 0,00041 8
R-HSA-73887 Death Receptor Signalling 0,000423 16

R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0,000482 31
R-HSA-73980 RNA Polymerase III Transcription Termination 0,000491 10

R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0,000689 24
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0,000689 24
R-HSA-877312 Regulation of IFNG signaling 0,000962 7
R-HSA-186763 Downstream signal transduction 0,001092 67

R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 0,00116 70

R-HSA-975138
TRAF6 mediated induction of NFkB and MAP kinases upon 
TLR7/8 or 9 activation 0,001201 23

R-HSA-8875555 MET activates RAP1 and RAC1 0,001278 6
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0,001307 24

R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 0,001404 25
R-HSA-1169408 ISG15 antiviral mechanism 0,001443 20
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0,001443 20
R-HSA-6806834 Signaling by MET 0,001613 21
R-HSA-194138 Signaling by VEGF 0,001613 64
R-HSA-73780 RNA Polymerase III Chain Elongation 0,001675 8

R-HSA-76066
RNA Polymerase III Transcription Initiation From Type 2 
Promoter 0,002004 10

R-HSA-74158 RNA Polymerase III Transcription 0,002022 13
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 0,002022 13

R-HSA-168643
Nucleotide-binding domain, leucine rich repeat containing 
receptor (NLR) signaling pathways 0,002075 15

R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0,002226 21
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0,002226 21
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0,002226 21
R-HSA-389359 CD28 dependent Vav1 pathway 0,002274 6
R-HSA-186797 Signaling by PDGF 0,002352 70

R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 0,002475 8
R-HSA-109581 Apoptosis 0,002614 36

R-HSA-5669034 TNFs bind their physiological receptors 0,002705 10
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter0,002705 10

R-HSA-933542 TRAF6 mediated NF-kB activation 0,003141 9
R-HSA-187037 NGF signalling via TRKA from the plasma membrane 0,003279 70
R-HSA-512988 Interleukin-3, 5 and GM-CSF signaling 0,003336 52

R-HSA-5357801 Programmed Cell Death 0,003539 36
R-HSA-4420097 VEGFA-VEGFR2 Pathway 0,003656 61

R-HSA-3134963
DEx/H-box helicases activate type I IFN and inflammatory 
cytokines production 0,003759 6

R-HSA-933543
NF-kB activation through FADD/RIP-1 pathway mediated by 
caspase-8 and -10 0,003759 6

R-HSA-140534 Ligand-dependent caspase activation 0,003814 7
R-HSA-6785807 Interleukin-4 and 13 signaling 0,00415 25
R-HSA-166058 MyD88:Mal cascade initiated on plasma membrane 0,004876 22
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0,004876 22
R-HSA-76002 Platelet activation, signaling and aggregation 0,004879 52

R-HSA-389357 CD28 dependent PI3K/Akt signaling 0,00494 8
R-HSA-193692 Regulated proteolysis of p75NTR 0,005439 5

R-HSA-2465910 MASTL Facilitates Mitotic Progression 0,005439 5
R-HSA-168898 Toll-Like Receptors Cascades 0,006002 32
R-HSA-177929 Signaling by EGFR 0,006141 65

R-HSA-5689896 Ovarian tumor domain proteases 0,006169 11
R-HSA-76046 RNA Polymerase III Transcription Initiation 0,006169 11

R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0,00718 22
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0,00718 22
R-HSA-392451 G beta:gamma signalling through PI3Kgamma 0,007226 13

R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 0,007381 9
R-HSA-453274 Mitotic G2-G2/M phases 0,007784 38

R-HSA-5683057 MAPK family signaling cascades 0,008313 53
R-HSA-2424491 DAP12 signaling 0,008462 63
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 0,008685 13
R-HSA-3371378 Regulation by c-FLIP 0,008906 5
R-HSA-5218900 CASP8 activity is inhibited 0,008906 5

R-HSA-69416 Dimerization of procaspase-8 0,008906 5

R-HSA-76071
RNA Polymerase III Transcription Initiation From Type 3 
Promoter 0,009485 9

R-HSA-195253 Degradation of beta-catenin by the destruction complex 0,009677 19
R-HSA-1236974 ER-Phagosome pathway 0,011015 19

R-HSA-69275 G2/M Transition 0,011105 37
R-HSA-451927 Interleukin-2 signaling 0,011334 48

R-HSA-1251985 Nuclear signaling by ERBB4 0,011675 8
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 0,011675 8

R-HSA-983170
Antigen Presentation: Folding, assembly and peptide loading 
of class I MHC 0,011675 8

R-HSA-933541 TRAF6 mediated IRF7 activation 0,011914 10
R-HSA-187687 Signalling to ERKs 0,012129 48
R-HSA-397795 G-protein beta:gamma signalling 0,01229 13
R-HSA-446652 Interleukin-1 signaling 0,013157 12

R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 0,013851 27
R-HSA-169893 Prolonged ERK activation events 0,013927 46

R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 0,014073 37
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 0,014237 7
R-HSA-2028269 Signaling by Hippo 0,014237 7
R-HSA-2428924 IGF1R signaling cascade 0,014829 53
R-HSA-2428928 IRS-related events triggered by IGF1R 0,014829 53

R-HSA-74160 Gene Expression 0,015333 267

R-HSA-2404192
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor 
(IGF1R) 0,015759 53

R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0,016063 20
R-HSA-450294 MAP kinase activation in TLR cascade 0,016352 15
R-HSA-388841 Costimulation by the CD28 family 0,016972 16
R-HSA-912526 Interleukin receptor SHC signaling 0,01699 46
R-HSA-622312 Inflammasomes 0,017074 6

R-HSA-2172127 DAP12 interactions 0,017744 63
R-HSA-1236975 Antigen processing-Cross presentation 0,017959 21
R-HSA-5633007 Regulation of TP53 Activity 0,018097 31
R-HSA-389513 CTLA4 inhibitory signaling 0,018575 7
R-HSA-69273 Cyclin A/B1 associated events during G2/M transition 0,018575 7

R-HSA-912631 Regulation of signaling by CBL 0,018575 7
R-HSA-5663202 Diseases of signal transduction 0,018713 63
R-HSA-170968 Frs2-mediated activation 0,018811 45
R-HSA-69206 G1/S Transition 0,019315 24
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 0,019331 16
R-HSA-72306 tRNA processing 0,019807 22
R-HSA-75893 TNF signaling 0,019902 11

R-HSA-193704 p75 NTR receptor-mediated signalling 0,019968 21
R-HSA-5684996 MAPK1/MAPK3 signaling 0,02006 45

R-HSA-74751 Insulin receptor signalling cascade 0,020769 52
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 0,021577 12
R-HSA-5357905 Regulation of TNFR1 signaling 0,02259 9
R-HSA-2586552 Signaling by Leptin 0,022756 45
R-HSA-5675482 Regulation of necroptotic cell death 0,022838 6
R-HSA-936964 Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon 0,022838 6

R-HSA-8875878 MET promotes cell motility 0,023493 11
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R-HSA-168256 Immune System 6,46E-09 100
R-HSA-168249 Innate Immune System 6,84E-06 62

R-HSA-6798695 Neutrophil degranulation 3,08E-05 30
R-HSA-109582 Hemostasis 0,000185 34
R-HSA-877300 Interferon gamma signaling 0,001042 9

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 0,001055 11

R-HSA-6783783 Interleukin-10 signaling 0,000119 6
R-HSA-168256 Immune System 0,000153 54

R-HSA-1445148 Translocation of GLUT4 to the plasma membrane 0,000299 7
R-HSA-2022870 Chondroitin sulfate biosynthesis 0,000365 4
R-HSA-2022923 Dermatan sulfate biosynthesis 0,000599 3
R-HSA-389359 CD28 dependent Vav1 pathway 0,000789 3

R-HSA-1630316 Glycosaminoglycan metabolism 0,000902 8
R-HSA-168249 Innate Immune System 0,00102 35
R-HSA-73887 Death Receptor Signalling 0,001153 5

R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,001379 5
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion0,001575 3
R-HSA-418038 Nucleotide-like (purinergic) receptors 0,001916 3
R-HSA-71387 Metabolism of carbohydrates 0,002757 12

R-HSA-5358351 Signaling by Hedgehog 0,002971 8
R-HSA-109582 Hemostasis 0,000886 10

R-HSA-5696395 Formation of Incision Complex in GG-NER 0,001165 3
R-HSA-167169 HIV Transcription Elongation 0,001704 3
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 0,001704 3
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 0,001704 3
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 0,001913 3
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 0,003009 2
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 0,003114 4
R-HSA-197264 Nicotinamide salvaging 0,003375 2
R-HSA-112382 Formation of RNA Pol II elongation complex 0,003661 3
R-HSA-75955 RNA Polymerase II Transcription Elongation 0,003661 3

R-HSA-6782135 Dual incision in TC-NER 0,003994 3
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0,004526 3
R-HSA-167172 Transcription of the HIV genome 0,00593 3
R-HSA-425410 Metal ion SLC transporters 0,006475 2

R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 0,006603 3
R-HSA-73857 RNA Polymerase II Transcription 0,007144 4

R-HSA-167160
RNA Pol II CTD phosphorylation and interaction with CE 
during HIV infection 0,007529 2

R-HSA-210991 Basigin interactions 0,007529 2
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 0,007529 2

R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 0,008082 3
R-HSA-674695 RNA Polymerase II Pre-transcription Events 0,008614 3
R-HSA-72086 mRNA Capping 0,008655 2

R-HSA-196807 Nicotinate metabolism 0,009244 2
R-HSA-73772 RNA Polymerase I Promoter Escape 0,009851 2

R-HSA-196854 Metabolism of vitamins and cofactors 0,010361 4
R-HSA-73863 RNA Polymerase I Transcription Termination 0,011117 2

R-HSA-113418 Formation of the Early Elongation Complex 0,011776 2
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 0,011776 2

R-HSA-5694530 Cargo concentration in the ER 0,011776 2

R-HSA-425366
Transport of glucose and other sugars, bile salts and organic 
acids, metal ions and amine compounds 0,014702 3

R-HSA-5696400 Dual Incision in GG-NER 0,016845 2
R-HSA-5696398 Nucleotide Excision Repair 0,017021 3
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 0,017089 5

R-HSA-5362517 Signaling by Retinoic Acid 0,018436 2
R-HSA-73894 DNA Repair 0,018866 5

R-HSA-167161 HIV Transcription Initiation 0,0218 2
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 0,0218 2
R-HSA-73776 RNA Polymerase II Promoter Escape 0,0218 2
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening0,0218 2
R-HSA-75953 RNA Polymerase II Transcription Initiation 0,0218 2
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance0,0218 2

R-HSA-1989781 PPARA activates gene expression 0,022242 3
R-HSA-73762 RNA Polymerase I Transcription Initiation 0,022678 2

R-HSA-400206
Regulation of lipid metabolism by Peroxisome proliferator-
activated receptor alpha (PPARalpha) 0,02367 3

R-HSA-114608 Platelet degranulation 0,024157 3
R-HSA-383280 Nuclear Receptor transcription pathway 0,025399 2
R-HSA-162906 HIV Infection 0,026615 4
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0,026671 3

R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 0,028245 2
R-HSA-162599 Late Phase of HIV Life Cycle 0,028781 3
R-HSA-202733 Cell surface interactions at the vascular wall 0,028781 3
R-HSA-180585 Vif-mediated degradation of APOBEC3G 0,029221 2

lig
ht

pi
nk

4

R
M

11

gr
ey

60

R
M

25

cy
an

R
M

22

re
d

D
M

7

si
en

na
3

D
M

9

pa
le

tu
rq

uo
is

e

D
M

5



131

Transcriptional and epigenetic reprogramming of DCs by CXCL4

4

thesis

Page 1

Table S8
Co-expression modules
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R-HSA-6798695 Neutrophil degranulation 6,25E-08 77

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 4,31E-05 26

R-HSA-168249 Innate Immune System 0,000103 147

R-HSA-202733 Cell surface interactions at the vascular wall 0,000216 25

R-HSA-163125
Post-translational modification: synthesis of GPI-anchored 
proteins 0,000595 18

R-HSA-1474244 Extracellular matrix organization 9,15E-07 23
R-HSA-3000171 Non-integrin membrane-ECM interactions 2,07E-05 9
R-HSA-216083 Integrin cell surface interactions 4,81E-05 10

R-HSA-3000170 Syndecan interactions 5,53E-05 6
R-HSA-1660662 Glycosphingolipid metabolism 9,06E-05 7
R-HSA-556833 Metabolism of lipids and lipoproteins 0,000105 37
R-HSA-382551 Transmembrane transport of small molecules 0,000219 32
R-HSA-983712 Ion channel transport 0,000645 14
R-HSA-399719 Trafficking of AMPA receptors 0,000798 5

R-HSA-399721
Glutamate Binding, Activation of AMPA Receptors and 
Synaptic Plasticity 0,000798 5

R-HSA-3000157 Laminin interactions 0,001071 5
R-HSA-73923 Lipid digestion, mobilization, and transport 0,001515 9

R-HSA-1474290 Collagen formation 0,001783 8
R-HSA-174824 Lipoprotein metabolism 0,001835 7
R-HSA-193634 Axonal growth inhibition (RHOA activation) 0,001982 3

R-HSA-5660526 Response to metal ions 0,001982 3
R-HSA-5661231 Metallothioneins bind metals 0,001982 3
R-HSA-2187338 Visual phototransduction 0,002485 8
R-HSA-3000178 ECM proteoglycans 0,002497 7
R-HSA-193697 p75NTR regulates axonogenesis 0,002596 3
R-HSA-936837 Ion transport by P-type ATPases 0,002629 6
R-HSA-210991 Basigin interactions 0,003747 4
R-HSA-917937 Iron uptake and transport 0,003954 5
R-HSA-354192 Integrin alphaIIb beta3 signaling 0,00429 4
R-HSA-428157 Sphingolipid metabolism 0,005275 7
R-HSA-917977 Transferrin endocytosis and recycling 0,00553 4
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 0,006154 3

R-HSA-2022928 HS-GAG biosynthesis 0,006231 4
R-HSA-1474228 Degradation of the extracellular matrix 0,007398 9
R-HSA-8874081 MET activates PTK2 signaling 0,007805 4
R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,008099 5
R-HSA-1638091 Heparan sulfate/heparin (HS-GAG) metabolism 0,010229 5
R-HSA-1280215 Cytokine Signaling in Immune system 1,65E-21 192
R-HSA-168256 Immune System 3,49E-17 399
R-HSA-913531 Interferon Signaling 3,13E-15 69
R-HSA-877300 Interferon gamma signaling 4,25E-12 39
R-HSA-909733 Interferon alpha/beta signaling 5E-09 28
R-HSA-449147 Signaling by Interleukins 1,97E-08 114
R-HSA-983169 Class I MHC mediated antigen processing & presentation 4,87E-07 83

R-HSA-6783783 Interleukin-10 signaling 5,63E-06 19
R-HSA-114604 GPVI-mediated activation cascade 1,38E-05 20
R-HSA-168928 RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 1,5E-05 26
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 1,92E-05 67
R-HSA-936440 Negative regulators of RIG-I/MDA5 signaling 9,27E-05 14

R-HSA-1280218 Adaptive Immune System 9,82E-05 146
R-HSA-166166 MyD88-independent TLR3/TLR4 cascade 0,000122 27
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0,000122 27
R-HSA-937061 TRIF-mediated TLR3/TLR4 signaling 0,000122 27
R-HSA-166054 Activated TLR4 signalling 0,000127 30
R-HSA-389356 CD28 co-stimulation 0,000141 13
R-HSA-166520 Signalling by NGF 0,000173 91
R-HSA-168249 Innate Immune System 0,000245 210

R-HSA-1433557 Signaling by SCF-KIT 0,000296 67
R-HSA-6783589 Interleukin-6 family signaling 0,000325 11
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 0,000377 20
R-HSA-918233 TRAF3-dependent IRF activation pathway 0,00041 8
R-HSA-73887 Death Receptor Signalling 0,000423 16

R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0,000482 31
R-HSA-73980 RNA Polymerase III Transcription Termination 0,000491 10

R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0,000689 24
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0,000689 24
R-HSA-877312 Regulation of IFNG signaling 0,000962 7
R-HSA-186763 Downstream signal transduction 0,001092 67

R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 0,00116 70

R-HSA-975138
TRAF6 mediated induction of NFkB and MAP kinases upon 
TLR7/8 or 9 activation 0,001201 23

R-HSA-8875555 MET activates RAP1 and RAC1 0,001278 6
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0,001307 24

R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 0,001404 25
R-HSA-1169408 ISG15 antiviral mechanism 0,001443 20
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0,001443 20
R-HSA-6806834 Signaling by MET 0,001613 21
R-HSA-194138 Signaling by VEGF 0,001613 64
R-HSA-73780 RNA Polymerase III Chain Elongation 0,001675 8

R-HSA-76066
RNA Polymerase III Transcription Initiation From Type 2 
Promoter 0,002004 10

R-HSA-74158 RNA Polymerase III Transcription 0,002022 13
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 0,002022 13

R-HSA-168643
Nucleotide-binding domain, leucine rich repeat containing 
receptor (NLR) signaling pathways 0,002075 15

R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0,002226 21
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0,002226 21
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0,002226 21
R-HSA-389359 CD28 dependent Vav1 pathway 0,002274 6
R-HSA-186797 Signaling by PDGF 0,002352 70

R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 0,002475 8
R-HSA-109581 Apoptosis 0,002614 36

R-HSA-5669034 TNFs bind their physiological receptors 0,002705 10
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter0,002705 10

R-HSA-933542 TRAF6 mediated NF-kB activation 0,003141 9
R-HSA-187037 NGF signalling via TRKA from the plasma membrane 0,003279 70
R-HSA-512988 Interleukin-3, 5 and GM-CSF signaling 0,003336 52

R-HSA-5357801 Programmed Cell Death 0,003539 36
R-HSA-4420097 VEGFA-VEGFR2 Pathway 0,003656 61

