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• Artificial Neural Networks accurately
modelled the microbiome from
Guanabara Bay.

• Temperature and Salinity are main fac-
tors controlling the Microbiome.

• Phosphorus, Nitrogen and Transparency
are of lesser importance.

• Small increases in temperature are pre-
dicted to promote the growth of
pathogens.
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Guanabara Bay is a tropical estuarine ecosystem that receivesmassive anthropogenic impacts from themetropol-
itan region of Rio de Janeiro. This ecosystem suffers from an ongoing eutrophication process that has been shown
to promote the emergence of potentially pathogenic bacteria, giving rise to public health concerns. Although pre-
vious studieshave investigatedhowenvironmental parameters influence themicrobial community of Guanabara
Bay, they often have been limited to small spatial and temporal gradients and have not been integrated into pre-
dictive mathematical models. Our objective was to fill this knowledge gap by building models that could predict
how temperature, salinity, phosphorus, nitrogen and transparency work together to regulate the abundance of
bacteria, chlorophyll and Vibrio (a potential human pathogen) in Guanabara Bay. To that end, we built artificial
neural networks to model the associations between these variables. These networks were carefully validated
to ensure that they could provide accurate predictions without biases or overfitting. The estimated models
displayed high predictive capacity (Pearson correlation coefficients ≥0.67 and root mean square error ≤ 0.55).
Our findings showed that temperature and salinity were often the most important factors regulating the
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abundance of bacteria, chlorophyll and Vibrio (absolute importance ≥5) and that each of these has a unique level
of dependence on nitrogen and phosphorus for their growth. Thesemodels allowed us to estimate the Guanabara
Bay microbiome's response to changes in environmental conditions, which allowed us to propose strategies for
the management and remediation of Guanabara Bay.

© 2019 Elsevier B.V. All rights reserved.
Artificial neural networks
Time-series
1. Introduction

Guanabara Bay is a tropical estuarine bay surrounded by the metro-
politan area of Rio de Janeiro. This is the second largest urban area in
Brazil, inhabited by approximately twelve million people in 2016. As
one of the first settlements in the country, Guanabara Bay (GB) has a
long history of anthropogenic pollution delivered directly into the bay
or indirectly into the water basin of the surrounding rainforest biome.
GB has an area of approximately 380 km2 and average depth of 7 m.
The bay has a mixed semidiurnal tide regime with a range of 0.7 m,
and renewal of 50% of the water volume occurs in an estimated
11.4 days (Kjerfve et al., 1997) (Fig. 1). The innermost sites of the
north-western section receive freshwater input from the surrounding
basin as well as sewage from domestic, agricultural and industrial
sources. This ecosystem receives daily an estimated 1.5 × 106 m3 of un-
treated domestic sewage and 150 tons of industrial waste water
(Fistarol et al., 2015). The inner sections of GB receive a small input of
oceanic water but massive inputs of pollution. Therefore, in these
ig. 1.Map of Guanabara Bay showcas
regions, salinity levels are low and nutrient (i.e., phosphorus and nitro-
gen) concentrations are high. Thus, heavily polluted sites within the in-
nermost region have undergone extreme eutrophication (Kjerfve et al.,
1997; Mayr et al., 1989; Paranhos et al., 1998), leading to algal blooms
and fish mortality events (Santos et al., 2007; Villac and Tenenbaum,
2010). Towards the outermost regions of the bay, the greater input of
oceanic waters leads to an increase in salinity and transparency accom-
panied by lower nutrient concentrations. Mixing of waters brought by
tides and currents creates a gradient of water quality conditions be-
tween these two extremes. (Mayr et al., 1989; Paranhos et al., 1998,
2001; Vieira et al., 2007, 2008).

Previous investigations have sought to characterize how the taxo-
nomic composition of microbial communities is affected by water qual-
ity conditions at GB using metagenomics (Gregoracci et al., 2012;
Thompson et al., 2011; Vieira et al., 2008). These studies have reported
that Pelagibacter, Prochlorococcus, Synechococcus and other marine
oligotrophs dominate the communities in less polluted sites. Mean-
while, microbial communities in sites with higher degrees of pollution
ing the location of sampling sites.
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are dominated by copiotrophic bacteria, such as Gammaproteobacteria,
Bacteroidetes and Firmicutes, which are taxa that include many species
of opportunistic pathogens (Gregoracci et al., 2012; Vieira et al., 2008).

