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Spatial Decision Support Systems (SDSSs) often include models that can be used to assess the impact of
possible decisions. These models usually simulate complex spatio-temporal phenomena, with input vari-
ables and parameters that are often hard to measure. The resulting model uncertainty is, however, rarely
communicated to the user, so that current SDSSs yield clear, but therefore sometimes deceptively precise
outputs. Inclusion of uncertainty in SDSSs requires modeling methods to calculate uncertainty and tools
to visualize indicators of uncertainty that can be understood by its users, having mostly limited knowl-
edge of spatial statistics. This research makes an important step towards a solution of this issue. It illus-
trates the construction of the PCRaster Land Use Change model (PLUC) that integrates simulation,
uncertainty analysis and visualization. It uses the PCRaster Python framework, which comprises both a
spatio-temporal modeling framework and a Monte Carlo analysis framework that together produce sto-
chastic maps, which can be visualized with the Aguila software, included in the PCRaster Python distri-
bution package. This is illustrated by a case study for Mozambique in which it is evaluated where
bioenergy crops can be cultivated without endangering nature areas and food production now and in
the near future, when population and food intake per capita will increase and thus arable land and
pasture areas are likely to expand. It is shown how the uncertainty of the input variables and model
parameters effects the model outcomes. Evaluation of spatio-temporal uncertainty patterns has provided
new insights in the modeled land use system about, e.g., the shape of concentric rings around cities. In
addition, the visualization modes give uncertainty information in an comprehensible way for users
without specialist knowledge of statistics, for example by means of confidence intervals for potential
bioenergy crop yields. The coupling of spatio-temporal uncertainty analysis to the simulation model is
considered a major step forward in the exposure of uncertainty in SDSSs.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Spatial Decision Support Systems (SDSSs) are interactive,
computer-based systems that include simulation models and visu-
alization tools designed to assess the impact of possible decisions
(Geertman & Stillwell, 2004). With SDSSs, planners can investigate
the effects of different scenarios, and explore intervention possibil-
ities by adjusting model inputs in a user interface accessible to
users that do not have expert knowledge of modeling theory and
technology. The models in SDSSs usually simulate change over
time of a spatial phenomenon or, more likely, a number of spatial
phenomena that interact with each other. These dynamic pro-
cesses and interactions tend to be complex and are rarely fully
understood (Manson, 2007). As simulation models are simplifica-
tions of open, complex systems, model output errors are inherent
ll rights reserved.
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as a result of the debatable choice and conceptualization of rele-
vant sub-processes, uncertainty in model parameters and input
variables, and the discretization of information. These errors prop-
agate through the model because the state of the modeled system
at a certain moment in time is a function of its state in the past.
This generates uncertainty in model outputs.

Whereas scientists are familiar with the concept of uncertainty
and methods to quantify it (Brown & Heuvelink, 2007; Chen,
Wood, Linstead, & Maltby, 2011; Goodchild, 2004; Heuvelink,
1998), SDSS users tend to seek certainty and deterministic solu-
tions (Bradshaw & Borchers, 2000). In other words, they demand
practical models with clear and unambiguous results to facilitate
decision making. The result of this desire for clarity and simplicity
is that SDSSs tend to underestimate, if not ignore, uncertainty
(Foody, 2003). They thus yield clear, but therefore sometimes
deceptively precise outputs.

Decisions based on misinterpreted or erroneous model output
can be costly due to the irreversibility of such decisions.
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Table 1
Modeling schedule of the PCRaster Python
framework.

1 for each MC sample:

2 for each time step:

3 solve system state equation

4 compute summary statistics
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Uncertainty thus needs to be communicated clearly. Therefore we
claim, together with others (e.g., Aerts, Goodchild, & Heuvelink,
2003; Foody, 2003; Ivanovic & Freer, 2009; Ma, Arentze, Borgers,
& Timmermans, 2007; Manson, 2007; Oreskes, Shrader-Frechette,
& Belitz, 1994), that instead of obscuring uncertainty users should
be made more aware of uncertainty in SDSSs. Difficulties in includ-
ing and communicating uncertainty in SDSSs are: (1) the concepts
and measures of uncertainty can be somewhat difficult to grasp for
users without specialist knowledge of statistics, (2) uncertainty is
input-dependent, (3) uncertainty varies over space, time and
aggregation level, and (4) software packages that can integrate
spatio-temporal modeling, uncertainty analysis and visualization
are rare.

The first difficulty arises from the fact that it is unlikely that the
average user of an SDSS has skills in handling uncertainty at a com-
parable level as the modelers themselves (Foody, 2003). Therefore,
modelers should aid their end users by providing intuitive and
insightful indicators of uncertainty and straightforward tools to
visualize these (Aerts, Goodchild, et al., 2003).

The second problem is that the model uncertainty cannot be
calculated on forehand by the modeler, as output uncertainty de-
pends on model inputs and parameters. Currently, uncertainty in
simulation models is sometimes assessed by providing a (static)
map of output uncertainty of the final time step of a standard
run of the simulation model (e.g., Brown, Page, Riolo, Zellner, &
Rand, 2005; Chang, Parvathinathan, & Breeden, 2008; Eckhardt,
Breuer, & Frede, 2003). Clearly, this does not suffice for an SDSS,
in which investigating the effects different model settings is the
main goal, so that inputs and parameters are altered frequently.
For that reason, uncertainty analysis should be automatically cal-
culated by the model itself, every time it is run with different
settings.

The third difficulty is that uncertainty varies over space and
time, because complex systems behave non-linearly. This makes
that providing an uncertainty map of the final time step only is
not sufficient when it comes to complex, non-linear systems (Lig-
mann-Zielinska & Sun, 2010). So, an uncertainty map is needed for
each time step, in order to allow iterative uncertainty analysis (Man-
son, 2007), as for example demonstrated by Gorsevski, Gessler,
Boll, Elliot, and Foltz (2006). In addition, it has been shown by oth-
ers (Hiemstra & Karssenberg, in press; Kok, Farrow, Veldkamp, &
Verburg, 2001; Pontius & Spencer, 2005) that uncertainty is highly
dependent on the level of spatial aggregation. Usually, uncertainty
becomes lower at a coarser scale, because rearrangements in the
landscape at locations in close proximity cancel each other out
when they are aggregated. This is highly relevant in SDSSs, as their
end users operate at different managerial levels (e.g., town, district,
province, country), related to spatial scale levels (local, regional,
national). To be able to aid these different end users, it should be
possible in an SDSS to assess uncertainty at different levels of
aggregation. Ideally, inclusion of such methods should be possible
without too much additional work on the side of the model
developer.