R-HSA-3134963
DEx/H-box helicases activate type I IFN and inflammatory 
cytokines production 0,003759 6

R-HSA-933543
NF-kB activation through FADD/RIP-1 pathway mediated by 
caspase-8 and -10 0,003759 6

R-HSA-140534 Ligand-dependent caspase activation 0,003814 7
R-HSA-6785807 Interleukin-4 and 13 signaling 0,00415 25
R-HSA-166058 MyD88:Mal cascade initiated on plasma membrane 0,004876 22
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0,004876 22
R-HSA-76002 Platelet activation, signaling and aggregation 0,004879 52

R-HSA-389357 CD28 dependent PI3K/Akt signaling 0,00494 8
R-HSA-193692 Regulated proteolysis of p75NTR 0,005439 5

R-HSA-2465910 MASTL Facilitates Mitotic Progression 0,005439 5
R-HSA-168898 Toll-Like Receptors Cascades 0,006002 32
R-HSA-177929 Signaling by EGFR 0,006141 65

R-HSA-5689896 Ovarian tumor domain proteases 0,006169 11
R-HSA-76046 RNA Polymerase III Transcription Initiation 0,006169 11

R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0,00718 22
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0,00718 22
R-HSA-392451 G beta:gamma signalling through PI3Kgamma 0,007226 13

R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 0,007381 9
R-HSA-453274 Mitotic G2-G2/M phases 0,007784 38

R-HSA-5683057 MAPK family signaling cascades 0,008313 53
R-HSA-2424491 DAP12 signaling 0,008462 63
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 0,008685 13
R-HSA-3371378 Regulation by c-FLIP 0,008906 5
R-HSA-5218900 CASP8 activity is inhibited 0,008906 5

R-HSA-69416 Dimerization of procaspase-8 0,008906 5

R-HSA-76071
RNA Polymerase III Transcription Initiation From Type 3 
Promoter 0,009485 9

R-HSA-195253 Degradation of beta-catenin by the destruction complex 0,009677 19
R-HSA-1236974 ER-Phagosome pathway 0,011015 19

R-HSA-69275 G2/M Transition 0,011105 37
R-HSA-451927 Interleukin-2 signaling 0,011334 48

R-HSA-1251985 Nuclear signaling by ERBB4 0,011675 8
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 0,011675 8

R-HSA-983170
Antigen Presentation: Folding, assembly and peptide loading 
of class I MHC 0,011675 8

R-HSA-933541 TRAF6 mediated IRF7 activation 0,011914 10
R-HSA-187687 Signalling to ERKs 0,012129 48
R-HSA-397795 G-protein beta:gamma signalling 0,01229 13
R-HSA-446652 Interleukin-1 signaling 0,013157 12

R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 0,013851 27
R-HSA-169893 Prolonged ERK activation events 0,013927 46

R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 0,014073 37
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 0,014237 7
R-HSA-2028269 Signaling by Hippo 0,014237 7
R-HSA-2428924 IGF1R signaling cascade 0,014829 53
R-HSA-2428928 IRS-related events triggered by IGF1R 0,014829 53

R-HSA-74160 Gene Expression 0,015333 267

R-HSA-2404192
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor 
(IGF1R) 0,015759 53

R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0,016063 20
R-HSA-450294 MAP kinase activation in TLR cascade 0,016352 15
R-HSA-388841 Costimulation by the CD28 family 0,016972 16
R-HSA-912526 Interleukin receptor SHC signaling 0,01699 46
R-HSA-622312 Inflammasomes 0,017074 6

R-HSA-2172127 DAP12 interactions 0,017744 63
R-HSA-1236975 Antigen processing-Cross presentation 0,017959 21
R-HSA-5633007 Regulation of TP53 Activity 0,018097 31
R-HSA-389513 CTLA4 inhibitory signaling 0,018575 7
R-HSA-69273 Cyclin A/B1 associated events during G2/M transition 0,018575 7

R-HSA-912631 Regulation of signaling by CBL 0,018575 7
R-HSA-5663202 Diseases of signal transduction 0,018713 63
R-HSA-170968 Frs2-mediated activation 0,018811 45
R-HSA-69206 G1/S Transition 0,019315 24
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 0,019331 16
R-HSA-72306 tRNA processing 0,019807 22
R-HSA-75893 TNF signaling 0,019902 11

R-HSA-193704 p75 NTR receptor-mediated signalling 0,019968 21
R-HSA-5684996 MAPK1/MAPK3 signaling 0,02006 45

R-HSA-74751 Insulin receptor signalling cascade 0,020769 52
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 0,021577 12
R-HSA-5357905 Regulation of TNFR1 signaling 0,02259 9
R-HSA-2586552 Signaling by Leptin 0,022756 45
R-HSA-5675482 Regulation of necroptotic cell death 0,022838 6
R-HSA-936964 Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon 0,022838 6

R-HSA-8875878 MET promotes cell motility 0,023493 11

Co-Methylation modules

Co-methylation 
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R-HSA-168256 Immune System 6,46E-09 100
R-HSA-168249 Innate Immune System 6,84E-06 62

R-HSA-6798695 Neutrophil degranulation 3,08E-05 30
R-HSA-109582 Hemostasis 0,000185 34
R-HSA-877300 Interferon gamma signaling 0,001042 9

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 0,001055 11

R-HSA-6783783 Interleukin-10 signaling 0,000119 6
R-HSA-168256 Immune System 0,000153 54

R-HSA-1445148 Translocation of GLUT4 to the plasma membrane 0,000299 7
R-HSA-2022870 Chondroitin sulfate biosynthesis 0,000365 4
R-HSA-2022923 Dermatan sulfate biosynthesis 0,000599 3
R-HSA-389359 CD28 dependent Vav1 pathway 0,000789 3

R-HSA-1630316 Glycosaminoglycan metabolism 0,000902 8
R-HSA-168249 Innate Immune System 0,00102 35
R-HSA-73887 Death Receptor Signalling 0,001153 5

R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,001379 5
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion0,001575 3
R-HSA-418038 Nucleotide-like (purinergic) receptors 0,001916 3
R-HSA-71387 Metabolism of carbohydrates 0,002757 12

R-HSA-5358351 Signaling by Hedgehog 0,002971 8
R-HSA-109582 Hemostasis 0,000886 10

R-HSA-5696395 Formation of Incision Complex in GG-NER 0,001165 3
R-HSA-167169 HIV Transcription Elongation 0,001704 3
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 0,001704 3
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 0,001704 3
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 0,001913 3
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 0,003009 2
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 0,003114 4
R-HSA-197264 Nicotinamide salvaging 0,003375 2
R-HSA-112382 Formation of RNA Pol II elongation complex 0,003661 3
R-HSA-75955 RNA Polymerase II Transcription Elongation 0,003661 3

R-HSA-6782135 Dual incision in TC-NER 0,003994 3
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0,004526 3
R-HSA-167172 Transcription of the HIV genome 0,00593 3
R-HSA-425410 Metal ion SLC transporters 0,006475 2

R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 0,006603 3
R-HSA-73857 RNA Polymerase II Transcription 0,007144 4

R-HSA-167160
RNA Pol II CTD phosphorylation and interaction with CE 
during HIV infection 0,007529 2

R-HSA-210991 Basigin interactions 0,007529 2
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 0,007529 2

R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 0,008082 3
R-HSA-674695 RNA Polymerase II Pre-transcription Events 0,008614 3
R-HSA-72086 mRNA Capping 0,008655 2

R-HSA-196807 Nicotinate metabolism 0,009244 2
R-HSA-73772 RNA Polymerase I Promoter Escape 0,009851 2

R-HSA-196854 Metabolism of vitamins and cofactors 0,010361 4
R-HSA-73863 RNA Polymerase I Transcription Termination 0,011117 2

R-HSA-113418 Formation of the Early Elongation Complex 0,011776 2
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 0,011776 2

R-HSA-5694530 Cargo concentration in the ER 0,011776 2

R-HSA-425366
Transport of glucose and other sugars, bile salts and organic 
acids, metal ions and amine compounds 0,014702 3

R-HSA-5696400 Dual Incision in GG-NER 0,016845 2
R-HSA-5696398 Nucleotide Excision Repair 0,017021 3
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 0,017089 5

R-HSA-5362517 Signaling by Retinoic Acid 0,018436 2
R-HSA-73894 DNA Repair 0,018866 5

R-HSA-167161 HIV Transcription Initiation 0,0218 2
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 0,0218 2
R-HSA-73776 RNA Polymerase II Promoter Escape 0,0218 2
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening0,0218 2
R-HSA-75953 RNA Polymerase II Transcription Initiation 0,0218 2
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance0,0218 2

R-HSA-1989781 PPARA activates gene expression 0,022242 3
R-HSA-73762 RNA Polymerase I Transcription Initiation 0,022678 2

R-HSA-400206
Regulation of lipid metabolism by Peroxisome proliferator-
activated receptor alpha (PPARalpha) 0,02367 3

R-HSA-114608 Platelet degranulation 0,024157 3
R-HSA-383280 Nuclear Receptor transcription pathway 0,025399 2
R-HSA-162906 HIV Infection 0,026615 4
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0,026671 3

R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 0,028245 2
R-HSA-162599 Late Phase of HIV Life Cycle 0,028781 3
R-HSA-202733 Cell surface interactions at the vascular wall 0,028781 3
R-HSA-180585 Vif-mediated degradation of APOBEC3G 0,029221 2
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R-HSA-6798695 Neutrophil degranulation 6,25E-08 77

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 4,31E-05 26

R-HSA-168249 Innate Immune System 0,000103 147

R-HSA-202733 Cell surface interactions at the vascular wall 0,000216 25

R-HSA-163125
Post-translational modification: synthesis of GPI-anchored 
proteins 0,000595 18

R-HSA-1474244 Extracellular matrix organization 9,15E-07 23
R-HSA-3000171 Non-integrin membrane-ECM interactions 2,07E-05 9
R-HSA-216083 Integrin cell surface interactions 4,81E-05 10

R-HSA-3000170 Syndecan interactions 5,53E-05 6
R-HSA-1660662 Glycosphingolipid metabolism 9,06E-05 7
R-HSA-556833 Metabolism of lipids and lipoproteins 0,000105 37
R-HSA-382551 Transmembrane transport of small molecules 0,000219 32
R-HSA-983712 Ion channel transport 0,000645 14
R-HSA-399719 Trafficking of AMPA receptors 0,000798 5

R-HSA-399721
Glutamate Binding, Activation of AMPA Receptors and 
Synaptic Plasticity 0,000798 5

R-HSA-3000157 Laminin interactions 0,001071 5
R-HSA-73923 Lipid digestion, mobilization, and transport 0,001515 9

R-HSA-1474290 Collagen formation 0,001783 8
R-HSA-174824 Lipoprotein metabolism 0,001835 7
R-HSA-193634 Axonal growth inhibition (RHOA activation) 0,001982 3

R-HSA-5660526 Response to metal ions 0,001982 3
R-HSA-5661231 Metallothioneins bind metals 0,001982 3
R-HSA-2187338 Visual phototransduction 0,002485 8
R-HSA-3000178 ECM proteoglycans 0,002497 7
R-HSA-193697 p75NTR regulates axonogenesis 0,002596 3
R-HSA-936837 Ion transport by P-type ATPases 0,002629 6
R-HSA-210991 Basigin interactions 0,003747 4
R-HSA-917937 Iron uptake and transport 0,003954 5
R-HSA-354192 Integrin alphaIIb beta3 signaling 0,00429 4
R-HSA-428157 Sphingolipid metabolism 0,005275 7
R-HSA-917977 Transferrin endocytosis and recycling 0,00553 4
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 0,006154 3

R-HSA-2022928 HS-GAG biosynthesis 0,006231 4
R-HSA-1474228 Degradation of the extracellular matrix 0,007398 9
R-HSA-8874081 MET activates PTK2 signaling 0,007805 4
R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,008099 5
R-HSA-1638091 Heparan sulfate/heparin (HS-GAG) metabolism 0,010229 5
R-HSA-1280215 Cytokine Signaling in Immune system 1,65E-21 192
R-HSA-168256 Immune System 3,49E-17 399
R-HSA-913531 Interferon Signaling 3,13E-15 69
R-HSA-877300 Interferon gamma signaling 4,25E-12 39
R-HSA-909733 Interferon alpha/beta signaling 5E-09 28
R-HSA-449147 Signaling by Interleukins 1,97E-08 114
R-HSA-983169 Class I MHC mediated antigen processing & presentation 4,87E-07 83

R-HSA-6783783 Interleukin-10 signaling 5,63E-06 19
R-HSA-114604 GPVI-mediated activation cascade 1,38E-05 20
R-HSA-168928 RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways 1,5E-05 26
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 1,92E-05 67
R-HSA-936440 Negative regulators of RIG-I/MDA5 signaling 9,27E-05 14

R-HSA-1280218 Adaptive Immune System 9,82E-05 146
R-HSA-166166 MyD88-independent TLR3/TLR4 cascade 0,000122 27
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 0,000122 27
R-HSA-937061 TRIF-mediated TLR3/TLR4 signaling 0,000122 27
R-HSA-166054 Activated TLR4 signalling 0,000127 30
R-HSA-389356 CD28 co-stimulation 0,000141 13
R-HSA-166520 Signalling by NGF 0,000173 91
R-HSA-168249 Innate Immune System 0,000245 210

R-HSA-1433557 Signaling by SCF-KIT 0,000296 67
R-HSA-6783589 Interleukin-6 family signaling 0,000325 11
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 0,000377 20
R-HSA-918233 TRAF3-dependent IRF activation pathway 0,00041 8
R-HSA-73887 Death Receptor Signalling 0,000423 16

R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 0,000482 31
R-HSA-73980 RNA Polymerase III Transcription Termination 0,000491 10

R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 0,000689 24
R-HSA-975155 MyD88 dependent cascade initiated on endosome 0,000689 24
R-HSA-877312 Regulation of IFNG signaling 0,000962 7
R-HSA-186763 Downstream signal transduction 0,001092 67

R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 0,00116 70

R-HSA-975138
TRAF6 mediated induction of NFkB and MAP kinases upon 
TLR7/8 or 9 activation 0,001201 23

R-HSA-8875555 MET activates RAP1 and RAC1 0,001278 6
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 0,001307 24

R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 0,001404 25
R-HSA-1169408 ISG15 antiviral mechanism 0,001443 20
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 0,001443 20
R-HSA-6806834 Signaling by MET 0,001613 21
R-HSA-194138 Signaling by VEGF 0,001613 64
R-HSA-73780 RNA Polymerase III Chain Elongation 0,001675 8

R-HSA-76066
RNA Polymerase III Transcription Initiation From Type 2 
Promoter 0,002004 10

R-HSA-74158 RNA Polymerase III Transcription 0,002022 13
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 0,002022 13

R-HSA-168643
Nucleotide-binding domain, leucine rich repeat containing 
receptor (NLR) signaling pathways 0,002075 15

R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 0,002226 21
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 0,002226 21
R-HSA-975871 MyD88 cascade initiated on plasma membrane 0,002226 21
R-HSA-389359 CD28 dependent Vav1 pathway 0,002274 6
R-HSA-186797 Signaling by PDGF 0,002352 70

R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 0,002475 8
R-HSA-109581 Apoptosis 0,002614 36

R-HSA-5669034 TNFs bind their physiological receptors 0,002705 10
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter0,002705 10

R-HSA-933542 TRAF6 mediated NF-kB activation 0,003141 9
R-HSA-187037 NGF signalling via TRKA from the plasma membrane 0,003279 70
R-HSA-512988 Interleukin-3, 5 and GM-CSF signaling 0,003336 52

R-HSA-5357801 Programmed Cell Death 0,003539 36
R-HSA-4420097 VEGFA-VEGFR2 Pathway 0,003656 61

R-HSA-3134963
DEx/H-box helicases activate type I IFN and inflammatory 
cytokines production 0,003759 6

R-HSA-933543
NF-kB activation through FADD/RIP-1 pathway mediated by 
caspase-8 and -10 0,003759 6

R-HSA-140534 Ligand-dependent caspase activation 0,003814 7
R-HSA-6785807 Interleukin-4 and 13 signaling 0,00415 25
R-HSA-166058 MyD88:Mal cascade initiated on plasma membrane 0,004876 22
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 0,004876 22
R-HSA-76002 Platelet activation, signaling and aggregation 0,004879 52

R-HSA-389357 CD28 dependent PI3K/Akt signaling 0,00494 8
R-HSA-193692 Regulated proteolysis of p75NTR 0,005439 5

R-HSA-2465910 MASTL Facilitates Mitotic Progression 0,005439 5
R-HSA-168898 Toll-Like Receptors Cascades 0,006002 32
R-HSA-177929 Signaling by EGFR 0,006141 65

R-HSA-5689896 Ovarian tumor domain proteases 0,006169 11
R-HSA-76046 RNA Polymerase III Transcription Initiation 0,006169 11

R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0,00718 22
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 0,00718 22
R-HSA-392451 G beta:gamma signalling through PI3Kgamma 0,007226 13

R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 0,007381 9
R-HSA-453274 Mitotic G2-G2/M phases 0,007784 38

R-HSA-5683057 MAPK family signaling cascades 0,008313 53
R-HSA-2424491 DAP12 signaling 0,008462 63
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 0,008685 13
R-HSA-3371378 Regulation by c-FLIP 0,008906 5
R-HSA-5218900 CASP8 activity is inhibited 0,008906 5

R-HSA-69416 Dimerization of procaspase-8 0,008906 5

R-HSA-76071
RNA Polymerase III Transcription Initiation From Type 3 
Promoter 0,009485 9

R-HSA-195253 Degradation of beta-catenin by the destruction complex 0,009677 19
R-HSA-1236974 ER-Phagosome pathway 0,011015 19

R-HSA-69275 G2/M Transition 0,011105 37
R-HSA-451927 Interleukin-2 signaling 0,011334 48

R-HSA-1251985 Nuclear signaling by ERBB4 0,011675 8
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 0,011675 8

R-HSA-983170
Antigen Presentation: Folding, assembly and peptide loading 
of class I MHC 0,011675 8