Many inhabitants of Rio de Janeiro have no access to treatedwater or
sewage collection systems, which puts them at increased risk of contact
with opportunistic aquatic pathogens, the causative agents of
waterborne diseases. Across Guanabara Bay, the abundance of patho-
genic bacteria is positively correlated with the degree of pollution
(Gregoracci et al., 2012; Vieira et al., 2008), which has raised public
health concerns associated with the local population interacting with
this ecosystem. These concerns have further intensified following the
discovery of antibiotic-resistant bacteria in this habitat (Coutinho
et al., 2014). Among the pathogens that dwell in the bay, the genus
Vibrio is of special relevance.Members of this genus are abundant across
GB (Gregoracci et al., 2012), and many of them (e.g., V. cholerae,
V. parahaemolyticus and V. vulnificus) are potentially pathogenic
(Coutinho et al., 2014; Salloto et al., 2012; Vieira et al., 2008). The pres-
ence of these bacteria represents a threat to the local population be-
cause many inhabitants use these habitats as a source of food and
leisure (Fistarol et al., 2015).

Understanding the mechanisms by which environmental parame-
ters influence microbial communities from urban estuaries is funda-
mental for developing policies to manage these environments. This
knowledge can be applied to minimize the threat they pose to public
health. Decades of studies at Guanabara Bay have revealed that nutrient
concentrations (i.e., nitrogen andphosphorus sources) and temperature
positively correlate with the abundance of bacterial cells, chlorophyll
concentrations and Vibrio abundance, while the opposite effect has
been observed for salinity (Andrade et al., 2003; Fistarol et al., 2015;
Gonzalez et al., 2000; Gregoracci et al., 2012; Paranhos et al., 2001;
Vieira et al., 2008). Nevertheless, these findings have been limited to
short time scales and have not been integrated into models that could
account for the synergistic effects of environmental variables.

Artificial neural networks (ANNs) have become increasingly com-
monwithin the field of microbial ecology due to their ability to yield ac-
curate predictive models that can account for non-linear associations
and can incorporate interactions between variables (Flombaum et al.,
2013; Kuang et al., 2016; Larsen et al., 2012; Santos et al., 2014;
Tromas et al., 2017). An artificial neural network is a machine learning
algorithm that can be trained to predict the value of a response variable
based on the values of one or more predictor variables, much like in lin-
ear regression analysis. Our rationale was that data from a long-term
ecological study of Guanabara Bay could be used to train artificial neural
networks to accurately predict the abundances of biotic variables in re-
sponse to abiotic factors.

In this study, our objective was to build artificial neural networks to
model the response of the GB microbial community to environmental
variables. We expected to obtain models capable of accurately
predicting how environmental parameters regulate the abundances of
three response variables: bacterial abundance, chlorophyll a, and Vibrio.
Our findings allowed us to quantify the relative importance of different
predictors; to model changes in the abundance of response variables
across seasonal and pollution gradients; and, finally, to use these find-
ings to propose strategies for the management and recovery of the
Guanabara Bay ecosystem.

2. Methods

2.1. Sampling site description

Three sampling sites were assessed to quantify their physical, chem-
ical and biological characteristics (Fig. 1). Surface water samples were
collected monthly at each site over a period of five years (January
2009 until December 2013). Thus, 60 sampling events took place at
each site, for a total of 180 samples. Each of the three sampling sites dif-
fered in terms of their proximity to the ocean and their degree of
anthropogenic impact. Site 1 was located at the interface between
Guanabara Bay and the Atlantic Ocean. Intense oceanic influence has
made this habitat the least impacted among all three sites. Site 7 was
at an intermediate zone located at the inner portion of the bay. Site 34
was located at the innermost location, with the highest degree of pollu-
tion among the three sites. Poor mixing of water and intensive sewage
discharge has led to heavy eutrophication at site 34 (Gregoracci et al.,
2012; Vieira et al., 2008).