The final problem is that most software packages are either
dedicated to model development, e.g., Stella (2010) and NetLogo
(2010), or to uncertainty analysis (for a package overview see
Goovaerts, 2010), or to visualization, e.g., ArcGIS (ESRI, 2010).
Using such packages to construct an uncertainty-inclusive SDSS
would require a complex coupling mechanism. Also, existing visu-
alization tools do not explicitly support methods to visualize
uncertain spatio-temporal data. A possible solution to this problem
is the PCRaster model construction framework (Karssenberg, Sch-
mitz, Salamon, de Jong, & Bierkens, 2010; PCRaster, 2010), which
offers a combined interface for spatio-temporal modeling and
uncertainty analysis and includes a visualization tool for stochastic
data in its distribution package.
The objective of this paper is to construct an SDSS that inte-
grates simulation, iterative uncertainty analysis, and visualization
to facilitate end users at different managerial levels to take uncer-
tainty into account in decision making. This is illustrated by a case
study of bioenergy-crop potentials in Mozambique. Although some
studies have been conducted to assess the area of potentially avail-
able land for bioenergy crops in Mozambique (Batidzirai, Faaij, &
Smeets, 2006; Watson, 2011), none of these studies was carried
out in both a temporally dynamic and spatially explicit way. The
PCRaster Land Use Change model (PLUC) is developed to evaluate
where bioenergy crops can be cultivated without entering into
competition with other important land uses from a economic or
sustainability point of view, now and in the near future when pop-
ulation and food intake per capita and thus arable land is likely to
increase. We show that PLUC allows stochastic model inputs and
produces interactive visualizations of forecast uncertainty, in space
and time, at a range of spatial aggregation levels. These visualiza-
tions can be used by decision makers to evaluate possible locations
and potential yields for bioenergy crops.

The next section of this paper describes the concepts and meth-
ods of the PCRaster Python framework, outlines how the frame-
work is applied to construct the land use change model for
Mozambique, explains the error models of the different stochastic
inputs, and illustrates the mode of implementation. The results
section shows different visualization modes of uncertainty indica-
tors and their potential usage, drawing on the outputs of PLUC for
the Mozambique case study. The final section discusses the advan-
tages and shortcomings of the uncertainty-inclusive simulation
model.

2. Methodology

2.1. Software framework

Although other approaches exist to include uncertainty in a
model, such as fuzzy logic (e.g., Nguyen, de Kok, & Titus, 2007;
Robinson, 2003), stochastic modeling has the advantage that it
has a strong root in mathematics. In stochastic modeling, a model
input is defined by a probability distribution of all possible values.
This uncertainty is propagated through the model using a numer-
ical solution scheme. Monte Carlo simulation is such a solution
scheme, which is attractive because of its general applicability
and ease of implementation (Aerts, Goodchild, et al., 2003). It in-
volves running the model a large number of times, each time draw-
ing a realization from the input probability distribution(s). For
spatial models this results in different spatial patterns for the dif-
ferent model realizations, i.e. model runs or samples.

The PCRaster model construction framework (Karssenberg
et al., 2010; PCRaster, 2010) facilitates this integration of spatio-
temporal modeling and uncertainty analysis through the PCRaster
Python library (Karssenberg, de Jong, & van der Kwast, 2007). This
library provides a large set of spatio-temporal functions on raster
maps, embedded in the Python language (Python, 2010). Both a
spatio-temporal modeling framework and a Monte Carlo analysis
framework are present as a Python class. These classes include
methods to write the simulation results and uncertainty indicators
to disk as maps, which can be visualized with the Aguila software
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(Pebesma, de Jong, & Briggs, 2007), included in the PCRaster Python
distribution package. To allow construction of a spatio-temporal
model that permits stochastic inputs and assessment of the result-
ing uncertainty, three main methods are provided by the frame-
work that together form the schedule in Table 1 (Karssenberg &
De Jong, 2006). Firstly, there is a loop for evaluation of the spa-
tio-temporal process itself (line 2). Herein, the modeler can pro-
gram the equations that represent the change of the system state
over a time step (line 3). The framework provides for this purpose
a number of functions particularly designed for spatial and sto-
chastic operations. Secondly, a loop over this spatio-temporal mod-
el is performed to generate the Monte Carlo samples (line 1).
Finally, summary statistics are computed over all Monte Carlo
samples (line 4), representing the uncertainty in the model output
within a time step or over the whole simulated period of time.

The individual Monte Carlo sample results and summary statis-
tics are written to disk with a function from the PCRaster Python
library. This function uses rules for file names defined by the mod-
eling framework, so that they can directly be visualized with the
Aguila software that recognizes these name conventions. Temporal
deterministic and stochastic data can be viewed by animation or
toggling through time, of which the last technique was considered
helpful by decision makers (experts as well as novices) for visual-
izing uncertain data in a study of Aerts, Clarke, and Keuper (2003).
In addition, stochastic outputs are visualized as maps or plots of
mean, standard deviation, confidence interval, exceedance proba-
bility, or cumulative probability distribution of a variable. These
visualizations are interactive, which allows users to explore the
data (Karssenberg et al., 2010; Pebesma et al., 2007).

2.2. Land use change model

The potential to employ the PCRaster Python framework for an
SDSS including uncertainty is illustrated by the construction of a
land use change model, meant to aid in evaluating where bioenergy
crop plantations can be allocated. Until now, bioenergy potentials
were mostly assessed in a spatially aggregated (e.g., Hoogwijk, Faaij,
Eickhout, De Vries, & Turkenburg, 2005) or temporally static (e.g.,
van der Hilst et al., 2010) way. So, in this study a both spatially expli-
cit and temporally dynamic model is created for Mozambique. The
case is relevant, because Mozambique is considered promising for
bioenergy crop production by its vast amounts of available land
(Smeets, Faaij, Lewandowski, & Turkenburg, 2007), favorable envi-
ronmental conditions for cultivation (Batidzirai et al., 2006), and rel-
atively low productivity of current agriculture (Arndt, Benfica, Tarp,
Thurlow, & Uaiene, 2010), which offers potential for improvement.
However, over the past decade the area of forests and woodlands
has decreased substantially due to an increase in cultivated areas
(Jansen, Bagnoli, & Focacci, 2008). Now as well as in the future, cul-
tivation of bioenergy crops should not add to that effect and not
endanger other important land uses, either from an economic, e.g.,
food crops and livestock, or from a sustainability point of view,
e.g., conservation areas (Haberl, Beringer, Bhattacharya, Erb, & Hoo-
gwijk, 2010). The population is expected to increase and its diet is
expected to change as well, which induces further shifts in land
use. The direction and extent of this shift depends on the agricultural
and livestock productivity, which is expected to improve. The trends
herein are derived from literature (e.g., FAO, 2003; INE, 2003), field-
work, and meetings with national and local authorities. More back-
ground on the modeled processes and used data is provided in the
twin-publication of this paper (van der Hilst, Verstegen, Karssen-
berg, & Faaij, submitted for publication). This section focuses on
the set-up of the model.