R-HSA-933541 TRAF6 mediated IRF7 activation 0,011914 10
R-HSA-187687 Signalling to ERKs 0,012129 48
R-HSA-397795 G-protein beta:gamma signalling 0,01229 13
R-HSA-446652 Interleukin-1 signaling 0,013157 12

R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 0,013851 27
R-HSA-169893 Prolonged ERK activation events 0,013927 46

R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 0,014073 37
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 0,014237 7
R-HSA-2028269 Signaling by Hippo 0,014237 7
R-HSA-2428924 IGF1R signaling cascade 0,014829 53
R-HSA-2428928 IRS-related events triggered by IGF1R 0,014829 53

R-HSA-74160 Gene Expression 0,015333 267

R-HSA-2404192
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor 
(IGF1R) 0,015759 53

R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 0,016063 20
R-HSA-450294 MAP kinase activation in TLR cascade 0,016352 15
R-HSA-388841 Costimulation by the CD28 family 0,016972 16
R-HSA-912526 Interleukin receptor SHC signaling 0,01699 46
R-HSA-622312 Inflammasomes 0,017074 6

R-HSA-2172127 DAP12 interactions 0,017744 63
R-HSA-1236975 Antigen processing-Cross presentation 0,017959 21
R-HSA-5633007 Regulation of TP53 Activity 0,018097 31
R-HSA-389513 CTLA4 inhibitory signaling 0,018575 7
R-HSA-69273 Cyclin A/B1 associated events during G2/M transition 0,018575 7

R-HSA-912631 Regulation of signaling by CBL 0,018575 7
R-HSA-5663202 Diseases of signal transduction 0,018713 63
R-HSA-170968 Frs2-mediated activation 0,018811 45
R-HSA-69206 G1/S Transition 0,019315 24
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 0,019331 16
R-HSA-72306 tRNA processing 0,019807 22
R-HSA-75893 TNF signaling 0,019902 11

R-HSA-193704 p75 NTR receptor-mediated signalling 0,019968 21
R-HSA-5684996 MAPK1/MAPK3 signaling 0,02006 45

R-HSA-74751 Insulin receptor signalling cascade 0,020769 52
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 0,021577 12
R-HSA-5357905 Regulation of TNFR1 signaling 0,02259 9
R-HSA-2586552 Signaling by Leptin 0,022756 45
R-HSA-5675482 Regulation of necroptotic cell death 0,022838 6
R-HSA-936964 Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon 0,022838 6

R-HSA-8875878 MET promotes cell motility 0,023493 11

Co-Methylation modules

Co-methylation 
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R-HSA-168256 Immune System 6,46E-09 100
R-HSA-168249 Innate Immune System 6,84E-06 62

R-HSA-6798695 Neutrophil degranulation 3,08E-05 30
R-HSA-109582 Hemostasis 0,000185 34
R-HSA-877300 Interferon gamma signaling 0,001042 9

R-HSA-198933
Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 0,001055 11

R-HSA-6783783 Interleukin-10 signaling 0,000119 6
R-HSA-168256 Immune System 0,000153 54

R-HSA-1445148 Translocation of GLUT4 to the plasma membrane 0,000299 7
R-HSA-2022870 Chondroitin sulfate biosynthesis 0,000365 4
R-HSA-2022923 Dermatan sulfate biosynthesis 0,000599 3
R-HSA-389359 CD28 dependent Vav1 pathway 0,000789 3

R-HSA-1630316 Glycosaminoglycan metabolism 0,000902 8
R-HSA-168249 Innate Immune System 0,00102 35
R-HSA-73887 Death Receptor Signalling 0,001153 5

R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 0,001379 5
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion0,001575 3
R-HSA-418038 Nucleotide-like (purinergic) receptors 0,001916 3
R-HSA-71387 Metabolism of carbohydrates 0,002757 12

R-HSA-5358351 Signaling by Hedgehog 0,002971 8
R-HSA-109582 Hemostasis 0,000886 10

R-HSA-5696395 Formation of Incision Complex in GG-NER 0,001165 3
R-HSA-167169 HIV Transcription Elongation 0,001704 3
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 0,001704 3
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 0,001704 3
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 0,001913 3
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 0,003009 2
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 0,003114 4
R-HSA-197264 Nicotinamide salvaging 0,003375 2
R-HSA-112382 Formation of RNA Pol II elongation complex 0,003661 3
R-HSA-75955 RNA Polymerase II Transcription Elongation 0,003661 3

R-HSA-6782135 Dual incision in TC-NER 0,003994 3
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 0,004526 3
R-HSA-167172 Transcription of the HIV genome 0,00593 3
R-HSA-425410 Metal ion SLC transporters 0,006475 2

R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 0,006603 3
R-HSA-73857 RNA Polymerase II Transcription 0,007144 4

R-HSA-167160
RNA Pol II CTD phosphorylation and interaction with CE 
during HIV infection 0,007529 2

R-HSA-210991 Basigin interactions 0,007529 2
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 0,007529 2

R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 0,008082 3
R-HSA-674695 RNA Polymerase II Pre-transcription Events 0,008614 3
R-HSA-72086 mRNA Capping 0,008655 2

R-HSA-196807 Nicotinate metabolism 0,009244 2
R-HSA-73772 RNA Polymerase I Promoter Escape 0,009851 2

R-HSA-196854 Metabolism of vitamins and cofactors 0,010361 4
R-HSA-73863 RNA Polymerase I Transcription Termination 0,011117 2

R-HSA-113418 Formation of the Early Elongation Complex 0,011776 2
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 0,011776 2

R-HSA-5694530 Cargo concentration in the ER 0,011776 2

R-HSA-425366
Transport of glucose and other sugars, bile salts and organic 
acids, metal ions and amine compounds 0,014702 3

R-HSA-5696400 Dual Incision in GG-NER 0,016845 2
R-HSA-5696398 Nucleotide Excision Repair 0,017021 3
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 0,017089 5

R-HSA-5362517 Signaling by Retinoic Acid 0,018436 2
R-HSA-73894 DNA Repair 0,018866 5

R-HSA-167161 HIV Transcription Initiation 0,0218 2
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 0,0218 2
R-HSA-73776 RNA Polymerase II Promoter Escape 0,0218 2
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening0,0218 2
R-HSA-75953 RNA Polymerase II Transcription Initiation 0,0218 2
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance0,0218 2

R-HSA-1989781 PPARA activates gene expression 0,022242 3
R-HSA-73762 RNA Polymerase I Transcription Initiation 0,022678 2

R-HSA-400206
Regulation of lipid metabolism by Peroxisome proliferator-
activated receptor alpha (PPARalpha) 0,02367 3

R-HSA-114608 Platelet degranulation 0,024157 3
R-HSA-383280 Nuclear Receptor transcription pathway 0,025399 2
R-HSA-162906 HIV Infection 0,026615 4
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0,026671 3

R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 0,028245 2
R-HSA-162599 Late Phase of HIV Life Cycle 0,028781 3
R-HSA-202733 Cell surface interactions at the vascular wall 0,028781 3
R-HSA-180585 Vif-mediated degradation of APOBEC3G 0,029221 2
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Abstract

Dendritic cells (DCs) are immune sentinels that play a crucial role in inducing 
peripheral tolerance and immune response. Molecules resulting of cell damage, 
microbial products, and cytokines can modulate DCs towards tolerogenic or 
immunogenic responses. Therefore, disturbance of DC function contributes to 
autoimmunity. CXCL4 is a chemokine that modulates DC functions and has been 
implicated in several autoimmune diseases such as systemic sclerosis (SSc). Previously 
we showed that differentiation of monocyte-derived dendritic cells (moDCs) in 
the presence of CXCL4 promotes cell maturation by increasing the expression of 
activation molecules, sensitization to TLR-mediated stimulation, and potentiated 
activation of inflammatory responses by T-cells. Here we investigated the effect of 
CXCL4 on established markers of DC immunogenicity and tolerogenicity using RNA 
sequencing and DNA methylomics. CXCL4 impaired the transcriptional expression 
of tolerogenic genes, and induced the expression of immunogenic markers. We 
investigated in detail the complement component C1q, a robust tolerogenic marker, 
for which the reduced levels are associated with autoimmune disease development. 
CXCL4 epigenetically modified promotors of C1q genes and repressed expression of 
C1q genes. Thus, CXCL4 suppresses a tolerogenic DC phenotype thereby boosting 
immunogenic responses, and elucidates C1q as a critical factor in CXCL4-driven 
autoimmune diseases such as SSc.

Keywords: CXCL4, monocyte-derived dendritic cells, C1q, immunogenicity, 
tolerogenecity, RNA sequencing, DNA methylation, epigenetics

Abbreviations: moDC, monocyte-derived dendritic cells;
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Introduction

Dendritic cells (DCs) are pivotal antigen-presenting cells (APCs) that bridge the 
innate and adaptive immune systems, thus playing a crucial role in the activation 
of immune responses and immunological tolerance [1]. On one hand, immature 
DCs upon recognition of apoptotic cells or damage-associated molecular patterns 
(DAMPs) are able to uptake, process, and present antigen-derived peptides on 
major histocompatibility complex (MHC). Migration of these incompletely matured 
DCs to draining lymph nodes promotes anergy, elimination of self-reactive T-cells 
or generation of regulatory T-cells (Tregs), and drives immune tolerance. On the 
other hand, DCs that encounter inflammatory cytokines or pathogen-associated 
molecular patterns (PAMPs) acquire a mature phenotype and migrate to lymphoid 
organs resulting in T-cell activation, and drive immunogenic responses. The control 
of tolerogenic and immunogenic responses by DCs involves intensive transcriptional 
and epigenetic reprograming, including DNA methylation.
	 Modulating the function of DCs become an active area in immunological and 
translational research. Several protocols have been proposed for the generation of 
tolerogenic and immunogenic DCs and established multiple candidate biomarkers 
that characterizes their function [2]–[4]. Among others, C1q was established as a 
regulatory marker of DCs as it is consistently overexpressed on tolerogenic DCs 
generated via distinct protocols [5],[6].
	 C1q is the first component of the classical pathway of complement system and 
its deficiency is associated with autoimmune conditions, both in mouse models and 
in humans [7],[8]. C1q also functions as an opsonin that enables the detection and 
phagocytosis of PAMPs and apoptotic cell fragments either directly, or indirectly 
via binding to secreted antibodies and C-reactive protein (CRP). Immature DCs and 
macrophages are able to secrete high levels of C1q in contrast to monocytes, mature 
DCs and T-cells [9],[10]. 
	 CXCL4 is a chemokine abundantly produced by activated platelets [11] and 
immune cells [12]–[15]. CXCL4 participates in several physiological processes and 
is implicated in autoimmune diseases such as systemic sclerosis (SSc) [13],[16]. We 
and others have shown that CXCL4 modulates immune responses of monocytes, 
DCs, macrophages and T-cells [17]–[22]. We showed that differentiation of moDCs 
in the presence of CXCL4 (CXCL4-moDCs), results in immunogenic DC phenotype 
characterized by increased expression of activation molecules, potentiated T-cell 
activation, and augmented response to TLR triggering [22]. Here, we investigated how 
CXCL4 controls the transcriptional programming of DCs regarding immunogenicity 
and tolerogenicity markers, and studied in detail C1q genes as they are the most 
consistent marker for tolerogenic DC.
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Results and discussion

CXCL4 up-regulates immunogenic and down-regulates tolerogenic 
markers 
Previously, we showed that exposure to CXCL4 drives moDCs to a semi-mature 
phenotype and function [22]. Here we performed RNA sequencing analysis to 
investigate how CXCL4 exposure affects tolerogenic and immunogenic signatures. 
We observed that genes associated with immunogenic DC responses such as 
CD86, CD83, HLA-A, CCR7, CCL17, FSCN1, LAMP3, SOD2, CD40 and ICAM1 were 
up-regulated on CXCL4-moDCs. Interestingly, the expression of colony stimulating 
factor 1 receptor (CSF1R), which is down-regulated in inflammatory DCs [23], was 
also found to be down-regulated on CXCL4-moDCs (Fig. 1A, 1C). However, CD80, a 
co-stimulatory molecule associated with response to stimuli, was not differentially 
expressed between moDCs and CXCL4-moDCs (Supporting Information Fig. 1A). 
	 We found that genes associated with DC tolerogenicity such as IL10, SLAMF1, 
SMAD3, FZD2, F13A1, STAB1, CTSC, FCGR2B, CD37 and GILZ (TSC22D3) were 
significantly down-regulated by CXCL4 (Fig. 1B, 1C, Supporting Information Fig. 
1B). NAMPT and THBS1, previously implicated in tolerogenic responses [6],[24],[25], 
were not differential between moDCs and CXCL4-moDCs (Supporting Information 
Fig. 1B). Thus, CXCL4 induces immunogenic DC phenotype by up-regulating specific 
(but not all) genes involved in the maturation of moDCs and down-regulates genes 
associated with tolerogenicity.

CXCL4 dramatically suppresses C1q genes
C1q is critical for maintaining immune tolerance. Binding of C1q to PAMPs and 
apoptotic cell fragments results in the initiation of the complement system cascade 
and cell activation. Primary C1q deficiency in humans [26] and C1q knockout 
mice [27] have been shown to result in autoimmune conditions such as systemic 
lupus erythematosus (SLE). Moreover, C1q has been consistently shown to be up-
regulated on tolerogenic DCs [2]–[4]. We found that CXCL4 down-regulates the 
expression of all three C1q genes (C1QA, C1QB and C1QC) and diminished their 
protein expression (Fig. 2A, 2B). Additionally, CXCL4-moDCs released lower amounts 
of C1q in comparison to moDCs (Fig. 2 C). 

Decrease C1q expression may reflect immunogenic phenotype of 
CXCL4-moDCs
We further investigated whether CXCL4 simultaneously dysregulates the expression 
of immunogenic and tolerogenic genes, including C1Q. We found that C1q genes 
negatively correlated with immunogenic genes (Fig. 2D), and positively correlated 
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Figure 1. CXCL4 drives dramatic up-regulation of immunogenic signature and down-regulation of 
tolerogenic markers. RNA sequencing was performed on day 6 of differentiated moDCs and CXCL4-
moDCs. Gene expression analysis of (A) immunogenic and (B) tolerogenic associated molecules 
shown in count per million (CPM). Lines connect samples of individual HV. (n=5 HV, n=5 per 
group). Likelihood ratio test. ***P<0.005. (C) Heat map showing immunogenic and tolerogenic gene 
signatures . The colour scheme represente gene expression and is shown as Z-scores. Data shown for 
5 HV, all from independent experiments.
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with the other tolerogenic genes. In fact, C1QA, C1QB and C1QC genes exhibited the 
strongest negative correlation with most of the immunogenic markers (Fig. 2D). 

CXCL4 leads to dramatic hypermethylation of C1q and other tolerogenic 
genes
Changes in DNA methylation have been associated with aberrant gene expression 
and autoimmune disorders [28]. To assess whether CXCL4 exposure epigenetically 
affects C1q genes, we performed DNA methylation analyses. We found that CXCL4 
induced hypermethylation in the promoter regions (TSS200, TSS1500) of all 3 C1q 
(C1QA, C1QB, C1QC) genes and in the gene body (1st Exon, 5’UTR) of C1QB and C1QC 
genes (Fig. 3A, 3B, 3C). All these hypermethylated regions were strongly negative 
correlated with the corresponding gene’s expression (Fig. 3D, 3E, 3F). Additionally, 
we showed that CXCL4 drives hypermethylation of individual CpGs across the 
C1QA (cg15399505), C1QB (cg002155182, cg01577837, cg10103528, cg14041976, 
cg24931346 and cg04097715) and C1QC (cg12775742 and cg17104151) genes, 
and exhibits strong negative correlated with the corresponding gene’s expression 
(Supporting Information Fig. 2A, 2B, 2C).
	 Other genes associated with tolerogenic responses including IL10, SLAMF1, STAB1, 
and CTSC were hypermethylated in CXCL4-moDCs and exhibited negative correlations 
between RNA expression and DNA methylation levels (Supporting Information Fig.3). 
However, it was not the same case for other tolerogenic genes (F13A1, STAB1 and 
SMAD3) (Supporting Information Fig.4). Interestingly, no immunogenic gene exhibited 
significant negative correlation between RNA expression and DNA methylation levels 
(Supporting Information Fig.4). Thus, CXCL4 mediates epigenetic modifications and 
transcriptional suppression of tolerogenic markers (especially C1q) to tip the balance 
between immunogenic and tolerogenic DCs.

Concluding Remarks
The orchestration of innate and adaptive immune responses by DCs in response 
to danger signals modulates both tolerogenic and immunogenic responses, and is 
critical to prevent the development of autoimmune conditions. Corroborating with 
the literature and our previous findings, we showed that exposure to CXCL4 during 
moDC differentiation leads to an amplified immunogenic response [20],[22]. 
	 C1q has been consistently proposed as a tolerogenic DC marker [2]–[4]. 
Inflammatory triggers were shown to diminish C1q production during DC 
maturation [9]. Here, we revealed for the first time that CXCL4 exposure down-
regulates the expression of gene associated with tolerogenic responses, especially 
C1q, on moDCs. We further showed that CXCL4 drives hypermethylation of multiple 
tolerogenic genes, and strikingly, we found strong negative correlation between the 



141

5

CXCL4 suppresses tolerogenic immune signature of monocyte-derived dendritic cells 

A.

B.

FIGURE 2. 

2000

1500

1000

0

1500

1000

500

0

550

450

350

250

moDCs
CXCL4-moDCs** ** **

C1QCC1QBC1QA

m
oD

C
s

C
XC

L4
-m

oD
C

s

120

100

80

60

*
C1Q

C
1Q

 / 
Tu

bu
lin

 ra
tio

(%
 o

f c
on

tr
ol

)

40

20

0

C.
2500

2000

**
C1Q

C
1Q

 (p
g/

m
l)

1500

1000

D.