2.2. Sampling and data collection

Water sampleswere assessed for levels of physical and chemical pa-
rameters by using oceanographic methods previously described by
Grasshoff et al. (2009). We measured the water temperature (Temp)
and salinity (Sal) using a CTD device. Transparency (Transp) was deter-
mined with a Secchi disc. Concentrations of total phosphorus (TP) were
determined by acid digestion to phosphate, and concentrations of total
nitrogen (TN) were determined by digestion with potassium persulfate
following nitrate determination. Three biological parameters were also
measured for each sample: 1) bacterial abundance (BacAbund), 2) chlo-
rophyll a (Chloro) and 3) abundance of Vibrio cells (Vibrio). Bacterial
abundance was measured using flow cytometry as described by
(Cabral et al., 2017). Chlorophyll a analyses were performed following
vacuumfiltration (b25 cmof Hg). Chlorophyll was extracted from cellu-
lose membrane Millipore HAWP 0.45 μm filters overnight in 90% ace-
tone solution at 4 °C. Analyses were performed with a UV-VIS Perkin
Elmer Lambda 20 spectrophotometer (Perkin Elmer, USA). The abun-
dance of Vibrio cells was measured with counts of colony forming
units (CFU) following inoculation of 100 μl of sample water onto Vibrio
selective thiosulfate-citrate-bile-salts-sucrose (TCBS) agar plates and
growth for 24 h at 30 °C (as described by Gregoracci et al. (2012)).
These measurements of biotic and abiotic variables are displayed in
Fig. S1.

2.3. Artificial neural network training and validation

The correlation coefficients estimated between predictors and re-
sponse variables demonstrated that many of the predictor-response as-
sociations were non-linear, as evidenced by the values of the Pearson
correlation scores being lower than the Spearman correlation scores
(Fig. S2). This result suggested that such associations between predictor
and response variables should not be modelled with linear models.
Therefore, ANNs are an ideal alternative to model these relationships
as they are better suited to account for the non-linear associations be-
tween variables and the interactions among predictors. Artificial neural
network models were built to predict the responses of three biological
variables: bacterial abundance, chlorophyll concentration and Vibrio
abundance. Five predictor variables were used as inputs (Temp, Sal,
TN, TP and Transp), resulting in a variable to sample ratio of 1:36,
which was considered adequate to avoid overfitting (Dreiseitl and
Ohno-Machado, 2002). Predictors and response variables were log10
transformed prior to training. This was done to reshape the association
of data points, consequently improving the fitting capacity of the ANNs.
All analyses were carried out in R (R Core Team, 2016) using functions
from the ‘nnet’ package (Venables and Ripley, 2002) to train networks
(‘nnet’ function) and from the ‘NeuralNetTools’ package (Beck, 2018)
for the Lek profile and Olden importance analyses (using the ‘lekprofile’
and ‘olden’ functions, respectively). Training was performed setting the
maximum number of iterations to 1000; reltol to 0.01; and weight
decay to 0.001 (Krogh and Hertz, 1992). These values were selected in
order to avoid overfitting. The ‘reltol’ setting was responsible for stop-
ping the training process if the network reached a point where the op-
timization did not reduce the fit criterion by a factor of at least 1 –
reltol. Simultaneously, over each iteration, weights were multiplied by
the value set to weight decay, which prevented any weights from
reaching extremely high values that lead to unrealistic models.
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We tested the influence, on network performance, of the starting
weights, the number of neurons, the number of training iterations and
the number and set of samples used for training (Supplementary Text
1). During this step, samples were randomly and evenly divided into
training and validation sets. ANN performance was evaluated by com-
paring the measured values of response variables against those pre-
dicted by the ANNs. We calculated the Pearson correlation coefficients
for the training (PCCt) and validation (PCCv) sets and the root mean
square errors for the training (RMSEt) and validation (RMSEv) sets.
The results from these analyses (Supplementary Text 1) indicated that
theparameters selected to train the networkswere adequate for achiev-
ing good performance (i.e., high PCCt and low RMSEt values) without
overfitting (i.e., adequate fits for both training and validation sets).

Thus, we proceeded to build thefinal ANNs using all samples fromall
sites (n = 180) for training. Pooling all samples together regardless of
sampling site maximized the number of samples used for training and
led to generalmodels that could generate predictions regardless of sam-
pling site or timepoint. The location and date of samplingwere not used
as predictor variables for training the networks; thus, any auto-
correlation between samples collected close together in space or time
could not bias the output or performance of the models. Effectively,
not including the location and date of sampling during training meant
that temporal trends in the associations between predictor and re-
sponse variables were disregarded and that no spatial interactions
were considered.