The main model component is the state transition function rep-
resenting the change in spatially distributed land use over a time
step. Many models of land use dynamics have been constructed be-
fore (see for overviews Agarwal, Green, Grove, Evans, & Schweik,
2002; Parker, Manson, Janssen, Hoffmann, & Deadman, 2003; Ver-
burg, Schot, Dijst, & Veldkamp, 2004). Some focus on one specific
land use conversion, such as urbanization (Batty, 2005; Ligtenberg,
Beulens, Kettenis, Bregt, & Wachowicz, 2009), but more often sev-
eral land uses in the area compete for new locations (Lei, Pijanow-
ski, Alexandridis, & Olson, 2005; Verburg & Overmars, 2009). We
adopt the latter approach, in which we focus on active change in
agricultural land use types and forest as the future distribution of
land reserved for these land uses is the main issue in the view of
potential locations for bioenergy crop plantations. By active change,
we mean that expansion or contraction of the total area of this land
use is explicitly steered by certain drivers. Other land use types on
the land use map can change passively, by expansion or contrac-
tion of an active land use type.

The land use change is steered by two factors: (1) the demand of
the population for food, non-food crops (e.g., cotton and tobacco)
and wood, and (2) the growth rate of yield, defined by agricultural
and livestock productivity. The conceptual model (Fig. 1) includes
three loops. The first one loops over time and coincides with line
2 in Table 1. The other two belong to the actual state transition
function (line 3 in Table 1); one loops over all active land use types
and the other checks iteratively whether this land use type should
expand, contract or has met its demand. The actual location of the
expansion or contraction of the land use types is determined by
suitability factors, like distance to cities and transport networks,
current land use in the neighborhood, and location-specific yield
due to characteristics of the soil and climate. Areas occupied by
other economically important land uses, physically constrained
areas, and protected land uses are excluded and the remaining land
is potentially available for bioenergy crops. But the bioenergy crops
are not included as a land use type, which means they are not allo-
cated. The model is explained in more detail in the following.

An important step in model implementation is the choice of the
support to represent processes (Bierkens, Finke, & de Willigen,
2000; Hengl, 2006; Pan, Roth, Yu, & Doluschitz Reiner, 2010). The
support refers to the size in the spatial domain (i.e. spatial discreti-
sation), and the temporal domain (i.e. time step duration) over
which processes are considered homogeneous. Model inputs and
parameters need to be representative for the support used (c.f., Bier-
kens et al., 2000). The following criteria were used to select a suitable
support. (1) The scale at which the model output is required in order
to answer the end user’s questions (Evans & Kelley, 2004), also called
policy scale (Bierkens et al., 2000). In our case, policy makers at differ-
ent spatial scale levels are involved, ranging from national to local
scale. Information is needed on changes in land use over the coming
decades. (2) The process scale, i.e. the scale of natural variability of
the studied process (Blöschl, 1999). We do not aim to study land
use changes at parcel level; the smallest transformation of interest
is at the level of a small community of farmers. (3) Observational data
availability. If the input data do not match the resolution of the mod-
el, upscaling or downscaling could be applied, but one should be
careful to do so, as spatio-temporal probability distributions alter
with changing resolution (Bierkens et al., 2000). Thus it is preferable
to choose a support that matches the support of available observa-
tional data. (4) Processing power, as calculation time increases expo-
nentially with the number of cells (Hengl, 2006). Because PLUC is
designed as an SDSS, it should be usable on a desktop pc. The Monte
Carlo simulations should be performable in a reasonable amount of
time and should result in a manageable amount of data. As the sys-
tem studied constitutes of a number of subsystems that operate at
different scales, while data availability differs between subsystems,
we use three levels of spatial support: (1) country level, for data that
is only available for the country as a whole, like economic trends, (2)
land use type level, for crop-dependent but location-independent
variables, like maximum possible product yield, and (3) cell level,



Fig. 1. Conceptual model of land use change.

J.A. Verstegen et al. / Computers, Environment and Urban Systems 36 (2012) 30–42 33
for location-specific information, like population density. These
three levels are implemented using gridded maps with a cell size
of 1 km2. This means that technically, all information is discretized
into cells of 1 km2, but in fact the three abovementioned levels of
spatial support are used in input data and process descriptions.
The model uses a time step (Dt) of one year, with time step
t = 1,2, . . . ,T. Most equations are evaluated separately for each of
the N land use types, with n = 1,2, . . . ,N. The model is run for 25 years
and the following dynamic land use types are defined: cropland, mo-
saic cropland–pasture (grazed grassland), mosaic cropland–grass-
land (not grazed), pasture, forest. However, any cell size, model
period, and number and type of land uses could be defined by the
user.

The demand dn,t (kg year�1) for products from land use type n at
time step t is:

dn;t ¼ pt � in;t � rt ; for each n in each t ð1Þ

In Eq. (1), pt denotes the number of inhabitants in the country at t,
intake in,t (kg caput-1 year�1) specifies the demand per capita of
products from land use type n at t, and the self-sufficiency ratio
rt(�) is the extent to which the food demands are met by domestic
supply at t.

Potential yield pn,t (kg km-2 year�1) is the yield of products from
land use type n at t if the cell would be occupied by that land use
type:

pn;t ¼ mn;t � fn; for each n in each t ð2Þ

In Eq. (2), mn,t is the maximum possible product yield (kg km-

2 year�1) of products from land use type n at t, which can increase
through time due to technological improvements in the agricultural
or livestock sector, i.e. increased productivity (FAO, 2003). The loca-
tion-specific variable fn e [0, 1] is the actual fraction of this yield
that can be reached in a cell, depending on factors like soil type, cli-
mate, and water availability. Note that a bold font indicates that a
variable is a spatial field, i.e. information at cell level.

The total product yield of a land use type is calculated using the
land use map at t. First, a spatial field of the current yield cn,t

(kg km-2 year�1) of land use type n at t is constructed that contains
the value of pn,t for cells that are currently occupied by type n at t
and zero for cells occupied by other land use types. The total prod-
uct yield yn,t (kg) of this land use type is therefore:

yn;t ¼
X
ðcn;t � aÞ; for each n in each t ð3Þ

In Eq. (3), the summation sign indicates summation over the whole
spatial field and a is the cell size in km2 (1 km2 in this study).

To determine where a certain land use expands or contracts,
every land use type is assigned a number of suitability factors. In to-
tal, nine suitability factors have been implemented in PLUC. The
number and kind of suitability factors differ per land use type. Ta-
ble 2 shows which suitability factors were implemented for every
dynamic land use type in the case study of Mozambique and which
weights were assigned to them (see Eq. (4) below). For a detailed
explanation of why these factors and weights were chosen, the read-
er is referred to van der Hilst et al. (submitted for publication).