150

0

C
PM

500

C1Q

Tubulin

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1C
1Q

A
C

1Q
B

C
1Q

C
IL

10
SL

A
M

F1
SM

A
D

3
FZ

D
2

F1
3A

1
ST

A
B

1
C

TS
C

FC
G

R
2B

C
D

37
TS

C
22

D
3

C
D

86
C

D
83

H
LA

−
A

C
C

R
7

C
C

L1
7

FS
C

N
1

LA
M

P3
C

D
40

IC
A

M
1

C
SF

1R

C1QA
C1QB

C1QC
IL10

SLAMF1
SMAD3

FZD2
F13A1

STAB1
CTSC
FCGR2B

CD37
TSC22D3

CD86
CD83
HLA −A

CCR7
CCL17

FSCN1
LAMP3

CD40
ICAM1

CSF1R

Tolerogenic signature

Immunogenic signature

Figure 2. C1q expression and production dramatically diminishes in the presence of CXCL4. RNA 
sequencing was performed on day 6 of differentiated moDCs and CXCL4-moDCs. (A) Expression of 
C1QA, C1QB and C1QC genes on moDCs and CXCL4-moDCs. (n=5 HV, n=5 per group). Likelihood 
ratio test. **P<0.01 (B) Western blot analysis of C1q and tubulin. Representative blot of 4 HV is shown 
(4 independent experiments, n=4 per group). On the right, we show the quantification for 4 HV. 
Paired t-test. *P<0.05; (C) Measurement of soluble C1q by Elisa (n=11, 8 independent experiments). 
Paired t-test. **P<0.005; (D) Pearson correlation analysis between the expression of C1QA, C1QB and 
C1QC genes (black text) and tolerogenic (red text) or immunogenic (blue text) signature genes. 
Colour scheme gradient and pie graphs represent the correlation coefficients between comparisons. 
Data shown for 5 HV, all from independent experiments.
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RNA expression and DNA methylation levels of C1q genes. Thus, our data suggests 
that CXCL4-driven immunogenic DC phenotype is accompanied by down-regulation 
of tolerogenic genes such as C1q, and may contribute to the break of tolerance in 
inflammatory conditions, resulting in the development of autoimmune disorders. 

Materials and Methods

Generation of moDCs and preparation of RNA and DNA samples
Differentiation of moDCs was implemented as described before [22]. DNA and RNA 
were extracted from moDCs and CXCL4-moDCs on day6 upon differentiation. Cells 
were lysed in RLTplus buffer (Qiagen) containing 1% (v/v) β-mercapto-ethanol (Sigma). 
DNA and RNA were purified using an Allprep Universal Kit (Qiagen) accordingly to 
manufacturer’s instructions, and quantified using Qubit dsDNA HS Assay Kit and Qubit 
RNA HS Assay Kit, and measured using Qubit 2.0 fluorimeter (Invitrogen).

RNA sequencing and analysis
RNA-seq library was prepared using 100ng total RNA by the TruSeq kit (Illumina). The 
RNA-seq library was prepared using TruSeq kit (Illumina) and the library products 
were sequenced on an Illumina NextSeq 500 sequencer (25 million clean single-end 
reads of 75 bp) at Utrecht Sequencing Facility UMC Utrecht. Reads were aligned to 
Ensembl human genome (GrCh38, v79; http://www.ensembl.org), using STAR aligner 
with the default parameters [29] and were counted using HTSeq package [30]. 
Likelihood ratio test (LRT) was performed to obtain differentially expressed genes 
using the DESeq2 (1.8.2) R/Bioconductor package, and genes with FDR adjusted 
p-value < 0.05 were considered to be differentially expressed. [31]. The raw read 
counts were normalized in each sample to count per million (CPM).

DNA methylation analysis
HumanMethylation850-BeadChip-based DNA methylation profiling (Illumina, Inc.) 
was performed according to the manufacturer’s instructions at the GenomeScan 
(GenomeScan B.V., Leiden, The Netherlands). The CpG data obtained was quality 
checked and normalized using Beta-mixture quantile normalization (BMIQ) method 
in ChAMP (version 2.6.0) package [32]. The results of global integration of RNA-seq 
and DNA methylation are part of another manuscript (manuscript under review).
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Figure 3.  CXCL4 exposure during moDC differentiation associates with strong hypermethylation of 
C1q. DNA methylation analysis were performed on day 6 of differentiated moDCs and CXCL4-moDCs. 
(A) DNA methylation analysis between moDCs and CXCL4-moDCs on day 6 of differentiation. (n=5 
HV, n=5 per group). Likelihood ratio test. ***P<0.005. (B) Correlation between differently methylated 
(A) C1QA, (B) C1QB, (C) C1QC regions (1500 and 200 bp upstream of the transcription start site (TSS); 
5’untranslated region (UTR), and 1st exon) and their corresponding gene expression, respectively. 
“R” represents Pearson correlation and “p” represents p-value calculated by t test. Data shown for 5 
HV, all from independent experiments.
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Cytokine quantification by ELISA
Secreted C1q was quantified by ELISA accordingly to the manufacturer’s instructions 
(Human C1q ELISA Kit, Cat# E-EL-H0803, Elabscience) and measured on CLARIOstar 
micro-plate reader (BMG LABTECH) set to 450 nm.

Western blot 
Cell lysates were resolved on 4-12% Bis-Tris SDS NuPAGE gels (Invitrogen). After 
blocking the membranes were probed overnight at 4oC with the Abs for C1q (PA5-
29586, Invitrogen) and alpha-tubulin (Sigma, T9026). Membranes were extensively 
washed and incubated with secondary swine anti-rabbit and goat anti-mouse HRP-
conjugated Ab (Dako) for 1 hour at RT. The ratio between the levels of C1q and 
tubulin were calculated to determine the relative expression of C1q.

Statistical analysis
GraphPad Prism software (version 7) was used for statistical analysis of protein 
validation. Paired Student t test were used and significance was defined as p-value 
≤ 0.05.

Data availability
RNAseq data has been deposited in NCBI’s Gene Expression Omnibus (accession 
number: GSE115488). DNA methylation data has been deposited in NCBI’s Gene 
Expression Omnibus (accession number: GSE115201). 
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Supporting Information

Figure S1. Exposure to CXCL4 during moDC differentiation leads to up-regulation of immunogenic 
and down-regulation of tolerogenic markers on moDCs. RNA sequencing was performed on day 6 
of differentiated moDCs and CXCL4-moDCs. Gene expression analysis of (A) immunogenic and (B) 
tolerogenic associated molecules in count per million (CPM). Lines connect samples of individual 
HV; Likelihood ratio test. *P<0.05; **P<0.01. Data shown for 5 HV, all from independent experiments.
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Figure S2. CXCL4 associates with strong hypermethylation of C1q CpGs. RNA sequencing and DNA 
methylation profiling were performed on day 6 of differentiated moDCs and CXCL4-moDCs. (A) 
Correlation between differently methylated C1QA, C1QB, C1QC CpGs and their corresponding gene 
expression, respectively. “R” represents Pearson correlation and “p” p value calculated by t test. Data 
shown for 5 HV, all from independent experiments.
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Figure S3. Down-regulation of particular tolerogenic markers by CXCL4 is associated with strong 
hypermethylation. RNA sequencing and DNA methylation profiling were performed on day 6 
of differentiated moDCs and CXCL4-moDCs. (A) DNA methylation levels between moDCs and 
CXCL4-moDCs. Likelihood ratio test. **P<0.01; ***P<0.005. (B) Correlation between differently 
methylated regions (1500 upstream of the transcription start site (TSS); 1st exon and 3’UTR) and 
their corresponding gene expression, respectively. “R” represents Pearson correlation and “p” p value 
calculated by t test. Data shown for 5 HV, all from independent experiments.
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Figure S4. Effects of CXCL4 exposure on DNA methylation of immunogenic and tolerogenic markers. 
RNA sequencing and DNA methylation profiling were performed on day 6 of differentiated moDCs 
and CXCL4-moDCs. (A) DNA methylation analysis between moDCs and CXCL4-moDCs. Likelihood 
ratio test. **P<0.01; ***P<0.005. (B) Correlation between differently methylated regions (1500 upstream 
of the transcription start site (TSS); 1st exon and 3’UTR) and their corresponding gene expression, 
respectively. “R” represents Pearson correlation and “p” p value calculated by t test. Data shown for 5 
HV, all from independent experiments.
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Abstract

The chemokine CXCL4 has been implicated in several immune diseases. Exposure 
of monocyte-derived dendritic cells (moDCs) to CXCL4 potentiates the production 
of inflammatory cytokines in the presence of TLR3 or TLR7/8 agonists. Here we 
investigated the transcriptional and post-transcriptional events underlying the 
augmented inflammatory responses in CXCL4-moDCs. Our results indicate that 
CXCL4-moDCs display an increased expression and secretion of IL-12, IL-23, IL-6 and 
TNF upon TLR3 activation. Analysis of the cytokine transcripts for the presence of 
AU-rich elements (ARE), motifs necessary for ARE-mediated mRNA decay, revealed 
that all these cytokine transcripts are, at least in silico, possibly regulated at the level 
of mRNA stability. In vitro assays confirmed that mRNA stability of IL6 and TNF, but 
not IL12B and IL23A, is increased in CXCL4-moDCs. We next screened the expression 
of ARE-binding proteins (ARE-BPs) and found that TLR stimulation of CXCL4-moDCs 
induced tristetraprolin (TTP or ZFP36). Increased TTP mRNA expression was found to 
be a consequence of TTP phospho-mediated inactivation, which over time causes the 
protein to degrade its own mRNA. Concomitantly with TTP inactivation, we observed 
increased MAPK p38 signalling, upstream of TTP, in stimulated CXCL4-moDCs. P38 
inhibition restored TTP activation and subsequently reduced the production of 
inflammatory cytokines. Finally, TTP knockdown in moDCs resulted in an increased 
production of IL6 and TNF after TLR stimulation. Overall, our study shows that the 
pro-inflammatory phenotype of CXCL4-moDCs relies in part on enhanced cytokine 
mRNA stability dictated by TTP inactivation.

Keywords: monocyte-derived dendritic cells, CXCL4, cytokines, mRNA stability, TTP

Abbreviations: moDC, monocyte-derived dendritic cells; polyI:C, poly Inosinic-
polycytidylic acid; ARE, AU-rich elements; ARE-BPs, ARE-binding proteins
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1. Introduction

CXCL4 is a chemokine produced by activated platelets and immune cells involved in 
pathological conditions such as cancer (Aivado et al., 2007), infections (Schwartzkopff 
et al., 2009; Srivastava et al., 2008) and inflammatory diseases like systemic sclerosis 
(SSc), rheumatoid arthritis (RA) and psoriatic arthritis (PsA), among others (Affandi 
et al., 2018b; Ah Kioon et al., 2018; Patsouras et al., 2015; van Bon et al., 2014; Yeo et 
al., 2016). CXCL4 plays a determinant role in distinct physiological processes such as 
in hematopoiesis (Han et al., 1990), angiogenesis (Maione et al., 1990), coagulation 
(Dehmer et al., 1995) and modulation of immune responses. For instance, exposure 
of monocytes to CXCL4 prevents apoptosis, induces the production of TNF and 
reactive oxygen species (ROS) and promotes monocyte differentiation into a unique 
macrophage-like phenotype (Gleissner et al., 2010; Scheuerer et al., 2000). In 
addition, we and others have shown that CXCL4 also modulates T-cell activation and 
regulates both the phenotype and the TLR-mediated innate responses of dendritic 
cells (DCs) (Affandi et al., 2018b; Fleischer et al., 2002; Fricke et al., 2004; Gouwy et al., 
2016; Silva-Cardoso et al., 2017; Xia and Kao, 2003).
	 DCs are professional antigen-presenting cells (APCs) playing a crucial role in the 
maintenance of peripheral tolerance and bridging innate and adaptive immune 
responses. External- and self-dangerous molecules activate DCs downstream 
inflammatory signalling pathways which, when unresolved, can result in cytokine 
storm and autoimmunity. Immune regulatory positive and negative feedback 
mechanisms are therefore crucial to control inflammatory responses, prevent tissue 
damage and restore immune homeostasis. In DCs, as well as in other immune and 
non-immune cells, a tight control of inflammation starts at the transcriptional level. 
However, post-transcriptional regulation of cytokine mRNA stability is a determining 
factor for final cytokine abundance (Barreau et al., 2005; Stoecklin and Anderson, 
2007). In fact, disturbances in mRNA regulatory processes are notoriously associated 
with pathological manifestations, such as chronic inflammation and cancer (Brooks 
et al., 2002; Huang et al., 2016; Khabar, 2010; Seko et al., 2006; Zhang et al., 2013).
	 mRNA decay mediated by adenosine uridine (AU)-rich elements (AREs) is one 
of the best described mechanisms of mRNA regulation in mammalian cells. ARE 
motifs are found in the three prime untranslated region (3’UTR) of many short-
lived inflammatory and oncogenic mRNAs. AREs conventionally act as mRNA 
destabilizing factors, however the interaction of AREs with trans-acting ARE-binding 
proteins (ARE-BPs) ultimately determines mRNA degradation or stabilization 
(Barreau et al., 2005; Carpenter et al., 2014; Stoecklin et al., 2004). Tristetrapolin 
(TTP or ZFP36), TTP family members BRF1 (ZFP36L1) and BRF2 (ZFP36L2), AU-rich 
binding factor-1 (AUF1 or HNRNPD), KH-type splicing regulatory protein (KHSRP), Hu 
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antigen R (HuR, or ELAVL1), T-Cell-Restricted Intracellular Antigen 1 (TIA1) and TIA1-
related protein (TIAR or TIAL1) are examples of well characterized ARE-BPs. Among 
ARE-BPs, TTP is a critical regulator of DC maturation and DC-mediated activation 
of T-cell responses (Emmons et al., 2008) and it is implicated in the regulation of 
inflammatory cytokines, including TNF, IL-6, IL-12 and IL-23 (Brooks and Blackshear, 
2013; Bros et al., 2010; Carballo et al., 1998; Molle et al., 2013; Tudor et al., 2009). TTP 
expression is influenced by transcriptional events, as well as by negative feedback 
loop mechanisms that lead to TTP mRNA degradation following the interaction of 
TTP protein with its own mRNA (Kratochvill et al., 2011; Ross et al., 2015; Tiedje et al., 
2016). At the same time, TTP is tightly controlled by MAPK signalling pathways, which 
promote TTP phosphorylation and subsequent inactivation (Brooks and Blackshear, 
2013; Kratochvill et al., 2011; Sandler and Stoecklin, 2008). Multiple studies have 
shown that deregulated expression and activity of TTP are associated with aberrant 
inflammatory conditions. Mice whose myeloid cells lack TTP manifest exacerbated 
inflammation in response to LPS exposure and septic shock (Kratochvill et al., 2011; 
Qiu et al., 2012). Moreover, constitutive TTP knockout mice spontaneously manifest 
a severe autoimmune syndrome characterized by the erosion of peripheral joints 
and TNF overproduction, features analogously observed in RA patients (Taylor et al., 
1996). Conversely, genetic modifications in mice either enhancing TTP endogenous 
levels (Patial et al., 2016) or ensuring constitutive TTP activation (Ross et al., 2017) 
were shown beneficial in dampening inflammation and preventing arthritis 
progression. While drugs directly reverting TTP activation status are currently 
unavailable, understanding when and which mRNA stability mechanisms play a 
role in inflammatory and autoimmune settings is a recent challenge in biomedical 
research (Patial and Blackshear, 2016; Ross et al., 2017) and a necessary condition for 
the discovery of new targets aimed at therapeutic intervention.
	 Earlier studies, inclusive ours, have supported the established association of 
CXCL4 with inflammation and autoimmunity (Affandi et al., 2018b; Patsouras et 
al., 2015; van Bon et al., 2014; Yeo et al., 2016). Furthermore, we identified a role 
of CXCL4 in sensitizing monocyte-derived dendritic cells (moDCs) to aberrant TLR-
mediated TNF and IL-12 production (Affandi et al., 2018b; Silva-Cardoso et al., 2017). 
Here, we investigated whether deregulation of TTP expression and cytokine mRNA 
stability could underlie the aberrant inflammatory phenotype of CXCL4-moDCs.
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2. Materials and Methods

2.1 Monocyte isolation and moDC differentiation
Monocyte isolation and moDC differentiation were performed as described 
previously (Silva-Cardoso et al., 2017). Peripheral blood mononuclear cells (PBMCs) 
were isolated from the blood of healthy volunteers that was collected in accordance 
with institutional ethical approval. After the isolation of PBMCs by density-gradient 
centrifugation over FicollPaqueTM Plus (GE Healthcare), monocytes were purified 
using anti-CD14 magnetic beads, based on positive isolation by autoMACS 
Pro Separator-assisted cell sorting (MiltenyiBiotec). For moDC differentiation, 
monocytes were cultured at a density of 1x106 cells/ml using the medium RPMI 1640 
with GlutaMAX (Life Technologies), supplemented with 10% (v/v) heat-inactivated 
FCS (Biowest) and 1% (v/v) antibiotics (penicillin and streptomycin) (both form Life 
Technologies), for 6 days at 37oC in the presence of 5% CO2. Recombinant human IL-4 
(500 U/ml; R&D) and GM-CSF (800 U/ml; R&D) were added to the medium on day 0 
and day 3. Recombinant human CXCL4 (10 μg/ml; PeproTech) was added on day 0 
and day 3 to differentiate CXCL4-moDCs.

2.2 moDC treatment and stimulation
After the differentiation of moDCs and CXCL4-moDCs, cells were left overnight in 
medium supplemented with FCS and antibiotics. When indicated, cells were pre-
treated or not with 10µM p38 inhibitor (SB202190; Sigma-Aldrich), MEK1/2-ERK 
inhibitor (U0126; Calbiochem) and JNK inhibitor  (SP600125; Bio Connect) 30 minutes 
prior to stimulation with polyI:C (25ug/ml; Invitrogen) for 2 or 8 hours.
	 For mRNA stability analysis, moDCs and CXCL4-moDCs were stimulated with 
polyI:C for 2 hours, followed by actinomycin D (ActD) (5ug/ml; Sigma-Aldrich) 
treatment. Cells were harvested at 0, 2, 4 and 6 hours after treatment. 