Ten thousand ANNs were built for each response variable to obtain
independent models for bacterial abundance, chlorophyll and Vibrio
abundance. ANNs were scored based on their RMSEt and PCCt values,
and the relative importance of the predictor variables was estimated
in all valid networks based on neuron weights as described by Olden
et al., (2004). Networks were considered valid if they were character-
ized by PCCt N0.5 and RMSE b1. Networks with values of importance
assigned to predictors below −10 or above +10 were not considered
valid, in order to exclude over simplistic models that did not include
the influence of all predictors. A single best ANN (Fig. S7) was selected
for each response variable based on the lowest RMSEt. The ‘Lek-profile
method’ (Lek et al., 1995) was used with the best network as a means
of performing a sensitivity analysis. The end goal of the sensitivity anal-
ysis was to obtain predictions for each response variable across the
range of values for each given predictor variable while holding all
other predictor variables constant. Predictor variables were held con-
stant at different values ranging from their 10th to 90th percentiles.

3. Results

3.1. Long-term description of GBmicrobial communities and environmental
parameters

The five years of time-series data collected allowed for a characteri-
zation of physical, chemical and biological parameters in Guanabara Bay
(Fig. S1): Sites GB1 and GB7 exhibited more stable values of predictors
(Temp, Sal, Transp, TP, and TN) throughout the year,while SiteGB34 ex-
hibited the most notable monthly and yearly oscillations. Sites GB1 and
GB7 were characterized by the lowest average values of TP and TN and
the highest average Transp and Sal. The opposite pattern was observed
for GB34, which displayed the highest average values of TP and TN and
lowest Transp and Sal. Water temperature was comparable between
sites but tended to be slightly higher at GB34.

We investigated the presence of associations between both predic-
tor and response variables by calculating Pearson and Spearman corre-
lation coefficients between all possible combinations of variables
(Fig. S2). Salinity and transparency were each negatively correlated
with the response variables, while temperature, TP and TN were each
positively correlated with the response variables. The strong and signif-
icant associations observed between predictor and response variables
was consistent with our rationale that these predictors could be used
to model the values of the response variables. Yet, the absolute values
of most Pearson correlation scores observed between the response var-
iables (BacAbund, Chloro and Vibrio) and the predictorswere below 0.6
(range:−0.69 to +0.67), suggesting that the variation within no single
predictor could linearly account for the values of the response variables
alone. Thus, theuse of artificial neural networkswas justified, since ANN
models can incorporate multiple variables, and interactions between
them, to maximize accuracy. Likewise, the lower yet significant correla-
tion scores observed between predictors suggested little redundancy
between them, justifying the inclusion of all of them in the models.
3.2. Artificial neural networks accurately model associations between pre-
dictors and response variables

Neural networks were successful in modelling the responses of bac-
terial abundance, chlorophyll concentration and Vibrio abundance to
the five predictor variables (Table 1). The most accurate ANN, obtained
for bacterial abundance, had the highest PCCt value (0.87) and lowest
RMSEt (0.23) value, followed by the chlorophyll ANN (PCCt = 0.82
and RMSEt = 0.34), while the Vibrio ANN presented the lowest accu-
racy (PCCt = 0.67 and RMSEt = 0.55). Because to obtain these net-
works, all of the data were used for training, the values of PCCt =
PCCv and RMSEt = RMSEv. Higher PCCt and lower RMSEt values im-
plied better network performance. Thus, the highest precision was ob-
served for the ANN built for bacterial abundance, followed by
chlorophyll and lastly Vibrio. The differences in precision observed for
the three final networks could have been a consequence of different
levels of noise in the measurements of the response variables, or else
they could have been due to the need for additional predictors to
model the response variables. Nevertheless, network performance
was comparable to that of other ANNs built tomodelmicrobial commu-
nities from other ecosystems (Flombaum et al., 2013; Larsen et al.,
2012; Santos et al., 2014). The neural networks outperformed linear re-
gression models previously estimated using time-series data from
Guanabara Bay for bacterial abundance (linear regression PCC = 0.79)
and Vibrio (PCC = 0.35) (Gregoracci et al., 2012). The superior perfor-
mance of the ANNs compared to the linear regression models likely re-
sulted from the fact that the neural networks incorporated interactions
between predictors and because they modelled non-linear associations
between predictor and response variables.
3.3. Predictor variables differ in their relative importance

The relative importance of the predictor values in the best
performing ANNs was estimated using the Olden method (Fig. 2). This
approach assigned importance values to the predictors that were pro-
portional to their influence on the output of the model. These values
were above zero if the predictor had a positive association with the re-
sponse variable and below zero if the predictor had a negative associa-
tion with the response variable. The further away from zero, the more
important the predictor was, regardless of sign. For all three response
variables, temperature consistently ranked as the most important pre-
dictor and had a positive association with all the response variables. Sa-
linity was predicted to have a negative association with the response
variables and was the second most important predictor of bacterial
abundance and Vibrio but not for chlorophyll. Transparency was an
important predictor of bacterial abundance and chlorophyll and
was predicted to have a negative effect on these variables. Finally,
TP and TN were often among the least important predictors in all
cases. These trends of importance observed for the best networks
were consistent with those observed for the 5% top-scoring ANNs.
Although predictor importance varied among these top-scoring net-
works, the overall ranking, absolute values and sign of the predictors
was conserved (Fig. S8).