The spatial autocorrelation suitability factor (1) assumes that
land uses attract land uses of the same or a related type (e.g., crop-
land is related to mosaic cropland–pasture and mosaic cropland–
grassland), i.e. that related land uses tend to cluster. It determines
the area of land use type n or types that are related to n in the
neighborhood of a cell with land use type n. The size of the neigh-
borhood is determined by the window length l (m), i.e. the length
of the square window around the center cell, and the area occupied
by the same or related land use types is calculated relative to the
size of the window. This suitability factor thus introduces positive
feedback loop into the model: if a land use type is allocated at a
certain location, the suitability value in the neighborhood of that
location increases for this land use type, so that more of this land
use might be allocated in the area in the next time step.

The suitability factors for distance to roads (2), water (3), cities
(4) and edge of the plot (8) determine suitability based on the
shortest Euclidean distance to the object under consideration, i.e.
roads, water, cities, or edges of plots, i.e. spatially connected areas
of a uniform land use type. For crops and pasture typically a loca-
tion close to roads and cities is preferred in order to minimize
transport costs, and close to water for irrigation. Wood is prefera-
bly harvested at the edge of the forest, because this makes harvest-
ing easier. The distance suitability functions (2, 3, 4 and 8) all have
two parameters: relation type between distance and suitability
(linear, exponential or inversely proportional) and range rn (m).



Table 2
Weights per suitability factor i per land use type n. The suitability factors concern: spatial autocorrelation (1), distance to roads (2), water (3), and cities (4), yield (5), population
density (6), livestock density (7), distance to plot edge (8), and conversion elasticity (9).

Land use type (n) Suitability factor (i)

1 2 3 4 5 6 7 8 9

Cropland 0.20 0.10 0.10 0.10 0.20 0.20 0 0 0.10
Cropland–grassland 0.20 0.10 0.10 0.10 0.20 0.20 0 0 0.10
Cropland–pasture 0.20 0.10 0.10 0.10 0.15 0.15 0.10 0 0.10
Pasture 0.30 0.05 0.15 0.05 0.1 0.05 0.20 0 0.10
Forest 0.25 0 0 0.20 0.05 0.30 0 0.20 0

Table 3
Pseudo-code for land use allocation procedure. Alloca-
tion of each land use type n in each time step t proceeds
until yield fulfills demand.

1 if dn,t > yn,t:
2 while dn,t > yn,t:
3 convert cell with max (sn,t) to n

4 update yn,t

5 else if dnt < yn,t:
6 while dnt < yn,t:
7 convert cell with min (sn,t) to 99

8 update yn,t

9 else:

10 do nothing

34 J.A. Verstegen et al. / Computers, Environment and Urban Systems 36 (2012) 30–42
The range indicates the maximum distance of effect of the feature,
e.g., the maximum distance of effect of a road on the land use type
pasture is set at 5 km, based on fieldwork, expert knowledge and
literature (e.g., Jansen et al., 2008). Cells at a distance of more than
the range have a suitability value of zero for this suitability factor.

The yield fraction (5), population density (6) and livestock den-
sity (7) suitability factors relate to the fraction of the maximum
that can be found in a cell (see Eq. (2)), where the maximum refers
to maximum yield (mn,t), maximum population density and maxi-
mum livestock density in factor 5, 6, and 7, respectively. Per land
use type the direction (increasing or decreasing) and relation type
between fraction and suitability (linear, exponential or inversely
proportional) can be indicated, like in the distance suitability func-
tions, e.g., cropland is preferably located on cells with a high yield,
but wood might preferably be harvested from cells with a low
yield, i.e. biomass, because harvesting is easier in sparse forest.

The current land use (9) suitability factor indicates the compli-
ance of a certain land use type to be transformed into the land use
type that implements the suitability factor. This factor is some-
times referred to as conversion elasticity (Verburg & Overmars,
2009), e.g., it is more preferable for pasture to be placed on a cell
that is currently defined as ‘abandoned’ than on a cell that is cur-
rently defined as ‘cropland’, as the second case involves a greater
loss of economic value. Note that most spatial fields resulting from
the suitability factors (ui,n,t, see Eq. (4) below) remain the same
over time, as the location of the features it relates to, e.g., roads,
does not change over time in the model. This is the case for the fac-
tors 2, 3, 4, 5, 6, and 7. However, the spatial fields of suitability fac-
tors related to dynamic land use types (1, 8, and 9) do change over
time and thus establish feedback loops in the land use system.

For every land use type a total suitability map sn,te [0, 1], indi-
cating the aggregated appropriateness of a given location for land
use n at time step t, is computed from its suitability factors:

sn;t ¼
X9

i¼1

ðwi;n � ui;n;tÞ; for each n in each t

with
X9

i¼1

ðwi;nÞ ¼ 1 ð4Þ

In Eq. (4), ui,n,te [0, 1] is the spatial field resulting from suitability
factor i for land use type n at time step t, and wi,ne [0, 1] is the
weight of suitability factor i for land use type n (see Table 2).

Now, all information is available to allocate the land uses. The
land use types have a certain hierarchy determined mainly by their
economic importance. In Africa, the current trend is that agricul-
tural intensification takes place on land that is now used as mosaic
cropland–pasture or mosaic cropland–grassland. This extensive
land use becomes less common and is moved to less fertile
grounds, while areas even less fertile, like mountain areas and for-
ests, come into use for grazing of livestock (Lambin et al., 2001).
Therefore, we assume the following order of allocation for the dy-
namic land uses: cropland, mosaic cropland–pasture, mosaic crop-
land–grassland, pasture, forest. The allocation schema can be
written in pseudo-code as in Table 3. When the land use type
expands, it allocates new cells of this type at locations with the
highest suitability, i.e. max(sn,t), and when it contracts it removes
cells of this type with the lowest suitability, i.e. min(sn,t). Cells
are converted to or removed from this land use until the total yield
yn,t equals the total demand dn,t. In Table 3 the number 99 in line 7
refers to the land use category ‘abandoned’. For land use type forest
the class ‘abandoned’ is named ‘deforested’ in order to be able to
distinguish cleared forest from deserted agricultural land on the
resulting land use map.

When allocation of one land use type is finished, allocation of
the next type is performed, with the restriction that it cannot con-
vert cells with a land use type that has already been allocated in
that time step. Deforested areas become forest again when they
are left fallow for 10 years. The regenerated forest can be harvested
once more to fulfill the wood demand.