2.3 RNA purification and real-time quantitative PCR
RNA was purified using the RNeasy Micro Kit (Qiagen) and reverse-transcribed with 
SuperScript® Reverse Transcriptase Kit (Invitrogen) according to the manufacturer’s 
protocols. Real-Time quantitative-PCRs (RT-qPCR) were performed on the 
QuantStudio 12k flex system using SYBR Select Master Mix (Life Technologies). 
For each time point analysed, the difference between the expression of a gene of 
interest and housekeeping gene (RPL32) was calculated by using either the 2-∆Ct or 
the 2-∆∆Ct methods. Sequences of the primers are listed in Table 1.
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Table 1. Sequences of primers used for qPCR analysis.

Gene Forward primer Reverse primer

RPL32 AGGGTTCGTAGAAGATTCAAGG GGAAACATTGTGAGCGATCTC

IL12B TGCCGTTCACAAGCTCAAGT TGGGTCAGGTTTGATGATGTCC

PT IL12B TCATCTGCCGCAAAAATGCC TTTGAGGGCCTGCTCACCTA

IL23A CAACAGTCAGTTCTGCTTGC GAAGGCTCCCCTGTGAAAAT

PT IL23A AGCCTTCTCTGCTCCCTGATA ATCCTCCACGCCCCTACTT

TNF CCCATGTTGTAGCAAACCCT TGAGGTACAGGCCCTCTGAT

PT TNF TCAGGATCATCTTCTCGAACC GAGTCCTTCTCACATTGTCTC

IL6 GACAGCCACTCACCTCTTCA CCTCTTTGCTGCTTTCACAC

PT IL6 ACATCCTCGACGGCATCTCAG CCCAGCAAAGACCTCCTAATG

AUF1 TTTGTTGGTGGCCTTTCTCC ATTCCACCTCACCAAAACCAC

BRF1 ATGCAAGGGTAACAAGATGCTC CACTGCCTTTCTGTCCAGC

BRF2 TCCAGAAACATGTCGACCAC AGGGATTTCTCTGTCTTGCAC

KHSRP CTTACAAAGTGCAGCAAGCC AGATCCGTACTCATTCCGGT

HuR AAGCCTGTTCAGCAGCATTG CCAAGCTGTGTCCTGCTACT

TIAL1 GGAGTAGATCAATCACCTTCTGCTG ATCCGGCTTGGTTAGGAGGA

TIA1 GATGCCCGAGTGGTAAAAGAC CCCATCTGTTGAATGGCGTTT

TTP CTGCCATCTACGAGAGCCT ACTCAGTCCCTCCATGGTC

PT TTP GCCATCTACGAGGTGAGTCC AGTTTGCGGCGCTAGAGAG

2.4 Primers design 
Primers were designed with Primer-BLAST (Ye et al., 2012). FASTA sequences 
retrieved from GRCh38 Primary Assembly (TNF, NC_000006.12; IL6, NC_000007.14; 
IL12B NC_000005.10; IL23A, NC_000012.12; TTP, NC_000019.10) were used as 
template for the design of primers recognizing primary transcripts. FASTA sequences 
from protein-coding transcripts (IL6, NM_000600.5; TNF, NM_000594.4; IL12B, 
NM_002187.2; IL23A NM_016584.3; TTP, NM_003407.4) were used as template for 
the design of primers recognizing mature mRNA.

2.5 Cytokine quantification by Luminex
Supernatants were collected after 8 hours stimulation with polyI:C and cytokine 
measurements were assessed by Luminex technology as described before (de 
Jager et al., 2005) at the MultiPlex Core Facility of the Laboratory of Translational 
Immunology in the University Medical Center of Utrecht.
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2.6 Western blot 
MoDCs and CXCL4-moDCs were left unstimulated or stimulated with polyI:C (25ug/
ml) for 15 minutes, 30 minutes, 1 or 2 hours. When indicated, prior to stimulation, 
cells were pre-treated with the p38 inhibitor SB202190. Cells were lysed in Laemmli’s 
buffer and protein concentration was quantified using a BCA Protein Assay Kit 
(Pierce, Thermo Scientific) according to the manufacture’s protocol. Equal amounts 
of protein lysate were mixed with loading buffer and boiled at 95oC for 5 minutes, 
and separated by electrophoresis on a 4-12% Bis-Tris SDS NuPAGE gels (Invitrogen). 
Alternatively, samples were ran on 10% SDS-PAGE gels for 5 hours at constant 70 
V for better separation of immune-reactive bands ranging between 26 and 55 
kDa. Gels were transferred to a PVDF membrane (Millipore). The membranes were 
blocked with Tris-buffered saline (pH 8) containing 0.05% Tween-20 and 4% milk 
(Bio-Rad) for 1 hour at room temperature (RT) and probed overnight at 4oC with 
antibodies for total p38 and phospho-p38; ERK and phospho-ERK; TTP and histone 
3 (H3) (all from Cell signaling) or tubulin (Sigma-Aldrich). After washing, membranes 
were incubated for 1 hour at RT with the secondary anti-rabbit HRP-conjugated Ab 
(Dako). Protein detection was assessed using a ChemiDoc MP System (Bio-Rad). For 
protein visualization and densitometry analysis, the Image Lab software (version 5.1, 
Bio-Rad) was used. The ratio between the levels of the protein of interest and H3 or 
tubulin was calculated to determine relative expression.

2.7 Lambda phosphatase treatment
CXCL4-moDCs were lysed in non-denaturing lysis buffer (10mM Tris HCl pH 8.0, 
10mM NaCl, 1% NP-40). Protein lysates were supplemented with 10X NEBuffer for 
Protein MetalloPhosphatases (PMP) and 10 mM MnCl2 (New England Biolabs). Cell 
lysates were incubated on ice for 30 min, after which supernatants were centrifuged 
at 4 °C for 10 min (10.000g) and collected. Supernatants were incubated with 1000 
units of lambda (λ) phosphatase (New England Biolabs) at 30 °C for 30 min, after 
which loading buffer was added to the protein lysate. Samples were boiled at 95 °C 
for 5 min, and further processed for immunoblotting as described above.

2.8 siRNA transfection
On day 6 of differentiation, moDCs were transfected for 4 hours with 20nM 
control non-targeting siRNA (siCtrl) or specific siRNA targeting TTP (siTTP), using 
DharmaFECT1 (all from Dharmacon). Transfection reagents were replaced with 
complete cell culture medium, and cells were left resting overnight. Cells were 
stimulated with polyI:C for 8 hours for gene expression analysis.



160

2.9 Analysis of AU rich motifs
3’UTR sequences for IL-12B (ENST00000231228.2), IL-23A (ENST00000228534.5), 
IL-6 (ENST00000404625.5) and TNF (ENST00000449264.2) were retrieved from 
UCSC Genome Browser. ARE sequences in the 3’UTR of the same transcripts were 
obtained from AREsite2 database (Fallmann et al., 2016) and mapped by making 
use of a customized C# application made with Unity3D which identifies specific ARE 
sequences in the 3’UTR and outputs an image assigning different colours to the ARE 
family motifs. 

3.0 Statistical analysis
Data analyses and graphs were performed using GraphPad Prism software (version 7). 
Data are represented as mean ±SD. To compare two groups the paired t test was used 
or one-way analysis of variance (ANOVA) was applied when more than two groups 
were compared. The significance was defined as p≤0.05. Statistical significance 
indicated as * for p<0.05; ** for p<0.01; *** for p<0.001; **** for p<0.00013. 

Results

3.1 Cytokines induced in CXCL4-moDCs display ARE sequences in their 
3’UTR
Previously, we have shown that exposure of moDCs to CXCL4 (CXCL4-moDCs) during 
differentiation results in aberrant IL-12 and TNF production after TLR3 (polyI:C) and 
TLR7/8 (CL075 and R848) triggering (Silva-Cardoso et al., 2017). In this study we used 
the same cell culture model to differentiate moDCs in the presence of CXCL4 for 6 
days, and further stimulated the cells for 8 hours with polyI:C. We confirmed that 
stimulated CXCL4-moDCs secrete increased levels of IL-12 and TNF in comparison 
to moDCs, and additionally found that IL-6 and IL-23 are also strongly produced 
by CXCL4-moDCs (Fig.1A). No differences in the expression of these inflammatory 
cytokines were found between unstimulated moDCs and CXCL4-moDCs 
(Supplementary Fig S1). As these inflammatory cytokines have been reported to be 
regulated at the level of mRNA stability (Carballo et al., 1998; Molle et al., 2013; Tudor 
et al., 2009), we screened the 3’UTR regions of  their transcripts for the presence 
of AU-rich motifs, which constitute necessary sites for ARE-mediated mRNA decay 
(Fig.1B) (Fallmann et al., 2016). All cytokine transcripts displayed at least one AUUUA 
pentamer and one WWWUUUWWW nonamer motif, preferential binding sites for 
ARE-BPs (Fig.1C-D) (Barreau et al., 2005; Kratochvill et al., 2011). Thus, based on the 
presence of  ARE motifs, we hypothesized that the mRNA of these cytokines could be 
stabilized in stimulated CXCL4-moDCs.
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Figure 1. Cytokines induced in CXCL4-moDCs display enriched ARE sequences. (A) Monocyte-
derived dendritic cells (moDCs) were differentiated in the absence or presence of CXCL4 (CXCL4-
moDCs) for 6 days. Cytokine production was measured by Luminex after 8 hours stimulation with 
polyI:C. Lines connect individual donors. (N=8); Wilcoxon matched-pairs signed rank test. (B) ARE 
sequences in IL12B, IL23A, IL6 and TNF protein-coding transcripts were obtained from AREsite2 
database and mapped in the 3’UTR of the respective transcripts. In the figure, specific ARE sequences 
are illustrated and coloured based on their belonging to defined ARE family motifs. W indicates 
either A (adenine) or U (uracil) nucleotide. (C-D) Specific AREs (C) and family ARE motifs (D) retrieved 
from (B) were overlapped in Venn-Diagram, and common sequences are shown in the table.
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3.2 Enhanced cytokine production by CXCL4-moDCs relies on both 
transcriptional and post-transcriptional regulation
Given the presence of ARE motifs in IL6, TNF, IL12B and IL23A transcripts, we next 
hypothesized that the protein induction observed in stimulated CXCL4-moDCs 
would be a consequence of post-transcriptional, rather than transcriptional, 
regulation. To test our hypothesis, we designed primers specifically recognizing 
the unspliced ‘primary’ transcript or the spliced ‘mature’ transcript of all 4 cytokines 
(Fig.2A and Supplementary Fig S2). In fact, while primary transcript expression 
reflects transcriptional regulation, the expression of mature transcripts is sensitive 
to mRNA degradation (Scherrer, 2018). Analyses of the mature/primary ratios 
revealed that the mature transcript expression of IL6 and TNF, but not IL-12B and 
IL-23A, was significantly higher in stimulated CXCL4-moDCs at early time points 
(Fig.2A and Supplementary Fig S3A), suggesting mRNA stabilization of IL6 and TNF 
transcripts. In order to validate these results, we made use of an alternative assay 
using actinomycin D (ActD), a transcriptional inhibitor, to determine mRNA stability. 
In line with previous reports (Loupasakis et al., 2017; Paschoud et al., 2006), the 
mRNA of IL-6 and TNF quickly decayed after 2 hours ActD treatment. However, in 
CXCL4-moDCs, IL6 and TNF transcripts retained higher stability at later time points 
(4 and 6 hours ActD treatment) in comparison to conventional moDCs (Fig.2B). The 
expression of IL12B and IL23A was intrinsically stable, in agreement with previous 
studies (O’Neil et al., 2017) and showed slow mRNA decay rates in both moDCs 
and CXCL4-moDCs (Fig.2B and Supplementary Fig S3B). These results indicate that 
stimulated CXCL4-moDCs display an enhanced production of IL-6 and TNF, which 
is explained by their post-transcriptional regulation (enhanced mRNA stability). On 
the contrary, the increased expression of IL-12 and IL-23 observed in these cells is 
dependent on transcriptional regulatory mechanisms. 

3.3 TTP expression and activity are altered in CXCL4-moDCs
Several ARE-BPs have been shown to play a crucial role on mRNA stability regulation. 
Thus, we analysed the expression of well characterized ARE-BPs retaining either 
destabilizing or stabilizing properties (Carpenter et al., 2014). We found a strong 
induction of TTP mature transcript expression by CXCL4-moDCs after 2 hours 
stimulation with polyI:C, in comparison to conventional moDCs (Fig.3A). No 
differences were found for all the other analysed ARE-BPs (BRF1, BRF2, AUF1, KHSRP, 
TIA, TIAL1 and HuR) (Fig.3A). We confirmed that TTP was induced at the protein level 
in polyI:C stimulated CXCL4-moDCs (Fig.3B). However, given the mRNA-degrading 
properties of this ARE-BP, we hypothesized that the increased TTP expression 
observed by Western blot would be a consequence of TTP phosphorylation. In 
fact, MAPK-induced TTP phosphorylation, besides making TTP protein inactive, 
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Figure 2. Increased cytokine production by CXCL4-moDCs relies on both transcriptional 
and post-transcriptional regulation.  (A) Primers for IL6, TNF and IL12B were designed in a way 
to amplify either intron-exon regions or exon-exon regions, allowing the detection of primary and 
mature transcripts, respectively. MoDCs and CXCL4-moDCs were left unstimulated (-) or stimulated 
for 2, 4 and 8 hours with polyI:C. Gene expression of primary and mature transcripts of inflammatory 
cytokines is represented as relative expression levels for both primary and mature transcripts (2^-
∆CT), while ratios were calculated according to the formula: 2^-∆CT mature transcript/2^-∆CT 
primary transcript. (N=8); One-way ANOVA followed by Fisher’s LSD test. (B) MoDCs and CXCL4 
moDCs were stimulated with polyI:C for 2 hours, and further treated with actinomycin D (ActD) for 
the indicated time points, followed by gene expression analysis. (N=10); Wilcoxon matched-pairs 
signed rank test.
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Figure 3. TTP expression and activity are altered in CXCL4-moDCs.  (A) MoDCs and CXCL4-moDCs 
were stimulated with polyI:C for the indicated time points and ARE-BPs expression was analysed 
by qPCR. Data are represented as relative expression levels. (N=9); One-way ANOVA followed by 
Fisher’s LSD test (B) TTP protein induction was analysed by Western blot after stimulating moDCs 
and CXCL4-moDCs for 2 hours with polyI:C. Densitometry analysis indicates the signal intensity of 
TTP expression normalized to control Histone 3 (H3). Lines connect individual donors. (N=5); Paired 
t test. (C) TTP primary transcript expression upon 2 hours stimulation with polyI:C was analysed 
by qPCR. (N=6); One-way ANOVA followed by Fisher’s LSD test (D) MoDCs and CXCL4-moDCs were 
stimulated with polyI:C for 2 hours. Cells were treated with ActD for the indicated time points and 
TTP mature transcript was analysed by qPCR. (N=10); Wilcoxon matched-pairs signed rank test.



165

6

CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells

also prevents it from being processed for proteasomal degradation (Brooks and 
Blackshear, 2013; Deleault et al., 2008). Improved resolving for TTP protein by 
Western Blot allowed the identification of two immune-reactive bands of to 45 
and 47 kDa (Angiolilli et al., 2018a). ActD treatment inhibited de novo TTP protein 
synthesis, leading to the reduction of the lower immune-reactive band, but it did 
not affect the higher phosphorylated band (Supplementary Fig S4A). Furthermore, 
treatment of the protein lysates with lamda phosphatase (λ-phosphatase) reduced 
the expression of the higher, but not the lower, band (Supplementary Fig S4B). In line 
with these results, and provided that active TTP destabilizes its own mRNA (Patial et 
al., 2016), we found that the induced TTP mRNA expression observed in stimulated 
CXCL4-moDCs was a consequence of increased TTP mRNA stability (Fig.3D), but 
not transcription (Fig.3C). Overall, our findings indicate that the increased mRNA 
expression of TTP in stimulated CXCL4-moDCs reflects TTP phospho-mediated 
inactivation. 