Table 1
Performance and variable importance for the best performing networks for bacterial abundance, chlorophyll and Vibrio. The rank of predictor variable importance is included in
parentheses.

Performance Predictor importance (rank)

PCC RMSE Importance Temp Importance Sal Importance TP Importance TN Importance Transp

Bacterial Abundance 0.87 0.23 9.14 (1) −7.54 (2) 1.14 (4) −0.17 (5) −5.98 (3)
Chlorophyll 0.82 0.34 9.43 (1) −2.43 (4) 0.35 (5) 2.48 (3) −7.72 (2)
Vibrio 0.67 0.55 8.95 (1) −6.39 (2) −0.81 (5) −3.01 (3) 2.43 (4)
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3.4. Predictor variables displayed unique trends of association with the re-
sponse variables

Sensitivity analysis was performed by obtaining predictions from
the ANNs while changing the values of one predictor at a time, while
all the other predictors were held constant at their 10th, 30th, 50th,
70th and 90th percentile values (Fig. 3). The shape and direction (neg-
ative or positive) of these curves demonstrated how each predictor var-
iable individually influenced the output of the neural networks. The
sensitivity analysis also revealed that the associations inferred by the
ANNs were unique for each combination of response variable and pre-
dictor. Additionally, these curves showed how the predictor-response
association could shift depending on the combination of the values of
the remaining predictors, as highlighted by the differences between
the curves depending on the percentile values at which the remaining
predictor variables were held constant.

The sensitivity analysis indicated a slightly negative association be-
tween salinity and bacterial abundance, which shifted to slightly posi-
tive when the other predictors were above their 70th percentile
values. The associations between salinity and chlorophyll and between
salinity and Vibrio were steeply negative regardless of the percentile
values of the other predictors. Meanwhile, temperature was positively
associatedwith all of the response variables, independent of the percen-
tile values of the other predictors. The association between bacterial
abundance and TN levels shifted from slightly positive to slightly nega-
tive with increasing TN levels, tending to peak at intermediate values.
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Fig. 2. Bar plot depicting the relative importance of predictors for the three res
Associations between response variables and TN were the most varied,
often shifting from positive to negative with increasing TN concentra-
tions, especially when the other predictors were set at their 70th or
90th percentile values. TP showed steep positive associations with all
the response variables, but this effect was even more pronounced for
bacterial abundance. Finally, transparency had a negative association
with bacterial abundance and had almost no association with Vibrio,
but the association of this predictor with chlorophyll shifted from posi-
tive to negative with increasing transparency.

3.5. Predictions for the GB microbiome in simulated scenarios

Next, ANNs were used to estimate the values of the response vari-
ables in simulated scenarios. ANNs were input with the monthly me-
dian value of each predictor at each of the three sampling sites. To
investigate the isolated effect of changes in each predictor at every
month and sampling site, we varied the values of one predictor at a
time using different multiplication factors (0.8, 0.9, 0.95, 1, 1.05, 1.1
and 1.2) (Fig. 4). These simulations re-captured the peaks of bacterial
abundance, chlorophyll and Vibrio that occur during the rainy season,
i.e., the austral summer (December to March), in Guanabara Bay
(Fig. S1). Consistent with the sensitivity analysis, these simulations pre-
dicted drastic changes in the levels of BacAbund, Chloro and Vibrio fol-
lowing changes in temperature of as little as 5% above or below the
monthly median. These were even more pronounced using values 20%
above or below themonthly median. Likewise, small changes in salinity
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ponse variables estimated from ANN weights through the Olden method.