At the end of each time step, when the land use map has chan-
ged according to the demands of the different land use types, it is
determined which cells are potentially available for bioenergy
crops. This is done by excluding all areas occupied by crops, pas-
ture, steep slopes (calculated from the digital elevation model),
roads, water, cities, forest concession areas, community areas,
and nature reservation areas. This results in a Boolean map (bt)
where cells are available (True) or unavailable (False) for bioenergy
crops at time step t. Although the bioenergy crops are not allocated
on the land use map, they do have their own maximum possible
product yield mt and yield fraction map f, so the bioenergy crop
yield per location and in total for the available area bt can be cal-
culated using Eqs. (2) and (3). These results can be used to assess
the available area and yield on provincial and national level, in or-
der to take the influence of spatial aggregation into account.
2.3. Error models

The various projections of population growth, diet change and
technological improvements in the agricultural sector differ signif-
icantly (Arndt et al., 2010; FAO, 2003; UNDP, 2008), so applying
one of these datasets deterministically to quantify drivers presum-
ably ignores a large input error. Also, a number of model parame-
ters are uncertain as they can only be estimated by expert
knowledge, because extensive model calibration datasets are cur-



Table 4
Stochastic variables of the land use change model and their data type, error model
and standard deviation (r), if applicable. For explanation of error models, see main
text.

Stochastic variable Data type Error model r

Window length (l) Single value Normal 3 km
Range (rn) Single value Uniform –
Elevation (h) Spatial field Normal 1 m
Yield fraction (fn) Spatial field Relative normal 0.2
Population density Spatial field Relative normal 0.1
Livestock density Spatial field Relative normal 0.1
Maximum yield (mn,t) Time series Relative normal 0.1
Demand (dn,t) Time series Uniform –
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rently not available. PLUC takes each of these input errors into ac-
count in calculating the forecast uncertainty. Model drivers and
parameters that are uncertain are defined here as lumped or spa-
tially distributed stochastic variables. The variables can be divided
into three groups according to their data type: single value, spatial
field and time series (Table 4).

Two stochastic variables represent a single value: the window
length l used in suitability factor 1 and the range rn, used in suit-
ability factors 2, 3, 4, and 8. For window length l a normal error
model is used:

l ¼ ll þ Zl � rl with Zl � Nð0; 1Þ ð5Þ

In Eq. (5), ll is the mean of l, i.e. the value that would be used in a
deterministic run. In our case study a value of 3 km is used for ll, as
this means that only the direct neighbors are taken into account in
our 1 � 1 km raster. In Eq. (5), rl is the standard deviation, which is
set to 1 km. It should be noted that l can attain values such that the
window cuts through cells. This is not a problem as the suitability
factor calculates the area in the window occupied by attracting land
use types, not the number of cells.

For the range rn an error model with a uniform distribution is
used:

rn ¼
ffiffiffi
a
p
þ Zr � 2 � lr;n with Zr � Uð0; 1Þ ð6Þ

In Eq. (6), a is the cell size in km2. This means that realizations of the
range vary between the cell length and twice the mean value that is
used in a deterministic run. This lower limit is used, because land
use cannot be allocated on the feature under consideration, e.g., a
road.

Four stochastic input variables represent a spatial field, i.e. a
raster map of values. For surface elevation h a normal error is used:

h ¼ lh þ Zh � rh with Zh � Nð0;1Þ ð7Þ

In Eq. (7), lh is the original elevation map and rh is the standard
deviation, for which a value of 1 m is used. Note that the normal er-
ror Zh is a spatial field, which means that a separate value is drawn
for each cell. The other three stochastic spatial fields are the yield
fraction, population density and livestock density. For all three a
relative normal error model is used. This means that the error (in
this case a normal error) is higher for higher mean values. For exam-
ple, the yield fraction fn is defined as:

fn ¼ lf þ Zf � rf � lf with Zf � Nð0;1Þ ð8Þ

In Eq. (8), lf is the original yield fraction map and rf is the standard
deviation, for which a value of 0.2 is used. The population density
and livestock density both have a standard deviation of 0.1. The
standard deviation of the yield fraction is higher, because we found
several different spatial data sets of the yield that were distinctively
different, which indicates a large input error.
Finally, two stochastic time series are used. The first is the max-
imum yield mn,t, to which a relative normal error model is as-
signed, similar to the one explained in Eq. (8):

mn;t ¼ lm;n;t þ Zm � rm � lm;n;t with Zm � Nð0;1Þ ð9Þ

In Eq. (9), lm,n,t is the mean of the of the maximum yield of land use
type n at time step t, i.e. the expected value obtained from observa-
tion data or expert knowledge, and rm is the standard deviation, for
which a value of 0.1 is used. The second time series is for the de-
mand dn,t. It uses an error model based on a uniform distribution
between the upper and lower limit of the attribute:

dn;t ¼ lt þ Zd � ðun;t � ln;tÞ with Zd � Uð0;1Þ ð10Þ

In Eq. (10), ln,t and un,t are the lower limit and upper limit of the de-
mand of land use type n at time step t. The limits of the demand dn,t

are determined by upper and lower limits of population pt, intake
in,t and self-sufficiency ratio rt (Eq. (1)) predicted by the FAO
(2003) and expert knowledge. Note that, although the resulting
variables from Eqs. (9) and (10), mn,t and dn,t, change over time,
the stochastic variables Zd and Zm are drawn once, at the start of
the simulation. These variables are used on all land use types, be-
cause they simulate the effect of the rate of increase in population,
which cannot be different for the different land use types in the
same model run.
2.4. Implementation

The schedule of PLUC is given in Table 5. The PCRaster Python
framework consists of four main methods that represent the
scheme in Table 1: the premcloop (line 6 in Table 5) is evaluated
only once, the initial (line 21) is evaluated once for each reali-
zation, the dynamic (line 33) is evaluated once for each time step
in each realization, and the postmcloop (line 54) calculates the
descriptive statistics over the Monte Carlo samples. Some variables
have the prefix self, as they are defined as member variables to
allow usage over the four different methods.

When the LandUseChangeModel is initiated it calls PCRaster
Python’s DynamicModel (line 3) and MonteCarloModel (line 4).
Among other things, these allow retrieving time steps (line 64)
and Monte Carlo samples (line 65). Next, the premcloop (line 6)
imports input maps in lines 7–16. A separate file, defined by the
model builder, parameters.py, defines all non-spatial inputs. This
is done to prevent that the end user has to make changes in the
main model scheme. All its variables and parameters are imported
in lines 17–20.