3.4 Aberrant cytokine production by CXCL4-moDCs is dependent on 
MAPK p38 activation 
TTP phosphorylation and consequent inactivation is a result of MAPK p38 activation 
upon inflammatory triggering (Carballo et al., 2001; Mahtani et al., 2001; Stoecklin et 
al., 2004; Tudor et al., 2009). Thus, we investigated whether stimulated CXCL4-moDCs 
would also display a perturbed MAPK signalling as compared to moDCs. We found 
that stimulation of CXCL4-moDCs with polyI:C for 30 and 60 minutes was followed 
by an increased phosphorylation of p38 (Fig.4A). Treatment of CXCL4-moDCs with 
p38 inhibitor (p38i) SB202190 prior to polyI:C stimulation significantly reduced the 
protein expression of IL-6 and TNF, but also IL-12 and IL-23 (Fig.4B). However, while 
affecting mature IL6 and TNF expression, p38i effects on IL-12 and IL-23 production 
were mostly linked to the suppression of their primary transcripts, as the mature/
primary ratio of IL12B and IL23A expression was not significantly altered by p38i 
treatment (Fig.4C and Supplementary Fig S5). Furthermore, while MEK/ERK, but not 
JNK, inhibition also resulted in a modest suppression of IL-6 and TNF production 
(Supplementary Fig S6A-B), ERK signalling was not found potentiated in stimulated 
CXCL4-moDCs (Supplementary Fig S6C). Overall, these results suggest that p38 
is the predominant MAPK driving inflammatory activation in stimulated CXCL4-
moDCs and that p38 inhibition uniformly reduces cytokine expression. However 
the mechanisms underlying p38i effects could be dependent on either control of 
cytokine mRNA stability (in case of IL6 and TNF) or transcriptional regulation (in case 
of IL12B and IL23A). 
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Figure 4. Amplified activation of MAPK p38 in CXCL4-moDCs contributes to increased cytokine 
production. 
(A) MoDCs and CXCL4-moDCs were stimulated with polyI:C for the indicated time points. Phosphorylated 
p38 (p-p38), total p38 (p38) and H3 expression were measured by Western blot. Densitometry analysis 
indicates the signal intensity of p-p38/p38 ratio normalized to control H3. (N=5); One-way ANOVA 
followed by Fisher’s LSD test (B) Prior to polyI:C stimulation for 8 hours, moDCs and CXCL4-moDCs were 
pre-treated with the p38 inhibitor SB202190 and cytokine production was measured by Luminex. (N=9); 
One-way ANOVA followed by Fisher’s LSD test (C) Cells were pre-treated as in (B), further stimulated for 
2 and 8 hours with polyI:C and processed for qPCR analysis. Gene expression of primary and mature 
transcripts of inflammatory cytokines is represented as relative expression levels for both primary and 
mature transcripts (2^-∆CT), while ratios were calculated according to the formula: 2^-∆CT mature 
transcript/2^-∆CT primary transcript. (N=6); One-way ANOVA followed by Fisher’s LSD test.
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Figure 5. Suppression of TTP activity or expression leads to increased cytokine production. (A) 
Prior to polyI:C stimulation for 2 hours, CXCL4-moDCs were pre-treated or not with the p38i SB202190.
TTP and Tubulin expression were measured by Western blot. (N=3). (B) Cells were pre-treated as in (A) 
and stimulated for 2 and 8 hours with polyI:C. TTP primary and mature transcripts were analysed by 
qPCR. Data are represented as relative expression levels for both primary and mature TTP transcripts 
(2^-∆CT), while ratio is calculated as 2^-∆CT mature transcript/ 2^-∆CT primary transcript. (N=6); 
One-way ANOVA followed by Fisher’s LSD test (C-E) moDCs were transfected with either control 
non-targeting siRNA (siCtrl) or with specific siRNA targeting TTP (siTTP). In (C), knockdown efficiency 
was determined by qPCR. Data are represented as fold change mRNA expression compared to siCtrl 
condition. (N=7); Paired t test. In (D), transfected moDCs were stimulated with polyI:C for 2 hours, 
and knockdown efficiency was confirmed by Western blot. (N=4). In (E), transfected moDCs were 
stimulated with polyI:C for 8 hours and cytokine expression was analysed by qPCR. (N=6) Paired t test. 
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3.5 Suppression of TTP expression or activity leads to increased 
cytokine production. 
To further assess the phosphorylation status of TTP in CXCL4-moDCs, we pre-treated 
cells with p38i before stimulation with polyI:C. In the presence of p38 inhibitor, the 
higher immune-reactive band corresponding to phosphorylated TTP was reduced 
in CXCL4-moDCs (Fig.5A). As expected, treatment with p38i led to decreased TTP 
mature transcript after 2 hours polyI:C stimulation (Fig.5B), a possible consequence 
of the restored TTP activity which also causes TTP mRNA degradation. Conversely, 
neither ERK or JNK inhibition reduced TTP expression (Supplementary Fig S7). 
These results suggest that, in CXCL4-moDCs, polyI:C stimulation mediates the 
aberrant activation of MAPK p38 signalling and the inactivation of TTP, the latter 
contributing to the increase mRNA stability of inflammatory cytokines. Interference 
of this pathway by the use of a p38i leads to restored activation of TTP function and 
consequent cytokine and TTP mRNA degradation. To further confirm the role of TTP 
on the regulation of cytokine production by moDCs, we performed TTP silencing by 
siRNA. TTP knockdown was confirmed at the mRNA (Fig.5C) and protein level (Fig.5D). 
While not reporting changes in cell viability after TTP silencing (Supplementary Fig 
S8), we observed that IL6 and TNF mRNA expression was boosted in TTP knockout 
moDCs upon polyI:C stimulation (Fig.5E). In contrast, the expression of IL-12B and IL-
23A was not significantly affected after TTP silencing. Altogether, our results indicate 
that TNF and IL6 expression in CXCL4-moDCs is regulated at the post-transcriptional 
level and relies on TTP inactivation.

4. Discussion

CXCL4 is a chemokine which is massively released by activated platelets, as well as 
immune cells, under pathological conditions (Affandi et al., 2018a; Angiolilli et al., 
2018b; Fox et al., 2018). Increased levels of CXCL4 were detected in individuals with 
chronic autoimmune diseases, both in circulation and at the site of inflammation 
(Affandi et al., 2018b; Patsouras et al., 2015; van Bon et al., 2014; Yeo et al., 2016). 
Furthermore, we and others have previously shown that during the differentiation 
of monocytes into DCs (moDCs) the prolonged exposure to CXCL4, a condition that 
mimics chronic inflammatory status, is able to significantly affect DCs phenotype 
and activation (Fricke et al., 2004; Silva-Cardoso et al., 2017; Xia and Kao, 2003). 
Specifically, we reported that CXCL4-moDCs produce higher levels of TNF and IL-12 
cytokines after stimulation with polyI:C, a TLR3 agonist (Silva-Cardoso et al., 2017).. 
Here we show that IL-6 and IL-23, two cytokines notoriously produced by DCs and 
playing a central role in autoimmune conditions (Abdel-Magied et al., 2016; Komura 
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et al., 2008; Lee et al., 2004; Nakayama et al., 2017; Schmidt et al., 2005), are also 
upregulated in CXCL4-moDCs upon stimulation, in comparison to conventional 
moDCs. As these inflammatory cytokines have been reported to be regulated at the 
level of mRNA stability (Carballo et al., 1998; Molle et al., 2013; Tudor et al., 2009), and 
given that ARE sequences in the 3’UTR play a determinant role in mRNA regulation 
(Barreau et al., 2005; Carpenter et al., 2014; Stoecklin and Anderson, 2007), we 
hypothesized that these cytokines could all be subject to post-transcriptional 
events, explaining their higher production in stimulated CXCL4-moDCs. However, 
our assays used to define mRNA stability (Angiolilli et al., 2018a; Smallie et al., 2015) 
indicated that IL6 and TNF, but not IL12B and IL23A, transcripts are stabilized in TLR3-
triggered CXCL4 moDCs. Although IL12B and IL23A mRNA can both be physically 
recognized by ARE-BPs (Molle et al., 2013; Qian et al., 2011; Sedlyarov et al., 2016), 
more studies indicated no effects of ARE-BPs on IL12B mRNA stability (Jalonen et 
al., 2006; Molle et al., 2013; O’Neil et al., 2017), and rather hinted for transcriptional 

Figure 6. Schematic overview of proposed mechanism.
Conventional monocyte differentiation in the presence of IL-4 and GM-CSF generates monocyte-
derived dendritic cells (moDCs). In our study we added CXCL4 during moDCs differentiation to 
generate CXCL4-moDCs. Compared to conventional moDCs, polyI:C stimulation of CXCL4-moDCs 
leads to abnormal phospho(P)-mediated activation of MAPK p38 signalling, which in turn mediates 
the phospho-mediated inactivation of TTP. When inactive, TTP does not degrade its target mRNAs, 
including its own mRNA. In our study we observe that the expression of IL6 and TNF transcripts is 
increased in moDCs lacking TTP, a model mimicking TTP inactivation observed in CXCL4-moDCs. 
In line with this model, p38 inhibition suppresses not only IL-6 and TNF, but also IL-12 and IL-23, 
production possibly via mRNA stability-independent mechanisms.
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mechanisms of regulation mediated by inhibition of NF-κB nuclear translocation (Gu 
et al., 2013). Additionally, interaction of ARE-BPs with target ARE-containing mRNAs 
is dictated by different parameters, such as cellular activation status, and different 
accessibility and adaptability of mRNA binding motifs (Garcia-Maurino et al., 2017; 
Ripin et al., 2019). Thus, it is plausible that in our experimental settings IL23A mRNA 
is not sufficiently affected by mRNA decay due to missing molecular counterparts 
or structural mRNA components that are instead present in other cells, or induced 
upon different stimulations. In line with this hypothesis, we also observed that TTP 
knockdown in moDCs failed to upregulate IL12B and IL23A mRNA expression upon 
poly:IC stimulation, while it potentiated TNF and IL6 mRNA expression. Even though 
the use of primary cells in our study did not allow us to confirm a direct interaction 
between TTP and the target cytokines (data not shown), TTP binding to TNF and IL6 
has been previously confirmed in a variety of human and murine cells upon different 
experimental conditions (Patino et al., 2006; Shi et al., 2012; Tiedje et al., 2016; 
Zhao et al., 2011). Furthermore, ARE sequences in the 3’UTR region of TNF and IL6 
mRNAs are highly similar within mammalian species, suggesting a highly conserved 
mechanism of mRNA degradation for these cytokines (Carrick et al., 2004; Paschoud 
et al., 2006). Thus, in our experimental model, we could speculate that the mRNA 
stabilization of TNF and IL6 mRNA in CXCL4-moDCs is likely a direct consequence of 
TTP inactivation, which results in the reduced binding of TTP to its target mRNAs.
	 Binding of ARE-BPs to AREs plays a determinant role in mRNA degradation. Among 
several ARE-BPs, TTP plays a pivotal role in cytokine regulation, by both guiding 
cytokine mRNA for degradation or preventing translation (Brooks and Blackshear, 
2013). Carballo et al. had first described that LPS stimulation of macrophages derived 
from TTP knockout mice results in increased TNF mRNA and protein production 
(Carballo et al., 1997; Carballo et al., 1998). Also, it has been shown that TTP on one 
hand regulates DC maturation and cytokine production in response to TLR agonists 
and on the other hand regulates DC-mediated activation of T-cell responses 
(Emmons et al., 2008; Molle et al., 2013). In this work, expression analysis of several 
ARE-BPs showed that TTP is significantly and selectively upregulated in stimulated 
CXCL4-moDCs, as compared to the other ARE-BPs. While it has been previously 
shown that TTP regulates the expression of ARE- and non-ARE- enriched genes with 
a critical function for DC maturation and activation (Emmons et al., 2008), it is worth 
mentioning that inflammatory triggers, besides enhancing cytokine production, 
typically induce TTP mRNA expression. Despite counterintuitive, given the mRNA 
degrading properties of this ARE-BP (Brooks and Blackshear, 2013), higher TTP levels 
are explained by the impaired activity of TTP protein upon inflammatory conditions, 
which also renders TTP less efficient in degrading its own mRNA (Patial et al., 
2016). For instance, stimulation of RA FLS with IL-1β leads to increased phospho-
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inactive TTP protein levels, higher TTP mRNA expression and subsequent increased 
production of IL6 and CXCL8 (Angiolilli et al., 2018a). Similarly, in LPS-stimulated 
murine macrophages, induced expression of TTP is coupled to increased IL23A mRNA 
stability (Qian et al., 2011). High expression of TTP by macrophages and fibroblasts 
has also been found in the inflamed synovial tissue of RA patients, and reflected 
higher p38 activation in these sites (Ross et al., 2017). Overall our results indicate 
that induced, but phospho-inactive TTP in CXCL4-moDCs fails to degrade TNF and 
IL6 mRNA. Additionally, our data indicate for the first time that inactivation of TTP 
function is one of the mechanisms by which CXCL4 controls cytokine production. In 
the longer term, this could explain the inflammatory and autoimmune features of 
the diseases where CXCL4 has been implicated.
	 MAPK play an important function in inflammation and tissue damage by 
regulating cytokines at the post-transcriptional level, promoting mRNA stability 
and increasing protein translation (Kratochvill et al., 2011; Mahtani et al., 2001; Ross 
et al., 2015; Stoecklin et al., 2004). Specifically, MAPK p38 and downstream kinase 
MAPK-activated protein kinase 2 (MK2) regulate the activity of several ARE-BPs, 
including TTP (Mahtani et al., 2001; Tiedje et al., 2016). MK2 mediates Ser-52 and Ser-
178 phosphorylation of TTP, simultaneously inhibiting TTP activity and promoting 
its binding to 14-3-3 proteins, which prevent its degradation by the proteasome 
complex (Chrestensen et al., 2004; Stoecklin et al., 2004; Tiedje et al., 2016). In 
keeping with the need for therapeutic drugs able to prevent, or inhibit, inflammatory 
cytokine production, several immunomodulatory inhibitors have emerged in the last 
decades. Given the pleiotropic role of MAPK p38 in the regulation of transcriptional 
and mRNA-stabilizing events which control cytokine production (Arthur and Ley, 
2013), compounds affecting p38 activity have been extensively investigated in 
experimental and clinical settings (Cohen et al., 2009; Salgado et al., 2014). Although 
p38 inhibitors have proven therapeutic potential in different experimental models of 
autoimmune diseases, including arthritis (Mihara et al., 2008), colitis (Li et al., 2013) 
and systemic sclerosis (Matsushita et al., 2017), their effects on the suppression of 
inflammatory parameters was shown to be only transient, possibly explaining their 
moderate effects in clinical trials. While ‘the unexpected failure’ of p38 inhibitors has 
not been completely understood, recent work elucidated how p38 acts as a pro- but 
also anti-inflammatory protein depending on the cell context and on the presence of 
co-stimulatory signalling (Jones et al., 2018; Raza et al., 2017). Thus, investigation of 
p38 inhibitors in combination therapies, and the development of second-generation 
inhibitors able to boost anti-inflammatory properties of p38, while preventing its 
pro-inflammatory effects, remains a current need. 
	 Our study shows for the first time that TLR3-mediated activation of CXCL4-moDCs 
leads to transcriptional and post-transcriptional events that underlie the enhanced 
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inflammatory cytokine production in these cells (Fig.6). Future investigations aimed 
at systematically assessing CXCL4 contribution to immune processes will possibly 
help discerning the role of CXCL4 in health and disease.
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Fig. S1: Monocyte-derived dendritic cells (moDCs) were differentiated in the absence or presence of 
CXCL4 (CXCL4-moDCs) for 6 days. Cytokine production was measured by Luminex. (N=5).
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Fig. S2: (A) A simplified representation for primer design strategy is shown. Primers amplifying 
intron-exon regions are used to detect primary (PT) transcripts located in the nucleus. Conversely, 
primers spanning exon-exon regions allow the detection of mature mRNA located in the cytoplasm. 
Mature mRNA, when containing ARE sequences in the 3’UTR, is subject to recognition of ARE-binding 
proteins which favor the recruitment of the exosome complex and prime mRNA decay from the 
3’poly(A) tail. e=exon; i=intron; AAA= poly(A) tail; UTR= untranslated region; ARE= AU-rich elements; 
ARE-BP= ARE-binding proteins; 5’cap=Five-prime cap; fw=forward primer; rv=reverse primer.
(B) Sets of primers used in this study were designed to amplify either intron-exon or exon-exon 
regions of IL6, TNF, IL12B and IL23A transcripts. In the scheme, exons (black) and the amplified regions 
obtained from primers recognizing primary transcript (blue) or mature transcript (red) are shown. 
NC number refers to the NCBI Genomic Reference Sequence (GRCh38 Assembly) for each gene.
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Fig. S3: (A) MoDCs and CXCL4-moDCs were left unstimulated (-) or stimulated for 2, 4 and 8 hours 
with polyI:C. Gene expression of primary and mature transcripts of IL23A is represented as relative 
expression levels for both primary and mature transcripts (2^-∆CT), while ratios were calculated 
according to the formula: 2^-∆CT mature transcript/2^-∆CT primary transcript. (N=8); One-way 
ANOVA followed by Fisher’s LSD test. (B) MoDCs and CXCL4 moDCs were stimulated with polyI:C for 
2 hours, and further treated with actinomycin D (ActD) for the indicated time points, followed by 
gene expression analysis. (N=10); Wilcoxon matched-pairs signed rank test.
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A

B

Fig. S4: (A) CXCL4-moDCs were either stimulated with polyI:C for 2, 4 and 6 hours, or stimulated 
with polyI:C for 2 hours and further treated with actinomycin D (ActD). Cells were lysed in protein 
lysis buffer and samples processed for Western-Blot (N=1). (B) CXCL4-moDCs were either left 
unstimulated or stimulated with polyI:C for 2 hours. Protein lysates were either left untreated or 
treated with lambda phosphatase (λ-phosphatase) for 30 min, and samples processed for Western-
Blot (N=1).
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transcript. (N=6); One-way ANOVA followed by Fisher’s LSD test.
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Fig. S6: (A-C) moDCs and CXCL4-moDCs were either left untreated or treated with MEK/ERK inhibitor 
(U0126) or JNK inhibitor (SP600125) prior to stimulation with polyI:C for different time points. In (A), 
cells were stimulated with polyI:C for 8 hours, supernatant was collected and cytokine production 
was measured by Luminex (N=6), One-way ANOVA followed by Fisher’s LSD test. In (B), cells were 
stimulated with either 2 or 8 hours polyI:C, and gene expression assessed by qPCR (N=3). In (C), cells 
were stimulated with either 15 minutes or 1 hour, and protein lysates processed for Western-blot. 
Densitometry analysis indicates the signal intensity of (p)ERK/ERK ratio normalized to control H3 
(N=3).
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Fig. S7: moDCs and CXCL4-moDCs were either left untreated or treated with MEK/ERK inhibitor 
(U0126) or JNK inhibitor (SP600125) prior to stimulation with polyI:C for 2 or 8 hours, and gene 
expression assessed by qPCR (N=3).
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Fig. S8: moDCs were transfected with either control non-targeting siRNA (siCtrl) or with specific 
siRNA targeting TTP (siTTP). Cell viability was assessed by trypan blue staining, and represented as 
percentage of total live cells (N=2).
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Immune mediators such as cytokines and chemokines play a dual role in 
physiological and pathological conditions. CXCL4 is a chemokine released by 
activated platelets and immune cells, and plays a critical role in biological processes 
such as hematopoiesis, coagulation and immune regulation 1. Our group found, 
for the first time, increased levels of CXCL4 in circulation and skin of patients with 
systemic sclerosis (SSc)2. Later studies have validated the implication of CXCL4 in 
the pathogenesis of SSc3–6 and in other inflammatory diseases such as psoriasis, 
rheumatoid arthritis (RA) and atherosclerosis 7–9. 
	 Interestingly, increased frequency and activation of platelets (the major source 
of CXCL4) are implicated in aberrant inflammatory and fibrotic responses associated 
with SSc 2,3,10–13. Enhanced platelet activation and aggregation in SSc patients 
contributes to increased pro-coagulation, extensive cytoskeletal remodelling 
and mobilization of intracellular calcium. In turn, these inflammatory and fibrotic 
responses enhance the release of platelet factors, which forms a positive feedback 
loop that promote platelet activation 11,14,15. 
	 While it has been established that both innate and adaptive immune systems are 
compromised in SSc4,16–21, the contribution of CXCL4 to these immune aberrations 
remains poorly investigated.
	 In this thesis, we investigated the effects of CXCL4 exposure on immune responses 
by monocyte-derived dendritic cells (moDCs), an in vitro model of inflammatory 
DCs. Additionally, we explored the underlying molecular mechanisms implicated in 
the reprogramming of moDC phenotype and function by CXCL4. 