Sal Temp TN TP Transp

BacAbund
C
hloro

Vibrio

1.0 1.2 1.4 1.25 1.30 1.35 1.40 1.45 1.50 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5−0.8 −0.4 0.0 0.4

4

5

6

7

1.0

1.5

2.0

2.5

1.5

2.0

2.5

3.0

Explanatory

R
es
po
ns
e

Percentile
10th
30th
50th
70th
90th

Fig. 3. Sensitivity of the response variables to changes in the predictor variables. The influence of each predictor (columns) over the response variable (rows)wasmodelled with all other
input parameters held constant at values ranging from their 10th to 90th percentiles. The X axis depicts the log10 transformed value of the predictor variable, while the Y axis depicts the
log10 transformed value of the response variable. Scales of the X and Y axes vary between rows and columns, respectively.

210 F.H. Coutinho et al. / Science of the Total Environment 677 (2019) 205–214
were predicted to have a strong effect on the abundance of bacterial
cells and Vibrio but a small effect on chlorophyll. These associations be-
tween response variables and salinity and temperature were consistent
across all sampling sites and months (Fig. 4). Changes in TP and TN af-
fected the ANN predictions for the abundance of Vibrio across all sam-
pling sites and months. However, these two predictors had little
influence on the output of bacterial abundance and chlorophyll ANNs.
Site 34 was an exception to this trend, where changes in TP were pre-
dicted to affect chlorophyll concentrations more drastically. Changes
of up to 20% in transparencywere expected to have no influence on Vib-
rio abundance. Nevertheless, the same changes in transparency were
expected to affect bacterial abundance and chlorophyll. Interestingly,
for chlorophyll these effects were expected to be much more pro-
nounced at sites 01 and 07, which often have had lower values of trans-
parency than site 34 (Fig. S1).

4. Discussion

4.1. Temperature and salinity regulatemicrobial community abundances in
Guanabara Bay

ANNmodels allowed for three components of GBmicrobial commu-
nities to be evaluated: Total abundance of prokaryotic cells,
photosynthesizers as measured through chlorophyll a concentrations,
and Vibrio, a genus of aquatic copioheterotrophs. Temperature was
ranked among the most important factors regulating the levels of the
response variables (Fig. 2), and strong positive associations between
temperature and these variables were observed (Fig. 3). Salinity ranked
among the most important predictors but had a negative association
with the abundances of bacterial cells, chlorophyll and Vibrio. Analyses
of microbial communities spanning multiple ecosystems have
suggested that salinity and temperature are major factors shaping mi-
crobial community composition across aquatic habitats (Lozupone
and Knight, 2007; Sunagawa et al., 2015; Thompson et al., 2017). Our
results demonstrate that these factors not only influence the taxonomic
composition ofmicrobial communities but also how these factors shape
their abundances. Moreover, our results indicated that the importance
of temperature and salinity markedly varies among the three compo-
nents of the aquatic microbiome. The positive associations with tem-
perature were likely a reflection of the increase in microbial
metabolism brought by higher temperatures. Although the three vari-
ables were predicted to respond negatively to salinity (Figs. 2 and 3),
this trend was much less pronounced for chlorophyll. This result sug-
gests that, although shifts in salinity have affected the taxonomic com-
position of these sites (Gregoracci et al., 2012; Vieira et al., 2008), this
has had a small effect on the overall chlorophyll levels of the
communities.

Transparency was the second most important predictor of chloro-
phyll but was not as relevant for the abundance of bacteria and Vibrio.
Interestingly, lower transparency levels were positively associated
with the chlorophyll concentration but negatively associated at higher
levels. This result suggests that the ideal levels of transparency that
maximized chlorophyll productionwere between 0.8m and 1.25m, de-
pending on the levels of the other predictor variables (Fig. 3). This trend
is consistentwith the photoinhibition process that affects the photosyn-
thetic apparatus at very high levels of light irradiance (Dechatiwongse
et al., 2014; Murata et al., 2007; Roach and Krieger-Liszkay, 2014).
This phenomenon can be intensified by salt or temperature stresses
(Lesser and Farrell, 2004; Murata et al., 2007; Sudhir and Murthy,
2004; Takahashi and Murata, 2008; Tang et al., 2007). Both of these
are faced by the bay's photosynthetic microbiome. Importantly, other
forms of chlorophyll besides the one that was measured in this study
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(chlorophyll a) could have had associations with predictor variables
that were different from those presented here.