The initialmethod (line 21) is used to define initial or tempo-
rally constant stochastic variables for which a realization is drawn
for each Monte Carlo sample. An example of an initial variable is
the environment, i.e. the land use map, initiated in line 22. Examples
of temporally constant stochastic variables are Zd and Zm used in Eqs.
(10) and (9) for the calculation of demand dn,t and maximum yield
mn,t. For Zd a value is drawn from a uniform distribution between 0
and 1 with the PCRaster Python mapuniform() function (lines
23). For the Zm a value from a normal distribution, from the PCRaster
Python mapnormal() function, is multiplied by the standard devia-
tion defined by the user (line 24). Next, the class LandUse, defined
by the model builder, is instantiated (line 25). It is used to keep track
of the changing land use map. This class has a method to calculate all
other realizations for the stochastic variables in Table 4 (line 26).
This LandUse class also instantiates N objects (i.e. one for each land
use type) of the class LandUseType (line 27) that handle the land
use type specific tasks, like computing suitability maps and allocat-
ing land (Eqs. (2)–(4) and Table 3). These methods are implemented
with functions from the PCRaster Python library, including point,



Table 5
Main scheme of land use change model. Three dots and a discontinuity in the line
numbering indicate omitted sections.

1 class LandUseChangeModel(DynamicModel, MonteCarloModel):

2 def __init__(self):

3 DynamicModel. __init (self)

4 MonteCarloModel. __init (self)

5 setclone(’landuse’)

6 def premcloop(self):

7 self.initialEnvironment = self.readmap(’landuse’)

. . .

17 self.landUseList = parameters.getLandUseList()

. . .

21 def initial(self):

22 self.environment = self.initialEnvironment

23 self.demandStoch = mapuniform()

24 self.maxYieldStoch = mapnormal() � self.sdYield
25 self.landUse = LandUse(self.landUseList, self.environment)

26 self.landUse.drawRealizationsParams(self.stochParams)

27 self.landUse.createLandUseTypeObjects(self.relatedTypeDict

, self.suitFactorDict, self.weightDict, self.varDict)

. . .

33 def dynamic(self):

34 demandUp = timeinputscalar(’deUp.tss’, self.environment)

35 demandLow = timeinputscalar(’deLow.tss’, self.environment)

36 demandDiff = (demandUp � demandLow)

37 demand = demandDiff � self.demandStoch + demandLow
. . .

42 self.landUse.calculateSuitabilityMaps()

43 self.landUse.allocate(maxYield, demand)

44 self.landUse.growForest()

45 self.environment = self.landUse.getEnvironment()

46 self.report(self.environment, ’landUse’)

47 eu,euPr,euTo = self.landUse.getBioPotential(self.bioNoGo, n
self.provinces)

. . .

56 def postmcloop(self) :

57 name = [’eu’, ’euPr’, ’euTo’]

58 mcaveragevariance(name, self.sampleNumbers(), n
self.timeSteps())

59 name = [’eY’, ’eYPr’, ’eYTo’]

60 percent = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95]

61 mcpercentiles(name, percent, self.sampleNumbers(), n
self.timeSteps())

62 nrOfTimeSteps = parameters.getNrTimesteps()

63 nrOfSamples = parameters.getNrSamples()

64 myModel = LandUseChangeModel()

65 dynamicModel = DynamicFramework(myModel, nrOfTimeSteps)

66 mcModel = MonteCarloFramework(dynamicModel, nrOfSamples)

67 mcModel.run()

1 For interpretation of color in Figs. 1–7, the reader is referred to the web version of
is article.
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neighborhood, and global operations (Burrough & McDonnell,
1998). In lines 28–32 other initial actions are taken, like computing
a map of the distance to roads, needed by theLandUseType class for
calculation of the suitability maps.

In the dynamic method (line 33), the temporal components of
the model are evaluated. Demand is defined as a stochastic input
variable by two time series per land use type (lines 34 and 35),
as explained in the error model section. The variable demandSt-

och, drawn in line 23, is used as the position between the upper
and lower bound, ln,t and un,t, to calculate the realization for dn,t

(Eq. (10)) (lines 37 and 38). In lines 38–41 the maximum yield
mn,t is determined with the variable maxYieldStoch from line
24 (see Eq. (9)) in a similar way. Next, the suitability maps are cal-
culated (line 42), and the allocation procedure, explained in Table 3,
is called (line 43 in Table 5). The total land use map is updated (line
45) and saved to disk with the PCRaster Python function report()

(line 46) that creates file extensions recognizable for the Aguila
software. Next, it is determined which space is left over for bioen-
ergy crops. In lines 47 and 48 it is determined where the bioenergy
crop eucalyptus could be allocated and what its potential yield is
on a cell-basis (eu), aggregated per province (euPr), and in total
for the whole country (euTo).
In the postmcloop, the PCRaster Python function mcaverage-

variance (line 58) calculates mean, variance and standard error
of the files defined in line 57, for all time steps in all samples.
The function mcpercentiles (line 61) computes the percentiles
specified in the list in line 60 for a new list of files (line 59). All
these estimators of uncertainty are automatically saved to disk.
Note that these last two methods from the PCRaster Python library
are the part of the model that calculate uncertainty. So, addition of
just these two methods can turn any model into an uncertainty-
inclusive model, given that it employs stochastic variables.
3. Results

The model was run in deterministic mode and in Monte Carlo
mode using 500 samples to project land use change in Mozam-
bique from 2005–2030. The Monte Carlo run implements the error
models defined in Table 4, while the deterministic run takes the
mean of each of these variables. This section focuses on added va-
lue of the uncertainty analysis, an in-depth discussion of the sim-
ulated land use patterns and potential bioenergy crop areas is
provided in van der Hilst et al. (submitted for publication).

Fig. 2 shows how some land use maps resulting from a deter-
ministic run of the model can be spatially and temporally explored
using the Aguila visualization tool. Table 6 quantitatively summa-
rizes the areas occupied by the dynamic land use types. Table 6 and
Fig. 2 give an impression of the expansions and contractions of the
different land use types. The spider-web-like pattern of deforesta-
tion (dark purple1) is a result of wood harvesting near roads. Roads
namely form both the edge the forest plot, so that harvesting is eas-
ier, and a transportation possibility. The bands of deforestation be-
come broader over time, but stabilize more or less in the last two
time steps shown, as forest then starts to regrow at cells that were
emptied at the beginning of the simulation. Cropland (red) expands,
mainly around cities at the cost of (mosaic) cropland-pasture (light
green). This can be seen as agricultural intensification and special-
ization. The land use type cropland–pasture that represents the
extensive self subsistence farming practices including extensive cul-
tivation of crops and grazing of livestock on the same plot, is relo-
cated to areas that have been cleared by the harvest of wood.
Areas of (mosaic) cropland–grassland (yellow) expand as well, but
more at the outer border (away from cities) of existing cropland–
grassland and cropland–pasture plots, because they have less eco-
nomic value and are thus allocated further away from population
centers (see close up in the lower right panel in Fig. 2). Pasture inten-
sification, i.e. conversion from cropland-pasture to ‘pure’ pasture
(light purple), takes place primarily in the North-East of Mozam-
bique, where the largest concentrations of livestock, in this case
goats, are present. For pasture it is less essential than for crops that
they are located close to a market place, as animals are self-trans-
porting and are taken to the market less frequently (von Thünen,
1966), so they are located even further away from the city than crop-
land–grassland. In this way concentric rings of land use evolve, as
predicted by, e.g., William Alonso’s Bid Rent Theory (Alonso, 1964)
and the Von Thünen model (von Thünen, 1966). A lot of information
can be derived from this deterministic output, but it gives no infor-
mation about the certainty of the observations, i.e. how general and
how certain are the observed patterns?