CXCL4 primes inflammatory innate and adaptive 
immune responses 

Changes in DC frequencies and augmented pro-inflammatory responses were 
implicated in the pathology of SSc2,13. Previously our group showed that in vitro 
triggering of DCs from SSc patients with TLR agonists results in amplified production 
of inflammatory cytokines and type-I interferon (IFN-I) 2,18.  Therefore, in Chapter 2 we 
studied how CXCL4 affects the phenotype and TLR-mediated responses by human 
moDCs.  Xia and colleagues were the first ones looking at the role of human purified 
CXCL4 on differentiation and function of moDCs 22. In line with their observations, 
we observed that exposure to CXCL4 throughout the differentiation dramatically 
modifies the conventional morphology of moDCs to an irregular shape, formation 
of long dendrites and extremely adherent cellular clusters, suggesting a mature 
phenotype. Also, phenotypic characterization by flow cytometry showed that 
CXCL4-moDCs expressed higher levels of activation molecules, but no production 
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of inflammatory cytokines in the absence of TLR-stimulation. We revealed for the 
first time that stimulation of CXCL4-moDCs with the endosomal TLR agonists polyI:C 
(TLR3), CL075 (TLR8) or R848 (TLR7/8), results in amplified expression of maturation 
molecules and production of pro-inflammatory cytokines.
	 Thus, we suggest that circulating CXCL4 contribute to impaired DC phenotype and 
function, and prime cells to produce aberrant levels of inflammatory cytokines upon 
endossomal TLR triggering, as previously observed in cells from SSc patients18,23–25. 
DCs play a key role in bridging innate and adaptive immune responses, through 
the instruction of inflammatory mediators. The pivotal role of T-cells in autoimmune 
conditions is well established. Indeed, disturbed frequency and augmented pro-
fibrotic cytokine production, especially Th2 and Th17 cytokines, are associated with 
disease activity and fibrosis in patients with SSc 20,21,26–31. Interestingly, DCs found in 
inflammatory tissues are potent inducers of T-cell activation, which includes Th17-
mediated responses 32.
	 In Chapter 2 and 3 we investigated the role of CXCL4 in the activation and 
skewing of T-cells. We showed that CXCL4-moDCs potentiate the activation and the 
inflammatory cytokine production by autologous CD4+ and CD8+ T-cells, and antigen 
(Ag) specific CD8+ T-cells (Chapter 2). Remarkably, exposure to CXCL4 induced the 
production of Th17 cytokines directly by CD3/CD28 activated CD4+T-cells, and by 
CD4+ T-cells in co-culture with myeloid DCs (mDCs), monocytes or CXCL4-moDCs 
(Chapter 3). Moreover, we found increased levels of CXCL4 in plasma from patients 
with psoriatic arthritis (PsA), a Th17-driven disease.  A strong correlation was 
found between CXCL4 and IL-17 or IL-22 in PsA synovial fluid (Chapter 3). Thus, we 
hypothesize that CXCL4 plays a critical role in driving inflammatory T-cell responses 
and in skewing Th17 differentiation. This hypothesis is supported by a previous study 
showing that in autologous co-culture, platelets increased anti-CD3/CD28-induced 
IL-17 production by CD4+T-cells 33. However, the effects of CXCL4 in the regulation 
of T-cells remains debatable due to the contrasting results reported in human and 
mice34–37, distinct methodologies used to induce the activation of T-cells (anti-CD3/
CD28, APCs, Ag) and the different subsets of T-cells studied38–40.
	 Altogether, we showed that CXCL4 plays a critical role in priming aberrant 
inflammatory responses on DCs and T-cells, which have been implicated in the 
pathogenesis of autoimmune diseases where CXCL4 is implicated.



190

CXCL4-mediated regulation at the transcriptional 
and epigenetic levels

Rather few studies have extensively explored the role of CXCL4 in monocyte-derived 
cells, especially moDCs. Overall, it was reported that CXCL4 strictly changes the 
differentiation and function of immune and non-immune cells22,41–43, although the 
underlying molecular mechanisms remain poorly investigated 44,45.
	 Differentiation and maturation of moDCs is followed by dramatic changes at the 
transcriptomic and epigenetic level 46. Environmental disturbances in the immune 
micro milieu play a critical role in epigenetic modifications, for instance at the 
DNA methylation level. These modifications ultimately result in the regulation of 
inflammatory gene expression and were associated with infection and autoimmune 
diseases 47,48.
	 To gain insights into the molecular mechanisms that underlie the effects of 
CXCL4 exposure on moDCs, in Chapter 4 we performed transcriptomic and DNA 
methylation analyses of 65 paired longitudinal samples throughout differentiation 
and polyI:C stimulation of moDCs and CXCL4-moDCs. Remarkably, we observed 
that CXCL4 exposure drives extensive transcriptional and epigenetic remodelling 
of moDC phenotype and function. We identified key immune (TLR-signalling) and 
non-immune (e.g. metabolism, ECM remodelling) associated pathways modulated 
by CXCL4 during the differentiation and stimulation of moDCs. Remarkably, we 
validated the overexpression or down-regulation of several inflammatory (e.g. CCL3, 
IL6) and fibrotic mediators, such as fibronectin (FN1) and TGFβ on the protein level, 
bringing forward the implication of inflammatory DCs in inflammatory and fibrotic 
disorders. 
	 Additionally, we investigated whether secreted mediators by CXCL4-moDCs  
contribute to induce and maintain the positive loop of inflammatory and fibrotic 
responses by fibroblasts, an important cell subset implicated in the pathology of SSc 
49. Fibroblasts serve pivotal roles in ECM remodelling, wound healing, angiogenesis 
and inflammation. However, uncontrolled activation of fibroblasts results in 
pathological fibrotic and inflammatory responses that promote cancer progression 
or fibrotic-mediated diseases. Strikingly, we observed that co-culture of fibroblasts 
with cell-free supernatants from stimulated CXCL4-moDCs, induced myofibroblast 
transition and increased expression of inflammatory (e.g. IL8, IL6) and fibrotic 
mediators (e.g. FN1, αSMA), which are implicated in the pathogenesis of SSc. 
	 Overall, we showed that CXCL4 drives inflammatory and fibrotic responses both 
directly in moDCs and indirectly in dermal fibroblasts. Thus, we propose a novel role 
for inflammatory DCs in promoting and sustaining pro-fibrotic conditions.
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	 Interestingly, also DNA methylation analysis revealed that CXCL4 drives 
considerable changes (mostly hypermethylation) of genes associated with immune 
responses and ECM remodelling. Surprisingly, in contrary to the findings on the 
transcriptomic level, polyI:C stimulation of moDCs and CXCL4-moDCs did not 
induce changes on DNA methylation. Although, more than 5000 genes were found 
differently methylated between polyI:C stimulated moDCs and CXCL4-moDCs. Our 
results are supported by the findings of Vento-Tormo et al., showing that changes 
in DNA methylation occur mostly during moDC differentiation, but not after LPS 
stimulation 46. Thus, we hypothesize that CXCL4-driven inflammatory and fibrotic 
responses are epigenetically imprinted during moDC differentiation. 
	 In support, we observed dynamic changes in the transcription of the DNA 
methyltransferases (DNMT1, DNMT3A) and DNA demethylases (TET2, TET3), which 
indicate possible mechanisms contributing for the more pronounced loss in DNA 
methylation driven by the exposure to CXCL4. In fact, epigenetic aberrancies, 
including those occurring at the DNA methylation level, have been implicated in the 
pathology of SSc 50–52. Despite the accumulating evidences showing that alterations in 
DNA methylation cause aberrant gene expression and influence the development or 
progression of autoimmune disorders, the complete understanding on the underling 
mechanisms remain debatable. 46,47,53. 
	 In our experimental setting, we observed lack of correlation between DNA 
methylation and RNA expression at the level of differently expressed genes between 
moDCs and CXCL4-moDCs. However, we observed both positive and negative 
correlations between DNA methylation and RNA expression levels when we analysed 
the overall genome. Moreover, we developed a new methodology, named RegEnrich, 
to identify the underlying complexity and interconnectivity of signalling pathways 
reprogrammed by CXCL4. For this purpose, genes were clustered into distinct modules 
based on their co-expression or co-methylation patterns. CXCL4-correlated modules 
were associated predominantly with ECM organization, metabolic reprogramming, Ag 
processing and cytokine signalling. Still, we found very low overlap between CXCL4-
moDC specific co-expression and co-methylation modules, suggesting that in these 
experimental settings, DNA methylation has little influence on CXCL4-mediated 
transcriptional changes. 
	 There is increasing evidence that DNA methylation levels are quickly disturbed in 
response to environmental signals 54–57. Also, Pacis and colleagues have shown that 
stimulation of moDCs with Mycobacterium tuberculosis (MTB) results in dramatic 
transcriptomic changes, which in certain conditions gene expression activation 
preceded detectable DNA methylation changes47. Thus, we hypothesize that these 
processes may contribute for the poor correlation between DNA methylation and RNA 
expression levels for CXCL4-signature genes analysed in our experimental time-course.
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	 Besides the epigenetic programming, transcription regulators play a critical 
regulatory function in modulating their downstream target genes. Gene regulatory 
network analysis revealed that CXCL4 modulate key transcription regulators such as 
CIITA (class II major histocompatibility complex transactivator) and IRF8 (interferon 
regulatory factor 8), among others. To mimic the down-regulation of CIITA on 
CXCL4-moDCs, siRNA-mediated knockdown of CIITA resulted on upregulation of 
inflammatory and ECM remodelling genes, such as FN1. 
	 The transcriptional co-activator CIITA is the master regulator of MHC-II genes 
58.  CIITA impairment is associated with diminished MHC gene expression and 
susceptibility to autoimmune diseases such as Type II bare lymphocyte syndrome, 
RA and cancer59–61. Interestingly, interferon γ (IFN-γ), which plays a pivotal role in 
the development and severity of autoimmune diseases 62,63, induces up-regulation 
of CIITA. In turn, CIITA mediates IFN-γ- induced repression of collagen (COL1A2) 
transcription 64–67. These represent critical mechanisms that control inflammation, 
development of scars and fibrosis.
	 Furthermore, triggering of immature moDCs with distinct stimuli results in 
rapid reduction in the synthesis of CIITA mRNA and protein. This is accompanied 
by transcriptional silencing of MHC-II mRNA, while the expression of cell surface 
molecules remain increased during the maturation of DC 68. In line with previous 
reports, we hypothesize that CXCL4-mediated activation of moDCs results in up-
regulation of MHC-II protein expression of cell surface and down-regulation of MHC-
II mRNA expression as a consequence of CXCL4-driven transcriptional silencing 
of CIITA. Moreover, we propose that silencing of CIITA is also directly or indirectly 
associated to up-regulation of molecules involved in inflammatory and fibrotic 
responses. Further research on the implication of CIITA in the pathogenesis of SSc 
will provide new insights on possible therapeutic avenues.
	 Altogether, we underscored CXCL4-downstream signalling pathways on moDCs 
and the pivotal contribution of transcriptional regulators such as CIITA on CXCL4-
mediated reprogramming of moDC function.

Impairment of tolerogenic signature – molecular 
marks that define DCs exposed to CXCL4

DC immune function strictly depends on the local micro milieu and inflammatory 
stimuli, which ultimately defines their activation state. Thus, tissue resident 
immature DCs acquire immunogenic properties, which promote immune responses, 
or tolerogenic properties, which contribute to the maintenance of peripheral 
tolerance 69. In turn, several protocols have been optimized for the in vitro generation 
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of DCs with either immunogenic or tolerogenic functions, and candidate molecules 
that are associated with their functions have been characterized 70–72. In line with 
our previous results, in Chapter 5 we showed that exposure of moDCs to CXCL4 
amplified the expression of several activation and co-stimulatory molecules involved 
in inflammatory responses. However, molecules associated with tolerogenic DC 
function were abrogated. Interestingly, we showed that CXCL4 dramatically down-
regulated the expression and production of C1q, a DC regulatory marker 73,74. These 
findings are in line with previous observations showing that in vivo and in vitro 
stimulation of DCs with inflammatory triggers abrogates C1q production 75. 
	 C1q is the first component of the classical complement pathway and plays a critical 
function as an opsonin involved in the recognition and phagocytosis of PAMPs and 
apoptotic cell fragments76,77. C1q deficiency in human and mice is associated with 
infections and autoimmune conditions, such as Systemic Lupus Erythematosus 78–80.
	 Additionally, we investigated whether CXCL4 epigenetically modulated molecules 
associated with immunogenic and tolerogenic functions. Several tolerogenic genes, 
inclusively C1q, were hypermethylated in CXCL4-moDCs, and we found strong 
negative correlation between their mRNA expression and DNA methylation levels. 
Particularly, the significantly up-regulated immunogenic markers between moDCs 
and CXCL4-moDCs were also hypermethylated, thus not displaying negative 
correlation between mRNA expression and DNA methylation levels. Therefore, on 
one hand we hypothesize that CXCL4-mediated transcriptional repression of C1q, 
among other tolerogenic markers, may be explained by epigenetic regulatory 
mechanisms, such as strong hypermethylation observed on CXCL4-moDCs. On the 
other hand, alternative transcriptional and epigenetic mechanisms of regulation 
may be implicated in the CXCL4-reprograming of immunogenic marks. Prospectively, 
we reveal C1q a potential biomarker associated with CXCL4-driven autoimmune 
conditions. Future research should further investigate the implication of CXCL4-
mediated impairment of C1q in the pathogenesis of SSc.

CXCL4 regulation of cytokine production at the post-
transcriptional level

In Chapter 2 we described for the first time that CXCL4 potentiates the production 
of inflammatory cytokines in moDCs upon stimulation with polyI:C, a TLR3 agonist. 
Multiple studies reported that inflammatory cytokines are regulated at the 
transcriptional level, but also at post-transcriptional level through mechanisms that 
control, for instance, mRNA stability81–84. The regulation of mRNA stability is crucial 
to control cytokine production during inflammatory responses85,86. In Chapter 6 we 
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explored the transcriptional and post-transcriptional mechanisms underlying the 
aberrant production of pro-inflammatory cytokines in stimulated CXCL4-moDCs. We 
found that the enhanced production of IL-6 and TNF, but not IL-12 and IL-23, was 
a consequence of enhanced cytokine mRNA stability. Based on this evidence, we 
investigated whether CXCL4-signaling affects trans-acting AU-rich element binding 
proteins (ARE-BPs), which are crucial players in the regulation of mRNA stability. We 
observed that IL-6 and TNF mRNA stabilization was a result of the inactivation of the 
RNA-binding protein tristetraprolin (TTP). In line with these findings, siRNA-mediated 
knockdown of TTP, used to mimic TTP inactivation, resulted in enhanced IL6 and 
TNF expression in polyI:C-stimulated moDCs, however it failed to upregulate IL12B 
and IL23A. Thus, in our investigation setting, aberrant production of IL-12 and IL-
23 by CXCL4-moDCs is majorly mediated by transcriptional regulatory mechanisms. 
Supporting our observations, several studies showed that deregulated expression 
and activity of TTP are associated with aberrant inflammatory conditions. Indeed, 
TTP play a key role in the regulation of adenosine uridine (AU)-rich elements (ARE)- 
and non-ARE- enriched genes with a critical function for DC maturation in response 
to TLR agonists 87. In addition, human and mice studies reported the implication of 
disturbed TTP function in aberrant inflammatory responses and the contribution to 
autoimmune conditions88–92. 
	 Mitogen-activated protein kinases (MAPKs) play a critical role in inflammation 
and tissue damage by regulating cytokines at the post-transcriptional level 88,93,94. 
Inclusively, TTP is regulated by MAPK signaling pathways, which promote TTP 
phosphorylation and subsequent inactivation 84,88,95. We observed that p38 inhibition 
restores TTP function and decreases cytokine production in CXCL4-moDCs. Thus, we 
hypothesize that MAPK-p38 signalling plays a key function in CXCL4-induced cytokine 
production upon polyI:C stimulation in moDCs, and mediates TTP phosphorylation.
	 Disturbances in mRNA regulation are implicated in chronic inflammation and 
cancer 96–100. Our results highlight the critical role of CXCL4 on post-transcriptional 
regulation of cytokine mRNA stability, and provide new insights on the mechanisms 
that contribute to the development of CXCL4-mediated autoimmune conditions. 
Thus, we could possibly suggest future investigations on the contribution of mRNA 
stability regulation in the pathology of SSc.