TN and TP ranked among the least important predictors for all re-
sponse variables (Fig. 3). Nevertheless the importance values obtained
for these predictors suggested that each of the three response variables
have depended differently on nitrogen and phosphorus concentrations
for growth. TN had almost no importance to BacAbund but had slightly
higher importance for chlorophyll andVibrio, while the opposite pattern
was observed for TP, which was more important to BacAbund than it
was for chlorophyll and Vibrio. Based on these observations, we
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postulated that bacterial abundance has beenmuchmore dependent on
TP concentrations than the other two response variables. Meanwhile,
chlorophyll and Vibrio have depended more on TN concentrations
than BacAbund.

The sensitivity analysis for TN and TP revealed unique trends for the
associations between these predictors and the response variables, par-
ticularly when the other predictors were set to their 70th and 90th per-
centile values. Examples of such cases included the associations
between TN-Vibrio, TP-Vibrio and TP-BacAbund. The shapes of these
curves pointed to associations that were neither consistently positive
nor consistently negative. One possible explanation for this was that
these patternswere artefacts resulting from the fact that these variables
were ranked among the least important, which allowed the ANNs to
create such unusual patterns when modelling these associations with-
out affecting performance. Considering that TN and TP did not rank as
the most important factors for any of the response variables, we postu-
lated that, at the time, physical parameters (i.e., temperature, salinity
and transparency) were more relevant for determining the abundance
of bacteria, chlorophyll and Vibrio than nutrients (i.e., TP and TN).
Based on this evidence, we postulated that, due to the intense eutrophi-
cation at the bay, the microbial community had reached its maximum
capacity for taking up and utilizing nutrients. Thus, the GB microbiome
growth might have no longer been limited by nutrient availability. In-
stead, temperature, salinity and transparency have acted together in de-
termining the abundance of bacteria, Vibrio and photosynthesizers
through three major mechanisms: altering the taxonomic composition
of the community, affecting their growth rates, and regulating the
rates of photosynthesis and consequently primary productivity. In the
original pristine conditions, the growth of the microbial community
was likely limited by the availability of TP and TN.

4.2. Environmental factors and public health in Guanabara Bay

Our results suggested that Vibrio levels were primarily regulated by
temperature and salinity. These results were in accordance with previ-
ousfindings that explored the associations between Vibrio and these pa-
rameters (Constantin de Magny et al., 2008; Haley et al., 2014; Höfle
et al., 2015; Vezzulli et al., 2016). Our results corroborated these find-
ings while also elucidating the associations between Vibrio abundance
with nitrogen, phosphorus and transparency. Therefore, the results sug-
gest that the growth of Vibrio and of other potentially pathogenic bacte-
ria has been fuelled by sewage input that releases phosphorus sources
into the bay. This explanation concurs with previous analyses that
have indicated that Vibrio and other copiotrophic and potentially path-
ogenic bacteria depend on phosphorus (Coutinho et al., 2015; Frost
et al., 2008).

Members of the Vibrio genus thrive in eutrophic waters with ranges
of temperature and salinity similar to those observed in Guanabara Bay
(Constantin de Magny et al., 2008; Lobitz et al., 2000; Russek-cohen
et al., 2003; Vezzulli et al., 2016). Moreover, the abundances of mem-
bers of the genus Vibrio in aquatic habitats have been shown to be pos-
itively correlated with that of other genera of potentially pathogenic
bacteria such as Escherichia, Pseudomonas, Bacillus and Clostridium
(Coutinho et al., 2015). This means that whenever high abundances of
Vibrio are observed, the abundance of other pathogenic bacteria is also
expected to be high and vice-versa. Thus, the observed interactions be-
tween Vibrio and the predictor variables could likely be extrapolated to
other opportunistic aquatic pathogens in Guanabara Bay. This was rele-
vant because understanding the associations between pathogens and
environmental conditions has been a fundamental step in predicting,
preventing and mitigating the impacts of disease outbreaks associated
with aquatic habitats (Lobitz et al., 2000; Russek-cohen et al., 2003).
Our ANNs predicted an increased abundance of Vibriowith higher tem-
peratures and lower salinity (Figs. 2 and 3). Together, these findings in-
dicated that warmer and less saline waters of the innermost sections of
GB have posed a higher risk for the local population than the colder and
more saline waters typical of the regions that receive higher inputs of
oceanic waters. Thus, the innermost regions of the bay likely have
been the most threatening because the high sewage input and low in-
fluence of oceanic waters in these regions has created an ideal environ-
ment for the proliferation of Vibrio and other potential pathogens.
Therefore, developing strategies for minimizing pollution into these re-
gions of Guanabara Bay that represent the biggest threat to public
health should be a priority.