To study this, Aguila allows visualization of different Monte
Carlo runs in linked views, which make comparison easy. Fig. 3
shows the variation within three out of the 500 generated samples
by providing a close up of land use in 2022 in the area around the
city Nampula. It can be seen that the overall pattern of concentric
th



Fig. 2. Screenshot of Aguila resulting from a deterministic model run showing land use in Mozambique in 2005 (time step 1, top left), 2013 (time step 9, top right), 2022 (time
step 18, bottom left) and 2030 (time step 26, bottom right) with a close up around the city Tete.

Table 6
Simulated areas (km2) for the dynamic land use types in 2005, 2013, 2022 and 2030.

Year Cropland Mosaic cropland–pasture Mosaic cropland–grassland Pasture Forest

2005 9382 123,737 2 7287 466,205
2013 11,639 135,188 5230 6835 418,654
2022 14,137 146,212 13,809 6179 391,540
2030 16,483 155,297 23,405 5618 368,805
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ig. 4. Artificial dataset showing the effect of the range parameters of city and road
n the total suitability and consequently on the shape of the concentric ‘rings’.
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rings is the same for all three realizations, but some differences are
visible (see, e.g., the values of selected cell in the cursor window).
One is that it is evident that the center and right image have some
abandoned (dark blue) cells, while the left one has none. This can
be explained by the fact that the values for demand (dn,t) and max-
imum yield (mn,t) are sampled separately. Cells that are abandoned
on the center and right image are most often classified as cropland-
pasture (light green) in the left one, so we take this land use type as
an example for the explanation. It is given as a model input that
both the demand and maximum yield of cropland–pasture in-
crease over the modeled period. The growth rate however, differs
per realization, depending on the values of Zd and Zm. As a result,
three different situations are possible. The first situation applies
for the center and right image: the demand for cropland pasture
has increased, but agricultural and livestock productivity have in-
creased so much that in the area currently occupied by cropland-
pasture too much yield is generated. As a result the land use type
cropland–pasture contracts in order to balance yield with demand.
The second situation is that the agricultural and livestock produc-
tivity have not increased enough to counteract the effect of
increasing demand, so the land use type expands. The last situation
is an equilibrium, in which the increases in demand and maximum
yield are in balance, so that no expansion or contraction is neces-
sary. It cannot be derived directly from the left map in Fig. 3 which
of the last two situations has occurred there, but it can be assumed
that it is the second situation, expansion, as an exact equilibrium
situation is very improbable. The described process is complicated
by the fact that land of a certain type can be taken by another type
during the simulation, so the current yield has to be updated con-
stantly to check which situation is at hand. This stresses the fact
that model output cannot be directly related to the input uncer-
tainties due to the numerous non-linearities in the model.

Another observation that can be made in Fig. 3 is the shape of
the concentric ‘rings’ around Nampula. If we focus on cropland
(red), the center image shows circular clustering around the city,
while in the right image it has a more star-like shape, with lumps
Fig. 3. Three different realizations of land use in 2022 (time step 18) zoomed in around t
land use type of the selected cell (cross in map views). The legend is the same as the on
around the four roads connecting to Nampula. The left image has a
shape somewhat in between. This difference is an effect of two
suitability factors: distance to roads (suitability factor 2) and dis-
tance to cities (suitability factor 4). For cropland both factors are
used (see Table 2), with the same weight wi,t, which means they
have equal effects on the total suitability for cropland. For both
suitability factors a separate realization is made for the stochastic
parameter Zr, which determines the range rn, i.e. maximum dis-
tance of effect. Fig. 4 illustrates how these two range parameters
effect the sum of the suitability factors 2 and 4. The figure shows
that a smaller value for the range of roads results in more cluster-
ing around roads and consequently star-shaped concentric ‘rings’
(Fig. 4b), while a smaller value for the range of cities results in
F
o

he city Nampula, indicated in black, and the cursor window (top right) showing the
e given in Fig. 2.
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more clustering around cities and consequently circular concentric
‘rings’ (Fig. 4c), Similar values for the two ranges results in a shape
in between (Fig. 4d).

The total area covered by the agricultural land use types and
their spatial distribution determine what land is available for bio-
energy crops. For this purpose, it is not very convenient to look at
all realizations separately. Therefore, a result from the summary
statistics over all 500 Monte Carlo samples is used (see line 58 in
Table 5). Fig. 5 shows the probability that the bioenergy crop euca-
lyptus can be cultivated in a cell at a certain point in time without
interfering with other important land uses. A value 1 indicates that
a cell is certainly available, i.e. it was available in all realizations, a
value 0 that it is certainly unavailable, i.e. it was available in none
of the realizations, and any value in between indicates uncertainty
in availability. In 2005 some land is available for eucalyptus around
Tete, but in 2013 a ring has formed around the city that is certainly
unavailable. This can be explained by the formation of concentric
rings of agriculture around the city that may not be disturbed by
Fig. 5. Probability that a cell is available for bioenergy (eucalyptus) in 2005 (time step 1
(time step 26, bottom right) zoomed in around the city Tete indicated in black.
the cultivation of eucalyptus. The zone around Tete that is unavail-
able for eucalyptus becomes larger over time. It can be seen that
the edges of the ring have a value somewhere between 0 and 1.
This is because the size and shape of the concentric rings differ be-
tween the samples, so that cells at the edges of the concentric ring
are in some samples occupied by agricultural land use types in the
considered year and in some samples not. In the first case they are
not available for eucalyptus and the second they are. This uncer-
tainty ring ‘moves’ away from the city and roads through time,
as the concentric rings around the city grow.