Conclusion and future perspectives

CXCL4 is implicated in the modulation of immune cell responses and is associated 
with several autoimmune conditions. However the underlying mechanisms by which 
CXCL4 contribute to aberrant inflammatory and fibrotic responses remains under 
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investigation. Altogether, we propose CXCL4 as disease-associated endogenous 
ligand that promotes DC trained immunity by inducing the sensitization of cells 
to pursue fast and strong innate and adaptive immune responses. Additionally, 
our results provide new evidences on how CXCL4 amplifies pro-inflammatory and 
pro-fibrotic responses observed in autoimmune diseases where CXCL4 has been 
implicated, such as SSc and PsA. Thus, we propose a novel function for CXCL4-derived 
inflammatory DCs in promoting aberrant inflammatory and pro-fibrotic responses, 
alongside with monocytes, macrophages and fibroblasts, which are also implicated 
in the pathogenesis of SSc49,101,102. We identified and validated for the first time 
CXCL4-downstream pathways and master regulators on moDCs that may represent 
potential targets for therapeutic intervention. Due to the critical role of CXCL4 in 
biological processes such as coagulation and wound healing, research efforts 
in this regard will allow to target key molecules downstream to CXCL4 signalling 
that possible represent a more effective strategy. Due to the differences on the 
CXCL4 receptor among the immune and non-immune cells, upcoming research on 
therapeutic targets should explore the combination of therapies targeting directly 
CXCL4, the receptor of CXCL4 and master inflammatory and fibrotic regulatory 
genes downstream to CXCL4 signalling.
	 In future studies, to complement our transcriptome and DNA methylation analysis, 
it would be of high interest to investigate the effects of CXCL4 on microRNAs, long 
non-coding RNAs (lncRNAs) and histone modifications, which are also epigenetic 
mechanisms implicated in gene regulation. Ideally, the future validation of our 
findings in mice models and patients would bring strength to our results.
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English Summary

CXCL4 (also known as platelet factor 4, PF4) is a chemokine involved in physiological 
processes that include blood coagulation, inhibition of haematopoiesis and 
reprogramming of the immune responses. High levels of CXCL4, both in circulation and 
within inflammatory tissues, were previously associated with multiple autoimmune 
diseases such as Rheumatoid Arthritis (RA) and Sjögren’s Syndrome (SS). Importantly, 
our group identified CXCL4 as a biomarker of Systemic Sclerosis (SSc). 
	 SSc is an heterogeneous disorder characterised by several hallmarks, including 
vasculopathy, immune cell dysfunction, antibodies production and aberrant 
deposition of extracellular matrix components (ECM), such as fibronectin. Among 
the different immune cell subsets that may contribute to SSc pathology, dendritic 
cells (DCs) were shown to display exacerbated TLR-mediated responses in SSc 
patients. Also, DC infiltrates were observed in SSc fibrotic tissues, along with T-cells 
typically displaying a Th2 and Th17 phenotype.
	 The aim of this PhD thesis was to clarify the role of CXCL4 in steering immune 
responses, and to unravel the molecular mechanisms modulated by CXCL4 that 
contribute to chronic inflammatory and fibrotic aberrant responses in SSc. The 
identification of CXCL4-modulated targets is a necessary step for the development 
of therapeutic strategies aimed at diseases where CXCL4 is implicated.

CXCL4 potentiate innate and adaptive immune 
responses 

CXCL4 modulates DC and T-cell phenotype and function. In Chapter 2 we elucidated 
the role of CXCL4 in steering innate and adaptive immune responses in human  
DCs derived from monocytes (moDCs). We showed that CXCL4 drives the up-
regulation of co-stimulatory and maturation molecules in moDCs, which we 
used as a model of inflammatory DCs. Additionally, we observed for the first time 
that exposure of moDCs to CXCL4 during differentiation primes cells to aberrant 
production of pro-inflammatory cytokines upon TLR3 (polyI:C) or TLR7/8 (R848 
and CL075) triggering. Moreover, we showed that CXCL4-moDCs potentiate the 
activation of autologous CD4+ and CD8+ T-cell responses, as well as antigen specific 
CD8+ T-cell inflammatory responses. 
	 High levels of CXCL4 have been associated with Th17-associated inflammatory 
diseases, such as RA, psoriasis and SSc. Thus, in Chapter 3, we investigated the role of 
CXCL4 in T-cell activation and skewing Th17 differentiation. We showed that CXCL4 
promotes the activation of CD4+ T-cells towards IL17-producing cells, either upon 
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CD3/CD28 stimulation or in co-culture experiments with monocytes, myeloid DCs 
(mDCs) and CXCL4-moDCs. In order to elucidate how CXCL4 levels associate with 
IL-17 production in psoriatic arthritis (PsA), a Th17-mediated disease, we measured 
CXCL4 and IL-17 levels in plasma and synovial fluid from PsA patients. We found 
that CXCL4 is increased in the circulation of PsA patients, and CXCL4 levels strongly 
correlate with IL-17 levels in synovial fluid.

CXCL4-driven immunogenic and fibrotic functions 
are regulated at transcriptional, post-transcriptional 
and epigenetic levels

In order to assess the molecular mechanisms that underlie the effects of CXCL4 on 
morphology, phenotype, and function of moDCs, in Chapter 4 we performed whole 
genome transcriptome and methylation analysis of moDCs and CXCL4-moDCs, both 
during differentiation and after stimulation with polyI:C.
	 We described that CXCL4 drives dramatic changes in transcription and DNA 
methylation, disturbing cytokine and TLR signalling, metabolic pathways and ECM 
remodelling. Remarkably, we showed that CXCL4 potentiates pro-inflammatory and 
pro-fibrotic responses both directly in moDCs and indirectly in dermal fibroblasts. 
Furthermore, as we observed that the changes in DNA methylation (mostly 
hypermethylation) occur primarily during moDC differentiation, we hypothesize 
that CXCL4-driven inflammatory and fibrotic responses upon TLR triggering 
are epigenetically imprinted during moDC differentiation. By applying a new 
methodology (RegEnrich), we identified multiple co-expression and co-methylation 
modules of clustered genes involved in immune responses, ECM organization and 
metabolic reprograming. We found little overlap between CXCL4-moDC specific co-
expression and co-methylation modules, suggesting that DNA methylation has little 
influence on the transcriptional reprogramming prompted by CXCL4. Using data 
driven gene regulatory network analyses, we showed that CXCL4 modulates pro-
inflammatory and pro-fibrotic responses via key transcription regulators, such as 
CIITA (Class II Major Histocompatibility Complex Transactivator) and IRF8 (Interferon 
Regulatory Factor 8). Taken together, our study reveals that CXCL4 is a key driver of 
innate immune training and a modulator of inflammatory and fibrotic responses. 
Our results further elucidate the contribution of CXCL4 to the development of 
chronic autoimmune fibrotic conditions.
	 The effects of CXCL4 on the phenotype and immune responses described  in 
Chapters 2, 3 and 4, suggest a critical immune-stimulatory role of CXCL4 in moDC 
function, rather than a tolerogenic role. In Chapter 5, we therefore focused on 
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comparing the expression of immunogenic and tolerogenic markers in moDCs and 
CXCL4-moDCs. We found that CXCL4 exposure induces the up-regulation of gene sets 
associated with immunogenic DCs and down-regulation of several genes associated 
with tolerogenic DCs. C1q, a gene up-regulated in tolerogenic DCs, was dramatically 
down-regulated in CXCL4-moDCs, both at the mRNA and protein level. C1q is part of 
a trimeric protein complex (also including C1r and C1s) of the complement system, 
as part of the innate branch of the immune system. DNA methylation analysis led us 
to propose that CXCL4 transcriptional repression of C1q could possibly be explained 
by the strong hypermethylation, specifically at the promoter regions of C1QA, C1QB 
and C1QC genes.
	 Finally, in Chapter 6, we investigated how CXCL4 potentiates pro-inflammatory 
cytokine production in moDCs. As cytokines are tightly regulated by transcriptional, 
but also post-transcriptional mechanisms, we examined whether a subset of 
cytokines found overexpressed in stimulated CXCL4-moDCs were regulated at the 
level of mRNA decay. We found that the aberrant production of IL-6 and TNF, but not 
IL-12 and IL-23, was a consequence of enhanced cytokine mRNA stability, dictated 
by the inactivation of the RNA-binding protein tristetraprolin (TTP). In fact, siRNA-
mediated knockdown of TTP, used to mimic TTP inactivation, resulted in enhanced IL6 
and TNF expression in stimulated moDCs. Ultimately, we described that MAPK-p38 
signalling plays a predominant role on CXCL4-induced cytokine production upon 
polyI:C stimulation, and mediates TTP phosphorylation (inactivation).
	 Altogether, this thesis highlights the role of CXCL4 in reprogramming moDC 
phenotype and function, and in driving transcriptional, post-transcriptional and 
epigenetic changes, which result in aberrant inflammatory and fibrotic responses. 
Targeting key players of these pathways represents promising possibilities for 
therapeutic intervention in diseases where CXCL4 is implicated, most notably SSc, 
RA and PsA.
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CXCL4 (ook bekend als bloedplaatjesfactor 4/ platelet factor 4, PF4) is een chemokine 
die betrokken is bij fysiologische processen zoals bloedstolling, remming van 
hematopoëse en bijsturen van de immuunreacties. Hoge concentraties van CXCL4, 
zowel in circulatie als in inflammatoire weefsels, waren eerder al geassocieerd met 
verschillende auto-immuunziekten zoals reumatoïde artritis (RA) en het syndroom 
van Sjögren (SS). Onze onderzoeksgroep heeft CXCL4 geïdentificeerd als een 
biomarker voor Systemische Sclerose (SSc), ook wel sclerodermie genaamd.
	 SSc is een heterogene aandoening. Er zijn verschillende kenmerken van SSc, 
waaronder vasculopathie, immuuncel disfunctie, productie van autoreactieve 
antilichamen en afwijkende afzetting van extracellulaire matrixcomponenten (ECM), 
zoals fibronectine. Van de verschillende subsets van immuuncellen die mogelijk 
kunnen bijdragen aan SSc-pathologie, werd eerder al aangetoond dat dendritische 
cellen (DC’s) van SSc-patiënten versterkte TLR-gemedieerde responsen vertoonden. 
Ook werden DC-infiltraten waargenomen in fibrotische weefsels van SSc patiënten, 
samen met T-cellen die daarbij vooral een Th2- en Th17-fenotype vertonen.
	 In dit proefschrift heb ik de rol van CXCL4 in het sturen van immuun responsen 
onderzocht, en de door CXCL4 gemoduleerde moleculaire mechanismen bestudeerd 
die bijdragen tot chronische inflammatoire en fibrotisch afwijkende responsen in 
SSc. Voor de ontwikkeling van therapeutische strategieën gericht op ziekten waarbij 
CXCL4 betrokken is, is namelijk de identificatie van CXCL4-gemoduleerde doelen 
een noodzakelijke stap. 

CXCL4 versterkt aangeboren en adaptieve 
immuunresponsen 

CXCL4 moduleert het fenotype en de functie van DC’s en T-cellen. In Hoofdstuk 2 
hebben we de rol van CXCL4 in het aansturen van aangeboren en adaptieve 
immuunresponsen opgehelderd in humane moDC’s (monocyte-derived DCs). 
Deze cellen hebben we gebruikt als model voor inflammatoire DC’s. We hebben 
aangetoond dat CXCL4 de opregulatie van co-stimulatie- en rijpingsmoleculen 
in moDC’s aanstuurt. Bovendien hebben we voor de eerste keer waargenomen 
dat wanneer moDC’s zijn blootgesteld aan CXCL4 tijdens hun cel differentiatie, 
ze al worden voorbestemd richting afwijkende productie van pro-inflammatoire 
cytokines, zoals we waarnemen na triggering van TLR3 (polyI: C) of TLR7 / 8 (R848 
en CL075). Verder toonden we aan dat door aanwezigheid van CXCL4 tijdens 
moDC differentiatie, moDC’s versterkt worden in hun capaciteit om autologe  
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CD4 + en CD8 + T-cel responsen te stimuleren, en ook antigeen-specifieke CD8 + T-cel 
ontstekingsreacties te versterken.
	 Hoge CXCL4 concentraties worden gelinkt aan Th17-geassocieerde 
ontstekingsziekten, zoals RA, psoriasis en SSc. Daarom hebben we in Hoofdstuk 
3 de rol van CXCL4 bij T-cel activatie en het richten van differentiatie tot Th17 
onderzocht. We hebben aangetoond dat CXCL4 de activering van CD4 + T-cellen 
naar IL17-producerende cellen bevordert, hetzij na CD3 / CD28-stimulatie, hetzij in 
co-kweekexperimenten met monocyten, myeloïde DC’s (mDC’s) en CXCL4-moDC’s. 
Om duidelijk te krijgen over hoe CXCL4-niveaus in verband staan tot IL-17-productie 
bij psoriatische artritis (PsA), een door Th17 gemedieerde aandoening, hebben we 
concentraties gemeten van CXCL4- en IL-17 in plasma en het synoviaal vocht van 
PsA-patiënten. We vonden dat CXCL4 verhoogd aanwezig is in de circulatie van PsA-
patiënten, en dat er een positieve correlatie bestaat tussen de hoeveelheden CXCL4 
en IL-17 in de synoviale vloeistof.

CXCL4-aangestuurde immunogene en fibrotische 
functies worden gereguleerd op transcriptioneel, 
post-transcriptioneel en epigenetisch niveau

Om de moleculaire mechanismen te beoordelen die de effecten van CXCL4 op 
de cel morfologie, het fenotype en de functie van moDC’s bepalen, hebben we in 
Hoofdstuk 4 het volledige genoom-brede transcriptoom en methylatie-analyse van 
moDC’s en CXCL4-moDC’s uitgevoerd, zowel tijdens differentiatie als na stimulatie 
met polyI: C.
	 We hebben beschreven dat CXCL4 dramatische veranderingen in transcriptie 
en DNA-methylatie veroorzaakt, en zo cytokine- en TLR-signalering, metabolische 
processen en ECM-hermodellering verstoort. Hier hebben we aangetoond dat 
CXCL4 pro-inflammatoire en pro-fibrotische reacties versterkt, zowel direct in 
moDC’s als indirect in dermale fibroblasten. Verder hebben we vastgesteld dat 
de veranderingen in DNA-methylatie (meestal hypermethylatie) voornamelijk 
tijdens differentiatie van moDC voorkomen. Hieruit volgde onze hypothese dat 
CXCL4-aangestuurde ontstekings- en fibrotische responsen na TLR-triggering 
epigenetisch geprogrammeerd worden tijdens moDC-differentiatie. Aan de hand 
van een nieuwe methodologie (RegEnrich), hebben we meerdere modules van co-
expressie en co-methylatie van geclusterde genen geïdentificeerd die betrokken 
zijn bij immuunresponsen, ECM-organisatie en metabole herprogrammering. We 
vonden weinig overlap tussen CXCL4-moDC specifieke co-expressie en co-methylatie 
modules. Dit resultaat geeft aan dat DNA methylatie weinig invloed uitoefent op het 
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door CXCL4 geinduceerde reprogammering van het transcriptioom. Gebruik makende 
van data-driven gene regulatory network analyse, brachten we aan het licht dat CXCL4 
pro-inflammatoire en pro-fibrotische responses moduleert via key transcriptie 
regulatoren, zoals CIITA (Class II Major Histocompatibility Complex Transactivator) en 
IRF8 (Interferon Regulatory Factor 8). Alles bij elkaar toont onze studie aan dat CXCL4 
een sleutelfunctie heeft in het aansturen van aangeboren immuun training en een 
modulator is van inflammatoire en fibrotische responsen. CXCL4 draagt daarmee ook 
bij aan de ontwikkeling van chronische fibrotische autoimmuun condities.
	 Op basis van de effecten van CXCL4 op het fenotype en de immuunresponsen  
(beschreven in hoofdstukken 2, 3 en 4), lijkt CXCL4 een cruciale immuunstimulerende 
rol te spelen in de moDC-functie, eerder dan een tolerogene. In Hoofdstuk 5 focusten 
we ons daarom op het vergelijken van de expressie van immunogene en tolerogene 
markers in moDCs en CXCL4-moDCs. We stelden vast dat blootstelling aan CXCL4 leidde 
tot inductie van expressie van genen sets die geassocieerd worden met immunogene 
DCs en remming van expressie van verschillende genen sets geassocieerd met 
tolerogene DCs. C1q, een gen dat versterkt tot expressie komt in tolerogene DCs, werd 
geremd in CXCL4-moDCs, zowel op mRNA- als op eiwit-niveau. C1q maakt deel uit 
van een trimeric eiwitcomplex (samen met C1r en C1s) van het complementsysteem, 
onderdeel van het aangeboren immuunsysteem. DNA-methylatie-analyse liet zien dat 
C1QA, C1QB en C1QC genen sterk hypermethyleerd waren, specifiek op de promotor 
regio; een mogelijke verklaring hiervoor is dat C1q transcriptioneel onderdrukt wordt 
door CXCL4. 
	 Ten slotte, in Hoofdstuk 6, hebben we onderzocht hoe CXCL4 de pro-inflammatoire 
cytokine productie in moDCs versterkt. Omdat cytokines strak gereguleerd worden 
door transcriptionele, maar ook post-transcriptionele mechanismen, hebben we 
getracht te achterhalen of een subset van cytokines die in gestimuleerde CXCL4-
moDCs versterkt tot expressie komen, gereguleerd werden op het niveau van mRNA-
afbraak. We stelden vast dat een afwijkende productie van IL-6 en TNF, maar niet 
van IL-12 en IL-23, een gevolg was van bestendiging van de stabiliteit van cytokine 
mRNA, ingegeven door de inactivatie van het RNA-bindend proteïne tristetraprolin 
(TTP). SiRNA-gemedieerde knockdown van TTP op moDC´s, die werd gebruikt om 
TTP-inactivatie na te bootsen, resulteerde in verhoogde IL6- en TNF-expressie in 
gestimuleerde moDC’s. Uiteindelijk hebben we beschreven dat MAPK-p38-signalering 
een dominante rol speelt bij door CXCL4 geïnduceerde cytokine productie na polyI: 
C-stimulatie, en TTP-fosforylering (inactivatie) medieert. 
	 In zijn geheel heeft deze thesis de rol van CXCL4 onder de aandacht gebracht bij 
de herprogrammering van het fenotype en de functie van moDC, en bij het aansturen 
van de transcriptionele en post-transcriptionele epigenische veranderingen, die 
leiden tot kwalijke inflammatoire en fibrotische responses. De sleutelspelers van de 
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processen die ik in dit proefschrift heb beschreven, dienen als kansrijke beloftes voor 
therapeutische interventies bij ziektes waar CXCL4 bij betrokken is, in het bijzonder 
SSc, RA en PsA.
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