4.3. Future changes and management of Guanabara Bay

Despite decades of investments, the water pollution at Guanabara
Bay is increasing. The continuous growth of the metropolitan area of
Rio de Janeiro will likely lead to increasing input of sewage into GB in
the future. This will lead to increased nutrient concentrations and re-
duced salinity at the impacted sites. Furthermore, climate change is ex-
pected to increase water temperatures in Guanabara Bay. Our models
cannot predict into the future as theywere not built to incorporate asso-
ciations between time and the response variables nor temporal changes
in the associations between predictor and response variables. Neverthe-
less, the ANNs did reveal strong associations among salinity, tempera-
ture, nutrients and the microbial community of this habitat. Assuming
that the observed associations between predictors and response vari-
ables remain stable through time, our results suggest that the aforemen-
tioned changes expected to affect this ecosystem in the future would
lead to higher densities of bacteria and potential pathogens.

Our findings provide insights for developing strategies for reversing
the impacts to Guanabara Bay. This could be achieved by a combination
of proper sewage treatment, reduction of nutrient loads,minimizingde-
forestation and recovery of the surrounding and aquatic vegetation. Ad-
ditionally, bioremediation strategies capable of reducing nutrient
availability could be applied as well (Boesch et al., 2001; Greening and
Janicki, 2006; Little et al., 2000; McGann et al., 2003; Paerl, 2009;
Walker et al., 2013). Furthermore, our results demonstrate that ANN
models could serve as tools to assess the threat level to public health
posed by the aquatic ecosystem throughout changing environmental
conditions, which could be used to predict and mitigate disease out-
breaks (Constantin de Magny et al., 2008; Russek-cohen et al., 2003).

4.4. Network performance and limitations

Although the ANNs performed adequately they did not achieve per-
fect precision. This could have happened for multiple reasons, including
the presence of noise in the data, the number of samples available for
training, or the need to include more predictors. Our models did not
incorporate some parameters that likely influence the microbial com-
munity of Guanabara Bay such as some physical (e.g. tides and precipi-
tation) and biological (e.g., abundance of grazers and viruses) variables
that could affect themicrobial community. For the sake of simplicity, we
also did not include temporal or spatial associations in the ANNs, which
could also have hampered the performance of networks. We refrained
from using time-series-specific neural networks because many of the
phenomena that influence themicrobiome of Guanabara Bay do not fol-
low straightforward temporal trends. For example, rain, sewage dis-
charge, and tides all impact the predictor variables in the bay, but
those do not occur in any specific frequency that could have been re-
solved with our sampling strategy. Thus, the networks were built to
model the associations between biological variables and abiotic param-
eters regardless of how these associations change through time. More
complex models that incorporate the aforementioned variables would
require a much larger number of samples but could provide a more
comprehensive understanding of the dynamics taking place within the
microbial community that resides in Guanabara Bay. Likewise, the ad-
vancement of machine learning approaches and perhaps the use of al-
gorithms designed specifically to incorporate temporal trends
(e.g., recurrent neural networks) could improve the precision of these
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models. Nevertheless, our work provides a stepping stone for future
studies that aim to understand the dynamics of the GB microbiome
through ecological modelling approaches.
5. Conclusions

We generated ANNs with strong predictive capacities that could
model the response ofmicrobial communities to environmental param-
eters in Guanabara Bay. These models provided supporting evidence of
how the abundances of bacteria, chlorophyll and Vibrio have been regu-
lated by environmental parameters; ranked their relative importance
over the response variables; and characterized the synergistic effects
between variables. Furthermore, ANNs allowed us to infer the response
of the microbial communities to changes in water quality conditions
throughout seasonal and pollution gradients. Our findings provide in-
sightful information on the dynamics of microbial communities for
tropical estuarine ecosystems, for which little information is currently
available. This approach could be easily applied to other similar datasets
fromother ecosystems and has served as a proof-of-principle of the use-
fulness of neural networks in the field of microbial ecology. This out-
come is especially relevant considering the current scenarios of global
climate changes and increasing environmental impacts. Future studies
with a larger sample set, usingmore predictor variables, and incorporat-
ing associations between biotic variableswill likely provide an even bet-
ter description of the ecological associations taking place within the GB
microbiome. Our findings have implications for the development of
strategies to reduce the burden of waterborne diseases and for the re-
mediation of urban aquatic ecosystems, to preserve their biodiversity
as well as their economic, historical and aesthetic values.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.04.009.
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