The planning of bioenergy crop plantations is not only of inter-
est to local decision makers, but also of concern at higher manage-
rial levels, e.g., province and country level. At these levels, the
possible yield of eucalyptus per province and for the whole country
at a certain point in the future and the uncertainty in these predic-
tions are relevant. Fig. 6 shows the variance in potential eucalyptus
yield at three different aggregation levels. The yield is calculated
per km2 at all three levels for comparability reasons. The variance
, top left), 2013 (time step 9, top right), 2022 (time step 18, bottom left) and 2030



Fig. 6. Variance in yield ((10�5 kg km-2 year�1)2) per cell (left), per province (middle) and for the country as a whole (right) in 2030.
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in yield is a combined result of cell availability (Fig. 5), yield frac-
tion and maximum yield of eucalyptus as explained in the follow-
ing. Most cells in Fig. 6 have a variance of zero, because they have
an availability probability of zero, or because the soil is infertile
(yield fraction of zero). Some cells have a variance slightly above
zero; these cells have an availability probability of one, but their
yield differs because of the stochastic parameters in yield fraction
(zf) and maximum yield (zm). Finally, there are some cells with very
high variances; these cells are sometimes unavailable, and then
have a yield of zero, and sometime available, and then have a yield
Fig. 7. Top: 95% confidence interval for a yield above a threshold of 100 kg km�2 ye
able = confidence interval straddles the threshold. Bottom: probability of exceedance (y-a
value. Left = per cell, center = per province, right = for the whole country.
dependent on the stochastic parameters yield fraction and maxi-
mum yield. This generates very large variances. It is evident that
the maximum variance (maximum value of the value scale bar
shown on the left side of the three maps) becomes much lower
when scaling from cell level (1 � 105 (kg km-2 year�1)2) to province
level (680 (kg km-2 year�1)2) to country level (298 (kg km-2

year�1)2). This is because local differences between samples are
levelled out at higher aggregation levels.

Other uncertainty information that can be used are the calcu-
lated percentiles (see line 61 in Table 5). The lower part of Fig. 7
ar�1 in 2030. Higher = certainly above, Lower = certainly below, Not distinguish-
xis) for different yield values (x-axis). The vertical black line indicates the threshold



J.A. Verstegen et al. / Computers, Environment and Urban Systems 36 (2012) 30–42 41
shows how Aguila visualizes these percentiles as exceedance prob-
abilities. The s-shape of the curves indicates that eucalyptus yield
is normally distributed at all aggregation levels. The width of the
curves, in terms of the range of values they cover, decreases with
increasing aggregation level. This is again an indication that uncer-
tainty decreases at higher aggregation levels. By using the option in
Aguila to show confidence intervals of exceedance probabilities,
the percentiles can be used to check, for example, whether a euca-
lyptus yield of more than 100 kg km-2 year�1 can be achieved at a
certain point in time. The upper part of Fig. 7 is the result of this
query. The maps in Fig. 7 show that on a country level (yellow)
no definite answer can be given, but at a province level the prov-
ince Tete (green) can definitely fulfill this condition.
4. Discussion and conclusions

We have shown how a modeler can construct a Spatial Decision
Support System (SDSS) that integrates simulation, uncertainty
analysis and visualization. This is considered useful in the light that
current SDSSs tend to ignore uncertainty (Foody, 2003; Ivanovic &
Freer, 2009). The advantages of the constructed PCRaster Land Use
Change model (PLUC) are that the uncertainty analysis is coupled
to the model, so that the output uncertainty indicators adapt auto-
matically to changes in inputs or parameters, and that the analysis
is iterative (Manson, 2007), i.e. evaluated at each time step, which
is important in non-linear models. We claim that the output maps
and graphs of uncertainty distribution in space and time provide
an intuitive way for end users to take uncertainty into account in
their decisions. The mode of visualization for uncertain spatio-
temporal data was considered suitable by end users without spe-
cialist knowledge of statistics in study by Aerts, Clarke, et al.
(2003).

Hiemstra and Karssenberg (in press) argue that Monte Carlo re-
sults can give a non-expert user the impression that it is hard to
make any decision at all, because of the large number of cells that
are reported as uncertain. Although it also good to stress the lim-
ited extent to which models can answer certain questions about
complex systems (Manson, 2007), SDSSs usually do have merits
for their end users. We have shown that by providing a means to
display for example confidence intervals, with easily understand-
able qualitative categories lower, higher, and not distinguishable in-
stead of difficult to interpret continuous measures such as full
probability distributions, uncertainty information can be used to
visualize locations where decisions can be made given a predefined
confidence level. A disadvantage is that the error models of the in-
put variables and parameters need to be specified, which is not a
straightforward task, especially for users inexperienced in
statistics.

Another advantage of the stochastic land use change model is
that is provides insights that could have been missed in a deter-
ministic model. For example, where the probability that bioenergy
crops could be cultivated is high or low. Running the model at a fi-
ner scale on sites with a high potential bioenergy-crop yield, and
investigating the effect of actual allocation is the next stage of
our research. A different example of the added value of stochastic
modeling is the observation of the difference in the shape of con-
centric rings of land use around cities, which has provided an in-
sight in the combined influence of the range parameters of cities
and roads on the resulting land use patterns. This indicates the
huge effect that such parameters can have on model outcomes
and thereby emphasizes the caution that should be taken in setting
such parameters deterministically.

Although the error propagation modeling provides information
on the uncertainties in model outputs, it is not a means to evaluate
the quality of the internal structure of the model, or to validate the
model by comparing model outputs and independent observa-
tional data. Evaluation of the internal model structure would be
possible in principle by using detailed observational data on cer-
tain sub-processes in the model. However, this data is currently
not available for Mozambique. Also, validation is difficult because
land use change in Mozambique in the past decades is character-
ized by civil war, independence and natural disasters, and there-
fore we do not expect steady continuation of past trends.

A disadvantage for end users of the usage of the Monte Carlo
method in an SDSS, also concluded from other studies (Aerts,
Goodchild, et al., 2003; Ligmann-Zielinska & Sun, 2010), is compu-
tation time. End users do not always have the time to wait at
length for their model output. On a desktop pc it took about two
days to run the 500 samples. Especially calculation of percentiles
is computationally demanding. Another drawback is that PLUC
now takes into account data uncertainties and model parameter
uncertainties, but not model structure uncertainties, e.g., about
the selected error models (Brown & Heuvelink, 2007), model rules,
and raster resolution, which are debatable as well. This could be
solved by creating a probability distribution over different plausi-
ble rules or over the range between coarsest legible resolution
and finest legible resolution (Hengl, 2006), so that these can also
be sampled in the Monte Carlo simulation. The latter is complex,
as spatio-temporal probability distributions alter with changing
resolution (Bierkens et al., 2000). Also, having more stochastic
parameters complicates model parameterization and raises the
number of samples required and thus increases computation time
even more. Nevertheless, it is important that uncertainty in simu-
lation models in SDSSs, which grow ever more complex, is some-
how evaluated and communicated. This paper shows that this
can be accomplished almost without any additional work on the
modelers side, which is a major step forward in the exposure of
uncertainty in SDSSs.
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